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Lay Abstract

In image compression, perceptual quality plays a crucial role in the lossy reconstruc-

tion of images. Blau & Michaeli [8] introduced a mathematical formulation of per-

ceptual quality and defined the information rate-distortion-perception function, which

can be viewed as an extension of the classical rate-distortion function. Built upon

the seminal work by Blau & Michaeli, we develop a rate-distortion-perception the-

ory with a special focus on binary and vector Gaussain sources. For binary sources,

a closed-form expression of the rate-distortion-perception function in the one-shot

setting and a complete characterization of the distortion-perception region for an

arbitrary representation are established. We then derive partially tight upper and

lower bounds on the minimum rate penalty for universal representations and inves-

tigate into the point-wise and set-wise successive refinement. For vector Gaussian

sources, we characterize the rate- distortion-perception function, which extends the

result for the scalar counterpart in [56], and show that in the high-perceptual-quality

regime, each component of the reconstruction is strictly correlated with that of the

source, which is in contrast to the traditional water-filling solution. We also consider

the notion of universal representation where the encoder is fixed and the decoder is

adapted to achieve different distortion-perception pairs. We characterize the achiev-

able distortion-perception region for a fixed representation and demonstrate that the
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corresponding distortion-perception tradeoff is approximately optimal.
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Abstract

Deep generative models when utilized in lossy image compression tasks can recon-

struct realistic looking outputs even at extremely low bit-rates, while traditional

compression methods often exhibit noticeable artifacts under similar conditions. As

a result, there has been a substantial surge of interest in both the information the-

oretic aspects and the practical architectures of deep learning based image compres-

sion. This thesis makes contributions to the emerging framework of rate-distortion-

perception theory. The main results are summarized as follows:

• We investigate the tradeoff among rate, distortion, and perception for binary

sources. The distortion considered here is the Hamming distortion and the

perception quality is measured by the total variation distance. We first derive

a closed-form expression for the rate-distortion-perception tradeoff in the one-

shot setting. This is followed by a complete characterization of the achievable

distortion-perception region for a general representation. We then consider the

universal setting [56] in which the encoder is one-size-fits-all, and derive upper

and lower bounds on the minimum rate penalty. Finally, we study successive

refinement for both point-wise and set-wise versions of perception-constrained

lossy compression. A necessary and sufficient condition for point-wise successive
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refinement and a sufficient condition for the successive refinability of universal

representations are provided.

• Next, we characterize the expression for the rate-distortion-perception function

of vector Gaussian sources, which extends the result in the scalar counterpart

in [56], and show that in the high-perceptual-quality regime, each component of

the reconstruction (including high-frequency components) is strictly correlated

with that of the source, which is in contrast to the traditional water-filling so-

lution. This result is obtained by optimizing over all possible encoder-decoder

pairs subject to the distortion and perception constraints. We then consider the

notion of universal representation where the encoder is fixed and the decoder

is adapted to achieve different distortion-perception pairs. We characterize the

achievable distortion-perception region for a fixed representation and demon-

strate that the corresponding distortion- perception tradeoff is approximately

optimal.

Our findings significantly enrich the nascent rate-distortion-perception theory, es-

tablishing a solid foundation for the field of learned image compression.
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Chapter 1

Introduction

1.1 Deep Learning based Compression

Compression is a fundamental concept in information theory that aims to efficiently

represent data by reducing the number of bits required for its transmission [40]. Com-

pression can be broadly classified into two main categories: lossless compression and

lossy compression [11]. Lossy compression algorithms achieve higher compression

ratios, while it results in a certain amount of information loss. Lossy compression

is widely used in applications such as image and video compression, where small

distortions are acceptable. Recently, deep learning models have been employed for

lossy compression, which offers a promising approach to efficiently encoding and com-

pressing digital data, such as images, videos, and audio signals. By leveraging the

power of deep learning, this approach has the potential to overcome the limitations of

traditional compression algorithms, offering higher-quality reconstructions. As a con-

sequence, there has been an upsurge of research on deep learning based compression

1
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methods [2–5, 19, 24, 28, 29, 34, 39, 44–46]. Earlier studies focused on evaluating au-

toencoders and recurrent neural network (RNN) architectures for deep learning based

compression primarily based on their rate-distortion performance [2, 4, 5, 19, 24, 43–

45]. Subsequent research efforts have integrated Generative Adversarial Networks

(GANs) based regularization techniques to enhance perceptual quality in deep learn-

ing based compression [3, 17, 21, 33, 39, 46, 50]. This leads to reconstructing realistic

looking outputs even at very low bit-rates, when traditional compression methods

suffer from significant artifacts.

1.2 Measures in Lossy Compression

The following question arises naturally in lossy compression: How to effectively evalu-

ate the quality of the reconstructions? Extensive research have been dedicated to the

design and development of quality measures. At the beginning, the focus was placed

on distortion measures, such as mean square error (MSE) [1], Peak Signal-to-Noise

Ratio (PSNR), Structural Similarity Index (SSIM) [53], Multi-Scale Structural Simi-

larity Index (MS-SSIM) [52] (which is an extension of SSIM), or deep feature based

L2 distances [18, 30]. Such measures usually rely on a ground truth as reference,

against which the reconstruction is compared. Nevertheless, recent works noted that

achieving low distortion does not always guarantee high perceptual quality. In other

words, minimizing distortion alone does not necessarily imply that the reconstructed

output will be visually pleasing, especially at low bit-rates. Deep learning based im-

age compression research has shown that prioritizing higher perceptual quality can

lead to an increase in distortion [2, 39, 46]. This naturally leads to a tradeoff be-

tween optimizing for perceptual quality and optimizing for distortion, as illustrated

2
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Figure 1.1: A plot of perception-distortion tradeoff curve for a fixed rate. Here, we
focus on the low rate regime where this tradeoff can be illustrated clearly. The

horizontal axis represents distortion loss, while the vertical axis represents
perceptual loss. In both cases, lower values indicate better performance. There are
three sets of (D,P ) points. (D1, P1) represents low distortion and high perception,
which is more similar to the input but suffers from blurriness. (D3, P3) represents
high distortion and perfect perceptual quality, which reduces blurriness at the cost
of a less faithful reconstruction of the input (in extreme cases even changing the

identity of the digit). And (D2, P2) represents the middle point, which produces a
median level distortion and perception reconstruction.

in Fig 1.1. Motivated by this, perception-oriented measures have been introduced,

aiming to better quantify what human would consider visually pleasing. An image

with high perceptual quality is typically characterized by clarity and the absence of

visual artifacts. Unlike distortion, the assessment of perceptual quality is considered

to be inherently no-reference, meaning that it does not require a reference image

for comparison, and only uses statistical features of inputs, specifically measuring

the degree to which the reconstruction looks like a natural image. Some commonly

3
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used no-reference metrics include Blind/Referenceless Image Spatial Quality Evalua-

tor (BRISQUE), Natural Image Quality Evaluator (NIQE), Perceptual Image Quality

Evaluator (PIQE) [30, 47], and Fréchet Inception Distance (FID) [16].

Natural images can be modeled as a space equipped with a prior distribution [31].

Lossy compression is an operation that acts on this space, transforming the prior

distribution of input images to a distribution of reconstructed images. To ensure

that the reconstructed images look natural, a reasonable way is to require the two

probability distributions to be close to each other [23]. From this perspective, the

perceptual quality can be mathematically defined as a certain divergence between the

distribution PX̂ of the reconstruction X̂ and the distribution PX of the input source

X, expressed as d(PX , PX̂). In particular, many no-reference image quality measures

are based on evaluating the deviations from natural scene statistics [31, 32, 51], which

have been shown to correlate well with human opinion scores. In some sense, human

visual perception is highly adapted for extracting structural information from a scene

[54]. Some works also quantify perceptual quality via real vs. fake user studies,

which examine the ability of human observers to tell whether the reconstruction is

real or the output of an algorithm [7, 12, 17, 38, 57] (similarly to the idea underlying

generative adversarial nets). This line of thinking also boils down to comparing two

distributions, one for the input images and the other for the reconstructed ones.

It is obvious that perception loss, as defined above, is not the same as distortion

loss. In particular, minimizing the perception loss does not necessarily result in low

distortion. For example, if the decoder ignores the source image and simply generates

a random sample according to the input distribution, it can achieve perfect perceptual

quality but at the expense of very high distortion.

4
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The commonly used divergences include KL divergence [20], Jensen-Shannon di-

vergence [25], Wasserstein distance [48], and TV distance [35]. However, identifying

the divergence that is best aligned with human perception remains an ongoing project.

1.3 Rate-Distortion Theory

1.3.1 Rate-Distortion Function

Lossy compression algorithms are typically investigated within the framework of rate-

distortion theory, which is an important branch of information theory. Rate-distortion

theory [11] offers a computable characterization of an an (operational) objective as-

sociated with optimizing an encoder-decoder pair in the presence of a bit interface,

as visualized in Fig. 1.2. Specifically, the objective is to minimize the rate of the

bit interface subject to a prescribed distortion constraint on the reconstruction. In

classical rate-distortion theory, there is no loss of optimality in assuming that both

the encoder and decoder are deterministic. The main result of this theory is that

the aforementioned fundamental rate-distortion tradeoff is delineated by the rate-

distortion function [41] defined as

R(D) = inf
pX̂|X

I(X; X̂)

s.t. E[∆(X, X̂)] ≤ D,

where I(X, X̂) is the mutual information between the input source X and reconstruc-

tion X̂, and ∆ : X × X → R+ is a distortion function.

5
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Figure 1.2: An illustration of the rate-distortion function in lossy compression. (i)
Assume there is an input source X ∼ PX , the encoder describes the input source X

by an index, then the decoder represents X by an estimate X̂. If the expected
distortion is bounded by D, then the lowest achievable rate R is characterized by
the information rate-distortion function R(D). (ii) The rate-distortion function is

an non-increasing convex function.

1.3.2 Reverse Water-Filling Solution

For a vector Gaussian source with MSE distortion measure, the rate-distortion func-

tion is given by the reverse water-filling solution [11]. Specifically, this solution states

that to minimize the rate subject to the distortion constraint, one has to evenly al-

locate the distortion across different eigen-dimensions of the source except for those

dimensions that get saturated, as shown in Fig. 1.3. This leads to the following

parametric expression of the rate-distortion function [11]

R(D) =
n∑
i=1

1

2
log

λi
Di

,

6
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Figure 1.3: An illustration of reverse water-filling solution. Let
Xi ∼ N(0, λi, i = 1, 2, ..., 5) be independent Gaussian random variables. Based on
the distortion constraint, we choose a water level and only encode those random

variables with variances greater than the water level. No bits are allocated to those
random variables with variance less than the water level. More generally, the

rate-distortion function for a multivariate normal vector can be obtained by reverse
water-filling in the eigenspace.

where

Di =


ω, if ω < λi,

λi, if ω ≥ λi,

with ω chosen so that
∑n

i=1Di = D. Parameters λi > 0, i = 1, 2, ..., n are the

eigenvalues of the covariance matrix of the given vector Gaussian source.

For an i.i.d. Gaussian source with MSE distortion measure, the reconstruction

given by the reverse water-filling solution is generally of lower power than the source.

This means that the dimensions associated with small eigenvalues are often left un-

coded. In practice, such dimensions typically correspond to high-frequency compo-

nents. That is why compressed images tend to look blurry at low bit-rates [49].

7
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1.4 Rate-Distortion-Perception Theory

Considering the importance of perception in image assessment, Blau and Michaeli

[8] introduced a mathematical formulation of perceptual quality and made a first at-

tempt to develop a rate-distortion-perception framework for learned image compres-

sion. While rate-distortion theory focuses on finding the optimal tradeoff between the

rate and distortion, rate-distortion-perception theory considers a three-way tradeoff

that involves a third factor: perception, as shown in Fig. 1.4. The rate-distortion-

perception function [8] is defined as

R(D,P ) = inf
pX̂|X

I(X; X̂)

s.t. E[∆(X, X̂)] ≤ D

s.t. d(pX , pX̂) ≤ P,

where d : P(X ) × P(X ) → R+ is the divergence between two distributions that is

convex in its second argument. It has been proved that the rate-distortion-perception

function is monotonically non-increasing in D and P and it is a convex function [8].

1.5 Contributions and Thesis Organization

The thesis includes two main topics and consists of three papers that investigate dif-

ferent representation schemes within the rate-distortion-perception framework. The

contributions are described in the abstract of each chapter and are summarized below.

• In Chapter 2, we explore the tradeoff among rate, distortion, and perception for

8
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Figure 1.4: An illustration of the rate-distortion-perception function. (i) The
perception constraint is added into the optimization problem. (ii) The red curve
represents the rate-distortion function, which does not ensure good perceptual

quality. When taking perceptual quality into account, the rate-distortion-perception
function elevates (green and blue curves). This means that good perceptual quality

comes at the expense of either a higher rate, a higher distortion, or both.

binary sources. We first derive a closed-form expression for the rate-distortion-

perception tradeoff in the one-shot setting. This is followed by a complete

characterization of the achievable distortion-perception region for a general rep-

resentation. We then consider the universal setting in which the encoder is one-

size-fits-all, and derive upper and lower bounds on the minimum rate penalty.

Finally, we study successive refinement for both point-wise and set-wise ver-

sions of perception-constrained lossy compression. A necessary and sufficient

condition for point-wise successive refinement and a sufficient condition for the

successive refinability of universal representations are provided.

Qian, J., Zhang, G., Chen, J. and Khisti, A., 2022, March. A Rate-Distortion-

Perception Theory for Binary Sources. In International Zurich Seminar on

Information and Communication (IZS 2022). Proceedings (pp. 34-38). ETH
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Zurich.

• In Chapter 3, we analyze the tradeoff between rate, distortion, and perception

for vector Gaussian sources. We adopt MSE as the distortion metric and use

either KL divergence or Wassertein-2 distance to measure the perception quality.

We first characterize the rate-distortion-perception function of vector Gaussian

sources and show that in the high-perceptual-quality regime, each component

of the reconstruction is strictly correlated with that of the source which is

in contrast to the traditional reverse water-filling solution. We then explore

the concept of universal representations and demonstrate that it is possible

to construct universal representations that approximately achieve the optimal

tradeoff between distortion and perception.

Qian, J., Salehkalaibar, S., Liu, H. and Chen, J., 2023. Rate-Distortion-

Perception Tradeoff for Lossy Compression of Vector Gaussian Sources, to be

submitted to IEEE Transactions on Information Theory.

• In Chapter 4, we summarize our findings and provide valuable insights for future

research directions.
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Chapter 2

A Rate-Distortion-Perception

Theory for Binary Sources

2.1 Abstract

Building upon a series of recent works on perception-constrained lossy compression,

we develop a rate-distortion-perception theory for binary sources under Hamming

distortion and TV perception losses. It includes a closed-form expression of the rate-

distortion-perception function in the one-shot setting, a complete characterization

of the distortion-perception region for an arbitrary representation, partially tight

upper and lower bounds on the minimum rate penalty for universal representations, a

necessary and sufficient condition for point-wise successive refinement, and a sufficient

condition for the successive refinability of universal representations.

11
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2.2 Introduction

Recently, there has been an upsurge of research on perception-constrained lossy com-

pression for images or videos. Within traditional compression, the well-established

rate-distortion formulation is to minimize some notion of distortion under the con-

dition that the given bit rate is not exceeded. In contrast, perceptually-constrained

lossy compression takes into account the notion of perceptual quality, which turns

out to be distinct from the notion of distortion, as well. The motivation for con-

sidering both the traditional distortion and the perceptual quality comes from the

fact that in many cases, minimizing distortion does not produce visually pleasing re-

sults. Such a fact was exemplified by many remarkable deep learning enhanced lossy

compression works capable of operating at extremely low rates, such as [39, 6]. In

perception-constrained lossy compression, instead, the target is to find the best trade-

off among three quantities: rate, distortion and perception. Following the success of

deep learning for lossy compression, a mathematical view of this topic was initiated

and investigated by Blau and Michaeli [8].

Concretely, perceptual quality aims to quantify the degree of visual satisfaction

as measured by the human visual perception system and unlike distortion is taken

to be fully no-reference (i.e., not with respect to any particular source sample, such

as a single image or video). Blau and Michaeli adopt a notion of perceptual quality

defined by the divergence (e.g., the KL divergence, the Wasserstein distance, and

the TV distance) between the distribution of the original source and that of the

reconstruction, with the property that perfect perceptual quality is obtained only

when the two distributions are identical. By basing this measure on the distributions,

12
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we again emphasize that the perceptual quality is in fact a global and inherently no-

reference measure of the reconstruction quality. In contrast, the distortion is a local

one, expressed in terms of the symbol-by-symbol “distance”. As mentioned previously,

it may not be possible to attain both low distortion and high perceptual quality at

the same time, in the sense that one quality must be sacrificed to improve the other

one [6]. Optimizing the tradeoff between distortion and perception, incorporated with

distribution-preserving lossy compression [46], is the central idea in studying the rate-

distortion-perception tradeoff in the seminal work [8]. However, we note that various

versions of distribution-constrained lossy compression have been studied before [8] in

information theory literature (e.g., [55, 36, 37]).

In this paper, we investigate the tradeoff among rate, distortion, and perception

for binary sources. The distortion considered here is the Hamming distortion and

the perception quality is measured by the TV distance. We first derive a closed-form

expression for the rate-distortion-perception tradeoff in the one-shot setting. This

is followed by a complete characterization of the achievable distortion-perception

region for a general representation. We then consider the universal setting [56] in

which the encoder is one-size-fits-all, and derive upper and lower bounds on the

minimum rate penalty. Finally, we study successive refinement for both point-wise

and set-wise versions of perception-constrained lossy compression. A necessary and

sufficient condition for point-wise successive refinement and a sufficient condition for

the successive refinability of universal representations are provided.
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2.3 Problem Definitions and Known Results

2.3.1 Rate-Distortion-Perception Function and Universal Rep-

resentation

Let d : X × X → R+ be a distortion measure and ω : P(X ) × P(X ) → R+ be a

divergence, where X is the source/reconstruction alphabet and P(X ) denotes the set

of distributions defined on X . We assume that ω is convex in its second argument.

Let Θ be a non-empty set of (D,P ) pairs with each pair being a distortion-perception

objective.

Definition 2.3.1 (One-Shot Rate-Distortion-Perception Function) A rate R

is said to be one-shot achievable with respect to Θ for the source variable X if we

can find a random seed U (which is independent of X) and an encoder pV |XU with

H(V |U) ≤ R such that for every (D,P ) ∈ Θ, a decoder pX̂|V U can be constructed to

meet the constraints E[d(X, X̂)] ≤ D and ω(pX , pX̂) ≤ P , where the joint distribution

pXV X̂U is assumed to factor as pXpUpV |XUpX̂|V U . The infimum of such R is denoted

by R∗(Θ). In the case where Θ consists of a single (D,P ) pair, we simply write R∗(Θ)

as R∗(D,P ) and refer to it as the one-shot rate-distortion-perception function:

R∗(D,P ) := inf
pU ,pV |XU ,pX̂|V U

H(V |U)

s.t. E[d(X, X̂)] ≤ D, ω(pX , pX̂) ≤ P.

The random seed U acts as a shared source of randomness, which plays an impor-

tant role in our formulation, as Fig. 2.1 shows. Note that with U available at both

the encoder and decoder, V can be losslessly represented by approximately H(V |U)

14
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Figure 2.1: One-shot setting with common randomness.

bits using variable-length codes. This provides an operational justification of the rate

constraint H(V |U) ≤ R.

Let PZ|X(Θ) denote the set of conditional distributions pZ|X such that for every

(D,P ) ∈ Θ, there exists a conditional distribution pX̂|Z satisfying E[d(X, X̂)] ≤

D and ω(pX , pX̂) ≤ P , where the joint distribution pXZX̂ is assumed to factor as

pXpZ|XpX̂|Z . Define

R(Θ) , inf
pZ|X∈PZ|X(Θ)

I(X;Z).

Theorem 2.3.1 It holds that R(Θ) ≤ R∗(Θ) ≤ R(Θ)+log(R(Θ)+1)+4. Moreover,

15
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in the case where Θ consists of a finite number of (D,P ) pairs,

R∗(Θ) = inf
pX̂ΘU|X

H(X̂Θ|U) (2.3.1)

subject to I(X;U) = 0, (2.3.2)

H(X̂Θ|X,U) = 0, (2.3.3)

E[d(X, X̂D,P )] ≤ D, (D,P ) ∈ Θ, (2.3.4)

ω(pX , pX̂D,P ) ≤ P, (D,P ) ∈ Θ, (2.3.5)

where X̂Θ = {X̂D,P}(D,P )∈Θ.

Proof: The first statement was established in [56] (see also [42] for the special case

Θ = {(D,P )}) by using the strong functional representation lemma [22]. The second

statement follows by showing that there is no loss of optimality in setting V = X̂Θ

and restricting it to be a deterministic function of (X,U). �

Definition 2.3.2 (Asymptotic Rate-Distortion-Perception Function) A rate

R is said to be asymptotically achievable with respect to Θ for the i.i.d. source sequence

{X(t)}∞t=1 with each component following the distribution pX if for some positive in-

teger n, we can find a random seed U and an encoder pV |XnU with 1
n
H(V |U) ≤ R

such that for every (D,P ) ∈ Θ, a decoder pX̂n|V U can be constructed to meet the

constraints 1
n

∑n
t=1 E[d(X(t), X̂(t))] ≤ D and 1

n

∑n
t=1 ω(pX(t), pX̂(t)) ≤ P , where the

joint distribution pXnV X̂nU is assumed to factor as pXnpUpV |XnUpX̂n|V U . The infi-

mum of such R is denoted by R(∞)(Θ). In the case where Θ consists of a single

(D,P ) pair, we simply write R(∞)(Θ) as R(∞)(D,P ) and refer to it as the asymptotic
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Figure 2.2: Asymptotic setting with common randomness.

rate-distortion-perception function:

R(∞)(D,P ) := inf
pU ,pV |XnU ,pX̂n|V U

1

n
H(V |U)

s.t.
1

n

n∑
t=1

E[d(X(t), X̂(t))] ≤ D,
1

n

n∑
t=1

ω(pX(t), pX̂(t)) ≤ P.

Fig. 2.2 depicts the asymptotic setting with common randomness.

As a consequence of Theorem 2.3.1, the following result holds [56] (see also [36,

37, 42] for the special case Θ = {(D,P )}).

Theorem 2.3.2 We have R(∞)(Θ) = R(Θ).

In view of Theorem 2.3.2, the asymptotic source coding rate is completely char-

acterized by R(Θ), and such a quantity is expressed in terms of optimization over

random variables Z satisfying certain conditions. Hence, we can interpret any random

variable Z jointly distributed with X as a representation (or reconstruction random

variable) of X.

Definition 2.3.3 (Universal Representation) Given a representation Z of X, its

distortion-perception region, denoted by Π(pZ|X), is the set of all (D,P ) pairs for

which there exists pX̂|Z satisfying E[d(X, X̂)] ≤ D and ω(pX , pX̂) ≤ P , where the
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joint distribution pXZX̂ is assumed to factor as pXpZ|XpX̂|Z. We say that Z is a

Θ-universal representation of X if Θ ⊆ Π(pZ|X).

Note that R(∞) is the minimum rate needed for a fixed encoder to cope with the

distortion-perception objectives in Θ. In light of Theorem 2.3.2, it also coincides

with the infimum of I(X;Z) over all Θ-universal representations Z of X. On the

other hand, sup(D,P )∈ΘR
(∞)(D,P ) is the rate required to meet the most demanding

objective in Θ. As such, ∆(Θ) , R(∞)(Θ)− sup(D,P )∈ΘR
(∞)(D,P ) characterizes the

extra rate incurred by meeting all objectives in Θ with the encoder fixed. We can

also interpret ∆(Θ) equivalently as the minimum rate penalty for using Θ-universal

representations as opposed to choosing an optimal representation for each objective

in Θ. We are particularly interested in the case Θ = Θ(R), where Θ(R) is the

set of distortion-perception objectives achievable with dedicated encoders at rate

R, i.e., Θ(R) , {(D,P ) : R(∞)(D,P ) ≤ R}. It will be seen that for the binary

case studied in Section 2.4, ∆(Θ(R)) is negligible compared to R, namely, objective-

agnostic encoders/representations can be (almost) as rate-efficient as objective-aware

encoders/representations.

2.3.2 Two-Stage Coding and Successive Refinement

Let Θ1 and Θ2 be two non-empty sets of (D,P ) pairs.

Definition 2.3.4 (One-Shot Version) A rate pair (R1, R2) is said to be one-shot

successively achievable with respect to (Θ1,Θ2) for the source variable X if we can

find a random seed U and an encoder pair (pV1|XU , pV2|XV1U) with U independent

of X, H(V1|U) ≤ R1, and H(V2|V1, U) ≤ R2 such that for every (D1, P1) ∈ Θ1
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and (D2, P2) ∈ Θ2, a decoder pair (pX̂1|V1U
, pX̂1|V1V2U

) can be constructed to meet

the constraints E[d(X, X̂i)] ≤ Di and ω(pX , pX̂i) ≤ Pi, i = 1, 2, where the joint

distribution pXV1V2X̂1X̂2U
is assumed to factor as pXpUpV1|XUpV2|XV1UpX̂1|V1U

pX̂2|V2U
.

The closure of the set of such (R1, R2) is denoted by R∗(Θ1,Θ2).

Let PZ1Z2|X(Θ1,Θ2) denote the set of pZ1Z2|X such that for every (D1, P1) ∈ Θ1

and (D2, P2) ∈ Θ2, there exists (pX̂1|Z1
, pX̂2|Z2

) satisfying E[d(X, X̂i)] ≤ Di and

ω(pX , pX̂i) ≤ Pi, i = 1, 2, where the joint distribution pXZ1Z2X̂1X̂2
is assumed to

factor as pXpZ1Z2|XpX̂1|Z1
pX̂2|Z2

. Define

R(Θ1,Θ2) ,
⋃

pZ1Z2|X∈PZ1Z2|X(Θ1,Θ2)

{(R1, R2) ∈ R2
+ :

R1 ≥ I(X;Z1) + log(I(X;Z1) + 1) + 4,

R1 +R2 ≥ I(X;Z1, Z2) + log(I(X;Z1) + 1)

+ log(I(X;Z2|Z1) + 1) + 8},

R(Θ1,Θ2) ,
⋃

pZ1Z2|X∈PZ1Z2|X(Θ1,Θ2)

{(R1, R2) ∈ R2
+ :

R1 ≥ I(X;Z1),

R1 +R2 ≥ I(X;Z1, Z2)}.

Fig. 2.3 illustrates the structure of the two-stage coding. Similarly to Theorem 2.3.1,

we have the following theorem [56].

Theorem 2.3.3 We have cl(R(Θ1,Θ2)) ⊆ R∗(Θ1,Θ2) ⊆ cl(R(Θ1,Θ2)).

Definition 2.3.5 (Asymptotic Version) A rate pair (R1, R2) is said to be asymp-

totically successively achievable with respect to (Θ1,Θ2) for the i.i.d. source sequence
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Figure 2.3: Two-stage coding.

{X(t)}∞t=1 if we can find a random seed U and an encoder pair (pV1|XnU , pV2|XnV1U)

with 1
n
H(V1|U) ≤ R1 and 1

n
H(V2|V1, U) ≤ R2 such that for every (D1, P1) ∈ Θ1 and

(D2, P2) ∈ Θ2, a decoder pair (pX̂n
1 |V1U

, pX̂n
1 |V1V2U

) can be constructed to meet the con-

straints 1
n

∑n
t=1 E[d(X(t), X̂i(t))] ≤ Di and ω(pX ,

1
n

∑n
t=1 pX̂i(t)) ≤ Pi, i = 1, 2, where

the joint distribution pXnV1V2X̂n
1 X̂

n
2 U

is assumed to factor as pXnpUpV1|XnUpV2|XnV1UpX̂n
1 |V1U

pX̂n
2 |V2U

.

The closure of the set of such (R1, R2) is denoted by R(∞)(Θ1,Θ2). We say that suc-

cessive refinement from Θ1 to Θ2 is feasible if (R(∞)(Θ1), R(∞)(Θ2) − R(∞)(Θ1)) ∈

R(∞)(Θ1,Θ2).

The following result [56] is a corollary of Theorem 2.3.3.

Theorem 2.3.4 We have R(∞)(Θ1,Θ2) = cl(R(Θ1,Θ2)). Moreover, successive re-

finement from Θ1 to Θ2 is feasible if and only if (R(∞)(Θ1), R(∞)(Θ2)−R(∞)(Θ1)) ∈

cl(R(Θ1,Θ2)).
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2.4 Main Results

Throughout this section, we assume X = {0, 1} and X ∼ Bern(q) (i.e., X is a binary

source with pX(1) = 1 − pX(0) = q ∈ (0, 1
2
]); moreover, we focus on the Hamming

distortion d(x, x̂) = 1{x 6= x̂} and the TV distance w(pX , pX̂) = 1
2
‖pX − pX̂‖1.

We first consider the case Θ = {(D,P )} and characterize the one-shot rate-

distortion-perception function. Without loss of generality, it is assumed that P ∈

[0, q].

Theorem 2.4.1 For a binary source X ∼ Bern(q), under Hamming distortion and

TV perception losses,

R∗(D,P ) =


q−D
q
Hb(q) 0 ≤ D ≤ P,

(1−q)+P−D+P
2q

1−q Hb(q) P < D ≤ D′,

0 otherwise,

where Hb(·) denotes the binary entropy function and D′ = 2q(1− q)− (1− 2q)P .

Proof: We shall determine the expression of R∗(D,P ) by solving the optimization

problem in (2.3.1) with Θ = {(D,P )}. Without loss of optimality, one can restrict

the alphabet size of U to be no more than 4. In fact, (X, X̂) takes values in {0, 1}2.

Hence, without loss of optimality, we can assume that the random seed U takes

values in {0, 1, 2, 3} and X̂ = X if U = 0; X̂ = 1−X if U = 1; X̂ = 0 if U = 2; and

X̂ = 1 if U = 3. (which does not the value of the optimization problem in (2.3.1)).

Denoting the probability values pU(i) = εi, i ∈ [0 : 3], we can rewrite the optimization

problem in (2.3.1) as a linear program (with nonnegative variables (εi)i∈[0:3] such that∑
i εi = 1), since the objective function and the constraints in (2.3.4) and (2.3.5)
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Figure 2.4: Plots of perception-distortion curves for different bit rates, where solid
curves denote the asymptotic case while dotted curves denote the one-shot case.

are linear in pU . Solving this linear program, we obtain the desired result. Detailed

proofs are provided in the appendix. �

For comparison, we present the asymptotic rate-distortion-perception function [8]

in the following theorem.

Theorem 2.4.2 For a binary source X ∼ Bern(q), under Hamming distortion and

TV perception losses,

R(∞)(D,P ) =



Hb(q)−Hb(D), D ∈ S1,

2Hb(q) +Hb(q − P )

−Ht(
D−P

2
, q)

−Ht(
D+P

2
, 1− q), D ∈ S2,

0, D ∈ S3.
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Figure 2.5: Plots of rate-distortion curves for different perception qualities, where
solid curves denote the asymptotic case while dotted curves denote the one-shot

case.

where Ht(α, β) denotes the entropy of a ternary random variable with probability

values (α, β, 1 − α − β). Here, S1 = [0, D1], S2 = (D1, D2], and S3 = (D2,∞) with

D1 = P
1−2(q−P )

and D2 = 2q(1− q)− (1− 2q)P .

Fig. 2.4 plots perception-distortion curves for different rates, comparing the

asymptotic case and one-shot case under the same bit rate. Note that the trade-

off curves for the asymptotic case always lie below their counterparts for the one-shot

case. A similar phenomenon can be seen from Fig. 2.5, which plots rate-distortion

curves for different perception qualities.

Let Z be a representation of a binary source X ∼ Bern(q) with pZ(i) = qi and

pX|Z(1|i) = εi, i ∈ [n], where
∑n

i=1 qi = 1 and
∑n

i=1 qiεi = q. Without loss of

generality, we assume that the values of qi|1 − 2εi|, i ∈ [n] are in ascending order as

i increases. Let jk with k ∈ [m] denote the k-th index at which εjk ≤ 0.5. Denote
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k+ ∈ [m] as the first index such that jk+ > k and εjk+ ≤ 0.5, if it exists. Define k∗ to

be the first positive integer satisfying
∑n
i=k∗ qi(1−εi)−

∑m
i=(k∗)+ qji

q∗k
≤ 1− εk∗ .

Theorem 2.4.3 Let Z be a representation of a binary source X ∼ Bern(q) as speci-

fied above. Under Hamming distortion and TV perception losses, the lower boundary

of Π(pZ|X) is piecewise linear with k∗ turning points {(Dk, Pk)}k
∗

k=1 given by

Dk =
n∑
i=1

qi(1− εi) +
k∑
i=1

qi(2εi − 1)(1− εi)

+
m∑

i=k+

qji(2εji − 1), k = 1, . . . , k∗ − 1,

Pk =

∣∣∣∣∣
n∑

i=k+1

qi(1− εi)−
m∑

i=k+

qji

∣∣∣∣∣ , k = 1, . . . , k∗ − 1,

Dk∗ =
n∑
i=1

qi(1− εi) +
k∗−1∑
i=1

qi(2εi − 1)(1− εi)

+ (2εk∗ − 1)

 n∑
i=k∗

qi(1− εi)−
m∑

i=(k∗)+

qji


+

m∑
i=(k∗)+

qji(2εji − 1),

Pk∗ = 0.

Proof: We minimize the Hamming distortion E[1{X 6= X̂}] (i.e., Pr[X 6= X̂]) over

all the conditional distribution pX̂|Z under the perception constraint ω(pX̂ , pX) ≤ P .

One can easily observe that this is also a linear program. Solving this linear program,

we obtain the desired result. Detailed proofs are provided in the appendix. �

Next consider the case Θ = Θ(R). We start by introducing some quantities

which are needed for bounding R(∞)(Θ(R)). Let D1 = D1(R) and D2 = D2(R) be
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respectively the solutions of

R = Hb(q)−Hb(D1),

R = 3Hb(q)−Ht(
D2

2
, q)−Ht(

D2

2
, 1− q).

In fact, D1 and D2 correspond to the D1 and D2 in Theorem 2.4.2, but here expressed

in terms of R, rather than in terms of P . Define

RLB = (1− q)
∑

i,j∈{0,1}

pij|0 log
pij|0

(1− q)pij|0 + qpij|1

+q
∑

i,j∈{0,1}

pij|1 log
pij|1

(1− q)pij|0 + qpij|1
,

where

p00|0 = 1− D2

2(1− q)
,

p01|0 =
(D2 −D1)(2q − 2D1 +D2)

2(1− q)(q − 2D1 +D2)
,

p10|0 = 0,

p11|0 =
(2D1 −D2)(q −D1)

2(1− q)(q − 2D1 +D2)
,

p00|1 =
D2

2q
,

p01|1 =
(D2 −D1)(2D1 −D2)

2q(q − 2D1 +D2)
,

p10|1 = 0,

p11|1 =
(q −D1)(2q − 2D1 +D2)

2q(q − 2D1 +D2)
.

(2.4.1)
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Moreover, define

RUB = (1− q)
∑

i,j∈{0,1}

p′ij|0 log
p′ij|0

(1− q)p′ij|0 + qp′ij|1

+q
∑

i,j∈{0,1}

p′ij|1 log
p′ij|1

(1− q)p′ij|0 + qp′ij|1
,

where

p′00|0 = 1− D2

2(1− q)
,

p′01|0 =
D2 −D1 + PUB

2(1− q)
,

p′10|0 = 0,

p′11|0 =
D1 − PUB
2(1− q)

,

p′00|1 =
D2

2q
,

p′01|1 =
D1 −D2 + PUB

2q
,

p′10|1 = 0,

p′11|1 =
2q −D1 − PUB

2q
,

(2.4.2)

and

PUB = κ(D1 −D2), (2.4.3)

κ = κ(D2) ,
− log D2

2
+ 1

2
log (1− q − D2

2
) + 1

2
log (q − D2

2
)

log q
1−q + 1

2
log (1− q − D2

2
)− 1

2
log (q − D2

2
)
. (2.4.4)

Theorem 2.4.4 For a binary source X ∼ Bern(q), under Hamming distortion and
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TV perception losses,

RLB ≤ R(∞)(Θ(R)) ≤ RUB

and consequently

RLB −R ≤ ∆(Θ(R)) ≤ RUB −R.

Moreover, the upper and lower bounds coincide if and only if

q

2D1 −D2 − q
≥ κ. (2.4.5)

Fig. 2.6 shows when R ' 0.08, the dashed lines coincide with the dotted lines,

implying that the upper bound meets the lower bound. Fig. 2.7 provides a direct

visualization in the rate domain, that is when R ' 0.08, the two bounds match.

Proof: We first prove the upper bound, i.e., the achievability part. For brevity, de-

note R̂ := R(∞)(Θ(R)). Observe that the rate-distortion-perception functionR(∞)(D,P )

is convex. Hence, the level curve P (D) of R(∞)(D,P ) = R̂ is convex as well. Note

that the expression of R(∞)(D,P ) is explicitly given in Theorem 2.4.2. By the implicit

function theorem, we can compute the derivative P ′(D) = −∂R(∞)(D,P (D))/∂D

∂R(∞)(D,P (D))/∂P
. By the

convexity, the curve P (D) is above the line D 7→ P ′(D2)(D −D2) where P ′(D2) = κ

with κ given in (2.4.4). Hence, to ensure that all points in Θ(R) are achievable, it

suffice to require all points on the line segment between (D1, P
′(D2)(D1 −D2)) and

(D2, 0) are achievable. In fact, more succinctly, it is only required the two end points

(D1, P
′(D2)(D1 − D2)) and (D2, 0) are achievable. This is because, once these two
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Figure 2.6: Plots of perception-distortion curves for different bit rates under the
lower bound and upper bound, where q = 0.05. When R ' 0.08, the upper bound
and lower bound coincide. Here, the terms ”lower bound” and ”upper bound” are

with respect to the rate R(∞)(Θ(R)), not the cross-section curves – which the upper
bound curve actually sits below.
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Figure 2.7: Plots of ∆(R) with R for both lower bound and upper bound, where
q = 0.05. When R ' 0.08, the upper bound and lower bound coincide.

end points are achievable, the whole segment is achievable as well, since the set of

achievable points is always convex. Substituting (D1, P
′(D2)(D1 −D2)) and (D2, 0)

into the RDP function, we obtain the upper bound RUB.

We next prove the lower bound, i.e., the converse part. Since Θ(R) is achievable

and the turning points (D1, P1) and (D2, 0) are on the boundary of this region, obvi-

ously, these two points (D1, P1) and (D2, 0) are achievable as well. This implies that
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the minimum rate R(∞)(Θ(R)) is at least the value of the following convex program:

min
pX̂1X̂2|X

I(X; X̂1, X̂2)

subject to Pr(X 6= X̂1) ≤ D1,

Pr(X 6= X̂2) ≤ D2,

ω(pX , pX̂1
) ≤ P1,

ω(pX , pX̂2
) ≤ 0.

Since all the constraints are linear and the objective function is convex, a solution

is optimal if and only if it satisfies the KKT conditions. Moreover, by substituting

the solution PX̂1X̂2|X(i, j|k) = pij|k for i, j, k ∈ {0, 1} with pij|k given in (2.4.1) to

the KKT conditions, one can find that the KKT conditions are satisfied, and hence,

this solution is optimal. (In fact, one technical obstacle in this proof idea is that the

objective function is not differentiable at the boundary points, i.e., at the points with

some pij|k = 0. Hence, in the implementation of the proof idea above, we need first

to use the log-sum inequality to eliminate the terms involving p10|0 or p10|1, and then

apply the KKT conditions.) This gives the lower bound RLB.

By comparing the upper and lower bounds, one can check that the upper bound

and lower bound coincide if and only if q
2D1−D2−q ≥ κ.

More detailed proofs are provided in the appendix. �

We next proceed to study successive refinement. Let A be the regime where

both the distortion and perception constraints are active, i.e., A , {(D,P ) : D ∈

[ P
1−2(q−P )

, 2q(1− q)− (1− 2q)P ), P ∈ [0, q]}.

Theorem 2.4.5 For a binary source X ∼ Bern(q), under Hamming distortion and
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TV perception losses, successive refinement from (D1, P1) ∈ A to (D2, P2) ∈ A is

feasible if and only if

q((D1 − P1)− (D2 − P2)) ≥ D1P2 −D2P1, (2.4.6)

(1− q)((D1 + P1)− (D2 + P2)) ≥ D2P1 −D1P2. (2.4.7)

Proof: For the case D ∈ S2, R(∞)(D,P ) is attained by

pX̂|X(0|0) = 1− D − P
2(1− q)

,

pX̂|X(0|1) =
D + P

2q
.

Let A denote the regime where both D and P are active, i.e., A , {(D,P ) : D ∈

[ P
1−2(p−P )

, 2p(1−p)−(1−2p)P ), P ∈ [0, p]}. By the standard techniques in information

theory [14], successive refinement from (D1, P1) ∈ A to (D2, P2) ∈ A is feasible if and

only if one can construct a Markov chain X ↔ X̂2 ↔ X̂1 such that

pX̂1|X(0|0) = 1− D1 − P1

2(1− q)
,

pX̂1|X(0|1) =
D1 + P1

2q
,

pX̂2|X(0|0) = 1− D2 − P2

2(1− q)
,

pX̂2|X(0|1) =
D2 + P2

2q
.

If we denote pX̂1|X̂2
(0|0) = a and pX̂1|X̂2

(0|1) = b in the Markov chain above, then
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the resultant conditional probability become

pX̂1|X(0|0) = pX̂2|X(0|0)pX̂1|X̂2
(0|0) + pX̂2|X(0|1)pX̂1|X̂2

(0|1)

= (1− D2 − P2

2(1− q)
)a+

D2 − P2

2(1− q)
b,

pX̂1|X(0|1) = pX̂2|X(0|1)pX̂1|X̂2
(0|0) + pX̂2|X(1|1)pX̂1|X̂2

(0|1)

=
D2 + P2

2q
a+ (1− D2 + P2

2q
)b.

To ensure that the conditional probability are the same as the requirements pX̂2|X(0|0) =

1− D2−P2

2(1−q) , pX̂2|X(0|1) = D2+P2

2q
, the parameters a, b should satisfy

(1− D2 − P2

2(1− q)
)a+

D2 − P2

2(1− q)
b = 1− D1 − P1

2(1− q)
,

D2 + P2

2q
a+ (1− D2 + P2

2q
)b =

D1 + P1

2q
.

These equations yield

a =
(1− D2+P2

2q
)(1− D1−P1

2(1−q) )− (D2−P2)(D1+P1)
4q(1−q)

(1− D2−P2

2(1−q) )(1− D2+P2

2q
)− (D2−P2)(D2+P2)

4q(1−q)

,

b =
(1− D2−P2

2(1−q) )D1+P1

2q
− (1− D1−P1

2(1−q) )D2+P2

2q

(1− D2−P2

2(1−q) )(1− D2+P2

2q
)− (D2−P2)(D2+P2)

4q(1−q)

.

Furthermore, obviously, it should hold that a ∈ [0, 1] and b ∈ [0, 1]. This is equivalent

to the condition given in (2.4.6) and (2.4.7). More detailed proofs are provided in the

appendix. �

For 0 < R1 < R2, we denote D1 = D1(R1), D2 = D2(R1), and D′1 = D1(R2), D′2 =

D2(R2), where the functions D1(R), D2(R) are defined above Theorem 2.4.4.
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Theorem 2.4.6 Let 0 < R1 < R2. For a binary source X ∼ Bern(q), under Ham-

ming distortion and TV perception losses as well as the conditions that

q

2D1 −D2 − q
≥ κ(D2),

q

2D′1 −D′2 − q
≥ κ(D′2) (2.4.8)

with the function κ given in (2.4.4), successive refinement from Θ(R1) to Θ(R2) is

feasible if

2D1 −D2 ≤ 2D′1 −D′2. (2.4.9)

Remark 2.4.1 Note that the conditions in (2.4.8) are the necessary and sufficient

conditions for the bounds on R(∞)(Θ(R)) in Theorem 2.4.4 to match at R = R1 and

R = R2 respectively. Hence, the theorem above provides a sufficient condition for

the feasibility of set-wise successive refinement, given that R1 and R2 are above the

matching threshold.

Remark 2.4.2 In fact, we numerically verify that 2D1 −D2 ≤ 2D′1 −D′2 automat-

ically holds once the conditions in (2.4.8) are satisfied. In other words, successive

refinement from Θ(R1) to Θ(R2) is feasible if R1 and R2 are above the matching

threshold.

Proof: Under the condition in (2.4.9), set-wise successive refinement from Θ(R1)

to Θ(R2) is feasible if there exists a Markov chain X ↔ (X̂ ′1, X̂
′
2) ↔ (X̂1, X̂2)

such that the conditional distributions PX̂1X̂2|X and PX̂′1X̂′2|X are optimal in attaining

R(∞)(Θ(R1)) and R(∞)(Θ(R2)) respectively. In other words, PX̂1X̂2|X corresponds to

the distributions given in (2.4.1), and PX̂′1X̂′2|X corresponds the same distribution but
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with D1, D2 replaced by D′1, D
′
2. By simple algebraic manipulations, one can find

that such a Markov chain exists if and only if 2D1 − D2 ≤ 2D′1 − D′2 holds. This

completes the proof. Detailed proofs are provided in the appendix. �

2.5 Conclusions

In this chapter, we have focused on the advancement of perception-constrained lossy

compression for binary sources, specifically addressing Hamming distortion and TV

perception losses. We derived a closed-form expression for the rate-distortion-perception

tradeoff in the one-shot setting. And we compared the setting with the asymptotic

case and resulted that the tradeoff curves for the asymptotic case always lie below

their counterparts for the one-shot case. We successfully characterized the achievable

distortion-perception region for a general representation. We then established par-

tially tight upper and lower bounds on the minimum rate penalty for the universal

setting [56]. Finally, we identified a necessary and sufficient condition for point-wise

successive refinement and a sufficient condition for the successive refinability of uni-

versal representations.

2.A Proof of Theorem 2.4.1

For a binary source X ∼ Bern(q), under Hamming distortion and TV perception

losses,

R∗(D,P ) =


q−D
q
Hb(q) 0 ≤ D ≤ P,

(1−q)+P−D+P
2q

1−q Hb(q) P < D ≤ D′,

0 otherwise,
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where Hb(·) denotes the binary entropy function and D′ = 2q(1− q)− (1− 2q)P .

Proof: Without loss of optimality, one can restrict the alphabet size of U to be no

more than 4. In fact, (X, X̂) takes values in {0, 1}2. Hence, without loss of optimality,

we can assume that the random seed U takes values in {0, 1, 2, 3} and X̂ = X if U = 0;

X̂ = 1−X if U = 1; X̂ = 0 if U = 2; and X̂ = 1 if U = 3. Denoting the probability

values pU(i) = εi, i ∈ [0 : 3], we seek a conditional distribution pU,X̂|X that solves the

one-shot rate-distortion-perception function

R∗(D,P ) = min
pU,X̂|X

I(X; X̂|U)

s.t. Pr(X 6= X̂) ≤ D, ωTV (pX , pX̂) ≤ P,

I(X;U) = 0, H(X̂ | X,U) = 0,

where the objective function represented by the mutual information is because

H(V | U) ≥ I(X;V | U)

≥ I(X; X̂ | U).

Here we concentrate on the case where distortion measure is the Hamming dis-

tance, and ωTV (·, ·) is the total-variation (TV) divergence. The mutual information

term I(X; X̂|U) is given by

I(X; X̂|U) =
3∑
i=0

pU(i)I(X; X̂|U = i)

= pU(0)Hb(q) + pU(1)Hb(q)

= (ε1 + ε2)Hb(q).

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – J. Qian; McMaster University – Electrical and Computer Engineering

The Hamming distance term is given by,

Pr(X 6= X̂) =
3∑
i=0

pU(i)P (X 6= X̂|U = i)

= pU(1) + pU(2)q + pU(3)(1− q)

= ε2 + qε3 + (1− q)ε4.

Since U and X are independent, we have

pX̂(1) =
∑

z∈{0,1}

3∑
i=0

P (X̂ = 1|U = i,X = z)pU(i)pX(z)

= pU(0)q + pU(1)(1− q) + pU(3)

= qε1 + (1− q)ε2 + ε4,

so the TV divergence term is given by

ωTV (pX , pX̂) =
1

2

∑
z∈{0,1}

|pX(z)− pX̂(z)|

=
1

2
(|pX(0)− pX̂(0)|+ |pX(1)− pX̂(1)|)

= |q − qε1 − (1− q)ε2 − ε4|.
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Thus, it suffices to solve the linear program

min
ε1,ε2,ε3

(ε1 + ε2)Hb(q)

s.t. −(1− q)ε1 + qε2 + (2q − 1)ε3 −D + (1− q)≤ 0,

(1− q)ε1 + qε2 + ε3 − P − (1− q)≤ 0,

−(1− q)ε1 − qε2 − ε3 − P + (1− q)≤ 0,

−ε1≤ 0,

−ε2≤ 0,

−ε3≤ 0,

ε1 + ε2 + ε2 − 1≤ 0.

According to the Karush-Kuhn-Tucker conditions, the minimizer can be found if and

only if the following conditions are satisfied, and there exist non-negative a, b, c, d,
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e, f , g such that

1− a(1− q) + b(1− q)− c(1− q)− d+ e = 0,

1 + aq + bq − cq − f + e = 0,

a(2q − 1) + b− c− g + e = 0,

a(−(1− q)ε1 + qε2 + (2q − 1)ε3 −D + (1− q)) = 0,

b((1− q)ε1 + qε2 + ε3 − P − (1− q)) = 0,

c(−(1− q)ε1 − qε2 − ε3 − P + (1− q)) = 0,

dε1 = 0,

fε2 = 0,

gε3 = 0,

e(ε1 + ε2 + ε3 − 1) = 0.

Without loss of generality, we assume 0 ≤ P ≤ q. It can be verified via algebraic

manipulations that when 0 ≤ D ≤ P , the optimal solution is given by

ε∗1 =
q −D
q

,

ε∗2 = 0,

ε∗3 =
D

q
.
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In this case, we must have

a =
1

q
,

b, c, d, g = 0,

e =
1− 2q

q
,

f = 2 +
1− 2q

q
.

Since 0 ≤ q ≤ 1
2
, 0 ≤ P ≤ q, and 0 ≤ D ≤ P , it follows that the original constraints

are satisfied and the Lagrange multipliers are all non-negative.

When P ≤ D ≤ 2q(1− q)− (1− 2q)P , the optimal solution is given by

ε∗1 =
(1− q) + P − D+P

2q

1− q
,

ε∗2 = 0,

ε∗3 =
D + P

2q
.

In this case, the Lagrange multipliers are

a =
1

2q(1− q)
,

b =
1− 2q

2q(1− q)
,

c, d, e, g = 0,

f = 2.

Since 0 ≤ q ≤ 1
2
, 0 ≤ P ≤ q, and P ≤ D ≤ 2q(1 − q) − (1 − 2q)P , it can be
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verified that the original constraints are satisfied and the Lagrange multipliers are all

non-negative.

When 2q(1− q)− (1− 2q)P ≤ D, the optimal solution is given by

ε∗1 = 0,

ε∗2 = 0,

max{1− q −D
1− 2q

, 1− q − P} ≤ ε∗3 ≤ P + (1− q).

In this case, the Lagrange multipliers are

a, b, c, e, g = 0,

d = 1,

f = 1.

The Lagrange multipliers are obviously all non-negative. Since 0 ≤ q ≤ 1
2
, 0 ≤ P ≤ q,

and q ≤ D, it can be verified that the original constraints are satisfied.

Putting all the pieces together, the overall solution for P ≤ q is

R∗(D,P ) =


q−D
q
Hb(q), 0 ≤ D ≤ P,

(1−q)+P−D+P
2q

1−q Hb(q), P < D ≤ D′,

0, otherwise,

where Hb(·) denotes the binary entropy function and D′ = 2q(1− q)− (1− 2q)P .
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For P > q, the solution is independent of P and is given by the solution

R∗(D) =


q−D
q
Hb(q), 0 ≤ D ≤ q,

0, otherwise.

This concludes the proof. �

2.B Proof of Theorem 2.4.3

Let Z be a representation of a binary source X ∼ Bern(q) with pZ(i) = qi and

pX|Z(1|i) = εi, i ∈ [n], where
∑n

i=1 qi = 1 and
∑n

i=1 qiεi = q. Without loss of

generality, we assume that the values of qi|1 − 2εi|, i ∈ [n] are in ascending order as

i increases. Let jk with k ∈ [m] denote the k-th index at which εjk ≤ 0.5. Denote

k+ ∈ [m] as the first index such that jk+ > k and εjk+ ≤ 0.5, if it exists. Define k∗

to be the first positive integer satisfying
∑n
i=k∗ qi(1−εi)−

∑m
i=(k∗)+ qji

q∗k
≤ 1 − εk∗ . Under

Hamming distortion and TV perception losses, the lower boundary of Π(pZ|X) is
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piecewise linear with k∗ knots {(Dk, Pk)}k
∗

k=1 given by

Dk =
n∑
i=1

qi(1− εi) +
k∑
i=1

qi(2εi − 1)(1− εi)

+
m∑

i=k+

qji(2εji − 1), k = 1, . . . , k∗ − 1

Pk =

∣∣∣∣∣
n∑

i=k+1

qi(1− εi)−
m∑

i=k+

qji

∣∣∣∣∣ , k = 1, . . . , k∗ − 1,

Dk∗ =
n∑
i=1

qi(1− εi) +
k∗−1∑
i=1

qi(2εi − 1)(1− εi)

+ (2εk∗ − 1)

 n∑
i=k∗

qi(1− εi)−
m∑

i=(k∗)+

qji


+

m∑
i=(k∗)+

qji(2εji − 1),

Pk∗ = 0.

Proof: Given a binary source X, let Z be any arbitrary representation of X with

the known distribution pZ(i) = qi and pX|Z(1|i) = εi, i ∈ [n], then

pX(0) =
n∑
i=1

qi(1− εi),

pX(1) = 1−
n∑
i=1

qi(1− εi).

There exists some X̂ jointly distributed with (X,Z) such that X ↔ Z ↔ X̂ form

a Markov chain. We can parameterize the transition distribution as pX̂|Z(0|i) = pi,
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i ∈ [n], then

pX̂(0) =
n∑
i=1

qipi,

pX̂(1) = 1−
n∑
i=1

qipi.

Note that if 1− εi ≥ 0.5, 1− εi ≤ pi ≤ 1; Conversely, if 1− εi < 0.5, 0 ≤ pi < 1− εi.

We seek a conditional distribution pX̂|Z that solves the distortion-perception problem

min
PX̂|Z

D = Pr(X 6= X̂)

s.t. ωTV (pX , pX̂) ≤ P.

Here we concentrate on the case where distortion measure is the Hamming distance,

and ωTV (·, ·) is the total-variation (TV) divergence. The Hamming distance term is

given by

Pr(X 6= X̂) = pX|Z(0|i)pZ(i)pX̂|Z(1|i) + pX|Z(1|i)pZ(i)pX̂|Z(0|i)

=
n∑
i=1

(qi(1− εi)(1− pi) + qiεipi)

=
n∑
i=1

(qi(1− εi) + qi(2εi − 1)pi),
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and the TV divergence term is given by

ωTV (pX , pX̂) =
1

2

∑
z∈{0,1}

|pX(z)− pX̂(z)|

=
1

2
(|pX(0)− pX̂(0)|+ |pX(1)− pX̂(1)|)

= |
n∑
i=1

qi(1− εi)−
n∑
i=1

qipi|.

Thus, it suffices to solve a piecewise linear program

min
p1,...,pn

n∑
i=1

(qi(1− εi) + qi(2εi − 1)pi)

s.t. |
∑n

i=1 qi(1− εi)−
∑n

i=1 qipi| ≤P,

1− εi ≤ pi ≤ 1, if 1− εi ≥ 0.5,

0 ≤ pi < 1− εi, if 1− εi < 0.5.

In order to solve this problem, we sort the distributions in an ascending order by

the size of qi|1 − 2εi|, i.e. q1|1 − 2ε1| ≤ q2|1 − 2ε2| ≤ · · · ≤ qn|1 − 2εn|, and assume

εj1 , εj2 , . . . , εjm ≤ 0.5 where q1|1−2ε1| ≤ · · · ≤ qj1|1−2εj1| ≤ · · · ≤ qj2|1−2εj2| ≤ · · · ≤

qjm|1−2εjm | ≤ · · · ≤ qn|1−2εn| and the left εi are all greater than 0.5. We also need to

define k to be the kth place in the ascending order. If there’s no perception constraint

(P = ∞), we can let pj1 = · · · = pjm = 1, and set the left pi to be 0, then we have

the minimum distortion which is the first knot in the piecewise distortion-perception

line  D1 =
∑n

i=1 qi(1− εi) +
∑m

i=j1
qi(2εi − 1),

P1 = |
∑n

i=1 qi(1− εi)−
∑m

i=1 qji |.
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In order to minimize the increase in D, we need to change the value of pi in our

previous order until P reaches 0. According to this idea, loops are required to find

every knot.

While 1 ≤ k < j1, the steps in 1st loop are performed as follows.

For k = 1, increase pk until pk = 1 − εk, i.e. p1 ↑, . . . , pj1−1 ↑, then the (k + 1)th

knot can be calculated by

 Dk+1 =
∑n

i=1 qi(1− εi) +
∑k

i=1 qi(2εi − 1)(1− εi) +
∑m

i=1 qji(2εji − 1),

Pk+1 = |
∑n

i=k+1 qi(1− εi)−
∑m

i=1 qji |,

if P reaches 0 in the process we increase pk, end the loop and the finishing knot is


Dk+1 =

∑n
i=1 qi(1− εi) +

∑k−1
i=1 qi(2εi − 1)(1− εi) +qk(2εk − 1)

∑n
i=k qi(1−εi)−

∑m
i=1 qji

qk

+
∑m

i=1 qji(2εji − 1),

Pk+1 = 0,

else, let k = k + 1.

After going through this interval, if P still doesn’t reach 0, proceed to the next

interval.

While j1 ≤ k < j2, the steps in the 2nd loop are performed as follows.

For k = j1, when k = j1, decrease pk until pk = 1− εk, otherwise increase pk until

pk = 1 − εk, i.e. pj1 ↓, pj1+1 ↑, . . . , pj2−1 ↑, then the (k + 1)th knot can be calculated

by

 Dk+1 =
∑n

i=1 qi(1− εi) +
∑k

i=1 qi(2εi − 1)(1− εi) +
∑m

i=2 qji(2εji − 1),

Pk+1 = |
∑n

i=k+1 qi(1− εi)−
∑m

i=2 qji |,
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if P reaches 0 in the process we increase pk, end the loop and the finishing knot is


Dk+1 =

∑n
i=1 qi(1− εi) +

∑k−1
i=1 qi(2εi − 1)(1− εi) +qk(2εk − 1)

∑n
i=k qi(1−εi)−

∑m
i=2 qji

qk

+
∑m

i=2 qji(2εji − 1),

Pk+1 = 0,

else, let k = k + 1.

Specifically, after m loops, it follows by the last loop. While jm < k ≤ n, the

steps in the last loop are performed as follows.

For k = jm + 1, increase pk until pk = 1 − εk, i.e. pjm+1 ↑, . . . , pn ↑, then the

(k + 1)th knot can be calculated by

 Dk+1 =
∑n

i=1 qi(1− εi) +
∑k

i=1 qi(2εi − 1)(1− εi),

Pk+1 = |
∑n

i=k+1 qi(1− εi)|,

since in this loop, it’s impossible for P to get 0, let k = k + 1, until k = n. This

completes the proof.

�

2.C Proof of Theorem 2.4.4

Consider the case Θ = Θ(R). We start by introducing some quantities which are

needed for bounding R(∞)(Θ(R)). Let D1 = D1(R) and D2 = D2(R) be respectively
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the solutions of

R = Hb(q)−Hb(D1),

R = 3Hb(q)−Ht(
D2

2
, q)−Ht(

D2

2
, 1− q).

In fact, D1 and D2 correspond to the D1 and D2 in Theorem 2.4.2, but here expressed

in terms of R, rather than in terms of P . Define

RLB = (1− q)
∑

i,j∈{0,1}

pij|0 log
pij|0

(1− q)pij|0 + qpij|1

+q
∑

i,j∈{0,1}

pij|1 log
pij|1

(1− q)pij|0 + qpij|1
,

where

p00|0 = 1− D2

2(1− q)
,

p01|0 =
(D2 −D1)(2q − 2D1 +D2)

2(1− q)(q − 2D1 +D2)
,

p10|0 = 0,

p11|0 =
(2D1 −D2)(q −D1)

2(1− q)(q − 2D1 +D2)
,

p00|1 =
D2

2q
,

p01|1 =
(D2 −D1)(2D1 −D2)

2q(q − 2D1 +D2)
,

p10|1 = 0,

p11|1 =
(q −D1)(2q − 2D1 +D2)

2q(q − 2D1 +D2)
.

(2.C.1)
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Moreover, define

RUB = (1− q)
∑

i,j∈{0,1}

p′ij|0 log
p′ij|0

(1− q)p′ij|0 + qp′ij|1

+q
∑

i,j∈{0,1}

p′ij|1 log
p′ij|1

(1− q)p′ij|0 + qp′ij|1
,

where

p′00|0 = 1− D2

2(1− q)
,

p′01|0 =
D2 −D1 + PUB

2(1− q)
,

p′10|0 = 0,

p′11|0 =
D1 − PUB
2(1− q)

,

p′00|1 =
D2

2q
,

p′01|1 =
D1 −D2 + PUB

2q
,

p′10|1 = 0,

p′11|1 =
2q −D1 − PUB

2q
,

(2.C.2)

and

PUB = κUB(D1 −D2), (2.C.3)

κ = κUB(D2) ,
− log D2

2
+ 1

2
log (1− q − D2

2
) + 1

2
log (q − D2

2
)

log q
1−q + 1

2
log (1− q − D2

2
)− 1

2
log (q − D2

2
)
. (2.C.4)
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For a binary source X ∼ Bern(q), under Hamming distortion and TV perception

losses,

RLB ≤ R(∞)(Θ(R)) ≤ RUB

and consequently

RLB −R ≤ ∆(Θ(R)) ≤ RUB −R.

Moreover, the upper and lower bounds coincide if and only if R ≥ R∗, where R∗ =

H(q)−H(D∗1) or 3Hb(q)−Ht(
D∗2
2
, q)−Ht(

D∗2
2
, 1−q) and (D∗1, D

∗
2) is the unique solution

to 
Hb(q)−Hb(D

∗
1) = 3Hb(q)−Ht(

D∗2
2
, q)−Ht(

D∗2
2
, 1− q),

q
2D∗1−D∗2−q

=
− log

D∗2
2

+ 1
2

log (1−e−D
∗
2

2
)+ 1

2
log (e−D

∗
2

2
)

log e
1−e+ 1

2
log (1−e−

D∗2
2

)− 1
2

log (e−
D∗2
2

)
.

Proof: We first prove the lower bound, i.e., the converse part. Since Θ(R) is achiev-

able and the turning points (D1, P1) and (D2, 0) are on the boundary of this region,

obviously, these two points (D1, P1) and (D2, 0) are achievable as well. This im-

plies that the minimum rate R(∞)(Θ(R)) is at least the value of the following convex

program:

min
pX̂1X̂2|X

I(X; X̂1, X̂2)

s.t. Pr(X 6= X̂1) ≤ D1,

P r(X 6= X̂2) ≤ D2,

ωTV (pX , pX̂1
) ≤ P1,

ωTV (pX , pX̂2
) ≤ 0.
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The mutual information term I(X; X̂1, X̂2) is given by

I(X; X̂1, X̂2) =
∑

x,x̂1,x̂2∈{0,1}

p(x, x̂1, x̂2) log
p(x, x̂1, x̂2)

p(x)p(x̂1, x̂2)

= (1− q)
∑

i,j∈{0,1}

pij|0 log
pij|0

(1− q)pij|0 + qpij|1
+ q

∑
i,j∈{0,1}

pij|1 log
pij|1

(1− q)pij|0 + qpij|1
.

The two Hamming distortion terms are given by

P (X 6= X̂1) = pX̂1|X(1|0)pX(0) + pX̂1|X(0|1)pX(1)

= (1− q)(p10|0 + p11|0) + q(p00|1 + p01|1),

P r(X 6= X̂2) = pX̂2|X(1|0)pX(0) + pX̂2|X(0|1)pX(1)

= (1− q)(p01|0 + p11|0) + q(p00|1 + p10|1),

respectively. Moreover, the TV divergence terms are given by

ωTV (pX , pX̂1
) =

1

2

∑
z∈{0,1}

|pX(z)− pX̂1
(z)|

=
1

2
(|pX(0)− pX̂1

(0)|+ |pX(1)− pX̂1
(1)|)

= |(1− q)(1− p00|0 − p01|0)− q(p00|1 + p01|1)|,
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ωTV (pX , pX̂2
) =

1

2

∑
z∈{0,1}

|pX(z)− pX̂2
(z)|

=
1

2
(|pX(0)− pX̂2

(0)|+ |pX(1)− pX̂2
(1)|)

= |(1− q)(1− p00|0 − p10|0)− q(p00|1 + p10|1)|,

respectively.

In fact, one technical obstacle in this proof idea is that the objective function

is not differentiable at the boundary points, i.e., at the points with some pij|k = 0.

Hence, in the implementation of the proof idea above, we need first to use the log-

sum inequality to eliminate the terms involving p10|0 or p10|1, and then apply the KKT

conditions. According to the log sum inequality [11], we can get the lower bound of

the mutual information term I(X; X̂1, X̂2), it follows that

I(X; X̂1, X̂2)

≥ (1− q)(
p00|0 log

p00|0

(1− q)p00|0 + qp00|1
+ p01|0 log

p01|0

(1− q)p01|0 + qp01|1
+ p11|0 log

p11|0

(1− q)p11|0 + qp11|1

)
+ q

(
p00|1 log

p00|1

(1− q)p00|0 + qp00|1
+ p01|1 log

p01|1

(1− q)p01|0 + qp01|1
+ p11|1 log

p11|1

(1− q)p11|0 + qp11|1

)
+
(
(1− q)p10|0 + qp10|1

)
log

(1− q)p10|0 + qp10|1

((1− q)p10|0 + qp10|1)q + ((1− q)p10|0 + qp10|1)(1− q)

= (1− q)(
p00|0 log

p00|0

(1− q)p00|0 + qp00|1
+ p01|0 log

p01|0

(1− q)p01|0 + qp01|1
+ p11|0 log

p11|0

(1− q)p11|0 + qp11|1

)
+ q

(
p00|1 log

p00|1

(1− q)p00|0 + qp00|1
+ p01|1 log

p01|1

(1− q)p01|0 + qp01|1
+ p11|1 log

p11|1

(1− q)p11|0 + qp11|1

)
= ILB(X; X̂1, X̂2).
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Now consider the following convex optimization problem

min
pij|k

f = ILB(X; X̂1, X̂2)

s.t. (1− q)(1− p00|0 − p01|0) + q(p00|1 + p01|1) ≤ D1,

(1− q)(p01|0 + p11|0) + q(1− p01|1 − p11|1) ≤ D2,

|(1− q)(p01|0 + p11|0)− q(1− p01|1 − p11|1)| ≤ 0,

|(1− q)(1− p00|0 − p01|0)− q(p00|1 + p01|1)| ≤ P1,

p00|0 + p01|0 + p11|0 ≤ 1,

p00|1 + p01|1 + p11|1 ≤ 1,

0 ≤ p00|0, p01|0, p11|0 ≤ 1,

0 ≤ p00|1, p01|1, p11|1 ≤ 1.

According to the Karush-Kuhn-Tucker conditions, (p∗00|0, p
∗
01|0, p

∗
11|0, p

∗
00|1, p

∗
01|1, p

∗
11|1) is

a minimizer of the convex optimization problem if and only if the following conditions

are satisfied, and there exist non-negative v1, v2, v3, v4, w1, w2, µ1, µ2, µ4, λ1, λ2, λ4 such
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that

∂f

∂p00|0
− µ1 − (1− q)v1 − qv4 + w1 = 0,

∂f

∂p01|0
− µ2 − (1− q)v1 + (1− q)v2 + (1− q)v3 − qv4 + w1 = 0,

∂f

∂p11|0
− µ4 + (1− q)v2 + (1− q)v3 + w1 = 0,

∂f

∂p00|1
− λ1 + qv1 − (1− q)v4 + w2 = 0,

∂f

∂p01|1
− λ2 + qv1 − qv2 + qv3 − (1− q)v4 + w2 = 0,

∂f

∂p11|1
− λ4 − qv2 + qv3 + w2 = 0,

µ1p00|0 = 0, µ2p01|0 = 0, µ4p11|0 = 0,

λ1p00|1 = 0, λ2p01|1 = 0, λ4p11|1 = 0,

w1(p00|0 + p01|0 + p11|0 − 1) = 0,

w2(p00|1 + p01|1 + p11|1 − 1) = 0,

v1((1− q)(1− p00|0 − p01|0) + q(p00|1 + p01|1)−D1) = 0,

v2((1− q)(p01|0 + p11|0) + q(1− p01|1 − p11|1)−D2) = 0,

v3((1− q)(p01|0 + p11|0)− q(1− p01|1 − p11|1)) = 0,

v4(|(1− q)(1− p00|0 − p01|0)− q(p00|1 + p01|1)| − P00|0) = 0,

v1, v2, v3, v4 ≥ 0,

w1, w2 ≥ 0,

µ1, µ2, µ4 ≥ 0,

λ1, λ2, λ4 ≥ 0.
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It can be verified via algebraic manipulations that a minimizer (p∗00|0, p
∗
01|0, p

∗
11|0, p

∗
00|1, p

∗
01|1, p

∗
11|1)

is

p∗00|0 = 1− D2

2(1− q)
,

p∗01|0 =
(D2 −D1)(2q − 2D1 +D2)

2(1− q)(q − 2D1 +D2)
,

p∗11|0 =
(2D1 −D2)(q −D1)

2(1− q)(q − 2D1 +D2)
,

p∗00|1 =
D2

2q
,

p∗01|1 =
(D2 −D1)(2D1 −D2)

2q(q − 2D1 +D2)
,

p∗11|1 =
(q −D1)(2q − 2D1 +D2)

2q(q − 2D1 +D2)
,

where 2D1 −D2 ≤ q, D1 ≤ q, D2 ≤ 2D1 in order to ensure these probabilities exist.

Under this solution, we can identify the Lagrange multipliers v1 = v2 = v3 = v4 =

0, w1 = w2 = 0, µ1 = µ2 = µ4 = 0, λ1 = λ2 = λ4 = 0, which are all nonnegative. And

p∗10|0 = 0, p∗10|1 = 0 are calculated based on the solution. Under this solution, we have

the new

P ′1 = |(1− q)(1− p00|0 − p01|0)− q(p00|1 + p01|1)|

=
(D2 −D1)q

q − 2D1 +D2

,

then the slope for the lower bound is

κLB =
0− P ′1
D2 −D1

=
q

2D1 −D2 − q
.

We next prove the upper bound, i.e., the achievability part. For brevity, denote
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R̂ := R(∞)(Θ(R)). Observe that the rate-distortion-perception function R(∞)(D,P )

is convex. Hence, the level curve P (D) of R(∞)(D,P ) = R̂ is convex as well. Note

that the expression of R(∞)(D,P ) is explicitly given in Theorem 2.4.2. By the implicit

function theorem, we can compute the derivative P ′(D) = −∂R(∞)(D,P (D))/∂D

∂R(∞)(D,P (D))/∂P
. By the

convexity, the curve P (D) is above the line D 7→ P ′(D2)(D −D2) where P ′(D2) = κ

with κ given in (2.4.4). Hence, to ensure that all points in Θ(R) are achievable, it

suffice to require all points on the line segment between (D1, P
′(D2)(D1 −D2)) and

(D2, 0) are achievable. In fact, more succinctly, it is only required the two end points

(D1, P
′(D2)(D1 − D2)) and (D2, 0) are achievable. This is because, once these two

end points are achievable, the whole segment is achievable as well, since the set of

achievable points is always convex. Substituting (D1, P
′(D2)(D1 −D2)) and (D2, 0)

into the RDP function, we obtain the upper bound RUB. We already have

R(∞)(D,P ) =


Hb(q)−Hb(D), D ∈ [0, D1),

2Hb(q) +Hb(q − P )−Ht(
D−P

2
, q)−Ht(

D+P
2
, 1− q), D ∈ [D1, D2),

0, D ∈ [D2,∞).

In particular, when D ∈ [D1, D2), the slope of the tangent for the upper bound is

κUB =
∂P

∂D

∣∣∣∣
D=D2,P=0

= −
∂R
∂D
∂R
∂P

∣∣∣∣
D=D2,P=0

=
− log D2

2
+ 1

2
log (1− e− D2

2
) + 1

2
log (e− D2

2
)

log e
1−e + 1

2
log (1− e− D2

2
)− 1

2
log (e− D2

2
)
.

By comparing the upper and lower bounds, one can check that the upper bound and

lower bound coincide if and only if q
2D1−D2−q ≥ κUB.

Let g(R) = q
2D1(R)−D2(R)−q − κUB. It can be numerically verified that g(R) is

increasing with R when g(R) ≥ 0. So q
2D1−D2−q ≥ κUB is equivalent to R ≥ R∗,

where R∗ = H(q)−H(D∗1) or 3Hb(q)−Ht(
D∗2
2
, q)−Ht(

D∗2
2
, 1− q) and (D∗1, D

∗
2) is the
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unique solution to


Hb(q)−Hb(D

∗
1) = 3Hb(q)−Ht(

D∗2
2
, q)−Ht(

D∗2
2
, 1− q),

q
2D∗1−D∗2−q

=
− log

D∗2
2

+ 1
2

log (1−e−D
∗
2

2
)+ 1

2
log (e−D

∗
2

2
)

log e
1−e+ 1

2
log (1−e−

D∗2
2

)− 1
2

log (e−
D∗2
2

)
.

This completes the proof. �

2.D Proof of Theorem 2.4.5

For a binary source X ∼ Bern(q), under Hamming distortion and TV perception

losses, successive refinement from (D1, P1) ∈ A to (D2, P2) ∈ A is feasible if and only

if

q((D1 − P1)− (D2 − P2)) ≥ D1P2 −D2P1, (2.D.1)

(1− q)((D1 + P1)− (D2 + P2)) ≥ D2P1 −D1P2. (2.D.2)

Proof: Recall that

ωTV (pX , pX̂) =
1

2

∑
z∈{0,1}

|pX(z)− pX̂(z)|.

Without loss of generality, we assume q ∈ [0, 1
2
] and P ∈ [0, q]. We have

R(∞)(D,P ) =



Hb(q)−Hb(D), D ∈ [0, P
1−2(q−P )

),

2Hb(q) +Hb(q − P )−Ht(
D−P

2
, q)−Ht(

D+P
2
, 1− q),

D ∈ [ P
1−2(q−P )

, 2q(1− q)− (1− 2q)P ),

0, D ∈ [2q(1− q)− (1− 2q)P,∞).
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In particular, for the second case, R(∞)(D,P ) is attained by

pX̂|X(0|0) = 1− D − P
2(1− q)

,

pX̂|X(0|1) =
D + P

2q
.

Let A denote the regime where both D and P are active, i.e., A , {(D,P ) : D ∈

[ P
1−2(q−P )

, 2p(1− q)− (1− 2q)P ), P ∈ [0, q]}. For (D1, P1) ∈ A and (D2, P2) ∈ A with

no conditions, we would like to construct X ↔ X̂2 ↔ X̂1, such that

pX̂1|X(0|0) = 1− D1 − P1

2(1− q)
,

pX̂1|X(0|1) =
D1 + P1

2q
,

pX̂2|X(0|0) = 1− D2 − P2

2(1− q)
,

pX̂2|X(0|1) =
D2 + P2

2q
.

The existence of X̂2 is abvious. Now let pX̂1|X̂2
(0|0) = a and pX̂1|X̂2

(0|1) = b. We have

pX̂1|X(0|0) = pX̂2|X(0|0)pX̂1|X̂2
(0|0) + pX̂2|X(0|1)pX̂1|X̂2

(0|1)

= (1− D2 − P2

2(1− q)
)a+

D2 − P2

2(1− q)
b,

pX̂1|X(0|1) = pX̂2|X(0|1)pX̂1|X̂2
(0|0) + pX̂2|X(1|1)pX̂1|X̂2

(0|1)

=
D2 + P2

2q
a+ (1− D2 + P2

2q
)b.
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Setting

(1− D2 − P2

2(1− q)
)a+

D2 − P2

2(1− q)
b = 1− D1 − P1

2(1− q)
,

D2 + P2

2q
a+ (1− D2 + P2

2q
)b =

D1 + P1

2q
,

yields

a =
(1− D2+P2

2q
)(1− D1−P1

2(1−q) )− (D2−P2)(D1+P1)
4q(1−q)

(1− D2−P2

2(1−q) )(1− D2+P2

2q
)− (D2−P2)(D2+P2)

4q(1−q)

,

b =
(1− D2−P2

2(1−q) )D1+P1

2q
− (1− D1−P1

2(1−q) )D2+P2

2q

(1− D2−P2

2(1−q) )(1− D2+P2

2q
)− (D2−P2)(D2+P2)

4q(1−q)

.

We need to ensure that a ∈ [0, 1] and b ∈ [0, 1]. Note that the numerator of a is

(1− D2 + P2

2q
)(1− D1 − P1

2(1− q)
)− (D2 − P2)(D1 + P1)

4q(1− q)

=
(2q − (D2 + P2))(2(1− q)− (D1 − P1))− (D2 − P2)(D1 + P1)

4q(1− q)

We know that 4q(1−q) ≥ 0 always holds. So, we should ensure (2q−(D2 +P2))(2(1−

q) − (D1 − P1)) − (D2 − P2)(D1 + P1) ≥ 0. Since D1 ≤ 2q(1 − q) − (1 − 2q)P1 and

D2 ≤ 2q(1− q)− (1− 2q)P2, it follows that

D1 − P1 ≤ 2(1− q)(q − P1),

D2 − P2 ≤ 2(1− q)(q − P2),

D1 + P1 ≤ 2q(1− q + P1),

D2 + P2 ≤ 2q(1− q + P2).
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Therefore,

2q − (D2 + P2) ≥ 2q(q − P2),

2(1− q)− (D1 − P1) ≥ 2(1− q)(1− q + P1),

(D2 − P2)(D1 + P1) ≤ 4q(1− q)(1− q + P1)(q − P2).

As a consequence,

(2q − (D2 + P2))(2(1− q)− (D1 − P1))− (D2 − P2)(D1 + P1) ≥ 0.

This proves that the numerator of a is non-negative with the conditions D1 ≤ 2q(1−

q)− (1− 2q)P1 and D2 ≤ 2q(1− q)− (1− 2q)P2. Moreover the denominator of a is

(1− D2 − P2

2(1− q)
)(1− D2 + P2

2q
)− (D2 − P2)(D2 + P2)

4q(1− q)

=
(2(1− q)− (D2 − P2))(2q − (D2 + P2))− (D2 − P2)(D2 + P2)

4q(1− q)
.

So that

2(1− q)− (D2 − P2) ≥ 2(1− q)(1− q + P2),

2q − (D2 + P2) ≥ 2q(q − P2),

(D2 − P2)(D2 + P2) ≤ 2(1− q)(q − P2)2q(1− q + P2).

As a consequence,

(2(1− q)− (D2 − P2))(2q − (D2 + P2))− (D2 − P2)(D2 + P2) ≥ 0.
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This proves that the denominator of a is non-negative with the conditions D1 ≤

2q(1 − q) − (1 − 2q)P1 and D2 ≤ 2q(1 − q) − (1 − 2q)P2 as well. So we must have

a ≥ 0 when (D1, P1) ∈ A and (D2, P2) ∈ A with no conditions. To ensure a ≤ 1, we

must have

(1− D2 + P2

2q
)(1− D1 − P1

2(1− q)
)− (D2 − P2)(D1 + P1)

4q(1− q)

≤ 1− D2 − P2

2(1− q)
)(1− D2 + P2

2q
)− (D2 − P2)(D2 + P2)

4q(1− q)
,

i.e.,

(2q − (D2 + P2))((D1 − P1)− (D2 − P2))− (D2 − P2)((D2 + P2)− (D1 + P1)) ≥ 0.

Note that

(2q − (D2 + P2))((D1 − P1)− (D2 − P2))− (D2 − P2)((D2 + P2)− (D1 + P1))

= 2q((D1 − P1)− (D2 − P2))− 2(D1P2 −D2P1).

Therefore, we have a ≤ 1 if

q((D1 − P1)− (D2 − P2)) ≥ D1P2 −D2P1.

Overall, we must have a ∈ [0, 1] when (D1, P1) ∈ A and (D2, P2) ∈ A with q((D1 −

P1)− (D2−P2)) ≥ D1P2−D2P1. Now we proceed to show that b ∈ [0, 1]. Note that
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the numerator of b is

(1− D2 − P2

2(1− q)
)
D1 + P1

2q
− (1− D1 − P1

2(1− q)
)
D2 + P2

2q

=
(2(1− q)− (D2 − P2))(D1 + P1)− (2(1− q)− (D1 − P1))(D2 + P2)

4q(1− q)
.

We have

(2(1− q)− (D2 − P2))(D1 + P1)− (2(1− q)− (D1 − P1))(D2 + P2)

= 2(1− q)((D1 + P1)− (D2 + P2)) + 2(D1P2 −D2P1).

Therefore, we have the numerator of b ≥ 0 if

(1− q)((D1 + P1)− (D2 + P2)) ≥ D2P1 −D1P2.

Moreover the denominator of b is

(1− D2 − P2

2(1− q)
)(1− D2 + P2

2q
)− (D2 − P2)(D2 + P2)

4q(1− q)

=
(2(1− q)− (D2 − P2))(2q − (D2 + P2))− (D2 − P2)(D2 + P2)

4q(1− q)
.

So that

2(1− q)− (D2 − P2) ≥ 2(1− q)(1− q + P2),

2q − (D2 + P2) ≥ 2q(q − P2),

(D2 − P2)(D2 + P2) ≤ 2(1− q)(q − P2)2q(1− q + P2).

As a consequence,

(2(1− q)− (D2 − P2))(2q − (D2 + P2))− (D2 − P2)(D2 + P2) ≥ 0.
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This proves that the denominator of b is non-negative with the conditions D1 ≤

2q(1− q)− (1−2q)P1 and D2 ≤ 2q(1− q)− (1−2q)P2 as well. So we must have b ≥ 0

when (D1, P1) ∈ A and (D2, P2) ∈ A with the condition (1−q)((D1+P1)−(D2+P2)) ≥

D2P1 −D1P2. To ensure b ≤ 1 , it suffices to show

(1− D2 − P2

2(1− q)
)
D1 + P1

2q
− (1− D1 − P1

2(1− q)
)
D2 + P2

2q

≤ (1− D2 − P2

2(1− q)
)(1− D2 + P2

2q
)− (D2 − P2)(D2 + P2)

4q(1− q)
,

i.e.,

(2(1− q)− (D2 − P2))(D1 + P1)− (2(1− q)− (D1 − P1))(D2 + P2)

≤ (2(1− q)− (D2 − P2))(2q − (D2 + P2))− (D2 − P2)(D2 + P2).

Note that

(2(1− q)− (D2 − P2))(2q − (D2 + P2))− (D2 − P2)(D2 + P2)

− (2(1− q)− (D2 − P2))(D1 + P1)− (2(1− q)− (D1 − P1))(D2 + P2)

= (1− q −D2)(q − P1)− (1− q + P2)(D1 − q).

Since D1 ≤ 2q(1− q)− (1− 2q)P1 and D2 ≤ 2q(1− q)− (1− 2q)P2, it follows that

(1− q −D2)(q − P1)− (1− q + P2)(D1 − q)

≥ (1− q − (2q(1− q)− (1− 2q)P2))(q − P1)− (1− q + P2)((2q(1− q)− (1− 2q)P1)− q)

= (q − P1)(1− 3q + 2q2 − 1 + 3q − 2q2)

= 0.

62

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – J. Qian; McMaster University – Electrical and Computer Engineering

This proves that b ≤ 1 with the conditions D1 ≤ 2q(1 − q) − (1 − 2q)P1 and D2 ≤

2q(1−q)−(1−2q)P2. So we must have b ∈ [0, 1] when (D1, P1) ∈ A and (D2, P2) ∈ A

with (1− q)((D1 + P1)− (D2 + P2)) ≥ D2P1 −D1P2, this ends the proof.

�

2.E Proof of Theorem 2.4.6

Let 0 < R1 < R2. For a binary source X ∼ Bern(q), under Hamming distortion and

TV perception losses as well as the conditions that

q

2D1 −D2 − q
≥ κ(D2),

q

2D′1 −D′2 − q
≥ κ(D′2)

with the function κ given in (2.4.4), successive refinement from Θ(R1) to Θ(R2) is

feasible if

2D1 −D2 ≤ 2D′1 −D′2.

Proof: Under the condition in (2.4.9), set-wise successive refinement from Θ(R1)

to Θ(R2) is feasible if there exists a Markov chain X ↔ (X̂ ′1, X̂
′
2) ↔ (X̂1, X̂2)

such that the conditional distributions PX̂1X̂2|X and PX̂′1X̂′2|X are optimal in attaining

R(∞)(Θ(R1)) and R(∞)(Θ(R2)) respectively. In other words, PX̂1X̂2|X corresponds to

the distributions given in (2.4.1), and PX̂′1X̂′2|X corresponds the same distribution but

with D1, D2 replaced by D′1, D
′
2. Recall that

ωTV (pX , pX̂) =
1

2

∑
z∈{0,1}

|pX(z)− pX̂(z)|.
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Based on theorem 4, the universal rate-distortion-perception function is attained by

pX̂1X̂2|X(00|0) = 1− D2

2(1− q)
= p1,

pX̂1X̂2|X(01|0) =
(D2 −D1)(2q − 2D1 +D2)

2(1− q)(q − 2D1 +D2)
= p2,

pX̂1X̂2|X(11|0) =
(2D1 −D2)(q −D1)

2(1− q)(q − 2D1 +D2)
= p4,

pX̂1X̂2|X(00|1) =
D2

2q
= q1,

pX̂1X̂2|X(01|1) =
(D2 −D1)(2D1 −D2)

2q(q − 2D1 +D2)
= q2,

pX̂1X̂2|X(11|1) =
(q −D1)(2q − 2D1 +D2)

2q(q − 2D1 +D2)
= q4.
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For (D1D2) and (D′1D
′
2) with D1 ≤ D′1 and D2 ≤ D′2, we would like to construct

X ↔ (X̂ ′1, X̂
′
2)↔ (X̂1, X̂2) such that

pX̂1X̂2|X(00|0) = 1− D2

2(1− q)
= p1,

pX̂1X̂2|X(01|0) =
(D2 −D1)(2q − 2D1 +D2)

2(1− q)(q − 2D1 +D2)
= p2,

pX̂1X̂2|X(11|0) =
(2D1 −D2)(q −D1)

2(1− q)(q − 2D1 +D2)
= p4,

pX̂1X̂2|X(00|1) =
D2

2q
= q1,

pX̂1X̂2|X(01|1) =
(D2 −D1)(2D1 −D2)

2q(q − 2D1 +D2)
= q2,

pX̂1X̂2|X(11|1) =
(q −D1)(2q − 2D1 +D2)

2q(q − 2D1 +D2)
= q4,

p
X̂1
′
X̂2
′|X(00|0) = 1− D′2

2(1− q)
= p′1,

p
X̂1
′
X̂2
′|X(01|0) =

(D′2 −D′1)(2q − 2D′1 +D′2)

2(1− q)(q − 2D′1 +D′2)
= p′2,

p
X̂1
′
X̂2
′|X(11|0) =

(2D′1 −D′2)(q −D′1)

2(1− q)(q − 2D′1 +D′2)
= p′4,

p
X̂1
′
X̂2
′|X(00|1) =

D′2
2q

= q′1,

p
X̂1
′
X̂2
′|X(01|1)2 =

(D′2 −D′1)(2D′1 −D′2)

2q(q − 2D′1 +D′2)
= q′2,

p
X̂1
′
X̂2
′|X(11|1) =

(q −D′1)(2q − 2D′1 +D′2)

2q(q − 2D′1 +D′2)
= q′4.
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The existence of X̂ ′1X̂
′
2 is abvious. Now let

p
X̂1X̂2|X̂1

′
X̂2
′(00|00) = a1,

p
X̂1X̂2|X̂1

′
X̂2
′(00|01) = a2,

p
X̂1X̂2|X̂1

′
X̂2
′(01|00) = b1,

p
X̂1X̂2|X̂1

′
X̂2
′(01|01) = b2,

p
X̂1X̂2|X̂1

′
X̂2
′(11|00) = c1,

p
X̂1X̂2|X̂1

′
X̂2
′(11|01) = c2.

We have

P
X̂1
′
X̂2
′|X =

∑
X̂1X̂2

P
X̂1X̂2|X̂1

′
X̂2
′PX̂1X̂2|X ,

such that

p
X̂1
′
X̂2
′|X(00|0) = p1a1 + p2b1 + p4c1,

p
X̂1
′
X̂2
′|X(01|0) = p1a2 + p2b2 + p4c2,

p
X̂1
′
X̂2
′|X(11|0) = p1(1− a1 − a2) + p2(1− b1 − b2) + p4(1− c1 − c2),

p
X̂1
′
X̂2
′|X(00|1) = q1a1 + q2b1 + q4c1,

p
X̂1
′
X̂2
′|X(01|1) = q1a2 + q2b2 + q4c2,

p
X̂1
′
X̂2
′|X(11|1) = q1(1− a1 − a2) + q2(1− b1 − b2) + q4(1− c1 − c2).
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Setting

p1a1 + p2b1 + p4c1 = p′1,

p1a2 + p2b2 + p4c2 = p′2,

p1(1− a1 − a2) + p2(1− b1 − b2) + p4(1− c1 − c2) = p′4,

q1a1 + q2b1 + q4c1 = q′1,

q1a2 + q2b2 + q4c2 = q′2,

q1(1− a1 − a2) + q2(1− b1 − b2) + q4(1− c1 − c2) = q′4.

yields

a1 =
c1p2 − c1q2 − p2q

′
1 + p′1q2 + c1p1q2 − c1p2q1

p1q2 − p2q1

,

a2 =
c2p2 − c2q2 − p2q

′
2 + p′2q2 + c2p1q2 − c2p2q1

p1q2 − p2q1

,

b1 =
c1q1 − c1p1 + p1q

′
1 − p′1q1 + c1p1q2 − c1p2q1

p1q2 − p2q1

,

b2 =
c2q1 − c2p1 + p1q

′
2 − p′2q1 + c2p1q2 − c2p2q1

p1q2 − p2q1

.

We need to ensure that a1, a2 ∈ [0, 1], b1, b2 ∈ [0, 1] and a1 +a2 ≤ 1, b1 + b2 ≤ 1. Note

that the denominator of all is

p1q2 − p2q1 =
(D1 −D2)(D2 − 2(1− q)D1)

2(1− q)q(q − 2D1 +D2)
.

Since D1 ≤ D2, 2D1 −D2 ≤ q and D2 ≤ 2(1− q)D1 we must have

p1q2 − p2q1 ≥ 0.
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In order to make a1 ≥ 0, we must have

c1p2 − c1q2 − p2q
′
1 + p′1q2 + c1p1q2 − c1p2q1 ≥ 0,

(p2(1− q1)− q2(1− p1))c1 ≥ p2q
′
1 − p′1q2,

Since

p2(1− q1)− q2(1− p1) =
(D2 −D1)(q −D1)

(1− q)(q − 2D1 +D2)
≥ 0,

it follows that

c1 ≥
p2q
′
1 − p′1q2

p2(1− q1)− q2(1− p1)
.

What’s more, it can be proved that

q2 − p2 =
(D1 −D2)(2q2 − 2D1 +D2)

(2(1− q)q(q − 2D1 +D2)
≥ 0,

where D1 −D2 ≤ 0, q − 2D1 + D2 ≥ 0 and 2q2 − 2D1 + D2 ≤ 0. Similarly, q′2 ≥ p′2.

And

p1 − q1 =
2(1− q)2 − 2(1− q) +D2

2q(q − 1)
≥ 0,

where 2(1 − q)2 − 2(1 − q) + D2 ≤ 0. Similarly, p′1 ≥ q′1. As a consequence,

p2q′1−p′1q2
p2(1−q1)−q2(1−p1)

≤ 0, it means c1 ≥ p2q′1−p′1q2
p2(1−q1)−q2(1−p1)

always exists if c1 ≥ 0. To ensure
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a1 ≤ 1, we must have

c1p2 − c1q2 − p2q
′
1 + p′1q2 + c1p1q2 − c1p2q1 ≤ p1q2 − p2q1,

c1 ≤
q2(p1 − p′1)− p2(q1 − q′1)

p2(1− q1)− q2(1− p1)
,

where p2(1− q1)− q2(1− p1) ≥ 0. Now we proceed to ensure b1 ≥ 0. Note that

c1q1 − c1p1 + p1q
′
1 − p′1q1 + c1p1q2 − c1p2q1 ≥ 0,

(q1(1− p2)− p1(1− q2))c1 ≥ p′1q1 − p1q
′
1.

Since

q1(1− p2)− p1(1− q2) =
(q −D1)(2(1− q)2 − 2(1− q) + 2(1− q)D1 − 2(1− q)D2 +D2)

2(1− q)q(q − 2D1 +D2)
≤ 0,

where q −D1 ≥ 0, q − 2D1 +D2 ≥ 0 and

2(1− q)2 − 2(1− q) + 2(1− q)D1 − 2(1− q)D2 +D2

≤ 2(1− q)2 − 2(1− q) + 2(1− q)D1 − 2(1− q)D2 + 2(1− q)D1

= −2(1− q)q + 2(1− q)(2D1 −D2)

= 2(1− q)(2D1 −D2 − q) ≤ 0,

it follows that

c1 ≤
p′1q1 − p1q

′
1

q1(1− p2)− p1(1− q2)
.
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And for b1 ≤ 1, we must have

c1q1 − c1p1 + p1q
′
1 − p′1q1 + c1p1q2 − c1p2q1 ≤ p1q2 − p2q1,

c1 ≥
p1(q2 − q′1)− q1(p2 − p′1)

q1(1− p2)− p1(1− q2)
.

where q1(1− p2)− p1(1− q2) ≤ 0. As a consequence,

p1(q2 − q′1)− q1(p2 − p′1)

q1(1− p2)− p1(1− q2)
≤ c1 ≤ min{q2(p1 − p′1)− p2(q1 − q′1)

p2(1− q1)− q2(1− p1)
,

p′1q1 − p1q
′
1

q1(1− p2)− p1(1− q2)
}

Compare the two upper bounds of c1, we have

q2(p1 − p′1)− p2(q1 − q′1)

p2(1− q1)− q2(1− p1)
− p′1q1 − p1q

′
1

q1(1− p2)− p1(1− q2)

=
D′2 −D2

2(q −D1)
− (1− q)(D′2 −D2)(q − 2D1 +D2)

(D1 − q)(2(1− q)2 − 2(1− q) + 2(1− q)D1 − 2(1− q)D2 +D2)

=
(D2 −D′2)(D2 − 2(1− q)D1)

2(D1 − q)(2(1− q)2 − 2(1− q) + 2(1− q)D1 − 2(1− q)D2 +D2)
≥ 0,

⇒ q2(p1 − p′1)− p2(q1 − q′1)

p2(1− q1)− q2(1− p1)
≥ p′1q1 − p1q

′
1

q1(1− p2)− p1(1− q2)
,

where D2−D′2 ≤ 0, D2− 2(1− q)D1 ≤ 0, D1− q ≤ 0 and 2(1− q)2− 2(1− q) + 2(1−

q)D1 − 2(1− q)D2 + D2 ≤ 0. Since p2q1 − p1q2 ≤ 0 and q1(1− p2)− p1(1− q2) ≤ 0,

it follows that

p′1q1 − p1q
′
1

q1(1− p2)− p1(1− q2)
− p1(q2 − q′1)− q1(p2 − p′1)

q1(1− p2)− p1(1− q2)

=
p2q1 − p1q2

q1(1− p2)− p1(1− q2)
≥ 0,
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which clearly shows that the lower bound is always less than the upper bound of c1.

In other words, we can always find a c1 in this interval to make sure a1 ∈ [0, 1] and

b1 ∈ [0, 1].

In the following, we proceed to ensure a2 ∈ [0, 1] and b2 ∈ [0, 1]. In order to make

a2 ≥ 0, we must have

c2p2 − c2q2 − p2q
′
2 + p′2q2 + c2p1q2 − c2p2q1 ≥ 0,

(p2(1− q1)− q2(1− p1))c2 ≥ p2q
′
2 − p′2q2,

c2 ≥
p2q
′
2 − p′2q2

p2(1− q1)− q2(1− p1)
.

where p2(1− q1)− q2(1− p1) ≥ 0. To ensure a2 ≤ 1, we have

c2p2 − c2q2 − p2q
′
2 + p′2q2 + c2p1q2 − c2p2q1 ≤ p1q2 − p2q1,

(p2(1− q1)− q2(1− p1))c2 ≤ q2(p1 − p′2)− p2(q1 − q′2),

c2 ≤
q2(p1 − p′2)− p2(q1 − q′2)

p2(1− q1)− q2(1− p1)
.

where p2(1− q1)− q2(1− p1) ≥ 0. Note that

(q2(p1 − p′2)− p2(q1 − q′2))− (p2(1− q1)− q2(1− p1))

= q2(1− p′2)− p2(1− q′2) ≥ 0,

where the inequality is from q2 ≥ p2 and 1 − p′2 ≥ 1 − q′2. Therefore, if c2 ≤ 1,
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c2 ≤ q2(p1−p′2)−p2(q1−q′2)

p2(1−q1)−q2(1−p1)
always exists. To ensure b2 ≥ 0, we have

c2q1 − c2p1 + p1q
′
2 − p′2q1 + c2p1q2 − c2p2q1 ≥ 0,

(q1(1− p2)− p1(1− q2))c2 ≥ p′2q1 − p1q
′
2,

c2 ≤
p′2q1 − p1q

′
2

q1(1− p2)− p1(1− q2)
.

where q1(1− p2)− p1(1− q2) ≤ 0. For b2 ≤ 1, we must have

c2q1 − c2p1 + p1q
′
2 − p′2q1 + c2p1q2 − c2p2q1 ≤ p1q2 − p2q1,

(q1(1− p2)− p1(1− q2))c2 ≤ p1(q2 − q′2)− q1(p2 − p′2),

c2 ≥
p1(q2 − q′2)− q1(p2 − p′2)

q1(1− p2)− p1(1− q2)
.

where q1(1− p2)− p1(1− q2) ≤ 0. As a consequence,

max{ p2q
′
2 − p′2q2

p2(1− q1)− q2(1− p1)
,
p1(q2 − q′2)− q1(p2 − p′2)

q1(1− p2)− p1(1− q2)
} ≤ c2 ≤

p′2q1 − p1q
′
2

q1(1− p2)− p1(1− q2)
.

Compare the two lower bounds of c2, we have

p1(q2 − q′2)− q1(p2 − p′2)

q1(1− p2)− p1(1− q2)
− p2q

′
2 − p′2q2

p2(1− q1)− q2(1− p1)

=
(2(1− q)D1 −D2)(2q(D′2 −D′1 +D1 −D2) + (2D′1 −D′2)(D′1 −D′2)− 2D1D

′
1 + 3D2D

′
1 −D2D

′
2

2(D1 − q)(q − 2D′1 +D′2)(2(1− q)2 − 2(1− q) + 2(1− q)D1 − 2(1− q)D2 +D2)

≥ 0,

because 2(1− q)D1 −D2 ≥ 0, D1 − q ≤ 0, q − 2D′1 +D′2 ≥ 0, 2(1− q)2 − 2(1− q) +
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2(1− q)D1 − 2(1− q)D2 +D2) ≤ 0 and if 2D′1 −D′2 ≥ 2D1 −D2, we must have

2q(D′2 −D′1 +D1 −D2) + (2D′1 −D′2)(D′1 −D′2)− 2D1D
′
1 + 3D2D

′
1 −D2D

′
2

= 2q(D′2 −D′1 +D1 −D2) + (2D′1 −D′2)(D′1 −D′2) +D2(2D′1 −D′2)−D′1(2D1 −D2)

= 2q(D′2 −D′1 +D1 −D2) + (2D′1 −D′2)(D′1 −D′2 +D2)−D′1(2D1 −D2)

≥ (2D′1 −D′2)(D′2 −D′1 + 2D1 −D2)−D′1(2D1 −D2)

= (2D′1 −D′2)(D′2 −D′1) + (2D′1 −D′2)(2D1 −D2)−D′1(2D1 −D2)

= (2D′1 −D′2)(D′2 −D′1)− (2D1 −D2)(D′2 −D′1)

= (D′2 −D′1)(2D′1 −D′2 − 2D1 +D2) ≥ 0.

Therefore,

p2q
′
2 − p′2q2

p2(1− q1)− q2(1− p1)
≤ p1(q2 − q′2)− q1(p2 − p′2)

q1(1− p2)− p1(1− q2)
.

Since p1q2 − p2q1 ≥ 0 and q1(1− p2)− p1(1− q2) ≤ 0, it follows that

p′2q1 − p1q
′
2

q1(1− p2)− p1(1− q2)
− p1(q2 − q′2)− q1(p2 − p′2)

q1(1− p2)− p1(1− q2)

=
p1q2 − p2q1

q1(1− p2)− p1(1− q2)
≤ 0.

which clearly shows that the lower bound is always less than the upper bound of c2.

In other words, we can always find a c2 in this interval to make sure a2 ∈ [0, 1] and

b2 ∈ [0, 1].

Next, we need to ensure a1+a2 ≤ 1 and b1+b2 ≤ 1 simultaneously. For a1+a2 ≤ 1,
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we must have

(p2(1− q1)− q2(1− p1))(c1 + c2) ≤ p2q
′
1 − p′1q2 + p2q

′
2 − p′2q2 + p1q2 − p2q1,

c1 + c2 ≤
p2q
′
1 − p′1q2 + p2q

′
2 − p′2q2 + p1q2 − p2q1

p2(1− q1)− q2(1− p1)
.

where p2(1− q1)− q2(1− p1) ≥ 0. And for b1 + b2 ≤ 1, we must have

(q1(1− p2)− p1(1− q2))(c1 + c2) ≤ p′1q1 − p1q
′
1 + p′2q1 − p1q

′
2 + p1q2 − p2q1,

c1 + c2 ≥
p′1q1 − p1q

′
1 + p′2q1 − p1q

′
2 + p1q2 − p2q1

q1(1− p2)− p1(1− q2)
.

where q1(1 − p2) − p1(1 − q2) ≤ 0. In order to ensure the existence of c1 + c2, the

lower bound must be smaller than the upper bound, so

p′1q1 − p1q
′
1 + p′2q1 − p1q

′
2 + p1q2 − p2q1

q1(1− p2)− p1(1− q2)
≤ p2q

′
1 − p′1q2 + p2q

′
2 − p′2q2 + p1q2 − p2q1

p2(1− q1)− q2(1− p1)
,

(D2 − 2(1− q)D1)(D′1 − q)(2D1 −D2 − 2D′1 +D′2)

2(D1 − q)(2D′1 −D′2 − q)(2(1− q)2 − 2(1− q) + 2(1− q)D1 − 2(1− q)D2 +D2)
≥ 0,

⇒ 2D1 −D2 ≤ 2D′1 −D′2.

where D2 − 2(1 − q)D1 ≤ 0, D′1 − q ≤ 0, D1 − q ≤ 0, 2D′1 − D′2 − q ≤ 0 and

2(1 − q)2 − 2(1 − q) + 2(1 − q)D1 − 2(1 − q)D2 + D2) ≤ 0. Therefore, we have

a1, a2 ∈ [0, 1], b1, b2 ∈ [0, 1], a1 + a2 ≤ 1 and b1 + b2 ≤ 1 if

2D1 −D2 ≤ 2D′1 −D′2.

We now argue that 2D1 − D2 ≤ 2D′1 − D′2 automatically holds once the conditions

in (2.4.8) are satisfied. It is equivalent to prove that when q
2D1−D2−q ≥ κ or R ≥ R∗,
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2D1 −D2 is monotonically decreasing with R. Recall

R(D1) = Hb(q)−Hb(D1),

R(D2) = 3Hb(q)−Ht(
D2

2
, q)−Ht(

D2

2
, 1− q).

Taking the derivatives of R(D1) and R(D2) w.r.t D1 and D2 respectively, we have

d

dD1

R(D1) = log
D1

1−D1

,

d

dD2

R(D2) = log
D2

2
− 1

2
log(q − D2

2
)− 1

2
log(1− q − D2

2
).

So,

d

dR
D1(R) =

1

log D1(R)
1−D1(R)

,

d

dR
D2(R) =

1

log D2(R)
2
− 1

2
log(q − D2(R)

2
)− 1

2
log(1− q − D2(R)

2
)
.

Let h(R) = 2D1(R)−D2(R), the derivative can be expressed as

d

dR
h(R) = 2

d

dR
D1(R)− d

dR
D2(R)

=
2

log D1(R)
1−D1(R)

− 1

log D2(R)
2
− 1

2
log(q − D2(R)

2
)− 1

2
log(1− q − D2(R)

2
)
,

which has the sign of

S(R) = 2 log
D2(R)

2
− log(q − D2(R)

2
)− log(1− q − D2(R)

2
)− log

D1(R)

1−D1(R)
.

It can be numerically verified that S ≤ 0 when R ≥ R∗. This completes the proof.
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Chapter 3

Rate-Distortion-Perception

Tradeoff for Lossy Compression of

Vector Gaussian Sources

3.1 Abstract

In image compression, the perceptual quality plays an important role in lossy recon-

struction of images. To that end, the rate-distortion-perception function has been in-

troduced which generalizes the traditional rate-distortion function. We consider lossy

compression of a vector source consisting of several (possibly correlated) components.

For the image reconstruction, these components can represent frequency elements of

the Fourier transform. The traditional reverse water-filling solution which establishes

the rate-distortion function of a vector source indicates that some components (mainly

high-frequency components) of the reconstruction might be uncorrelated with those of
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the source. We characterize the rate-distortion-perception function of a vector Gaus-

sian source, which extends the scalar case proposed in [56], and show that for a high

perceptual quality, each component of the reconstruction (including high-frequency

components) is strictly correlated with that of the source which is in contrast to

the traditional reverse water-filling solution. Our proposed method optimizes over

all possible encoder-decoder pairs by jointly optimizing the distortion and percep-

tion constraints. We then consider the notion of the universal representation [56]

where the encoder is fixed and the decoder is adapted to achieve different distortion-

perception pairs. We characterize the achievable distortion-perception region for a

fixed representation and discuss that the corresponding distortion-perception tradeoff

is approximately optimal.

3.2 Introduction

Deep generative models [15] when applied to lossy image compression tasks can recon-

struct realistic looking outputs even at extremely low bit-rates [46], when traditional

compression methods suffer from noticeable artifacts. This has led to a growing in-

terest in both the information theoretic aspects, as well as practical architectures of

deep learning based image compression [3, 19, 46].

Lossy compression algorithms are typically investigated within the framework of

rate-distortion theory, whose goal is to find an optimal tradeoff between the distor-

tion and rate. Nevertheless, it has been noted that achieving low distortion does

not always guarantee high perceptual quality. In other words, minimizing distortion

alone does not necessarily imply that the reconstructed output will be visually pleas-

ing, especially at low bit-rates. Deep learning-based image compression research has
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shown that prioritizing higher perceptual quality can lead to an increase in distortion

[2, 39, 46]. This suggests a tradeoff where improving one aspect may come at the

expense of the other. To tackle this challenge, recent studies by Blau and Michaeli

[6, 8] have introduced a mathematical approach to quantify perceptual quality and ex-

tended it to the rate-distortion-perception framework. Subsequently, numerous stud-

ies emerged that focused on the theory of rate-distortion-perception [10, 26, 27, 43].

Our previous work [56] has also established a rate-distortion-perception theory for

scalar Gaussian sources.

The traditional reverse water-filling solution [11] characterized the rate-distortion

function for vector Gaussian sources consisting of several components. In the method,

some components (mainly high-frequency components) of the reconstruction might be

uncorrelated with those of the source when the distortion constraint is loose enough.

It is natural to wonder if the same phenomenon holds when extending it to the three-

way rate-distortion-perception tradeoff.

Our previous work [56] introduced a concept called universal representation, where

the same compressed representation can be used to simultaneously achieve different

operating points on the distortion-perception tradeoff. This motivates the study of

practical constructions that are approximately universal across the RDP tradeoff,

thereby alleviating the need to design a new encoder for each objective.

In this chapter, we analyze the tradeoff between rate, distortion, and perception

for vector Gaussian sources. We adopt MSE as the distortion metric and measure

perception quality through either KL divergence or Wassertein-2 distance. We first

characterize the rate-distortion-perception function of vector Gaussian sources and

explain its connection to the classical rate-distortion function given by the reverse
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water-filling solution. We then explore the concept of universal representations, where

the encoder remains fixed while the decoder is adjusted to achieve different distortion-

perception combinations. We characterize the achievable distortion-perception region

for a fixed representation and demonstrate the existence of universal representations

that achieve an approximately optimal tradeoff between distortion and perception.

3.3 Theoretical Framework

The rate-distortion theory aims to express the rate of the bit interface between the en-

coder and decoder as an information objective function which needs to be minimized

over the compression constraints. The quality of the compression is quantified by a

distortion function. However, from the perception point of view, the choice of the dis-

tortion function does not necessarily capture the perceptual quality of the perceived

output. To address this issue, [6] introduced an additional constraint called perception

criterion to match the distributions of the input and output. Recently, [56] proposed

a theoretical framework for analyzing the rate-distortion-perception characteristics of

a compression system for quantizing a single-component source.

Let X ∼ PX be a source which should be compressed. Denote the reconstruction

by X̂ and let PX̂ be the distribution of the reconstruction induced by the encoding and

decoding mechanisms. The quality of the compression is measured by the so-called

“squared-error” distortion function d : RL × RL → R≥0 where d(x, x̂) := ‖x − x̂‖2.

From a perceptual perspective, for a given probability distributions PX and PX̂ , let

φ(PX , PX̂) be the perception function capturing the difference between them. Notice

that φ(PX , PX̂) = 0 if and only if PX = PX̂ .
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Definition 3.3.1 (RDP function) For a source X, let PX̂|X(D,P ) be the set of all

transforms PX̂|X such that for a given (D,P ), we have

E[‖X − X̂‖2] ≤ D, φ(PX , PX̂) ≤ P, (3.3.1)

where

PX̂(x̂) :=

∫
PX̂|X(x̂|x)PX(x)dx, ∀x̂ ∈ R. (3.3.2)

Define

R(D,P ) := inf
PX̂|X∈PX̂|X(D,P )

I(X; X̂), (3.3.3)

which is called as the rate-distortion-perception (RDP) function.

We distinguish between the rate-distortion-perception function of the one-shot

setting where only a symbol is compressed at a time, denoted by R1-shot(D,P ), and

that of the asymptotic setting where n i.i.d. symbols of X are jointly encoded and

the behaviour is analyzed as n → ∞, denoted by R∞(D,P ). Using the functional

representation lemma as in [22] and following similar steps to Theorem 2 in Appendix

A.2 of [56], one can show that

R∞(D,P ) = R(D,P ), (3.3.4)
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and

R(D,P ) ≤ R1-shot(D,P ) ≤ R(D,P ) + log(R(D,P ) + 1) + 5. (3.3.5)

3.3.1 RDP Function for a Vector Gaussian Source

Assume that we have an L-dimensional vector Gaussian source X ∼ PX with mean

µX and covariance matrix ΣX � 0. Consider the eigenvalue decomposition of ΣX as

follows

ΣX := ΘTΛZΘ, (3.3.6)

where Θ is an arbitrary unitary matrix and ΛZ is a diagonal matrix of size L × L

given as follows:

ΛZ := diagL(λ1, . . . , λL), (3.3.7)

for some nonnegative λ1, . . . , λL. We consider two different metrics as the percep-

tion function; the KL-divergence and the squared Wasserstein-2 distance. Recall the

definitions of the KL-divergence as

D(PX‖PX̂) :=

∫
x

PX(x) log
PX(x)

PX̂(x)
dx, (3.3.8)

and the Wasserstein-2 distance as

W 2
2 (PX , PX̂) := inf E[‖X − X̂‖2], (3.3.9)
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where the infimum is taken over all joint distributions of (X, X̂) with marginals PX

and PX̂ .

In the following, we will provide the RDP function for a vector Gaussian source.

Before stating the result in the following Theorem 3.3.1, we introduce some definitions.

KL-Divergence as the Perception Function

Assume that the perception function is the KL-divergence between the input and

reconstruction distributions, i.e., φ(PX , PX̂) = D(PX̂‖PX). Although KL-divergence

is asymmetric, it can still be used to measure the distance between two distributions

since KL divergence measures how one probability distribution (typically referred

to as the ”true” or ”target” distribution) differs from a second probability distribu-

tion (often referred to as the ”approximate” or ”estimated” distribution), which is

consistent with our goal, in which we measure how the reconstructed distribution

differs from the input distribution. Define the functions D` : R+ × R+ → R+ and

P` : R+ → R+ as follows.

D`(α, β) : = λ` − 2
√
β(λ` − α) + β, (3.3.10)

P`(β) : =
1

2
(
β

λ`
− 1 + log

λ`
β

). (3.3.11)

The functions D`(., .) and P`(.) denote the distortion and perceptual quality of the

`-th component of the reconstruction in terms of two parameters, α and β, which

will be discussed later. When the perception function is the Wasserstein-2 distance

between the input and reconstruction distributions, the function in (3.3.11) will be

replaced by a different definition discussed in the following Section 3.3.1.

83

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – J. Qian; McMaster University – Electrical and Computer Engineering

Moreover, for a given positive ν1 and ν2, define

b := 2λ`ν1 − 4λ2
`ν

2
1 + ν2 − 4λ`ν1ν2, (3.3.12)

and

λ̂∗`(ν1, ν2) :=
λ`(−b+

√
b2 + 8λ`ν1ν2(2λ`ν1 + ν2) + 2ν2

2)

2(2λ`ν1 + ν2)2
, (3.3.13)

γ∗` (ν1, ν2) :=
−2λ`ν1(1 + 2λ`ν1)− ν2 +

√
b2 + 8λ`ν1ν2(2λ`ν1 + ν2)

8λ`ν2
1(−1 + ν2)

. (3.3.14)

The functions λ̂∗`(., .) and γ∗` (., .) will be used to represent the optimal solutions of

the optimization problem (3.3.3) in terms of two parameters ν1 and ν2 which will

be determined later. For the Wasserstein-2 distance as the perception function, the

definitions (3.3.13) and (3.3.14) will be replaced by different representations.

Wasserstein-2 Distance as the Perception Function

Now, assume that the perception function is the Wasserstein-2 distance between input

and reconstruction distributions, i.e., φ(PX , PX̂) = W 2
2 (PX , PX̂). Let D`(., .) be

defined similar to (3.3.10). However, the perception function in (3.3.11) is replaced

by the following:

P`(β) := (
√
λ` −

√
β)2. (3.3.15)

For a given positive ν1 and ν2, define θ` to be the solution of the following equation:

ν1θ
3
` − 2ν1(1 + λ`(ν1 − ν2))(ν1 + ν2)θ2

` + (ν1 + 4λ`ν
2
1 + ν2)(ν1 + ν2)θ` − 2λ`ν1(ν1 + ν2)2 = 0.
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and let λ̂∗`(ν1, ν2) and γ∗` (ν1, ν2) in (3.3.13) and (3.3.14) be replaced by the following:

λ̂∗`(ν1, ν2) :=
λ`(

1 + (1−θ`)ν1

ν2

)2 , (3.3.16)

γ∗` (ν1, ν2) :=

(
1 + (1−θ`)ν1

ν2

)2

8λ`ν2
1

·

−1 +

√√√√1 +
16λ2

`ν
2
1(

1 + (1−θ`)ν1

ν2

)2

 . (3.3.17)

Functions of Distortion-Perception

The following functions are introduced when the perception function is either the KL-

divergence or the Wasserstein-2 distance. Define γ(D) be the solution of the following

equation:

L∑
`=1

[λ` − γ(D)]+ =

[
L∑
`=1

λ` −D

]+

, (3.3.18)

where [x]+ := max{x, 0}. The parameter γ(D) represents the constant distortion

level, denoted by the water-level, that can be achieved using the traditional reverse

water-filling solution as in Theorem 10.3 of [11] when there is no perception constraint

in the system. It is well-known that the distortion of the `-th component of the

reconstruction cannot be larger than the variance of `-th component of the source.

Thus, the water-level achieved for the `-th component (using the traditional reverse

water-filling solution) is given by the function ∆`(D) defined as

∆`(D) :=

 λ` if γ(D) ≥ λ`

γ(D) if γ(D) < λ`

. (3.3.19)
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Moreover, let Ω`(D,P ) be the following function

Ω`(D,P ) := γ∗` (ν1, ν2), (3.3.20)

where positive ν1 and ν2 are chosen such that:

L∑
`=1

D`(γ
∗
` (ν1, ν2), λ̂∗`(ν1, ν2)) = D, (3.3.21a)

L∑
`=1

P`(λ̂
∗
`(ν1, ν2)) = P. (3.3.21b)

As will be shown later, the function Ω`(D,P ) determines the optimal rate that can

be achieved for the `-th component of the reconstruction when P is small enough.

Theorem 3.3.1 The rate-distortion-perception function R(D,P ) with KL-divergence

or Wasserstein-2 distance as the perception function is given by the following opti-

mization problem

R(D,P ) = min
{λ̂`,γ`}L`=1

1

2

L∑
`=1

log
λ`
γ`

(3.3.22a)

s.t. 0 < γ` ≤ λ`, (3.3.22b)

0 ≤ λ̂` ≤ λ`, (3.3.22c)

L∑
`=1

D`(γ`, λ̂`) ≤ D, (3.3.22d)

L∑
`=1

P`(λ̂`) ≤ P, (3.3.22e)
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and the solution to the above program is as follows.

R(D,P ) =



1
2

∑L
`=1 log λ`

Ω`(D,P )
if
∑L

`=1 P` (|λ` − γ(D)|) > P

1
2

∑L
`=1 log λ`

∆`(D)
if
∑L

`=1 P` ([λ` − γ(D)]+) ≤ P

0 if
∑L

`=1 P` (|λ` − γ(D)|) ≤ P

and
∑L

`=1 P` ([λ` − γ(D)]+) > P

.

(3.3.23)

Proof: See Section 3.A. �

In the following, we discuss Theorem 3.3.1 for different values of P . First, assume

that P is large enough, i.e., the reconstructions are not visually pleasing. If γ(D) ≥ λ`

for some ` ∈ {1, . . . , L}, then the water-levels are determined by ∆`(D) under the

second clause of (3.3.23). This is indeed the optimal water-filling solution which

has been obtained for parallel Gaussian sources in Theorem 10.3 of [11]. According

to (3.3.19), if γ(D) exceeds λ` for some `, then the rate allocated to source ` would

be zero.

On the other hand, for a small enough P (corresponding to high perceptual qual-

ity), the following Corollary 3.3.1.1 states that the water-levels ∆`(D) and Ω`(D,P )

are strictly smaller than λ`. This is in contrast to the traditional reverse water-filling

result for parallel Gaussian sources (without a perception constraint) where the water-

level assigned to each source can be equal to λ` as long as the constant water-level

which is assigned to other sources is larger than λ`, as Fig. 3.1 illustrated.
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Figure 3.1: Comparison between traditional water-filling and generalized
water-filling. Here assume ` = 5, the blue line represents the traditional water level
while the orange line represents the generalized water level. It is noticed the orange
line doesn’t touch the top while the blue line did, which means each component of

the reconstruction is strictly correlated with that of the source in generalized setting
while some components of the reconstruction might be uncorrelated with those of

the source in traditional setting.

Define

{Λ`,Γ`}L`=1 = arg min
{λ̂`,γ`}L`=1

1

2

L∑
`=1

log
λ`
γ`
, (3.3.24)

such that {λ̂`, γ`}L`=1 satisfy (3.3.22b)–(3.3.22e).

Corollary 3.3.1.1 If P < ∞ for the KL-divergence metric or P < min` λ` for the

Wasserstein-2 distance, then we have

Λ` < λ`, ∀` ∈ {1, . . . , L}, (3.3.25)

or

Λ` = λ`, ∀` ∈ {1, . . . , L}, (3.3.26)
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when R(D,P ) = 0.

Proof: See Section 3.B. �

Now, we discuss some implications of Corollary 3.3.1.1 on the correlation coeffi-

cient of the `-th components of the source and reconstructed images defined as follows

corr(X`, X̂`) :=
E[X`X̂`]−E[X`]E[X̂`]√

E[X2
` ]E[X̂2

` ]
. (3.3.27)

Consider the case where γ(D) ≥ λ` for some ` ∈ {1, . . . , L}. As discussed above,

for the traditional reverse water-filling solution solution, the water-level assigned to

the `-th component of reconstruction would be saturated by λ` which implies a zero

correlation coefficient between the `-th components of the source and reconstructed

images, i.e., corr(X`, X̂`) = 0. However, if a high perceptual quality is expected on

the reconstruction, Corollary 3.3.1.1 states that all components of the reconstructed

image are correlated with those of the source image (assuming a positive compression

rate) and the correlation coefficient is simply given by the following

corr(X`, X̂`) =

√
1− Λ`

λ`
. (3.3.28)

3.3.2 Universal Representations

The RDP function is defined to be the minimal compression rate where the encoder

and decoder are optimized to achieve a given distortion-perception pair (D,P ). The

universal RDP function is a generalization where the encoder is fixed and the decoder

is optimized to meet different distortion-perception pairs (D,P ) ∈ ΘDP. Of a partic-

ular interest is the case where ΘDP is the set of all (D,P ) pairs on the RDP function
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for a fixed rate. Fig 3.2 illustrates the Information-theoretic universal compression,

where Xr is the universal representation. The universal RDP function quantifies the

additional rate which is needed to achieve these pairs with a fixed encoder. In the fol-

lowing, we discuss that the rate loss due to use of the fixed encoder is not much larger

than that of the optimized encoder which achieves a single distortion-perception pair.

Before proceeding with the discussion, we present some definitions.

Figure 3.2: Information-theoretic universal compression.

The rate-distortion-perception function defined in Definition 3.3.1, considers all

pairs of encoders and decoders which satisfy a given desired threshold pair (D,P ).

In the following, we propose a generalization where (D,P ) can be any threshold pair

in a general set ΘDP.

Definition 3.3.2 Let Xr be a representation of X generated by a random transform

PXr|X . Define PXr|X(ΘDP) to be the set of all transforms PXr|X such that for each

(D,P ) ∈ ΘDP, there exists a transform PX̂|Xr
such that X̂ → Xr → X forms a

Markov chain and

E[‖X − X̂‖2] ≤ D, φ(PX , PX̂) ≤ P, (3.3.29)
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where

PX̂(x̂) :=

∫
PX̂|Xr

(x̂|xr)PXr|X(xr|x)PX(x)dxdxr, ∀x̂ ∈ R. (3.3.30)

Definition 3.3.3 (Universal Representation) Given a representation Xr of X,

its distortion-perception region, denoted by ΦDP(PXr|X), is the set of (D,P ) pairs for

which there exists PX̂|Xr
such that

E[‖X − X̂‖2] ≤ D, φ(PX , PX̂) ≤ P, (3.3.31)

where PX̂ is defined as in (3.3.30). We say that Xr is a ΘDP-universal representation

of X if ΘDP ⊆ ΦDP(PXr|X). Furthermore, define

R(ΘDP) := inf
PXr|X∈PXr|X(ΘDP)

I(X;Xr), (3.3.32)

which is called as the universal rate-distortion-perception (uRDP) function.

Notice the difference between the rate-distortion-perception functions of the one-shot

and the asymptotic settings denoted by R∞(ΘDP) and R1-shot(ΘDP), respectively. As

mentioned after Definition 3.3.1, similar to (3.3.4)-(3.3.5) and as in Theorem 2 of [56],

one can show that

R∞(ΘDP) = R(ΘDP), (3.3.33)
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and

R(ΘDP) ≤ R1-shot(ΘDP) ≤ R(ΘDP) + log(R(ΘDP) + 1) + 5. (3.3.34)

The detailed proofs are provided in Appendix A.4 and A.5. The above arguments

in (3.3.33) and (3.3.34) were developed when a shared source of stochasticity exists

between the encoder and decoder.
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Figure 3.3: Approximate universality for a vector Gaussian source. The boundaries
of achievable distortion-perception regions ΦDiPi

(PXr|X) are shown in the figure.
Three sets of (Di, Pi) pairs on ΦDP(R) are chosen: for (D1, P1) ∈ ΦD1P1(PXr|X), P1 is

large enough; for (D3, P3) ∈ ΦD3P3(PXr|X), we have P3 = 0; and
(D2, P2) ∈ ΦD2P2(PXr|X) is a midpoint on the curve ΦDP(R). The curves ΦDiPi

(PXr|X)
are close to ΦDP(R), i.e., ΦDiPi

(PXr|X) ≈ ΦDP(R).

In the following discussion, for simplicity in presentation of results, we proceed

with the Wasserstein-2 distance as the perception metric. Define ΦDP(R) as follows

ΦDP(R) := {(D,P ) : R(D,P ) ≤ R}. (3.3.35)
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Let Xr be a representation of X which achieves the point (D,P ) on the boundary

of ΦDP(R). For this representation, according to (3.3.22), there exist {γ̄`, λ̄`}L`=1 such

that

R =
1

2

L∑
`=1

log
λ`
γ̄`
, (3.3.36a)

where

0 < γ̄` ≤ λ`, (3.3.36b)

0 ≤ λ̄` ≤ λ`, (3.3.36c)

L∑
`=1

D`(γ̄`, λ̄`) ≤ D, (3.3.36d)

L∑
`=1

P`(λ̄`) ≤ P. (3.3.36e)

Also, define the following set:

Φfixed-enc
DP (γ̄1, . . . , γ̄L) :=

{
(D′, P ′) : ∃ν > 0 s.t. P ′ ≥

L∑
`=1

P`

(
(
√
λ` + ν

√
λ` − γ̄`)2

(1 + ν)2

)
,

D′ ≥
L∑
`=1

D`

(
γ̄`,

(
√
λ` + ν

√
λ` − γ̄`)2

(1 + ν)2

)}
.

(3.3.37)

The following theorem provides a universal representation of X.

Theorem 3.3.2 Xr is a Φfixed-enc
DP (γ̄1, . . . , γ̄L)-universal representation of X.

Proof: See Section 3.C. �
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Corollary 3.3.2.1 Φfixed-enc
DP (γ̄1, . . . , γ̄L) ≈ ΦDP(R).

Remark 3.3.1 In the context of a scalar Gaussian source, a significant result has

been established in [56], demonstrating that the notion of approximate equality becomes

exact equivalence, namely Φfixed-enc
DP (PXr|X) = ΦDP(R). However, for vector Gaussian

sources, a rate penalty can be anticipated due to the presence of multiple components.

We numerically verify that the corresponding distortion-perception region is approxi-

mately optimal, confirming the approximation Φfixed-enc
DP (γ̄1, . . . , γ̄L) ≈ ΦDP(R), which

is shown in Fig. 3.3. Moreover, for an arbitrary scalar source, it is also proved in [56]

that Φfixed-enc
DP (PXr|X) is not much smaller than ΦDP(R). The detailed proof is attached

in Appendix A.1. We can extend the theoretical proof into the vector case.

Consider the following extreme points on ΦDP(R) (see Fig. 3.3). The first extreme

point corresponding to the highest perceptual quality is given by

(D3, P3) = (
L∑
`=1

2λ` − 2
√
λ` (λ` − ω0

` ), 0), (3.3.38)

where ω0
` is the water-level assigned to the `-th component of the source defined as

ω0
` :=

2λ`

1 +
√

1 + 16ν2
1λ

2
`

, (3.3.39)

such that ν1 > 0 satisfies the following

R =
1

2

L∑
`=1

log
1 +

√
1 + 16ν2

1λ
2
`

2
. (3.3.40)

The other extreme point of ΦDP(R) corresponding to the lowest perceptual quality is
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Figure 3.4: Monotonicity of γ̄` versus D for L = 3 and R = 3.

given by the following

(D1, P1) = (
L∑
`=1

λ` −
L∑
`=1

[λ` − δ`]+,
L∑
`=1

P`([λ` − δ`]+)), (3.3.41)

where δ` satisfies the following

R =
1

2

L∑
`=1

[
log

λ`
δ`

]+

. (3.3.42)

The water-level at this point is simply given by the traditional reverse water-filling

solution solution as follows

ω∞` :=

 δ` if δ` < λ`

λ` if δ` ≥ λ`

. (3.3.43)
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Fig. 3.3 shows the boundaries of ΦD1P1(PXr|X) and ΦD3P3(PXr|X) where γ̄` is ω∞`

and ω0
` , respectively. The figure also illustrates the boundary of ΦD2P2(PXr|X) where

(D2, P2) ∈ ΦD2P2(PXr|X) is a midpoint on the curve ΦDP(R). For any point on ΦDP(R),

represented by the set of water-levels {γ̄`}L`=1, the distortion-perception tradeoff is

given by Φfixed-enc
DP (γ̄1, . . . , γ̄L) characterized in Theorem 3.3.2. The functions P`(., .)

and D`(., .) in (3.3.37) are monotonically increasing functions of γ̄`. In order to find a

lower bound on the set Φfixed-enc
DP (γ̄1, . . . , γ̄L), we need to find the minimum values of

{γ̄`}L`=1 on the tradeoff curve. Through our experiments (see Fig. 3.4), we observed

a monotonic behaviour for {γ̄`}L`=1 versus D. This observation implies the following

lower bound:

γ̄` ≥ min(ω0
` , ω

∞
` ). (3.3.44)

Now, define

Φlower
DP :=

{
(D′, P ′) : ∃ν > 0 s.t. P ′ ≥

L∑
`=1

P`

(
(
√
λ` + ν

√
λ` −min(ω0

` , ω
∞
` ))2

(1 + ν)2

)
,

D′ ≥
L∑
`=1

D`

(
min(ω0

` , ω
∞
` ),

(
√
λ` + ν

√
λ` −min(ω0

` , ω
∞
` ))2

(1 + ν)2

)}
.

(3.3.45)

Then, we get Φfixed-enc
DP (γ̄1, . . . , γ̄L) ⊆ Φlower

DP . The boundary of the set Φlower
DP is shown in

Fig. 3.3. The points (D1, P1) and (D3, P3) are included in the set Φlower
DP . The points

(D′1, P
′
1) and (D′3, P

′
3) on the boundary of Φlower

DP are the extreme points corresponding

to a large enough P and P = 0, respectively.
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3.4 Conclusions

In this chapter, we focused on the crucial role of perceptual quality in image com-

pression, specifically in lossy image reconstruction. We have introduced the rate-

distortion-perception function as a generalized approach to considering perceptual

metrics into the compression process, going beyond the conventional rate-distortion

framework. We addressed the lossy compression of a vector Gaussian source com-

posed of potentially correlated components, such as frequency elements in the Fourier

transform of an image. Through the conventional reverse water-filling solution, which

determined the rate-distortion function of a vector Gaussian source, we observed that

some components of the reconstruction might be uncorrelated with the correspond-

ing components of the source, particularly the high-frequency components. While

for vector Gaussian sources, we made a significant finding: for achieving high per-

ceptual quality, each component of the reconstruction, including the high-frequency

components, was strictly correlated with its counterpart in the source. This discov-

ery contrasted with the traditional reverse water-filling solution approach. Aiming

to jointly optimize the distortion and perception constraints by considering all pos-

sible encoder-decoder pairs, we explored the concept of the universal representation,

where the encoder remained fixed, and the decoder was adapted to achieve differ-

ent distortion-perception pairs. We demonstrated that the corresponding distortion-

perception tradeoff was approximately optimal.
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3.A Proof of Theorem 3.3.1

First, we provide the proof for the case that the perception function is the KL-

divergence between input and reconstruction distributions.

We will first need a Lemma from estimation theory. For scalar case, let X̂ be

a random variable with E[X̂] = µX̂ , Var(X̂) = σ2
X̂

and Cov(X, X̂) = θ. Let X̂G

be a random variable jointly Gaussian with X with the same first and second order

statistics as X̂.

Lemma 3.A.1 Given µX̂ , σ
2
X̂

, and θ, we have that

E
[(
X − E

[
X | X̂G

])2
]
≥ E

[
(X − E[X | X̂])2

]
. (3.A.1)

The proof of this result can be found in a standard estimation theory reference, e.g.

Chapter 3, page 134 of the 6.432 notes by Willsky & Wornell (2004).

We can have

E
[(
X − X̂

)2
]

= E
[
X2
]

+ E
[
X̂2
]
− 2E

[
XX̂

]
= σ2

X + µ2
X + σ2

X̂
+ µ2

X̂
− 2µXµX̂ − 2θ

= (µX − µX̂)2 + σ2
X + σ2

X̂
− 2θ

= E
[(
X − X̂G

)2
]
, (3.A.2)

where (3.A.2) is because X̂G has the same first and second order statistics as X̂.

For vector case, we assume an L-dimensional random vector X̂ with mean µX̂
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and its joint covariance matrix with X is given by

ΣX,X̂ ,

 ΣX Θ

ΘT ΣX̂

 .

Let X̂G be an L-dimensional random vector jointly Gaussian with X with the same

first and second order statistics as X̂. Lemma 3.A.1 also applies in vector case.

Lemma 3.A.2 Given µX̂ , and ΣX,X̂ , we have that

det(ΣX−E[X|X̂G]) ≥ det(ΣX−E[X|X̂]). (3.A.3)

Restriction to Jointly Gaussian Distributions:

We shall show that there is no loss of optimality in assuming that X̂ is jointly

Gaussian with X. It is clear that E[‖X − X̂‖2] = E[‖X − X̂G‖2], as the first and

second order statistics are all given.

Moreover, notice that for every random variable X̂ which has the same mean and
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covariance matrix as X̂G, we have

I(X; X̂) = h(X)− h(X | X̂) (3.A.4)

≥ h(X)− h(X − E[X | X̂]) (3.A.5)

≥ h(X)− 1

2
log
(

(2πe)L det(ΣX−E[X|X̂])
)

(3.A.6)

≥ h(X)− 1

2
log
(

(2πe)L det(ΣX−E[X|X̂G])
)

(3.A.7)

= h(X)− h
(
X − E

[
X | X̂G

])
(3.A.8)

= h(X)− h
(
X − E

[
X | X̂G

]
| X̂G

)
(3.A.9)

= h(X)− h
(
X | X̂G

)
(3.A.10)

= I
(
X; X̂G

)
. (3.A.11)

where (3.A.5) is due to E[X | X̂] is the MMSE of X̂, (3.A.6) is because the Gaus-

sian distribution maximizes differential entropy for a given variance, (3.A.7) follows

from Lemma 3.A.2 and (3.A.9) is because the estimation error X − E
[
X | X̂G

]
is

independent of X̂G, and (3.A.10) follows because E
[
X | X̂G

]
is a function of X̂G.
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Finally, note that

D(PX̂‖PX) =

∫
PX̂(x) log

PX̂(x)

PX(x)
dx

=− h(X̂)−
∫
PX̂(x) logPX(x)dx

=− h(X̂)−
∫
PX̂(x) log

1√
(2π)L det(ΣX)

e−
1
2

(x−µX)TΣ−1
X (x−µX)dx

=− h(X̂)−
∫
PX̂(x)

(
−1

2
log(2π)L det(ΣX)− 1

2
(x− µX)TΣ−1

X (x− µX)

)
dx

=− h(X̂) +
1

2

∫
PX̂(x)(x− µX)TΣ−1

X (x− µX)dx +
1

2
log(2π)L det(ΣX)

=− h(X̂) +
1

2

∫
PX̂G

(x)(x− µX)TΣ−1
X (x− µX)dx +

1

2
log(2π)L det(ΣX)

(3.A.12)

=− h(X̂)−
∫
PX̂G

(x) logPX(x)dx (3.A.13)

≥− h(X̂G)−
∫
PX̂G

(x) logPX(x)dx (3.A.14)

=D(PX̂G
‖PX), (3.A.15)

where (3.A.12) follows because the expression (x − µX)TΣ−1
X (x − µX) for a vector

x = (x1, . . . , xL) contains the terms like x2
` , x` and x`x`′ for `, `′ ∈ {1, . . . , L}, and

since the X̂ has the same mean and covariance matrix as X̂G, the expected values

of these terms with respect to PX̂ are equal to those calculated with respect to

PX̂G
; (3.A.14) follows because the differential entropy is maximized for a Gaussian

distribution.

So, we will restrict our search to Gaussian distributions that satisfy both the

distortion and perception metrics. Thus, the optimization problem of Definition 3.3.1
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reduces to the following:

min
PX̂G|X

I(X; X̂G), (3.A.16)

s.t. E[‖X − X̂G‖2] ≤ D, D(PX̂G
‖PX) ≤ P, (3.A.17)

We can also restrict our search to X̂G such that E[X̂G] = µX̂ since this choice

minimizes both distortion and perception metrics as can be verified by the following

identities:

E[‖X − X̂G‖2] = ‖µX − µX̂‖
2 + E[‖(X − µX)− (X̂G − µX̂)‖2], (3.A.18)

and

D(PX̂G
‖PX) =

1

2

(
tr(Σ−1

X ΣX̂) + (µX − µX̂)TΣ−1
X (µX − µX̂)− L+ log

det(ΣX)

det(ΣX̂)

)
.

(3.A.19)

Therefore, there is no loss of optimality in assuming µX = µX̂ . Recall the eigen-

value decomposition of ΣX from (3.3.6)–(3.3.7). Furthermore, set Z = ΘX and

define ẐG := ΘX̂G. Let ΣX−E[X|X̂G] be the covariance matrix of X − E[X|X̂G]

and ΛZ−E[Z|ẐG] be a diagonal matrix whose diagonal entries coincide with those of

ΘTΣX−E[X|X̂G]Θ, i.e.,

ΛZ−E[Z|ẐG] := diagL(γ1, . . . , γL), (3.A.20)

for some nonnegative γ1, . . . , γL. Moreover, let ΣX̂G
be the covariance matrix of
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X̂G and ΛẐG
be a diagonal matrix whose diagonal elements coincide with those of

ΘΣX̂G
ΘT , i.e.,

ΛẐG
:= diagL(λ̂1, . . . , λ̂L). (3.A.21)

Simplification of the Optimization Problem for the Gaussian Distribution: Now, we

simplify the optimization problem when the reconstruction random variable is re-

stricted to be jointly Gaussian with desired properties given in the previous subsec-

tion. Consider the following set of inequalities for the mutual information:

I(X; X̂G) =h(X)− h(X|X̂G) (3.A.22)

=h(X)− h(X − E[X|X̂G]|X̂G) (3.A.23)

=h(X)− h(X − E[X|X̂G]) (3.A.24)

=h(ΘTZ)− h(ΘTZ −ΘTE[Z|ẐG]) (3.A.25)

=I(Z;Z − E[Z|ẐG]) (3.A.26)

=
L∑
`=1

h(Z`)− h(Z − E[Z|ẐG]) (3.A.27)

≥
L∑
`=1

h(Z`)−
L∑
`=1

h(Z` − E[Z`|ẐG,`]) (3.A.28)

=
L∑
`=1

1

2
log ((2πe)λ`)−

L∑
`=1

1

2
log ((2πe)γ`) (3.A.29)

=
L∑
`=1

1

2
log

λ`
γ`
, (3.A.30)

where
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• (3.A.26) follows because h(ΘTZ) = h(Z) + log(| det(ΘT )|) which is a property

of the differential entropy,

• (3.A.27) follows because Z1, . . . , ZL are independent,

• (3.A.28) follows because conditioning reduces entropy,

• (3.A.29) follows because E[Z2
` ] = λ` and E[(Z` − E[Z`|ẐG,`])2] = γ`.

Next, consider the expected distortion function as follows:

E[‖X − X̂G‖2] =E[‖Z − ẐG‖2] (3.A.31)

=
L∑
`=1

E[(Z` − ẐG,`)2] (3.A.32)

=
L∑
`=1

E[Z2
` ]− 2E[Z`ẐG,`] + E[Ẑ2

G,`] (3.A.33)

=
L∑
`=1

λ` − 2E[Z`ẐG,`] + λ̂` (3.A.34)

=
L∑
`=1

λ` − 2

√
λ̂`(λ` − γ`) + λ̂` (3.A.35)

where

• (3.A.31) follows because X = ΘTZ, X̂G = ΘT ẐG and Θ is a unitary matrix,

• (3.A.34) follows because E[Z2
` ] = λ` and E[Ẑ2

G,`] = λ̂`,

• (3.A.35) follows from the identity E[(Z`−E[Z`|ẐG,`])2] = E[Z2
` ]−(E[Z`ẐG,`])

2(E[ẐG,`])
−1,

and E[(Z` − E[Z`|ẐG,`])2] = γ`, E[Z2
` ] = λ`, E[Ẑ2

G,`] = λ̂` and also because

E[Z`ẐG,`] being positive decreases the distortion function.
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Finally, consider the perception function in the following.

D(PX̂G
‖PX) =

1

2

(
tr(Λ−1

Z ΘΣX̂G
ΘT )− L+ log

det(ΛZ)

det(ΘΣX̂G
ΘT )

)
(3.A.36)

=
1

2

(
tr(Λ−1

Z ΛẐG
)− L+ log

det(ΛZ)

det(ΘΣX̂G
ΘT )

)
(3.A.37)

≥1

2

(
tr(Λ−1

Z ΛẐG
)− L+ log

det(ΛZ)

det(ΛẐG
)

)
(3.A.38)

=
1

2

L∑
`=1

(
λ̂`
λ`
− 1 + log

λ`

λ̂`

)
(3.A.39)

where

• (3.A.37) follows because Λ−1
Z is a diagonal matrix and thus the trace depends

on the diagonal elements of ΘΣX̂G
ΘT which are equal to diagonal elements of

ΛẐG
,

• (3.A.38) follows from Hadamard’s inequality for a positive semidefinite matrix

as in Eq. (8.64) of [11].

Optimization Problem: The optimization problem reduces to the following:

R(D,P ) := min
{λ̂`,γ`}L`=1

1

2

L∑
`=1

log
λ`
γ`

(3.A.40a)

s.t. 0 < γ` ≤ λ`, (3.A.40b)

0 ≤ λ̂` ≤ λ`, (3.A.40c)

L∑
`=1

(
λ` − 2

√
λ̂`(λ` − γ`) + λ̂`

)
≤ D, (3.A.40d)

1

2

L∑
`=1

(
λ̂`
λ`
− 1 + log

λ`

λ̂`

)
≤ P. (3.A.40e)
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It can be easily verified that the above optimization problem is convex. Thus, the

solution to the above program is equal to that of the following dual optimization

problem.

R(D,P ) = max
ν1,ν2

min
{γ`,λ̂`}L`=1:
0<γ`≤λ`
0≤λ̂`≤λ`

1

2

L∑
`=1

log
λ`
γ`

+ ν1

(
L∑
`=1

(λ` − 2

√
λ̂`(λ` − γ`) + λ̂`)−D

)

+ ν2

(
1

2

L∑
`=1

(
λ̂`
λ`
− 1 + log

λ`

λ̂`

)
− P

)
(3.A.41)

= max
ν1,ν2

L∑
`=1

min
{γ`,λ̂`}L`=1:
0<γ`≤λ`
0≤λ̂`≤λ`(

1

2
log

λ`
γ`

+ ν1

(
λ` − 2

√
λ̂`(λ` − γ`) + λ̂` −D`

)
+ ν2

(
1

2

(
λ̂`
λ`
− 1 + log

λ`

λ̂`

)
− P`

))
,

(3.A.42)

where {ν1, ν2} are nonnegative Lagrange multipliers and positive D` and nonnegative

P` are chosen such that

ν1

(
L∑
`=1

D` −D

)
= 0, (3.A.43)

ν2

(
L∑
`=1

P` − P

)
= 0. (3.A.44)

So, the optimization problem reduces to solving the program for each ` ∈ {1, . . . , L}
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as in (3.A.42). For a given ν1 and ν2 and each ` ∈ {1, . . . , L}, define

G`(ν1, ν2, γ`, λ̂`) :=
1

2
log

λ`
γ`

+ ν1

(
λ` − 2

√
λ̂`(λ` − γ`) + λ̂` −D`

)
+
ν2

2

(
λ̂`
λ`
− 1 + log

λ`

λ̂`
− P`

)
.

(3.A.45)

In the following, we solve the minimization program

min
{γ`,λ̂`}L`=1:
0<γ`≤λ`
0≤λ̂`≤λ`

G`(ν1, ν2, γ`, λ̂`). (3.A.46)

We setup the KKT conditions [9]. Let (γ∗` , λ̂
∗
`) be any optimal solution for the primal

problem and {ξ`}L`=1, {η`, η′`}L`=1 be nonnegative Lagrange multipliers. Thus, for ` ∈

{1, . . . , L}, we have:

1

2γ∗`
− ν1

√
λ̂∗`√

λ` − γ∗`
− ξ` =0, (3.A.47a)

ν1

(
−
√
λ` − γ∗`
λ̂∗`

+ 1

)
+

1

2
ν2

(
1

λ`
− 1

λ̂∗`

)
+ η` − η′` =0, (3.A.47b)

ξ`(γ
∗
` − λ`) =0, (3.A.47c)

η`(λ̂
∗
` − λ`) =0, (3.A.47d)

η′`λ̂
∗
` =0, (3.A.47e)

ν1

(
(λ` − 2

√
λ̂∗`(λ` − γ∗` ) + λ̂∗`)−D`

)
=0, (3.A.47f)

ν2

(
1

2

(
λ̂∗`
λ`
− 1 + log

λ`

λ̂∗`

)
− P`

)
=0. (3.A.47g)

We consider different cases based on the values of ν1, ν2, ξ`, η` and η′`.
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Case 0) η′` > 0: In this case, we have λ̂∗` = 0 and γ∗` = λ`.

Thus, in all of the following cases, we assume that η′` = 0.

Assumption 1 (ν1, ν2 > 0):

Case 1) ξ` = η` = 0: In this case, the condition (3.A.47b) implies that

λ` < γ∗` + λ̂∗`
1, (3.A.48)

which together with (3.A.47a) yields the following.

γ∗` <
1

2ν1

. (3.A.49)

Combining (3.A.48) and (3.A.49), we get:

λ̂∗` > λ` −
1

2ν1

. (3.A.50)

Notice that combining (3.A.48) with the distortion constraint in (3.A.47f) yields the

following:

λ` − λ̂∗` < D`. (3.A.51)

Moreover, (3.A.47f) implies that

D` < λ` + λ̂∗` . (3.A.52)
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Considering (3.A.51) and (3.A.52) yields the following inequality

λ̂∗` > |λ` −D`|. (3.A.53)

Assuming that inequalities (3.A.48)–(3.A.50) hold, we can solve the equations (3.A.47a)–

(3.A.47b) to get

λ̂∗` =
λ`(−b+

√
b2 + 8λ`ν1ν2(2λ`ν1 + ν2) + 2ν2

2)

2(2λ`ν1 + ν2)2

(
=
λ` − γ∗`
4γ∗2` ν

2
1

)
(3.A.54)

=λ̂∗`(ν1, ν2), (3.A.55)

γ∗` =
−2λ`ν1(1 + 2λ`ν1)− ν2 +

√
b2 + 8λ`ν1ν2(2λ`ν1 + ν2)

8λ`ν2
1(−1 + ν2)

=
−1 +

√
1 + 16λ`λ̂∗`ν

2
1

8λ̂∗`ν
2
1


(3.A.56)

=γ∗` (ν1, ν2), (3.A.57)

where b is defined as in (3.3.12). Moreover, we have:

λ` − 2

√
λ̂∗`(λ` − γ∗` ) + λ̂∗` =D`, (3.A.58a)

1

2

(
λ̂∗`
λ`
− 1 + log

λ`

λ̂∗`

)
=P`. (3.A.58b)

Case 2) ξ` > 0: In this case, we have γ∗` = λ` which is not a feasible case since

dG`(ν1, ν2, γ`, λ̂`)

dγ`

∣∣∣
γ`=λ`

= +∞, (3.A.59)

which makes the function G`(ν1, ν2, γ` = λ`, λ̂`) be a non-decreasing function thanks

to ν1 > 0.
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Case 3) η` > 0 and ξ` = 0: In this case, we have λ̂∗` = λ`, P` = 0 and

η` = ν1

(√
λ` − γ∗`
λ`

− 1

)
< 0, (3.A.60)

which is an infeasible case.

Assumption 2 (ν1 > 0, ν2 = 0):

Case 1) ξ` = 0, η` = 0: In this case, the KKT conditions simplify to the following.

1

2γ∗`
− ν1

√
λ̂∗`√

λ` − γ∗`
=0, (3.A.61a)

ν1

(
−
√
λ` − γ∗`
λ̂∗`

+ 1

)
=0, (3.A.61b)

λ` − 2

√
λ̂∗`(λ` − γ∗` ) + λ̂∗` =D`, (3.A.61c)

P`(λ̂
∗
`) ≤P`. (3.A.61d)

Thus, condition (3.A.61b) implies that

λ` = γ∗` + λ̂∗` . (3.A.62)

Then, we have D` = λ` − λ̂∗` = 1
2ν1

,

γ∗` =
1

2ν1

, (3.A.63)

λ̂∗` = λ` −
1

2ν1

. (3.A.64)
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Case 2) ξ` > 0, η` = 0: In this case, the KKT conditions imply that

λ` =γ∗` + λ̂∗` , (3.A.65a)

γ∗` =λ`, (3.A.65b)

D` =λ` + λ̂∗` , (3.A.65c)

λ̂∗` =0. (3.A.65d)

Case 3) ξ` > 0, η` > 0: In this case, the KKT conditions imply that

λ` >λ̂
∗
` + γ∗` , (3.A.66)

λ̂∗` =λ`, (3.A.67)

γ∗` =λ`, (3.A.68)

which are not feasible conditions together.

Case 4) ξ` = 0, η` > 0: In this case, the KKT conditions imply that

λ` >γ
∗
` + λ̂∗` , (3.A.69)

λ̂∗` =λ`, (3.A.70)

which are not feasible conditions together.

Assumption 3 (ν1 = 0, ν2 > 0): In this case, the KKT conditions in (3.A.47)
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imply that

γ∗` =λ`, (3.A.71)

λ̂∗` =λ`, (3.A.72)

D` ≥2λ`, (3.A.73)

P` =P`(λ`) = 0. (3.A.74)

Assumption 4 (ν1 = ν2 = 0):

Case 1 (ξ` > 0): In this case, the KKT conditions in (3.A.47) imply that

γ∗` =λ`, (3.A.75)

D` ≥λ` + λ̂∗` , (3.A.76)

P` ≥P`(λ̂∗`). (3.A.77)

Case 2 (ξ` = 0): According to (3.A.47a), this is an infeasible case.

Summarizing all of the above cases, we get:

R(D,P ) = max
ν1,ν2≥0:

ν1(
∑L
`=1D`−D)=0

ν2(
∑L
`=1 P`−P )=0

1

2

L∑
`=1

log
λ`
γ`
, (3.A.78)
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where

(γ`, D`, P`) :=

(γ∗` (ν1, ν2),D`(γ
∗
` (ν1, ν2), λ̂∗`(ν1, ν2)),P`(λ̂

∗
`(ν1, ν2))),

if ν1, ν2 > 0, λ̂∗`(ν1, ν2) > |λ` −D`|, λ` < γ∗` (ν1, ν2) + λ̂∗`(ν1, ν2), γ∗` (ν1, ν2) < 1
2ν1
,

λ̂∗`(ν1, ν2) > λ` − 1
2ν1
,

( 1
2ν1
, 1

2ν1
, P`),

if ν1 > 0, ν2 = 0, D` = λ` − λ̂∗` , λ` = γ∗` + λ̂∗` , γ
∗
` = 1

2ν1
, λ̂∗` = λ` − 1

2ν1
,

P`(λ̂
∗
`) ≤ P`,

(λ`, λ`,P`(0)),

if ν1 > 0, ν2 = 0, D` = λ` − λ̂∗` , λ` = γ∗` + λ̂∗` , γ∗` = λ`, λ̂∗` = 0,

(λ`, 2λ`,P`(λ`)),

if ν1 = 0, ν2 > 0, D` ≥ 2λ`, γ
∗
` = λ`, λ̂

∗
` = λ`,

(λ`, D`, P`),

if ν1 = ν2 = 0, D` − λ` ≥ λ̂∗` , γ∗` = λ`, P`(λ̂
∗
`) ≤ P`.

(3.A.79)

and ν1 and ν2 are chosen such that

ν1

(
L∑
`=1

D` −D

)
= 0, (3.A.80a)

ν2

(
L∑
`=1

P` − P

)
= 0. (3.A.80b)
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First, we analyze the second and third clauses of (3.A.79) to obtain the value of

D` since in these two clauses, we have D` = λ` − λ̂∗` . Consider the following sum

distortion constraint

L∑
`=1

D` = D, (3.A.81)

which can be written as follows:

L∑
`=1

(λ` − λ̂∗`) = D. (3.A.82)

Plugging λ̂∗` = [λ` − 1
2ν1

]+ into the above inequality yields the following:

L∑
`=1

[
λ` −

1

2ν1

]+

=

[
L∑
`=1

λ` −D

]+

. (3.A.83)

Let γ(D) := 1
2ν1

which yields the definition in (3.3.18). Moreover, we have

D` =
1

2ν1

= γ(D). (3.A.84)

After deriving the value ofD`, we get back to analysis of different clauses of (3.A.79).

Under the first clause, we have

R(D,P ) =
1

2

L∑
`=1

log
λ`

γ∗` (ν1, ν2)
, (3.A.85)

where λ̂∗`(ν1, ν2) and γ∗` (ν1, ν2) are defined in (3.3.13) and (3.3.14), respectively, and
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satisfy the following equations

L∑
`=1

D`(γ
∗
` (ν1, ν2), λ̂∗`(ν1, ν2)) =D, (3.A.86)

L∑
`=1

P`(λ̂
∗
`(ν1, ν2)) =P. (3.A.87)

Moreover, D` given in (3.A.84) satisfies the following inequality

λ̂∗`(ν1, ν2) > |γ(D)− λ`|. (3.A.88)

Combining the above inequality with (3.A.87) yields the following constraint:

P <
L∑
`=1

P`(|γ(D)− λ`|). (3.A.89)

Thus, the first clause of (3.A.79) is active when the above inequality is satisfied. If

the above inequality is violated, the other clauses of (3.A.79) would be active.

Now, we analyze the second and third clauses of (3.A.79). Under these two clauses,

we have:

R(D,P ) =
1

2

L∑
`=1

log
λ`

∆`(D)
, (3.A.90)

where ∆`(D) is defined in (3.3.19). Notice that these two clauses are active when

λ̂∗` = [λ` −D`]
+, (3.A.91)
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which gives the following inequality on the perception constraint

L∑
`=1

P`([λ` − γ(D)]+) ≤ P. (3.A.92)

So, if the above inequality is violated, the fourth and fifth clauses of (3.A.79) would

be active. Under the last two clauses of (3.A.79), we have:

R(D,P ) = 0, (3.A.93)

since γ∗` = λ` for all ` ∈ {1, . . . , L}. Summarizing all of the above cases, we get to

the expression in (3.3.23). This concludes the proof of the optimization problem.

Now, consider the Wasserstein-2 distance as the perception metric. The proof

follows similar steps to the previous case. We just need to study the perception

function which is determined by the Wasserstein-2 distance. Define the following

joint distribution

P ∗UV = arg inf
P̃UV :
P̃U=PX

P̃V =PX̂

EP̃ [‖U − V ‖2], (3.A.94)

and let PG
UV be a jointly Gaussian distribution such that covPG(U ,V ) = covP ∗(U ,V ).
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Consider the following sets of inequalities:

W 2
2 (PX , PX̂) =EP ∗ [‖U − V ‖2] (3.A.95)

=EPG [‖U − V ‖2] (3.A.96)

≥ inf
P̂UV :

P̂U=PX

P̂V =PX̂G

EP̂ [‖U − V ‖2] (3.A.97)

=W 2
2 (PX , PX̂G

), (3.A.98)

So, from the perception point of view, one can restrict to X̂G jointly Gaussian with

X, without loss of optimality.

Next, notice that for two Gaussian distributions with zero-mean, the Wasserstein-

2 distance simplifies to the following.

W 2
2 (PX , PX̂G

) =tr(ΣX + ΣX̂G
− 2(Σ

1
2
XΣX̂G

Σ
1
2
X)

1
2 ) (3.A.99)

=
L∑
`=1

(√
λ` −

√
λ̂`

)2

. (3.A.100)
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Thus, the optimization problem reduces to the following:

R(D,P ) = min{λ̂`,γ`}L`=1

1

2

L∑
`=1

log
λ`
γ`

(3.A.101a)

s.t. 0 < γ` ≤ λ`, (3.A.101b)

0 ≤ λ̂` ≤ λ`, (3.A.101c)

L∑
`=1

(
λ` − 2

√
λ̂`(λ` − γ`) + λ̂`

)
≤ D, (3.A.101d)

L∑
`=1

(√
λ` −

√
λ̂`

)2

≤ P. (3.A.101e)

The solution to the above program can be derived following similar steps to the

proof of the KL-divergence case. It can be easily verified that the above optimization

problem is convex. Thus, the solution to the above program is equal to that of the

following dual optimization problem.

R(D,P ) = max
ν1,ν2

min
{γ`,λ̂`}L`=1:
0<γ`≤λ`
0≤λ̂`≤λ`

1

2

L∑
`=1

log
λ`
γ`

+ ν1

(
L∑
`=1

(λ` − 2

√
λ̂`(λ` − γ`) + λ̂`)−D

)

+ ν2

(
L∑
`=1

(√
λ` −

√
λ̂`

)2

− P

)
(3.A.102)

= max
ν1,ν2

L∑
`=1

min
{γ`,λ̂`}L`=1:
0<γ`≤λ`
0≤λ̂`≤λ`(

1

2
log

λ`
γ`

+ ν1

(
λ` − 2

√
λ̂`(λ` − γ`) + λ̂` −D`

)
+ ν2

((√
λ` −

√
λ̂`

)2

− P`

))
,

(3.A.103)
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where {ν1, ν2} are nonnegative Lagrange multipliers and positive D` and nonnegative

P` are chosen such that

ν1

(
L∑
`=1

D` −D

)
= 0, (3.A.104)

ν2

(
L∑
`=1

P` − P

)
= 0. (3.A.105)

So, the optimization problem reduces to solving the program for each ` ∈ {1, . . . , L}

as in (3.A.103). For a given ν1 and ν2 and each ` ∈ {1, . . . , L}, define

G`(ν1, ν2, γ`, λ̂`) :=
1

2
log

λ`
γ`

+ ν1

(
λ` − 2

√
λ̂`(λ` − γ`) + λ̂` −D`

)
+ ν2

((√
λ` −

√
λ̂`

)2

− P`

)
.

(3.A.106)

In the following, we solve the minimization program

min
{γ`,λ̂`}L`=1:
0<γ`≤λ`
0≤λ̂`≤λ`

G`(ν1, ν2, γ`, λ̂`). (3.A.107)

We setup the KKT conditions. Let (γ∗` , λ̂
∗
`) be any optimal solution for the primal

problem and {ξ`}L`=1, {η`, η′`}L`=1 be nonnegative Lagrange multipliers. Thus, for ` ∈
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{1, . . . , L}, we have:

1

2γ∗`
− ν1

√
λ̂∗`√

λ` − γ∗`
− ξ` =0, (3.A.108a)

ν1

(
−
√
λ` − γ∗`
λ̂∗`

+ 1

)
+ ν2

(
1−

√
λ`

λ̂∗`

)
+ η` − η′` =0, (3.A.108b)

ξ`(γ
∗
` − λ`) =0, (3.A.108c)

η`(λ̂
∗
` − λ`) =0, (3.A.108d)

η′`λ̂
∗
` =0, (3.A.108e)

ν1

(
(λ` − 2

√
λ̂∗`(λ` − γ∗` ) + λ̂∗`)−D`

)
=0, (3.A.108f)

ν2

((√
λ` −

√
λ̂`

)2

− P`

)
=0. (3.A.108g)

We consider different cases based on the values of ν1, ν2, ξ`, η` and η′`.

Case 0) η′` > 0: In this case, we have λ̂∗` = 0 and γ∗` = λ`.

Thus, in all of the following cases, we assume that η′` = 0.

Assumption 1 (ν1, ν2 > 0):

Case 1) ξ` = η` = 0: In this case, the condition (3.A.108b) implies that

λ` < γ∗` + λ̂∗`
2, (3.A.109)

which together with (3.A.108a) yields the following.

γ∗` <
1

2ν1

. (3.A.110)
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Combining (3.A.109) and (3.A.110), we get:

λ̂∗` > λ` −
1

2ν1

. (3.A.111)

Notice that combining (3.A.109) with the distortion constraint in (3.A.108f) yields

the following:

λ` − λ̂∗` < D`. (3.A.112)

Moreover, (3.A.108f) implies that

D` < λ` + λ̂∗` . (3.A.113)

Considering (3.A.112) and (3.A.113) yields the following inequality

λ̂∗` > |λ` −D`|. (3.A.114)

Assuming that inequalities (3.A.109)–(3.A.111) hold, we can solve the equations

(3.A.108a)–(3.A.108b) to get

λ̂∗`(ν1, ν2) :=
λ`(

1 + (1−θ`)ν1

ν2

)2 , (3.A.115)

γ∗` (ν1, ν2) :=

(
1 + (1−θ`)ν1

ν2

)2

8λ`ν2
1

·

−1 +

√√√√1 +
16λ2

`ν
2
1(

1 + (1−θ`)ν1

ν2

)2

 . (3.A.116)
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where θ` is the unique solution of the following equation:

ν1θ
3
` − 2ν1(1 + λ`(ν1 − ν2))(ν1 + ν2)θ2

` + (ν1 + 4λ`ν
2
1 + ν2)(ν1 + ν2)θ` − 2λ`ν1(ν1 + ν2)2 = 0.

(3.A.117)

Case 2) ξ` > 0: In this case, we have γ∗` = λ` which is not a feasible case since

dG`(ν1, ν2, γ`, λ̂`)

dγ`

∣∣∣
γ`=λ`

= +∞, (3.A.118)

which makes the function G`(ν1, ν2, γ` = λ`, λ̂`) be a non-decreasing function thanks

to ν1 > 0.

Case 3) η` > 0 and ξ` = 0: In this case, we have λ̂∗` = λ`, P` = 0 and

η` = ν1

(√
λ` − γ∗`
λ`

− 1

)
< 0, (3.A.119)

which is an infeasible case.

Assumption 2 (ν1 > 0, ν2 = 0):

Case 1) ξ` = 0, η` = 0: In this case, the KKT conditions simplify to the following.

1

2γ∗`
− ν1

√
λ̂∗`√

λ` − γ∗`
=0, (3.A.120a)

ν1

(
−
√
λ` − γ∗`
λ̂∗`

+ 1

)
=0, (3.A.120b)

λ` − 2

√
λ̂∗`(λ` − γ∗` ) + λ̂∗` =D`, (3.A.120c)

P`(λ̂
∗
`) ≤P`. (3.A.120d)
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Thus, condition (3.A.120b) implies that

λ` = γ∗` + λ̂∗` . (3.A.121)

Then, we have D` = λ` − λ̂∗` = 1
2ν1

,

γ∗` =
1

2ν1

, (3.A.122)

λ̂∗` = λ` −
1

2ν1

. (3.A.123)

Case 2) ξ` > 0, η` = 0: In this case, the KKT conditions imply that

λ` =γ∗` + λ̂∗` , (3.A.124a)

γ∗` =λ`, (3.A.124b)

D` =λ` + λ̂∗` , (3.A.124c)

λ̂∗` =0. (3.A.124d)

Case 3) ξ` > 0, η` > 0: In this case, the KKT conditions imply that

λ` >λ̂
∗
` + γ∗` , (3.A.125)

λ̂∗` =λ`, (3.A.126)

γ∗` =λ`, (3.A.127)

which are not feasible conditions together.
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Case 4) ξ` = 0, η` > 0: In this case, the KKT conditions imply that

λ` >γ
∗
` + λ̂∗` , (3.A.128)

λ̂∗` =λ`, (3.A.129)

which are not feasible conditions together.

Assumption 3 (ν1 = 0, ν2 > 0): In this case, the KKT conditions in (3.A.108)

imply that

γ∗` =λ`, (3.A.130)

λ̂∗` =λ`, (3.A.131)

D` ≥2λ`, (3.A.132)

P` =P`(λ`) = 0. (3.A.133)

Assumption 4 (ν1 = ν2 = 0):

Case 1 (ξ` > 0): In this case, the KKT conditions in (3.A.108) imply that

γ∗` =λ`, (3.A.134)

D` ≥λ` + λ̂∗` , (3.A.135)

P` ≥P`(λ̂∗`). (3.A.136)

Case 2 (ξ` = 0): According to (3.A.108a), this is an infeasible case.
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Summarizing all of the above cases, we get:

R(D,P ) = max
ν1,ν2≥0:

ν1(
∑L
`=1 D`−D)=0

ν2(
∑L
`=1 P`−P )=0

1

2

L∑
`=1

log
λ`
γ`
, (3.A.137)

where

(γ`, D`, P`) :=

(γ∗` (ν1, ν2),D`(γ
∗
` (ν1, ν2), λ̂∗`(ν1, ν2)),P`(λ̂

∗
`(ν1, ν2))),

if ν1, ν2 > 0, λ̂∗`(ν1, ν2) > |λ` −D`|, λ` < γ∗` (ν1, ν2) + λ̂∗`(ν1, ν2), γ∗` (ν1, ν2) < 1
2ν1
,

λ̂∗`(ν1, ν2) > λ` − 1
2ν1
,

( 1
2ν1
, 1

2ν1
, P`),

if ν1 > 0, ν2 = 0, D` = λ` − λ̂∗` , λ` = γ∗` + λ̂∗` , γ
∗
` = 1

2ν1
, λ̂∗` = λ` − 1

2ν1
,

P`(λ̂
∗
`) ≤ P`,

(λ`, λ`,P`(0)),

if ν1 > 0, ν2 = 0, D` = λ` − λ̂∗` , λ` = γ∗` + λ̂∗` , γ∗` = λ`, λ̂∗` = 0,

(λ`, 2λ`,P`(λ`)),

if ν1 = 0, ν2 > 0, D` ≥ 2λ`, γ
∗
` = λ`, λ̂

∗
` = λ`,

(λ`, D`, P`),

if ν1 = ν2 = 0, D` − λ` ≥ λ̂∗` , γ∗` = λ`, P`(λ̂
∗
`) ≤ P`.

(3.A.138)
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and ν1 and ν2 are chosen such that

ν1

(
L∑
`=1

D` −D

)
= 0, (3.A.139a)

ν2

(
L∑
`=1

P` − P

)
= 0. (3.A.139b)

First, we analyze the second and third clauses of (3.A.138) to obtain the value

of D` since in these two clauses, we have D` = λ` − λ̂∗` . Consider the following sum

distortion constraint

L∑
`=1

D` = D, (3.A.140)

which can be written as follows:

L∑
`=1

(λ` − λ̂∗`) = D. (3.A.141)

Plugging λ̂∗` = [λ` − 1
2ν1

]+ into the above inequality yields the following:

L∑
`=1

[
λ` −

1

2ν1

]+

=

[
L∑
`=1

λ` −D

]+

. (3.A.142)

Let γ(D) := 1
2ν1

which yields the definition in (3.3.18). Moreover, we have

D` =
1

2ν1

= γ(D). (3.A.143)

After deriving the value ofD`, we get back to analysis of different clauses of (3.A.138).
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Under the first clause, we have

R(D,P ) =
1

2

L∑
`=1

log
λ`

γ∗` (ν1, ν2)
, (3.A.144)

where λ̂∗`(ν1, ν2) and γ∗` (ν1, ν2) are defined in (3.3.13) and (3.3.14), respectively, and

satisfy the following equations

L∑
`=1

D`(γ
∗
` (ν1, ν2), λ̂∗`(ν1, ν2)) =D, (3.A.145)

L∑
`=1

P`(λ̂
∗
`(ν1, ν2)) =P. (3.A.146)

Moreover, D` given in (3.A.143) satisfies the following inequality

λ̂∗`(ν1, ν2) > |γ(D)− λ`|. (3.A.147)

Combining the above inequality with (3.A.146) yields the following constraint:

P <
L∑
`=1

P`(|γ(D)− λ`|). (3.A.148)

Thus, the first clause of (3.A.138) is active when the above inequality is satisfied. If

the above inequality is violated, the other clauses of (3.A.138) would be active.

Now, we analyze the second and third clauses of (3.A.138). Under these two

clauses, we have:

R(D,P ) =
1

2

L∑
`=1

log
λ`

∆`(D)
, (3.A.149)
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where ∆`(D) is defined in (3.3.19). Notice that these two clauses are active when

λ̂∗` = [λ` −D`]
+, (3.A.150)

which gives the following inequality on the perception constraint

L∑
`=1

P`([λ` − γ(D)]+) ≤ P. (3.A.151)

So, if the above inequality is violated, the fourth and fifth clauses of (3.A.138) would

be active. Under the last two clauses of (3.A.138), we have:

R(D,P ) = 0, (3.A.152)

since γ∗` = λ` for all ` ∈ {1, . . . , L}. Summarizing all of the above cases, we get to

the expression in (3.3.23). This concludes the proof.

3.B Proof of Corollary 3.3.1.1

Assume that the perception function is the KL-divergence between input and recon-

struction distributions. The proof for the Wasserstein-2 distance is similar. Fix a

finite P . If P satisfies the first clause of (3.3.23), then the optimal water-levels Γ` are
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given by Ω`(D,P ) as follows:

Γ` =Ω`(D,P ) (3.B.1)

=γ∗` (ν1, ν2) (3.B.2)

=
−1 +

√
1 + 16λ`λ̂∗`(ν1, ν2)ν2

1

8λ̂∗`(ν1, ν2)ν2
1

(3.B.3)

<λ`. (3.B.4)

Now, assume that P satisfies the second clause of (3.3.23). Since P is finite, the

second clause of (3.3.23) implies that

γ(D) < λ`, ∀` ∈ {1, . . . , L}, (3.B.5)

or equivalently

Γ` = ∆`(D) < λ`, ∀` ∈ {1, . . . , L}. (3.B.6)

Finally, assume that P satisfies the third clause of (3.3.23). In this case, since

R(D,P ) = 0, we have:

Γ` = λ`, ∀` ∈ {1, . . . , L}. (3.B.7)

Considering (3.B.4), (3.B.6) and (3.B.7) concludes the proof of corollary.
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3.C Proof of Theorem 3.3.2

Recall from (3.3.36) that Xr is a representation of X such that there exist {γ̄`, λ̄`}L`=1

such that

R =
1

2

L∑
`=1

log
λ`
γ̄`
, (3.C.1)

where

0 < γ̄` ≤ λ`, (3.C.2)

0 ≤ λ̄` ≤ λ`, (3.C.3)

L∑
`=1

(
λ` − 2

√
λ̄`(λ` − γ̄`) + λ̄`

)
≤ D, (3.C.4)

L∑
`=1

(√
λ` −

√
λ̄`

)2

≤ P. (3.C.5)

Thus, there exists a reconstruction X̂ such that (λ̄1, . . . , λ̄L) are the eigenvalues of its

covariance matrix, i.e., ΣX̂ = ΘΛX̂ΘT where

ΛX̂ := diagL(λ̄1, . . . , λ̄L). (3.C.6)

Let

X̂A := AX̂T , (3.C.7)

where A is an L-dimensional vector as A := (A1, . . . , AL) for some positive real

numbers {A`}L`=1. Notice that we have ΣX̂A
= AΣX̂A

T . If we let ΣX̂A
= ΘΛX̂A

ΘT
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where

ΛX̂A
:= diagL(λA,1, . . . , λA,L), (3.C.8)

Then, we get

λA,` = A`λ̄`. (3.C.9)

Since the rate on the boundary of ΦDP(R) is fixed to be R, then according to (3.3.36a),

{γ̄`}L`=1 are also fixed. Thus, according to (3.3.36c)–(3.3.36e), ΦDP(PXr|X) includes the

following set:

Φin
DP(γ̄1, . . . , γ̄L) :=



(D′, P ′) : ∃{A`}L`=1 s.t.:

1 ≤ A`,∑L
`=1

(
λ` − 2

√
A`λ̄`(λ` − γ̄`) + A`λ̄`

)
≤ D′,∑L

`=1

(√
λ` −

√
A`λ̄`

)2

≤ P ′


. (3.C.10)

In order to obtain the boundary of the above region, we solve an optimization problem

for each D′. That is, the set of all feasible P ′ on the boundary of Φin
DP(γ̄1, . . . , γ̄L) is

determined by the following.

P ′ = min{A`}L`=1

L∑
`=1

(√
λ` −

√
A`λ̄`

)2

, (3.C.11a)

s.t.: 1 ≤ A`, (3.C.11b)

L∑
`=1

(
λ` − 2

√
A`λ̄`(λ` − γ̄`) + A`λ̄`

)
≤ D′. (3.C.11c)

131

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – J. Qian; McMaster University – Electrical and Computer Engineering

The above program is convex, so we can setup the dual Lagrange problem and con-

tinue with the KKT conditions. The dual Lagrange function is given as follows.

max
ν≥0

min
{A`}L`=1:

1≤A`

L∑
`=1

(√
λ` −

√
A`λ̄`

)2

+ ν
L∑
`=1

(
λ` − 2

√
A`λ̄`(λ` − γ̄`) + A`λ̄` −D′

)
(3.C.12)

= max
ν≥0

L∑
`=1

min
{A`}L`=1:

1≤A`

((√
λ` −

√
A`λ̄`

)2

+ ν

(
λ` − 2

√
A`λ̄`(λ` − γ̄`) + A`λ̄` −D`

))
,

(3.C.13)

where nonnegative {D`}L`=1 are chosen such that
∑L

`=1 D` = D′. In order to solve

the minimization problem in (3.C.13), we setup KKT conditions. Thus, there exist

nonnegative Lagrange multipliers {ξ`}L`=1 such that

−
√
λ`λ̄`
A`

+ λ̄`

+ ν

λ̄` −
√
λ̄`(λ` − γ̄`)

A`

− ξ` =0, (3.C.14)

ξ`(−A` + 1) =0, (3.C.15)

ν

(
λ` − 2

√
A`λ̄`(λ` − γ̄`) + A`λ̄` −D`

)
=0. (3.C.16)

We discuss the above program based on different values of ν. If ν = 0, then (3.C.14)

implies that

ξ` > 0, A` = 1. (3.C.17)

If ν > 0, then we have two cases.
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Case 1 (ξ` = 0): In this case, we have:

A` =
λ`
λ̄`

1 + ν
√

1− γ̄`
λ`

1 + ν

2

. (3.C.18)

Case 2 (ξ` > 0): Here, we have A` = 1.

To sum up, the case ofA` = 1 gives the trivial solution that {(D,P )} ⊆ ΦDP(PXr|X).

Plugging (3.C.18) into (3.C.11a) and (3.C.11c) yields the set of the pairs (D′, P ′)

stated in theorem. This concludes the proof.

3.D Derivation of Extreme Points of ΦDP(R)

If P = 0, we are under the first clause of R(D,P ) in (3.3.23). Here, we have:

R =
1

2

L∑
`=1

log
λ`

Ω`(D,P )
. (3.D.1)

The equation (3.3.21b) together with P = 0 implies that λ̂∗`(ν1, ν2) = λ` for every

` ∈ {1, . . . , L}. Also, (3.3.16) and (3.3.17) yield the following:

γ∗` (ν1, ν2) =
2λ`

1 +
√

1 + 16ν2
1λ

2
`

:= ω0
` , (3.D.2)

where ν1 is chosen such that

R =
1

2

L∑
`=1

log
λ`
ω0
`

(3.D.3)

=
1

2

L∑
`=1

log
1 +

√
1 + 16ν2

1λ
2
`

2
. (3.D.4)
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Moreover, we get

D =
L∑
`=1

[
2λ` − 2

√
λ`(λ` − ω0

` )

]
:= D3. (3.D.5)

Now, for a large enough P , the second clause of R(D,P ) in (3.3.23) holds. Then,

we have:

R =
1

2

L∑
`=1

log
λ`
δ`
, (3.D.6)

where δ` satisfies the following equation:

L∑
`=1

[λ` − δ`]+ =

[
L∑
`=1

λ` −D1

]+

. (3.D.7)

This concludes the proof.

3.E Proof of Convexity of Program (3.A.40)

First, consider that the second-order derivative of the objective function (3.A.40a)

with respect to γ` is 1
2γ2
`

which is a positive term. The second-order derivative of

the constraint (3.A.40e) with respect to λ̂` is 1

2λ̂2
`

which is again a positive term. It

just remains to study the constraint (3.A.40d). The Hessian matrix of LHS of this

constraint is given as follows.


√
λ`−γ`

2
√
λ̂3
`

1

2
√
λ̂`(λ`−γ`)

1

2
√
λ̂`(λ`−γ`)

√
λ̂`

2
√

(λ`−γ`)3

 (3.E.1)
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The determinant of the above matrix is zero and thus it is a positive semi-definite

matrix which implies the convexity of the underlying function. This concludes the

proof.

3.F Proof of Monotonicity

First, notice that the function P`

(
λ`

(
1+ν

√
1− γ̄`

λ`

1+ν

)2
)

is an increasing function of γ̄`.

Now, it remains to study the function D`(., .). With some simple calculations, it can

be shown that

D`

γ̄`, λ`
1 + ν

√
1− γ̄`

λ`

1 + ν

2
 = γ̄` +

(√
λ` − γ̄` −

√
λ`

1 + ν

)2

. (3.F.1)

If we take the derivative of the above term with respect to γ̄`, we have:

ν2 + 2ν

(1 + ν)2
+

√
λ`

(1 + ν)2
√
λ` − γ̄`

, (3.F.2)

which is a nonnegative term. Thus, the function D`(., .) is an increasing function of

γ̄`.
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Chapter 4

Conclusion and Future Work

3.1 Conclusion

In this thesis, we reviewed the notion of perception loss, which emerges naturally

during the training of deep learning models. We then considered the rate-distortion-

perception (RDP) function, which serves as a benchmark in assessing the performance

of image compression systems trained through deep learning. In addition, we reviewed

the notion of universal encoded representations, where the same compressed repre-

sentation could be used to simultaneously achieve different operating points on the

distortion-perception tradeoff curve. We endowed the information-theoretic defini-

tions with operational meanings by proving coding theorems in both one-shot and

asymptotic settings, then provided thorough analyses for both the binary and Gaus-

sian sources.

For binary sources, we employed the Hamming distance as the distortion measure
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and the TV distance as the metric to evaluate the perception quality of the recon-

structed output. Firstly, we derive an analytical expression for the rate-distortion-

perception tradeoff in the one-shot setting. Then, a complete characterization of the

achievable distortion-perception region for an arbitrary representation was obtained.

Furthermore, we derived upper and lower bounds on the minimum rate penalty in

the universal representation setting, where the encoder is designed to be applicable

across different scenarios without the need for customization. Lastly, we delved into

the concept of successive refinement in the context of perception-constrained lossy

compression for both point-wise and set-wise settings and provided a necessary and

sufficient condition for point-wise successive refinement and a sufficient condition for

the successive refinability of universal representation.

For vector Gaussian sources, we provided a complete characterization of the rate-

distortion-perception function, which extends its scalar counterpart in [56]. The

distortion considered was the MSE loss and the perception quality was measured

by KL divergence or Wasserstein-2 distance. Our finding demonstrated that when

aiming for a high perceptual quality, every component of the reconstructed output,

including high-frequency components, needs to retain a strong correlation with the

corresponding component of the source. This observation should be contrasted with

the traditional water-filling solution, which allows some components of the recon-

struction to be uncorrelated with those of the source. Furthermore, we explored the

concept of universal representation, where the encoder remained fixed while the de-

coder was adapted to accommodate varying distortion-perception requirements. We

characterized the achievable distortion-perception region for a fixed representation
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and demonstrated that the distortion-perception tradeoff achieved by universal rep-

resentations can be nearly optimal.

Theoretical discoveries presented in this thesis greatly enrich the emerging rate-

distortion-perception theory, laying a strong groundwork for the advancement of lossy

image compression techniques.

3.2 Future Work

There are still untapped opportunities for future research to advance and refine the

proposed approaches, leading to further improvements.

Some technical issues still remain unresolved. While at some places we have pro-

vided numerical verification, it is crucial to supplement it with more rigorous math-

ematical proofs. This can include addressing the conditions mentioned in Remark

2.4.2, providing a monotonicity proof for Φlower
DP and theoretically proving Corollary

3.3.2.1. It is essential to further refine and strengthen the mathematical aspects of

these three parts.

We employed KL divergence as a perceptual metric in our study. However, it is

important to note that KL divergence possesses the property of asymmetry, which

may limit its suitability as a perception measurement. Despite this limitation, KL

divergence remains a valuable measurement in the field of Information Theory and

serves a significant role. To address the broader issue, further exploration is needed

to determine an appropriate perceptual measure that more accurately approximates

human judgment.

It is crucial to supplement our theoretical findings with experimental results on

real datasets to validate our claims. Additionally, exploring universal representations
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for the binary case under a real-valued reconstruction set is an intriguing area of

interest. Relaxing the binary alphabet constraint raises the question of whether

similar phenomena occur in the general case and whether it leads to the discovery of

“free” universal representations. Therefore, conducting further investigations in this

direction can yield valuable insights and contribute to the advancement of the field.
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Appendix A

Appendices

A.1 Partial Explanation for Corollary 3.3.2.1

For arbitrary distribution with expectation µX and variance σ2
X , assume P3 = 0 (i.e.,

PX̂D3,P3
= PX ), it follows that

D3 = E
[∥∥∥X − X̂D3,P3

∥∥∥2
]

= 2σ2
X − 2E

[
(X − µX)T

(
X̂D3,P3 − µX

)]
. (A.1.1)

Note that I
(
X;E

[
X | X̂D3,P3

])
≤ I

(
X; X̂D3,P3

)
= R (D1,∞), which implies E[‖X−

E
[
X | X̂D3,P3

]
‖2
]
≥ D1. Let c =

2σ2
X−D3

2σ2
X

. We have

D1 ≤ E
[∥∥∥X − E

[
X | X̂D3,P3

]∥∥∥2
]

≤ E
[∥∥∥X − µX − c(X̂D3,P3 − µX

)∥∥∥2
]

=
(
1 + c2

)
σ2
X − 2cE

[
(X − µX)T

(
X̂D3,P3 − µX

)]
(a)
=

4σ2
XD3 −D2

3

4σ2
X

,
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where (a) is due to (A.1.1). So

D3 ≥ 2σ2
X − 2σX

√
σ2
X −D1

which together with the fact that D(b) ≤ 2D1 implies

D(b) −D3 ≤ 2D1 − 2σ2
X + 2σX

√
σ2
X −D1,

D(b)

D3

≤ D1

σ2
X − σX

√
σ2
X −D1

,

where
(
D(a), P (a)

)
and

(
D(b), P (b)

)
are the two extreme points, corresponding to

upper-left and lower-right. It is easy to verify that

1

2
σ2
X ≥ 2D1 − 2σ2

X + 2σX

√
σ2
X −D1

D1≈0 or σ2
X≈ 0,

2 ≥ D1

σ2
X − σX

√
σ2
X −D1

D1≈σ2
X≈ 1.

A similar argument can be used to bound the gap between (D1, P1) and the upper-left

extreme point
(
D̃(a), P̃ (a)

)
. Note that

D̃(a) = E
[∥∥∥X − E

[
X | X̂D3,P3

]∥∥∥2
]
≤ 4σ2

XD3 −D2
3

4σ2
X

which together with the fact that D1 ≥ 1
2
D3 implies

D̃(a) −D1 ≤
1

2
D3 −

D2
3

4σ2
X

,

D̃(a)

D1

≤ 2− D3

2σ2
X

.
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Finally, this implies
1

4
σ2
X ≥

1

2
D3 −

D2
3

4σ2
X

D3≈0 or 2σ2
X≈ 0,

2 ≥ 2− D3

2σ2
X

D3≈2σ2
X≈ 1.

A.2 Functional Representation Lemma

Lemma A.2.1 (Functional representation lemma [13]) For any pair of random

variables (X, X̂), there exists random variable U , independent of X, such that X̂ can

be expressed as a deterministic function of (X,U).

A.3 Strong Functional Representation Lemma

Lemma A.3.1 (Strong Functional Representation Lemma [22]) For general (X,Z),

their exists a U such that H(Z|U) is close to I(X;Z). Specifically, we can strengthen

the functional representation lemma to show that for any X and Z, there exists a U

independent of X such that Z is a function of X and U , and

H(Z | U) ≤ I(X;Z) + log(I(X;Z) + 1) + 4.

A.4 Proof of R(ΘDP) ≤ R1-shot(ΘDP) ≤ R(ΘDP)+log(R(ΘDP)+

1) + 5

Proof: First, we proveR1-shot(ΘDP) ≤ R(ΘDP)+log(R(ΘDP)+1)+5. Let Z be jointly

distributed with X such that for any (D,P ) ∈ ΘDP, there exists pX̂D,P |Z satisfying

E[‖X − X̂D,P‖2] ≤ D and φ(PX , PX̂D,P ) ≤ P . It follows by the strong functional
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representation lemma A.3.1 that there exist a random variable U , independent of X,

and a deterministic function g such that Z = g(X,U) and H(Z | U) ≤ I(X;Z) +

log(I(X;Z) + 1) + 4. So with U available at both the encoder and the decoder, we

can use a class of prefix-free binary codes whose expected codeword length no greater

than H(Z | U) + 1 to lossless represent Z. Now it suffices for the decoder to simulate

pX̂D,P |Z . Specifically, it follows by the functional representation lemma that there

exists a random variable UD,P , independent of (X,U), and a deterministic function

ψD,P such that X̂D,P = ψD,P (Z,UD,P ). Note that U and UD,P can be extracted from

random seed.

Then we prove R(ΘDP) ≤ R1-shot. For any random variable Q, encoding function

fQ : X → CQ, and decoding functions gQ,D,P : CQ → X̂ , (D,P ) ∈ ΘDP satisfying

E[‖X − X̂D,P‖2] ≤ D and φ(PX , PX̂D,P ) ≤ P , we have

E [` (fQ(X))] ≥ H (fQ(X) | Q)

≥ I (X; fQ(X) | Q)

= I (X; fQ(X), Q)

≥ R(ΘDP),

where the last inequality follows by defining (fQ(X), Q) as Z, which satisfies the

conditions in the definition of R(ΘDP). Therefore, we have

R(ΘDP) ≤ R1-shot(ΘDP) ≤ R(ΘDP) + log(R(ΘDP) + 1) + 5.

�
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A.5 Proof of R∞(ΘDP) = R(ΘDP)

Proof: We first show achievability. By assumption, there exists pZ|X and pX̂D,P |Z

such that E[‖X−X̂D,P‖2] ≤ D and φ(PX , PX̂D,P ) ≤ P for each (D,P ) ∈ ΘDP. Encode

according to the product measure

pZn|Xn =
n∏
i=1

pZi|Xi ,

where pZi|Xi = pZ|X for each i. By the strong functional representation lemma,

there exists a random variable U independent of Xn and function φ(n)(·, ·) such that

Zn = φ(n) (Xn, U), with

H (Zn | U)

n
≤ I (Xn;Zn) + log (I (Xn;Zn) + 1) + 4

n

=
nI(X;Z) + log(nI(X;Z) + 1) + 4

n

→ I(X;Z) as n→∞.

For the converse, we have
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H
(
f

(n)
U (Xn) | U

)
≥ I

(
f

(n)
U (Xn) ;Xn | U

)
= I

(
f

(n)
U (Xn) ;Xn | U

)
+ I (Xn;U)

= I
(
f

(n)
U (Xn) , U ;Xn

)
=

n∑
i=1

I
(
f

(n)
U (Xn) , U ;Xi | X i−1

)
=

n∑
i=1

I
(
f

(n)
U (Xn) , U ;Xi | X i−1

)
+ I

(
Xi;X

i−1
)

=
n∑
i=1

I
(
f

(n)
U (Xn) , U,X i−1;Xi

)
≥

n∑
i=1

I
(
f

(n)
U (Xn) , U ;Xi

)
≥ nR(ΘDP)

where the final inequality follows because each reconstruction X̂D,P,i is a function of(
f

(n)
U (Xn) , U

)
so the data processing inequality can be applied. This establishes the

converse. Therefore, we have

R∞(ΘDP) = R(ΘDP).

�
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