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Abstract
The limited energy and computing power of small smart devices restrict their

ability to support a wide range of applications, especially those needing quick re-

sponses. Mobile edge computing offers a potential solution by providing computing

resources at the network access points that can be shared by the devices. This en-

ables the devices to offload some of their computational tasks to the access points.

To make this work well for multiple devices, we need to judiciously allocate the

available communication and computing resources among the devices. The main

focus of this thesis is on (near) optimal resource allocation in a K-user offloading

system that employ the time division multiple access (TDMA) scheme. In this

thesis we develop effective algorithms for the resource allocation problem that aim

to minimize the overall (cost of the) energy that the devices consume in com-

pleting their computational tasks within the specified deadlines, while respecting

the devices’ constraints. This problem is tackled for tasks that cannot be divided

and hence the system must make a binary decision as to whether or not a task

should be offloaded. This implies the need to develop an effective decision-making

algorithm to identify a suitable group of devices for offloading.

This thesis commences by developing efficient communication resource algo-

rithms that incorporate the impact of integer finite block length in low-latency

computational offloading systems with reserved computing resources. In particu-

lar, it addresses the challenge of minimizing total energy consumption in a binary

offloading scenario involving K users. The approach considers different approxi-

mations of the fundamental rate limit in the finite block length regime, departing

from the conventional asymptotic rate limits developed by Shannon. Two such
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alternatives, namely the normal approximation and the SNR-gap approximation,

are explored. A decomposition approach is employed, dividing the problem into an

inner component that seeks an optimal solution for the communication resource al-

location within a defined set of offloading devices, and an outer component aimed

at identifying a suitable set of offloading devices. Given the finiteness of the

block length and its integer nature, various relaxation techniques are employed to

determine an appropriate communication resource allocation. These include in-

cremental and independent roundings, alongside an extended search that utilizes

randomization-based methods in both rounding schemes. The findings reveal that

incremental randomized rounding, when applied to the normal approximation of

the rate limits, enhances system performance in terms of reducing the energy con-

sumption of the offloading users. Furthermore, customized pruned greedy search

techniques for selecting the offloading devices efficiently generate good decisions.

Indeed, the proposed approach outperforms a number of existing approaches.

In the second contribution, we develop efficient algorithms that address the

challenge of jointly allocating both computation and communication resources in

a binary offloading system. We employ a similar decomposition methodology as in

the previous work to perform the decision making, but this is now done along with

joint computation and communication resource allocation. For the inner resource

allocation problem we divide the problem into two components: determining the

allocation of computation resources and the optimal allocation of communication

resources for the given allocation of computation resources. The allocation of the

computation resources implicitly determines a suitable order for data transmission,

which facilitates the subsequent optimal allocation of the communication resources.
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In this thesis, we introduce two heuristic approaches for allocating the computation

resources. These approaches sequentially maximize the allowable transmission

time for the devices in sequence, starting from the largest leading to a reduction in

total offloading energy. We demonstrate that the proposed heuristics substantially

lower the computational burden associated with solving the joint computation–

communication resource allocation problem, while maintaining a low total energy.

In particular, its use results in substantially lower energy consumption than other

simple heuristics. Additionally, the heuristics narrow the energy gap in comparison

to a fictitious scenario in which each task has access to the whole computation

resource without the need for sharing

vi



Acknowledgements
First and foremost, I would like to express my heartfelt gratitude to my supervi-

sor, Dr. Timothy N. Davidson, for his unwavering guidance and generous support

throughout this journey. I am truly delighted to work under his supervision, and I

have learned a lot from him, not only technically but also in terms of his exemplary

conduct and interactions. Without his profound insights, continuous support, and

encouragement, this work would never have come to fruition

I extend my sincere appreciation to the administrative staff, especially, Cheryl

Gies, and Tracey Coop, for their efficient coordination and assistance in navigating

the intricacies of this academic pursuit.

To my beloved parents, Mona and Alireza, your unconditional support and

unwavering belief in me have been my foundation. I learned to be a fighter dur-

ing life’s storms from my greatest supporter, my father, and I would never ever

have been able to finish this journey without my mom’s encouragement and her

immeasurable love that she has been sending to me my whole life.

I am sincerely thankful for my friends Ali Vakili and Mehrad Mehrabi, who

consistently stay in touch with me, bridging the distance and keeping us connected,

regardless of the miles between us.

Last but not least, I owe a special debt of gratitude to Zahra. Her exceptional

support and unwavering encouragement have played a pivotal role in keeping me

motivated and focused. Your assistance have surpassed all expectations, and I am

truly indebted to you. Your presence has illuminated my journey.

vii



Abbreviations

AP Access Point

C-SMMDT Contiguous Sequentially Maximized Maximum Delivery

Time

CPU Central Processing Units

IEEE Institute of Electrical and Electronics Engineers

MCC Mobile Cloud Computing

MEC Mobile Edge Computing

NA Normal Approximation

NOMA Non-Orthogonal Multiple Access

OMA Orthogonal Multiple Access

QoS Quality of Service

SCA Successive Convex Approximation

SMMDT Sequentially Maximized Maximum Delivery Time

SNR Signal to Noise Ratio

TDMA Time Division Multiple Access

TTA Two-Term Approximation

viii



Contents

Abstract iv

Acknowledgements vii

Abbreviations viii

Declaration of Authorship xvi

1 Introduction 1

1.1 Mobile cloud computing . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Mobile edge computing . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Types of computation offloading . . . . . . . . . . . . . . . . . . . . 5

1.4 Developing effective computation offloading systems . . . . . . . . . 6

1.5 Constraints on Computing Resource Allocation in MEC Servers . . 10

1.6 Low-Latency Communications . . . . . . . . . . . . . . . . . . . . . 12

1.7 Contribution of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ix



2 TDMA-Based Multi-User Binary Computation Offloading in the

Finite-Block-Length Regime 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Offloading decisions . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Communication model . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 General problem formulation . . . . . . . . . . . . . . . . . . 27

2.3 Architecture of the algorithm . . . . . . . . . . . . . . . . . . . . . 29

2.4 Efficient algorithms for (2.10) . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Relaxation and deterministic incremental rounding . . . . . 32

2.4.2 A conservative relaxation of (2.10) for ψ̂(norm)
ϵk

(Pk, τk) . . . . 33

2.4.3 Efficiently solving (2.16) . . . . . . . . . . . . . . . . . . . . 36

2.4.4 Randomized incremental rounding . . . . . . . . . . . . . . . 41

2.4.5 Using ψ̂(2)
ϵ (P, τ) . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.6 Using ψ̂(gap)(P ; Γ) . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.7 Independent rounding . . . . . . . . . . . . . . . . . . . . . 44

2.5 An efficient algorithm for binary offloading . . . . . . . . . . . . . . 45

2.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6.1 Complete offloading . . . . . . . . . . . . . . . . . . . . . . . 49

2.6.2 Binary offloading . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.A Development of (2.16) . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.B Solving (2.10) in the asymptotic regime . . . . . . . . . . . . . . . . 62

2.C Independent rounding of relaxed block lengths . . . . . . . . . . . . 62

2.D Strong Convexity of (2.23) . . . . . . . . . . . . . . . . . . . . . . . 65

x



2.E Initialization of Alg. 1 . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Joint Computing and Communication Resource Allocation for Bi-

nary Computation Offloading 69

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.1 Offloading model . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.2 Computation model for offloading devices . . . . . . . . . . 74

3.2.3 Communication model for offloading devices . . . . . . . . . 78

3.2.4 The “complete offloading” problem . . . . . . . . . . . . . . 80

3.2.5 The binary offloading problem . . . . . . . . . . . . . . . . . 82

3.3 Solution strategy for the complete offloading problem in (3.12) . . . 83

3.4 Efficient heuristics for computation resource allocation . . . . . . . 86

3.4.1 The equal computation deadline case . . . . . . . . . . . . . 86

3.4.2 The case of different computational deadlines . . . . . . . . 88

3.4.3 Contiguous computation resource allocation . . . . . . . . . 92

3.5 Optimal communication resource allocation . . . . . . . . . . . . . . 94

3.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6.1 Complete offloading . . . . . . . . . . . . . . . . . . . . . . . 96

3.6.2 Optimal allocation in the complete offloading case . . . . . . 100

3.6.3 Binary offloading . . . . . . . . . . . . . . . . . . . . . . . . 103

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.A Optimal starting point for computation . . . . . . . . . . . . . . . . 107

3.B Optimality of allocating computation resources to one task at a time108

3.C Optimal solution for (3.12) . . . . . . . . . . . . . . . . . . . . . . . 111

xi



4 Conclusion and Future Work 114

4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2.1 Communication model and resource allocation . . . . . . . . 116

4.2.2 Computation resource allocation . . . . . . . . . . . . . . . . 118

4.2.3 Utilizing machine learning approaches . . . . . . . . . . . . . 118

Bibliography 120

xii



List of Figures

2.1 Error probability versus energy trade-offs achieved by the proposed

design method with the normal approximation and different round-

ing schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Error probability versus energy trade-offs achieved by the proposed

design method with different capacity approximations. . . . . . . . 54

2.3 Probability of feasibility as a function of the probability of error

achieved by the proposed design method with different capacity

approximations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Error probability versus total error trade-offs achieved by different

binary and complete-offloading schemes. . . . . . . . . . . . . . . . 56

2.5 Probability of error vs distance. . . . . . . . . . . . . . . . . . . . . 57

2.6 Number of offloading devices vs distance. . . . . . . . . . . . . . . . 57

2.7 Total energy vs distance. . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1 General offloading time slot model for an individual device. . . . . . 74

3.2 Computation model at the access point. . . . . . . . . . . . . . . . 76

3.3 An example of a joint computation–communication resource alloca-

tion in a three-device case. In this case π(1) = 2, π(2) = 3 , and

π(3) = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xiii



3.4 Probability of feasibility versus CPU capability. . . . . . . . . . . . 97

3.5 Average overall energy over all 1,000 channel realizations versus

CPU capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.6 Average overall energy over a set of 900 of the 1,000 channel real-

izations versus CPU capability . . . . . . . . . . . . . . . . . . . . . 100

3.7 Offloading energy vs CPU capability for the case that α1 = 300, α2 =

400, and α3 = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.8 Offloading energy vs CPU capability for the case that α1 = 300, α2 =

400, and α3 = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.9 Overall energy versus CPU capability for binary offloading problem 104

3.10 Number of offloading devices versus CPU capability for binary of-

floading problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.11 Two computing resource allocation schemes for a scenario with com-

mon computing deadlines. . . . . . . . . . . . . . . . . . . . . . . . 108

xiv



List of Tables

1.1 Comparison of MEC and MCC, adapted from Kumar et al. (2013) . 9

xv



Declaration of Authorship

I, Amin Manouchehrpour, declare that this thesis titled, “Binary Multi-User

Computation Offloading via Time Division Multiple Access” and the work pre-

sented in it are my own.

xvi



Chapter 1

Introduction

The rapid growth in the use of smart devices, the running of computationally

expensive applications in our smart phones, and the widespread deployment of

wireless communication networks have ushered in a new concept known as compu-

tational offloading; e.g., Kumar et al. (2013), Mach and Becvar (2017), and Taleb

et al. (2017). This computing paradigm enables devices to offload their computa-

tional tasks to external resources, overcoming the limitations posed by their own

computational, storage, and energy constraints. Computational offloading is a

suitable way to enhance the performance of smart devices and empower them to

support a wide range of resource-intensive applications.

As the demand for more advanced and computationally–complex applications

continues to rise, the inherent limitations of smart devices has become appar-

ent. Despite advancements in CPUs, storage, and battery life, these devices may

require more powerful processing units to meet the computational and energy

requirements of emerging latency–sensitive applications, such as augmented real-

ity, artificial intelligence, and real-time data processing. The need for innovative
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solutions that can bridge this gap has led to the development of computational

offloading techniques.

Computational offloading involves the transfer of computational tasks from a

smart device to external resources capable of handling them effectively. By lever-

aging the computational power and storage capacities of remote servers or cloud-

based platforms, and the bandwidth provided by modern wireless (and wire-line)

communication networks, smart devices can offload computationally–intensive por-

tions of applications, reducing their processing load and conserving energy. This

allows devices with limited resources to perform complex computations that would

otherwise be impractical or infeasible.

The success of computational offloading depends on several factors. Network

latency, reliability, and bandwidth availability play a crucial role in determining

the overall performance and user experience. Efficient load balancing mechanisms

and intelligent decision-making algorithms are essential to determine which tasks

or data should be offloaded and when, ensuring optimal resource utilization and

timely execution.

By embracing computational offloading, smart devices can overcome their in-

herent limitations and extend their capabilities to support a wide range of so-

phisticated applications. This paradigm not only enhances the performance and

energy efficiency of individual devices, but also enables the development of com-

plex systems and services that rely on distributed computing resources. With

computational offloading, smart devices become integral components of a larger

computational ecosystem, seamlessly integrating with remote resources to deliver

2
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enhanced functionality and an immersive user experience.

1.1 Mobile cloud computing

One notable approach that tackles these challenges is known as Mobile Cloud Com-

puting (MCC). In MCC devices may take advantage of sophisticated computing

resources that are available at dedicated large-scale computing facilities located in

the core of the internet. MCC also enables devices to store large volumes of data

in a sophisticated way. Researchers such as Dinh et al. (2013), Fernando et al.

(2013), Khan et al. (2014), and Rahimi et al. (2014) have extensively explored the

potential of MCC, which harnesses the power of shared computational and storage

resources located at the core of the network. By leveraging these resources, mo-

bile devices are empowered to execute more sophisticated and resource-intensive

applications through various computation offloading techniques.

The proliferation of mobile devices within communication networks presents

a new set of challenges for MCC, particularly in terms of latency and security

requirements. The very nature of MCC’s operation, which involves sharing lim-

ited bandwidth among multiple devices, coupled with the significant propagation

distance between mobile devices and the centralized cloud center, impedes the

seamless support of applications with stringent low-latency and real-time execu-

tion demands. This issue has been highlighted in studies conducted by Dinh et al.

(2013), Mao et al. (2017b), and Abbas et al. (2018).

The limited bandwidth available in the network poses a significant hurdle to

the efficient functioning of MCC. With an increasing number of mobile devices

3
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competing for bandwidth, ensuring fair and equitable distribution becomes a con-

siderable challenge. As a result, the demands of applications requiring real-time

responsiveness and low-latency execution may be compromised. The long propaga-

tion distance between mobile devices and the cloud center along with the required

routing operations further compounds this issue, leading to increased latency and

potential delays in executing tasks.

Despite these challenges, ongoing research aims to address the limitations of

MCC and improve its capabilities. Efforts are being made to optimize network

architectures, develop efficient resource allocation algorithms, and enhance com-

munication protocols to minimize latency and improve overall performance. One

particularly interesting advancement is that of edge computing, where computa-

tion facilities are provided closer to the edge of the core network. As we will explain

in the next section, doing so offers the potential to reduce reliance on distant cloud

centers and reduce latency concerns.

1.2 Mobile edge computing

To address some of the challenges encountered by Mobile Cloud Computing (MCC),

a paradigm called Mobile Edge Computing (MEC) has emerged as a complemen-

tary solution; e.g. Pham et al. (2020). MEC operates by provisioning computation

and memory resources at the access points and base stations of the network, rather

than relying solely on a centralized cloud infrastructure in the network core (Patel

et al. (2014)). This decentralization enables the shifting of computation and stor-

age functions closer to the “edge” of the communication network, as emphasized

in works by Mach and Becvar (2017), Mao et al. (2017b), and Abbas et al. (2018).

4
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By leveraging the proximity of computation resources to mobile devices, MEC

offers several advantages over traditional MCC approaches. First and foremost, the

direct connection between mobile devices and the computation resources located

at the network edges reduces propagation time and minimizes networking delays.

This proximity enhances the responsiveness and real-time capabilities of applica-

tions, making MEC particularly suitable for use cases that demand low-latency

and time-sensitive processing. Moreover, MEC brings improvements in terms of

network efficiency and bandwidth utilization. By offloading computational tasks

to the edge servers located closer to the devices, MEC reduces the need for data

to traverse long distances to reach a centralized cloud. This localization of com-

putation not only minimizes the burden on network bandwidth but also alleviates

congestion and improves the overall network performance.

The adoption of MEC has sparked significant research and development efforts

aimed at optimizing its implementation. Various architectural enhancements, effi-

cient resource management mechanisms, and communication protocols have been

proposed to fully exploit the benefits of MEC; e.g., Kumar et al. (2013) and Mao

et al. (2017a).

1.3 Types of computation offloading

As we discussed in the previous sections, computation offloading enables each

device to execute some portion of its tasks in a much larger processing unit. While

this approach is effective, the process of deciding whether each device should offload

its task or not, and if it does offload what portion of the task should be offloaded,

can be quite challenging. since there are many constraints that influence the

5
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decision. To address that challenge we can classify approaches to computation

offloading into two main strategies, partial and binary offloading.

Partial offloading is a strategy in which only a portion of a computational task

is offloaded to a remote server, while the remaining part is executed locally on the

mobile device. This approach allows for a balanced distribution of computational

workload and reduces the communication overhead associated with offloading large

volumes of data. By intelligently partitioning the task, partial offloading offers the

flexibility to exploit the available computing resources both locally and remotely,

resulting in improved performance and energy efficiency. However, it is limited to

computational tasks that can be appropriately partitioned.

Binary offloading is a different approach that involves the decision offload the

whole of a computational task to a remote server, or to complete the whole task

locally. Binary offloading is particularly suitable for tasks that are tightly coupled

and cannot be appropriately partitioned, and for computationally intensive tasks

that significantly exceed the capabilities of the mobile device. In this thesis we

will focus on binary offloading binary.

1.4 Developing effective computation offloading

systems

The development of an effective computation offloading system requires consid-

eration of a variety of aspects, including computing resource allocation among

the offloading devices, communication resource allocation, task partitioning, dy-

namic offloading decision-making, energy efficiency, security and privacy concerns,

6
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quality of service (QoS), load balancing, and latency optimization. Each of these

aspects presents unique challenges and requires careful consideration:

• Computing resource allocation: This process involves determining the opti-

mal allocation of computational tasks between the mobile devices and the

remote server or cloud infrastructure. It involves considering factors such as

task characteristics, network conditions, and device capabilities.

• Communication resource allocation: This process seeks to allocate the com-

munication resources in a way that facilitates offloading. This includes the

cost of transmitting data between the mobile device and the remote server,

as well as the impact of network latency, bandwidth limitations, and the

management of interference from other devices.

• Task partitioning: This process involves identifying the appropriate portions

of the tasks to offload from the mobile device, considering their computa-

tional complexity, data dependencies, and potential benefits of offloading.

• Dynamic offloading decision making: This process involves developing algo-

rithms or decision-making mechanisms to dynamically determine when and

which tasks should be offloaded based on real-time conditions, such as net-

work availability, device resources, and application requirements.

• Energy efficiency: A goal of many offloading systems is to optimize the

energy consumption in order to prolong the mobile device’s battery life.

This involves considering the energy costs associated with communication,

computation, and the overall offloading process.

7
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• Security and privacy concerns: Another aspect of offloading system is ad-

dressing security and privacy challenges related to computation offloading.

This includes protecting sensitive data during transmission, ensuring secure

authentication, and mitigating risks associated with remote processing

• Quality of service (QoS): One of the important goals of the communication

system is to maintain acceptable levels of performance and user experience

during computation offloading. This includes considerations such as response

time, throughput, reliability, and meeting application-specific QoS require-

ments.

• Load balancing: Incorporating load balancing algorithms helps to effectively

distribute the computational load efficiently across multiple remote servers

or cloud resources to ensure fair resource utilization, minimize response time,

and avoid bottlenecks or overloaded nodes.

• Latency reduction: This process involves reducing the latency introduced

by offloading tasks to remote servers, which can affect real-time and low-

latency applications. This includes optimizing the network communication,

task scheduling, and processing time at the remote server to reduce overall

latency.

Table 1.1, which is adapted from Kumar et al. (2013), summarises some of the

differences between MCC and MEC systems in terms of the computing servers,

proximity to end users, typical latency, and more. In comparison to MCC, MEC

offers several advantages, including reduced latency, energy conservation for mobile

devices, support for context-aware computing, and improved privacy and security

8
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for mobile applications. In this thesis, we specifically target latency-sensitive tasks,

making Mobile Edge Computing (MEC) the appropriate paradigm, as distinct

from Mobile Cloud Computing (MCC).

Table 1.1: Comparison of MEC and MCC, adapted from Kumar
et al. (2013)

Category MEC (Mobile Edge
Computing)

MCC (Mobile Cloud
Computing)

Server hardware Small-scale data centers
with moderate resources

Large-scale data centers
(each contains a large
number of highly-capable
servers)

Server location Co-located with wireless
gateways, WiFi routers,
and LTE BSs

Installed at dedicated
buildings with size com-
parable to several football
fields

Deployment Densely deployed by
telecom operators, MEC
vendors, enterprises, and
home users. Requires
lightweight configuration
and planning

Deployed by IT compa-
nies such as Google and
Amazon at limited loca-
tions worldwide. Re-
quires sophisticated con-
figuration and planning

Distance to end users Relatively short distances
(tens to hundreds of me-
ters)

Can span large distances,
potentially across country
borders

Backhaul usage Infrequent use, used to al-
leviate congestion

Frequent use, which can
potentially cause conges-
tion

System management Hierarchical control with
centralized and distributed
elements

Centralized control

Supportable latency Less than tens of millisec-
onds

Larger than 100 millisec-
onds

Applications Latency-critical and
computation-intensive
applications, e.g., AR,
automatic driving, and
interactive online gaming

Latency-tolerant and
computation-intensive
applications, e.g., on-
line social network-
ing, and mobile com-
merce/health/learning
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1.5 Constraints on Computing Resource Alloca-

tion in MEC Servers

While MEC (Mobile Edge Computing) offers numerous advantages for offloading

computational tasks to edge servers, there are certain limitations that need to be

considered. One key challenge is the efficient allocation of computing resources

within the MEC server infrastructure. This allocation is subject to a number of

constraints:

1. Limited Processing Power: MEC servers typically have limited process-

ing power compared to cloud data centers. These servers are often equipped

with lower-end processors and have restricted computational capabilities.

The limited processing power can constrain the types and complexity of

tasks that can be efficiently executed at the edge.

2. Memory and Storage Constraints: MEC servers also have limited mem-

ory and storage capacities compared to their cloud counterparts. This limita-

tion can impact the ability to store and process large volumes of data locally

at the edge. Tasks that require significant memory or storage resources may

experience performance degradation or even fail to execute entirely within

the constrained environment of MEC servers.

3. Dynamic Workload Variation: The workload on MEC servers can be

highly dynamic and unpredictable. The number and types of computational

tasks being offloaded can vary significantly, leading to resource contention

and potential performance bottlenecks. MEC servers must efficiently manage
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and allocate resources to handle these workload fluctuations while ensuring

optimal performance for all offloaded tasks.

4. Heterogeneous Environments: MEC deployments often encompass a di-

verse range of edge devices and servers with varying capabilities and config-

urations. Managing the computing resource allocation across such heteroge-

neous environments can be challenging. Optimizing the resource allocation

requires considering factors such as device capabilities, network conditions,

and task characteristics. It requires efficient load balancing mechanisms and

intelligent resource allocation algorithms that can adapt to the dynamic na-

ture of the MEC ecosystem.

5. Network Latency and Bandwidth: MEC servers are located at the net-

work edge, closer to the end-users and devices. While this proximity reduces

network latency to some extent, it is still a factor that needs to be consid-

ered. The limited network bandwidth and potential congestion can impact

the performance of offloaded tasks. Applications with strict latency require-

ments, such as real-time and low-latency applications, may be particularly

sensitive to these limitations and may not achieve the desired performance

gains through MEC offloading.

In this thesis, our focus centers around a centralized MEC-based system, where

the MEC server plays the pivotal role in decision-making for task offloading and re-

source allocation. In our two main contributions our algorithms inherently address

the dynamic workload variation in a heterogeneous environment, in the presence of

latency constraints. In the first contribution the emphasis is on a communication
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resource allocation algorithm that addresses the bandwidth limitations, whereas

the second contribution provides a joint computation–communication resource al-

location that also seeks to make the most of the limited processing power of the

MEC server.

1.6 Low-Latency Communications

When computation offloading is employed in a real time application, such as au-

tonomous driving, tele-medicine, online gaming, or industrial automation, the re-

sults of an offloaded task are required by a given deadline, or latency, and this

imposes a latency constraint on the communication and computation phases of

offloading. There are several factors that contribute to the challenges in meeting

low-latency requirements in communication systems:

1. Propagation Delay: The time it takes for signals to travel through the

communication medium, such as fiber-optic cables or wireless channels, in-

troduces unavoidable propagation delay. As the distance between communi-

cating entities increases, the delay becomes more significant, hindering the

achievement of ultra-low latencies.

2. Processing Delays: The time taken by devices to process incoming data,

including encoding, decoding, encryption, and decryption, adds to the overall

latency. The processing capabilities of the devices and the complexity of the

algorithms employed influence the extent of these delays.

3. Rate Limitation: Low-latency tasks are also limited by the maximum
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transmission rate supported by the communication system. The rate limita-

tion can be determined by factors such as latency, the available bandwidth,

modulation schemes, and channel conditions. When the required transmis-

sion rate exceeds the system’s capacity, the communication fails, and any

attempts to perform re-transmission of (part of) the message typically re-

sults in a significant increase in the time delay .

In this thesis we will focus on the rate limitations. In particular, in our first

contribution we will employ a recent approximation of the fundamental rate limit

for communication over a finite block length (Polyanskiy et al. 2010), rather than

the classical asymptotic-block-length characterization developed by Shannon.

1.7 Contribution of thesis

In this thesis we contribute to the development of computation offloading in mo-

bile edge computing systems by developing offloading algorithms for two related

scenarios. In both scenarios each device has a computational task that must be

completed by a device-specific deadline. The tasks are modelled as being indivisi-

ble, and hence a binary decision must be made as to whether the task is offloaded

or is completed locally. This decision is made at the access point, along with the

allocation of computation and communication resources among the offloading de-

vices. The offloading devices communicate using the time division multiple access

(TDMA) scheme over a single-antenna quasi-static channel that is known to the

access point, and each device has its own power constraint. The time that each

offloading device has to communicate the description of its task is determined by

the deadline by which the device requires the result, the time that it takes to
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complete the task at the access point, and the time that it takes to return the

result to the device. We will consider problems for which the full description is

needed before computation can begin, and for which the results become available

once the entire task has been completed. The time that each device has to com-

municate the description of its task to the access point overlaps with that of the

other devices and the access point must determine the appropriate transmission

order and allocate transmission times (and powers and rates) to each device. This

communication resource allocation is done jointly with the computation resource

allocation and the decision as to which devices will offload the tasks. The objective

of the joint allocation is to minimize a weighted sum of the energy expended by

each device in either offloading its task or completing the task locally. The weight

can be interpreted as the (relative) price of the energy at each device.

As will be explained in more detail in the next section, in Chapter2 we will

consider a scenario in which each device has (statically) reserved computational

resources that guarantee a maximum computation time regardless of the number

of offloading devices. As a result, the problem reduces to a problem of joint

allocating communication resources and making the offloading decisions. A feature

of our approach is that our algorithm explicitly incorporates the fact that the

communication block length is finite and hence conventional asymptotic measures

of the achievable rate must be modified. Our approach also deals directly with the

fact that the communication block length is inherently integer-valued.

In Chapter 3 we consider a scenario in which the computation resources are

allocated dynamically, in respect to the requests of the devices, and this allocation

is done jointly with the communication resources and the making of the offloading
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decisions. This is explained in more detailed in Section 1.7.2.

1.7.1 Chapter 2

This chapter seeks insight into the impact that the requirement to communicate

over finite block lengths has on computation offloading schemes, and in particular

those with low latencies. The goal is to develop an effective algorithm for finding

a good algorithm for selecting the offloading devices and the allocation of com-

munication resources to the offloading devices. Conventionally, communication

resource allocation methods have relied on asymptotic limits, which may not be

sufficiently accurate when dealing with finite block lengths. Finite block lengths

introduce stringent time constraints, requiring a more precise approach to resource

allocation. To address this challenge, we consider not only the impact of the low

latency constraint, but also the fact that where block lengths have integer values.

We propose an efficient algorithm for energy allocation that takes into account

the fundamental rate limits for finite block lengths in TDMA-based multi-user

computation offloading scenarios.

Our algorithm incorporates new expressions for the achievable rate over finite

block lengths that complement Shannon’s classical results for the asymptotic case.

We also incorporate a relaxation–rounding approach to address the integer nature

of the block length. The relaxation–rounding approach is based on a customized

incremental rounding scheme specifically designed for the communication model

that we employ. Notably, our algorithm is carefully constructed so that it en-

sures that rounding a feasible solution to the relaxed problem always produces a

feasible integer block length. By leveraging a closed-form approximation of the
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transmission powers, we simplify the optimization problem into a sequence of con-

vex approximation problems focused solely on the transmission rates.

This chapter is based on a paper that will soon be submitted to the IEEE Trans-

actions on Signal Processing, authored by M. Amin Manouchehrpour, Harvinder

Lehal, Mahsa Salmani, and Tim Davidson. Mahsa Salmani, a former graduate

McMaster student, developed some initial ideas on binary offloading for the finite

block length regime as part of her PhD thesis, but those ideas were somewhat naive

and over looked a number of important issues. The concept for this chapter and the

paper was inspired by her work. Harvinder Lehal, a former McMaster undergrad-

uate student, performed some preliminary numerical experiments. I contributed

to the reformatting of the formulation and completed the numeric analysis. All of

us have been supervised by Dr. Davidson throughout this research endeavor.

1.7.2 Chapter 3

In the context of multi-user computation offloading, efficient allocation of compu-

tation resources is a crucial factor that significantly impacts system performance.

In Chapter 2, the focus is primarily on the allocation of communication resources

among the offloading devices for a system with reserved computation resources.

However, in addition to communication resources, the allocation of computation

resources at the edge server plays a vital role in optimizing offloading efficiency

and meeting the computational requirements of the devices.

Computation resource allocation at the edge server entails determining the op-

timal distribution of computational tasks among the available resources. This
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involves considering factors such as task characteristics, computational complex-

ity, and device capabilities. In Chapter 2, the computing resources were reserved

for the task of each device. In Chapter 3, the computing resources are allocated

jointly with the communication resources.

Our approach to joint computation–communication resource allocation enables

flexible allocation of computation resources while ensuring timely execution of

tasks. We utilize a simplified modification Shannon’s fundamental rate limit to

guide our allocation decisions. By leveraging effective heuristics for the compu-

tation resource allocation, our design approach simplifies the joint computation–

communication resource allocation into a set of convex approximation problems.

Firstly, we focus on achieving a good computation resource allocation, and then we

proceed to optimize the communication resource allocation. This strategy allows

us to efficiently manage the resource allocation and enhance the overall perfor-

mance of the computation offloading system.

1.7.3 Chapter 4

This chapter provides a summary of the key contributions made in this thesis,

along with the conclusions drawn from the conducted research. Additionally, it

highlights potential avenues for future exploration and development.
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Chapter 2

TDMA-Based Multi-User Binary

Computation Offloading in the

Finite-Block-Length Regime

Abstract

An effective multi-user computation offloading system is contingent on the selec-

tion of the offloading devices and the allocation of communication resources to the

selected devices. In previous work, that allocation has been performed using the

classical (asymptotic) characterizations of the fundamental rate limits. However,

each device will require the results from its task within a certain time limit, and

that imposes a bound on the block length. In this chapter, we develop efficient algo-

rithms for offloading decision making and communication resource allocation that

incorporate characterizations of the fundamental rate limits on finite-block-length
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communication, for a K-device binary computational offloading system that em-

ploys time-division multiple access (TDMA). The algorithms involve a relaxation-

rounding approach that is constructed around a customized incremental rounding

scheme for the transmission block lengths. A feature of our approach is that the re-

laxation is tightened in such a way that rounding a feasible solution to the relaxed

problem is guaranteed to generate a feasible integer block length. Furthermore,

by exploiting a closed-form approximation of the transmission powers, our design

approach reduces to successively solving convex approximation problems over the

transmission rates alone. The proposed algorithms almost completely bridge the

performance gaps between a variety of ad-hoc schemes and solutions obtained by

exhaustive search.

2.1 Introduction

The computational capabilities of small-scale devices can be greatly enhanced by

offering them the opportunity to offload computational tasks to computing in-

frastructure at the network access point; e.g., Kumar and Lu (2010), Kumar et

al. (2013), Khan et al. (2014), Barbarossa et al. (2014), Mao et al. (2017a), and

Mach and Becvar (2017). However, providing effective access to this Mobile Edge

Computing (MEC) infrastructure requires appropriate allocation of the available

resources among the devices. In the case of coordinated access that is managed

by the access point and computational tasks that are not divisible, the role of the

access point is to jointly decide which devices should offload their tasks (while the

others complete their tasks locally), and allocate the available resources among the

offloading devices. Often, the objective of that joint decision-allocation problem
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is to minimize (a weighted sum of) the energy expended by the mobile devices,

while ensuring that they receive the results of their computational tasks by a spec-

ified deadline; e.g., Sardellitti et al. (2015), Munoz et al. (2015), Salmani and

Davidson (2016), You et al. (2017), Wang et al. (2018), Mao et al. (2017b), Chen

et al. (2018), Salmani and Davidson (2018), Salmani and Davidson (2020b), and

Salmani and Davidson (2020a).

The presence of that deadline means that the rates at which the devices can

communicate with the access point play a critical role in the resource allocation

problem; e.g., Mao et al. (2017a). In existing work, the achievable rates have been

characterized by assuming that the transmission block lengths are long enough

that the guidance from classical (asymptotic) information theoretic results is suf-

ficiently accurate; e.g., Sardellitti et al. (2015), Munoz et al. (2015), Salmani and

Davidson (2016), You et al. (2017), Wang et al. (2018), Mao et al. (2017b), Chen

et al. (2018), Salmani and Davidson (2018), Salmani and Davidson (2020b), and

Salmani and Davidson (2020a). However, the fact that each device has a dead-

line imposes a natural limit on the block length. In this chapter we will develop

communication resource allocation algorithms that explicitly incorporate charac-

terizations Polyanskiy et al. (2010) of the achievable rates in the finite-block-length

regime.

The particular problem that we address is the joint offloading decision and

uplink communication resource allocation problem in a K-device TDMA-based

binary offloading system with reserved computing resources in which the total

energy expended by the devices is to be minimized. This problem is a “mixed”

optimization problem over the binary offloading decisions, the integer transmission
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block lengths, the transmission rates (which will turn out to be rational), and the

continuous transmission powers. In order to efficiently obtain good solutions to

this problem, we will decompose it into an outer tree search for the offloading deci-

sions and an inner optimization problem over the powers, rates and block lengths.

We suggest an efficient algorithm for the outer tree search that is a variant of a tai-

lored pruned greedy search algorithm that was developed in Salmani and Davidson

(2020b) for a related problem. The key contribution of this chapter is a set of algo-

rithms for the inner communication resource allocation problem that incorporate

different approximations Polyanskiy et al. (2010) of the rate limits in the finite-

block-length regime. Our algorithms exploit the structure of the inner problem to

reduce its dimension. They are based on computationally-efficient successive con-

vex approximation (SCA, e.g., Hong et al. (2016), Sun et al. (2017), and Scutari

and Sun (2018)) methods for the transmission rates, closed-form expressions for

the transmission powers, and a randomized Raghavan and Tompson (1987) version

of a customized incremental rounding technique for the transmission block lengths.

A feature of the proposed approach over our earlier work Salmani and Davidson

(2017) and some related work on two-device non-orthogonal multiple access Liu

et al. (2022) and Yang et al. (2022) is that when we relax the integer constraint

on the transmission block lengths, we also restrict other constraints in such a way

that the deterministic version of our customized incremental rounding scheme is

guaranteed to generate an integer transmission block length that corresponds to

a feasible point of the original problem. This “conservative-relaxation” approach1

1Although the term “conservative relaxation” is somewhat oxymoronic, it enables us to con-
cisely distinguish our approach from generic relaxation, which does not provide any guarantee
on the feasibility of a rounded solution.
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greatly simplifies the incorporation of the outcomes of our (inner) resource alloca-

tion algorithm into the (outer) tree search that selects the devices that will offload

their tasks.

The chapter is arranged as follows: In Sec. 2.2 we establish the system model

and provide a generic formulation of our problem; cf. (2.9). In Sec. 2.3 we outline

the decomposition of the problem into the outer tree search for the subset of devices

that should offload their tasks and the inner “complete-offloading” problem (2.10)

that allocates the uplink communication resources to the devices in that subset.

In Sec. 2.4 we develop our efficient algorithm for the complete-offloading problem.

In Sec. 2.5 we embed our (inner) complete-offloading algorithm within the outer

tree search for the offloading subset, and in Sec. 2.6 we provide some results that

illustrate the performance of our approach.

2.2 System Model

We consider a centrally-managed computation offloading system with K single-

antenna devices, and a single-antenna access point with reserved computing re-

sources. The kth device seeks to complete a computational task within its own

specified deadline of Lk seconds. The devices’ tasks are modeled as being indivisi-

ble, and hence the system must decide whether each device should offload its task

to the access point or execute the task locally. The access point employs TDMA

(with independent decoding of each message).2 Its goal is to jointly select the

offloading devices, and determine the rate, power, and transmission block length
2While TDMA has the inherent advantage of being straightforward to implement, it can also

be optimal; notably in the case of two devices with equal channel gains Salmani and Davidson
(2018).
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for each offloading device, so as to minimize a weighted sum of the energies ex-

pended by the devices, under the latency constraints on the tasks and the inherent

constraints on the achievable rates.

2.2.1 Offloading decisions

Since each task is modelled as being indivisible, for each device we must make a

binary offloading decision. Let γk ∈ {0, 1} denote the decision that is made for

device k, with

γk =


1, if device k is to offload its task,

0, if device k is to complete its task locally.
(2.1)

If γk = 0, device k expends Elock
units of energy to compute the task locally, which

takes tlock
seconds. For this to be feasible, we must have tlock

≤ Lk. If γk = 1,

device k invests its energy in offloading the Bk bits that describe its task to the

access point. We will consider the class of tasks for which the full description of

the task must be received before the access point begins execution, and for which

the results are sent back once the task has been completed. Therefore, if tdelk

denotes the elapsed time over which the description of device k’s task is delivered

to the access point, texek
denotes the execution time at the access point, and tDLk

denotes the time it takes to return the result, for offloading to be feasible, we must

satisfy

tdelk + texek
+ tDLk

≤ Lk. (2.2)
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Since the result to be communicated back to the device often has a significantly

shorter description than the task itself, and since each device’s task may be com-

pleted at a different time, we will assume that tDLk
is a (different) constant for

each device. (Similar models are adopted in most of the existing literature, e.g.,

Sardellitti et al. (2015), Wang et al. (2018), You et al. (2017), Salmani and David-

son (2018), Salmani and Davidson (2020b), and Salmani and Davidson (2020a).)

Furthermore, given our focus on the communication resource allocation, like much

of existing work (e.g., Wang et al. (2018), You et al. (2017), Salmani and David-

son (2018), Salmani and Davidson (2020b), and Salmani and Davidson (2020a)),

we will consider a scenario in which sufficient computation resources have been

reserved at the access point for device k’s task to be completed in texek
seconds

independent of the computational load imposed by other offloading devices. One

such scenario is that in which the access point has at least K processors and each

arriving task is assigned to its own processor.

2.2.2 Communication model

We adopt a standard communication model in which each device performs narrow-

band coherent communication over a quasi-static discrete-time-equivalent chan-

nel, corresponding to the symbol interval Ts. We characterize each channel using

αk = |hk|2/σ2, where hk is the (complex-valued) channel gain, and σ2 is the vari-

ance of the additive white Gaussian noise at the access point. (Since we consider

coherent communication, each αk will be known by the access point.)

Given that we employ TDMA, the devices will transmit in different time slots,

and for device k we have that tdelk = twk
+ tULk

, where twk
denotes the time that
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device k has to wait for access to the channel and tULk
denotes the time that device

k is transmitting to the access point. Given our offloading model, we can rewrite

the offloading latency constraint in (2.2) as tdelk/Ts ≤ L̃k, where

L̃k = (Lk − texek
− tDLk

)/Ts (2.3)

is the communication deadline in channel uses. Given the structure of TDMA

transmission, an optimal transmission order for the devices is in increasing order

of L̃k, and without loss of generality we will index the devices such that

L̃1 ≤ L̃2 ≤ · · · ≤ L̃K (2.4)

and the devices selected for offloading will transmit in that order. That is, offload-

ing device k will transmit in the ν(k)th time slot, where ν(k) = ∑k
j=1 γj.

For each offloading device k, the transmission block length, τν(k), and the data

rate, Rk, both of which are expressed in terms of channel uses, must be sufficient

to communicate the description of the task to the access point; i.e.,

Rkτν(k) = Bk. (2.5)

Offloading device k’s transmission time, in seconds, is tULk
= Tsτν(k), and its

waiting time is twk
≥ Ts

∑ν(k)−1
i=1 τi. If (offloading) device k uses a transmission

power (in units per channel use) of Pk, the energy required to offload the task is

τν(k)Pk. The maximum allowable transmission power is P̄k.
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While the rate of (offloading) device k must satisfy (2.5), there is also a funda-

mental limit on the rate at which reliable communication can be achieved with

a transmission power Pk. In previous work, the classical asymptotic limit of

Rk ≤ log2(1 + αkPk) has been employed. However, that expression ignores the

fact that in offloading problems we have latency constraints, and hence the block

length τν(k) is inherently finite. Therefore, we will constrain Rk so that Polyanskiy

et al. (2010)

Rk ≤ ψϵk
(Pk, τν(k)), (2.6)

where the function ψϵk
(Pk, τν(k)) characterizes the fundamental limit on the trans-

mission rate (in bits-per-complex-valued-channel-use) for device k, when that de-

vice is transmitting with power Pk over τν(k) uses of the channel, with a prespecified

probability of error ϵk. (In the finite-block-length regime we must accept a finite

probability of error Polyanskiy et al. (2010).)

Determining ψϵ(P, τ) explicitly is a difficult problem Polyanskiy et al. (2010).

(For notational simplicity, we will temporarily drop the dependence on k.) There-

fore, a well-chosen approximation is required. One pragmatic way to approximate

ψϵ(P, τ) is to use the notion of an SNR-Gap (e.g., Cioffi et al. (1995) and Starr

et al. (1999)), and to pick a constant Γ so that the approximation

ψϵ(P, τ) ≈ ψ̂(gap)(P ; Γ) = log2

(
1 + αP/Γ

)
(2.7)

is appropriate for the values of P , τ and R that are expected as outcomes of

the resource allocation, and the chosen value of ϵ. However, the fact that P , τ

and R are design variables in the resource allocation problem (see (2.9) below)
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means that it is difficult to make appropriate choices for Γ. More recently, the

principles of communication over finite block lengths have been re-examined, and

several accurate (and insightful) approximations are now available Polyanskiy et al.

(2010); see also Tan and Tomamichel (2015) and Durisi et al. (2016). In particular,

the “normal approximation” of ψϵ(P, τ) is

ψ̂(norm)
ϵ (P, τ) = log2(1 + αP )−

√
Vc(P )

τ
Q−1(ϵ) + log2(2τ)

2τ
, (2.8)

where Vc(P ) = αP (αP +2)
(αP +1)2

(
log2(e)

)2
is the dispersion of our channel model, and

Q(x) =
∫ ∞

x
1√
2π
e−t2/2dt. Codes that approach the performance characterized by

this approximation of ψϵ(P, τ) are beginning to emerge Piao et al. (2020). Our al-

gorithms will be developed for ψ̂(norm)
ϵ (P, τ). However, as we will show in Secs 2.4.5

and 2.4.6, the algorithms can be simplified to some degree if we replace ψ̂(norm)
ϵ (P, τ)

by its first two terms, which we denote by ψ̂(2)
ϵ (P, τ), or if we choose an appropriate

SNR-Gap approximation. (To facilitate comparisons between the approximations

in (2.7) and (2.8), we observe that ψ̂(gap)(P ; Γ) = log(1+αP )−log
(

Γ
1+(Γ−1)/(1+αP )

)
.)

2.2.3 General problem formulation

Using the notation {·} to denote a set of variables with the index and its range de-

fined implicitly, the design variables in our system are: the decisions as to whether

or not each device offloads its task {γk ∈ {0, 1}}, the (integer-valued) transmission

block lengths (in channel uses) {τi ∈ Z}, and the data rates and transmission pow-

ers (per channel use) of each offloading device {Rk ∈ R}, {Pk ∈ R}, respectively.

With these definitions in place, if we let S = {1, 2, . . . , K} denote the set of all K

devices, indexed according to (2.4), and if we let λk denote the price per unit of
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energy at device k, the problem of minimizing the cost of the energy expended by

the devices while completing their tasks within the specified latencies is

min
{γk∈{0,1}},{τi∈Z},

{Rk},{Pk}

∑
k

(
γkλkτν(k)Pk + (1− γk)λkElock

)
(2.9a)

s.t. τi ≥ 0, (2.9b)

γk
∑ν(k)

i=1 τi ≤ L̃k, (2.9c)

0 ≤ Rk ≤ γkψ̂ϵk
(Pk, τν(k)), (2.9d)

0 ≤ Pk ≤ γkP̄k, (2.9e)

Rkτν(k) = γkBk, (2.9f)

(1− γk)tlock
≤ Lk, (2.9g)

where we have left it implicit that the constraints in (2.9c)–(2.9g) apply for all

k ∈ S and that the summations in the objective are over all k ∈ S. The cost of

the energy of the devices that compute locally is captured by the second term in

the objective, and the latency constraint on these devices is in (2.9g). The first

term in the objective and the remaining constraints characterize the offloading

devices, with (2.9f) ensuring that the complete description of the task is transmit-

ted, (2.9e) constraining the transmission power of each device, (2.9d) constraining

the transmission rate, where ψ̂ϵk
(Pk, τν(k)) represents the chosen approximation of

the fundamental rate limit, and (2.9c) ensuring that the access point receives the

description of the task by the communication deadline L̃k.
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2.3 Architecture of the algorithm

To establish the structural form of the algorithms that we will propose for efficiently

generating good solutions to (2.9), we observe that (2.9) is a “mixed” optimization

problem with binary, integer and continuous variables. To tackle the combinatorial

structure that is imposed by the binary offloading decisions, we will decompose

it into an inner problem of finding the uplink communication resource allocation

that attains the minimum energy cost for a given set of offloading decisions—a

problem that we call “complete offloading”—and the corresponding outer problem

of searching over all the possibilities for the set of offloading decisions. As ob-

served in Salmani and Davidson (2020b) for a related problem, the outer problem

can be formulated as a tree-search problem, with a complete-offloading problem

for a given set of offloading devices being solved at each node of the tree. In

particular, in Salmani and Davidson (2020b) a tailored pruned greedy tree-search

algorithm was developed for scenarios in which the rate limits are taken from

the asymptotic-block-length regime, and there is no constraint on the maximum

transmission power. That algorithm was shown to provide better solutions at lower

computational cost than a “relaxation-rounding” approach to optimizing over the

offloading decisions. Accordingly, in this chapter we will employ a refined ver-

sion of the pruned greedy tree-search technique in Salmani and Davidson (2020b,

Alg. 2) to find good offloading decisions. Therefore, what remains is to develop an

efficient algorithm for the (inner) complete-offloading problem that must be solved

at each node visited in the tree search.

To formulate the complete-offloading problem, let S̃ ⊆ S denote the subset

of devices that have been selected to offload their tasks; i.e., γk = 1 ∀k ∈ S̃,
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γk = 0∀k ∈ S \ S̃ and |S̃| = K̃. Furthermore, let S̃ ′ denote a re-indexing of S̃

that retains the ordering in (2.4), but indexes the devices from 1 to K̃. (With

that re-indexing in place, ν(k) = k.) Substituting the offloading decisions into

(2.9), along with the re-indexing of the devices, the complete-offloading problem

becomes

min
{Rk},{Pk},{τk∈Z}

∑K̃
k=1 λkτkPk (2.10a)

s.t. τk > 0, (2.10b)
∑k

i=1 τi ≤ L̃k, (2.10c)

0 < Rk ≤ ψ̂ϵk
(Pk, τk), (2.10d)

0 < Pk ≤ P̄k, (2.10e)

Rkτk = Bk, (2.10f)

where the constraints are imposed for all k ∈ S̃ ′. The complete-offloading problem

itself is difficult to solve, due to the integer constraints on {τk}, and the structure

of each ψ̂ϵk
(Pk, τk). The key contribution of this chapter is the algorithm developed

in Sec. 2.4 for efficiently generating good solutions to (2.10). In the asymptotic-

block-length regime, it is possible to reduce (2.10) to an optimization problem

over the rates alone; see App. 2.B. One of our goals will be to do the same in the

finite-block-length regime.

2.4 Efficient algorithms for (2.10)

The basic structure of our approach to efficiently generating good solutions to the

complete-offloading problem in (2.10) consists of four steps: (i) relax the integer
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constraints on {τk} and, according to (2.10f), set τk = Bk/Rk; (ii) efficiently gen-

erate a good solution for the remaining optimization problem over the powers and

rates; (iii) use a rounding technique on the optimized values of {Bk/Rk} to generate

good integer values for {τk}; and (iv) obtain the corresponding rates using (2.10f),

and subsequently obtain optimized powers using the upper bound on each Rk in

(2.10d). While this basic structure resembles a conventional relaxation-rounding

approach, each step is tailored for the particular features of the complete-offloading

problem in (2.10). In particular, in order to efficiently generate good integer values

for {τk}, in Sec. 2.4.1 we develop an incremental rounding scheme in which the

rounding of the transmission block length for device k exploits the residual from

the rounding of the transmission block lengths for devices 1, 2, . . . , (k−1). Further-

more, following the relaxation in step (i) we tighten certain other constraints in

the remaining problem over the powers and rates in such a way that the determin-

istic incremental rounding of {Bk/Rk} for any feasible solution to the remaining

problem is guaranteed to generate a feasible solution to (2.10); see Sec. 2.4.2.

The resulting conservatively-relaxed problem is not jointly convex in the pow-

ers and the rates. Indeed, the constraints are not even continuous. Therefore,

in Sec 2.4.3 we develop a further conservative approximation that results in con-

tinuous constraints, and then we develop an efficient SCA optimization technique

that is based on a sequence of closed-form approximations of the powers and only

requires optimization over the rates. Finally, in Sec. 2.4.4 we describe a hybrid de-

terministic/randomized version of the proposed incremental rounding scheme that

uses the solution to the conservatively-relaxed problem to generate good solutions

to (2.10).
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2.4.1 Relaxation and deterministic incremental rounding

If we relax the integer constraint on the block lengths in (2.10), then we can apply

(2.10f) to reduce the complete-offloading problem in (2.10) to an optimization

problem over the rates and the powers. We will derive a conservative relaxation

in the next section, but for the moment it is enough to let {R̆k} and {P̆k} denote

the rates and powers in the relaxed problem. Once we have a solution to the

conservatively-relaxed problem, step (iii) of our process constructs values for the

block lengths {τk} by rounding the values of {Bk/R̆k}; cf. (2.10f). The nature

of the chosen rounding scheme can have a significant impact on the performance.

In order to exploit the fact that the devices transmit sequentially, we will round

the values of {Bk/R̆k} incrementally, so that device k can take advantage of the

residual arising from the rounding for devices 1, 2, . . . , (k−1). That is, a candidate

for τ1 is constructed by simple rounding, τ1 =
⌊

Bk

R̆k

⌉
, and for k = 2, 3, . . . , K̃, we

round the sum of Bk/R̆k and the residual from the previous roundings,

τk =
⌊

Bk

R̆k
+

k−1∑
i=1

(
Bi

R̆i
− τi

)⌉
. (2.11)

We will adopt the convention that an odd multiple of 1
2 is rounded upwards. While

τk is clearly a function of
{
R̆1, R̆2, . . . , R̆k−1

}
, as well as R̆k, we will simplify our

notation by keeping that dependence implicit. In particular, we will let ξk denote

the residual that arises when rounding τk. That enables us to re-write (2.11) as

τk =
⌊

Bk

R̆k
+ ξk

⌉
, where ξ1 = 0 and for k = 2, 3, . . . , K̃,

ξk =
k−1∑
i=1

(
Bi

R̆i
− τi

)
= ξk−1 + Bk−1

R̆k−1
− τk−1. (2.12)

32

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Master of Applied Science– Amin Manouchehrpour; McMaster University–
ECE Department

Note that for k = 2, 3, . . . , K̃, −1
2 ≤ ξk <

1
2 .

If we round each Bk/R̆k in the incremental fashion described above, then the

rounded value τk satisfies

τk ∈ (τlow,k, τup,k] =
(

Bk

R̆k
+ ξk − 1

2 ,
Bk

R̆k
+ ξk + 1

2

]
. (2.13)

Once we have rounded the block lengths, the corresponding rates can be com-

puted using (2.10f); i.e., Rk = Bk/τk. Those rates satisfy Rk ∈ [Rlow,k, Rup,k) =[
Bk

τup,k
, Bk

τlow,k

)
. That is,

Rk ∈
[

R̆k

1+(2ξk+1)R̆k/(2Bk) ,
R̆k

1+(2ξk−1)R̆k/(2Bk)

)
. (2.14)

The bounds in (2.13) and (2.14) will play a the key role in the formulation of the

conservative relaxation in the next section.

2.4.2 A conservative relaxation of (2.10) for ψ̂(norm)
ϵk

(Pk, τk)

In this section we show how the constraints of the relaxation of (2.10) can be

tightened in a way that enables us to make feasibility guarantees. In particular,

we replace (2.10b) by τlow,k > 0 and, since we are considering the normal approxi-

mation in (2.8), we replace (2.10d) by

Rup,k ≤ log2(1 + αkPk)−
√

Vc(Pk)
τlow,k

Q−1(ϵk) + log2(τlow,k)
τ2up,k

. (2.15)

To ensure that the incrementally-rounded solution satisfies the latency constraint

in (2.10c), for each k we impose the constraint ∑k
i=1

⌊
Bi

R̆i
+ξi

⌉
≤ L̃k. Since (2.11) can

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Master of Applied Science– Amin Manouchehrpour; McMaster University–
ECE Department

be written in a recursive form as τk =
⌊∑k

i=1
Bi

R̆i

⌉
−∑k−1

i=1 τi, that set of constraints

is equivalent to
⌊∑k

i=1
Bi

R̆i

⌉
≤ L̃k, and hence is equivalent to ∑k

i=1
Bi

R̆i
< L̃k + 1

2 .

As explained in App. 2.A, the above steps result in an optimization problem in

which the constraint on the minimum block length for each device k ≥ 2 (which is

derived from (2.10b)), is a continuous function of R̆k, but a discontinuous function

of {R̆i}k−1
i=1 , through ξk; see (2.27b) in App. 2.A. Similarly, for k ≥ 2 the maximum

rate constraint on device k that is derived from (2.10d) is a continuous function

of R̆k and P̆k, but a discontinuous function of {R̆i}k−1
i=1 ; see (2.27d). The discon-

tinuous (and coupled) nature of these constraints obscures the path towards an

efficient algorithm for finding good solutions to the conservatively relaxed prob-

lem. In particular, it makes it difficult to manage the behaviour of sequential

approximation strategies. Therefore, as explained in App. 2.A, we will use the

observation that ξ1 = 0 and that for k ≥ 2, ξk ∈ [−1/2, 1/2) to construct a further

conservative approximation in which all of the constraints are continuous functions

of the variables. This further approximation has the additional advantage that it

decouples the minimum-block-length constraints from each other, and decouples

the maximum-rate constraints from each other, just as these constraints are de-

coupled in the original formulation in (2.10). The resulting (conservative, relaxed)
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optimization problem is

min
{R̆k},{P̆k}

∑K̃
k=1 λkBk

P̆k

R̆k
(2.16a)

s.t. R̆k ≤ (1 + δk−1)Bk, (2.16b)
∑k

i=1
Bi

R̆i
< L̃k + 1

2 , (2.16c)

0 < R̆k ≤ Ωk(P̆k, R̆k), (2.16d)

0 < P̆k ≤ P̄k, (2.16e)

where δi is the Kronecker delta function, the constraints are imposed for all k ∈ S̃ ′,

and

Ωk(P̆k, R̆k) = log2(1+αkP̆k)−bk(P̆k,R̆k)
√

R̆k

ak(P̆k,R̆k) . (2.17)

In (2.17),

ak(P̆k, R̆k) =


1 + y1(P̆1, 0) + f1(R̆1, 0) for k = 1,

1 + yk(P̆k,−1/2) + fk(R̆k,−1/2) for k ≥ 2,
(2.18)

where yk(P̆k, ξk) and fk(R̆k, ξk) are defined in (2.29) and (2.30) in App. 2.A, re-

spectively, and

bk(P̆k, R̆k) =


g1(P̆1, R̆1, 0) for k = 1,

gk(P̆k, R̆k, 1/2) for k ≥ 2,
(2.19)

where gk(P̆k, R̆k, ξk) is defined in (2.31) in App. 2.A. We observe that as the relaxed

block length Bk/R̆k increases, ak(P̆k, R̆k) approaches 1 from above, and bk(P̆k, R̆k)

approaches zero, and hence Ω(P̆k, R̆k) in (2.17) approaches the classical fundamen-

tal limit on the rate in the asymptotic-block-length case.
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2.4.3 Efficiently solving (2.16)

In the asymptotic-block-length regime, the solution of (2.16) can be simplified by

finding a closed-form expression for the optimal powers for given rates; cf. (2.32)

in App. 2.B. Unfortunately, for the finite-block-length case in (2.16), the presence

of ak(P̆k, R̆k) and bk(P̆k, R̆k) in (2.17) has put a closed-form expression for the

optimal powers for given rates beyond our reach. However, further analysis of the

constraints in (2.16d) will enable us to obtain a simple algorithm to assess the

feasibility of (2.16), and an SCA algorithm for its solution.

To begin, we observe that since the constraints in (2.16d) do not couple the

powers of the different devices, and since each Ωk(P̆k, R̆k) is an increasing function

of P̆k, if the problem in (2.16) is feasible the upper bounds in (2.16d) are all active

at optimality. Therefore, given the rate of device k, R̆k, the optimal value for the

power P̆k is the (unique) value that achieves equality in (2.16d). We will denote

that value by

Φk(R̆k) = P̊k, (2.20)

where P̊k is the solution to the one-dimensional, smooth, zero-crossing problem

R̆k = Ωk(P̊k, R̆k). By combining (2.16d) and (2.16e), we can show that R̆k is

upper bounded by R̄k, where R̄k is the solution to the one-dimensional, smooth,

zero-crossing problem R̄k = Ωk(P̄k, R̄k). Another upper bound on R̆k arises from
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(2.16b). Using these expressions, the problem in (2.16) can be (precisely) trans-

formed into the following optimization problem over the rates alone,

min
{R̆k}

∑K̃
k=1 λk

Bk

R̆k
Φk(R̆k) (2.21a)

s.t. ∑k
i=1

Bi

R̆i
< L̃k + 1

2 , (2.21b)

0 < R̆k ≤ Ŕk, (2.21c)

where Ŕk = min{R̄k, (1 + δk−1)Bk} and the constraints are imposed for all k ∈ S̃ ′.

This problem is analogous to the reduced-dimension problem that arises in the

asymptotic-block-length case; see (2.33) in App. 2.B. The feasible set of (2.21) is

convex, and the problem is feasible if and only if ∑k
i=1

Bi

Ŕi
< L̃k + 1

2 , for all k ∈ S̃ ′.

Since the transformation is precise, the same condition is necessary and sufficient

for the feasibility of (2.16). Furthermore, if we obtain an optimal solution to (2.21),

denoted {R̆⋆
k}, then the combination of {R̆⋆

k} and {P̆ ⋆
k = Φk(R̆⋆

k)} constitutes an

optimal solution to (2.16).

While (2.21) generates a simple feasibility test for (2.16), the objective is only

implicit, in the sense that we do not have a closed-form expression for the term

Φk(R̆k); cf. (2.20). To develop an efficient algorithm for solving (2.21) we observe

that we can rewrite (2.20) to state that Φk(R̆k) is the value of P̊k that satisfies

P̊k = 2
(

ak(P̊k,R̆k)R̆k+bk(P̊k,R̆k)
√

R̆k

)
− 1

αk

. (2.22)
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While this expression remains implicit, it has clear analogies with the correspond-

ing expression in the asymptotic-block-length case; cf. (2.32) in App. 2.B. Further-

more, it suggests the following strategy that generates a closed-form approximation

to Φk(R̆k) and an SCA algorithm.

If we have a previous value for R̆k, say R̆−
k , and a corresponding previous

value for P̆k, say P̆−
k , then we can approximate each ak(P̆k, R̆k) in (2.18) by

a−
k = ak(P̆−

k , R̆
−
k ) and each bk(P̆k, R̆k) in (2.19) by b−

k = bk(P̆−
k , R̆

−
k ). If we sub-

stitute those approximations into (2.22), we obtain the following closed-form ap-

proximation of Φk(R̆k),

Φ̂k(R̆k; a−
k , b

−
k ) = 2

(
a−

k
R̆k+b−

k

√
R̆k

)
− 1

αk

. (2.23)

Using (2.23) we can approximate the problem in (2.21) by the following problem,

which, for later convenience, is expressed in terms of rates {R̂k},

min
{R̂k}

∑K̃
k=1 λk

Bk

R̂k
Φ̂k(R̂k; a−

k , b
−
k ) (2.24a)

s.t. variants of (2.21b) and (2.21c) with R̆k ← R̂k. (2.24b)

By evaluating the Hessian matrix of the objective, which is diagonal, it can be

shown that the objective is strongly convex; see App. 2.D in the Supplementary

Material. Furthermore, the feasible set of (2.21) is convex. These observations

(and others), enable the problem in (2.24) to be efficiently solved.

Since the problem in (2.24) has the same feasible set as that in (2.21), and that

its objective is a convex approximation of the objective in (2.21), we can use an
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SCA approach to efficiently generate good solutions to (2.21), and hence to (2.16).

In particular, let us presume that we have previous values for the rates, denoted

{R̆−
k }, that are strictly feasible for (2.21), and previous values for {a−

k } and {b−
k }.

We then solve the convex problem in (2.24) to obtain the rates {R̂⋆
k}, with the

opportunity to choose {R̆−
k } as a “warm” starting point for solving that problem.

Then we update each R̆−
k by taking a step in the direction of R̂⋆

k; e.g., Razaviyayn

et al. (2013) and Scutari et al. (2017). That is, R̆−
k ← R̆−

k + η(R̂⋆
k − R̆−

k ), where

0 < η < 1 is a step size that decreases with the SCA iterations, but remains

persistently exciting. These new rates remain strictly feasible for (2.21), because

the previous rates were strictly feasible for (2.21), the problem in (2.24) has the

same feasible set as (2.21), and the step size η < 1. Since Φk(R̆k) is only defined

implicitly (cf. (2.20)), one convenient strategy for updating the step-size is to select

a (small) value for β ∈ (0, 1) and an initial value for η ∈ (0, 1) and to update η

using η ← η(1 − βη), Scutari et al. (2017). With these new values for the rates,

we can compute the corresponding powers, {P̂−
k = Φ̂k(R̆−

k ; a−
k , b

−
k )}, and then

subsequently update {a−
k = ak(P̂−

k , R̆
−
k )} using (2.18), and {b−

k = bk(P̂−
k , R̆

−
k )}

using (2.19). With the SCA iteration now completed, we test for convergence,

and, if needed, commence the next SCA iteration. The resulting algorithm is

summarized in Alg. 1. If we denote the output of Alg. 1 by {R̆⋆
k}, the corresponding

powers required to construct a good solution to (2.16) can be computed by solving

K one-dimensional smooth zero-crossing problems, namely {P̆ ⋆
k = Φk(R̆⋆

k)}; cf.

(2.20). However, as we will show in the next subsection, in our (conservative)

relaxation-rounding approach, we will only make use of the rates {R̆⋆
k}.

To initialize the above SCA procedure, we need to determine the feasibility of

39

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Master of Applied Science– Amin Manouchehrpour; McMaster University–
ECE Department

(2.21), and to generate a strictly feasible starting point. While we could solve a

convex problem that is akin to a “phase one” problem for a primal-barrier interior

point method Boyd and Vandenberghe (2004, Sec. 11.4), our simplified feasibility

test, described after (2.21) and in Step 1 of Alg. 1, implicitly generates a feasible

(but not strictly feasible) point. That enables the application of a simple ad-

hoc technique for finding a strictly feasible starting point; see App. 2.E in the

Supplementary Material.

Algorithm 1 : An efficient SCA algorithm for (2.21)
Input data: S̃ ′, {Bk}, {L̃k}, {λk}, {αk}, {P̄k}, {ϵk}, β ∈ (0, 1), η0 ∈ (0, 1).
Step 1: Determine feasibility: For each k ∈ S̃ ′, use a one-dimensional line search
algorithm to solve R̄k = Ωk(P̄k, R̄k); cf. (2.17). Compute all Ŕk = min{R̄k, (1 +
δk−1)Bk}. If any component of (2.16c) is violated when each R̆k = Ŕk, then set
Flag1 = 1 to denote infeasibility and exit. Otherwise, set Flag1 = 0.
Step 2: Using the method described in App. 2.E in the Supplementary Material,
determine a strictly feasible point {R̆(0)

k }, and set each R̆−
k ← R̆

(0)
k . Set each P̂−

k ← P̄k,
and η ← η0.
Step 3: Calculate each a−

k = ak(P̂−
k , R̆

−
k ) using (2.18), and each b−

k = bk(P̂−
k , R̆

−
k )

using (2.19).
Step 4: Solve the (strongly) convex problem in (2.24) to find {R̂⋆

k}.
Step 5: Update each R̆−

k using R̆−
k ← R̆−

k + η(R̂⋆
k − R̆

−
k ).

Step 6: Update the step size using η ← η(1− βη).
Step 7: Compute each P̂−

k = Φ̂k(R̆−
k ; a−

k , b
−
k ) using (2.23).

Step 8: Return to Step 3 until convergence
Step 9: Set each R̆⋆

k = R̆−
k .

Output: {R̆⋆
k}, Flag1.

Although the feasible sets of (2.21) and (2.24) are the same convex set, the

fact that Φk(R̆k) is only defined implicitly means that our problem lies beyond the

current class of problems for which convergence guarantees for the SCA approach

have been established; e.g.,Razaviyayn et al. (2013) and Scutari et al. (2017).

However, in our numerical experience, Alg. 1 has always either converged to a

good solution or determined that the problem is infeasible.
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2.4.4 Randomized incremental rounding

Although Alg. 1 efficiently generates a good solution {R̆⋆
k} to (2.21), or declares

that it is infeasible, that solution corresponds to block lengths Bk/R̆
⋆
k that are

not necessarily integers. Therefore, the values of Bk/R̆
⋆
k must be rounded in order

to construct a candidate solution for (2.10). By design, when Alg. 1 generates

a feasible solution (with Flag1 = 0), the deterministic incremental rounding (see

Section 2.4.1) of {Bk/R̆
⋆
k}, followed by recalculation of the rates and the powers,

is guaranteed to constitute a feasible solution for (2.10). In particular, as dis-

cussed in the opening paragraph of Sec. 2.4, once the incrementally-rounded block

lengths, {τk}, have been obtained, the corresponding rates are {R⋆
k = Bk/τk},

and the corresponding (optimized) powers are the {P ⋆
k } that result in the upper

bound in (2.10d) holding with equality for these rates. Although that solution is

guaranteed to be feasible for (2.10), there may be better solutions that correspond

to integer block lengths that are in the neighbourhood of our (deterministically)

incrementally-rounded block length. We will search for such solutions by incorpo-

rating the principles of randomized rounding Raghavan and Tompson (1987) into

the incremental rounding scheme proposed in Sec. 2.4.1.

To round the block length for device k ∈ S̃ ′, we compute the amount by which

the quantity to be rounded, namely Bk/R̆
⋆
k + ξk, is above its floor. That is, we

compute pk = Bk/R̆
⋆
k + ξk − ⌊Bk/R̆

⋆
k + ξk⌋. Then, rather than constructing τk by

deterministically rounding Bk/R̆
⋆
k + ξk, we instead set τk to ⌊Bk/R̆

⋆
k + ξk⌋ with

probability (1 − pk) and set τk to ⌈Bk/R̆
⋆
k + ξk⌉ with probability pk, where ⌊·⌋

and ⌈·⌉ denote the rounding down and rounding up operations, respectively. For

k < K̃, we then compute ξk+1 using (2.12), and construct the Bernoulli probability
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mass function for randomly generating τk+1. Once all τk have been incrementally

generated in this way, we assess their feasibility by checking that they satisfy

(2.10b) and (2.10c). If so, we calculate the corresponding rates and powers in

the same way as in the deterministic case, and then assess their feasibility. If the

resulting solution is indeed feasible for (2.10) and has a lower objective value than

the best of the previously obtained solutions, the newly generated solution replaces

that solution.

We have summarized the proposed hybrid deterministic/randomized incremen-

tal rounding scheme in Alg. 2, in which the current best estimate of the optimal

value of (2.10) is denoted by Ĵ⋆
off and the solution that achieves that value is X̂ ⋆.

Steps 1–5 of Alg. 2 describe the deterministic rounding part, which, by virtue of

the conservative relaxed formulation in (2.16), is guaranteed to generate a feasible

solution to (2.10) whenever (2.16) is feasible. In Steps 6–10, we search for a better

solution to (2.10) by employing the proposed randomized incremental rounding

scheme Nrand times.

2.4.5 Using ψ̂(2)
ϵ (P, τ)

If we repeat the analysis in Secs 2.4.2 and 2.4.3 for ψ̂(2)
ϵk

(Pk, τk), which is the first

two terms of the normal approximation in (2.8), we obtain algorithms that have

the same structure as Algs 1 and 2, but are slightly simpler. The difference is that

the functions fk(R̆k, ξk) that appear in the expressions for ak(P̆k, R̆k) in (2.18) are

set to zero.
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Algorithm 2 : Incrementally rounding the output of Alg. 1
to obtain a (good) solution to (2.10)

Input data: S̃ ′, {R̆⋆
k}, {λk}, {Bk}, {L̃k}, {αk}, {P̄k}, {ϵk}, Nrand

Step 1: Calculate all τk from {Bk/R̆
⋆
k} using the deterministic incremental rounding

scheme in (2.11).
Step 2: Calculate all Rk = Bk/τk.
Step 3: Calculate each Pk using the one-dimensional smooth zero-crossing problem
Rk = ψ̂ϵk

(Pk, τk); cf. (2.10d).
Step 4: Calc. J́off =

∑
k∈S̃′ λkτkPk and assemble X́ = {Rk, Pk, τk}.

Step 5: Set Ĵ⋆
off ← J́off and X̂ ⋆ ← X́ .

Step 6: Set nrand = 0.
while nrand < Nrand do

Step 7a: Set ξ1 = 0.
for k = 1 to K̃ = |S̃ ′| do

Step 7b: Calculate pk = Bk/R̆
⋆
k + ξk − ⌊Bk/R̆

⋆
k + ξk⌋.

Step 7c: Randomly generate τk using a Bernoulli distribution with τk =
⌊Bk/R̆

⋆
k + ξk⌋ with prob. (1− pk) and τk = ⌈Bk/R̆

⋆
k + ξk⌉ with prob. pk.

Step 7d: If k < K̃, calculate ξk+1 = ξk +Bk/R̆
⋆
k − τk.

end for
Step 8: Set nrand ← nrand + 1.
if (2.10b) and (2.10c) are satisfied (∀k ∈ S̃ ′), then

Step 9: Complete Steps 2–5.
Step 10: If (2.10e) is satisfied (∀k ∈ S̃ ′), and if J́off < Ĵ⋆

off, set Ĵ⋆
off ← J́off and

X̂ ⋆ ← X́ .
end if

end while
Output: Ĵ⋆

off, X̂ ⋆.
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2.4.6 Using ψ̂(gap)(P ; Γ)

That analysis can also be repeated for the SNR-Gap approximation in (2.7). In

that case, the problem that is equivalent to (2.16) takes a similar form, with only

(2.17) being modified. The modifications are that αk is replaced by ὰk = αk/Γk,

bk(P̆k, R̆k) is replaced by b̀k(P̆k, R̆k) = 0, and ak(P̆k, R̆k) is replaced by

àk(P̆k, R̆k) =


1 + ỳ1(P̆1, 0) for k = 1,

1 + ỳk(P̆k,−1/2) for k ≥ 2,
(2.25)

where ỳk(P̆k, ξk) =
(

1−2ξk

2Bk

)
log2(1 + ὰkP̆k).

2.4.7 Independent rounding

Although the incremental rounding scheme in Sec. 2.4.1 was developed specifically

for our application, in some settings a simpler scheme in which each block length

is rounded independently might be preferred. In that case, (2.11) is replaced by

τk =
⌊

Bk

R̆k

⌉
. This rounding scheme corresponds to setting ξk in (2.12) to zero

for all k. Therefore, analogous “conservative-relaxation” design algorithms for

independent rounding can be derived by making that substitution in the analysis

in Secs 2.4.1–2.4.6; see App. 2.C. That said, for the independent rounding scheme,

the randomized rounding scheme needs to be modified to compensate for the fact

that the residuals from rounding the block lengths of devices that transmit earlier

are not considered; see App. 2.C.
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2.5 An efficient algorithm for binary offloading

In the previous section, we addressed the “inner” complete-offloading problem

in which the set of offloading devices is predetermined. In this section, we will

complete the algorithm architecture outlined in Sec. 2.3 by tackling the “outer”

problem of selecting the set of offloading devices. By applying the “inner–outer”

decomposition to original binary offloading problem in (2.9), the outer problem

can be written as

min
{γk}

J⋆
off({γk}) + ∑

k(1− γk)λkElock
(2.26a)

s.t. (1− γk)tlock
≤ Lk, (2.26b)

where the range of k is all values in S, and J⋆
off({γk}) denotes the optimal solution

to the complete-offloading problem in (2.10) for a given set of offloading decisions

{γk}. The problem in (2.26) is combinatorial, with a search space of 2K possibil-

ities, but it does admit a tree structure in which the subproblem to be solved at

each node is the complete-offloading problem in (2.10) for a given set of offloading

devices. That structure provides the opportunity to develop efficient tree-search

algorithms that provide good selections for the set of offloading devices, and are

of much lower complexity than optimal algorithms, such as branch-and-bound.

We propose to use a refined version of the algorithm in Salmani and Davidson

(2020b, Alg. 2) that was developed for the asymptotic-block-length case, in the

absence of transmission power constraints. That algorithm is a tailored version of

a greedy algorithm and enables deterministic pruning of the tree at each step. The

45

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Master of Applied Science– Amin Manouchehrpour; McMaster University–
ECE Department

modifications outlined below accommodate the finite-block-length rate character-

izations and the fact that the power constraints (cf. (2.9e), (2.10e)) mean that

some instances of the complete-offloading problem may be infeasible.

As described in Sec. 2.4, the complete-offloading subproblem that determines

J⋆
off({γk}) in (2.26) is a difficult mixed-integer non-linear optimization problem.

Therefore, in our algorithm we will seek good solutions to the variant of the binary

offloading problem in (2.26) in which J⋆
off({γk}) is replaced by Ĵ⋆

off({γk}), where

Ĵ⋆
off({γk}) is the output of Alg. 2. To describe the algorithm, we retain the use of

S̃ ⊆ S to denote an unordered set of devices that has been selected for offloading,

and let S̃ ′ denote the re-indexed version of that set. Within the algorithm, we

let U ⊆ S denote the set of devices for which an offloading decision has yet to be

made. The algorithm is initialized with S̃ containing all those devices for which

the task cannot be completed locally by the specified deadline, and U containing

the remaining devices. If Alg. 1 is unable to find a solution to the resulting

complete-offloading problem, the original binary offloading problem in (2.9) is

marked as being infeasible. Otherwise, the algorithm proceeds to the tree search

for adding devices to the offloading set S̃. Each layer of the tree search consists

of an exploratory step, a deterministic pruning step, and a greedy device selection

step that calculates the “best” device to add to the offloading set (if any remain

after the pruning step). These steps are outlined in Steps 4, 5 and 7–9 in Alg. 3.

In the exploratory step, for each device in U we seek to determine the minimum

offloading energy cost of the system if that device were to be added to the set of

offloading devices, or declare that no feasible solution can be found when it is

added, by solving the corresponding instance of (2.10). Since (2.10) is intractable,
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we do that efficiently, but slightly conservatively, by applying Algs. 1 and 2. In

the deterministic pruning step, we remove from U all those devices for whom the

exploration step (at this node in the tree search) revealed that offloading the task

of that device would incur a greater energy cost than local computation.3 In the

greedy device selection step, we select the device for which offloading offers the

greatest reduction in the total energy cost of the system.

A feature of Alg. 3 is that we start with the smallest potentially feasible set of

offloading devices, and then add devices to the offloading set. That means that

in the early stages of the tree search, the problems in the exploratory step have

a small number of offloading devices, and hence can be solved relatively quickly.

That emphasizes the value of the pruning step, as the branches that are pruned

from future exploratory steps correspond to complete-offloading problems that

involve a larger number of devices, and hence require more operations to solve.

To quantify that value, let Q(i) denote the cardinality of U at the ith level in the

tree search, then the number of instances of Algs 1 and 2 that are performed at

that level is Q(i). Alg. 1 is an SCA algorithm and its computational cost can be

approximated by the number of successive approximations required for convergence

and the cost of solving the convex optimization problem in (2.24). That problem

has (K̃(i) + 1) variables, where K̃(i) is the cardinality of S̃ at level i in the tree.

If that convex optimization problem is tackled using a Newton method, then the

computational cost per Newton iteration will be O
(
(K̃(i) + 1)3

)
. Alg. 2 requires

the solution of (Nrandi
+ 1)K̃(i) one-dimensional line searches, where Nrandi

is the
3If we were to solve (2.10) exactly, rather than using Algs. 1 and 2, the removal of these

devices would be guaranteed not to degrade the greedy solution; cf. Salmani and Davidson
(2020b). While using Algs. 1 and 2 does not provide that theoretical guarantee, the approach
works very well in practice; see Sec. 2.6.
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Algorithm 3 : An efficient algorithm for a (good) solution to
the binary offloading problem in (2.9); see also (2.26).

Input data: S, {Bk}, {Lk}, {λk}, {αk}, {P̄k}, {ϵk}, {Elock
}, {tlock

}.
Step 1: Initialize S̃ = {k ∈ S|tlock

> Lk}.
Step 2:
if S̃ ≠ ∅ then construct the re-indexed set S̃ ′, and employ Alg. 1, with outputs {R̆⋆

k}
and Flag1, to determine if a solution can be found for the corresponding instance of
(2.10).

if Flag1 = 1 then declare the problem in (2.9) to be infeasible by setting Flag3 = 1
and A⋆ = ∅, and then exit.

else Set Flag3 = 0 and use Alg. 2, with outputs Ĵ⋆
off and X̂ ⋆, to determine a good

solution to (2.10). Set Â⋆ = {S̃, X̂ ⋆}.
end if

end if
Step 3: Set U = S \ S̃. (Terminate if U is empty.)
Step 4: Set V = ∅.
for each k ∈ U do Augment S̃ with {k}; i.e., S̃ ← S̃ ∪ {k}. Construct the re-indexed
set S̃ ′, and employ Alg. 1, with outputs {R̆⋆

k} and Flag1, to determine if a solution
can be found for this instance of (2.10).

if Flag1 = 1 then add device k to the set of devices to be pruned; i.e., V ← V∪{k}
else use Alg. 2, with outputs Ĵ⋆

off,(k) and X̂ ⋆
(k), to determine a good solution to this

instance of (2.10).
if Ĵ⋆

off +λkElock
≤ Ĵ⋆

off,(k) then add device k to the set of devices to be pruned;
i.e., V ← V ∪ {k}

end if
end if

end for
Step 5: Prune the selected devices from the tree; i.e., U ← U \ V.
Step 6: If U = ∅ then terminate the algorithm end if
Step 7: Select the “best” device by choosing k⋆ = arg maxk∈U (Ĵ⋆

off +λkElock
− Ĵ⋆

off,(k))
Step 8: Update the offloading set and the undecided set; i.e., S̃ ← S̃ ∪ {k⋆} and
U ← U \ {k⋆}.
Step 9: Update Ĵ⋆

off ← Ĵ⋆
off,(k⋆), Â

⋆ ← {S̃, X̂ ⋆
(k⋆)}.

Step 10: If U = ∅ then exit, else return to Step 4 end if
Output: Ĵ⋆ = Ĵ⋆

off +
∑

k∈S\S̃ λkElock
, Â⋆, Flag3.
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number of randomizations employed at the ith level in the tree. Since Nrandi
would

typically be chosen to be O(K̃(i)) or even O(1), the growth of the computational

cost of Alg. 3 will be dominated by the cost of the Newton iterations. By using

the fact that K̃(i) ≤ K −Q(i), we can express the computational cost of Alg. 3 as

O
(∑K

i=1 Q
(i)(K − Q(i) + 1)3

)
. By using the Faulhaber formula Conway and Guy

(1996) and some rather coarse bounds, it can be shown that a loose upper bound

for the argument of this expression is K5. In practice, the pruning in the algorithm

results in a highly efficient implementation.

2.6 Simulation results

We consider a scenario with K = 4 devices, each of which communicates over a

fading channel model with a path loss exponent of 3.71 and Rayleigh small scale

fading at a symbol interval of Ts = 10−6s, in the presence of a noise power spectral

density of -173 dBm/Hz. The reference gain at a distance of 100m is -20 dB,

and, unless otherwise stated, for each realization the devices are positioned at

random distances from the access point according to the uniform distribution on

[100, 1,000]m. The communication latencies of the devices, L̃k, are 400, 420, 440,

460 samples respectively, the description lengths of the tasks are Bk = 1,000 bits,

and the power constraints are P̄k = 3.3 µJ/sample, which corresponds to 3.3W.

The cost of the energy of each device is normalized to one; i.e., λk = 1.

2.6.1 Complete offloading

For the complete-offloading problem in (2.10) we will consider: (i) Algs 1 and 2

as stated, which employ the normal approximation (NA) ψ̂(norm)
ϵ (P, τ); (ii) the
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variants of that conservative-relaxation approach for the two-term approximation

(TTA) ψ̂(2)
ϵ (P, τ) and the SNR-Gap approximation ψ̂(gap)(P ; Γ) in Secs 2.4.5 and

2.4.6, respectively; and (iii) the variants for (randomized) independent rounding

in Sec. 2.4.7 and App. 2.C. To assess the impact of the proposed conservative-

relaxation approach, we will also consider a “baseline” approach that has been

heuristically derived from existing results. In the baseline design, the block lengths

are simply relaxed, without the additional constraint tightening, and Alg. 1 is

replaced by the SNR-Gap variant of the rate allocation problem in the asymptotic-

block-length regime; i.e., (2.33) in App. 2.B, but with α replaced by ὰ = α/Γ. We

round down each relaxed block length so that the latency constraint is satisfied,

and the corresponding power allocation is performed using the SNR-Gap variant

of the asymptotic expression in (2.32). Since the baseline design does not take a

conservative-relaxation approach, there is no guarantee that that power allocation

will satisfy the power constraints in (2.10e).

The performance of the complete-offloading systems will be evaluated in terms

of the trade-off between (cost of the) energy expended by the devices, and the

probability of error. By probability of error we mean the normal approximation

of the probability of information outage, which is (the normal approximation of)

a lower bound on the probability of error of any practical code. More specifically,

for a given offloading device with block length τ , rate R, and power P , we will

determine the probability of error as the value of ϵ that solves R = ψ̂(norm)
ϵ (P, τ).

(This value can be determined using a simple bisection search.) In evaluating the

performance of the designs in this way, we observe that the NA designs provide

explicit control over the probability of error for each device when the problem
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is formulated. In contrast, the SNR-Gap designs only involve a specification of

the SNR-Gap at the time of formulation. Although the probability of error can be

varied by changing the gap, with a larger gap resulting in lower probability of error

(and greater energy usage), the actual probability of error can only be determined

after the design (with integer block lengths) is complete. Since the probability of

error may be different for each offloading device, we will consider the maximum

probability over the devices. For TTA-based designs there is some control over

the probability of error, especially if we know that the block lengths will be large.

(The third term in the normal approximation in (2.8) is a decreasing function of

the block length.) However, we still cannot precisely specify the probability of

error in the problem formulation stage.

Rounding schemes

In our first experiment, we consider the impact of the choice of the rounding

scheme. In Fig. 2.1 we plot the trade-offs between the probability of error and the

total energy for NA-based designs and both deterministic and randomized ver-

sions of the incremental and independent rounding schemes in Sec. 2.4.1, and in

Sec. 2.4.7 and App. 2.C, respectively. The curves are obtained by averaging over

the trade-off curves for each of the 457 out of 1,000 channel realizations for which

the baseline scheme generates a feasible solution for all rounding schemes when

the target probability of error is 10−5; see Fig. 2.3. In the case of deterministic

rounding (Nrand = 0), the proposed incremental rounding scheme dominates in-

dependent rounding (in the Pareto sense). In fact, the deterministic incremental

rounding scheme yields a trade-off that is essentially the same as that achieved by

an “extensive-search” approach that examines each combination of block lengths
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Figure 2.1: Error probability versus energy trade-offs achieved
by the proposed design method with the normal approximation
and different rounding schemes.

within ±3 integers of the relaxed solution.4 The randomized scheme in Alg. 2

with Nrand = 2K essentially closes the remaining gap. For the case of indepen-

dent rounding, 2K randomized roundings to the nearest neighbours (wk = 0 in

App. D) provides a tangible improvement over deterministic rounding, but the

deterministic incremental rounding scheme retains a significant advantage.

Based on these observations, in our subsequent experiments we will focus on

the scheme in Alg. 2 with hybrid deterministic randomized incremental rounding

with 2K random trials.
4There are 64 = 1, 296 such combinations. For each combination that satisfies the latency

constraint, we solve the rate and power allocation problem in Steps 2 and 3 of Alg. 2, and check
whether the resulting solution satisfies the power constraints in (2.10e).
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Capacity approximations

In our second experiment, we consider the performance of “conservative-relaxation”

methods that use different approximations of the finite-block-length capacity. In

Fig. 2.2 we plot the trade-off curve between the error probability and energy us-

age for each method, averaged over the 457 channel realizations used to generate

Fig. 2.1. This figure shows that the proposed NA-based method produces a trade-

off that dominates those of the other methods, and dominates the baseline design

and the proposed SNR-Gap designs by a considerable margin. In this setting,

the block lengths are typically in the range of 150-400 channel uses, and hence

the conservatively-relaxed TTA-based design achieves a similar trade-off to the

NA-based design.5

Beyond performance trade-offs on channel realizations for which every design

method achieves a feasible solution, we should also evaluate the probability that

each method generates a solution that meets the specified probability of error.

For the proposed NA-based conservative-relaxation method, this is, by design,

simply the probability that the reduced-dimension conservatively relaxed problem

in (2.21) has a feasible solution. (That problem has a convex feasible set.) For the

other methods, we do not have explicit control over the probability of error during

design process, and hence it is determined after the design is completed. As shown

in Fig. 2.3, the proposed conservative-relaxation approach is significantly more

likely to produce a feasible solution than the baseline design, and that, the NA-

based design is more likely to produce a feasible solution than those the SNR-Gap
5As suggested above, the curves for the proposed SNR-Gap and baseline designs are obtained

by varying the gap and computing the probability of error after the design is completed. Similarly,
the curve for the TTA-based design is obtained by varying ϵ in ψ̂

(2)
ϵ (P, τ), and then computing

the probability of error after the design is completed.
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Figure 2.2: Error probability versus energy trade-offs achieved
by the proposed design method with different capacity approxima-
tions.

and TTA-based designs.

2.6.2 Binary offloading

When some or all of the devices have the capability to complete their task locally

(i.e., tlock
≤ Lk), the system has the additional degree of freedom to decide which

devices should offload their tasks and which should complete their task locally. In

Sec. 2.5 we suggested that these decisions could be made using a pruned greedy

tree search over complete-offloading problems. In the following sections, we will

demonstrate the performance of that scheme in a case in which all four devices

can complete their tasks locally, and Elock
= 640 µJ for each device.
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Figure 2.3: Probability of feasibility as a function of the probabil-
ity of error achieved by the proposed design method with different
capacity approximations.

Effectiveness of tree search

In Fig. 2.4 we compare the error probability versus total energy trade-offs achieved

by various binary and complete-offloading systems in the scenario of Figs 2.1–2.3.

Implicit in Fig. 2.4 is the fact that as we reduce the allowable probability of error,

the energy required for sufficiently reliable transmission increases and hence fewer

devices are selected for offloading in the binary case. Indeed, at a probability of

error of 10−4, the binary offloading schemes select an average of 82%, 81.75%, 81.5%

and 80.75% of the devices for offloading in the NA, TTA, SNR-Gap, and baseline

designs, respectively.

To assess the effectiveness of the pruned greedy tree search, we have included

the trade-off achieved by a scheme that performs an exhaustive search over all 2K
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Figure 2.4: Error probability versus total error trade-offs achieved
by different binary and complete-offloading schemes.

possible offloading decisions, and for each decision performs the extensive-search

scheme described in Sec. 2.6.1 for solving the complete-offloading problem. That

scheme is denoted by “Exh./Ext. search” in Fig. 2.4. The fact that the trade-offs

achieved by the proposed NA and TTA schemes are almost indistinguishable from

this benchmark attests to the effectiveness of the proposed pruned greedy tree

search.

Variation of performance with position

In this example, we examine the performance of the proposed design as the distance

of one of the devices changes. Devices 2 to 4 are placed at distances of 200, 250,

and 300m from the access point, respectively, and device 1 is moved, in a quasi-

static way, from a distance of 100m to 1,000m. The results are averaged over
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Figure 2.5: Probability of error vs distance.

Figure 2.6: Number of offloading devices vs distance.
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Figure 2.7: Total energy vs distance.

1,000 realizations. For the proposed NA-based method, we set the probability of

error to be 10−3. As described earlier, the other methods do not provide explicit

control over the probability of error. For the TTA-based design we set the target

probability of error in that sense to be 10−3. As shown in Fig. 2.5, this results in an

offset from the normal approximation due to the influence of the term log2(2τ)/2τ

in (2.8). While that term varies with the block length of each device in each

channel realization, it is clear from Fig. 2.5 that the variation in quite small in

this setting. For the SNR-Gap and baseline methods we choose the same value

for Γ, namely Γ = 1.2 dB, and it remains constant for all distances. That value

was chosen so that the probability of error lies in between those of the normal and

two-term approximations.

In Fig. 2.6 we have plotted the average number of devices selected for offloading
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as a function of the distance of device 1. As expected, this number decreases as the

distance increases, because device 1 will require more communication resources if

it offloads. For example, when device 1 is at a distance of 200m, the probability

that devices 1 to 4 are offloaded in the NA-based design are 0.86, 0.83, 0.81,

0.78, respectively, whereas at 800m they are 0.75, 0.86, 0.81, 0.78, respectively.

(Note that while the overall offloading probability decreases, the reduction in the

offloading probability of device 1 at 800m provides the opportunity for device 2 to

offload slightly more often.) Fig. 2.6 shows that the NA-based design enables more

devices to offload than the SNR-Gap and baseline designs. That figure also shows

that the conservative-relaxation approach used in the SNR-Gap design results in

more devices offloading than the baseline design, even though they have similar

probability of error. Furthermore, the energy expenditure in Fig. 2.7 shows that

the conservative-relaxation approach also enables the proposed SNR-Gap design

to expend less total energy than the baseline design.

2.7 Conclusion

This chapter has developed efficient algorithms for multi-user binary computa-

tion offloading that explicitly incorporate approximations of the fundamental rate

limit of communication over finite block lengths. The integer nature of the block

length is handled using a relaxation-rounding scheme with a customized incremen-

tal rounding scheme and a constraint-tightening technique that guarantees that

the deterministically-rounded block lengths will be feasible wherever the relaxed

problem has a feasible solution. Using the structure of the design problem, the

relaxed problem is reduced to an optimization over only the rates. The proposed
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design process yields performance that is close to that of an “extensive-search”

technique, and the incorporation of a randomized rounding scheme essentially

closes the remaining gap. The proposed algorithm is embedded within a pruned

greedy tree search for the set of offloading devices. The numerical results show

that the proposed “conservative-relaxation” approach dominates, in the Pareto

sense, a variety of competing approaches, including a baseline scheme obtained by

simply rounding existing design approaches that are based on insights from the

asymptotic-block-length regime.
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2.A Development of (2.16)

Using the substitutions described in the opening paragraph of Sec. 2.4.2, the ini-

tial conservative relaxation of the problem in (2.10) for the incremental rounding

scheme can be written as

min
{R̆k},{P̆k}

∑K̃
k=1 λkBk

P̆k

R̆k
(2.27a)

s.t. Bk

R̆k
> 1

2 − ξk, (2.27b)
∑k

i=1
Bi

R̆i
< L̃k + 1

2 , (2.27c)

0 < R̆k ≤ ωk(P̆k, R̆k, ξk), (2.27d)

0 < P̆k ≤ P̄k, (2.27e)
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where the constraints apply for all k ∈ {1, 2, . . . , K̃} and

ωk(P̆k, R̆k, ξk) = log2(1+αkP̆k)−gk(P̆k,R̆k,ξk)
√

R̆k

1+yk(P̆k,ξk)+fk(R̆k,ξk) , (2.28)

with

yk(P̆k, ξk) = (1−2ξk) log2(1+αkP̆k)
2Bk

, (2.29)

fk(R̆k, ξk) = − (2Bk+(2ξk−1)R̆k)
(2Bk+(2ξk+1)R̆k) ×

log2((2Bk+(2ξk−1)R̆k)/R̆k)
2Bk

, (2.30)

gk(P̆k, R̆k, ξk) =
√

(1+(2ξk−1)R̆k/(2Bk))V (P̆k)
Bk

Q−1(ϵk). (2.31)

For device 1, ξ1 = 0 and hence its constraints are continuous functions ofR1 and P1.

However, for 2 ≤ k ≤ K̃ the constraints in (2.27b) and (2.27d) are discontinuous

functions of {R̆i}k−1
i=1 , through ξk. Therefore, we look for inner bounds on these

constraints that are continuous functions of the variables. (Inner bounds result in

restrictions of the feasible set.) For the positive block length constraint in (2.27b),

that simply involves setting ξk = −1/2, for k ≥ 2; see (2.16b). For the maximum

rate constraint in (2.27d), both terms in the denominator are decreasing functions

of ξk, and gk(P̆k, R̆k, ξk) is an increasing function of ξk. Hence, for k ≥ 2 we will

construct the inner bound by setting ξk = −1/2 in both terms in the denominator,

and ξk = 1/2 in the numerator; see (2.16d).
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2.B Solving (2.10) in the asymptotic regime

One approach to solving (2.10) in the asymptotic-block-length regime (cf. Salmani

and Davidson (2020b))6 begins by relaxing the integer constraint on the block

length and using (2.10f) to obtain τk = Bk/Rk. Then, since ψ̂ϵk
(Pk, τk) = log2(1 +

αkPk), we can obtain a closed-form solution for the optimal powers for given rates,

Pk(Rk) = 2Rk −1
αk

. (2.32)

That enables us to reduce the overall allocation problem to the following rate

allocation problem:

min
{Rk}

∑K̃
k=1 λk

Bk

αk

(
2Rk −1

Rk

)
(2.33a)

s.t. ∑k
i=1

Bi

Ri
≤ L̃k, (2.33b)

0 < Rk ≤ log2(1 + αkP̄k), (2.33c)

where the constraints are applied to all k ∈ S̃ ′. This problem is feasible if and only

if (2.33b) is satisfied when each Rk = log2(1 + αkP̄k). Furthermore, it is convex

and can be efficiently solved. The corresponding powers and (relaxed) transmission

block lengths can be generated using the closed-form expressions above.

2.C Independent rounding of relaxed block lengths

In (2.16) we provided a conservative relaxed formulation for the incremental round-

ing case. By setting ξk = 0 for all offloading devices we obtain the corresponding
6Note that in Salmani and Davidson (2020b) there was no explicit bound on the transmission

power.
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problem for the independent rounding case:

min
{Řk},{P̌k}

∑K̃
k=1 λkBk

P̌k

Řk
(2.34a)

s.t. Řk < 2Bk, (2.34b)
∑k

i=1
Bi

Ři
< L̃k + 1

2 −
(k−1)

2 , (2.34c)

0 < R̆k ≤ Ω̌k(P̌k, Řk), (2.34d)

0 < P̌k ≤ P̄k, (2.34e)

where the constraints are applied for all k ∈ S̃ ′, Ω̌k(P̌k, Řk) =
(
log2(1 + αkP̌k) −

b̌k(P̌k, Řk)
√
Řk

)
/ǎk(P̌k, Řk), with ǎk(P̌k, Řk) = 1+yk(P̌k, 0)+fk(Řk, 0) and b̌k(P̌k, Řk) =

gk(P̌k, Řk, 0), where yk(P̌k, ξk), fk(Řk, ξk) and gk(P̌k, Řk, ξk) are defined in App. 2.A.

A key difference between this formulation and that in (2.16) is the communica-

tion deadline constraint in (2.34c). Since the independent rounding scheme is

(quite naturally) unable to take advantage of the residuals from rounding the

block lengths of the previous devices, this constraint is more conservative than

(2.16c). Furthermore, the constraint in (2.34c) becomes increasingly conservative

as k increases.

Using a similar derivation to that in Sec. 2.4.3, but with ξk = 0 for all k, the

problem that is analogous to (2.24) has a similar structural form, but with (i) the

right hand side of (2.21b) replaced by L̃k + 1
2 −

(k−1)
2 ; (ii) the term Φ̂k(R̂k; a−

k , b
−
k )

replaced by Υ̂k(R̂k; ǎ−
k , b̌

−
k ) = 2

(
ǎ−

k
R̂k+b̌−

k

√
R̂k

)
−1

αk
, where ǎ−

k and b̌−
k are defined

by analogy with the incremental case, using the expressions for ǎk(P̆k, R̆k) and

b̌k(P̆k, R̆k) above; and (iii) the term Ŕk is replaced by min{ ¯̌
Rk, 2Bk}, where ¯̌

Rk

satisfies ¯̌
Rk = Ω̌k(P̄k,

¯̌
Rk).
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This approach will yield an algorithm that is analogous to Alg. 1 in the sense

that if that algorithm generates a feasible solution, the deterministically-independently-

rounded block lengths, along with the corresponding updated rates and powers are

guaranteed to constitute a feasible solution for (2.10). However, since the indepen-

dent rounding scheme does not take advantage of the residuals from rounding the

block lengths of the previous devices, the randomized search for better solutions

than the deterministically-rounded solution ought to be expanded beyond the in-

teger neighbours of the relaxed block length that would be generated by the direct

analogy of Alg. 2. Therefore, we suggest the following modifications be made to

Alg. 2 for the case of independent rounding.

• Input data: The input data rates are {Ř⋆
k}, the rates provided by the

variant of Alg. 1 for the independent rounding case. The input data are

augmented to include a set of K̃ integers {wk} that represent the half-width

of the randomization procedure.

• Step 0: An initialization step is added in which for each device k we define

Tk to be the set of integers in the interval
[
⌊Bk/Ř

⋆
k⌋ − wk, ⌈Bk/Ř

⋆
k⌉ + wk

]
,

and we compute the width of that interval, namely Wk = 2wk + 1.

• Step 1: The block lengths τk are computed by independent rounding; i.e.,

τk = ⌊Bk/Ř
⋆
k⌉.

• Step 6: This step is replaced by: Set nrand = 0, and for each k, and each

integer qi ∈ Tk, compute

pk,i = Wk − |Bk/Ř
⋆
k − qi|∑

qi∈Tk
(Wk − |Bk/Ř⋆

k − qi|)
. (2.35)
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• Step 7a: This step is removed

• Steps 7b–7d: Randomly generate τk, with each τk being set, independently,

to qi ∈ Tk with probability pk,i.

There are two key parameters in this modified version of Alg. 2. The first is wk, the

half-width of the randomized search for integer block lengths for device k. If we

set wk = 0, then the randomized search is only over the nearest integer neighbours

to Bk/Ř
⋆
k. If we can afford a significant number of randomised trials, a choice

that is arguably better tailored to the structure of the conservatism in (2.34c) is

to choose wk = ⌈k/2⌉. The second parameter is the choice of the probability mass

function in Step 6. There are many possible choices, but most reasonable choices

will have the bulk of the probability mass concentrated on integers that are close

to Bk/Ř
⋆
k.

2.D Strong Convexity of (2.23)

To establish the strong convexity of (2.23) it suffices to establish the strong con-

vexity of f(R; a, b) =
(
2(aR+b

√
R) − 1

)
/R for a ≥ 1 and b ≥ 0. If we define

g(R) = log(2)(aR + b
√
R), then the second derivative of f(R) with respect to R

can be written as f ′′(R; a, b) = 2(aR+b
√

R)z(R; a, b)/R3, where

z(R; a, b) =
(
Rg′(R)− 1

)2
+ 1 +R2g′′(R)− 2(1−(aR+b

√
R)), (2.36)

with g′(R) = log(2)(a + bR−1/2/2) and g′′(R) = − log(2)bR−3/2/4. To establish

strong convexity, we will first show that f ′′(R; a, 0) > 0 for all R > 0 and a ≥ 1.
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Then we will show that for b ≥ 0, f ′′(R; a, b) is an increasing function of b for all

R > 0 and a ≥ 1.

For the first step, we will observe that since h(R) = 2aR > 0, it is sufficient to

show that z(R; a, 0) > 0. Since, z(0; a, 0) = 0, to show that z(R; a, 0) > 0 for

R > 0 it sufficient to show that its derivative with respect to R is positive; i.e.,

z′(R; a, 0) = 2 log(2)a
(
log(h(R))− 1 + 1/h(R)

)
> 0. (2.37)

Since the function log(x) − 1 + 1/x > 0 for all x > 1 and since h(R) > 1 for all

R > 0, z′(R; a, 0) > 0 for all R > 0.

For the second step, we observe that ∂
∂b
f ′′(R; a, b) = log(2)2(aR+b

√
R)

4R5/2 T (R), where

T (R) = A1R
2 −B1R + A2R

3/2 −B2R
1/2 + 3, (2.38)

with A1 = 4a2 log2(2), A2 = 4ab log2(2), B1 = 4a log(2) − b2 log2(2), and B2 =

3b log(2). Therefore, to complete the proof if suffices to show that T (R) > 0. To

assist in doing so, we define T1(R) = A1R
2−B1R, and T2(R) = A2R

3/2−B2R
1/2.

To prove that T (R) > 0 for all R > 0, we will first consider the case where

B1 > 0. By taking the derivative and setting it to zero, we can show that T1(R)

achieves its minimum value when R = R⋆
1 = B2

1/(4A1). That minimum value

is T1,min = −(b2 log(2)/(4a) − 1)2. Since B1 > 0, b2 log(2)/(4a) < 1 and hence

T1,min > −1. In a similar manner, we can show that T2(R) achieves its minimum

value when R = R⋆
2 = B2/(3A2) = 1/(4a log(2)), and that minimum value is

T2,min = −
(
b2 log(2)/a

)1/2
. Since B1 > 0, b2 log(2)/a < 4 and hence T2,min > −2.
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For all R > 0, T (R) ≥ T1,min + T2,min + 3, and hence when B1 > 0, T (R) > 0 for

all R > 0.

When B1 = 0, infR>0 T1(R) = 0, and a similar analysis reveals that T (R) > 0

for all R > 0.

In the case where B1 < 0, T3(R) = A1R
2−B1R+A2R

3/2 is a positive increasing

function for all R > 0. For R ≤ 1/(b2 log2(2)), T4(R) = 3−B2R
1/2 ≥ 0 and hence

T (R) = T3(R)+T4(R) > 0 for R ≤ 1/(b2 log2(2)). In addition, when B1 < 0, T1(R)

is a positive increasing function for all R > 0, and T2(R) is an increasing function

for all R > R⋆
2. If we let x = b

√
log(2)/a, then we can write T (R⋆

2) = T1(R⋆
2) +

T2(R⋆
2) + 3 as x2/4− x+ 9/4. That quadratic function is positive for all (positive)

x, and hence T (R⋆
2) > 0. That means that T (R⋆

2) = T1(R⋆
2) + T2(R⋆

2) + 3 > 0,

and since T (R) is an increasing function for R ≥ R⋆
2, we have that T (R) > 0

for all R ≥ R⋆
2. What remains to complete the proof for the case of B1 < 0 is

to show that T (R) > 0 for all R ∈
(
1/(b2 log2(2)), 1/(4a log(2))

)
. For this case,

we write T (R) = A1R
2 + T5(R), where T5(R) = −B1(R) + A2R

3/2 − B2R
1/2 + 3,

and observe that since A1R
2 > 0, it is sufficient to show that for this range of

values of R, T5(R) > 0. If we define y = b log(2)R1/2 and β = 4a/(b2 log(2) we

can rewrite T5(R) as (1 − β)y2 + 2a log(2)Ry − 3y + 3. Furthermore, for R ∈(
1/(b2 log2(2)), 1/(4a log(2))

)
, 0 < y < 1 and 0 < β < 1. Therefore, (1−β)y2 > 0,

2a log(2)Ry > 0 and −3y + 3 > 0, and hence T5(R) > 0.

Since we have now shown that T (R) > 0 for all R > 0 when B1 > 0, B1 = 0

and B1 < 0, f ′′(R; a, b) is an increasing function of b for all R > 0 for all values of

a ≥ 1, b ≥ 0. Since f ′′(R; a, 0) > 0 for all R > 0 and a ≥ 1, that means that we
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have shown that f ′′(R; a, b) > 0 for all R > 0, a ≥ 1 and b ≥ 0, and hence that

f(R; a, b) is a strongly convex function of R.

2.E Initialization of Alg. 1

Since feasible set of (2.24) is the same as that of (2.21), we can determine whether

(2.24) is feasible by determining whether (2.21b) holds when each R̆k = Ŕk; see the

discussion after (2.21). If that test shows that the problem is feasible, then we can

generate a strictly feasible point for (2.21), and hence for (2.24), by determining a

set of rates {R̆k} such that each R̆k < Ŕk while (2.21b) still holds. A simple way

to generate such a set is to is to pick a (large) value for ρ ∈ (0, 1), set an integer

m = 1, construct R̃k = (1−ρm)Ŕk for all k, and then test the feasibility of (2.21b)

for the set of rates {R̆k = R̃k}. If that constraint is not satisfied, then increment

m and repeat until a strictly feasible set {R̆k} is found.
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Chapter 3

Joint Computing and

Communication Resource

Allocation for Binary

Computation Offloading

Abstract

In order to effectively utilize shared computing resources at an access point, care-

ful selection of the offloading devices and joint allocation of the computing and

communication resources are essential. The joint allocation problem is combina-

toric, and this chapter addresses that challenge by employing a decomposition

strategy. For a scenario in which the set of offloading devices has been selected,

we introduce effective heuristics for computation resource allocation and propose

an optimal communication resource allocation algorithm for a given computation
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resource allocation under the time division multiple access (TDMA) scheme. We

then extend that approach to tackle the problem of selecting the offloading devices,

using a methodology similar to that used in the previous chapter. Our numerical

results demonstrate that the proposed efficient algorithms provide performance

that is close to that of the jointly optimal solution.

3.1 Introduction

Mobile edge computing can enhance the computational capacity of wireless devices

by enabling the offloading of computational tasks to their associated access point.

However, the edge server at the access point only has limited computation re-

sources. Consequently, in order to effectively enhance the devices’ computational

capabilities using the MEC approach, the limitations of both the edge server’s

computation resources and the (multi-user) communication system between the

devices and the access point must be considered. These perspectives lead us to a

problem of jointly selecting the devices that will offload their tasks and allocating

the computing and communication resources to those offloading devices. As in

the previous chapter, the objective of our joint selection–allocation problem will

be to minimize the cost of the energy expended by the mobile devices while en-

suring that they receive the results of their computational tasks within a specified

deadline.

In this chapter, we address the joint selection–allocation problem in a scenario

with a single fixed-frequency CPU at the access point, and with the time division

multiple access (TDMA) scheme. The methodology for selecting the offloading
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devices remains consistent with the previous chapter. While the joint selection–

allocation problem is ultimate goal of this chapter, our key contributions lie in

addressing the case of a fixed-set of offloading devices (i.e., the complete offload-

ing problem), and jointly allocating the shared computation and communication

resources in that case.

To develop the proposed algorithm, we show that for an optimal computing al-

location, it is sufficient to allocate all the shared computing resources to one device

at a time. That results in a formulation for the allocation that is a large scale com-

binational problem. To tackle that challenge we introduce heuristic algorithms for

computation resource allocation, enabling us to develop a simple algorithm for the

determining a good transmission order for the offloading devices. These outcomes

allow us to formulate an efficiently solvable communication resource allocation

problem that minimizes the energy cost of offloading. This involves optimizing

the transmission block lengths, rates, powers, subject to latency constraints deter-

mined by the computation resource allocation.

Computation resource allocation has been studied in MEC systems, as demon-

strated by Dinh et al. (2017), where the objective is to reduce both the overall

execution time of tasks and the energy consumption of the devices by considering

both fixed CPU frequency and variable CPU frequency in the offloading process.

In this chapter, we assume that the CPU frequency is fixed. In the previous

chapter, we focused on communication resource allocation for a fixed computation

resource allocation. In this chapter, we aim to jointly allocate computing and

communication resources for the offloading devices by decomposing the problem
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into two layers. First, the computation resource allocation is addressed by propos-

ing two good heuristics, one of which successively maximizes the communication

deadline starting with the largest. The other one has the same overall goal, but

constrains the allocation so that each task is computed in a contiguous time block.

We show that after finding a good solution for the computation resource allocation

problem, we can easily determine the communication deadline for each offloading

device. Then, similar to Chapter 2, we allocate the communication resources based

on the communication deadlines.

This chapter is organized as follows: In Sec. 3.2, we establish the computation

and communication models for both the complete and binary offloading problems.

In Sec. 3.3, we outline the decomposition of the problem into computation and

communication resource allocation problems. In Sec. 3.4 we establish two efficient

heuristic schemes for allocating the computing resources, and show how this reveals

the corresponding user transmission ordering. In Sec. 3.5 we develop our efficient

algorithm for the remaining uplink communication resource allocation problem,

and in Sec. 3.6, we provide some results that illustrate the performance of our

approaches.

3.2 System model

As in Chapter 2, we consider a computation offloading system with K single-

antenna devices and a single-antenna access point. Each device seeks to complete

a computational task within its own specified deadline. The tasks are modeled as

being indivisible, and hence the system must make a binary decision as to whether

each device should offload its task to the access point or fully execute the task

72

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Master of Applied Science– Amin Manouchehrpour; McMaster University–
ECE Department

locally. The contribution of this chapter is to develop a system that makes that

decision jointly with the allocation of computation resources at the access point

and communication resources on the uplink to the access point. The goal is to

minimize a weighted sum of the energies expended by the devices, subject to the

deadlines by which each device must receive its results, the computational capacity

of the access point, and the communication capacity of the multiple access channel.

3.2.1 Offloading model

We consider a scenario in which the kth device’s task can be described inBk bits and

requires Wk operations to complete. The device requires the solution to the task

within Lk seconds. The access point is able to compute F operations per second

and the device can compute Fk operations per second. Since each device’s task is

modelled as being indivisible, the system must make a binary decision γk ∈ {0, 1}

as to whether the task is to be offloaded or computed locally. If γk = 0, the task

is computed locally, which takes tloc,k = Wk/Fk seconds and consumes Eloc,k units

of energy. For this to be feasible, we must have tloc,k ≤ Lk.

If γk = 1, the description of the task is transmitted to the access point, the

task is completed there, and then the solution is returned to the device. We will

consider the class of tasks for which the full description of the task must be received

before computation can begin, and for which the results become available once the

task has been completed. Therefore, for an offloading device, if tdel,k denotes the

elapsed time over which the description of the task is delivered to the access point,

texe,k denotes the elapsed time over which the computation is performed, and tDL,k

denotes the time that it takes to return the result to the device, then as illustrated
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Figure 3.1: General offloading time slot model for an individual
device.

in Fig. 3.1 for the case of a single device, for offloading to be feasible we must

satisfy

tdel,k + texe,k + tDL,k ≤ Lk. (3.1)

Since the result to be communicated back to the device often has a significantly

shorter description than the task itself, and since each device’s task may be com-

pleted at a different time, we will assume that tDLk
is a (different) constant for

each device. (Similar models are adopted in most of the existing literature; e.g.,

Sardellitti et al. 2015; Wang et al. 2018; You et al. 2017; Salmani and Davidson

2020b; Salmani and Davidson 2020a.) As a result, we will rewrite (3.1) as

tdel,k + texe,k ≤ L̆k (3.2)

where L̆k = Lk − tDL,k, is the computing deadline for device k; see also Fig. 3.1.

That is, the time by which the access point must complete the task for device k.

3.2.2 Computation model for offloading devices

To simplify the development of our models, let us first consider a scenario in which

K̆ devices have been selected for offloading. Without loss of generality, we will
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re-index those devices starting from one and will re-order them such that

L̆1 ≤ L̆2 ≤ · · · ≤ L̆k̆ ≤ · · · ≤ L̆K̆ . (3.3)

We will use the index k̆ to denote that re-indexing. With this ordering, we know

that by L̆k̆ the access point must have completed the computational tasks of devices

1, 2, . . . , k̆. That leads naturally to the notion of a computing time slot. For

j = 2, 3, . . . , K̆ we define the jth computing time slot to be the interval (L̆j−1, L̆j],

which is of duration

∆j = L̆j − L̆j−1 (3.4)

in seconds. In the K̆th computing time slot we can only allocate computing re-

sources to device K̆’s task, as all the other tasks need to be completed by L̆K̆−1.

Similarly, in computing time slot K̆ − 1 we can only allocate computing resources

to the tasks of devices K̆ − 1 and K̆, and in the jth computing time slot, we can

allocate computing resources to devices j, j + 1, . . . , K̆. In order to define the first

computing time slot in a way that enables consistent notation, we define L̆0 to be

the time at which the first computation begins, and we define the first computing

time slot to be (L̆0, L̆1] which is duration ∆1 = L̆1 − L̆0. Although it may appear

to be a design variable, as we show in App. 3.A the optimal value of L̆0 can be

determined prior to the computing resource allocation, and can be achieved by a

sizable class of computing resource allocation scheme.

Given our definition for the computing time slots in terms of the computing

deadlines, in the jth computing time slot we will have allocate the computing

resources amongst the tasks of (at most) K̆ + 1− j devices, namely devices j, j +
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Figure 3.2: Computation model at the access point.

1, . . . , K̆ according to the indexing in (3.3). For simplicity, we will adopt a model

in which the computing resources can be shared in an arbitrary manner, and that

this sharing can be changed at any time, without any “context switching” penalty.

As we show in App. 3.B, under this computing model an optimal computing

resource allocation can be obtained by allocating all the computing resources to

the task of one device at a time, and by allocation at most one computing subslot

to each user withing a given computing time slot. Since there are up to K̆ + 1− j

tasks to consider in the jth computing slot and since for slots 2 to K̆ we need

to consider the possibility of an idle computing slot, for j = 2, . . . , K̆ we will

divide the jth computing time slot into K̆ + 2 − j subslots of duration ujm∆j,

with m = 0, 1, . . . , K̆ + 1 − j and ujm ∈ [0, 1], and we will use fjmk̆ ∈ {0, 1}

to indicate whether or not the computing resources are allocated to the task of

device k̆ in computing subslot (j,m); see Fig. 3.2 for an illustration. In the first

computing time slot there is no need to consider an idle time slot so in that slot

we need only consider (at most) K̆ computing subslots. However, for notational

simplicity we will notionally allocate K̆ + 1 subslots that case. (At optimality, the

redundant subslot in the first computing subslot will have duration of zero.) Since

device k̆’s task must be completed by the end of the k̆th computing time slot, the

set of computing allocation variables is F =
{
fjmk̆ ∈ {0, 1}

}K̆,K̆+1−j,K̆

j=1,m=0,k̆=j
. Since at
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most one task can be worked on in each subslot, we have ∑K̆
k̆=j

fjmk̆ ≤ 1 for all j

and m, and since it is sufficient to allocate at most one subslot to each task, we

have ∑K̆+1−j
m=0 fjmk̆ ≤ 1 for all j and k̆. The fractional durations of each computing

subslot satisfy

ujm ≥ 0, and
K̆+1−j∑

m=0
ujm = 1. (3.5)

With this computing model in place, the number of operations of device k̆’s task

that are completed in the (j,m)th computing subslot is (fjmk̆F )(ujm∆j), where,

as earlier, F is the number of operations per second that the access point can

complete. In order to ensure that we complete the task of device k̆, we must

ensure that
k̆∑

j=1

K̆+1−j∑
m=0

(fjmk̆F )(ujm∆j) ≥ Wk̆. (3.6)

Note that the first summation only goes to k̆ and hence this constant implicitly

ensures that we complete device k̆’s task by the end of the k̆th computing time

slot. That is, by its computing deadline, L̆k̆.

To complete the model for the computing resource allocation we need to deter-

mine texe,k̆, the length of the interval over which device k̆’s task is completed. This

can be written as L̆k̆ − tstart,k̆, where tstart,k̆ is the time at which the access point

starts computing device k̆’s task; see Fig. 3.1 for an illustration. If we define I(·)

to be the indicator function, with I(x) = 0 if x ≤ 0 and I(x) = 1 if x > 0, then we

can write

tstart,k̆ = L̆k̆ −
k̆∑

j=1

K+1−j∑
m=0

ujm∆jI
( j∑

p=1

m∑
q=0

fpqk̆

)
. (3.7)
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3.2.3 Communication model for offloading devices

We will model the narrowband communication channel from each (single-antenna)

device to the (single-antenna) access point using a conventional discrete-time base-

band equivalent channel model with symbol interval Ts. The channels are modelled

as being quasi-static and flat in frequency. We will assume coherent communica-

tion in which the access point has knowledge of the baseband equivalent channel.

The access point employs the time domain multiple access (TDMA) scheme,

and hence time is divided into K̆ communication time slots, and only one of the K̆

devices selected for offloading will transmit in each time slot. Given the indexing of

the offloading devices in (3.3), we let π(k̆) denote the index of the communication

time slot in which device k̆ transmits. Given an arbitrary channel use within the ith

communication time slot, device k̆ = π−1(i) will be transmitting, and the received

signal takes the form

y = hk̆

√
Pk̆sk̆ + v, (3.8)

where sk̆ in the symbol transmitted by the k̆th device, which is normalized such

that E{|sk̆|2} = 1, Pk̆ is the transmission power (per channel use) of the k̆th device,

hk̆ is the (complex-valued) channel gain of the k̆th device, and v is the circular zero-

mean additive white Gaussian noise at the access point, which has a variance of

σ2. For convenience, we will define the channel-to-noise ratio for device k̆ to be

αk̆ = |h2
k̆
|/σ2. The maximum allowable transmission power of device k̆ is P̄k̆.

If we denote the length of the ith communication time slot, in channel uses, as

τi, then in order to ensure that we can communicate the description of the k̆th
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device’s computation task to the access point we must ensure that

Rk̆τπ(k̆) ≥ Bk̆, (3.9)

where Rk̆ is the data rate (per channel use) employed by the k̆th device. There is

a fundamental limit on the rate at which reliable communication can be achieved

over the channel in (3.8); e.g., Polyanskiy et al. (2010). In this chapter we will

employ the SNR-gap approximation that limit (e.g., Cioffi et al. (1995) and Starr

et al. (1999)) in order to incorporate some of the effects of finite-block-length

communication and the use of practical codes. That is, given an SNR-gap Γk̆ ≥ 1

we will constrain Rk̆ so that

0 ≤ Rk̆ ≤ log2

(
1 + αk̆Pk̆

Γk̆

)
. (3.10)

The amount of energy that device k̆ expands in offloading its task is Pk̆τπ(k̆). The

amount of time it takes for device k̆ to deliver its task to the access point is the

sum of the time it needs to wait for access to the channel, Ts
∑π(k̆)−1

i=1 τi, and the

time it takes to transmit, τπ(k̆)Ts. That is,

tdel,k = Ts

π(k̆)∑
i=1

τi. (3.11)

The remaining constraint on our offloading system is that computing cannot

start until the full description of the task is delivered to the access point. That is,

for each k̆ we require tstart,k̆ ≥ tdel,k̆. With this model in place, an example of a

joint computing–communication resource allocation for a case of K̆ = 3 devices is

79

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Master of Applied Science– Amin Manouchehrpour; McMaster University–
ECE Department

 

𝐿"! 

𝐿"" 

𝐿"# 

𝑡!"#$",&		 

𝑡!"#$",(		 

𝑡!"#$",)	 

𝜏!	 
 

𝜏"	 
 

𝜏#	 
 

𝑘$ 
 

1	 
 

2	 
 

3	 
 

Communication resource allocation  Computation resource allocation 

Figure 3.3: An example of a joint computation–communication
resource allocation in a three-device case. In this case π(1) =
2, π(2) = 3 , and π(3) = 1

illustrated in Fig. 3.3.

3.2.4 The “complete offloading” problem

Having established the computing and communication models for the offloading

devices, we can now formulate the joint computing–communication resource allo-

cation problem for a set of devices that have been selected for offloading. We will

call this problem the complete offloading problem. In particular, given a set of K̆

devices that have been re-indexed according to (3.3), and given the price per unit

of energy at each device, λk̆, we seek to jointly optimize the computing resource

allocations in each computing subslot,
{
fjmk̆ ∈ {0, 1}

}K̆,K̆+1−j,K̆

j=1,m=0,k̆=j
, the fractional

length of each computing subslot
{
ujm

}K̆,K̆+1−j

j=1,m=0
, the time at which the access point

begins computing, L̆0, which determines the duration of the first computing slot
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∆1 = L̆1 − L̆0, the order in which the devices transmit to the access point π(·),

and the rates,
{
Rk̆

}K̆

k̆=1
, transmission power,

{
Pk̆

}K̆

k̆=1
, and communication time

slot lengths,
{
τk̆

}K̆

k̆=1
, so as to minimize the cost of the energy expended by the of-

floading devices, subject to the computational task of each device being completed

by its computing deadline L̆k̆. That problem can be written as

min
K̆∑

k̆=1

λk̆τπ(k̆)Pk̆ (3.12a)

s.t. τk̆ > 0, (3.12b)

Rk̆τπ(k̆) ≥ Bk̆, (3.12c)

0 ≤ Pk̆ ≤ P̄k̆, (3.12d)

0 ≤ Rk̆ ≤ log2

(
1 + αk̆Pk̆/Γk̆

)
, (3.12e)

Ts

π(k̆)∑
i=1

τi ≤ tdel,k̆, (3.12f)

tstart,k̆ ≥ tdel,k̆, (3.12g)

tstart,k̆ = L̆k̆ −
k̆∑

j=1

K̆+1−j∑
m=0

ujm∆jI
(∑j

p=1
∑m

q=0 fpqk̆

)
, (3.12h)

k̆∑
j=1

K̆+1−j∑
m=0

(ujm∆j)(fjmk̆F ) ≥ Wk̆, (3.12i)

∆1 = L̆1 − L̆0, (3.12j)

fjmk̆ ∈ {0, 1},
∑

k̆ fjmk̆ ≤ 1, ∑
m fjmk̆ ≤ 1, (3.12k)

ujm ≥ 0, ∑
m=0 ujm = 1, (3.12l)

where we have left it implicit in the constraints that the free indices range over

all possible values, and for notational simplicity we have not explicitly listed the

design variables in the formulation.
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In the formulation in (3.12) we have used the redundant variables {tdel,k̆} and

{tstart,k̆} and the constraint in (3.12g) to highlight how the computation resource

allocation, which is characterized by the constants in (3.12i)–(3.12l), is connected

to the communication resource allocation, which is characterized by the constraints

in (3.12b)–(3.12g) and by the objective in (3.12a). The constraints in (3.12i)

implicitly ensure that device k̆’s task is assigned sufficient resources that it will

be completed by L̆k̆, and the constraint in (3.12h) characterizes when the access

point must start working on device k̆’s task in order to complete that task in time.

The fact that the description of that task must arrive at the access point before

that time is captured by (3.12g). The delivery time is captured by (3.12f), and

the fact that the whole description must be received is captured by (3.12c). The

constraint in (3.12e) ensures that sufficient power is allocated to support reliable

communication at the chosen rates, and the constraint in (3.12d) captures the

constraint on that power allocation. The objective is the sum of the cost of the

energy used by each device.

3.2.5 The binary offloading problem

Now that we have formulated the problem of joint computing–communication

resource allocation problem for a given set offloading devices, we can succinctly

formulate the binary offloading problem that jointly selects the offloading devices

with the joint computing–communication resource allocation. To do so, we let

J⋆
off({γk}) denote the optimal value for the complete offloading problem in (3.12)

for a given set of offloading decisions {γk}, and we notionally set J∗
off({γk}) = +∞

wherever that problem is infeasible. (Recall that the formulation in (3.12) involves

a re-indexing of the offloading devices according to (3.3).) The binary offloading
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problem can then be formulated as

min
γk∈{0,1}K

k=1

J∗
off

(
{γk}

)
+

K∑
k=1

(1− γk)λkEloc,k (3.13a)

s.t. (1− γk)tloc,k ≤ Lk. (3.13b)

Since Eloc,k and tloc,k are known constants, this formulation suggests a natural

description of the binary offloading problem into a binary tree search over complete

offloading problems. We will employ that decomposition, and will exploit the fact

that the binary search admits a tree structure. As such, the main contribution of

this chapter will be development of efficient algorithm for the complete offloading

problem in (3.12).

3.3 Solution strategy for the complete offloading

problem in (3.12)

The complete offloading problem in (3.12) is difficult to solve directly, due to the∑K̆
j=1(K̆ + 2 − j)(K̆ − j) = 1

6K̆(2K̆2 + 3K̆ − 5) binary variables fjmk̆ describ-

ing the allocation of computing resources, and the K̆-item permutation π(·) that

determines the order in which the devices transmit. As we outline in App. 3.C,

one approach to solving that problem is to perform an exhaustive search over the

binary variables and the permutation, and for each instance solve a convex opti-

mization problem over {Rk̆} and {ujm}. However, the number of instances grows

rapidly with K̆. Therefore, in the following sections we will develop an efficient

algorithm that yields good solutions in practice, as we will demonstrate in Sec. 3.6.
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The algorithm is based on the observation that once we have selected a compu-

tation resource allocation, the optimal transmission order (for that computation

resource allocation) can be easily determined and the communication resource al-

location problem can be written as a convex optimization problem over the rates;

see (3.20) in Sec. 3.5. Therefore, one possible gateway to an efficient algorithm

for the complete offloading problem is to find an efficient algorithm for a good

computing resource allocation.

The objective of the complete offloading problem is a weighted sum of the energy

that each device expends in transmitting the description of its task to the access

point. This energy is related to the computation resource allocation through the

constraint in (3.12g), which states that the description of device k’s task must

be delivered to the access point before its computation is scheduled to start; i.e.,

tstart,k̆ ≥ tdel,k̆. For an individual device, the energy required to communicate a

fixed number of bits is a decreasing function of the transmission block length.

Therefore, in the development of a computing resource allocation heuristic, one

appropriate strategy is seek to make each tstart,k̆ large. In App. 3.A, we show

that the largest possible value for the smallest tstart,k, that is, the largest possible

value of L̆0, is fixed for a large class of good computing resource allocations that

includes optimal allocations. Therefore, in our proposed heuristic we will construct

a computing resource allocation that successively maximizes each tstart,k̆, starting

from the largest. That is, if we define S̆ = {1, 2, . . . , K̆} to be the set of re-indexed

offloading devices, we will first allocate the computing resources in a way that
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seeks to

max max
k̆∈S̆

tstart,k̆ (3.14a)

s.t.
k̆∑

j=1

K̆+1−j∑
m=0

(ujm∆j)(fjmk̆F ) ≥ Wk̆, (3.14b)

fjmk̆ ∈ {0, 1},
∑

k̆ fjmk̆ ≤ 1, ∑
m fjmk̆ ≤ 1, (3.14c)

ujm ≥ 0, ∑
m=0 ujm = 1, (3.14d)

where the optimization variables are all fjmk̆ and all ujm. As we will show in

the next section, an optimal computing resource allocation for this problem can

be efficiently found. If we let k̆⋆ denote the index of the device whose tstart,k̆ is

maximized this way, then the next step in our strategy is to seek to assign the

remaining computational resources so as to

max max
k̆∈S̆\k̆⋆

tstart,k̆ (3.15a)

s.t. (3.14b)–(3.14d), (3.15b)

where design variables are those fjmk̆ and ujm that were not determined by the

solution to (3.14). That process is repeated until all the computing resources are

allocated.

As we will show in Sec. 3.6, this “sequentially maximized maximum delivery

time” (SMMDT) heuristic produces computing resource allocations that enable

the devices to offload their tasks with low energy. However, this computing re-

source allocation may require switching between the tasks of different devices.

For scenarios in which the cost of such context switching cannot be neglected, in
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Sec. 3.4.3 we develop an alternative heuristic that constrains the computing re-

source allocation so that each task is completed in one contiguous block, without

the need for context switching. We will call that heuristic the contiguous SMMDT

(C–SMMDT) heuristic.

3.4 Efficient heuristics for computation resource

allocation

To develop our SMMDT heuristic, we will first develop an effective heuristic for

the case in which all the computational deadlines L̆k̆ are the same. In Sec. 3.4.2

we will use insight from that case to extend our approach for the case of different

latencies. In Sec. 3.4.3 we offer a variation of our approach that requires contiguous

computation resources and hence avoids context switching.

3.4.1 The equal computation deadline case

In the case where all the computation deadlines are the same (i.e., L̆k̆ = L̆ for all

k̆), there is only one computation time slot. To determine the length of that time

slot, and hence L̆0, the time at which computation must begin, we observe that

the total number of operations that must be completed is

WT =
K̆∑

k̆=1

Wk̆. (3.16)

Since the access point processes F operations per second, the largest possible

value for L̆0, which leaves the largest possible amount of communication time for

the device that starts its computation first, is obtained when there are no idle
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computing slots. In that case,

L̆0 = L̆0,max = L̆−WT/F. (3.17)

Note that we have not yet determined which device must start its computation

first. Indeed, we note that this optimized value of L̆0 is independent of the order

in which the devices compute their tasks.

Having established the optimal value of L̆0 and the fact that there will be no

idle computing time slot, the task that remains is to divide the interval [L̆0, L̆] into

K̆ computing subslots and to assign each device to a subslot. That is, we assign

{f1mk̆}. The duration of the subslot assigned to device k̆ is the minimum required

to complete its computation, namely Wk̆

F
. Therefore, if f1mk̆ = 1 then u1m = Wk̆

F ∆1
,

where ∆1 = L̆ − L̆0 = WT/F . As described at the end of Sec. 3.3, the heuristic

that will guide our allocation is to sequentially maximize the time that each user

has to deliver the descriptions of its task to the access point, starting with the

largest.

In order to follow the heuristic, the device assigned to the last computing sub-

slot is that with the smallest number of operations to complete; i.e., if k̆last =

arg mink̆∈S̆ Wk̆, then f1K̆k̆last
= 1 and f1K̆k̆ = 0 for all k̆ ̸= k̆last. As a result of

this assignment, the delivery time for the description of this task must satisfy

tdel,k̆last
≤ L̆−

Wk̆last
F

.

The device assigned to the second last computing time slot is that with the

smallest number of operations to complete among the remaining devices; i.e., if

k̆2ndlast = arg mink̆∈S̆\{k̆last} Wk̆, then f1(K̆−1)k̆2ndlast
= 1 and f1(K̆−1)k̆ = 0 for all
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k̆ ̸= k̆2ndlast. As a result, the delivery time for that device must satisfy tdel,k̆2ndlast
≤

L̆−
Wk̆last

F
−

Wk̆2ndlast
F

. This process is then used recursively to assign computational

resources to the tasks of the remaining devices, and in doing so, assign the upper

bounds on the delivery times for the description of these tasks.

3.4.2 The case of different computational deadlines

In this section we extend the principles of the SMMDT heuristic to the case of

different computing deadlines, L̆1 ≤ L̆2 ≤ · · · ≤ L̆K̆ . As outlined above, the broad

philosophy can be described as follows: In order to allow as much time as possible

for the description of each task to be delivered to the access point, we assign the

computing resources as late as possible. When there are devices competing for

these resources, the task with the least computing requirement is computed last.

To describe the details of the proposed heuristic, let us first consider the K̆th

computing time slot, which is of duration ∆K̆ = L̆K̆ − L̆K̆−1. In this slot we can

only assign computing resources to device K̆, because the tasks of the other devices

should be completed before L̆K̆−1. If WK̆ ≤ F∆K̆ then the task of device K̆ can

be completed within the K̆th computing time slot. In that case, the computing

allocation within this time slot consists of an idle subslot of duration ∆K̆ −
WK̆

F

followed by the computation of the task of device K̆ in a subslot of duration WK̆

F
.

That is, fK̆,1,K̆ = 1 and uK̆,1 = WK̆

∆K̆F
, fK̆,0,K̆ = 0, and uK̆,0 = (1 − uK̆,1). If

WK̆ > F∆K̆ , then we assign the whole of the last computing time slot to device

K̆; i.e., fK̆,1,K̆ = 1, uK̆,1 = 1 and uK̆,0 = 0. With this assignment in place, the
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number of operations that must be completed on device K̆’s task prior to L̆K̆−1 is

VK̆,K̆−1 = max
{
0,WK̆ − F∆K̆

}
. (3.18)

In the (K̆ − 1)th computing time slot we have up to three subslots, an idle

subslot, and two computing subslots, one for each of devices K̆ − 1 and K̆. The

number of as yet unassigned operations for the devices’ tasks are VK̆,K̆−1 in (3.18)

and VK̆−1,K̆−1 = WK̆−1. The last subslot, subslot (K̆ − 1, 2), is assigned to the

task of the device with the smaller value of Vk̆,K̆−1, with a tie going to device K̆

in order to have contiguous computation. Let k̆2 denote the index of the selected

device; i.e., k̆2 = arg maxk̆∈{K̆−1,K̆} Vk̆,K̆−1. If Vk̆2,K̆−1 ≥ ∆K̆−1F then the whole

computing slot is assigned to device k̆2; i.e., fK̆−1,2,k̆2
= 1, uK̆−1,2 = 1 and all other

fK̆−1,m,k̆ and uK̆−1,m are set to zero. If Vk̆2,K̆−1 < ∆K̆−1F , then fK̆−1,2,k̆2
= 1,

uK̆−1,2 = Vk̆2,K̆−1
F ∆K̆−1

, and we assign subslot 1 to the other device, indexed k̆1. If

Vk̆1,K̆−1 ≥ (1 − uK̆−1,2)∆K̆−1F , then the whole of the remainder of computing

subslot 1 is assigned to device k̆1. Otherwise, device k̆1 completes its task within

computing slot K̆ − 1 and the first subslot of that computing time slot, namely

subslot (K̆−1, 0), will be idle. Following this allocation, the number of operations

that must be completed prior to L̆K̆−2 for each task are Vk̆,K̆−2 = max{0, Vk̆,K̆−1−

∆K̆−1F
∑2

m=1 fK̆−1,m,k̆uK̆−1,m}, for k̆ = K̆ − 1, K̆.

This allocation process is repeated recursively for computing time slots K̆−2 ≥

j ≥ 2. In particular, in computing slot j, we must assign the computing resources

amongst at most K̆ + 1 − j devices, with as yet unassigned computing demands
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Vk̆,j, k̆ = j, j + 1, K̆, where Vj,j = Wj and for k̆ > j

Vk̆,j = max
{

0, Vk̆,j+1 −∆j+1F
K̆−j∑
m=1

fj+1,m,k̆uj+1,m

}
. (3.19)

Following our heuristic, computing subslot (j, K̆ + 1− j) is assigned to the device

with the smallest positive value of Vk̆,j, which we will denote as device k̆⋆
j . That is,

if we let Vj = {Vk̆,j|Vk̆,j > 0} and Sj = {k̆|Vk̆,j ∈ Vj}, then k̆⋆
j = arg mink̆∈Sj

Vk̆,j.

If Vk̆⋆
j ,j ≥ ∆jF , then the whole computing slot is assigned to device k̆⋆

j ; i.e.

fj,K̆+1−j,k̆⋆
j

= 1, uj,K̆+1−j = 1 and all other fj,m,k̆ and uj,m are set to zero. If

Vk̆⋆
j ,j < ∆jF , then we set fj,K̆+1−j,k̆⋆

j
= 1 and uj,K̆+1−j =

Vk̆⋆
j

,j

F ∆j
. In that case, the

remaining time in computing slot j is ∆̃j = (1−uj,K̆+1−j)∆j. To assign the remain-

ing computing resources, we recursively repeat this process with Sj ← Sj \ {k̆⋆
j}

and ∆j replaced by ∆̃j, until all the computing resources in the slot are allocated

(i.e., ∆̃j = 0) or there are no more tasks to which we can assign resources (i.e.,

Sj = ∅).

Once the computing resources in computing time slots K̆ down to 2 have been

allocated, we can allocate the computing resources in the first time slot by com-

puting Vk̆,1 using (3.19), and then applying the procedure developed in Sec. 3.4.1,

using each Vk̆,1 in place of Wk̆, and setting L̆ = L̆1. Note that in App. 3.A we

obtain an expression for the optimal value of L̆0. Moreover, we show that this

starting point is not only optimal for SMMDT, but is also globally optimal. Fur-

thermore, for the case of equal computing deadlines, this optimal value for L̆0 is

achieved by all computing resource allocations that complete the tasks by L̆ and

have no idle time slots.
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To enhance the clarify of the exposition, the above description of the sequen-

tially maximized maximum delivery time (SMMDT) algorithm for computation

resource allocation employs new variables Vj,k̆, Vj and ∆̃j. A more memory effi-

cient version of that algorithm that uses recursive updates is formally stated in

Alg. 4.

Algorithm 4 : SMMDT computation resource allocation
Input data: S̆, L̆0, {L̆k}, {∆k}, {Wk}, F
Step 1: Set V = S̆, K̆ = |S̆|
Step 2: Set each element of

{
fj,m,k

}K̆,K̆−j+1,K̆

j=1,m=1,k=1 and
{
uj,m

}K̆,K̆−j+1
j=1,m=1 to zero.

Step 3: Set δ = L̆K̆

for j = K̆, K̆ − 1, . . . , 1, do
Step 4: Set the counter, m = j
Step 5: Determine eligible devices for the j th computing slot C = V\{1, 2, . . . , j−

1}
while L̆j − δ < L̆j−1 do

Step 6: Determine the device with the minimum remaining computing cost
d̆ = arg mink̆∈C{Wk̆}

if δ −Wd̆/F > L̆j−1 then
Step 7: Set fj,m,d̆ = 1 and uj,m = Wd̆/(F∆j)
Step 8: Set tstart,d̆ = δ −Wd̆/F

Step 9: Update C, C ← C \ {d̆}
Step 10: Update δ, δ ← δ −Wd̆/F
Step 11: Update the counter m, m← m− 1

else
Step 12: Set fj,m,d̆ = 1 and uj,m = 1
Step 13: Update Wd̆, Wd̆ ←Wd̆ − (δ − L̆j−1)F
Step 14: Update δ, δ ← L̆j −∆j

end if
end while

end for
Output: {tstart,k̆}, {fj,m,k}, and {uj,m}, for j = 1, 2, . . . , K̆, m = 0, . . . , j, k̆ =
1, . . . , K̆
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3.4.3 Contiguous computation resource allocation

In Sec. 3.6 we will show that the SMMDT heuristic generates computation re-

source allocations that yield low energy consumption amongst the offloading de-

vices. However, the SMMDT heuristic may require switching between the tasks

of different devices. For scenarios in which the impact of that context switching

is significant, in this section we develop a variant of the SMMDT heuristic that

provides contiguous computing resource allocation. We will call this heuristic the

contiguous SMMDT heuristic (C–SMMDT). There are several ways in which this

heuristic can be described. We will provide a description that emphasizes the

connection to the SMMDT heuristic.

Like the SMMDT heuristic, we start from last computing time slot, where only

device K̆ can compute, and we employ the same computing resource allocation as

the SMMDT heuristic. That is, if WK̆ ≤ F∆K̆ then the task of device K̆ can be

completed the K̆th computing time slot, with the remaining time in that computing

slot being idle. Hence, fK̆,1,K̆ = 1, uK̆,1 = WK̆

∆K̆F
, fK̆,0,K̆ = 0, and uK̆,0 = 1 − uK̆,1.

If WK̆ > F∆K̆ then we assign the whole of the last computing time slot to device

K̆.

For the (K̆ − 1)th slot, as in the SMMDT heuristic we define Vk̆,K̆−1 to be the

number of operations on device k̆’s task that must be completed before L̆K̆−1.

That is, VK̆,K̆−1 is given in (3.18) and VK̆−1,K̆−1 = WK̆−1. The difference between

the heuristics lies in the choice of k̆2, the device whose task will be worked on

during the last subslot of this computing slot, which is subslot (K̆−1, 2). If device

K̆’s task requires computation resources prior to L̆K̆−1, then it is assigned in the

last subslot to ensure contiguity. That is, if VK̆,K̆−1 > 0, then we assign k̆2 = K̆.
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Otherwise, we set k̆2 = K̆ − 1. Once k̆2 has been assigned, the resources in the

(K̆ − 1)th computing slot are allocated in the same way as the SMMDT heuristic.

For computing slot j, K̆−2 ≥ j ≥ 2, we determine the number of operations of

device k̆’s task that must be computed before L̆j using Vj,j = Wj and (3.19). As

in the case of the (K̆−1)th computing slot, the difference between the C–SMMDT

heuristic and the original SMMDT heuristic lies in the choice of the device whose

task will be worked on in the last subslot. In the contiguous case, if a device’s task

is to be worked on at the beginning of the (j + 1)th computing slot, it will also

be worked on at the end of the jth computing slot. To state that more formally,

let m⋆
j+1 denote the lowest indexed subslot in slot j + 1 in which the access point

is active. That is let m⋆
j+1 = arg minm uj+1,m subject to uj+1,m > 0. Let q⋆

j+1

denote the index of device whose task is being computed in that slot. That is, let

q⋆
j+1 be such that fj+1,m⋆

j+1,q⋆
j+1

= 1. If device q⋆
j+1 has computation to complete

prior to L̆j, then we assign the last computing subslot of computing slot j to

the task of that device, and then proceed with the SMMDT heuristic. If device

q⋆
j+1’s task is completed within the (j + 1)th computing slot, then we proceed

directly with the SMMDT heuristic. That is, if Vq⋆
j+1,j > 0, then we set the first

k⋆
j = q⋆

j+1 and proceed with the SMMDT heuristic. If Vq⋆
j+1,j = 0, we proceed

directly with the SMMDT heuristic. In the first computing slot we employ the

analogous modification of the SMMDT heuristic.

A memory-efficient version of the C–SMMDT heuristic can be constructed by

making the following modifications to Alg. 4:

• Step 6: Replace by “If q > 0 set d̆← q else set d̆ = arg mink̆∈C{Wk̆}”
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• Step 10: Add “Set q ← 0”

• Step 14: Add “ Set q ← d̆”

3.5 Optimal communication resource allocation

Once the computing resource allocation has been performed, we know the times

by which the description of the tasks must be delivered to the access point; i.e.,

we know tstat,k̆ in the constraint tdel,k̆ ≤ tstart,k̆. If we let Dk̆ = tstart,k̆/Ts denote the

communication deadline in channel uses, then the remaining optimization problem

over the communication resources takes the form

min
{Rk̆},{Pk̆},{τk̆},π(·)

K̆∑
k̆=1

λk̆Pk̆τπ(k̆) (3.20a)

s.t. τk̆ > 0 (3.20b)

Rk̆τπ(k̆) ≥ Bk̆ (3.20c)

0 ≤ Pk̆ ≤ P̄k̆ (3.20d)

0 ≤ Rk̆ ≤ log2

(
1 + αk̆P̄k̆/Γk̆

)
(3.20e)

π(k̆)∑
i=1

τi ≤ Dk̆ (3.20f)

This problem takes a similar to form those in Salmani and Davidson (2018), Liu et

al. (2023), and Chapter 2, and from that work we know that the optimal transmis-

sion order is in the order of increasing communication deadlines. That is, πopt(·)

is such that

Dπ−1
opt(1) ≤ Dπ−1

opt(2) ≤ · · · ≤ Dπ−1
opt(K̆). (3.21)
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To simplify our notation we will let k̃ = πopt(k̆) denote a re-indexing of the offload-

ing devices so that they are in increasing order of their communication deadlines.

The problem in (3.20) can be simplified by observing that at optimality the

constraints in (3.20c) and the constraints on the right hand side of (3.20e) hold

with equality. These observations, enable us to rewrite (3.20) as an optimization

problem over either {Rk̆}, {Pk̆}, or {τk̆} alone. The problem over {Rk̆} takes a

similar form to that in (2.33), namely.

min
{Rk̃}

K̃∑
k̃=1

λk̃

Bk̃Γk̃

αk̃

2Rk̃ − 1
Rk̃

 (3.22a)

s.t.
π(k̃)∑
ℓ̃=1

(
Bℓ̃

Rℓ̃

)
≤ Dk̃ (3.22b)

0 ≤ Rk̃ ≤ log2

(
1 + αk̃P̄k̃/Γk̃

)
(3.22c)

where the index ℓ̃ in (3.22b) indicates that the devices are ordered in increasing

order of their communication deadlines. By analytically evaluating the second

derivatives of the objective in (3.22a) and the left hand side of the constraint in

(3.22c) it can be shown that this problem is convex. Furthermore, it is feasible if

and only if (3.22b) is satisfied when each Rk̃ achieves its upper bound in (3.22c).

Once the problem in (3.22b) has been solved for {R⋆
k̃
} the optimal time slot lengths

for (3.20) are τ ⋆
k̃

= Bk̃/R
⋆
k̃
, and the optimal powers are P ⋆

k̃
=

Γk̃

(
2R⋆

k̃ −1
)

αk̃
.

3.6 Simulation results

In this section, we examine the performance of the proposed joint computing–

communication resource allocation algorithm in scenarios involving K = 3 and
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4 devices, in which each device communicates over a quasi-static fading channel

model. The channel model includes a path loss exponent of 3.71 and Rayleigh

small scale fading. The reference gain at a distance of 100m is -20 dB, and unless

otherwise specified, the users are randomly positioned at distances between 100m

and 1,000m from the access point, following a uniform distribution. The symbol

interval is Ts = 10−6s, the noise power spectral density is −173 dBm/Hz, and each

device has a transmission power constraint of P̄k = 4µJ per sample. The overall

latencies of the devices, denoted as Lk, are 480, 500, and 510 ms, respectively.

We set the downlink communication time, tDL,k, to 10 ms for all devices and

hence deadlines are L̆k̆ = 470, 490 and 500 ms, respectively. The description

lengths of the tasks are set to Bk = 1,000 bits for all devices. The number of

operations required to complete each task isWk = 3,000, 3,500, 4,000, for k = 1, 2, 3

respectively, and we will examine the system performance as F , the number of such

operations that the access point can process per second, changes. (We have left

the definition of what constitutes an “operation” implicit.) For the purpose of this

section, we normalize the price of the energy cost at each device to one, represented

by λk = 1.

3.6.1 Complete offloading

We will first assess the performance of the proposed approaches in a three-device

complete offloading scenario; i.e., K̆ = K = 3. Since the devices are already

ordered in increasing order of their computing deadlines, L̆k̆, we do not need to

re-index them in order to satisfy (3.3).
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Figure 3.4: Probability of feasibility versus CPU capability.

In Fig. 3.4 we show how the fraction of feasible solutions varies with the com-

puting capabilities of the access point (AP). These curves were obtained from 1,000

realizations of the fading channels. As expected, as the computing capabilities im-

prove, the system can allocate more time for communication. That increases the

chance that the problem descriptions can be reliably communicated over a given

channel realization under the imposed power constraints. Fig. 3.4 shows that the

greater flexibility of the SMMDT heuristic enables it to provide feasible solutions

for a slightly larger fraction of the fading channels than the contiguous SMMDT

when the computational capability is around 25 ops/ms. However both provide a

much greater fraction of feasible solutions than two simpler benchmark heuristics

that we have selected. The first benchmark involves reserving once third of the
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computing capability for each device at all times; i.e., equally dividing the com-

puting resources in a static manner. The second benchmark involves reserving

equal fractions of the computing resources for the devices that may need them

in each computing time slot; i.e., between L̆2 and L̆3 all the computing resources

are allocated to device 3, between L̆1 and L̆2 they are equally divided between

devices 2 and 3, and prior to L̆1 they are equally divided among all three devices.

These benchmarks will be referred to as the evenly divided and simple shared

benchmarks, respectively. We have also included the feasibility rate of a system

in which each device has been allocated to its own dedicated processor capable of

processing F operations per second. This benchmark will be referred to as the K

CPU benchmark. While the performance of the K CPU system is not necessarily

achievable by the system that we consider (which has only one processor capable

of F operations per second), this benchmark does provide a useful bound on the

achievable performance.

While Fig. 3.4 plots the fraction of channels for which a feasible solution is

generated, Fig. 3.5 plots the average offloading energy. Since the offloading energy

of an infeasible case is notionally infinite, we have only plotted the curves for

values of the computational capability F for which all 1,000 realizations of the

fading channel generated a feasible solution. Fig. 3.5 shows that the SMMDT

heuristic is able to offload the tasks using an energy that is lower than that of the

contiguous-SMMDT heuristic. Indeed, the SMMDT scheme bridges a significant

fraction of the gap between the energy of the C–SMMDT scheme and that of the

not-necessarily-achievable lower bound provided by the scheme with K processors.

In fact, once the processor capability is above 42 ops/ms, the SMMDT scheme
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Figure 3.5: Average overall energy over all 1,000 channel realiza-
tions versus CPU capability

actually achieves the not-necessarily-achievable lower bound. That said, the K-

CPU system is able to provide a feasible solution for a broader range of processor

capabilities; see also Fig. 3.4. As F increases further, the performance of the

C–SMMDT heuristic also approaches the lower bound.

To provide more context for these results, in Fig. 3.6 we provide a variation

on the results in Fig. 3.5 in which the average is taken over the 900 channels for

which the “evenly divided CPU” scheme is able to provide a feasible solution for

a processor capability of F ≥ 34 ops/ms; see Fig. 3.4. Figs. 3.4–3.6 demonstrate

that the utilization of the proposed heuristics allows us to achieve two main ad-

vantages. First, they enhance the feasibility of the problem for lower values of the

computational capability, F . Second, they notably reduce the cost of offloading
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Figure 3.6: Average overall energy over a set of 900 of the 1,000
channel realizations versus CPU capability

energy in comparison to the benchmarks. Through a comparison of the perfor-

mance between the proposed heuristics and the K-CPU lower bound, it becomes

evident that the proposed heuristics can achieve performance levels quite close to

those of the lower bound while only requiring one CPU at the access point.

3.6.2 Optimal allocation in the complete offloading case

Given the good performance of the proposed resource allocation schemes in the

above example, it is appropriate to compare the performance of those schemes to

that of the optimal joint computing–communication resource allocation. As we

outlined in App. 3.C, the optimal allocation can be found by performing an ex-

haustive search over all possible choices of the computing subslot allocations, fjmk̆,
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and the communication ordering, π(·). For each choice, a reduced-dimension con-

vex optimization problem is solved to determine the remaining parameters. Since

finding the optimal solution for a given channel realization requires considerable

computational effort (see App. 3.C), averaging over a reasonable number of channel

realization is not possible in a reasonable amount of time. Instead, in this section

we consider two different channel realizations in which we have fixed the channel

gains for the first two devices to α1 = |h1|2/σ2
e = 300 and α2 = |h2|2/σ2

e = 400,

respectively. For the first scenario, we set the channel gain of the third device to be

large, namely α3 = |h3|2/σ2
e = 500, and for the second experiment we decrease α3

by 10 dB; i.e., α3 = 50. As Fig. 3.5 has shown that the simple shared and evenly

divided CPU bookmarks provide similar performance in the experiments, in this

section we will only employ the evenly divided CPU scheme as our benchmark.

(a) Including the “evenly
divided CPU” curve.

(b) Excluding the “evenly
divided CPU” curve.

Figure 3.7: Offloading energy vs CPU capability for the case that
α1 = 300, α2 = 400, and α3 = 500.

Fig. 3.7(a) shows that the SMMDT and C–SMMDT heuristics provide a feasible

solution to the complete offloading problem for computational capabilities as low as
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24.5 ops/ms. That is quite close to the feasibility threshold of the optimal scheme,

which is 21.8 ops/ms and is significantly lower than that of the evenly divided

benchmark, which is 30.8 ops/ms. In terms of the offloading energy, the SMMDT

scheme achieves the same energy as the optimal scheme for all computational

capabilities at or above 27.8 ops/ms, and they both achieve the K-CPU lower

bound. In contrast, the C–SMMDT does not attain the performance of the optimal

scheme for any value of F in the figure. Indeed, it is noteworthy that the SMMDT

heuristic consistently outperforms the C–SMMDT heuristic.

(a) Including the “evenly

divided CPU” curve.

(b) Excluding the “evenly

divided CPU” curve.

Figure 3.8: Offloading energy vs CPU capability for the case that
α1 = 300, α2 = 400, and α3 = 50.

For the second scenario, the α3 is decreased 10 dB, and the computational

capability thresholds above which each scheme provides a feasible solution are

degraded a little. As shown in Fig. 3.8(b), the optimal solution is able to offload

the tasks when F ≥ 22.4 ops/ms, while the SMMDT and C–SMMDT heuristics are

able to offload the tasks when F ≥ 25.2 ops/ms, and benchmark does that when
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32.6 ops/ms. Furthermore, as this scenario has a lower gain for device 3, offloading

requires more energy than in the scenario in Fig. 3.7. In this more difficult scenario,

the performance advantage of the proposed SMMDT heuristic over its contiguous

counter part is larger than in Fig. 3.7. In particular, as in Fig. 3.7 the SMMDT

scheme achieves the same performance as the K-CPU lower bound when F ≥ 27.8

ops/ms. This is because it generates the same communication deadlines as the

K-CPU scheme.

3.6.3 Binary offloading

When some or all of the devices have the capability to complete their task lo-

cally (i.e., tloc,k ≤ Lk), the system has the additional degree of freedom to decide

which devices should offload their tasks. In this section, we will demonstrate

the performance of binary offloading under the same channel model as the pre-

vious section, for K = 4 devices, with latencies of Lk = 410, 440, 450, 460ms for

k = 1, 2, 3, 4, downlink communication times tDL,k = 10ms, energy consumption of

local computation Eloc,k = 200µJ for each user, computation requirements of Wk =

2,500, 3,000, 3,500, 4,000 operations for k = 1, 2, 3, 4, and with local computation

being feasible for all devices.
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Figure 3.9: Overall energy versus CPU capability for binary of-
floading problem

In Fig. 3.9, we present the variation of the average energy expended by the de-

vices with the computational capability of the access point. As local computation

remains possible, binary offloading is feasible across all channel realizations, result-

ing in the curves being averaged over all 1,000 channel realizations. In Fig. 3.9, the

curve for the SMMDT heuristic consistently outperforms the C–SMMDT heuristic.

For lower CPU capabilities, the proposed heuristics expend more energy compared

to the not-necessarily-achievable K-CPU lower bound. This is because the K-

CPU lower bound enables more devices to offload their tasks. However, for higher

CPU capabilities this energy gap is substantially reduced. For the case of F ≥ 33

ops/ms, the SMMDT heuristic and the lower bound provide identical performance,

while the C–SMMDT heuristic closely follows these two curves. This suggests that
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the offloading sets for SMMDT heuristic and K-CPU lower bound are the same,

even though the proposed scheme requires only one CPU at the access point; see

also Fig. 3.10, below. Furthermore, the energy consumption associated with the

evenly divided CPU benchmark is significantly larger than that of the proposed

heuristics. As the computational capacity of the access point increases, the energy

gap between the evenly-divided benchmark and the heuristics slowly decreases,

but it remains large.

(a) Including the “evenly

divided CPU” curve.

(b) Excluding the “evenly

divided CPU” curve.

Figure 3.10: Number of offloading devices versus CPU capability
for binary offloading problem.

To gain further insight into the different offloading energies among the consid-

ered schemes, Fig. 3.10 shows the variation of the average number of offload-

ing devices as a function of the computational capability of the access point.

Fig. 3.10(b) demonstrates that for F ≥ 33 ops/ms the SMMDT heuristic offloads

the same number of devices (on average) as the K-CPU upper bound, and that

for 21 ≤ F ≤ 33 it offloads a similar number of devices. The C–SMMDT heuristic
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has the additional constraint of contiguity of computation and offloads a slightly

smaller number of devices (on average) across all CPU capabilities. Indeed, the

C–SMMDT heuristic never reaches the same number of offloading devices as the

SMMDT heuristic nor the K-CPU upper bound, even at higher CPU capabilities.

Fig. 3.10(a) illustrates that the evenly-divided-CPU benchmark only offloads a sin-

gle device to the access point for F < 22 ops/ms, whereas the proposed heuristic

offloads more than 1.9 devices on average at F = 22 ops/ms. Additionally, the

benchmark’s performance is significantly inferior in comparison to the proposed

heuristics and the K-CPU upper bound. This trend true even when the access

point employs a CPU that is capable of more than 40 ops/ms.

3.7 Conclusion

In conclusion, this chapter emphasizes the importance of careful modelling of the

temporal structure of computation offloading systems and of the development of

effective algorithms for joint allocation of computing and communication resources

To address the challenges of joint resource allocation, we first considered the com-

plete offloading problem, for which the set of offloading devices has already been

selected. For that problem, we adopt a decomposition approach, introducing ef-

fective heuristics for computation resource allocation and optimal communication

resource allocation within the TDMA scheme. Our approach is versatile, extending

naturally to handle the binary offloading problem. Through numerical evaluations,

we demonstrate the efficacy of our proposed algorithms. The results show that

our decomposition and resource allocation strategies can rival the performance of

joint optimization, especially as the computational capability of the access point
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increases, and that it can even approach the performance of the lower bound ob-

tained by giving the access point one independent processor per device.

3.A Optimal starting point for computation

In this appendix we derive an expression for the largest possible value for L̆0, the

time at which the access point must begin computation of the one of the tasks in

order to be able to complete all of their tasks by their computational deadlines,

L̆k. We will show that this value can be computed from the parameters of the

scenario, prior to any resource allocation.

To begin, let us consider the case of K̆ = 1 offloading device. In this case, we

simply allocate all the available computing resources to the task of that device,

and the largest possible value for L̆0 is

L̆0,max = L̆1 −W1/F. (3.23)

In the case of the K̆ = 2 offloading devices, two possible scenarios arise. If device

2’s task is completed within computing time slot 2, then computing time slot 2

will consist of an idle subslot followed by the completion of the task of device 2.

In that case, the value of L̆0,max is determined by the computational requirements

of device 1 and takes the form in (3.23). If some portion of device 2’s task needs

to be completed prior to L̆1, then there will be no idle computing subslots and

L̆0,max = L̆2 − (W1 + W2)/F . Therefore in the case of two offloading devices we

have

L̆0,max = min
{
L̆1 −W1/F, L̆2 − (W1 +W2)/F

}
. (3.24)
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In the case of K̆ = 3 offloading devices, if the tasks of devices 2 and 3 can be

completed after L̆1, then L̆0,max takes the form in (3.23). If that is not the case,

but device 3’s task can be completed after L̆2, then L̆0,max takes the form in (3.24).

Otherwise, L̆0,max = L̆3−(W1 +W2 +W3)/F . Hence, in the case of three offloading

devices,

L̆0,max = min
{
L̆1 −W1/F, L̆2 − (W1 +W2)/F, L̆3 − (W1 +W2 +W3)/F

}
. (3.25)

Using analogous arguments, for the general case of K̆ offloading devices we have

L̆0,max = min
k̆∈{1,2,...,K̆}

{
L̆k̆ −

1
F

k̆∑
j=1

Wj

}
. (3.26)

3.B Optimality of allocating computation resources

to one task at a time

 

Computing 
resources 

Time 

⋮ 

⋮ 
𝑓"!"𝐹 

𝐿%#,%&' 𝐿%  

𝐹 

(a) Sharing computation frac-

tions.

  

Computing 
resources 

Time 

⋮  

𝐹  

⋮ 

𝐿" 
 

𝐿"!,#$% 
 𝑓$&'Δ(,#)* 

 

(b) Sharing time fractions.

Figure 3.11: Two computing resource allocation schemes for a
scenario with common computing deadlines.
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In the most general form of a computing resource allocation in our setting, the

computing resources can be shared between the tasks of multiple devices. In this

appendix, we will show that adopting a simpler resource allocation strategy in

which all the computing resources are allocated on the task of one device at a

time is sufficient to obtain an optimal solution to the complete offloading problem.

That is, we will show that the computing architecture described in Sec. 3.2.2 and

illustrated in Fig. 3.2 is sufficient to obtain an optimal allocation.

We will first consider the case in which all the computing deadlines are the same;

i.e., L̆k = L̆. In this case there is only one computing time slot, and for optimal

schemes that time slot is [L̆0,max, L̆], where, as in App. 3.A, L̆0,max = L̆− 1
F

∑K̆
k̆=1 Wk̆.

Let ∆1,min = L̆− L̆0,max. One possible computing allocation that achieves L̆0,max is

to allocate a fraction f̌k̆ = Wk̆∑K̆

k̆
Wk̆

of the computing resources to device k̆’s task for

the whole of the computing time slot; see Fig. 3.11(a). However, doing so results in

the access point having to start computing all of the devices’ tasks at L̆0,max. That

means that the descriptions of the tasks of all devices must be delivered by L̆0,max.

An alternative allocation that also achieves L̆0,max is to allocate all the computing

resources to device k̆’s task for a fraction f̌k̆ of the time interval [L̆0,max, L̆]; see

Fig. 3.11(b). Both schemes enable all the devices’ tasks to be completed by L̆. In

Fig. 3.11, this is apparent in the fact that the rectangles representing the number

of operations assigned to device k̆ have the same area. In the case in Fig. 3.11(b),

since the computing resources are allocated to only one device at a time, only

one device’s task needs to be delivered by L̆0,max. The communication deadlines

for the other task descriptions are later. Since the energy required to reliably

communicate a message over a given time interval is a decreasing function of the

109

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Master of Applied Science– Amin Manouchehrpour; McMaster University–
ECE Department

length of that interval, the system can use that additional time to reduce the

energy that is needed to offload those tasks.

To expand that discussion to the general case, let us consider an arbitrary time

interval [ta, tb] in which a subsetD ⊆ {1, 2, . . . , K̆} of the tasks share the computing

resource. Let Θk̆ denote the number of operations performed on device k̆’s task

during this interval. Note that the full description of all the tasks must be delivered

prior to ta. As suggested by the previous argument, there is a computationally

equivalent system consisting of |D| subslots in which in each subslot one device’s

task is allocated all the computing resources. The width of the subslot for device k̆

is Θk̆

F
(tb−ta). By tb, this system achieves the same amount of progress in computing

the devices’ tasks as the shared case and hence it is sufficient for optimality. In the

general case, the subslot model will allow more time for the task descriptions to

be delivered, and hence it will facilitate lower energy expenditure by the devices.

With this argument in place we know that for any time interval in which the

computational resource is shared, there is a time divided system in which only

one device’s task being worked on at a time, for which the optimal (cost of the)

energy is no greater than that of the allocation with shared resources. Hence, it

is sufficient to allocate the computing resources to one device at a time.

Having established that result, we now need to establish how many subslots we

need to consider in each computing time slot.

In the last computing time slot (L̆K̆−1, L̆K̆ ] there is at most one task to work on.

Hence we need only consider two subslots: one in which the access point works on

the task of device K̆ and, if that task can be completed within the time slot, the
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other subslot will be idle. Since the description of the task must be delivered to the

access point prior to computing beginning, if there is a need for an idle time slot

it will be the first time slot. In the (K̆− 1)th computing time slot we have at most

two tasks to work on, namely device (K̆ − 1)’s task and the component of device

K̆’s task that must be completed before L̆K̆−1. Although we could assign many

subslots in this computing time slot, and in doing so interleave the computation

of the two tasks, the communication of the description of one of the tasks will

have a greater impact on the total (cost of the) offloading energy. Therefore, that

task should be worked on during the latter part of the computing slot, without

interleaving, in order to make the delivery time for the description of that device’s

task as long as possible. Hence, we need at most three subslots in the (K̆ − 1)th

computing time slot, one for the task of device (K̆ − 1), one for the task of device

K̆, and one idle slot.

A similar argument enables us to show that in the jth computing time slot we

need only consider (j + 1) subslots, one for the task of each device and one as a

possible idle time slot. Note that the duration of the subslots is a design variable,

and with the exception of the idle subslot, the assignment of tasks to subslots

is also a design variable. If an idle subslot arises, it arises because the tasks of

devices j, j + 1, . . . , K̆ can be completed after L̆j−1. That idle subslot will be the

first subslot of the jth computing time slot.

3.C Optimal solution for (3.12)

One strategy for finding the optimal solution to (3.12), is to determine the jointly

optimal computing subslot lengths and communication resource allocation, for all

111

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Master of Applied Science– Amin Manouchehrpour; McMaster University–
ECE Department

possible choices of the task to be worked on in each computing subslot, {fjmk̆ ∈

{0, 1}} and all possible communication transmission orders π(·), and then to pick

the best solution. For a given allocation of tasks to computing subslots and a

given transmission order, the remaining optimization problem is over {ujm}, L̆0,

{Pk}, {Rk}, and {τk}. Since we derived the optimal value of L̆0 in App. 3.A we

can restrict attention to candidate solutions that achieve this value. Therefore,

the remaining optimization problem can be reduced to the following problem over

{ujm}, {Pk̆}, {Rk̆} and {τk̆},

min
K̆∑

k̆=1

λk̆τπ(k̆)Pk̆ (3.27a)

s.t. τk̆ > 0, (3.27b)

Rk̆τπ(k̆) ≥ Bk̆, (3.27c)

0 ≤ Pk̆ ≤ P̄k̆, (3.27d)

0 ≤ Rk̆ ≤ log2

(
1 + αk̆Pk̆/Γk̆

)
, (3.27e)

Ts

π(k̆)∑
i=1

τi ≤ tdel,k̆, (3.27f)

tstart,k̆ ≥ tdel,k̆, (3.27g)

tstart,k̆ = L̆k̆ −
k̆∑

j=1

K̆+1−j∑
m=0

ujm∆jΦjmk̆, (3.27h)

k̆∑
j=1

K̆+1−j∑
m=0

(ujm∆j)(fjmk̆F ) ≥ Wk̆, (3.27i)

ujm ≥ 0, ∑
m=0 ujm = 1, (3.27j)
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where Φjmk̆ = I
(∑j

p=1
∑m

q=0 fpqk̆

)
, is known since the fjmk̆ are fixed. Therefore,

constraints (3.27h)–(3.27j) are linear in ujm for all j and m.

We observe that π(·) is given, and that the computation and communication

resource allocations only interact through (3.27g). Therefore, we can use the tech-

niques that were used in App. 2.B to reduce the communication resource allocation

part to an optimization over {Rk} alone. That is, the problem in (3.27) can be

simplified to

min
{Rk},{ujm}

K̆∑
k̆=1

λk̆

Bk̆

αk̆

(2Rk̆ − 1
Rk̆

)
(3.28a)

s.t. 0 ≤ Rk̆ ≤ log2

(
1 + αk̆P̄k̆/Γk̆

)
, (3.28b)

k̆∑
i=1

Bi

Ri

≤
(
L̆k̆ −

k̆∑
j=1

K̆+1−j∑
m=0

ujm∆jΦjmk̆

)
/Ts, (3.28c)

k̆∑
j=1

K̆+1−j∑
m=0

(ujm∆j)(fjmk̆F )) ≥ Wk̆, (3.28d)

ujm ≥ 0, ∑
m=0 ujm = 1, (3.28e)

This problem is jointly convex in {Rk̆} and {ujm} and can be efficiently solved.

In this appendix, we have shown that one way to solve (3.27) optimally is

to solve the problem in (3.28) for each computing resource allocation and each

permutation. There are ΠK̆
i=1(K̆ + 1 − i)! possible choices for the set {fjmk̆} and

there are K̆! possible permutation of the transmission orders. As a result, the

exhaustive search approach requires the solution of K̆!ΠK̆
i=1(K̆ + 1 − i)! different

instances of the convex problem in (3.28).
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

The effective utilization of shared computing resources at an access point relies

on two key factors: the selection of offloading devices and the joint allocation

of computing and communication resources. Most previous approaches to these

problems employed classical asymptotic-block-length characterizations of funda-

mental rate limits to perform communication resource allocation. However, doing

so overlooked the fact that the offloading devices’ latency constraints inherently

limited the available block length. Furthermore, many previous approaches em-

ployed rather simple models for the computing resource allocation, and this could

impact the effectiveness of computational offloading. In this thesis, we developed

resource allocation algorithms that addressed both of these issues.

In Chapter 2, we developed efficient algorithms for offloading decision-making

and communication resource allocation in a K-device binary computational of-

floading system that used time-division multiple access (TDMA). The approach
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incorporated fundamental rate limits on finite-block-length communication, and

the algorithms utilized a relaxation-rounding technique based on a customized

incremental rounding scheme for the transmission block lengths. This approach

ensured that the process of rounding a feasible solution to the relaxed problem

always generated a feasible integer block length. Additionally, we leveraged a

closed-form approximation of transmission powers to simplify the optimization

process and bridge the performance gaps between ad-hoc schemes and extensive

search solutions.

In Chapter 3, we tackled the challenge of effectively utilizing shared comput-

ing resources at an access point. The combinational nature of the computation

resource allocation made this a computationally daunting problem. Our approach

was based on decomposing the joint computation and communication resource al-

location problem. We first examined the “completed” offloading problem, in which

the offloading decisions had already been made. For that problem, we proposed ef-

fective heuristics for computation resource allocation and showed how the optimal

communication resource allocation for TDMA, for a given computation-resource

allocation, could be obtained by solving a convex optimization problem over the

rates alone. Our approach to the complete offloading problem was then incorpo-

rated into an efficient tree search algorithm for the binary offloading decisions. The

numerical results demonstrated that the proposed decomposition and algorithmic

approaches for computation resource allocation could achieve performance levels

comparable to joint optimization, at much lower computational cost.

In conclusion, the thesis emphasized the importance of optimal offloading device
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selection and joint resource allocation for effective multi-user computation offload-

ing systems. We proposed novel algorithms and heuristic methods that provided

effective sharing of the finite-block-length communication resources of the channel

and the finite computing resources of the access point, and the proposed methods

demonstrated significant improvements in performance compared to the existing

approaches.

4.2 Future work

In this thesis, computationally-efficient algorithms have been proposed to achieve

energy optimizing solutions for (i) the communication resource allocation problem

for integer finite block length, and (ii) the joint communication and computation

resource allocation in both the binary offloading and complete offloading cases

of a K-user offloading system. The success of these algorithms suggest several

additional directions that would be worthy of further investigation.

4.2.1 Communication model and resource allocation

In this thesis, in order to focus on the core principles of computation offloading, we

focused on time division multiple access (TDMA) systems with a single antenna at

the access point and single antenna devices. Although TDMA is simple to imple-

ment, it is well known that there are other multiple access schemes that have larger

achievable rate regions; e.g., Cover and Thomas (2012). Superposition coding with

successive decoding, which is also known as Non-Orthogonal Multiple Access; e.g.,

Dai et al. (2018) is one popular example. Therefore, a natural extension would

be to consider such schemes. These schemes have been considered in the case
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of asymptotically long block lengths (Salmani and Davidson (2018), Ding et al.

(2022), and Liu et al. (2023)) under the simplified computation model in Chap-

ter 2, and hence can be incorporated into the joint computation-communication

resource allocation problem in Chapter 3 in a natural way. However, the case

of finite block lengths is quite involved, as the capacity region has not yet been

well approximated even in the two-user case (MolavianJazi and Laneman (2015)).

That said, some early work on two-user NOMA schemes with fixed order sequen-

tial decoding (Liu et al. (2022) and Yang et al. (2022)) suggests methodologies

that could be employed to develop pragmatic schemes.

Beyond the consideration of different multiple access schemes, it is well known

that the provision of multiple antennas and the access point and, potentially at

the devices, offers the opportunity for larger achievable rate regions than single

antenna systems; e.g., Goldsmith et al. (2003). These larger rate regions offer the

opportunity to reduce the energy consumed by each offloading device. While there

has been some work on computation offloading using NOMA signalling with fixed-

order sequential decoding and multiple antennas of the access point (Wang et al.

(2019)), and NOMA signalling with independent decoding and multiple antennas

at both the access point and the devices (Sardellitti et al. (2015)), these systems

have been based on rate characterizations for asymptotically long block lengths.

They have also been based on fixed computation resource allocation (Wang et al.

(2019)) or a simplified scheme for allocating computing resources (Sardellitti et al.

(2015)). Those observations suggest that the ideas developed in this thesis could

be applied in these more general settings.
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4.2.2 Computation resource allocation

In Chapter 3 of this thesis, we have addressed the problem of joint computation and

communication resource allocation. with a goal of controlling the computational

cost of solving the joint problem. We took a decomposition approach in which

we developed two heuristic approaches for computation resource allocation. The

emphasis was on finding an optimal solution independent of the communication

constraints, such as channel gains, limits the transmission power of each device,

the description length of each device’s task, and the related price s of each device’s

energy.

Although the proposed decomposition based allocations perform well in prac-

tice, often close to the optimal allocation, incorporating information regarding the

communication environment into the heuristic for computation resource allocation

offers the potential for further enhancements. The additional information can lead

to more informed decisions regarding computing resource allocation, and hence

more appropriate communication deadlines, potentially improving the overall sys-

tem performance.

4.2.3 Utilizing machine learning approaches

In computation offloading, there are numerous opportunities to leverage machine

learning techniques, such as neural networks and reinforcement learning, as demon-

strated by Li et al. (2018). In the context of this thesis, there are two possible

machine learning approaches that warrant particular attention.
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The first approach involves utilizing machine learning for decision-making re-

garding offloading devices. The resource allocation problem in the binary offload-

ing case combines binary and continuous variables. Our current approach decom-

poses the problem into an inner energy minimization problem, focusing on contin-

uous variables when binary offloading decisions are given, and an outer problem

aimed at finding good binary offloading decisions. While our customized pruned

greedy search algorithm achieves close-to-optimal binary offloading decisions with

reasonable computational cost, it is advantageous to further reduce the computa-

tional overhead for binary decision making. One potential approach is to employ

deep neural networks or reinforcement learning, trained to provide binary offload-

ing decisions based on the system parameters, as demonstrated by Salmani et al.

(2019).

Furthermore, for the computation resource allocation, we can also leverage the

neural network approach. In the formulation of the joint computation–communication

resource allocation problem, after decomposing the joint problem into computation

and communication resource allocation, the ordering of the computation sub-slots

is known. This ordering determines a binary set, and the constraints on the compu-

tation resource allocation problem become linear over the duration of each sub-slot.

By training an appropriate machine learning model, we can enhance the computa-

tion resource allocation and, consequently, improve the overall performance of the

system. This integration of neural networks in computation resource allocation

holds promise for optimizing resource utilization and enhancing the efficiency of

computation offloading systems.
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