
RATE-LIMITED QUANTUM-TO-CLASSICAL

OPTIMAL TRANSPORT



RATE-LIMITED QUANTUM-TO-CLASSICAL OPTIMAL

TRANSPORT

By HAFEZ M. GARMAROUDI, M.Sc.

A Thesis Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements for

the Degree Philosophical Doctrine

McMaster University © Copyright by Hafez M. Garmaroudi,

September 2023

https://gs.mcmaster.ca/
http://www.mcmaster.ca/


McMaster University

PHILOSOPHICAL DOCTRINE (2023)

Hamilton, Ontario, Canada (Electrical and Computer Engineering)

TITLE: Rate-Limited Quantum-to-Classical Optimal Transport

AUTHOR: Hafez M. Garmaroudi

M.Sc. in Electrical and Computer Engineering,

McMaster University, Hamilton, Canada

SUPERVISOR: Prof. Jun Chen

NUMBER OF PAGES: xv, 130

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Lay Abstract

We establish a coding theorem for rate-limited quantum-classical optimal trans-

port systems with limited classical common randomness. The coding theorem,

referred to as output-constrained rate-distortion theorem, characterizes the rate re-

gion of measurement protocols on a product quantum source state for faithful

construction of a given classical destination distribution while maintaining the

source-destination distortion below a prescribed threshold with respect to a gen-

eral distortion observable. This theorem provides a solution to the problem of

rate-limited optimal transport, which aims to find the optimal cost of transform-

ing a source quantum state to a destination distribution via a measurement chan-

nel with a limited classical communication rate. The coding theorem is further

extended to cover Bosonic continuous-variable quantum systems. The analytical

evaluation is provided for the case of a qubit measurement system with unlimited

common randomness, as well as the case of Gaussian quantum systems.
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Abstract

The goal of optimal transport is to map a source probability measure to a destina-

tion one with the minimum possible cost. However, the optimal mapping might

not be feasible under some practical constraints. One such example is to realize a

transport mapping through an information bottleneck. As the optimal mapping

may induce infinite mutual information between the source and the destination,

the existence of an information bottleneck forces one to resort to some suboptimal

mappings. Investigating this type of constrained optimal transport problems is

clearly of both theoretical significance and practical interest.

In this work we substantiate a particular form of constrained optimal trans-

port in the context of quantum-to-classical systems by establishing an Output-

Constrained Rate-Distortion Theorem similar to the classical case in [45]. This the-

orem develops a noiseless communication channel and finds the least required

transmission rate R and common randomness Rc to transport a sufficiently large

block of n i.i.d. source quantum states, to samples forming a perfectly i.i.d. clas-

sical destination distribution, while maintaining the distortion between them. The

coding theorem provides operational meanings to the problem of Rate-Limited Op-

timal Transport, which finds the optimal transportation from source to destination

subject to the rate constraints on transmission and common randomness.
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We further provide an analytical evaluation of the quantum-to-classical rate-

limited optimal transportation cost for the case of qubit source state and Bernoulli

output distributions with unlimited common randomness. The evaluation results

in a transcendental system of equations whose solution provides the rate-distortion

curve of the transportation protocol.

We further extend this theorem to continuous-variable quantum systems by

employing a clipping and quantization argument and using our discrete coding

theorem. Moreover, we derive an analytical solution for rate-limited Wasserstein

distance of 2nd order for Gaussian quantum systems with Gaussian output distri-

bution. We also provide a Gaussian optimality theorem for the case of unlimited

common randomness, showing that Gaussian measurement optimizes the rate in

a system with Gaussian source and destination.
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Chapter 1

Introduction

The lossy source-coding problem in information theory aims to determine the

minimum required rate for compressing a given source so that it can be recon-

structed to meet a prescribed distortion constraint. The fundamental tradeoff be-

tween the compression rate and the reconstruction distortion is characterized by

the rate-distortion function [11]. This subject has also drawn attention in the field of

quantum information theory. In an early attempt, Barnum [4] conjectured a lower

bound on the rate-distortion function for a quantum channel with entanglement

fidelity as the distortion measure, based on the coherent information quantity. His

lower bound was later proved to be not tight in [16], where the authors estab-

lished the quantum rate-distortion theorems for both entanglement assisted and

unassisted systems. The proofs in [16] rely on the reverse Shannon theorem [5],

which addresses the problem of simulating a noisy channel with the help of a

noiseless channel, or more generally, simulating one noisy channel with another

noisy channel.
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In a seminal paper [53], Winter introduced the notion of information in quan-

tum measurement and established the measurement compression theorem, which de-

lineates the required classical rate and common randomness to faithfully simulate

a feedback measurement Λ for an input state ρ. In [38], variants of this measure-

ment compression theorem were studied for the case of non-feedback simulation

and the case with the presence of quantum side information. Further, in [17],

Datta et. al. invoked this measurement compression theorem to give a proof of

the quantum-classical rate-distortion theorem. This idea of measurement simula-

tion was further extended to distributed measurement simulation for composite

quantum states in [1, 2], where the required classical rates and common random-

ness to faithfully simulate a bipartite state ρAB using distributed measurements

are characterized; this distributed measurement compression theorem was then

leveraged to establish inner and outer bounds of the rate region for the distributed

quantum-classical rate-distortion problem.

In the classical setting, Cuff introduced the notion of coordination capacity

[13, 14] and the problem of distributed channel synthesis [12]. A closely related prob-

lem, known as output-constrained lossy source coding [45], has recently found

many applications in different areas [6, 7, 55, 9, 37]. In contrast to distributed chan-

nel synthesis which attempts to simulate a fixed channel, in output-constrained

lossy source coding only the output distribution is fixed, rendering the problem

intimately connected to optimal transport.

The goal of optimal transport is to map a source probability measure into a

destination one with the minimum possible cost [48]. Let X be a random vari-

able in the source probability space (X ,FX , PX), where X is the support, FX is the

2
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event space defined by the σ-algebra of the Borel sets on X , and PX is the proba-

bility distribution function. Let Y be a random variable from the target probability

space (Y ,FY , PY ). The optimal transport problem aims at finding an optimal map-

ping f : X → Y that minimizes the expectation of the transportation cost c(x, y)

[39]. However, as such deterministic mappings do not exist in many cases, one has

to resort to stochastic channels to transform the source distribution to the target

distribution. Thus the problem boils down to finding the optimal coupling π∗ of

marginal distributions PX and PY that minimizes the transportation cost [34]:

π∗ = min
π

∫
X×Y

c(x, y)π(dx, dy),

subject to

∫
X
π(dx,BX ) = PY (BX ),

∫
Y
π(BY , dy) = PX(BY),

for any BX ∈ FX and BY ∈ FY . In [3], the authors introduced the problem of

information-constrained optimal transport by imposing an additional constraint on

coupling π in the form of a threshold on the mutual information between X and

Y , and established an upper bound on the information-constrained Wasserstein

distance by generalizing Talagrand’s transportation cost inequality. It is worth

noting that the information-cost function in [3] is equivalent to the rate-distortion

function of output-constrained lossy source coding with unlimited common ran-

domness [45].

The quantum version of optimal transport has also been investigated in recent

3
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years [15, 33, 18, 10, 20]. In [18], the authors proposed a generalization of the quan-

tum Wasserstein distance of order 2 and proved that it satisfies the triangle inequal-

ity. They further showed that the associated quantum optimal transport schemes

are in one-to-one correspondence with the quantum channels, and in the case of

quantum thermal states, the optimal transport schemes can be realized by quan-

tum Gaussian attenuators/amplifiers. In [20], the quantum Wasserstein distance

of order 1, together with the quantum counterparts of some classical inequalities,

was introduced.

The present paper focuses on the rate-limited quantum-classical optimal trans-

port systems. Specifically, we establish a single-letter characterization of the rate

region of measurement protocols on a product source state for the construction

of a prescribed destination classical distribution with the distortion below a given

threshold (see Theorem 2.1), and further extend this result to the Bosonic continuous-

variable quantum systems via quantum clipping on the continuous source state

(see Theorem 3.2). Our work enables the generalization of quantum optimal trans-

port to the rate-limited setting as well as the generalization of classical information-

constrained optimal transport to the quantum setting.

In particular, we provide a detailed analysis of rate-limited quantum optimal

transport for the case of qubit source state and entanglement fidelity distortion

measure; the minimum transportation cost is explicitly characterized and is shown

to be achievable with a finite transmission rate (see Theorem 4.1 and 4.2). We

further provide the evaluation of the Gaussian QC systems. First, we develop a

Gaussian measurement optimality theorem (see Theorem 5.3) which shows for a

4
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continuous QC system with a Gaussian quantum source and Gaussian destina-

tion distribution, the rate-limited optimal transport is a Gaussian measurement.

Moreover, a detailed analytical formulation provides the parameters of the opti-

mal Gaussian measurement and the corresponding rate-limited 2nd-order Wasser-

stein distance. The important contrast to the classical optimal transport appears in

the Gaussian QC system for which the Wasserstein distance is achieved at a finite

transmission rate, which is a direct result of the uncertainty principle and the fact

that the measurement noise cannot be made smaller than a threshold.

The contents of the Thesis are organized as follows. Finite dimensional quantum-

classical systems are addressed in Chapter 2 with the statement of the coding the-

orem, the proof of the achievability part, the proof of the converse part, and the

proof of the cardinality bound given in Sections 2.2, 2.3, 2.4, and 2.5, respectively.

We extend the coding theorem to cover infinite dimensional systems in Chapter 3.

Specifically, we introduce the continuity theorems that are needed for generalizing

the definitions of measurement systems to continuous Hilbert spaces in Section 3.1,

state the coding theorem for continuous Hilbert spaces in Section 3.2, and prove

the achievability part in Section 3.3 (the proof of the converse part is the same as

that for finite dimensional systems). In Chapter 4, we consider the case of qubit

measurement systems with unlimited common randomness, for which a detailed

analysis of rate-limited optimal transport is provided. The Gaussian measurement

systems are analyzed in 5 which introduced the rate-limited QC 2nd-order Wasser-

stein distance. Finally, the proof of the important theorems and lemmas are pro-

vided in Appendices A, B and C.

5
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Chapter 2

Finite Dimensional Quantum

Systems

The system comprises of an n-letter memoryless source with its product state ρ⊗n

as the input of an encoder on Alice’s side, where ρ is a density operator defined on

a Hilbert space HA. On Bob’s side, we have the reconstruction Hilbert space HX

representing the classical outcomes as quantum registered classical states, with

an orthonormal basis indexed by a finite set X . We also let the quantum state

R denote the reference of the source with the associated Hilbert space HR with

dim(HR) = dim(HA).

6
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2.1 Distortion Measure

The distortion measure between two systems R and X is defined in the general

form using a distortion observable ∆RX > 0 defined on HR ⊗ HX for the single-

letter composite state τRX , as described in [17]:

d(∆RX , τ
RX) := Tr

{
∆RXτ

RX
}
. (2.1.1)

Then, having an n-letter composite state τRnXn , and the distortion observable for

each i-th system defined as ∆RiXi , the average n-letter distortion is defined as

dn(∆(n), τR
nXn

) := Tr
{

∆(n)τR
nXn}

=
1

n

n∑
i=1

Tr
{

∆RiXiτ
RiXi

}
, (2.1.2)

where τRiXi = Tr[n]\i{τR
nXn} is the localized i-th composite state, and ∆(n) is the

average n-letter distortion observable defined as

∆(n) :=
1

n

n∑
i=1

∆RiXi ⊗ I
⊗[n]\i
RX . (2.1.3)

In the case of a discrete QC system, the composite state has the form τRX =∑
x PX(x)ρ̂Rx ⊗ |x〉〈x|

X , where ρx is the post-measurement reference state and PX(.)

is the pmf of outcomes. We further decompose the distortion observable as ∆RX =∑T
t=1 ∆t

R ⊗∆t
X using the Kronecker product decomposition. Thus, we get

Tr
{
τRX∆RX

}
= TrR

[
TrX

[(∑
x

PX(x)ρ̂Rx ⊗ |x〉〈x|
X

)(
T∑
t=1

∆t
R ⊗∆t

X

)]]

=
∑
x

PX(x) TrR
{
ρ̂Rx∆R(x)

}
= EX

[
TrR

{
ρ̂RX∆R(X)

}]
, (2.1.4)

7
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where {∆R(x) : x ∈ X} is a mapping from the outcome space X to operators in

Hilbert spaceHR:

∆R(x) :=
T∑
t=1

∆t
R

〈
x|∆t

X

∣∣x〉 .
Next, for the continuous QC system, by defining {∆R(x)}x∈R in the general form,

the distortion measure for the continuous QC system is formulated as

∫
x∈R

TrR
[
ρ̂Rx ∆R(x)

]
µ(dx), (2.1.5)

with µ(.) the probability measure of the outcome space.

Note that in order to prove the achievability of the output IID in perfect realism,

we strict the distortion observables to be uniformly integrable according to the

following definition.

Definition 2.1. Consider a QC system with a distortion observable ∆RX with operator

mapping x → ∆R(x), x ∈ X and an input quantum state ρ forming (∆RX , ρ). The pair

is called uniformly integrable if for any ε > 0 there exists a δ > 0 such that

sup
Π

sup
M

EX
[
TrR

{
ΠXρ

R
XΠX∆R(X)

}]
≤ ε, (2.1.6)

where the supremum is over all POVMs M ≡ {M}x∈X and all projectors of the form

Π =
∑

x Πx ⊗ |x〉〈x| such that EX [Tr(ρXΠX)] ≤ δ, and ρRx is the post-measurement

reference state of ρ given the outcome x with respect to M .

Furthermore, in the case of continuous quantum systems, we assume that the

distortion observable also satisfies the following condition: the operator mapping

8
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x 7→ ∆R(x) is uniformly continuous with respect to the trace norm.

2.2 Achievable Rate Region for Discrete States

The system is comprised of an n-letter source coding scheme defined below.

Definition 2.2. (Discrete Source Coding Scheme) An (n,R,Rc) source-coding scheme

for this QC system is comprised of an encoder En on Alice’s side and a decoder Dn on

Bob’s side, with the following elements. The encoder is a set of |M| = b2nRcc collective

n-letter measurement POVMs Υ(m) ≡ {Υ(m)
l }l∈L, each comprised of |L| = b2nRc POVM

operators corresponding to |L| outcomes and the randomly selected shared (with Bob) com-

mon randomness value m determines which POVM will be applied to the source state.

Bob receives the outcome L of the measurement through a classical channel and applies a

randomized decoder to this input pair (L,M) to obtain the final sequence Xn stored in a

quantum register. Thus, the composite state of the reference and output induced by this

coding scheme is

τR
nXn

ind =
∑
xn

∑
m,l

1

|M|
TrAn

{
(id⊗Υ

(m)
l )[ψρRA]⊗n)

}
⊗Dn(xn|l,m) |xn〉 〈xn| . (2.2.1)

We define the average n-letter distortion for the source coding system with en-

coder/ decoder pair En and Dn, distortion observable ∆RX and source product

state ρ⊗n as

dn(ρ⊗n,Dn ◦ En) = Tr
{

∆(n)(idRn ⊗Dn ◦ En)(ψρRA)⊗n
}
, (2.2.2)

9
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where ψρRA is a purification of the source state ρ. Note that the different purifica-

tions of the system to the composite Hilbert spaces of different references R1, R2

and Alice’s space HRi ⊗ HA are equivalent up to an isometry [51, 38] which will

not affect the trace distance nor the distortion. The n-letter distortion in (2.2.2) can

also be written in the form of average over localized distortions as in (2.1.2).

The goal is to prepare the destination quantum ensemble on Bob’s side while

maintaining the distortion limit from the input reference state. Consequently, the

following definition of achievability is used throughout this paper.

Definition 2.3. (Achievable pair) A desired PMF QX on the output space X and a

maximum tolerable distortion level D are given. Assuming a product input state of ρ⊗n, a

rate pair (R,Rc) is defined achievable if for any sufficiently large n and any positive value

ε > 0, there exists an (n,R,Rc) coding scheme comprising of a measurement encoder En

and a decoder Dn that satisfy:

Xn ∼ Qn
X , dn(ρ⊗n,Dn ◦ En) ≤ D + ε. (2.2.3)

The expression (2.2.3) indicates that the output sequence must be IID with fixed

distribution QX and that the n-letter distortion between the input state and output

state must be asymptotically less than a threshold D. Then using the above defini-

tion of achievable pair, we further define the achievable rate region as:

Definition 2.4. (Achievable Rate Region) Given the output PMF QX , the input state

ρ and a distortion threshold D, the achievable rate region R(D, ρ||QX) is defined as the

closure of all achievable rate pairs with respect to the given ρ, QX and D.

We are specifically interested in finding the value of the minimum achievable

10
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rate as a function of the distortion level for any fixed rate of common randomness,

which we define as follows:

Definition 2.5. (Output-Constrained Rate-Distortion Function) For any coding sys-

tem with the achievable rate region R(D, ρ||QX), and given a fixed common randomness

rate Rc, the output-constrained rate-distortion function is defined as

R(D;Rc, ρ||QX) ≡ inf {R : (R,Rc) ∈ R(D, ρ||QX)} . (2.2.4)

The inverse of this function which for any fixed Rc, is a mapping from the communica-

tion rates to their corresponding minimum transportation cost, is called the Rate-Limited

Optimal Transport Cost function and expressed by D(R;Rc, ρ||QX).

Based on the above definitions, we establish the main theorem which provides

the single-letter characterization of the achievable rate region as follows:

Theorem 2.1. Given the distortion threshold D, the output PMF QX and having a prod-

uct input state ρ⊗n, a rate pair (R,Rc) is inside the rate regionR(D, ρ||QX), if and only if

there exists an intermediate state W with a corresponding measurement POVM MA
w and

randomized post-processing transformation PX|W which satisfies

R ≥ I(W ;R)τ , (2.2.5)

R +Rc ≥ I(W ;X)τ , (2.2.6)

where W , with a Hilbert space HW along with an orthonormal basis indexed by a finite

setW , constructs a quantum Markov chain R −W − X with the overall post-measured
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composite state

τRWX =
∑
w,x

PX|W (x|w) (
√
ρMw

√
ρ)R ⊗ |w〉〈w|W ⊗ |x〉〈x|X ,

from the set

M(D) =

τ
RWX

∣∣∣∣∣∣∣∣∣∣

∑
w PX|W (x|w) Tr

{
MA

w ρ
}

= QX(x) for x ∈ X

EX
[
Tr
{

∆RXτ
RX
}]
≤ D

|W| ≤ (dimHA)2 + |X |+ 1

 . (2.2.7)

The overall state can also be formulated in terms of the PMR states as

τRWX =
∑
w,x

ρ̂w ⊗ PW (w) |w〉〈w|W ⊗ PX|W (x|w) |x〉〈x|X ,

where ρ̂w := 1
PW (w)

√
ρMw

√
ρ, and PW (w) = Tr{Mwρ}, are the conditional post-

measurement reference state given the outcome w, and the probability of the out-

come w, respectively.

2.3 Proof of Achievability for Finite Systems

In this section, we prove the achievability of Theorem 2.1, given that the pair

(QX , D) is provided by the setting of the theorem.

12
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2.3.1 Codebook and Encoder Construction

In this section, by following the random codebook construction of [53], we gener-

ate a codebook in the intermediate spaceW from the probability PW (w) = Tr{Mwρ},

which is derived from applying the measurement POVM M ≡ {Mw}w∈W to source

state ρ. Then a sequence of n independent outcomes W has the IID distribution

P n
W (wn). The pruned distribution is then defined by only selecting wn from the

typical set of W ,

PW ′n(wn) =


P n
W (wn)/S if wn ∈ T n,δW

0 o.w.
, (2.3.1)

where S := Pr
{
W n /∈ T n,δW

}
≥ 1 − ε and ε is a presumed fixed parameter. Conse-

quently, a total of |M| × |L| random codewords wn are generated from the pruned

distribution PW ′n and indexed with (m, l) pair, comprising a random codebook.

We then repeat this process to generate |K| codebook realizations. The codewords

in each codebook are indexed as W n(m, k, l). The random variableK is introduced

as additional randomness for analytical purposes which will be de-randomized at

the end.

Also, for eachwn sequence, the following set of typically projected post-measurement

reference operators is defined

ρ̂′wn := Πn
ρ,δ Πn

ρ̂wn ,δ
ρ̂wn Πn

ρ̂wn ,δ
Πn
ρ,δ,

where Πn
ρ,δ and Πn

ρ̂wn ,δ
are the typical set and conditional typical set projectors re-

spectively [38]. We are also interested in the expectation of the above operators

13
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with respect to the typical sequence W n ∈ T n,δW , which is

ρ̂′n := EW ′n [ρ̂′nW ′n ] =
∑

wn∈T n,δW

PW ′n(wn)ρ̂′nwn .

Further define a cut-off projector Π, which projects to the subspace spanned by

the eigenstates of ρ̂′n with eigenvalues larger than εα, where α := 2−n[H(R)+δ]. Then

the cut-off version of the operators and the expected cut-off operator are given by

ρ̂′′wn := Π ρ̂′wn Π, ρ̂′′n := Π ρ̂′n Π. (2.3.2)

Consequently, similar to [38], for each (k,m) we define the POVM operators of

the form

Υ
(k,m)
l :=

1− ε
1 + η

1

|L|
ω−1/2ρ̂′′Wn(m,k,l)ω

−1/2, (2.3.3)

with ω := ρ⊗n, and η ∈ (0, 1) a parameter which can be determined later. One can

alternatively define the POVM operators such that it directly outputs W n:

Γ
(m,k)
wn :=

∑
l

1{W n(m, k, l) = wn}Υ(k,m)
l = γ

(m,k)
wn ω−1/2 ρ̂′′wn ω

−1/2, (2.3.4)

where

γ
(k,m)
wn :=

1

|L|

|L|∑
l=1

1− ε
1 + η

1 {W n(m, k, l) = wn} . (2.3.5)
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Then the set of measurement operators for each m ∈M and k ∈ K is given by

M̃
(m,k),n
Γ = {Γ(m,k)

wn : wn ∈ T n,δW }.

Examining each codebook k ∈ K generated randomly from pruned distribution

pW ′n(wn), using the operator Chernoff bound similar to [38], we claim that as long

as |L| ≥ 2n(I(R;W )+3δ), the following set of events Em,k happen with probability

close to 1 for an arbitrary value η ∈ (0, 1):

Em,k :
1

|L|
∑
l

ρ̂′′Wn(m,k,l) ∈ [(1± η)ρ̂′′n] ∀m ∈M. (2.3.6)

Then following the analysis in [38] on the validity of POVM, we claim that the set

M̃
(m,k),n
Γ forms a sub-POVM, i.e.,

∑
wn∈T n,δW

Γ
(m,k)
wn ≤ I ∀m ∈M, k ∈ K.

Thus, we can complete the sub-POVM by appending the following extra operator

Γ
(m,k)
wn0

:= I −
∑
wn

Γ
(m,k)
wn .

We define the new set of operators as [M̃
(m,k),n
Γ ] which is a valid POVM.

Having the above construction, the intermediate POVM is established by ran-

domly picking one of the m ∈ |M| POVMs according to the common randomness:

Λ̃
(k)A

wn :=
1

|M|

|M|∑
m=1

Γ
(m,k)
wn , ∀k ∈ K.
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The decoder comprises of applying the PX|W classical memoryless channel to

each element of wn as P n
X|W . Therefore, the form of the encoder/decoder is

˜̃Λ
(k)
xn ≡

∑
wn∈Wn

P n
X|W (xn|wn)Λ̃

(k)A

wn , ∀xn ∈ X n. (2.3.7)

It should be noted that this is not the final decoder. We will later modify this

decoder to yield a non-product batch decoder in section 2.3.5, which is required to

ensure a perfectly IID output distribution. Using the above POVMs one can write

the induced composite state of the reference and output for each random codebook

realization k ∈ K as

τR
nXn

ind,k =
∑
xn

TrAn
{

(id⊗nR ⊗
˜̃Λ

(k)
xn )(ψRAρ )⊗n

}
⊗ |xn〉〈xn| . (2.3.8)

2.3.2 Proof of Near IID Output Distribution

It turns out that the proof of near IID output distribution does not depend on the

codebook index k ∈ K. Therefore, we hereby remove the index k from all ex-

pressions of this subsection, which means the following formulations apply to any

fixed k ∈ K. By tracing over the reference state in (2.3.8) we write the output state

σX
n

ind =
∑
xn

Tr
{

(id⊗nR ⊗
˜̃Λxn)(ψRAρ )⊗n

}
|xn〉〈xn| . (2.3.9)
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Also, from the conditions of theM(D) feasible set (2.2.7), the output desired tensor

state is in the following form,

(
σXdes

)⊗n
=
∑
xn

Qn
X(xn) |xn〉〈xn| =

∑
xn

∑
wn∈Wn

P n
X|W (xn|wn)P n

W (wn) (2.3.10)

=
∑
xn

[
n∏
i=1

∑
w∈W

PX|W (xi|wi) Tr
{
MA

wi
ρ
}]
|xn〉〈xn| .

Consequently, the trace distance between the induced output state and the de-

sired product output state is,

∥∥∥(σXdes

)⊗n − σXn

ind

∥∥∥
1

=
∑
xn

∣∣∣∣∣∑
wn

P n
X|W (xn|wn)P n

W (wn)− Tr
{

(idR ⊗ ˜̃Λxn)(ψRAρ )⊗n
}∣∣∣∣∣

=
∑
xn

∣∣∣∣∣∣
∑
wn

P n
X|W (xn|wn)P n

W (wn)− 1

|M|
∑

wn∈Wn

P n
X|W (xn|wn) Tr


 |M|∑
m=1

Γ
(m)
wn

ω


∣∣∣∣∣∣ := S,

where we substitute (2.3.7) to get the second equality. Then we split and bound

the above term by S ≤ S1 + S2, where we separate the extra operator from the rest

of the POVM

S1 ,
∑
xn

∣∣∣∣∣∣
∑
wn

P n
X|W (xn|wn)P n

W (wn)−
∑

wn 6=wn0

P n
X|W (xn|wn) Tr

{(
1

|M|
∑
m=1

Γ
(m)
wn

)
ω

}∣∣∣∣∣∣,
(2.3.11)

S2 ,
∑
xn

∣∣∣∣∣∣P n
X|W (xn|wn0 ) Tr

 1

|M|
∑
m=1

I − ∑
wn 6=wn0

Γ
(m)
wn

ω


∣∣∣∣∣∣. (2.3.12)

We further simplify S1 by substituting (2.3.4) into (2.3.11) and bound it again by
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S1 ≤ S11 + S12 by adding and subtracting a proper term and using triangle in-

equality:

S11 ,
∑
xn

∣∣∣∣∣∑
wn

P n
X|W (xn|wn)P n

W (wn)− 1

|M||L|
1− ε
1 + η

∑
m,l

P n
X|W (xn|W n(l,m))

∣∣∣∣∣,
(2.3.13)

S12 ,
1

|M||L|
1− ε
1 + η

∑
xn

∣∣∣∣∣∑
m,l

P n
X|W (xn|W n(l,m))

(
1− Tr

{
ρ̂′′Wn(l,m)

})∣∣∣∣∣
=

1

|M||L|
1− ε
1 + η

∑
xn

∑
m,l

P n
X|W (xn|W n(l,m))

(
1− Tr

{
ρ̂′′Wn(l,m)

})
=

1

|M||L|
1− ε
1 + η

∑
m,l

(
1− Tr

{
ρ̂′′Wn(l,m)

})
. (2.3.14)

For S11, using the classical soft-covering lemma [Lemma 2 [12]] with the condition

that R+Rc > I(X;W ) one can provide a decaying upper bound for its expectation

as

E [S11] ≤ 3

2
exp{−tn}, (2.3.15)

for some t > 0. Also, by taking the expectation of S12 we have

E [S12] =
1− ε
1 + η

(1− Tr{ρ̂′′n}) ≤ 1− ε
1 + η

(2ε+ 2
√
ε) , ε2, (2.3.16)

where the equality follows from (2.3.2) and the inequality appeals to the properties

of the typical set and the Gentle Measurement Lemma [38, 52, 40]. Next, we bound
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and simplify the expectation of S2 by substituting (2.3.4) into (2.3.12):

E [S2] ≤ E

 1

|M|
∑
m

∑
xn

P n
X|W (xn|wn0 )

∣∣∣∣∣∣Tr

ω − ∑
wn 6=wn0

γ
(m)
wn ρ̂

′′
wn


∣∣∣∣∣∣


=
1

|M|
∑
m

E

∣∣∣∣∣∣1− Tr

 ∑
wn 6=wn0

γ
(m)
wn ρ̂

′′
wn


∣∣∣∣∣∣


a
= 1− 1

|M|
∑
m

Tr

 ∑
wn 6=wn0

E
[
γ

(m)
wn

]
ρ̂′′wn


b

≤ 1− 1− ε
1 + η

(1− 2ε− 2
√
ε) =

η + ε

1 + η
+ ε2 , ε3, (2.3.17)

where in (a) we remove the absolute sign because the trace is always less than or

equal to one, and (b) uses the result from [38]. Hence, combining (2.3.17), (2.3.16)

and (2.3.15) we proved that the expected distance between the output state in-

duced by the random codebook and the product single-letter state is arbitrarily

small for sufficiently large n:

E
[∥∥(σXdes)

⊗n − σXn

ind

∥∥
1

]
≤ ε2 + ε3 + c exp{−tn} , εos. (2.3.18)
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2.3.3 Proof of Distortion Constraint

The average distortion for a codebook k ∈ K is given by

dn
{k}(ρ⊗n,Dn ◦ En) = Tr

{
∆(n)τR

nXn

ind,k

}
= Tr

{
∆(n)

(∑
xn

TrAn
{

(id⊗nR ⊗
˜̃Λ

(k)
xn )(ψRAρ )⊗n

}
⊗ |xn〉〈xn|

)}

= Tr

{
∆(n)

(∑
m,l

1

|M|
TrAn

{
(id⊗nR ⊗Υ

(k,m)
l )(ψRAρ )⊗n

}
⊗ σWn(m,k,l)

)}
.

(2.3.19)

where σwn =
∑

xn P
n
X|W (xn|wn) |xn〉〈xn| is the classical decoder channel.

Recall from Section 2.3.2 that in order to have a faithful near IID output state,

we need to satisfy the conditions of soft-covering lemma |M||L| > 2nI(X;W ), which

is needed for (2.3.15). On the other hand, according to the non-feedback measure-

ment compression theorem [38], we need a sum rate of at least I(XR;W ) to have

a faithful measurement simulation. Thus, by setting |K| > 2n(I(XR;W )−I(X;W )), we

define an inter-codebook average state

τnavg ≡
∑
k,m,l

1

|K||M|
TrAn

{(
idR ⊗Υ

(k,m)
l

)
(ψ⊗nρ )RA

}
⊗ σwn(m,k,l). (2.3.20)

Consequently, according to non-feedback measurement compression theorem [38],

this inter-codebook average state is a faithful simulation of the ideal product mea-

surement system; i.e., for any εmc > 0 and for all sufficiently large n,

Ec
[∥∥∥τ⊗n − τnavg

∥∥∥
1

]
≤ εmc, (2.3.21)
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where the expectation is over all codebook realizations.

Then, we bound the expected average distortion as follows:

EK
[
dn
{K}(ρ⊗n,Dn ◦ En)

]
=

1

|K|
∑
k

dn
{k}(ρ⊗n,Dn ◦ En)

= Tr

{
∆(n)

(∑
k,m,l

1

|K||M|
TrAn

{(
id⊗nR ⊗Υ

(k,m)
l

)
(ψ⊗nρ )RA

}
⊗ σWn(m,k,l)

)}

= dmax Tr

{
∆(n)

dmax

(τ (n)
avg − τ⊗n)

}
+ Tr

{
∆(n)τ⊗n

}
≤ dmax

∥∥∥τ (n)
avg − τ⊗n

∥∥∥
1

+ Tr
{

∆(n)τ⊗n
}

≤ dmax

∥∥∥τ (n)
avg − τ⊗n

∥∥∥
1

+D, (2.3.22)

where dmax is the largest eigenvalue of the distortion observable. The first inequal-

ity holds by definition of the trace distance and the fact that 0 ≤ ∆(n)

dmax
≤ I . The

second inequality holds because the average distortion of n identical copies of the

single-letter system is the same as single-letter distortion. Next, we take the expec-

tation of both sides with respect to all possible codebook realizations. Thus, for all

sufficiently large n,

Ec
[
EK
[
dn
{k}(ρ⊗n,Dn ◦ En)

]]
≤ dmaxEc

[∥∥∥τ (n)
avg − τ⊗n

∥∥∥
1

]
+D ≤ dmaxεmc +D,
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where for the first inequality we take the expectation of (2.3.22) and the second in-

equality follows from (2.3.21). Further, the LHS of above inequality can be rewrit-

ten as follows by changing the order of expectations,

Ec
[
EK
[
dn
{K}(ρ⊗n,Dn ◦ En)

]]
= EK

[
Ec
[
dn
{K}(ρ⊗n,Dn ◦ En)

]]
= Ec

[
dn
{k}(ρ⊗n,Dn ◦ En)

]
,

(2.3.23)

where the second equality holds for any codebook k ∈ K and follows because

the expectation of the distance measure over all codebooks is independent of K.

Then it is proved that the expected average distortion for any codebook k ∈ K is

asymptotically bounded by D:

Ec
[
dn
{k}(ρ⊗n,Dn ◦ En)

]
≤ D + dmaxεmc. (2.3.24)

2.3.4 Intersection of the Constraints

In this section, we show that the previous bounds on the expected codebook real-

izations have an intersection with nonzero probability. i.e., there exists a codebook

realization that can realize all events together. The following four cases are the

required events in achievability proof which were proved to hold for the expected

codebook realizations. Here we show that the union of the opposite of these events

happens with a probability strictly less than one. This ensures there exists at least

one codebook realization that satisfies all the constraints. Note that δ and ε are the

parameters of the typical set and the probability of the non-typical set respectively.

• Firstly, it is shown that the Γ
(m,k)
wn form valid sub-POVM for all m ∈ M and
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k ∈ K. This is considered as event E1. Using the Chernoff Bound technique,

[38] shows that if R > I(R;W )σ then

Pr{¬E1} ≤ c exp
{
−2nδε3

}
. (2.3.25)

for some c > 0.

• Secondly, define event E2 as when S11 ≤ exp{−νn} for some ν > 0. Then by

applying Markov inequality to expression (2.3.15), we find the bound

Pr{¬E2 : S11 ≥ exp{−νn}} ≤ 3

2

exp{−tn}
exp{−νn}

. (2.3.26)

• Third, the bounds on expectations of S12 and S2. Let E31 and E32 be the

corresponding events for these random variables. Then applying the Markov

inequality to these inequalities (2.3.16), (2.3.17), we have the following bound

for a fixed value δ3 > 0:

Pr{¬E31 : S2 ≥ 2δ3} ≤
E [E31]

δ3

≤ ε3
2δ3

, (2.3.27)

Pr{¬E32 : S12 ≥ 2δ3} ≤
E [E32]

δ3

≤ ε3
2δ3

. (2.3.28)

Note that we used the fact that ε2 ≤ ε3.

• Fourth, define E4 as the event when the average n-letter distortion constraint

is satisfied. By applying Markov inequality to (2.3.24) we obtain for any fixed
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value δd > 0 that

Pr
{
¬E4 : d(ρ⊗n,Dn ◦ En) ≥ D + δd

}
≤ Ec [d(ρ⊗n,Dn ◦ En)]

D + δd
≤ D + dmaxεmc

D + δd
.

(2.3.29)

Then the probability of not being in the intersection is bounded by using the union

bound

Pr

{
¬

4⋂
i=1

Ei

}
≤

4∑
i=1

Pr{¬Ei} ≤ c exp
{
−2nδε3

}
+

3

2

exp{−kn}
exp{−νn}

+
ε3
δ3

+
D + dmaxεmc
D + δd

.

(2.3.30)

By taking the limit of the above expression when n→∞, we have ε→ 0. Then

with proper choice of δ and ν ∈ (0, t) , the first two terms decay exponentially,

while εmc, δ3, δd are fixed, thus,

lim
n→∞

(
c exp

{
−2nδε3

}
+

3

2

exp{−tn}
exp{−νn}

+
ε3
δ3

+
D + dmaxε

D + δd

)
=
ε3
δ3

+
D + dmaxεmc
D + δd

< 1.

(2.3.31)

By choosing proper values for the εmc, δ3 and δd parameters, we make sure the

above inequality holds, which means there exists with nonzero probability, a valid

quantum measurement coding scheme that satisfies all the above four conditions

together.
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2.3.5 Exactly Satisfying IID Output Distribution

It remains to prove that the perfect IID output distribution can be achieved from

the near-perfect one with an arbitrarily small increase in distortion level. The de-

sired perfect IID distribution and the near-perfect induced output distribution for

this source coding scheme are expressed by

P des
Xn (xn) :=

〈
xn
∣∣(σXdes)

⊗n|xn
〉

= Qn
X(xn) =

∑
wn

P n
X|W (xn|wn)P n

W (wn), (2.3.32)

P ind
Xn (xn) :=

〈
xn
∣∣σXn

ind |xn
〉

= Tr
{

(idR ⊗ ˜̃Λxn)(ψρRA)⊗n
}

=
∑

wn∈Wn

P n
X|W (xn|wn) Tr

{
(idR ⊗ Λ̃A

wn)(ψρRA)⊗n
}
, (2.3.33)

where, (σXdes)
⊗n and σX

n

ind are defined in (2.3.10) and (2.3.9), respectively.

Then [Theorem 1 [49]] shows that by fixing the measurement while changing

only the IID post-processing unit PX|W to batch decoder P̃Xn|Wn we can satisfy the

perfect IID condition from the near-perfect one. Define the alternative decoder as

the conditional probability of any event A ⊆ X n given wn as

P̃X̂n|Wn(A|wn) =
∑

xn∈A∩Xn+

θxnP
n
X|W (xn|wn) + P n

X|W (A \ X n
+|wn) + φwnZ(A), (2.3.34)
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where the given expressions are defined as

X n
+ :=

{
xn ∈ X n

∣∣∣P ind
Xn (xn) > P des

Xn (xn)
}
, (2.3.35)

θxn :=
P des
Xn (xn)

P ind
Xn (xn)

xn ∈ X n
+, (2.3.36)

φwn :=
∑
xn∈Xn+

(1− θxn)P n
X|W (xn|wn), (2.3.37)

Z(A) :=

∑
xn∈A

[
P des
Xn (xn)− P ind

Xn (xn)
]+

∑
xn∈Xn\Xn+

[
P des
Xn (xn)− P ind

Xn (xn)
]+ =

P des
Xn (A \ X n

+)− P ind
Xn (A \ X n

+)

dTV (P ind
Xn , P des

Xn )
.

(2.3.38)

where [x]+ := max(x, 0) for x ∈ R. The validity and admissibility of the new

post-processing decoder can be verified with simple calculus, which states that

P̃X̂n|Wn(X n|wn) = 1 ∀wn ∈ W n, and the new induced output distribution satisfies

the desired IID condition

P̃ ind
X̂n (A) :=

∑
wn

P̃X̂n|Wn(A|wn) Tr
{

(idR ⊗ Λ̃A
wn)(ψρRA)⊗n

}
= P des

Xn (A). (2.3.39)

Also, using the definition of Batch decoder (2.3.34), the following set of equalities
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hold for any wn ∈ W n:

dTV

(
P̃X̂n|Wn(.|wn), P n

X|W (.|wn)
)

=
1

2

∑
xn∈Xn+

∣∣∣P̃X̂n|Wn(xn|wn)− P n
X|W (xn|wn)

∣∣∣+
1

2

∑
xn∈Xn\Xn+

∣∣∣P̃X̂n|Wn(xn|wn)− P n
X|W (xn|wn)

∣∣∣
=

1

2

∑
xn∈Xn+

∣∣(θxn − 1)P n
X|W (xn|wn) + φwnZ(xn)

∣∣+
1

2

∑
xn∈Xn\Xn+

|φwnZ(xn)|

a
=

1

2

∑
xn∈Xn+

∣∣(θxn − 1)P n
X|W (xn|wn)

∣∣+
1

2

∑
xn∈Xn\Xn+

∣∣∣∣φwnP des
Xn (xn)− P ind

Xn (xn)

dTV (P ind
Xn , P des

Xn )

∣∣∣∣
=

1

2
φwn +

1

2
φwn = φwn , (2.3.40)

where (a) is because using the definition of Z(A), we know that Z(xn) = 0 for all

xn ∈ X n
+ and the last line is from the definition of total variation distance. Thus, by

definition, there exists a coupling such that,

Pr
(
Xn 6= X̂n

∣∣∣wn) ≤ φwn ∀wn ∈ Wn. (2.3.41)

Then from the above inequality, using the argument in [49], the probability of out-

puts not being equal is bounded by

Pr
(
Xn 6= X̂n

)
≤ dTV (P ind

Xn , P des
Xn ) ≤ εos, (2.3.42)

and the second inequality appeals to (2.3.18) and the union bound argument in

section 2.3.4.

Next, we bound the n-letter distortion for the new decoder using the above

bound. First, note that τRiX̂i is the local i-th reference-output state of the system,
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given by

τRiX̂i = TrRn\{i}Xn\{i}{τRnX̂n}

=
∑
xn

TrRn\{i}An
{

(id⊗n ⊗ Λ̂xn)(ψRA)⊗n
}
⊗ |xi〉〈xi|

=
∑
xi

TrRn\{i}An

{(
id⊗n ⊗

(∑
x[n]\i

Λ̂xn

))
(ψRA)⊗n

}
⊗ |xi〉〈xi|

=
∑
xi

QX(xi)ζ
Ri
xi
⊗ |xi〉〈xi| . (2.3.43)

The ζRixi is the post-measurement reference state of the i-th local state given the

outcome xi, given by

ζRixi =
1

QX(xi)
〈id⊗ xi|τRiXi |id⊗ xi〉

=
1

QX(xi)
TrRn\{i}An

{(
id⊗n ⊗

(∑
x[n]\i

Λ̂xn

))
(ψRA)⊗n

}

where Λ̂ ≡ {Λ̂xn}xn∈X⊗n is the combined encoder/decoder collective POVM taking

into account the batch decoder.
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We expand the n-letter average distortion as

Tr
{

∆(n)τR
nX̂n
}

=
1

n

n∑
i=1

Tr
{

∆RiXiτ
RiX̂i

}
=

1

n

n∑
i=1

EX̂i
[
TrR

{
ζRi
X̂i

∆Ri(X̂i)
}
1X̂i=Xi

]
+

1

n

n∑
i=1

EX̂i
[
TrR

{
ζRi
X̂i

∆Ri(X̂i)
}
1X̂i 6=Xi

]
=

1

n

n∑
i=1

Tr
{

∆RiXiτ
RiXi

}
+

1

n

n∑
i=1

EX̂i
[
TrR

{
ζRi
X̂i

∆Ri(X̂i)
}
1X̂i 6=Xi

]
≤ D + ε+ sup

A
EX
[
TrR

{
ζRX∆R(X)

}
1A
]
. (2.3.44)

with A being any event with probability P (A) = P (X̂i 6= Xi) ≤ εos. By accepting

the assumption that the system is uniformly integrable (which is always true for

the systems with finite dimensions), it is derived from (2.3.44) that

Tr
{

∆(n)τRnX̂n

}
≤ D + ε4. (2.3.45)

2.4 Proof of the Converse

Assume that there exists an achievable (n,R,Rc) coding scheme and a set of n-

letter collective measurements Υ(m) selected by a shared random number m on

Alice’s side. The measurement results in outcome L which is sent to Bob. Finally,

Bob uses a batch decoder PXn|L,M(xn|l,m), to generate the final state. Thus, the
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n-letter encoding quantum measurement composite state is

ωR
nLM =

∑
l,m

TrAn
{

(id⊗Υ
(m)
l )(ψRAρ )⊗n

}
⊗ 1

|M|
|m〉〈m| ⊗ |l〉〈l| . (2.4.1)

2.4.1 Rate Inequalities

Let us assume that the above system is achievable in the sense of definition 2.3,

similar to [38], for the communication rate, we have

nR ≥ H(L)ω ≥ I(L;MRn)ω = I(LM ;Rn)ω + I(L;M)ω − I(M ;Rn)ω

a

≥ I(LM ;Rn)ω = H(Rn)ω −H(Rn|LM)ω

b

≥
∑
k

[H(Rk)ω −H(Rk|LM)ω]

=
∑
k

I(LM ;Rk)ω

= nI(LM ;RK |K)σ (2.4.2)

= nI(LMK;RK)σ.

The first two lines are well-known properties of mutual information. Also, (a)

follows because common randomness M is independent of the source. (b) holds

by the sub-additivity of conditional quantum entropy and the fact that the source

is a product state. For Eq. (2.4.2), define K as a uniform random variable over the

set {1, 2, ..., n} which represents the index to the selected system. Then the overall
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state of the system can be redefined with K being a random index as

σRLMK =
∑
k,l,m,

TrR[n]\kAn

{
(id⊗Υ

(m)
l )(ψRAρ )⊗n

}
⊗ 1

|M|
|m〉〈m| ⊗ |l〉〈l| ⊗ 1

n
|k〉〈k| .

(2.4.3)

Also, the last equality holds because the reference and the index state are indepen-

dent, i.e., I(R;K)σ = 0. This can be easily verified by tracing out other terms in

(2.4.3):

σRK = TrLMX

{
σRLMK

}
=
∑
k,l,m

1

|M|
TrR[n]\kAn

{
(id⊗Υ

(m)
l )(ψRAρ )⊗n

}
⊗ 1

n
|k〉〈k|

=
∑
k,l,m

1

|M|
TrR[n]\k

{√
ρ⊗nΥ

(m)
l

√
ρ⊗n
}
⊗ 1

n
|k〉〈k|

=
∑
k

TrR[n]\k

{
ρ⊗n
}
⊗ 1

n
|k〉〈k| = ρ⊗

(
1

n

∑
k

|k〉〈k|

)
,

which proves that this is a product state. Thus, R,K are independent.
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For the second bound, the decoder is a classical channel, therefore, the follow-

ing inequalities hold for the classical entropy and Shannon’s mutual information:

n(R +Rc) ≥ H(LM) ≥ I(LM ;Xn) = H(Xn)−H(Xn|LM)

≥
∑
k

H(Xk)−H(Xk|LM)

=
∑
k

I(Xk;LM) = nI(XK ;LM |K)

≥ nI(XK ;LM |K) + nI(XK ;K) (2.4.4)

= nI(LMK;XK).

The arguments for the above inequalities are the same as before. However, here

we simply have I(XK ;K) = 0 as Xn are exactly IID and given by the constraint of

the problem.

Therefore, we can define W := (L,M,K) and observe that a quantum Markov

chain of the form R− (L,M,K)−X exists. Also, the single-letter decoder is given

by PX|W (x|w) := PXK |LMK(x|l,m, k), and the encoder is the below set of measure-

mentsMw on a state ξA:

ξA
Mw−→ 1

n|M|
TrAk−1

1 AAnk+1

{
(id⊗Υ

(m)
l )A

n

(ψRAρ )⊗k−1 ⊗ ξA ⊗ (ψRAρ )⊗n−k
}
.

2.4.2 Distortion Constraint

For the proof of satisfying the distortion constraint, we utilize a continuity analysis

similar to [45]. According to Lemma 2.2, the minimum achievable rate described

by the OC rate-distortion function, is a convex function of distortion D. Therefore,
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it is continuous in its domain.

Lemma 2.2. R(D;Rc, ρ||QX) is a convex function of D on 0 < D <∞.

Proof. See Appendix C.1.

This ε-continuity implies that for any (R,Rc) in the interior of the rate region;

i.e. R > R(D;Rc, ρ||QX), there exists an ε > 0 that still satisfies R > R(D −

ε;Rc, ρ||QX). As a result, having (2.2.3), there exists an (n,R,Rc) coding scheme

which satisfies

Xn ∼ Qn
X , dn(ρ⊗n,Dn ◦ En) ≤ D. (2.4.5)

Using the above tight distortion bound, we provide the following bound on the

single-letter distortion which completes the proof for the converse of the theorem

2.1:

d(ρ,∆RX) = EX [Tr{ρX∆R(X)}]

= EK [EX [Tr{ρX∆R(X)}|K]]

=
1

n

n∑
k=1

EX [Tr{ρX∆R(X)}|K = k]

=
1

n

n∑
k=1

EXk [Tr{ρXk∆Rk(Xk)}]

= EXn

[
Tr
{
ρXn∆(n)(Xn)

}]
≤ D. (2.4.6)
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2.5 Cardinality Bound

In this section, to provide the Cardinality bound, we first introduce a Quantum-

Classical version of the original support lemma in [21]:

Lemma 2.3. (Quantum-Classical Support Lemma) Let P ⊆ D(HA) be a compact and

connected subset of the set of density operators D(HA) in the finite-dimensional Hilbert

space HA. Also let, W be an arbitrary set. Further, let ρw ∈ P indexed by w ∈ W

be a collection of (conditional) density operators. Suppose having gj(ρ), j = 1, ..., J

a group of real-valued continuous functions (observables) of ρ ∈ P and having Πk ∈

O(HA), k = 1, ..., K a group of projections in Hilbert spaceHA each with rank Tr{Πk} =

dK ≤ dim(HA). Then for every W ∼ F (w) defined onW , there exist a random variable

W ′ ∼ p(w′) with |W ′| ≤ J +
∑

k(d
2
k− 1) and a collection of conditional density operators

ρ̃w′ ∈ P indexed by w′ ∈ W ′ such that:

∫
W
gj(ρw)dF (w) =

∑
w′∈W ′

gj(ρ̃w′)p(w
′), for j = 1, ..., J (2.5.1)∫

W
ΠkρwΠkdF (w) =

∑
w′∈W ′

Πkρ̃w′Πkp(w
′), for k = 1, ..., K (2.5.2)

Proof. First note that the set of density operatorsD(HA) is compact and connected.

It is compact because it is defined over a complex space that is closed and bounded.

Further, it is connected because it is a convex set.

Next, a density operator ρ ∈ D(HA) can be expressed on an arbitrary orthonor-

mal basis {|i〉}i=1:d as

ρ =
d∑
i,j

αi,j |i〉〈j| , (2.5.3)
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where d is the rank of the density operator. We further have αi,j ∈ C, i 6= j, and

αi,i ∈ R, i = 1, ..., d, and

αi,j = α∗j,i, for i 6= j, (2.5.4)

0 ≤ αi,i ≤ 1, for i = 1, ..., d, (2.5.5)∑
i

αi,i = 1. (2.5.6)

Thus, any density operator with rank d can be interpreted as a point in a real vector

space with d2 − 1 dimensions (Also in [54]). Then the lemma follows directly from

the Fenchel-Eggleston-Caratheodory Theorem.

Assume having a probability distribution PW (w) for the intermediate variable,

we define a function f : R→ R5:

f : PW (w) −→
(
ρA, QX(x), I(X;W ), I(R;W ), Tr

{
∆RXτ

RX
})
.

We then find the number of affine functions required to implement the above func-

tion with a convex combination of conditionals on W ,

faffine : PW (w) −→
(
ρA, QX(x), H(X|W ), H(R|W ),Tr

{
∆RXτ

RX
})
.

The first condition ρA requires at most (dimHA)2 − 1 affine functions as discussed

in lemma 2.3. The two classical states have simple classical conditional represen-

tations as follows. Note that there is at most need for |X | − 1 separate functions to

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – H. Garmaroudi; McMaster University – Electrical and Computer
Engineering

represent the distribution QX and one for the conditional entropy:

QX(xi) =
∑
w

QX|W (xi|w)PW (w), ∀i ∈ [|X | − 1], xi ∈ X (2.5.7)

H(X|W ) =
∑
w

H(X|W = w)PW (w). (2.5.8)

Also, the other functions have the following representations,

H(R|W ) =
∑
w

H(R|W = w)PW (w)

=
∑
w

H(ρw)PW (w), (2.5.9)

Tr
{

∆RXτ
RX
}

= Tr

{
∆RX

(∑
w,x

TrA{(idR ⊗Mw)ψRAρ } ⊗ PX|W (x|w) |x〉〈x|X
)}

= Tr

{
∆RX

(∑
w,x

ρAw PW (w)⊗ PX|W (x|w) |x〉〈x|X
)}

=
∑
w

PW (w) Tr

{
∆RX

(∑
x

ρAw ⊗ PX|W (x|w) |x〉〈x|X
)}

=
∑
w

Tr
{

∆RXτ
RX |W = w

}
PW (w). (2.5.10)

Therefore, using the QC support lemma 2.3, we claim that there exists a random

variableW ′ with cardinality at most |W ′| ≤ (dimHA)2+|X |+1 , with the composite

state νRW ′X which forms the following quantum Markov chain R −W ′ − X with

the same marginals and satisfies the entropic and distortion equalities,

νX = τX ≡ QX , ν
R = τR ≡ ρ, Tr

{
∆RXν

RX
}

= Tr
{

∆RXτ
RX
}
, (2.5.11)

I(X;W ′)ν = I(X;W )τ , I(R;W ′)ν = I(R;W )τ . (2.5.12)
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Chapter 3

Continuous-Variable Quantum

System

3.1 Generalized Definitions of Continuous Quantum

Systems

In this section, we investigate the measurement coding for the Bosonic continuous-

variable quantum systems [Chapters 11 ,12 of [29]]. The proof of the achievability

of the random coding argument in previous sections does not directly apply to

the continuous quantum systems. The first reason is that the Chernoff bound [38]

(which is the main theorem for the validity of the measurement POVMs in random

coding argument) is available only for a finite-dimensional Hilbert space.

Secondly, in infinite-dimensional systems, it is not possible to represent the out-

come space using quantum registers defined on separable Hilbert spaces. This is

in contrast to the finite-dimensional system for which, the set of all outcome states

37
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forms a complete orthonormal set. As a result, the quantum mutual information is

not defined for such continuous measurement systems. Instead, we keep the out-

put system as classical and use the generalized ensemble representation. In order

to properly define the continuous system model, we first provide the following

generalized definitions.

Definition 3.1 ([29] Definition 11.22). The generalized ensemble is defined as a Borel

probability measure π on the subspace of density operators G(HA). Then the average state

of the ensemble is defined as

ψ̄π =

∫
ψπ(dψ). (3.1.1)

In contrast to the finite Hilbert space for which the POVM is defined for all pos-

sible outcomes, in the continuous quantum measurement systems, the generalized

POVM is defined over the subset of σ-algebra of Borel subsets.

Definition 3.2 ([29] Definition 11.29.). A POVM is generally defined on a measurable

space X with a σ-algebra of measurable subsets B, as a set of Hermitian operators M =

{M(B), B ∈ B} satisfying the following conditions:

1. M(B) ≥ 0, B ∈ B,

2. M(X ) = I ,

3. For any countable (not necessarily finite) decomposition of mutually exclusive sub-

sets B = ∪Bj (Bi ∩ Bj = ∅, i 6= j), the sum of the measures converge in weak

operator sense to measure of the combined set; i.e. M(B) =
∑

jM(Bj).
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Then having an observable POVM M acting on a state ψ, with outcomes in

measurable space X , results in the following probability measure

µMρ (B) = Tr{ρM(B)}, B ∈ B. (3.1.2)

It is also necessary to have a proper definition of post-measurement states. The

a posteriori average density operator for a subset B ∈ B is defined in [41] for a

general POVM M as

ρB =

√
M(B)ρ

√
M(B)

Tr{ρM(B)}
. (3.1.3)

Based on that, Ozawa defines the post-measurement state for a continuous quan-

tum system, as given in the following theorem.

Theorem 3.1 (Theorem 3.1. [41]). For any observable M and input density operator

ρ, there exists a family of a posteriori density operators {ρx;x ∈ R}, defined with the

following properties:

1. For any x ∈ R, ρx is a density operator inHA;

2. The mapping x→ ρx is strongly Borel measurable;

3. For any arbitrary observable N , and any Borel sets A and B, the joint probability

P (X ∈ B, Y ∈ A) = Tr
{√

M(B)ρ
√
M(B)N(A)

}
=

∫
B

Tr{ρxN(A)}µ(dx),

where µ(B) = Tr{M(B)ρ}, B ∈ B is the probability measure of the outcome space.
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Compare this theorem to [[30], Section IV], which defines the PMR ensemble as

E ′ : π′(B) = Tr{ρM(B)}, ρ′y =
ρ1/2m(y)ρ1/2

Tr{ρm(y)}
, M(B) =

∫
B

m(y)µ(dy),

where m(y) is a weakly measurable function with values in the cone of bounded

positive operators ofH, expressing the Radon-Nikodym derivative of theM POVM.

This simpler representation only applies to the POVMs that have this well-defined

m(y), and is not necessarily available for the general POVM. However, the post-

measured state in its general form ρx is available for the general POVM as de-

scribed by Ozawa’s theorem.

The above theorem provides the necessary requirements to define the proper

information quantity. Thus, using the post-measured state ensemble one can de-

fine the information gain introduced by Groenwold [27] for an input state ρ and

output ensemble {ρ(B), µMρ (B)}B∈B as [29]:

Ig(ρ,X) = H(ρ)−
∫
X
H(ρx)µ

M
ρ (dx). (3.1.4)

It is worth mentioning that the information gain equals the quantum mutual infor-

mation in finite-dimensional measurement systems.

3.2 Achievable Rate Region for Continuous-Variable

Quantum Systems

We first redefine the Definitions 2.2 and 2.3 to match with the continuous quantum

system. The definition of achievability for a continuous quantum source coding
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scheme is as follows:

Definition 3.3. An (n,R,Rc) source-coding scheme for the continuous quantum-classical

system is comprised of an encoder En on Alice’s side and a decoder Dn on Bob’s side,

with the detailed description provided in the Definition 2.2. The final output sequence

Xn is generated by the decoder in the output space X n with the probability measure

{PXn(B), B ∈ B(X n)}. Thus, the average PMR state and its corresponding Borel subset

of the output sample space, form an ensemble of the form {ρ̂RnB , B ∈ B(X n)}, where

ρ̂R
n

B =
1

PXn(B)

∑
m,l

1

|M|
TrAn

{
(id⊗Υ

(m)
l )[ψρRA]⊗n)

}
Dn(B|l,m), (3.2.1)

PXn(B) =
∑
m,l

1

|M|
Tr
{

Υ
(m)
l ρ⊗n

}
Dn(B|l,m). (3.2.2)

We define the average n-letter distortion for the source coding system with en-

coder /decoder pair En andDn, and set of distortion observable operators ∆(x), x ∈

X and continuous memoryless source state ρ⊗n as

dn(ρ⊗n,Dn ◦ En) =
1

n

n∑
i=1

EXi
[
Tr
{
ρ̂RiXi∆(Xi)

}]
, (3.2.3)

where ρ̂Rixi := Exn\[i]
[
Trn\[i]

{
ρ̂R

n

Xn

}]
is the i-th local state of the PMR density operator

in (3.2.1) defined for xn ∈ X n as described by Theorem 3.1. Consequently, the

following definition of achievability is used throughout this paper.

Definition 3.4. Given a probability measure µx on (X ,B(X )) and a distortion level D,

and assuming a product input state of ρ⊗n of continuous Hilbert space, a rate pair (R,Rc)

is defined as achievable if, for any sufficiently large n and any positive value ε > 0, there

exists an (n,R,Rc) coding scheme comprising of a measurement encoder En and a decoder
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Dn as described in Definition 3.3 that satisfy the following conditions as defined by the

corresponding distortion measure of (3.2.3)

Xn ∼ µnX , dn(ρ⊗n,Dn ◦ En) ≤ D + ε. (3.2.4)

Then the closure of the achievable rate region for the continuous quantum sys-

tem is expressed with single-letter characterizations by the following theorem:

Theorem 3.2. Given a pair (µX , D) and having a product input state ρ⊗n of continuous

infinite-dimensional Hilbert space with limited von Neumann entropy, a rate pair (R,Rc)

is inside the achievable rate region in accordance with the definition 3.4 if and only if

there exists an intermediate state W with a corresponding measurement POVM M =

{MA(B), B ∈ BW} where BW is the σ-algebra of the Borel sets of W , and randomized

post-processing transformation PX|W which satisfies the rate inequalities

R ≥ Ig(W ;R), (3.2.5)

R +Rc ≥ I(W ;X), (3.2.6)

where W , constructs a quantum Markov chain R−W −X which generates the ensemble

Ew := {ρw, w ∈ W} with the PMR states and the intermediate space, and generates the

ensemble Ex := {ρx, x ∈ X} with the PMR states and the output space, from the set

Mc(D) =

(Ew, Ex)

∣∣∣∣∣∣∣
∫
w
PX|W (A|w) Tr{M(dw)ρ} = µX(A) for A ∈ B(X )∫

x∈R TrR [ρx ∆R(x)]µX(dx) ≤ D

 .

(3.2.7)
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Note that the cardinality bound does not exist in the continuous case as we

haveW ≡ X ≡ R.

3.3 Proof of Achievability in the Continuous System

Given the pair (µX , D), assume there exists a continuous intermediate state W

forming a quantum Markov chain R − W − X , with a corresponding continu-

ous POVM M = {M(B), B ∈ B(X )} with outcomes in W space, defined as a

set of Hermitian operators in HA satisfying conditions of Theorem 3.2. More-

over, a corresponding classical post-processing channel PX|W : W × σ(X ) → R

which is a mapping such that for every w ∈ W , PX|W (.|w) is a probability mea-

sure on B(X ) and for every B ∈ B(X ), PX|W (B|.) is a Borel-measurable function.

Then according to theorem 3.1, for any proper measurement POVM M , there ex-

ists a family of post-measurement density operators ρw along with a probability

measure µMρ (or equivalently, ρx along with µX if we consider the overall POVM

Λ(B) ≡
∫
WM(dw)P (B|w), B ∈ B(X )), such that

∫
w

PX|W (A|w)µMρ (dw) = µX(A), for all A ⊆ B(X ), (3.3.1)

d(R,X) :=

∫
x

Tr{ρx∆R(x)}µX(dx) ≤ D. (3.3.2)

The continuous quantum system can be represented by {|n〉}∞n=0, the number op-

erators of the Fock basis, which is a countable infinite dimensional Hilbert space.

We plan to use the source coding theorem of the discrete system from the previous

section. To use Theorem 2.1, we first follow a similar approach as [23, 36, 44] to

perform a clipping projection, that truncates the state into the finite-dimensional
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space of the first k1 + 1 Fock states via an energy test:

Ck1 ≡

{
Πk1 :=

k1∑
n=0

|n〉〈n| , I − Πk1

}
. (3.3.3)

Therefore, for any small εc > 0, there exists a large enough k1 such that the prob-

ability of the state projecting to the first subspace is εc-close to unity, Tr{ρΠk1} ≥

1 − εc. For a detailed description of the spectral decomposition of continuous-

variable quantum systems, refer to [32, 50].

3.3.1 Information Processing Task

In the classical systems, to generate a discrete coding scheme from the continuous

distributions, one simply extends the Markov chainR−W−X to discrete variables

by quantizing the input and output variables as Rk1 − R − W − X − Xk2 where

k1, k2 ∈ N are the quantization parameters forming 2ki levels within the [−ki, ki]

region [45].

In our QC system, because the output is classical, we can extend the original

Markov chain by quantizing output X with QK2 where K2 = (k2, k
′
2) is the pair of

clipping region parameters creating the cut-off range [−k2, k2] and k′2 is the preci-

sion parameter making 2k
′
2 levels forming the quantized output space XK2 , such

that

R
Mw−→ W

PX|W−→ X
Qk2−→ XK2 . (3.3.4)

However, for the source state, performing the inverse of measurement is not straight-

forward, as the quantum state collapses after measurement. Therefore, one cannot
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Figure 3.1: Markov Chain of the Alternative Approach: The upper diagram
shows the original Markov chain provided by the single-letter intermediate state
W . The lower diagram shows the single-letter Markov chain of the alternative

approach in which the clipped source state is directly fed into the same
continuous measurement Mw and the discrete output is obtained by quantizing
X ′k1

. Finally, the optimal transport transforms the discrete output back to the
continuous output X̂ .

simply apply the inverse of clipping projection to the projected state Rk1 to re-

trieve the state in R. This means we cannot extend the original Markov chain for

the source state in this case. Instead, in an alternative approach, we prepare a sep-

arate Markov chain by clipping the quantum source state with clipping projection

in (3.3.3) and then directly feeding that clipped state Rk1 into the same continuous

measurement POVMMw, as shown in figure 3.1. This is specifically possible as the

clipped input state lies in a subspace of the same quantum Hilbert space.

R
Ck1−→ Rk1

Mw−→ W ′
k1

PX|W−→ X ′k1

Qk2−→ X ′k1,K2
. (3.3.5)

3.3.2 Proof of Rate Inequalities

In this approach, the data processing inequality does not directly apply to the sys-

tem. Therefore we provide the following lemma to show the rate inequalities still

hold after clipping.
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Lemma 3.3. Suppose having a Quantum Markov chain of the form R−W −X satisfying

the conditions in Theorem 3.2. Then by using the alternative clipping method as described

by (3.3.5), the clipped states still satisfy the following rate inequalities in the asymptotic

regime

lim
k1→∞

Ig(Rk1 ;W ′
k1

) ≤ Ig(R;W ), (3.3.6)

lim
k1→∞

I(W ′
k1

;X ′k1,K2
) ≤ I(W ;X). (3.3.7)

For the first rate inequality we directly use the following Proposition [ Proposi-

tion 6 of [47] by Shirokov]:

Proposition 3.4. Let {ρ(n)A} be a sequence of states converging to a state ρ(0)A (See Sec-

tion 11.1 of [29]). Also, let {Mn} be any arbitrary sequence of POVMs weakly converging

to a POVM M0, with the outcome spaceW . If either |W| < +∞ or limn→∞H(ρ(n)A) =

H(ρ(0)A) < +∞ then

lim
n→∞

Ig(Mn, ρ
(n)A) = Ig(M0, ρ

(0)A), (3.3.8)

where Ig(M,ρ) is the information gain as defined by Groenwold.

To use this proposition in our system, we build a refined POVM by combin-

ing the clipping projection and the M measurement POVM, in the following way.

We first apply the clipping projection onto the input state ρA. If it is not in the

projected subspace (with probability Tr{(I − Πk1)ρA}), we throw out the state and

only notify the receiver by asserting an error bitAk1 . Otherwise, if the input state is

inside the clipping subspace (with probability Tr{Πk1ρA}), the input is sent to the
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M measurement POVM which produces the classical outcome. In this case, the

post-collapsed state after clipping projection is

ρ̂A
′
=

Πk1ρAΠk1

Tr{Πk1ρA}
,

and the final a-posteriori average density operator for an event B ∈ B is obtained

as

ρ̂A
′′

B =

√
M(B)Πk1ρAΠk1

√
M(B)

Tr{M(B)Πk1ρAΠk1}
.

Then the combination of the two above POVMs can be expressed in the following

refined POVM

M̂k1 = {{M(B)Πk1 , B ∈ B} , I − Πk1} .

It can be shown that the above refined POVM is a valid POVM. We next provide

the following lemma regarding the weak convergence of the refined POVM.

Lemma 3.5. The sequence of M̂k1 POVMs converge weakly to M continuous POVM.

Proof. See Appendix C.2.

Therefore, by applying the Proposition 3.4, it follows that

lim
k1→∞

I(Rk1 ,W
′
k1

) = I(R;W ). (3.3.9)

Next, we prove the second rate-inequality (3.3.7). Recall that the clipping error

indicator variableAk1 is defined as the event that the state is not inside the clipping
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subspace. By applying the chain rule for mutual information we have

I(W,Ak1 ;XK2) = I(W ;XK2) + I(Ak1 ;XK2|W ) ≤ H(Ak1) + I(W ;XK2),

which results in,

I(W,Ak1 ;XK2)−H(Ak1) ≤ I(W ;XK2) ≤ I(W,Ak1 ;XK2). (3.3.10)

Therefore, as H(Ak1) decays to zero when k1 →∞, from squeeze theorem we have

the following limit

lim
k1→∞

I(W,Ak1 ;XK2) = I(W ;XK2). (3.3.11)

Further, using another chain rule we get

I(W,Ak1 ;XK2) = I(Ak1 ;XK2) + I(W ;XK2|Ak1)

= I(Ak1 ;XK2) + P (Ak1 = 0).I(W ;XK2 |Ak1 = 0)

+ P (Ak1 = 1).I(W ;XK2|Ak1 = 1). (3.3.12)

As the clipping region grows to infinity with k1 → ∞, the probability of clip-

ping decays to zero limk1→∞ P (Ak1 = 0) = 1. Therefore, because Ak1 is a simple

Bernoulli random variable with an arbitrarily small probability, then I(Ak1 ;XK2) ≤

H(Ak1)→ 0.
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Also for the third term, we can find the following asymptotic bound

lim
k1→∞

P (Ak1 = 1).I(W ;XK2|Ak1 = 1) ≤ lim
k1→∞

P (Ak1 = 1).H(XK2) = 0, (3.3.13)

where we appealed to the fact that quantized output with limited alphabet has

limited entropy.

Finally, consider that I(W ;XK2|Ak1 = 0) = I(W ′
k1
, X ′k1,K2

) holds by definition

because when the input state is inside the clipping subspace, the system behaves

as if no clipping was performed. Combining all together, for any fixed K2 we have

lim
k1→∞

I(W,Ak1 ;XK2) = lim
k1→∞

I(W ′
k1
, X ′k1,K2

). (3.3.14)

Then (3.3.11) and (3.3.14) together show that for any fixed K2 we have

lim
k1→∞

I(W ′
k1
, X ′k1,K2

) = I(W,XK2) ≤ I(W ;X), (3.3.15)

where the inequality follows directly from the Data Processing Inequality and com-

pletes the proof. In addition, note that as k2, k
′
2 →∞, XK2 converges weakly to X .

Therefore, using lower semi-continuity of mutual information [42, 43], combined

with the above data-processing inequality we further have

lim
k2,k′2→∞

lim
k1→∞

I(W ′
k1
, X ′k1,K2

) = lim
k2,k′2→∞

I(W,XK2) = I(W ;X). (3.3.16)
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3.3.3 Source-Coding Protocol for Continuous States

Having a quantum source generating a sequence of n independent continuous

states as ρ⊗n, we apply a coding protocol on the source states, described in this sec-

tion. We first separate the input states into proper and improper states by applying

the clipping POVM Πk1 which generates a sequence of error bits Ank1
≡ {Ai,k1}ni=1

defined as

Ai,k1 :=


0 if ρi ∈ Πk1

1 O.W.
. (3.3.17)

Thus, according to WLLN, for any fixed εcl > 0 and k1 ∈ N, there exists a value

N0(εcl, k1) large enough such that for any n ≥ N0(εcl, k1), the number of proper

states (states in the clipping subspace)

T :=
n∑
i=1

Ai,k1 , (3.3.18)

is within the range T ∈ [n(1− Pk1 ± εcl)] with probability no less than 1− εcl. Then

for any sequence with T < tmin where tmin := n(1 − Pk1 − εcl), we do not perform

source coding, and instead assert a source coding error event Ece. Upon receiving

the coding error event, Bob will locally generate a sequence of random outcomes

X̂n
local with the desired µnX output distribution. This ensures that in every sequence

for which the coding is performed, there are T > tmin independent source states

which are inside the clipping region, for which we perform the coding scheme. For

the rest of the n− T states, we do not perform the coding, instead, we throw away

the source state and send the error-index to the receiver.
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Next, the error bits sequence is coded into indices of size
(
n
tmin

)
+ 1 where the

extra index is the event of a source coding error Ece. Note here that the required

classical rate, in this case, will be R + log2

((
n
tmin

)
+ 1
)

. The following limit

lim
εcl→0

lim
k1→∞

lim
n→∞

R +
1

n
log2

((
n

n(1− Pk1 − εcl)

)
+ 1

)
= R, (3.3.19)

ensures that the extra error handling rate can be made arbitrarily small.

Then at Bob’s side, the classical sequence X ′tk1,K2
is constructed using the dis-

crete coding scheme, and is fed to a memoryless optimal transport block Tµ|µK2

to generate the final continuous sequence X̂ t
k1,K2

. Finally, the sequence is padded

with the n−T locally generated independent values at the error positions to create

the final X̂n
k1,K2

. Bob then uses this sequence to prepare his final quantum states.

Figure 3.2 shows the block diagram of this coding protocol.

Figure 3.2: Continuous Coding Protocol

51

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – H. Garmaroudi; McMaster University – Electrical and Computer
Engineering

3.3.4 Proof of Distortion Constraint

The end-to-end average distortion for the above system is written as

dn(Rn, X̂n
k1,K2

) = dn

(
Rn, X̂n

k1,K2

∣∣∣Ece)P (Ece) + dn

(
Rn, X̂n

k1,K2

∣∣∣¬Ece) (1− P (Ece))

≤ dn

(
Rn, X̂n

local|Ece
)
εcl + dn

(
Rn, X̂n

k1,K2

∣∣∣¬Ece)
=

1

n

n∑
i=1

d
(
Ri, X̂i,local|Ece

)
εcl + dn

(
Rn, X̂n

k1,K2

∣∣∣¬Ece) , (3.3.20)

where X̂n
local is generated locally at Bob’s side according to the fixed IID output dis-

tribution µX in the event of coding error Ece. Therefore, in the first term above, for

each i-th sample of the system, the uniform integrability of the distortion observ-

able implies that it can be made arbitrarily small by selecting the proper value of

εcl. As for the second term, we use the following lemma to provide a single-letter

upper bound:

Lemma 3.6. The end-to-end average n-letter distortion of the continuous system condi-

tioned on the event of no coding error is asymptotically upper-bounded by the following

single-letter distortion for any fixed value of k1, k2, k
′
2 > 0 as n, tmin →∞:

lim
n→∞,
tmin→∞

dn(Rn, X̂n
k1,K2
|¬Ece) ≤ d(Rk1 , X

′
k1,K2

)

+ (Pk1 + εcl)d
(
R, X̂local|Ak1 = 1

)
+

∫
X

Tr
{

¯̄ρRx

(
∆(x)−∆(QK2(x))

)}
µX(dx), (3.3.21)
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where ¯̄ρRx is the asymptotic average PMR state, given by

¯̄ρRx := lim
n→∞

1

n

n∑
i=1

ρRix .

Proof. See Appendix C.3

We then take the limit of this single-letter distortion as k1, k2 →∞. Note that as

limk1→∞ P (Ak1 = 1) = 0, the second term decays to zero by assuming that εcl ≤ Pk1 ,

as a result of uniform integrability of the distortion observable. The third term also

decays to zero as follows:

lim
k2→∞

lim
k′2→∞

∫
X

Tr
{

¯̄ρRx

(
∆(x)−∆(QK2(x))

)}
µX(dx)

≤ lim
k2→∞

lim
k′2→∞

∫ 2k2

−2k2

‖∆(x)−∆(QK2(x))‖1µX(dx)

+ lim
k2→∞

∫
X\[−2k2 ,2k2 ]

Tr
{

¯̄ρRx

(
∆(x)−∆(QK2(x))

)}
µX(dx) = 0, (3.3.22)

where we split the integral into the cut-off range and out-of-range intervals and

used the Holder’s inequality. Then the first term above converges to zero due

to the continuity of ∆(x) operator and the second term converges to zero by the

definition of uniform integrability.

Next, consider that the following inequality holds by definition for the single-

letter discrete distortion:

d(R,XK2) = d(R,XK2|Ak1 = 0) Pr(Ak1 = 0) + d(R,XK2|Ak1 = 1) Pr(Ak1 = 1)

= d(Rk1 , X
′
k1,K2

) Pr(Ak1 = 0) + d(R,XK2|Ak1 = 1) Pr(Ak1 = 1). (3.3.23)
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Then, by having the probability of clipping approach zero limk1→∞ Pr(Ak1 = 1) =

0, the second term above goes to zero as a direct result of uniform integrability, and

we have the following asymptotic limit:

lim
k1→∞

d(Rk1 , X
′
k1,K2

) = d(R,XK2) :=

∫
X

Tr
{√

ρΛX(dz)
√
ρ∆
(
QK2(z)

)}
. (3.3.24)

Then as k2, k
′
2 →∞, we can upper-bound this RHS distortion value by

lim
k2,k′2→∞

d(R,XK2) ≤ D + lim
k2,k′2→∞

(d(R,XK2)− d(R,X))

= D + lim
k2,k′2→∞

∫
X

Tr
{√

ρΛX(dz)
√
ρ
(

∆
(
QK2(z)

)
−∆(z)

)}
= D,

(3.3.25)

where the last equality follows similarly from continuity and uniform integrability

of the distortion observable operator ∆(x) as a function of x ∈ X . Combining the

above bounds to the single-letter expression in (3.3.21) shows

lim
n→∞,
tmin→∞

dn(Rn, X̂n
k1,K2

) ≤ D, (3.3.26)

which completes the proof of achievability.
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Chapter 4

Evaluation of the Qubit-Binary

System

In this chapter, we study the example of Qubit Systems. Having the Qubit source

state ρ and a Bernoulli output distributionQX , we aim to find the output-constrained

rate-distortion functionR(D;∞, ρ||QX) for the case of unlimited common random-

ness. By inverting this function we then achieve the rate-limited optimal transport

cost D(R;∞, ρ||QX) function. We then provide the numerical results of a few ex-

ample Qubit systems and plot the rate-distortion function.
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4.1 Qubit System with Unlimited Common Random-

ness

For the case of the qubit QC system, we employ entanglement fidelity as the dis-

tortion measure, which can be written as

Tr{∆RXτRX} = Tr

{(
I −

∣∣ψRA〉〈ψRA∣∣)(∑
x

TrA
{

(id⊗MA
x )ψRA

}
⊗ |x〉〈x|

)}

= 1−
〈
ψRA

∣∣(∑
x

√
ρMx
√
ρ⊗ |x〉〈x|

)∣∣ψRA〉 . (4.1.1)

Using the following spectral decomposition of ρ on the eigenbasis |ϕt〉dt=1,

ρA =
d∑
t=1

PT (t) |ϕt〉〈ϕt|A ,

and by substituting the canonical purification of the above decomposition into

(4.1.1), it simplifies to

Tr{∆RXτRX} = 1−
∑
x

〈x| ρMTϕ
x ρ |x〉 , (4.1.2)

where MTϕ
x is the transpose of Mx with respect to the {ϕt} basis, defined as

MTϕ
x =

∑
t,s

〈ϕt|Mx|ϕs〉 |ϕt〉〈ϕs| .

In the presence of an unlimited amount of common randomness, the only effec-

tive rate becomes I(W ;R), which is lower-bounded by I(X;R) because of the data
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processing inequality and the Markov chain R −W − X [45]. Thus W = X min-

imizes the mutual information, which means no local randomness is required at

decoder. Therefore, using the main theorem, for a qubit system with input state ρ

and Bernoulli(q1) output distribution, the output-constrained rate-distortion func-

tion is obtained by

R(D;∞, ρ||Bern(q1)) = min
MA
x

I(X;R)τ ,

subject to

Tr
{
MA

x ρ
}

= qx, ∀x ∈ X ,∑
x TrA

{
(idR ⊗MA

x )ψRA
}

= ρ,

1−
∑

x 〈x| ρM
Tϕ
x ρ |x〉 ≤ D.

(4.1.3)

where the quantum mutual information is with respect to the composite state

τRX =
∑

x

√
ρMx
√
ρ⊗ |x〉〈x|X .

4.1.1 Rate-Limited Optimal Transport for Qubit Measurement Sys-

tem

By addressing the above optimization problem, we obtain Theorem 4.1, which

yields a transcendental system of equations that determines the output-constrained

rate-distortion function for this system.

Theorem 4.1. For the case of qubit input state ρ with matrix representation

ρ =

ρ1 ρ2

ρ∗2 1− ρ1

 ,
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and fixed output with Bernoulli(1 − q0) distribution, with the presence of an unlim-

ited amount of common randomness, and using entanglement fidelity distortion measure,

the output-constrained rate-distortion function and the corresponding optimal POVMs

M0,M1 are provided as follows.

For any distortion level D above the threshold D ≥ DR0 where

DR0 := 1− q0

〈
0
∣∣ρ2|0

〉
− (1− q0)

〈
1
∣∣ρ2|1

〉
. (4.1.4)

the output state can be generated independently, thus R(D;∞, ρ||Bern(1− q0)) = 0 with

M0,R0 = q0I .

Otherwise if DOT ≤ D < DR0 , (where DOT is the optimal transport cost) then,

R(D;∞, ρ||Bern(1− q0)) = H(ρ)− q0H

(
Nopt

q0

)
− (1− q0)H

(
ρ−Nopt

1− q0

)
, (4.1.5)

M0 =
√
ρ−1Nopt

√
ρ−1, M1 = I −M0. (4.1.6)

The optimal parameter Nopt/q0 is the optimal PMR state conditioned on outcome 0, ex-

pressed by

Nopt :=

 n sρ2/|ρ2|

sρ∗2/|ρ2| q0 − n

 ,
whose variables n, s are obtained by solving the transcendental system of equations


−as+b(n−q0/2)

E1
ln q0/2+E1

q0/2−E1
+
−a(s−|ρ2|)+b(n−ρ1+

1−q0
2

)

E2
ln

1−q0
2

+E2
1−q0

2
−E2

= 0

an+ bs+ c = 0

, (4.1.7)
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where

E1(n, s) :=

√(
n− q0

2

)2

+ s2, (4.1.8)

E2(n, s) :=

√(
n− ρ1 +

1− q0

2

)2

+ (s− |ρ2|)2. (4.1.9)

The parameters a, b, c are fixed parameters of system based on the input and output states

ρ, q0 defined as

a := 1− 4|ρ2|2

1 + 2k
, b :=

2|ρ2|(2ρ1 − 1)

1 + 2k
,

c := q0

(
ρ1 − 1 +

2|ρ2|2

1 + 2k

)
+
〈
1|ρ2

∣∣1〉− 1 +D, k :=
√

det{ρ}.

Proof. See Appendix A.

The following two special input states result in interesting Nopt optimal matri-

ces:

• Pure input state: For the case of pure input state, the rate-distortion curve

reduces to a single point where the rate is R = 0, the optimal Nopt = q0ρ and

D = DR0 . This is because the pure input state has no correlation with the

reference, so the receiver can simply use local randomness in its decoder.

• Diagonal (among canonical eigen-basis) quantum input state: In this case,

the optimal operator Nopt will also be diagonal. One can simply find that in
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this case when D ≤ DR0 , the optimal operator is given by

N cl
opt =

1−D + (1− ρ1)(q0 + ρ1 − 1) 0

0 D + ρ1(q0 + ρ1 − 2)

 .

4.1.2 Optimal Transport for Qubit Measurement System

The optimal transport scheme provides the minimum achievable distortion when

the rate of information is not limited. The following theorem provides this value

for the problem of the qubit measurement system.

Theorem 4.2. For the case of qubit input state ρ and fixed output distribution Bern(1−q0),

with the presence of the unlimited amount of common randomness, the optimal transport

with respect to the entanglement fidelity distortion measure is obtained under different

conditions of parameters as follows. Defining the parameter Q := ρ1−1/2√
1−4|ρ2|2

, we have the

minimum transportation cost DOT := D(R = ∞, Rc = ∞, ρ||Bern(1 − q0)) and the

optimal operator NOT :=

 nOT sOTρ2/|ρ2|

sOTρ
∗
2/|ρ2| q0 − nOT

 given by:

1. if Q ≤ det(ρ)
1−q0 −

1
2

then

DOT = q0(1− ρ1) + det(ρ) +
1− q0

2

(
1−

√
1− 4|ρ2|2

)
, (4.1.10)

sOT =
b√

1− 4|ρ2|2
1− q0

2
+ |ρ2|,

nOT =

(
a√

1− 4|ρ2|2
− 1

)
1− q0

2
+ ρ1.
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2. Else if Q ≥ 1
2
− det(ρ)

q0
then

DOT = (1− q0)ρ1 + det(ρ) +
q0

2

(
1−

√
1− 4|ρ2|2

)
, (4.1.11)

sOT =
b√

1− 4|ρ2|2
q0

2
,

nOT =

(
a√

1− 4|ρ2|2
+ 1

)
q0

2
.

3. Else if det(ρ)
1−q0 −

1
2
≤ Q ≤ 1

2
− det(ρ)

q0
then,

DOT = 1− q0

(
ρ1 − 1 +

2|ρ2|2

1 + 2k

)
−
〈
1|ρ2

∣∣1〉− anOT − bsOT , (4.1.12)

sOT =
(q0 − 2 det(ρ)) |ρ2|+ sgn{a− b}(1− 2ρ1)

√
∆′

4|ρ2|2 + (1− 2ρ1)2
,

nOT =
2q0|ρ2|2 − (1− 2ρ1)(ρ1q0 − det(ρ)) + sgn{a− b}2|ρ2|

√
∆′

4|ρ2|2 + (1− 2ρ1)2
.

where ∆′ := (q0(1− q0)− det(ρ)) det(ρ).

Proof. See Appendix B.

Interestingly, when the input state is prepared with the diagonal density oper-

ator along the eigenbasis of the output state (i.e. ρ2 = 0), the optimal matrices Nopt

and ρ − Nopt encompasses the classical binary optimal transport scheme. One can

see that the first and second conditions reduce to q0 ≥ ρ1 and q0 < ρ1 and the third

condition is empty. However, the distortion value will be obviously different.
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4.1.3 Minimum Required Rate for Optimal Transport

Finally, it is important to note that an unlimited communication rate is not required

for optimal transport. The minimum required rate Rmin, OT for the optimal trans-

port scheme can be obtained by substituting optimal values sOT and nOT in (4.1.5),

which results

Rmin, OT = H(ρ)− q0Hb

(
1

2
− E1(nOT , sOT )

q0

)
− (1− q0)Hb

(
1

2
− E2(nOT , sOT )

1− q0

)
.

(4.1.13)

where Hb(.) is the binary entropy function, and E1(nOT , sOT ) and E2(nOT , sOT ) are

functions defined in (4.1.8), (4.1.9).

4.2 Numerical Results

We used the CVX package [26, 25] to find numerical solutions for the examples of

this convex optimization problem. Also [22] provides the CVX functions for the

von-Neumann entropy functions. The output-constrained rate-distortion function

is numerically evaluated for the following set of examples with fixed q0 = 1/2 and
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ρ1 = 1/2 parameters and different off-diagonal values.

Ex. 1: q0 =
1

2
ρa =

1/2 0

0 1/2

 , Tr
{
ρ2
a

}
= 0.5.

Ex. 2: q0 =
1

2
ρb =

 1/2 0.1319− 0.0361i

0.1319 + 0.0361i 1/2

 , Tr
{
ρ2
b

}
= 0.5374.

Ex. 3: q0 =
1

2
ρc =

 1/2 0.0754− 0.2307i

0.0754 + 0.2307i 1/2

 , Tr
{
ρ2
c

}
= 0.6178.

Ex. 4: q0 =
1

2
ρd =

 1/2 −0.1399− 0.3872i

−0.1399 + 0.3872i 1/2

 , Tr
{
ρ2
d

}
= 0.8390.

These rate-distortion functions are plotted in Figure 4.1, which shows that starting

from a maximally mixed state (Ex.1.), as the source state becomes purer, it requires

less communication rate to maintain the same level of entanglement fidelity.

In the case of a pure source state, the rate-distortion function reduces to a single

point at the no transmission rate. This is intuitively acceptable as the pure state is

independent of the reference state. So the receiver can generate random outcomes

independent of the source. However, the entanglement fidelity distortion will not

be zero because the measurement collapses the state into deterministic outcomes

and hence it will not fully recover the source state. On the contrary, the maximally

mixed state has the maximum dependence on the reference state which requires

the maximum rate of transmission to recover the state with the same level of dis-

tortion.
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Figure 4.1: Output-Constrained rate-distortion function with unlimited common
randomness for the examples with ρ1 = 0.5
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Chapter 5

Evaluation of the Quantum Gaussian

System

In this chapter we evaluate the quantum-to-classical optimal transport for the case

of Gaussian quantum systems with Gaussian source states and Gaussian output

distribution. We further restrict our evaluation to unlimited common randomness

(Rc = ∞). In the following section, we first introduce the principal definitions for

the Gaussian quantum systems.

5.1 A Brief Overview of Quantum Gaussian Systems

Consider a continuous-variable quantum system with infinite-dimensional Hilbert

spaceH = L2(Rs), which is the Hilbert space of s harmonic oscillators. The Hilbert

space is defined based on the canonical observable operatorsQ1, P1, Q2, P2, ..., Qs, Ps

with continuous eigenspectra, whereQi, Pi are the position and momentum quadra-

ture operators of the i-th harmonic oscillator. Thus, having the wave-function
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ψ ∈ L2(Rs), the observables act as the eigenfunctions of the wave-function as fol-

lows [19]:

(Qiψ)(q) = qiψ(q), (Piψ)(q) = −i ∂
∂qi

ψ(q). (5.1.1)

The canonical observables further satisfy the Canonical Commutation Relation

(CCR) which is a result of the Heisenberg uncertainty principle. For more con-

venience, we combine the quadrature operators as elements of a 2s × 2s vector

operator:

R1 = Q1, R2 = P1, · · · , R2s−1 = Qm, R2s = Ps, (5.1.2)

which redefines the CCR as

[Ri, Rj] = i∆ijIH, i, j = 1, ..., 2m, (5.1.3)

with ∆ being non-degenerate skew-symmetric symplectic matrix defined as

∆ =
s⊕

k=1

 0 1

−1 0

 . (5.1.4)

5.1.1 Phase-Space Representation [29, 50]

Similar to the discrete case, a continuous quantum state is represented by its den-

sity operator ρ ∈ D(H). However, because of the continuity of the eigenfunc-

tions, it is not possible to represent the density operator in matrix format. Instead,

the density operator has an equivalent representation over a real symplectic space
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which is interpreted as the Wigner quasi-probability distribution. We first define

the Weyl operator

W (z) = exp{iRz}. (5.1.5)

where z := [q1, p1, ..., qs, ps] with z ∈ R2s is a vector of eigenvalues of the corre-

sponding quadrature operators. The CCR can be interpreted in the Weyl-Segal

format as follows:

W (z)W (z′) = exp

{
− i

2
∆(z, z′)

}
W (z + z′) (5.1.6)

where

∆(z, z′) = zT∆z (5.1.7)

is the canonical symplectic form and ∆ is the symplectic matrix defined in (5.1.4).

Then for a density operator ρ of an arbitrary quantum state, the Wigner character-

istic function is defined as

φρ(z) = Tr{ρW (z)}. (5.1.8)

One can further revert back to the density operator by performing this operator

Fourier transform

ρ =
1

(2π)s

∫
φρ(z)W (−z)d2sz. (5.1.9)
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However, by taking a Fourier transform of the characteristic function with respect

to a variable x ∈ X ≡ Z = R2s, we obtain the Wigner quasi-probability distribution

Φρ(x) =

∫
Z

φρ(z) exp
{
−ixT z

} d2sz

(2π)2s
. (5.1.10)

The Wigner quasi-probability distribution function is a real function normalized

to 1, but not necessarily non-negative. For a detailed definition of the Wiegner

function see [[50] section II.A] and [[46] Chapter 4].

The domain of these Wigner functions Z = R2s together with the symplec-

tic matrix ∆ form a symplectic space K := (Z,∆) which is called the phase space.

Hence, the Wigner characteristic function and Wigner distribution are the unique

phase space representations of the quantum state ρ according to Stone-von Neu-

mann’s uniqueness theorem.

A transformation matrix T is called a symplectic transformation if it maps the

symplectic space into itself; i.e. preserving the symplectic form

∆(Tz, Tz′) = ∆(z, z′) for all z, z′ ∈ Z. (5.1.11)

5.1.2 Statistical Moments

Similar to the ordinary probability distribution, we can further define the statistical

moments based on the Wigner functions, which provide important properties of

the quantum state. It can be shown that the following relations hold between the

moments of the Wigner functions and the quantities of the density operator in

Hilbert space:
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Mean (Displacement)

Having the first moment, also called the displacement by m and the mean value of

x as

m := Tr{ρR}, x̄ := Eφρ [x] , (5.1.12)

then the following relation holds

x̄ = m. (5.1.13)

A quantum state ρ with a zero mean can be moved to a mean value m with the

displacement operator D(m) := W (∆−1m) by

D(m)ρD(m)†. (5.1.14)

Covariance Matrix

For any two operators X, Y one can write

XY =
1

2
{X, Y }+

1

2
[X, Y ], (5.1.15)

where [X, Y ] and {X, Y } are the commutator and anti-commutator of X, Y re-

spectively. Therefore, having a quantum state ρ, and the quadrature operators

R = {R1, ..., Rn}, we define two real matrices, a symmetric and an anti-symmetric
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one

α = Bρ(R) =
1

2

[
Tr ρ

{
(Rj −mj), (Rk −mk)

}]
j,k=1,...,n

, (5.1.16)

∆ = Cρ(R) =
1

2

[
Tr ρ

[
(Rj −mj), (Rk −mk)

]]
j,k=1,...,n

, (5.1.17)

where mk = TrρRk. The matrices α and ∆ are called the covariance matrix and the

commutation matrix of the density operator, respectively [29]. Then we have the

following Hermitian matrix

α− i

2
∆ = Tr

{
(R−m)Tρ (R−m)

}
(5.1.18)

where .T is a transposition with respect to the vector space of R. The above covari-

ance matrix is related to the covariance matrix Vx := EΦρ

[
(x− x̄)(x− x̄)T

]
of the

Wigner function as follows

Vx = α. (5.1.19)

Further, the following inequality holds (in the positive semi-definite sense) for the

covariance matrix of the quantum state which is a result of the uncertainty princi-

ple:

α ≥ ± i
2

∆. (5.1.20)
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The Symplectic Eigenvalues

Having the bilinear form in (5.1.7) with covariance matrix α in the symplectic space

(Z,∆), there exists a symplectic transformation T in Z which diagonalizes α with

the matrix [Lemma 12.12 [29]]

α̃ := T TαT = diag

γj 0

0 γj

 . (5.1.21)

where γj > 0 are called the symplectic eigenvalues of the j-th mode. ”The eigenval-

ues of the covariance matrix α don’t have an intrinsic meaning as they describe

a quadratic form rather than an operator and depend on the choice of basis in Z.

However, the operator α̂ = ∆−1α has a basis-free meaning”[31]. The eigenvalues

of α̂ are complex values ±γj . Diagonalization of this operator is the same as the

normal mode decomposition of the phase space and leads to the above transformation

in (5.1.21).

The symplectic eigenvalues γj can be simply obtained from

(
∆−1α

)2
= diag

−γ2
j 0

0 −γ2
j

 (5.1.22)

which gives

abs
(
∆−1α

)
=

√
(∆−1α)2 = diag

γj 0

0 γj

 = α̂. (5.1.23)
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Moreover, the matrix uncertainty relation of (5.1.20) can be described in the fol-

lowing format

(
∆−1α

)2 ≥ −1

4
I (5.1.24)

with equality when the system is in a pure state.

In the special case when the state is a product state of the modes, which is when

α is a block-diagonal of s separate αj 2-by-2 matrices, the symplectic eigenvalues

are simply the determinant of each mode

γj = det{αj}. (5.1.25)

5.1.3 Quantum Gaussian States

Next, the quantum Gaussian state is defined on H as a state whose Wigner repre-

sentation is Gaussian;

φρ(z) = exp

[
−1

2
zTαz + imT z

]
,

Φρ(x) =
exp
[
−1

2
(z −m)Tα−1(z −m)

]
(2π)s

√
detα

Similar to classical Gaussian distributions, for a Gaussian quantum state, the dis-

placement and covariance matrix are sufficient to fully represent the Gaussian

state.
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5.1.4 Continuous-Variable Measurement POVM

The measurement POVM M has a general form as defined in [29]. An important

group of observables is the general form of the covariant Gaussian observable as

provided in [30]:

M̃(d2sz) = D(Kz)ρGD(Kz)†
|detK|2d2sz

πs
(5.1.26)

where ρG is a density operator that is the parameter of the Gaussian observable and

is different from the input d.o. ρN . A special case of this group of measurements is

the heterodyne measurement, for which the POVM is given by

M∗(d
2sz) = D(z)ρ0D(z)†

d2sz

πs
= |z〉〈z| d

2sz

πs
. (5.1.27)

For any measurement POVM M with the collection of {ρz}z∈Z post-measured

reference states, the information gain function is defined as

Ig(ρN ;M) = H(ρN)−
∫
Z
H(ρz)µZ(dz). (5.1.28)

The von-Neumann entropy of the general Gaussian state with covariance ma-

trix α is given by [31],

H(ρN) =
1

2
Spg

(
abs(∆−1α)− I

2

)
. (5.1.29)

where Sp (.) is the matrix trace as opposed to the Tr the trace in Hilbert space and
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that

g(x) =


(x+ 1) log(x+ 1)− x log x, x > 0

0, x = 0

(5.1.30)

is the Gordon function.

5.1.5 The Distortion observable

The Transpose Hilbert Space

In this chapter, we use the same distortion observable operator that was used by

[19] with some modifications to make it suitable for the Measurement system. Note

that the distortion observable operator is applied to a coupling of the source and

destination states as defined by a composite state. In a prior work [24], defines the

coupling Π ∈ (H2 ⊗H1) for marginal states ρ, σ ∈ H such that

TrH2 {Π} = ρ, TrH1 {Π} = σ, (5.1.31)

where H1,H2 are the copies of H. As [19] mentions, with this definition of cou-

pling, there is no physical channel that can physically interpret the provided op-

timal transport plan. Instead, [19] introduces a coupling in the transpose Hilbert

space. First, we define the transpose of an operator with respect to a basis as fol-

lows:

Definition 5.1. Let {|i〉}di=1 be a basis in the Hilbert spaceH. Having an operator A ∈ H,
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the operator AT ∈ H∗ is defined as the tranpose of A where

AT :=
d∑
i

d∑
j

〈j|A|i〉 |i〉〈j|H∗ . (5.1.32)

Next, we define the canonical purification as follows:

Definition 5.2. The canonical purification of a state ρ ∈ HA to the composite state of

reference and local system is given by

|ψ〉RA = (I ⊗√ρ) |Γ〉RA (5.1.33)

where |Γ〉RA :=
∑d

i=1 |i〉R |i〉A is the maximally entangled Bell state.

We can further show that as [19] mentions,

Lemma 5.1. The canonical purification of |ψ〉RA resides in the composite state of the trans-

pose and local state; i.e.,

|ψ〉RA ∈ HA ⊗H∗A. (5.1.34)

Proof. By expanding the density operator of the canonical purification, we have

|ψRA〉〈ψRA| = (IR ⊗
√
ρA) |ΓRA〉〈ΓRA| (I ⊗

√
ρA) (5.1.35)

= (IR ⊗
√
ρA)

(
d∑
i=1

|i〉〈j|R ⊗ |i〉〈j|A

)
(I ⊗√ρA). (5.1.36)
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Then the reference state is obtained by tracing over the local state A,

TrA {|ψRA〉〈ψRA|} = TrA

{
(IR ⊗

√
ρA)

(
d∑
i=1

|i〉〈j|R ⊗ |i〉〈j|A

)
(I ⊗√ρA)

}
(5.1.37)

=
d∑
i=1

〈j|ρ|i〉 |i〉〈j|R (5.1.38)

= (ρT )
R (5.1.39)

This shows that the canonical purification |ψ〉RA ∈ (H⊗H∗).

Therefore, [19] defines the coupling for their optimal transport problem accord-

ing to an optimal transportation channel Φ with the constraint that Φ(ρ) = σ, as a

composite state ΠΦ ∈ (H⊗H∗) such that

ΠΦ = (Φ⊗ I∗H)(|ψRA〉〈ψRA|) (5.1.40)

which ensures

TrH {ΠΦ} = ρT , TrH∗ {ΠΦ} = σ. (5.1.41)

In light of the above argument, it is important to define their distortion observable

in the following form [19]:

C =
1

2s

2s∑
i=1

(RTi ⊗ IH − IH∗ ⊗Ri)
2. (5.1.42)

This is particularly important because the reference state resides in the H∗ Hilbert

space, therefore, if we want to compare the outcomes of the states, we must use
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the RTi operator for the reference so that Tr
{
RT ρT

}
= Tr{Rρ}.

The Quantum-to-Classical Distortion Observable

In this part, we introduce the quadratic operator distortion observable for the

Gaussian QC systems. But first, we show that a similar lemma also holds for the

measurement systems as well.

Lemma 5.2. Let ρ ∈ HA be the source state and M ≡ {M}u ∈ U be a measurement

POVM where U is the space of the outcomes. Then, the conditional post-measured reference

states and the unrevealed post-measured reference state are all in the transpose Hilbert

spaceH∗.

Proof. Let Λ = M †
uMu, and λu = P (U = u) = Tr{Muρ}. Then the state of the system

after measurement given that {X = u} is

∣∣∣ψRA′u

〉
:=

(I ⊗Mu) |φRA〉√
λu

, (5.1.43)

and its density operator is

ψRA
′

u =
(I ⊗Mu) |φRA〉〈φRA| (I ⊗M †

u)

λu
. (5.1.44)

Then the state of the reference given that {U = u} is

TrA′
{
ψRA

′

u

}
=

1

λu

∑
i,j

〈
j|√ρM †

uMu
√
ρ
∣∣i〉

A′
|i〉〈j|R (5.1.45)

=

(√
ρΛu
√
ρ
)T

λu
:=
(
ρ̂Tu
)R (5.1.46)
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If the outcomes are not revealed, then the reference state is

∑
u

λu

(√
ρΛu
√
ρ
)T

λu
= (ρT )

R
. (5.1.47)

The proof simply extends to the continuous space POVMs as well.

Thus, the post-measured composite state is defined as follows

ψRZ =
∑
z∈Z

√
ρA
T ΛTz
√
ρA
T ⊗ |z〉〈z| (5.1.48)

=
∑
z∈Z

ρTz ⊗ π(z) |z〉〈z| (5.1.49)

Then applying the distortion observable operator (5.1.42) to the post-measured
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composite state gives

d(ρA,Λ) = Tr
{
ψRZC

}
=

1

2s
Tr

{(∑
z

(ρTz )
R ⊗ π(z) |z〉〈z|

)(
RTi ⊗ IH − m̄i(z) + m̄i(z)− IH∗ ⊗Ri

)2
}

(5.1.50)

=
1

2s
Tr

{(∑
z

(ρTz )
R ⊗ π(z) |z〉〈z|

)
[(

RTi ⊗ IH − m̄i(z)

)2

+

(
IH∗ ⊗Ri − m̄i(z)

)2

+ 2

(
RTi ⊗ IH − m̄i(z)

)(
m̄i(z)− IH∗ ⊗Ri

)]}
(5.1.51)

=
1

2s
Tr

{(∑
z

(ρTz )
R ⊗ π(z) |z〉〈z|

)
[(

RTi ⊗ IH − m̄i(z)

)2

+

(
IH∗ ⊗Ri − m̄i(z)

)2
]} (5.1.52)

=
1

2s

2s∑
i=1

∑
z∈Z

π(z)
[
Tr
{
ρRz (Ri − m̄i(z))2

}
+
〈
z|(Ri − m̄i(z))2

∣∣z〉] (5.1.53)

=
1

2s

2s∑
i=1

[∑
z∈Z

π(z) Tr
{
ρRz (Ri − m̄i(z))2

}
+ Eπ

[
(ZRi − m̄i(Z))2

]]
(5.1.54)

=
1

2s

2s∑
i=1

[∑
z∈Z

π(z)[Σ(z)]ii + Eπ
[
(ZRi − m̄i(Z))2

]]
(5.1.55)

where m̄i(z) = Tr
{
ρRz Ri

}
= Tr

{
(ρTz )

R
RTi

}
is the first moment of the quantum state

and Σ(z) is the covariance matrix of the state. One can further write the distortion
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constraint as

d(ρA,Λ) =
1

2s

∑
z∈Z

πZ(z) · Sp{Σ(z)}+
1

2s

∑
z∈Z

πZ(z) · ‖z − m̄(z)‖2 (5.1.56)

The above formulation describes the distortion function for a point-to-point

system, where the measurement outcome space is the final output space Z .

5.2 OC Rate-Distortion Function of QC Gaussian Sys-

tems with Unlimited Common Randomness

Recall that the single-letter conditions of the rate pair being inside the rate region

according to the coding theorem 3.2 are

R ≥ Ig(R;W ), (5.2.1)

R +Rc ≥ I(W ;X), (5.2.2)∫
w

PX|W (A|w) Tr{M(dw)ρ} = µX(A), for A ∈ B(X ), (5.2.3)∫
x∈R

TrR [ρx ∆R(x)]µX(dx) ≤ D. (5.2.4)

Note that when evaluating this system and finding the rate-distortion curve, due to

the ensemble-observable duality [30], we can either work with the measurement

itself or the post-measured reference ensembles. When we choose measurement

POVM M(dw) as the variable of optimization, the input marginal constraint be-

comes a trivial result of
∫
WM(dw) = I . Because multiplying both sides by

√
ρ

from left and right will give the input marginal constraint
∫
W
√
ρM(dw)

√
ρ = ρ.
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On the other hand, when choosing the measurement outcome ensemble {ρw, πW}

as the variables of optimization, the input constraint becomes non-trivial, so we

have both input and output constraints as

∫
W
ρwπW (w) = ρ (5.2.5)∫

W
PX|W (x|w)πW (w) = µX(x). (5.2.6)

Furthermore, when having unlimited amount of common randomness (Rc = ∞),

the single-letter constraints reduce to

R ≥ Ig(R;W ) = Ig(R;X) (5.2.7)∫
x∈R

TrR [ρx ∆R(x)]µX(dx) ≤ D, (5.2.8)

because with no loss of generality, one can assume X = W as a result of the data

processing inequality.

5.2.1 Optimality of Gaussian Quantum Measurement

We next provide the following theorem about the optimality of the Gaussian mea-

surements in the case of unlimited common randomness.

Theorem 5.3. Suppose having a rate-limited Gaussian QC optimal transport Measure-

ment system with unlimited common randomness with a Gaussian source state ρ with

mean vector mρ and covariance matrix Σρ and a Gaussian destination distribution πZ ≡

N (µZ ,ΣZ). Having a distortion observable of the form (5.1.42), for any feasible distortion

threshold D, the optimal measurement that minimizes the transmission rate (Groenwold’s
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information quantity) is a Gaussian measurement of the form

D(Kz)ρNGD(Kz)† (5.2.9)

where ρN is a zero-mean Gaussian quantum state with covariance matrix ΣN determining

the noise of the measurement, and K is a matrix transformation of the form

K = Σ
−1/2
Z

(
Σ

1/2
Z (Σρ − ΣN)Σ

1/2
Z

)1/2

Σ
−1/2
Z . (5.2.10)

Proof. With no loss of generality, we first assume that the quantum source state

and the classical output distribution are both transported to the origin having zero

means. Assume having an arbitrary set of PMR states {ρ̂z}z∈Z with mean val-

ues m̄(z) and covariance matrices Σ̂(z), which are the equivalent of the classical

backward channels PX|Y (.|y) for different realizations of y ∈ Y . In this setting

m̄(z) = Tr{ρzR} is equivalent to the classical MMSE estimator X̃ = E [X|Y ]. There-

fore, the law of total variance in lemma 5.4 holds for the covariance of the source:

Σρ =

∫
Σ̂(z)πZ(dz) + Σ̃. (5.2.11)

We further define a centralized version of the PMR states

ρ̂c,z := D†(m̄(z)) ρ̂z D(m̄(z)) (5.2.12)

which shifts all of the PMR states to origin. Thus, we introduce the following
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upperbound for the conditional entropy of PMR states

H(R|Z) =

∫
H(ρ̂z)µZ(dz) (5.2.13)

=

∫
H (ρ̂c,z)µZ(dz) (5.2.14)

≤ H

(
ρ̂N :=

∫
ρ̂c,z µZ(dz)

)
≤ H(ρ̃NG) (5.2.15)

where the first inequality follows from the concavity of von-Neumann entropy. We

defined ρ̂N to be the average state with zero mean and the covariance matrix Σ̂N ,

where

Σ̂N = Tr
{
ρ̂N(R− m̄N)(R− m̄N)T

}
= Tr

{
ρ̂NRR

T
}

(5.2.16)

= Tr

{(∫
D†(m̄(z)) ρ̂z D(m̄(z))µZ(dz)

)
RRT

}
(5.2.17)

=

∫
Σ̂(z)µZ(dz). (5.2.18)

Using Lemma 5.4 and the above equality we find the covariance of estimator Σ̃ =

Σρ − Σ̂N .

Also in (5.2.15), in the last inequality, ρ̃NG is introduced as a Gaussian quantum

state with the same covariance matrix Σ̂N which appeals to the Quantum Gaus-

sian entropy maximization theorem [32]. Further, the distortion function for the

arbitrary PMR ensemble is

d(ρ̂z, πZ) =
1

2s

∫
Sp
(

Σ̂(z)
)
µZ(dz) +

1

2s

∫
‖z − m̄(z)‖2µZ(dz) (5.2.19)

=
1

2s
Sp
(

Σ̂N

)
+

1

2s

∫
‖z − m̄(z)‖2µZ(dz). (5.2.20)
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We next form a different set of PMR ensembles equivalent to the quantum

Gaussian measurement of the form

ρ̃z = D(Kz)ρ̃NGD(Kz)†. (5.2.21)

Note that by using ρ̃z, because the covariance matrix Σ̂N is fixed, the first term of

distortion does not change.

We further limit the selection of theK matrix such that it satisfies the covariance

matrix of estimator Σ̃ = KΣZK
T . This, in turn, makes sure that the marginal

constraint is satisfied ρ =
∫
ρ̃zµZ(dz) because the source quantum state is assumed

to be Gaussian. The second term of distortion is only a function of m̄(z). So by

preserving the covariance matrix Σ̃ = Σρ − Σ̂N , we select K to be the optimal

transportation from Gaussian distribution with ΣZ to Gaussian distribution with

Σ̃; i.e. we choose

K := Σ
−1/2
Z

(
Σ

1/2
Z (Σρ − ΣN)Σ

1/2
Z

)1/2

Σ
−1/2
Z . (5.2.22)

This will ensure that the following relation holds:

EZ
[
‖Z − m̄(Z)‖2] ≥ W 2

2 (N (ΣX − ΣN),N (ΣY )) = EZ
[
‖Z −KZ‖2] . (5.2.23)

where the inequality appeals to lemma 5.5.

The above steps show that for a fixed noise covariance Σ̂N , the PMR ensem-

ble of the Gaussian form (5.2.21) does not reduce the conditional entropy while

also preserving the distortion and marginal constraints. This proves that replacing
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{ρ̂z, πZ(dz)} with the Gaussian measurement {ρ̃z, πZ(dz)} causes no loss of opti-

mality.

Lemma 5.4. For a source quantum state ρ and a measurement POVM with the corre-

sponding PMR ensemble {ρ̂Tz , πZ(dz)}, we have

Σρ =

∫
Σ̂(z)πZ(dz) + Σ̃ (5.2.24)

where

Σρ = Tr
{
ρ(R−m)(R−m)T

}
(5.2.25)

Σ̂(z) = Tr
{
ρz(R− m̄(z))(R− m̄(z))T

}
for all z ∈ Z (5.2.26)

Σ̃ :=Cov(m(Z)) = EZ
[
m(Z)m(Z)T

]
− m̄m̄T (5.2.27)

are the covariance matrix of the source, the conditional covariance of PMR state ρ̂z and the

covariance of the estimation m̄(Z) respectively.

Proof. Starting with second moment of the source state

Tr
{
ρRRT

}
= Tr

{(∫
ρ̂zπZ(dz)

)
RRT

}
=

∫
Tr
{
ρzRR

T
}
πZ(dz) (5.2.28)

=

∫ (
Σ̂(z) + m̄(z)m̄(z)T

)
πZ(dz), (5.2.29)

then the covariance of the source state is

Σρ = Tr
{
ρRRT

}
− m̄m̄T =

∫ (
Σ̂(z)

)
πZ(dz) + EZ

[
m̄(z)m̄(z)T

]
− m̄m̄T . (5.2.30)
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Lemma 5.5. Assuming a classical system having a set of source distributions ΩX(0,ΣX)

and a set of destination distributions ΩY (0,ΣY ) with zero mean and fixed given covariance,

the minimum MSE distance between the two sets is the Wasserstein distance between two

Gaussian distributions with given moments. i.e.,

min
X∼X∈ΩX
Y∼Y∈ΩY

E
[
‖X − Y ‖2] = W 2

2 (N (0,ΣX),N (0,ΣY )). (5.2.31)

Proof. The desired conclusion follows from the observation that E
[
‖X − Y ‖2] is

preserved when (X, Y ) is replaced by the jointly Gaussian pair (XG, YG) with the

same joint covariance matrix.

5.2.2 The Quantum-Classical Gaussian Optimization problem

To obtain the OC rate-distortion function, by using the above Gaussian optimality

theorem, it suffices to find the optimal noise covariance matrix ΣN as follows:

R(D;Rc =∞, ρ||πZ) = min
ΣN

HG(Σρ)−HG(ΣN) (5.2.32)

subject to:
1

2s
Sp (ΣN) +

1

2s

∫
‖z −Kz‖2πZ(dz) +

1

2s
‖mρ − µZ‖2 ≤ D,

where K is the optimal transportation mapping to the classical output space and

the distortion function given by (5.2.22) similarly follows:

d(ρ,M, h) =
1

2s
Sp (ΣN) +

1

2s
E
[
‖(K − I)Z‖2]+

1

2s
‖mρ − µZ‖2

=
1

2s
Sp
(

Σρ + ΣZ − 2
(

Σ
1/2s
Z (Σρ − ΣN)Σ

1/2
Z

)1/2
)

+
1

2s
‖mρ − µZ‖2 ≤ D.

86

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – H. Garmaroudi; McMaster University – Electrical and Computer
Engineering

The above distortion inequality can be further simplified to

1

2s
Sp
(

(Σ
1/2
Z (Σρ − ΣN)Σ

1/2
Z )1/2

)
≥ 1

2
(Dmax −D) (5.2.33)

where

Dmax :=
1

2s
Sp (Σρ + ΣZ) +

1

2s
‖mρ − µZ‖2 (5.2.34)

is the zero-crossing point at which the required transmission rate to achieve the

distortion D ≥ Dmax is zero. This means that in this range the acceptable distortion

level is high enough to allow Bob to generate the output independent of the source

according to the given distribution. Thus the optimization problem in (5.2.32) re-

duces to

R(D;Rc =∞, ρ||πZ) := min
N

1

2
Sp g

(∣∣∆−1Σρ

∣∣− I

2

)
− 1

2
Sp g

(∣∣∆−1ΣN

∣∣− I

2

)
subject to:

1

s
Sp
(

(Σ
1/2
Z (Σρ − ΣN)Σ

1/2
Z )1/2

)
≥ Dmax −D (5.2.35)

ΣN ≤ Σρ,
∣∣∆−1ΣN

∣∣ ≥ I

2
(5.2.36)

where |A| :=
√
AAT is the absolute value of the matrix A, and g(.) is the Gordon

function. Next, we solve this optimization problem for the following cases.

5.2.3 The isotropic Gaussian source and destination

Assume having a Gaussian source state ρ with an isotropic covariance matrix

Σρ = σ2
ρI2s×2s and a Gaussian destination distribution πZ with covariance ma-

trix ΣZ = σ2
ZI2s×2s. Let the Gaussian measurement have a noise covariance of
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ΣN = nσ2
ρI2s×2s, where n is the parameter of optimization. Thus the optimal noise-

to-power ratio is obtained for this case:

n∗ =


N/A D < Dmin,

1−
(
Dmax−D
2σρσZ

)2

for Dmin ≤ D ≤ Dmax,

1 Dmax < D.

(5.2.37)

where Dmax = (mρ − mZ)2 + (σ2
ρ + σ2

Z). Moreover, the feasibility conditions on

n∗ ≥ 1
2σ2
ρ

will give the optimal transport cost Dmin = Dmax − 2σZ

√
(σ2

ρ − 1
2
). Then

the OC rate-distortion function is obtained by

R

(
D;QN (mρ, σ

2
ρ)||N (mZ , σ

2
Z)

)
= g
(
σ2
ρ − 1/2

)
− g
(
n∗σ2

ρ − 1/2
)
. (5.2.38)

5.2.4 The one-mode Gaussian case

For a one-mode Gaussian system s = 1, recall from (5.1.22) and (5.1.25) that |∆−1Σρ| =√
det{Σρ}. In this case, the problem reduces to

R(D) := min
N

g

(√
det{Σρ} − 1/2

)
− g

(√
det{ΣN} − 1/2

)
, (5.2.39)

subject to Sp
(

(Σ
1/2
Z (Σρ − ΣN)Σ

1/2
Z )1/2

)
≥ Dmax −D. (5.2.40)

We further change the variable of optimization to

X :=
(

Σ
1/2
Z (Σρ − ΣN)Σ

1/2
Z

)1/2

. (5.2.41)
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Thus, ΣN = Σρ − Σ
−1/2
Z X2Σ

−1/2
Z . Then the above problem is equivalent to

min
X
− g

(√
det{Σ−X2}

det{ΣZ}
− 1

2

)
, (5.2.42)

0 4 X2, det
(
Σ−X2

)
≥ 1

4
det(ΣZ), (5.2.43)

c ≤ Sp (X) , (5.2.44)

where Σ := Σ
1/2
Z ΣρΣ

1/2
Z and c = Dmax − D. The above optimization problem is

convex and can be solved using KKT conditions. Note that inequalities of (5.2.43)

are feasibility constraints, therefore, the Lagrangian function is of the form:

L(X) = −g

(√
det{Σ−X2}

det{ΣZ}
− 1

2

)
− πSp (X) . (5.2.45)

We develop the KKT conditions,

1

2
φ(X) · log

φ(X) + 1/2

φ(X)− 1/2

[
(Σ−X2)−1X +X(Σ−X2)−1

]
= πI (5.2.46)

π(Sp (X)− c) = 0, π ≥ 0 (5.2.47)

where φ(X) :=
√

det{Σ−X2}
det{ΣZ}

. Assuming the spectral decomposition of matrix Σ =

Udiag(σ2
i )i=1:2U

T , we only consider the solutions of the form X = Udiag(xi)U
T

which have the same diagonalization as Σ. This reduces the KKT conditions to the
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following system of equations:

φ(X) · log
φ(X) + 1/2

φ(X)− 1/2

xi
σ2
i − x2

i

= π, for i = 1, 2 (5.2.48)∑
i

xi = c, π ≥ 0. (5.2.49)

The term φ(X) does not depend on the index i, and therefore, it is just a scaling of

π which can be absorbed in

π̃ = π

(
φ(X) log

φ(X)− 1/2

φ(X) + 1/2

)−1

(5.2.50)

This gives the final form of the solution,

xi
σ2
i − x2

i

= π̃, for i = 1, 2 (5.2.51)∑
i

xi = c, π̃ ≥ 0. (5.2.52)

It suffices to show that for any given cmin < c < cmax, there exists a solution for the

above equations. Solving (5.2.48) for xi gives

xi = − 1

2π̃
+

√
(

1

2π̃
)2 + σ2

i , for i = 1, 2, (5.2.53)

which is always non-negative and hence always valid. Then by defining y :=

1/(2π̃), we rewrite the second equation as a function of y,

f(y) := −ny +
n∑
i=1

√
y2 + σ2

i = c, (5.2.54)
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where in this case n = 2. Recall that c = Dmax−D and D ∈ (Dmin, Dmax). Therefore,

cmin = 0. The value of cmax corresponds to Dmin which is the Wasserstein distance

of the QC system, implied by the feasibility constraint (5.2.43):

det
{

Σ−X2
}
≥ 1

4
det{ΣZ}. (5.2.55)

We next provide a loose upperbound ĉmax >> cmax by relaxing the constraint to

det{Σ−X2} ≥ 0. Therefore, ĉmax = Sp
(
Σ1/2

)
=
∑

i σi.

we have that cmin = 0 results in y = ∞ and cmax =
∑

i σi results in y = 0, thus

both have valid solutions. Further, f(y) function is a monotonically decreasing

function of y, therefore, there is a one-to-one correspondence between values of

c ∈ (cmin, ĉmax) and the values of y ∈ (0,∞). Thus, for any feasible value of c ∈

(cmin, ĉmax), there exists a solution of the formX = Udiag(xi)i=1,2U
T . This approach

is similar to the solution in the classical case proved in [8].

5.2.5 The multi-mode Gaussian case with independent modes

We can easily extend the previous one-mode Gaussian system to s-mode indepen-

dent Gaussian system, where source state is an s-mode Gaussian state with a block

diagonal matrix Σρ = ⊕si=1Σρi , where Σρi is the covariance matrix of i-th mode.

Similarly, we assume the output distribution to be a multivariate Gaussian system

with s independent 2-dimensional Gaussian distributions comprising the covari-

ance ΣZ = ⊕si=1ΣZi . Therefore, in this case the optimization problem in (5.2.39) is
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generalized as follows

R(D) := min
ΣNi

,

i=1,··· ,s

s∑
i=1

[
g

(√
det{Σρi} − 1/2

)
− g

(√
det{ΣNi} − 1/2

)]
(5.2.56)

subject to
s∑
i=1

1

s
Sp
(

(Σ
1/2
Zi

(Σρi − ΣNi)Σ
1/2
Zi

)1/2
)
≥ Dmax −D. (5.2.57)

Again, similar to (5.2.41) we change the variables of optimization to

Xi :=
(

Σ
1/2
Zi

(Σρi − ΣNi)Σ
1/2
Zi

)1/2

for i = 1, · · · , s. (5.2.58)

This results in the following equivalent optimization problem

min
Xi,

i=1,...,s

−
s∑
i=1

g

(√
det{Σi −X2

i }
det{ΣZi}

− 1

2

)
, (5.2.59)

0 4 X2
i , det

(
Σi −X2

i

)
≥ 1

4
det(ΣZi), (5.2.60)

c ≤
∑
i

Sp (Xi) , (5.2.61)

where Σi := Σ
1/2
Zi

ΣρiΣ
1/2
Zi

and c = Dmax − D. The above problem is solved with a

similar approach as one-mode case by considering Xi to be same diagonalizable as

Σi, which results in an extension of the one-mode solution (5.2.51) as follows:

φ(Xi) · log
φ(Xi) + 1/2

φ(Xi)− 1/2

xij
σ2
ij − x2

ij

= π, for i = 1, · · · , s, j = 1, 2 (5.2.62)

s∑
i=1

2∑
j=1

xij = c. (5.2.63)

where for the i-th mode, Xi = Uidiag(xij)j=1,2U
T
i and Σi = Uidiag(σ2

ij)j=1,2U
T
i .
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5.2.6 QC Wasserstein distance (Dmin)

The other extreme point in the rate-limited Wasserstein distance curve is the Wasser-

stein distance itself (Dmin), which is the point at which no constraints are applied

to the rate of transmission. In the classical settings, the 2nd-order Wasserstein dis-

tance between Gaussian distributions occurs at R =∞. However, in what follows

we show that this is not the case in QC systems. The following optimization prob-

lem obtains the Wasserstein distance,

W 2
2 (ρ||πZ) = min

X
Dmax − Sp (X) (5.2.64)

subject to: ∆−1ΣN ≥
1

4
I or det

{
Σ−X2

}
≥ 1

4
det{ΣZ}. (5.2.65)

This simplifies in the one-mode case to

max
xi

∑
i

xi (5.2.66)

subject to
2∏
i=1

(σ2
i − x2

i ) ≥
1

4
det{ΣZ}. (5.2.67)

This again is a convex function that has the following solution:


1

2λ
= x2(x2

1 − σ2
1) = x1(x2

2 − σ2
2)

(x2
1 − σ2

1)(x2
2 − σ2

2) = 1
4

det{ΣZ}
. (5.2.68)

And the minimum required rate for this QC Wasserstein distance is

RW2 = g

(√
det{Σρ} − 1/2

)
(5.2.69)
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which is the von-Neumann entropy of the quantum source state.

5.2.7 Numerical Example of Quantum-Classical Gaussian system

We consider an example of the above system when the input state is a Gaussian

quantum state and output system is a classical Gaussian distribution with covari-

ance matrices

Σρ =

 1.0783 −0.8976

−0.8976 1.3155

 ,ΣZ =

 1.7471 −1.2224

−1.2224 0.8583

 . (5.2.70)

One can find the Symplectic eigenvalues of the input covariance matrix as αs =

0.7828 and the eigenvalues of the output matrix as λ1,2 = 0.002, 2.6034. The dis-

placement is assumed to be zero for both source and destination. For this system,

the suboptimal OC rate-distortion function generated by calculating the noise co-

variance from the above expressions is given in Figure 5.1. The interesting obser-

vation is that in contrast to the classical Gaussian optimal transport for which the

Wasserstein distance is achieved when the information rate is infinite (R = ∞),

in the QC setting, due to the Heisenberg Uncertainty principle, the maximum rate

cannot be infinite as the accessible information of measurement is limited accord-

ing to Theorem 2 of [30]. The simulations are performed using Strawberry fields

[35] and Walrus [28] packages and Matlab.
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Figure 5.1: Output Constrained Rate-Distortion function of the Gaussian system
(5.2.70). The inverse of this plot is the rate-limited QC Wasserstein distance of 2nd

order.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

We would also like to mention some key differences between our source coding

theorem and other works. Specifically, in comparison to [17], our system has the

additional constraint that the output must follow a predetermined distribution in

the exact i.i.d. format. This provides a multi-letter protocol that governs the op-

timal transportation of a quantum source state to a target distribution, through a

rate-limited classical channel with limited common randomness. In contrast to the

conventional rate-distortion theorem for which the common randomness provides

no performance improvements, in this problem, the common randomness can help

reduce the communication rate by providing the extra randomness required to en-

sure the output has the desired i.i.d. distribution.

The proof of the discrete coding theorem builds on analytical tools such as Win-

ter’s measurement compression theorem [53], the non-feedback measurement sim-

ulation [38] and the batch post-processing of [49]. In contrast to their work where a
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quantum-classical channel is being faithfully simulated in a nearly perfect sense, in

this work, we ensure the output is following the desired distribution in the perfect

i.i.d. format while maintaining the distortion threshold. Moreover, the analysis

of the continuous-variable quantum systems is also one of the key contributions

of this paper as the proofs of the discrete theorems do not directly apply to the

continuous case as was discussed in Section 3.

Consider an example where we have a sequence of product quantum Gaussian

states. Suppose we want to store these states’ information in a classical memory

system for later use. Our goal is to prepare quantum states that are as similar

as possible to the original source states, with the constraint that these states also

need to be product Gaussian states. In this scenario, our theorem can help by first

estimating the amount of quantum data lost due to the entanglement-breaking

channel in the form of the minimum distortion from the source. It also can calculate

the required storage space in the classical memory system.

6.2 Conclusion

We introduced the output-constrained lossy source coding with limited classical

common randomness for the quantum-to-classical systems. We further used this

source coding scheme to establish the concept of rate-limited quantum-to-classical

optimal transport. The theorem provides a computable single-letter characteriza-

tion of the achievable rate region (R,Rc) to fulfill the distortion level in accordance

with a generally defined form of distortion observable.

Next, the example of qubit systems with unlimited common randomness was

analytically evaluated. The analytical expression for the rate-limited QC optimal
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transport was provided in the form of a transcendental equation. Furthermore,

the minimum achievable transportation cost in case of an unlimited communica-

tion rate and common randomness (the lowest possible distortion in the OC rate-

distortion curve ) was provided using analytical expressions, which show that in

the case of the source qubit state having a diagonal density operator along the

canonical eigenbasis and using the entanglement fidelity distortion measure, the

optimal transport scheme recover the classical optimal transport scheme for the

minimum transportation cost.

Moreover, we extended this theorem to the continuous-variable quantum sys-

tems with the help of an alternative continuous coding protocol. Finally, using the

continuous coding theorem we evaluated the rate-limited Wasserstein distance of

2nd order for the Gaussian quantum systems under the presence of the unlimited

amount of common randomness. The proof is built upon a Gaussian measurement

optimality theorem which states that for a measurement system with Gaussian

quantum source state and Gaussian output distribution, Gaussian measurement

POVM minimizes the Groenwold’s information while maintaining the distortion

constraint.

The QC rate-limited 2-Wasserstein distance plot shows that, unlike the classical

optimal transport for which the rate can grow to infinity, in the QC system, the rate

has a finite limit due to Heisenberg’s uncertainty principle.

In future works, we aim at finding the rate-limited optimal transport for the

variants of this system, for example, the QC measurement optimal transport with

quantum side information. Moreover, the optimal transport coding theorems can

also be provided for the case of fully quantum channels which would generalize
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the Quantum Wasserstein distance in [19]. In addition to this, the case of one-shot

transmission is of particular interest which will provide more practical applica-

tions of the subject.
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Appendix A

Proof of Theorem 4.1

The optimization problem in (4.1.3) is equivalent to the following entropy maxi-

mization problem

max
M0,M1

q0H(ρ0) + q1H(ρ1)

s.t. q0 + q1 = 1

Tr{Mxρ} = qx, x ∈ {0, 1}

ρx =
√
ρMx
√
ρ/qx, x ∈ {0, 1}

ρ0q0 + ρ1q1 = ρ

〈0| ρM0ρ |0〉+ 〈1| ρM1ρ |1〉 ≥ 1−D

M0 +M1 = I

M0,M1 ≥ 0

where H(ρ) = −Tr{ρ ln ρ} is the von-Neumann entropy function. Note that al-

though the distortion formula in (4.1.2) has transposed POVM operator MTϕ
0 , we
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can ignore this transpose in the distortion constraint of the above optimization

problem. The reason is that the eigenvalues of ρx are preserved under the transpo-

sition with respect to any basis. This implies that the entropy function also does

not change under transposition,

H(ρx) = H(
√
ρMT

0

√
ρ).

Therefore, we may remove the transpose from all the terms in the optimization

problem. Then, by defining N =
√
ρM0
√
ρ the conditional post-measurement ref-

erence state given outcome zero, as the variable of optimization, the optimization

problem reduces to the following standard form

min
N

Tr{N ln(N/q0)}+ Tr

{
(ρ−N) ln

(
ρ−N
1− q0

)}
, (A.0.1)

s.t., 〈0| √ρN√ρ |0〉+ 〈1|√ρ(ρ−N)
√
ρ |1〉 ≥ 1−D, (A.0.2)

Tr{N} = q0, (A.0.3)

0 � N � ρ, (A.0.4)

where ρ is the input state and 0 ≤ q0 ≤ 1 is the zero-output probability, which are

the given parameters of the problem. This is a convex optimization problem, as

the objective function comprises negative entropy functions that are concave, and

the constraint is linear. The distortion constraint (A.0.2) is further simplified to

Tr{NG} ≥ 1−D −
〈
1|ρ2

∣∣1〉 , (A.0.5)
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where

G :=
√
ρ

1 0

0 −1

√ρ. (A.0.6)

A.1 Zero-Crossing Point

To find the zero crossing point, we first ignore the distortion constraint and find

the optimal operator when D → ∞. Thus, simply taking the derivative of the

objective function and equating it to zero gives

df(N)

dN
=

d

dN

[
Tr

{
N ln

N

q0

}
+ Tr

{
(ρ−N) ln

ρ−N
1− q0

}]

=

(
I + ln

N

q0

)T
−
(
I + ln

ρ−N
1− q0

)T
:= 0

=⇒ ln
N

q0

= ln
ρ−N
1− q0

=⇒ N = q0ρ

This implies the measurement POVMs M0 = q0I, M1 = (1 − q0)I in the infinite-

distortion case. Substituting these values into the mutual information expression

gives I(R;X) = 0 which means the communication rate will be zero and the input

and output will be independent, which is intuitively acceptable. This is also ob-

served from the M0,M1 which both apply the same identity operator on the source
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state regardless of the outcome. Substituting this N = q0ρ in the distortion con-

straint gives the zero-crossing point

DR0 := 1− q0

〈
0
∣∣ρ2|0

〉
− (1− q0)

〈
1
∣∣ρ2|1

〉
.

Thus, for all values of entanglement fidelity distortion in the range D ≥ DR0 , the

output and reference state are independent so the rate is zero.

A.2 Non-Zero Rate Region

Next, in the non-zero region DOT ≤ D ≤ DR0 , the distortion constraint is active.

Recall that the convex problem (A.0.1) is on the domain of positive semi-definite

Hermitian matrices N ∈ Sn+. Also the trace of Nopt is constrained to be Tr{N} = q0.

So the states are shown in the expanded matrix form

ρ =

ρ1 ρ2

ρ∗2 1− ρ1

 , N =

 n noff

n∗off q0 − n

 ,
where n, ρ1 ∈ R+ and noff, ρ2 ∈ C. Further, the PSD constraints of (A.0.4) reduce to

det(N) ≥ 0 and det(ρ−N) ≥ 0. Thus we have

|noff|2 ≤ n(q0 − n), (A.2.1)

|ρ2 − noff|2 ≤ (ρ1 − n)(1− ρ1 − q0 + n). (A.2.2)
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Next, examining the objective function (A.0.1) and constraints shows a symmetry

among the value of noff. Note that the first term in (A.0.1) is a function of eigen-

values of matrix N which only depends on |noff|. Similarly, the second term is only

a function of |ρ2 − noff|. These two expressions can be illustrated as two circles in

the complex plane of noff. These circles create a symmetry w.r.t. the direction of

vector ρ2 in this complex plane. Moreover, we can rewrite the LHS of distortion

constraint (A.0.5) as

Tr{NG} = Tr


 n noff

n∗off q0 − n


 g1 g2ρ2/|ρ2|

g2ρ
∗
2/|ρ2| g3




= (g1 − g3)n+
2g2

|ρ2|
Re{noff ρ

∗
2}+ q0g3.

By expanding the term Re{noff ρ
∗
2} in above expression, the distortion function is

Re{noff}Re{ρ2}+ Im{noff} Im{ρ2}+ f(n, q0, ρ) ≥ 0,

where f(n, q0, ρ) is a function comprised of the remaining terms. This is a half-

plane in the complex plane of noff, with its slope orthogonal to the slope of symme-

try line ρ2. Therefore, the objective function and all the constraints are symmetric

w.r.t. the line ρ2 in the complex plane. In view of the fact that the problem is a

convex program, the solution must occur on the line of symmetry. This means the

optimal solution has the shape

Nopt =

 n sρ2/|ρ2|

sρ∗2/|ρ2| q0 − n

 , (A.2.3)
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where n, s ∈ R are the variables of optimization.

The active distortion constraint is also expanded in the form

Tr{NG} = 1−D −
〈
1|ρ2

∣∣1〉
=⇒

(
g1 − g3

)
n+

(
2g2

)
s+

(
q0g3 +

〈
1|ρ2

∣∣1〉− 1 +D
)

= 0, (A.2.4)

where G is defined in (A.0.6) and its elements are obtained by

G :=

 g1
g2

|ρ2|ρ2

g2

|ρ2|ρ
∗
2 g3

 =
1

1 + 2k

(ρ1 + k)2 − |ρ2|2 (2ρ1 − 1)ρ2

b(2ρ1 − 1)ρ∗2 |ρ2|2 − (1− ρ1 + k)2

 ,
with k :=

√
det{ρ}. Therefore, expanding the objective function yields the follow-

ing scalar convex optimization problem

min
n,s

∑
i=1,2

λNi(n, s) ln(λNi(n, s)/q0) +
∑
i=1,2

λdi(n, s) ln(λdi(n, s)/(1− q0))

s.t.
(
g1 − g3

)
n+

(
2g2

)
s+

(
q0g3 +

〈
1|ρ2

∣∣1〉− 1 +D
)

= 0

where n, s ∈ R. The terms λNi and λdi are the eigenvalues of N and ρ − N respec-

tively, obtained by

λN1,N2 =
q0

2
± E1(n, s),

λd1,d2 =
1− q0

2
± E2(n, s),

where E1(n, s) and E2(n, s) are as defined in (4.1.8), (4.1.9).
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A.2.1 The Transcendental Equation of Optimal Solution

We solve by substituting the linear constraint into the objective function, then tak-

ing the derivative w.r.t. n and equating it to zero. The final solution becomes in the

form of the following transcendental system of equations of n, s which provides

the optimal values nopt and sopt:

−as+ b(n− q0/2)

E1

ln
q0/2 + E1

q0/2− E1

+
−a(s− |ρ2|) + b(n− ρ1 + 1−q0

2
)

E2

ln
1−q0

2
+ E2

1−q0
2
− E2

= 0

an+ bs+ c = 0

where a := g1 − g3, b := 2g2 and c := q0g3 + 〈1|ρ2|1〉 − 1 + D are the parameters of

the linear distortion constraint and are given by

a = 1− 4|ρ2|2

1 + 2k
,

b =
2|ρ2|(2ρ1 − 1)

1 + 2k
,

g3 = ρ1 − 1 +
2|ρ2|2

1 + 2k
.

Based on the optimal values nopt, sopt, the optimal POVM operators are

M0,opt =
√
ρ−1Nopt

√
ρ−1, M1,opt = I −M0,

Nopt =

 nopt sopt. ρ2/|ρ2|

sopt. ρ
∗
2/|ρ2| q0 − nopt

 .
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Appendix B

Proof of Theorem 4.2

To find the optimal transportation costDOT of the Qubit system, we assume having

an unlimited available rate and find the minimum possible distortion. In this case,

the problem reduces to

min
M0,M1

Def := 1−
∑
x

〈x|ρMxρ|x〉 ,

s.t., M0,M1 ≥ 0,

M0 +M1 = I,

Tr{M0ρ} = q0.

Note that we used the same argument as in Appendix A to remove the transpose

operator from the formulations. Then again using the change of variable N :=

√
ρM0
√
ρ reduces the problem to the following semi-definite programming, whose
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result is the operator for optimal transport NOT

min
N

1−
〈
1|ρ2

∣∣1〉− Tr{NG},

s.t., 0 � N � ρ,

Tr{N} = q0.

Similar to the rate-distortion problem in the previous section, the symmetry im-

plies NOT to be in the form of (A.2.3). With this assumption, the problem reduces

to the scalar optimization below:

min
n,s

f0(n, s) := −(g1 − g3)n− (2g2)s+ 1− q0g3 −
〈
1|ρ2

∣∣1〉 ,
s.t. f1(n, s) :=

(
n− q0

2

)2

+ s2 <
(q0

2

)2

,

f2(n, s) :=

(
n−

(
ρ1 −

1− q0

2

))2

+ (s− |ρ2|)2 <

(
1− q0

2

)2

.

This is quadratic-constrained linear programming which is a convex problem. By

forming the Lagrangian function

L(n, s, λ1, λ2) = f0(n, s) + λ1f1(n, s) + λ2f2(n, s), λ1,2 ≥ 0

taking the partial derivatives with respect to n, s and equating to zero we obtain

the optimal variables as a function of λi Lagrange multipliers,

nopt(λ1, λ2) =
a+ q0λ1 + 2(ρ1 − 1−q0

2
)λ2

2(λ1 + λ2)
,

sopt(λ1, λ2) =
b+ 2λ2|ρ2|
2(λ1 + λ2)

.
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Then we substitute above expressions in the following complementary slackness

conditions

λ1f1

(
nopt(λ1, λ2), sopt(λ1, λ2)

)
= 0,

λ2f2

(
nopt(λ1, λ2), sopt(λ1, λ2)

)
= 0,

λ1,2 ≥ 0,

which result in the following scenarios.

1. Minimum happens at f2 circle (λ1 = 0, λ2 6= 0):

Because λ2 6= 0, then f2(nopt, sopt) = 0. This results in

λ2 =

√
a2 + b2

1− q0

.

The corresponding optimal values for variables are obtained as

sopt =
b(1− q0)

2
√
a2 + b2

+ |ρ2| =
b√

1− 4|ρ2|2
1− q0

2
+ |ρ2|,

nopt =
a(1− q0)

2
√
a2 + b2

+ ρ1 −
1− q0

2
=

(
a√

1− 4|ρ2|2
− 1

)
1− q0

2
+ ρ1,

DOT = 1− q0g3 −
〈
1|ρ2

∣∣1〉− 1− q0

2

√
a2 + b2 − a(ρ1 −

1− q0

2
)− b|ρ2|

= q0(1− ρ1) + det(ρ) +
1− q0

2

(
1−

√
1− 4|ρ2|2

)
.

Note that a2 + b2 = 1 − 4|ρ2|2. Also, substituting the above values into the

feasibility condition for f2(nopt, sopt) ≤ 0 provides the conditions required for
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this scenario:

1− q0

2
+

1− q0√
a2 + b2

(
a(ρ1 −

1

2
) + b|ρ2|

)
≤ det(ρ).

2. Minimum happens at f1 circle (λ1 6= 0, λ2 = 0):

Because λ1 6= 0, then f1(nopt, sopt) = 0. This results in

λ1 =

√
a2 + b2

q0

.

The corresponding optimal values for variables are obtained as

sopt =
bq0

2
√
a2 + b2

=
b√

1− 4|ρ2|2
q0

2
,

nopt =
aq0

2
√
a2 + b2

+
q0

2
=

(
a√

1− 4|ρ2|2
+ 1

)
q0

2
,

DOT = 1− q0g3 −
〈
1|ρ2

∣∣1〉− q0

2

√
a2 + b2 − aq0

2

= (1− q0)ρ1 + det(ρ) +
q0

2

(
1−

√
1− 4|ρ2|2

)
.

Also, substituting the above values into the feasibility condition for f2(nopt, sopt) ≤

0 provides the conditions required for this scenario:

q0

2
− q0√

a2 + b2

(
a(ρ1 −

1

2
) + b|ρ2|

)
≤ det(ρ).

3. Minimum happens at intersection of circles (λ1 6= 0, λ2 6= 0):

If neither of the conditions of the above scenarios is satisfied, then the result
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happens at the intersection of two circles

(
n− q0

2

)2

+ s2 =
(q0

2

)2

,(
n−

(
ρ1 −

1− q0

2

))2

+ (s− |ρ2|)2 =

(
1− q0

2

)2

,

which is obtained by the following expressions under separate conditions:

• If a ≥ b,

sopt =
2B + q0A+ A

√
∆

2(1 + A2)
,

nopt =
q0 − 2AB +

√
∆

2(1 + A2)
.

• If a < b,

sopt =
2B + q0A− A

√
∆

2(1 + A2)
,

nopt =
q0 − 2AB −

√
∆

2(1 + A2)
.

where

A :=
1− 2ρ1

2|ρ2|
,

B :=
ρ1q0 − det(ρ)

2|ρ2|
,

∆ := q2
0 − 4B2 − 4q0AB.

Then the optimal transport value can be obtained by substituting the above
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results in the expression below:

DOT = 1− q0g3 −
〈
1|ρ2

∣∣1〉− anopt − bsopt.
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Appendix C

Proof of Useful Lemmas

C.1 Proof of Lemma 2.2

The proof appeals to the time-sharing method similar to the proof of Lemma 1 of

[45]. We know that by definition 2.5, the rate-distortion function R(D;Rc, ρ||QX)

is the infimum of the achievable rates for fixed (Rc, D). Also by using the time-

sharing argument, we know that R(D, ρ||QX) is a connected interval. Therefore,

having two distortion threshold values D1 and D2 and a value of α ∈ (0, 1), by

definition, for any δ > 0 there exists an achievable rate Ri in the range

R(Di;Rc, ρ||QX) ≤ Ri ≤ R(Di;Rc, ρ||QX) + δ, i = 1, 2.

In other words, there exist coding schemes (n,R1, Rc) and (n,R2, Rc) with fixedQn
X

output distribution satisfying

Tr
{

∆(n)(Dn(i) ◦Mn
(i))(φ

RA
ρ )⊗n

}
≤ Di + δ, i = 1, 2
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whereMn
(i) and Dn(i) are the measurement and decoder of each source code respec-

tively. Next, we define a mega-block of source code with size nN where n is the

size of each inner block and N is the number of inner blocks. Then we set up the

system such that the first kN ∈ N blocks use the first coding scheme, and the rest

use the second coding scheme as

MnN :=

Mn
(1), ...,Mn

(1)︸ ︷︷ ︸
kN -times

Mn
(2), ...,Mn

(2)︸ ︷︷ ︸
N − kN -times

 , DnN :=

Dn(1), ...,Dn(1)︸ ︷︷ ︸
kN -times

Dn(2), ...,Dn(2)︸ ︷︷ ︸
N − kN -times

 .

Also, set kN such that limM→∞
kM
M

= α. The new source coding has a rate of

Rnew =
kN
N
R1 +

N − kN
N

R2

≤ kN
N
R(D1;Rc, ρ||QX) +

N − kN
N

R(D2;Rc, ρ||QX) + δ,

with distortion level

Dnew = Tr
{(

∆(n)
)⊗N

(DnN ◦MnN)(φRAρ )⊗nN
}
≤ KN

N
D1 +

N − kN
N

D2 + δ.

Therefore, by assigning proper values to N and δ, we ensure that

Rnew ≤ αR(D1;Rc, ρ||QX) + (1− α)R(D2;Rc, ρ||QX) + ε,

Dnew ≤ αD1 + (1− α)D2 + ε,

for the fixed ε of the definition 2.3. This new coding scheme is achievable as it

is the time-sharing between two achievable source codes. Then, according to the

definition of the achievable rate region R(D, ρ||QX), the minimum rate of new
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coding is bounded by

R(Dnew;Rc, ρ||QX) ≤ Rnew.

Substituting the upperbounds into the above inequality gives

R

(
αD1 + (1− α)D2;Rc, ρ||QX ,

)
≤ αR(D1;Rc, ρ||QX) + (1− α)R(D2;Rc, ρ||QX) + ε.

Since ε can be arbitrarily small, then this inequality converges to the exact convex

inequality. Thus, the proof holds.

C.2 Proof of Lemma 3.5

By definition of the weak convergence of operators in [[29] section 11.1], it suffices

to show that for each subset B ∈ B and any two arbitrary states φ, ψ ∈ H, the

inner-product converges as

lim
k1→∞

〈
ψ
∣∣∣M̂k1(B)

∣∣∣φ〉 = 〈φ|M(B)|ψ〉 .

Starting with I − Πk1 , we show that this operator vanishes to zero when k1 → ∞,

for any ψ, φ ∈ H

lim
k1→∞

∣∣∣ 〈φ|(I − Πk1)|ψ〉
∣∣∣ ≤ lim

k1→∞
‖(I − Πk1) |ψ〉‖2.‖(I − Πk1) |φ〉‖2

= lim
k1→∞

√
〈φ|(I − Πk1)|φ〉 ·

√
〈ψ|(I − Πk1)|ψ〉,
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where the inequality appeals to Cauchy-Schwartz’s inequality for Hilbert space.

By using the definition of the projector operator and Bessel’s inequality and the

fact that |n〉 are orthonormal set, we have

〈φ|Πk1|φ〉 =

k1∑
n=1

| 〈n|φ〉 |2 ≤ ‖φ‖2.

The above inequality changes to equality when the orthonormal set is a complete

orthonormal basis (Parseval’s identity), which is when k1 → ∞. Substituting this

into the inner-product expression proves that

lim
k1→∞

∣∣∣ 〈φ|(I − Πk1)|ψ〉
∣∣∣ = 0.

Moreover, for the other operators, we have

lim
k1→∞

〈φ|M(B)Πk1|ψ〉 = lim
k1→∞

〈φ′|Πk1 |ψ〉

= 〈φ′|ψ〉

= 〈φ|M(B)|ψ〉 ,

where |φ′〉 = M(B) |φ〉, and the argument is similar to previous operator. These

together prove that the sequence of POVMs M̂k1 weakly converge to theM POVM.
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C.3 Proof of Lemma 3.6

We condition the average n-letter distortion on the sequence of clipping errors Ank1

as follows:

dn(Rn, X̂n
k1,K2
|¬Ece) = EAnk1

|¬Ece

[
dn(Rn, X̂n

k1,K2
|Ank1

)
]

= EAnk1
|¬Ece

[
1

n

n∑
i=1

d(Ri, X̂i,k1,K2|Ank1
)

]

= EAnk1
|¬Ece

 1

n

∑
i:Ai,k1

=1

d(Ri, X̂i,k1,K2|Ank1
) +

1

n

∑
i:Ai,k1

=0

d(Ri, X̂i,k1,K2|Ank1
)


= ET |¬Ece

[
n− T
n

d(R, X̂local|Ak1 = 1) +
T

n
dT (RT

k1
, X̂T

k1,K2
)

]
≤ (Pk1 + εcl)d

(
R, X̂local|Ak1 = 1

)
+ ET |¬Ece

[
dT (RT

k1
, X̂T

k1,K2
)
]

(C.3.1)

where in the last equality, we generate a local random value X̂local at Bob’s side

for any sample with an asserted error bit Ai,k1 = 1. Then for any fixed T = t,

we expand the second term inside the expectation, by adding and removing an

intermediate term

lim
n→∞,
tmin→∞

dt(R
t
k1
, X̂ t

k1,K2
)

= lim
n→∞,
tmin→∞

dt(R
t
k1
, X ′

t
k1,K2

) +
(
dt(R

t
k1
, X̂ t

k1,K2
)− dt(Rt

k1
, X ′

t
k1,K2

)
)

≤ d(Rk1 , X
′
k1,K2) + lim

n→∞,
tmin→∞

(
dt(R

t
k1
, X̂ t

k1,K2
)− dt(Rt

k1
, X ′

t
k1,K2

)
)
. (C.3.2)

The first term in inequality follows for sufficiently large t from the discrete rate-

distortion theorem. Note that we have coupled the parameters n, k1, εcl in a way

117

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – H. Garmaroudi; McMaster University – Electrical and Computer
Engineering

that the value of tmin is sufficiently large.

The second part of (C.3.2) is the distortion caused by the optimal transport

block in the receiver. However, unlike the classical case, we cannot use triangle

inequality in this system. Therefore, we expand the distortions for each one and

find the difference. Thus, assume that {Λ
X tK2

xt }xt∈X tK2
is the t-collective measurement

of the t-letter discrete rate-distortion coding which according to discrete coding

theorem generates X̃ t with perfect i.i.d. pmf µXK2
. We also define the continu-

ous measurement POVM Λ̂ ≡ {Λ̂(B), B ∈ B(X t)} which combines the discrete

measurement coding with the output stage optimal transport block. For any event

A ⊆ B(X t) we define

Λ̂(A) :=
∑

xt∈X tK2

Λ
X tK2

xt πtOT

(
A
∣∣∣xt),

where πOT (.|x) for x ∈ XK2 is the optimal transport channel from the discrete space

to the continuous space. Specifically, as the discrete coding produces i.i.d. discrete

pmf µXK2
and the final output is required to have i.i.d. continuous distribution µX ,

then the optimal transport is a simple dequantization channel given for any event

A ⊆ B(X t) by

πtOT

(
A
∣∣∣xt) =

µtX(A ∩RQK2
(xt))

µtX (RQK2(xt))
, (C.3.3)
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whereRQK2(xt) is the quantization region of xt ∈ X t
K2

. Next, the i-th letter distor-

tion is expanded as follows:

d(Ri,k1 , X
′
i,k1,K2

) =
∑

xt∈X tK2

Tr

{
Tr[t]\i

{
ωk1Λ

X tK2

xt ωk1

}
∆(xi)

}

=
∑

xi∈XK2

Tr

Tr[t]\i

ωk1

 ∑
x[t]\i∈X t−1

K2

Λ
X tK2

xt

ωk1

∆(xi)


=
∑
x∈XK2

Tr
{
ρ̂Rix ∆(x)

}
µXK2

(x), (C.3.4)

where ωk1 :=
√
ρ⊗tk1

and we defined

ρ̂Rix :=
1

µXK2
(x)

Tr[t]\i

ωk1

 ∑
x[t]\i∈X t−1

K2

Λ
X tK2

xt

ωk1

 ,

as the operator representing the unnormalized post-measured reference state of
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the i-th system after discrete measurement POVM. Also,

d(Ri,k1 , X̂i,k1,K2)

=

∫
X t

Tr
{

Tr[t]\i

{
ωk1Λ̂(dzt)ωk1

}
∆(zi)

}
=

∫
X t

Tr

Tr[t]\i

ωk1

 ∑
xt∈X tK2

Λ
X tK2

xt πtOT

(
dzt
∣∣∣xt)

ωk1

∆(zi)


=

∑
xt∈X tK2

∫
RQK2

(xt)

Tr

{
Tr[t]\i

{
ωk1Λ

X tK2

xt πtOT

(
dzt
∣∣∣xt)ωk1

}
∆(zi)

}

=
∑

xi∈XK2

∫
RQK2

(xi)

Tr

{
Tr[t]\i

{
ωk1

(∑
x[t]\i

Λ
X tK2

xt

(∫
RQK2

(x[t]\i)

πt−1
OT

(
dz[t]\i|x[t]\i

)))
ωk1

}

·∆(zi)πOT (dzi|xi)

}

=
∑

xi∈XK2

∫
RQK2

(xi)

Tr

{
Tr[t]\i

{
ωk1

(∑
x[t]\i

Λ
X tK2

xt

)
ωk1

}
∆(zi)πOT (dzi|xi)

}

=
∑
x∈XK2

Tr

{
ρ̂Rix

(∫
RQK2

(x)

∆(z)πOT (dz|x)

)}
µXK2

(x), (C.3.5)

Substituting expressions (C.3.4) and (C.3.5), we find the distortion of the optimal

120

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – H. Garmaroudi; McMaster University – Electrical and Computer
Engineering

transport block as

dt(R
t
k1
, X̂ t

k1,K2
)− dt(Rt

k1
, X ′

t
k1,K2

)

=
1

t

t∑
i=1

∑
x∈XK2

Tr

{
ρ̂Rix

(∫
RQK2

(x)

∆(z)πOT (dz|x)−∆(x)

)}
µXK2

(x)

=
∑
x∈XK2

Tr

{
ρ̄Rt,x

(∫
RQK2

(x)

∆(z)πOT (dz|x)−∆(x)

)}
µXK2

(x)

=
∑
x∈XK2

Tr

{
ρ̄Rt,x

(∫
RQK2

(x)

(
∆(z)−∆(x)

)
πOT (dz|x)

)}
µXK2

(x)

=
∑
x∈XK2

∫
RQK2

(x)

Tr
{
ρ̄Rt,x

(
∆(z)−∆(x)

)}
πOT (dz|x)µXK2

(x)

=

∫
X

Tr
{
ρ̄Rt,QK2

(x)

(
∆(x)−∆(QK2(x))

)}
µX(dx), (C.3.6)

where ρ̄Rt,x is the t-letter average PMR state defined as

ρ̄Rt,x :=
1

t

t∑
i=1

ρ̂Rix .

Substituting (C.3.6) and (C.3.2) into (C.3.1) provides the following bound

dn(Rn, X̂n
k1,K2
|¬Ece) = (Pk1 + εcl)d

(
R, X̂local|Ak1 = 1

)
+ d(Rk1 +X ′k1,K2

)

+

∫
X

Tr

{
lim

tmin→∞
ET |¬Ece

[
ρ̄RQK2

(x)

] (
∆(x)−∆(QK2(x))

)}
µX(dx)

= (Pk1 + εcl)d
(
R, X̂local|Ak1 = 1

)
+ d(Rk1 +X ′k1,K2

)

+

∫
X

Tr
{

¯̄ρRx

(
∆(x)−∆(QK2(x))

)}
µX(dx),
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where the asymptotic post-measured average reference state is given by

¯̄ρRx := lim
n→∞

1

n

n∑
i=1

ρRix .
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