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Lay Abstract

Mobile devices (MDs) such as smartphones are currently used to run a wide variety of ap-

plication tasks. An alternative to local task execution is to arrange for some MD tasks to

be run on a remote non-mobile edge server (ES). This is referred to as mobile computa-

tion offloading (MCO). The work in this thesis studies two important facets of the MCO

problem.

1. The first considers the joint effects of communication and computational resource as-

signment on task completion times. This work optimizes task offloading decisions,

subject to task completion time requirements and the cost that one is willing to incur

when designing the network. Procedures are proposed whose objective is to mini-

mize average mobile device power consumption, subject to these cost constraints.

2. The second considers the use of digital twins (DTs) as a way of implementing mobile

computation offloading. A DT implements features that describe its physical system

(PS) using models that are hosted at the ES. A model selection problem is studied,

where multiple DTs share the execution services at a common ES. The objective is

to optimize the feature accuracy obtained by DTs subject to the communication and

computation resource availability. The thesis proposes different approximation and

decomposition methods that solve these problems efficiently.
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Abstract

Mobile computation offloading (MCO) is a way of improving mobile device (MD) perfor-

mance by offloading certain task executions to a more resourceful edge server (ES), rather

than running them locally on the MD. This thesis first considers the problem of assigning

the wireless communication bandwidth and the ES capacity needed for this remote task ex-

ecution, so that task completion time constraints are satisfied. The objective is to minimize

the average power consumption of the MDs, subject to a cost budget constraint on com-

munication and computation resources. The thesis includes contributions for both soft and

hard task completion deadline constraints. The soft deadline case aims to create assign-

ments so that the probability of task completion time deadline violation does not exceed a

given violation threshold. In the hard deadline case, it creates resource assignments where

task completion time deadlines are always satisfied. The problems are first formulated as

mixed integer nonlinear programs. Approximate solutions are then obtained by decompos-

ing the problems into a collection of convex subproblems that can be efficiently solved.

Results are presented that demonstrate the quality of the proposed solutions, which can

achieve near optimum performance over a wide range of system parameters.

The thesis then introduces algorithms for static task class partitioning in MCO. The

objective is to partition a given set of task classes into two sets that are either executed

locally or those classes that are permitted to contend for remote ES execution. The goal
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is to find the task class partition that gives the minimum mean MD power consumption

subject to task completion deadlines. The thesis generates these partitions for both soft and

hard task completion deadlines. Two variations of the problem are considered. The first

assumes that the wireless and computational capacities are given and the second generates

both capacity assignments subject to an additional resource cost budget constraint. Two

class ordering methods are introduced, one based on a task latency criterion, and another

that first sorts and groups classes based on a mean power consumption criterion and then

orders the task classes within each group based on a task completion time criterion. A

variety of simulation results are presented that demonstrate the excellent performance of

the proposed solutions.

The thesis then considers the use of digital twins (DTs) to offload physical system

(PS) activity. Each DT periodically communicates with its PS, and uses these updates to

implement features that reflect the real behaviour of the device. A given feature can be

implemented using different models that create the feature with differing levels of system

accuracy. The objective is to maximize the minimum feature accuracy for the requested

features by making appropriate model selections subject to wireless channel and ES re-

source availability. The model selection problem is first formulated as an NP-complete

integer program. It is then decomposed into multiple subproblems, each consisting of a

modified Knapsack problem. A polynomial-time approximation algorithm is proposed us-

ing dynamic programming to solve it efficiently, by violating its constraints by at most a

given factor. A generalization of the model selection problem is then given and the the-

sis proposes an approximation algorithm using dependent rounding to solve it efficiently

with guaranteed constraint violations. A variety of simulation results are presented that

demonstrate the excellent performance of the proposed solutions.
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Chapter 1

Introduction

1.1 Overview

Mobile devices (MDs) such as smartphones are increasingly used as a platform for running

a wide variety of applications including those involving gaming, virtual reality and natu-

ral language processing (Abolfazli et al. (2014); Wang et al. (2015); Wang et al. (2018)).

Based on the Ericsson Mobility Report 2020 (Ericsson (2020)), smartphone usage is pro-

jected to reach approximately 8.9 billion by 2025, representing a significant growth from

the current subscription level of 8.1 billion. The diversity of supported applications tends

to stress MD capabilities in terms of data processing, storage, and battery lifetime (Kumar

and Lu (2010)).

Mobile computation offloading (MCO) can be used to improve MD performance by

running computational tasks on a remote cloud server rather than executing them locally

(Noor et al. (2018); Kwon et al. (2016); Ba et al. (2013)). Since the energy needed for task

execution is incurred by the cloud server, a reduction in MD energy consumption can often

be obtained. During MCO, wireless communications is used by the MD to communicate
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with the cloud server. This interaction incurs MD energy use that would not otherwise exist

if the task were executed at the MD. MCO also incurs added latency due to the time needed

for the MD to interact with the cloud server (Alameddine et al. (2019); Liu et al. (2021)).

An edge server (ES) located close to the network base stations (BSs) is typically used to

reduce this additional delay and energy use by providing high interconnection bandwidth

between the BS and the ES (Huawei Inc. (2016)). These networks are referred to as wireless

edge networks. It has been estimated that tens of billions of network edge devices will be

deployed in the future (Mao et al. (2017)).

A key issue in MCO deals with the question of whether a given task should be executed

locally or offloaded. This offloading decision is not a trivial one for many reasons (Chen

et al. (2021)). For example, the increased use of MCO may create competition for the

limited ES computational capacity that is used for the remote task execution (Muñoz et al.

(2015); Nath and Wu (2020)). Offloading decisions are also more problematic when the

MD interacts with the ES over wireless transmission channels that may change randomly

during the computation offload. For these reasons, it is important to incorporate the tempo-

ral evolution of the system into the offloading decision making process (Yue et al. (2022);

Hekmati et al. (2020)). This includes the latencies incurred due to the queueing delays

experienced by offloaded tasks as they wait for ES execution.

Prior work has also considered the question of how to configure system resources so

that MCO is best accommodated (Muñoz et al. (2015); Du et al. (2018); Yang et al. (2019);

Zhang et al. (2018); Chen et al. (2020b); Nath et al. (2020)). These are the issues that are

considered in the thesis and involve the tradeoffs between wireless communication and

edge server capacity assignment and how these affect the delay performance experienced

by the MDs. The wireless and execution capacity assignment problem in MCO can be

2
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informally stated as follows. A network leaseholder (NL) purchases both wireless channel

capacity and edge server execution services, subject to a cost budget constraint. The leased

resources are then used to provide MCO to a large set of MDs (Yi et al. (2021)). In this

case, the NL simply purchases services from the network owner (NO), who prices the cost

of unit wireless channel and computational resources.

The acceptable delay for task execution is often tightly constrained for many applica-

tions, such as those involving gaming, virtual reality, and object recognition (Chen et al.

(2020a)). Task execution deadline constraints significantly increase the difficulty of the

problem compared to prior work without completion time requirements or that uses mean

delay alone as the performance criterion (Deng et al. (2020); Zaw et al. (2021)). The vari-

ability in acceptable delay for different classes of tasks further complicates MCO decisions.

This is especially true when offloaded tasks contend for wireless channel and computational

resources in an uncontrolled fashion, and may impair the advantages of MCO, since it is

easy to see that minimizing the used energy and satisfying the task delay constraints are

competing objectives, i.e., in an effort to satisfy tight latency constraints, costly energy-

wise MCO decisions may be necessary. Thus, the problem of task scheduling so that delay

constraints are satisfied and energy consumption is minimized, becomes a difficult prob-

lem for MCO. The thesis studies the use of task class partitioning (TCP) to address this

problem.

As an application of MCO, physical systems (PSs) need to offload the task of running

their digital twins (DTs) to a more powerful server than running the DTs on themselves.

For this, state-related data should be periodically uploaded to the server that hosts the DTs

in order to keep real-time synchronization between the two. DT has attracted a lot of at-

tention from both industry and academia since it was proposed over a decade ago. A DT
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is a virtual representation of a PS that can represent both the static and dynamic behavior

of the PS (Vaezi et al. (2022)). In order to maintain real-time synchronization between the

PS and its DT, the PS periodically sends state-related data to a server that hosts the DT.

At the server, the data is processed so that PS features can be provided by the DT to other

objects on its behalf (Lu et al. (2021)). In order to maintain tight synchronization between

the two, the DTs of the PSs are often placed at the ES that is located within the same wire-

less network as the PSs in wireless edge networks. By taking advantage of the resources

available in the digital space, DTs have proven to be beneficial in various application areas,

such as predictive maintenance and optimization in industrial manufacturing (Talkhestani

and Weyrich (2020)) and intelligent network resource management (Dai and Zhang (2022);

Lu et al. (2021)).

A DT implementation is considered fully functional if it can provide sufficient informa-

tion of the PS required by an application in terms of age of information (AoI) (Vaezi et al.

(2023)) and/or level of accuracy (Barricelli et al. (2019); Vaezi et al. (2022); Tang et al.

(2022); Shen et al. (2021)). A real PS usually has a large number of features. The level of

accuracy of each feature that should be supported by its DT depends on the requirements

of the applications that interact with it (Stegmaier et al. (2022); Yiping et al. (2021); Lu

et al. (2020)). Different DT feature accuracies are defined by different DT models, which

describe how PS inputs are processed so that the feature can be generated. As one would

expect, features with higher levels of accuracy will typically use models that require more

input data from the PS and higher levels of computation at the DT (Paldino et al. (2022);

Wang et al. (2020)). In the wireless edge networks, communication between the PS and its

DT involves wireless transmission. Hence, the quality of a DT feature is affected by both

the wireless transmission quality and the computational capacity of the ES that hosts the

4
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DT. For an edge network that supports DTs for a large number of PSs, an issue is how to

provide the best DT feature accuracy under limited wireless channel and edge computing

resources. This is one of the problems that this thesis considers.

1.2 Contributions and Thesis Organization

This work considers the problem of resource management for mobile computation offload-

ing and digital twins in wireless edge networks. The contributions in the thesis are summa-

rized below.

This thesis first considers the problem of assigning the wireless communication band-

width and the ES capacity used for the task execution, so that task completion deadline

constraints are satisfied. The thesis includes contributions for both soft and hard task com-

pletion deadline constraints. The soft deadline case aims to create assignments so that the

probability of task completion time deadline violation does not exceed a given violation

threshold. In the hard deadline case, it creates resource assignments where task comple-

tion time deadlines are always satisfied. This is done by incorporating concurrent local

execution (CLE) into the problem formulations. The objective is to minimize the average

power consumption of the MDs, subject to a cost budget constraint for obtaining the com-

munication and computation resources. The problems are first formulated as mixed integer

nonlinear programs. Approximate solutions are then obtained by decomposing the prob-

lems into a collection of convex subproblems that can be efficiently solved. Results are

presented that demonstrate the quality of the proposed solutions, which can achieve near

optimum performance over a wide range of system parameters.

The thesis then introduces algorithms for static task class partitioning (STCP) in MCO

5
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in order to further improve the performance of computation offloading under task comple-

tion time constraints. The objective is to partition a given set of task classes into two sets

that are either executed locally by the MD or those classes that are permitted to contend for

remote ES execution. The goal is to find the task class partition that gives the minimum

mean MD power consumption. The thesis generates these partitions for both soft and hard

task completion deadlines. Both basic static task class partitioning (BSTCP) and joint static

task class partitioning and network resource allocation (JSTCP) problems are introduced.

In the former, STCP is applied for a network with preallocated resources, while in the latter

STCP is jointly studied with network resource allocation subject to an additional resource

cost budget constraint. The proposed partitioning algorithms are based on heuristic class

ordering methods. The thesis introduces two class ordering methods, a simpler one based

on a task latency criterion, and an hierarchical version that first sorts and groups classes

based on a mean power consumption criterion and then orders the task classes within each

group based on a task completion time criterion. A variety of simulation results are pre-

sented that demonstrate the excellent performance of the proposed solutions for both given

and optimized network resource assignments.

Finally, the DT model selection problem is studied in the third part of the thesis, where

the DTs of multiple PSs are hosted at an ES in a wireless edge network. Each DT pe-

riodically communicates with its PS, and uses these updates to implement features that

reflect the real behaviour of the PS. A given feature can be implemented using different

models that create the feature with differing levels of system accuracy. The objective is to

maximize the minimum feature accuracy for the requested features by making appropri-

ate model selections subject to wireless channel and ES resource availability. The model

6
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selection problem is first formulated as an NP-complete integer program. It is then de-

composed into multiple subproblems, each consisting of a modified Knapsack problem.

A polynomial-time approximation algorithm is proposed using dynamic programming to

solve it efficiently, by violating its constraint by at most a given factor. A generalization

of the model selection problem is then given and the thesis proposes an approximation al-

gorithm using dependent rounding to solve it efficiently with guaranteed small constraint

violations. A variety of simulation results are presented that demonstrate the excellent

performance of the proposed solutions.

The rest of the thesis is organized as follows. Chapter 2 gives a brief background on

MCO and DTs in wireless edge networks. In Chapter 3, the wireless and service allocation

for MCO with task deadlines is investigated. Then, Chapter 4 introduces algorithms for task

class partitioning in MCO. Both BSTCP and JSTCP problems are introduced and studied

in the soft and hard class deadline cases. In Chapter 5, the digital twin model selection

for feature accuracy under constrained resources in wireless edge networks is studied. The

thesis is concluded in Chapter 6 with suggestions for possible future work.

The work in this thesis has resulted in the following publications.

• H. Chen, T. D. Todd, D. Zhao and G. Karakostas, “Wireless and service allocation

for mobile computation offloading with task deadlines,” Early access in IEEE Trans-

actions on Mobile Computing, 2023. (doi: 10.1109/TMC.2023.3301577)

• H. Chen, T. D. Todd, D. Zhao and G. Karakostas, “Joint wireless and ser-

vice allocation for mobile computation offloading with job completion time

and cost constraints,” In 2022 IEEE Wireless Communications and Network-

ing Conference (WCNC), Austin, TX, USA, 2022, pp. 1278-1283. (doi:

10.1109/WCNC51071.2022.9771792)
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• H. Chen, T. D. Todd, D. Zhao and G. Karakostas, “Task class partitioning for mo-

bile computation offloading,” Early access in IEEE Internet of Things Journal, 2023.

(doi: 10.1109/JIOT.2023.3294887)

• H. Chen, T. D. Todd, D. Zhao and G. Karakostas, “Digital twin model selection for

feature accuracy,” Submitted to IEEE Internet of Things Journal, July 2023.

• H. Chen, T. D. Todd, D. Zhao, and G. Karakostas, “Digital twin model selection

for feature accuracy in wireless edge networks,” Accepted for publication in 2023

IEEE 34rd Annual International Symposium on Personal, Indoor and Mobile Radio

Communications (PIMRC), Toronto, ON, CA, 2023, pp. 1–6.
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Chapter 2

Background

2.1 Introduction

This chapter provides a brief background on mobile computation offloading (MCO) and

digital twin (DT) concepts in wireless edge networks. First, we start with a brief intro-

duction of mobile edge computing (MEC), its characteristics and advantages. Then, we

overview mobile computation offloading, discussing its challenges. Following this, we in-

troduce digital twins, their applications and advantages. We then discuss DTs for wireless

edge networks and some challenges that arise from their use in this application. Finally,

related resource management issues in wireless edge networks are discussed.

2.2 Mobile Edge Computing

With the rapid development of wireless communication technology and intelligent end user

devices, the use of mobile devices (MDs) as a platform for running a wide range of appli-

cations has increased dramatically. This includes those involving gaming, virtual reality,
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face recognition, and natural language processing. Many of these applications impose

strict demands on computation resources, leading to high MD energy consumption. How-

ever, due to their physical size limitations, MDs are inherently resource-constrained and

possess limited computation capacities and short battery lifetimes. The conflict between

computationally-intensive applications and the lightweight MDs with limited resources

poses a challenge for the development of next-generation networks (Guo et al. (2018)).

Mobile cloud computing (MCC) was once regarded as a promising way to relieve this con-

flict by providing convenient access to a shared computational resource pool in the remote

internet cloud. For latency-sensitive applications however, the long transmission distances

between mobile devices and the remote cloud often makes MCC infeasible (Jiang et al.

(2021a)).

To address this issue, mobile edge computing (MEC) was proposed as a way to inte-

grate cloud computing functionalities into radio access networks (RANs) by having edge

servers (ESs) located close to the base stations (BSs), as shown in Figure 2.1. This was first

proposed by a European Telecommunications Standards Institute Industry Specification

Group (ETSI ISG) in December 2014. Compared to MCC, MEC can help reduce traffic

congestion by offloading computation-intensive tasks to the ESs close to the MDs. In addi-

tion, MEC can reduce the end-to-end latency and MD energy consumption since the energy

consumed for task execution is incurred by the edge server (Wang et al. (2017); Mach and

Becvar (2017)). The main characteristics of mobile edge computing are summarized as

follows.

• Localization deployment: In practical designs, it is often convenient to have the ESs

located close to the wireless base stations (Taleb et al. (2017); Porambage et al.

(2018)). The deployed servers can operate independently and provide computing
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Figure 2.1: Architecture of MEC

services to the MDs. At the same time, the co-located ESs can have access to local

data and resources.

• Proximity: Thanks to the deployed ESs in close proximity to the MDs, an ES can

leverage user information based on the privacy protection mechanisms and analyze

user behavior patterns in order to provide customized services to the users, thereby

enhancing the quality of experience (QoE) (Tran et al. (2017)). Additionally, due to

the reduction of the physical distance, the wireless transmission power of the MDs

can be reduced, resulting in MD energy savings and extended device battery life.
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• Reduction of latency: The execution of computational tasks is performed at the wire-

less edge networks in close proximity to the MDs, which avoids the transmission of

task requests over backhaul links and the core internet. This enables MDs to experi-

ence low latency and high bandwidth services.

2.3 Mobile Computation Offloading

Mobile computation offloading (MCO) is an emerging technology to improve MD perfor-

mance by allowing MDs to offload its computation-intensive tasks to a more resourceful

server rather than executing them locally (Noor et al. (2018); Kwon et al. (2016); Ba et al.

(2013)). This can help speed up task execution and help save the energy usage of the MDs.

Since the energy needed for task execution is incurred by the computing server, a reduction

in MD energy consumption can often be obtained (Gu et al. (2019); Zhang et al. (2017);

Shi et al. (2018); Zhou et al. (2019)). Wireless communications is used by the MD to

communicate with the computing server during MCO, which incurs wireless energy use

that would not otherwise exist if the task were executed locally. MCO also incurs added

latency due to the time needed for the MD to interact with the server (Alameddine et al.

(2019); Liu et al. (2021)). Considering the emergence of numerous latency-constrained

applications, offloading to servers located at the network edge is preferred, since it helps

reduce this added latency.

In general, a complete MCO offloading cycle includes three time periods: 1) the up-

loading time of the input data needed for the execution of the computation; 2) the execution

time of the task in the computing server; and, 3) the download time to return the execution

results to the MD. In MCO, the task completion time is often dependent on the uploading

time, since task execution times may be very short due to the powerful execution capability

12
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of the server. The time needed to download the results to the MD may also be fairly short.

Therefore, the data transmission rate and wireless channel conditions may have a signifi-

cant impact on MCO performance (Masoudi and Cavdar (2021); Chen et al. (2020a)).

The question of whether a given task should be offloaded or not is crucial. Further-

more, there is the question of how much of the task should be offloaded (Mach and Becvar

(2017)). In general, MCO decisions may result in the following three cases:

• Local execution: The complete execution of the task is performed locally at the MD.

• Full offloading: The complete task is offloaded by the MD and the execution of the

task is performed at the server.

• Partial offloading: A portion of the task is executed locally while the rest is offloaded

and executed at the server.

There are several key challenges in mobile computation offloading (Dab et al. (2019);

Sheng et al. (2020); Du et al. (2018); Yang et al. (2019); Zhang et al. (2018); Chen et al.

(2019b)), which are summarized as follows.

• An offloading decision for a given task should be made by considering not only how

it will affect the MD, but also how it will affect other MDs that may also be using

MCO.

• Since the offloading performance can be significantly affected by wireless channel

conditions and capacity, an appropriate allocation of wireless channel bandwidth is

needed when there is contention for this capacity. The random nature of wireless

channel conditions should also be taken into account.

13
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• Since the computing capability of an ES is typically lower than that of an internet

cloud server, an efficient allocation of the ES computing resources may be needed

when there is contention for these resources.

2.4 Digital Twins

A digital twin (DT) is a virtual representation of a real physical system (PS), which can

represent and extend the system’s behavior when interacting with other objects (Vaezi

et al. (2022)). This enables applications to interact with the DT, rather than having them

each communicate with the PS directly. By maintaining synchronization with the PS over

time, a DT can also provide information and enable features that use historical PS data,

which would typically be unavailable otherwise (Lu et al. (2021)). There are many prac-

tical use cases for DTs, including those in industrial manufacturing such as in system

reconfiguration, predictive maintenance, optimization, and consistency checking. These

illustrate the benefits of the DT concept throughout the entire product life cycle (Talkhes-

tani and Weyrich (2020)). DTs have also been successfully applied in many other areas,

such as aviation (Glaessgen and Stargel (2012); Barricelli et al. (2019)), healthcare and

telemedicine (Wickramasinghe et al. (2021); Erol et al. (2020); Ricci et al. (2021)), smart

homes (Chakrabarty et al. (2020); Cascone et al. (2021)), and smart cities (Lee et al. (2020);

Raes et al. (2021); El Marai et al. (2020)).

Digital twins can provide features that are derived from, and reflect the behavior of its

PS (Barricelli et al. (2019)). When one of these features is made available to an external

application, there is an associated level of accuracy compared to what would be possible

in the ideal case (Vaezi et al. (2022); Shen et al. (2021)). This deviation is referred to

as similarity or accuracy, which is an important performance indicator (Barricelli et al.
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Figure 2.2: An illustration of digital twins

(2019); Vaezi et al. (2022); Tang et al. (2022); Shen et al. (2021)). When feature accuracy

is the highest, a feature is indistinguishable from the best that would be ideally possible.

In practical situations, however, it is often difficult or expensive to realize this level of

similarity. Examples of this is where a “noisy” version of PS state information may be

used as DT input, or when the feature generation includes approximations to reduce DT

computation, so that real-time performance is improved (Vaezi et al. (2022)).

Different DT feature accuracies are defined by different DT models, which describe

how PS inputs are processed so that the feature can be generated. As one would expect,

features with higher levels of accuracy will typically use models that require more input

data from the PS and higher levels of computation at the DT (Stegmaier et al. (2022); Yip-

ing et al. (2021); Lu et al. (2020); Paldino et al. (2022); Wang et al. (2020)). For example,

the work in (Stegmaier et al. (2022)) proposes a DT approach that enables Accuracy-as-a-

Service for resistance-based electrical sensors. In order to reduce costs, DT models with

differing feature accuracy are used in the control of a production system where the sensors

are used.
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The DTs of PSs are commonly hosted at the servers that the PSs are associated with,

as shown in Figure 2.2. Each DT communicates with its associated PS, so that updates in

the PS state can be incorporated into the features provided by the DT. This communication

typically happens periodically and is referred to as synchronization (Han et al. (2022)).

When a synchronization update occurs, the updating process involves uploading of the

transferred data and processing at the server so that any features can be updated and made

available to the requesting applications. As mentioned above, the amount of processing

needed, and the amount of data transferred when synchronization occurs is a function of

the level of accuracy associated with the model and the feature that is being provided.

2.4.1 Digital Twins in Wireless Edge Networks

Synchronization between a PS and its DT is essential for the DT to provide the required

features to the requesting applications. Therefore, appropriate networking support is a crit-

ical component for the DT implementation. In order to keep tight synchronization between

the two, a DT should often be placed at an edge server that is located within the same

wireless network as the PS (Tang et al. (2022); Jiang et al. (2021b)). This helps to reduce

the time needed to interact with each other, compared to placing a DT at a remote cloud

server. A growing amount of work has considered the issues arising from DTs in wireless

edge networks (Dai and Zhang (2022); Lu et al. (2021); Zhou et al. (2022)).

In wireless edge networks, the quality of a DT feature is affected by two main factors,

i.e., the wireless transmission quality between the PS and the ES and the computation

capacity of the ES that hosts the DT. The random nature of wireless channel conditions

and the limited channel bandwidth resources affect the wireless transmission quality and

the data transmission rate from the PS to the ES. Furthermore, since multiple DTs may
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be co-located at the same ES, the synchronization update processing must share the ES

computation capacity, and this can limit the achievable accuracy of the provided features.

It is important to investigate how to provide the best DT feature accuracy under limited

wireless channel and edge computing resources, for a wireless edge network that supports

DTs for a large number of PSs.

2.5 Resource Management

With the rapid development of mobile communications, the number of mobile devices has

dramatically increased, and the requirements for applications running on mobile devices

are also becoming increasingly demanding. Hence, good management of the limited re-

sources is important in order to provide the required MD quality of service (QoS) (Shen

et al. (2022)). In particular, in wireless edge networks, the computation capacity of the ES

located at the BS is typically small, compared to a powerful cloud server. The wireless

channel bandwidth provided to the MDs is also constrained based on a cost budget. For an

edge network that serves a large number of MDs, an issue is how to take the most advantage

of the limited resources (Zhang et al. (2018); Nath et al. (2020); Li et al. (2022a)).

There are several key aspects of resource management that this thesis considers for

MCO and DTs in wireless edge networks, which are listed below.

• Wireless channel allocation: The wireless data rate depends on the wireless chan-

nel conditions. However, the radio resources may be very limited and therefore an

efficient and effective wireless channel allocation is needed in order to satisfy the

stringent QoS requirements of the MDs.
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• Computing resource allocation: In wireless edge networks, a potentially large num-

ber of MDs may need access to ES computing resources in order to meet application

demands. As a result, there may be a significant competition for these limited com-

puting resources. The question of how to allocate the ES computing resources is an

important one.

Note that the mentioned aspects of resource management can be jointly considered

in order to provide better performance (Yi et al. (2021); Chen et al. (2020a); Zaw et al.

(2021)).
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Chapter 3

Wireless and Service Allocation for

MCO with Task Deadlines

3.1 Introduction

This chapter addresses the problem of assigning computational and wireless channel re-

sources for mobile computation offloading (MCO), subject to task execution completion

time deadlines. It includes formulations for both soft and hard task completion deadlines.

In the hard deadline case, the completion time deadline given for every task must always

be satisfied, i.e., each task must be uploaded and executed by the time that its associated

deadline expires. This is a very stringent requirement, which is accomplished by including

concurrent local execution (CLE) (Hekmati et al. (2020)) into the problem formulation. In

CLE, local execution of the task may be initiated while offloading is ongoing, so that the

task completion deadline is always met. In the soft deadline case, task completion times

are permitted to violate their given deadlines, but the probability that this happens must

be below a given violation threshold (Park et al. (2016); Li et al. (2022b)). Soft deadlines
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use a statistical deadline constraint and depending on the chosen threshold, the deadline

violation probability can be set as permissively as desired. In the remainder of the chapter,

we define multiple task classes, with class-specific deadlines and constraint violation prob-

abilities. Note that one can view the hard deadline case as a special case of soft deadlines,

where the deadline violation factor is set to zero, meaning that no task deadlines can be

violated. However, the hard deadline formulation requires CLE, which is not needed in the

soft deadline case. As a result, the solution methods in the soft and hard deadline cases are

different.

The inclusion of task deadline constraints significantly increases the difficulty of the

problem compared to that of prior work with no completion time requirements or that uses

a mean delay criterion (Deng et al. (2020); Zaw et al. (2021)). In order to obtain solutions

to the problem, a queuing model is used to obtain the delay distribution experienced by

tasks that are offloaded to the edge server (ES) (Yue et al. (2022); Zaw et al. (2021)). This

model is incorporated into the resulting optimization problems, which are formulated as

mixed integer nonlinear programming problems (MINLPs) that are computationally hard

to solve exactly. Approximate solutions are obtained by decomposing the non-convex non-

linear formulation into a collection of convex subproblems that can be solved efficiently,

and then picking the best of these solutions.

A variety of results are presented that characterize the tradeoffs between task dead-

line violation, average mobile device (MD) power consumption and the cost budget. The

results show the quality of the proposed solutions, which can achieve close-to-optimum

performance for a wide range of system parameters. The results also show that with CLE,

the proposed solution not only guarantees to respect all hard task completion deadlines,

but does so with only slightly higher MD power consumption when compared to the soft
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task completion deadlines solution with a small deadline violation probability. On the

other hand, this chapter shows that there is an apparent trade-off in the case of soft task

completion deadlines between the average power consumption and the deadline violation

probability. Namely, the average MD power consumption of our solution is significantly

reduced when a higher deadline violation probability is tolerable.

The main contributions of this chapter are summarized below.

• This chapter addresses the problem of assigning computational and wireless channel

resources for MCO, subject to task execution completion time deadlines. The work

is the first that generates joint resource assignments for both soft and hard task dead-

lines using very general system modelling assumptions compared to prior work. The

soft deadline case aims to create assignments so that the probability of task comple-

tion time deadline violation does not exceed a given violation threshold. In the hard

deadline case, the work is also unique in that it creates resource assignments where

task completion time deadlines are always satisfied. This is done by incorporating

CLE into the problem formulations. For this reason, this is the first work that ob-

tains system resource assignments for MCO that ensure that task completion time

deadlines are always satisfied.

• Modeling both soft and hard job completion time targets significantly increases the

difficulty of the problem compared to prior work with no completion time require-

ments or that uses a mean delay criterion (Deng et al. (2020); Zaw et al. (2021)). In

both deadline cases, the chapter addresses this by incorporating an ES queueing sys-

tem into the problem formulation that models the delay distribution experienced by

arriving tasks. The assignment problem is addressed by numerically inverting the es-

timated probability generating function of task completion time and incorporating the
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resulting probability density function (PDF) into the optimizations. These resource

assignments are obtained under very general modeling assumptions, where the wire-

less channels are modeled as arbitrary base station (BS) specific sets of Markov pro-

cesses and task execution times have a general probability distribution.

• The problems are first formulated as MINLPs, with integral decision variables for

the number of wireless channels reserved, and a continuous decision variable for

the portion of ES reserved. Even the relaxations of these MINLPs are difficult to

solve, since they are non-convex. Hence, instead of following the common practice

of solving the relaxation and rounding the fractional solution, we break the original

non-convex MINLPs into collections of convex subproblems, that can be solved ef-

ficiently. This is achieved by the discretization of the continuous variable and the

replacement of the discrete channel variables by approximate functions of the con-

tinuous blocking probabilities. Our solutions are approximate, and their accuracy

depends on both the discretization granularity and the approximation functions used

for blocking probabilities. On the other hand, they are based on very general as-

sumptions, i.e., the existence of convex upper bound approximations of the inversion

of blocking probabilities. The more restricted the system model is, the better these

approximations are.

The rest of this chapter is organized as follows. In Section 3.2 the prior work most

related to this chapter is reviewed. The system model and problem formulation is then

described in Section 3.3. In Section 3.3.1, the general design problem is first considered

assuming soft task completion time deadlines, where the probability of deadline violation is

bounded. Following this, in Section 3.3.2 a formulation is described when task completion

times are subject to hard deadlines. The problem formulations in both cases are non-convex
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and difficult to deal with directly using conventional optimization approaches. In Section

3.4, approximation solutions are proposed where the original problems are decomposed

into convex subproblems that can be efficiently solved. Both the soft and hard deadline

cases are considered in Sections 3.4.1 and 3.4.2. Section 3.5 then introduces some common

system assumptions used in the remainder of the chapter when solving the optimizations.

Both the soft and hard deadline cases are then treated in detail in Sections 3.5.1 and 3.5.2.

In Section 3.6 simulation results that demonstrate the proposed designs are given. Both the

single class and multiple classes of tasks cases are considered in Sections 3.6.1 and 3.6.2.

Finally, we present a summary of this chapter in Section 3.7.

3.2 Related Work

A large amount of prior MCO work considers the problem based on system state inputs

sampled at task generation times, i.e., the models assume that the system is static through-

out the offload period (Muñoz et al. (2015); Du et al. (2018); Yang et al. (2019); Zhang

et al. (2018); Chen et al. (2020b); Nath et al. (2020); Chen et al. (2019b); Mu et al. (2020);

Dab et al. (2019); Chen et al. (2020a); Geng et al. (2018); Chen et al. (2018); Masoudi and

Cavdar (2021); Apostolopoulos et al. (2023)). Instead, the work in (Yue et al. (2022); Deng

et al. (2020); Zaw et al. (2021); Li et al. (2022b)) considers that the wireless channels may

change randomly during the offload.

When considering task offloading completion time, a latency minimization problem

is investigated in (Ren et al. (2018)), average delay of task completion is considered in

(Deng et al. (2020); Zaw et al. (2021)), a user satisfaction utility function is optimized in

(Apostolopoulos et al. (2023)) based on the desired and actual task completion time and

energy consumption. When tasks have hard delay constraints, the system may become
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Table 3.1: Related Work Summary

References

Joint channel and
computation

resource
assignment

Soft task
deadlines

Hard
task

deadlines

Resource
expense

Temporal
evolution

Chen et al.
(2020a); Chen
et al. (2019b);

Mu et al. (2020);
Masoudi and

Cavdar (2021)

✓

Chen et al.
(2020b); Ren
et al. (2018)

✓

Yi et al. (2021) ✓ ✓
Deng et al.

(2020); Zaw
et al. (2021)

✓ ✓

Yue et al. (2022) ✓ ✓
Li et al. (2022b) ✓ ✓ ✓

This chapter ✓ ✓ ✓ ✓ ✓

infeasible (Chen et al. (2020a, 2019b); Mu et al. (2020); Geng et al. (2018); Yue et al.

(2022); Masoudi and Cavdar (2021)) and tasks can be dropped (Yue et al. (2022)) when

the required hard task completion time cannot be satisfied.

Instead of considering a flow of tasks with random arrival times, as in this chapter, (Li

et al. (2022b)) makes offloading decisions for tasks in the current time slot, where task

offloading with statistical quality of service (QoS) guarantees (i.e., tasks are allowed to

complete before a given deadline with a probability above a given threshold) is considered.

Besides task completion time, reducing energy consumption is another common ob-

jective in mobile computation offloading. Examples of this include minimizing the total
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energy consumption of all MDs (Mu et al. (2020); Geng et al. (2018)), minimizing the en-

ergy consumption of the entire MCO system (Chen et al. (2019b)), or optimizing a utility

function that is a weighted sum of task completion time and energy consumption (Chen

et al. (2020b); Nath et al. (2020); Chen et al. (2018)).

Prior work has considered the optimization of communication and computation re-

sources to improve MCO performance (Muñoz et al. (2015); Du et al. (2018); Yang et al.

(2019); Zhang et al. (2018); Chen et al. (2020b); Nath et al. (2020)). The work in (Chen

et al. (2019b); Mu et al. (2020); Chen et al. (2020a); Masoudi and Cavdar (2021); Yi et al.

(2021)) focuses on the effect of radio resource allocations on offloading decisions. More

specifically, task uploading decisions are jointly optimized with wireless channel assign-

ments (Chen et al. (2020a, 2019b); Yi et al. (2021); Masoudi and Cavdar (2021)), channel

transmission time scheduling (Mu et al. (2020); Yi et al. (2021)), and MD transmission

power allocations (Chen et al. (2020a); Masoudi and Cavdar (2021); Yi et al. (2021)) for

the task uploading. Comparing to binary offloading decisions, where an MD either offloads

the entire task to the edge server or executes the task locally, partial offloading provides

more flexibility in MCO (Chen et al. (2020b); Apostolopoulos et al. (2023); Peng et al.

(2021); Feng et al. (2021); Cao et al. (2019); Mu et al. (2019)).

Table 3.1 summarizes the work described above that is most related to this chapter, and

compares it to this chapter on five key properties:

Joint channel and computation resource assignment: The column denotes work where

channel and computation resource assignments are jointly generated. Our work dif-

fers from the rest in that we assign aggregate channel resources from the network

operator to each BS so that it can support its associated mobile device population,

i.e., we do not allocate channel and computation resources of each BS and ES to
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individual MDs.

Soft task deadlines: The work selected in this column considers some form of soft (i.e.,

statistical) task deadlines. However, the models we use in this chapter are quite dif-

ferent with more general underlying assumptions. Since our soft deadline model

aims to set bounds on the probability of task deadline violation, we model the com-

plete delay distribution experienced by executed tasks. This includes the BS channel

delay (which is modeled by BS specific Markov processes) and the queueing delay

experienced at the ES, where execution times can have a general distribution.

Hard task deadlines: Although there is other work selected in this column, a significant

difference exists compared with this chapter. Our work always satisfies all hard task

deadlines by incorporating the CLE mechanism into the modeled system. The related

work, instead, considers the existence of hard deadlines as a problem constraint that

may result in problem infeasibility, which can never happen in our case.

Resource expense: This column denotes work where the resources provided to the MDs

are charged by a third-party (e.g., network operator). The work selected considers

computational resource expense but not on the wireless BS side. A network profit

maximization problem is studied where an expense budget is not considered, unlike

the case in our work.

Temporal evolution: Temporal evolution means that the offload periods may include

stochastic changes to the wireless channels and the ES, so that this information must

be modeled in the problem formulation, as in our work. The randomness modeled in

the selected work has different underlying assumptions compared to our work.
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3.3 System Model and Problem Formulation

As shown in Figure 3.1, we consider a network that consists of N BSs that are owned and

operated by a network owner (NO). The set of BSs is denoted by N = {1, 2, . . . , N} and

indexed by n ∈ N . The network also contains an ES. Tasks generated by an MD can be

offloaded through the wireless network and executed on the ES.

The NO permits a network leaseholder (NL) to rent wireless communication and ES

computational capacity that the NL can use for mobile computation offloading for its MDs.

When this is done, for each BS n, there are up to Kn available channels that can be selected

by the NL. The cost of renting a channel from BS n is set by the NO to αn. When a channel

is included in the agreement, the NO agrees to provision its network so that sufficient

resources are available to allow the traffic generated on the channel to be carried to the ES

with an acceptable delay with a high degree of certainty. Since the ES is located at the edge

of the network, we focus on the dominant sources of delay, i.e., wireless access at the BSs

and task execution at the ES (Huawei Inc. (2016)).

In order to use the computing resources at the ES, the NL must also lease CPU resources

at the ES. The cost (based on the number of CPU cycles per second) for leasing on the CPU

resource is denoted by β. The maximum available CPU speed for rental is fC CPU cycles

per second.

When an agreement is made between the NO and NL, xn is defined as the number of

channels from BS n that are included, and y ∈ [0, 1] is defined as the fraction of maximum

CPU speed at the ES that is included, i.e., the CPU speed available for the NL will be yfC.

It is assumed that the NL has a cost budget, denoted by Bmax. Accordingly, the total rent
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Edge Server (ES)

 

 

Figure 3.1: System Model

must satisfy the following constraint:

∑N
n=1 αnxn + βyfC ≤ Bmax. (3.3.1)

There are J classes of tasks generated by the MDs, which may need to be offloaded to

the ES. Let J = {1, 2, . . . , J} be the set of task classes. The class j of a task is defined by

parameters sj , qj , and dj , where sj is the input data size in bits, qj is the computation load

in number of CPU cycles, and dj is the deadline of the task in seconds. In what follows,

d̃j = ⌊dj/τ⌋ is the task deadline rounded down to time slots of the same duration τ as the

wireless transmission time slots (see below). The probability of a task generated by an MD

belonging to class j is denoted by PC
j ; we assume that this probability is known, e.g., by

observing the past history of offloading requests.
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Our objective is to create a NO/NL contract for MCO. In MCO, tasks generated by an

MD can be executed either locally (at the MD itself) or offloaded through the network and

executed on the ES. We focus on two goals, each depending on how hard the task deadline

constraint is. Our first goal is to accomplish this so that the mean mobile power consump-

tion is minimized subject to the cost budget constraint and such that the probability that

task execution deadline violation is bounded, i.e., the deadline constraints can be violated,

i.e., deadline constraints are soft. Our second goal is to create a power-efficient, budget-

respecting assignment that respects all task deadlines, i.e., deadline constraints are hard;

for that purpose we will employ CLE (Hekmati et al. (2020)).

We model the wireless channels between the MDs and the BSs as discrete-time Markov

processes. It is assumed that there are In channel models for BS n, which are a function of

the radio propagation environment that the MDs experience at that BS. In = {1, 2, . . . , In}

is the set of all wireless channel models in BS n. For each of the channel models, the

Markovian transition probabilities are defined in the usual way, i.e., given the channel state

in the current time slot, there is a probability associated to its transition to another state

in the next time slot. The time slot duration is defined to be τ seconds. A class j task,

offloaded to BS n by the MD, encounters channel model k with probability PG
n,j,k; as with

task generation probabilities PC
j above, we assume that this probability is also known, e.g.,

by observing the past history of offloading requests.

To obtain the design, the decision to offload the execution of a task is made using a

local execute on blocking (LEB) mechanism as follows. When an MD in BS n generates

a class j task, the MD offloads the task if at least one of the xn channels is available for

immediate use. Otherwise, the MD executes the task locally. When a channel is available,

the MD begins the offload by uploading the sj task bits needed for execution on the ES.

29



Ph.D. Thesis – H. Chen McMaster University – ECE

The LEB mechanism is useful in that either local execution or remote offloading is initiated

immediately at task release time, which may be advantageous when task deadlines are tight.

It also provides a simple mechanism for assessing when the current level of local congestion

is high, which would suggest that local execution is beneficial.

Tasks arrive at BS n according to a stationary process with average arrival rate λn tasks

per second. According to the LEB mechanism, a new task is blocked from BS channel

access if all the xn channels are busy with uploading other tasks. We denote the task

blocking probability at BS n by PBn(xn), which is a function of xn. For the sake of notation

simplicity, we use PBn in the rest of the chapter. Let pL be the power needed in the MD to

process tasks. When a class j task is blocked from offloading and executed locally, the local

execution time is given as Lj = qj/f , where f is the MD’s execution speed in number of

CPU cycles per time slot1. Define L̄ as the average local execution time of tasks. Since the

task blocking is caused by channel access, which is the same for all task classes, we have

L̄ =
∑J

j=1 P
C
j Lj . The average energy consumption for executing a task locally is given by

pLL̄. Consider all the tasks that are generated in BS n and blocked from offloading in one

second, then the mean energy for executing these tasks locally is

EL
n(xn) = PBnλnp

LL̄, (3.3.2)

which is the average power consumption of the MDs.

The wireless upload transmission time tW
n,j,k of a jth class task in BS n when the wireless

channel model is k, is measured in time slots. The mean wireless upload transmission time

t̄Wn,j,k for jth class tasks in BS n according to channel model k can be calculated, since

1Lj is normally measured in CPU cycles, but in order to apply CLE and to simplify the system, we round
it up to a multiple of τ .
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Pr[tWn,j,k = l] can be computed for all l from channel model k. Moreover, the mean wireless

transmission time t̄Wn for BS n is

t̄Wn =
J∑

j=1

In∑
k=1

PC
j P

G
n,j,k t̄

W
n,j,k. (3.3.3)

Under the stated assumptions, the aggregate mean task arrival rate λ at the ES is given

by

λ =
∑N

n=1 (1− PBn)λn. (3.3.4)

As is normally the case for stability in a single server queueing system, the following

constraint must always be satisfied,

λ < µC, (3.3.5)

where µC denotes the mean service rate at the ES, i.e, µC = yfC/
∑J

j=1 P
C
j qj . As will

become clear later, we can relax this constraint to λ ≤ yfC/
∑J

j=1 P
C
j qj without affecting

our proposed solutions.

Let tCn,j,k be the delay (including both queueing and execution time) experienced by a

jth class task from BS n at the ES, under wireless channel model k. It takes continuous

values, and Pr[tCn,j,k ≤ t], for any t ≥ 0, is a function of λ and µC. In what follows, t̃Cn,j,k is

the discretization of tCn,j,k, measured in time slots; its distribution is calculated by

Pr[t̃Cn,j,k = b] = Pr[tCn,j,k ≤ bτ ]− Pr[tCn,j,k ≤ (b− 1)τ ] (3.3.6)

for any number of time slots b ≥ 0.
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3.3.1 Problem Formulation with Soft Deadlines

We consider the distribution of total delay for an offloaded task, which is the sum of the

data upload delay tWn,j,k and the task execution at ES delay tCn,j,k, for BS n, task class j, and

channel model k. Note that both delays are random variables. As mentioned earlier, the

data transmission delay from the BS to the ES is negligible. In addition, in this chapter we

consider the case of a very small amount of data returned once the execution is completed,

and, therefore, we consider only uploading delays between MD and BS.

We now give a formal definition of soft task deadlines. Following common practice

(e.g., Park et al. (2016)) in modelling soft deadlines along the lines of QoS requirements, a

jth class task in BS n under wireless channel model k, must have a total delay satisfying

Pr[tWn,j,k + tCn,j,k ≤ dj] ≥ 1− εj, (3.3.7)

where 0 < εj ≤ 1 is the (given) tolerated probability that the completion time of a class j

task exceeds its deadline.2 Note that tWn,j,k takes discrete values (number of time slots), tCn,j,k

takes discrete values (number of CPU cycle periods), while dj is continuous (in seconds),

so (3.3.7) assumes that all quantities are first converted to secs. Its LHS is a function of

xn, y.

The joint probability distribution of total delay is

Pr[tWn,j,k + tCn,j,k ≤ dj] =
lmax∑
l=1

Pr[tWn,j,k = l] Pr[tCn,j,k ≤ dj − lτ ], (3.3.8)

where lmax = ⌊(dj − qj/yf
C)/τ⌋ is the maximum value that l can take, since qj/yfC is the

execution time at the ES without queueing.

2The case εj = 0 corresponds to the case of hard deadlines, and will be dealt with in the next section.
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The average power consumption of MDs in BS n to upload tasks that are granted chan-

nels for offloading is

ET
n (xn) = (1− PBn)λnp

Tt̄Wn , (3.3.9)

where pT is the transmission energy per time slot used by the MD for uploading the task

bits. Therefore, the expected average power consumption of the MDs for uploading and

executing tasks arriving at BS n is EL
n(xn) + ET

n (xn).

Our objective is to create an allocation that minimizes EL
n(xn) + ET

n (xn) under the

cost budget and deadline constraints (4.7.1) and (3.3.7). The problem can be formulated as

follows:

min
x,y

N∑
n=1

[EL
n(xn) + ET

n (xn)] s.t. (3.3.10)

N∑
n=1

αnxn + βfCy ≤ Bmax (3.3.11)

Pr[tWn,j,k + tCn,j,k ≤ dj] ≥ 1− εj, ∀n, j, k (3.3.12)

(fC/
J∑

j=1

PC
j qj)y ≥ λ (3.3.13)

xn ∈ {0, 1, . . . , Kn}, ∀n ∈ N (3.3.14)

0 ≤ y ≤ 1. (3.3.15)

Constraints (3.3.11) and (3.3.12) are constraints (4.7.1) and (3.3.7). Constraint (3.3.13) is

the (relaxed) queue stability requirement for ES; it is equivalent to (3.3.5), since equality

leads to infinite mean queueing delay, which is never optimal. The optimization prob-

lem (3.3.10)-(3.3.15) is a MINLP problem. Constraint (3.3.14) ensures that the number of

channels assigned does not exceed the maximum number available in each BS. Even the
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fractional relaxation of MINLP problem (3.3.10)-(3.3.15) is non-convex, due to its objec-

tive and constraints (3.3.12), and, as a result, it is computationally inefficient to solve it

exactly. Hence we are going to propose approximate solutions for it.

3.3.2 Problem Formulation with Hard Deadlines

For the case of hard deadline constraints, i.e., when the task deadline must be respected, we

employ CLE (Hekmati et al. (2020)). In CLE, local execution of the task may be initiated

while offloading is ongoing, so that the task deadline is always met, even if offloading fails

to finish in time due to the stochastic nature of the wireless channels. Guaranteeing task

completion before its deadline may incur additional costs (due to potentially simultaneous

local and remote execution of the same task).

When CLE is employed, and in order to ensure that the local execution of a task from

class j finishes by its deadline, the latest feasible starting time for local execution is

tLj = d̃j − Lj + 1. (3.3.16)

The expected wireless transmission power is still given by (3.3.9). However, due to

the overlap of offloading and local execution because of CLE, there is an extra mean power

consumption due to a (potential) overlap with local execution. This expected overlap power

consumption is

EO
n,j,k(xn, y) = (1− PBn)λn ·

d̃j∑
t=tLj

t−⌈
qj

yfCτ
⌉∑

l=1

Pr[tWn,j,k = l] Pr[t̃Cn,j,k = t− l] · pL(t− tLj + 1),

(3.3.17)
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where t is the number of time slots needed to complete the offloaded task, and (t− tLj + 1)

is the offloading and local execution overlap. Note that Pr[t̃Cn,j,k = t− l] is a function of xn

and y.

In case the task offloading goes beyond the finish of the local execution of a task, there

is an extra power consumption incurred, whose expected value is

EB
n,j,k(xn, y) = (1− PBn)λn ·

+∞∑
t=d̃j+1

t−⌈
qj

yfCτ
⌉∑

l=1

Pr[tWn,j,k = l] Pr[t̃Cn,j,k = t− l]pLLj. (3.3.18)

Hence, the expected power consumption of MDs for offloaded tasks in BS n in one second

is

EC
n (xn, y) = ET

n (xn) +
J∑

j=1

In∑
k=1

PC
j P

G
n,j,k[E

O
n,j,k(xn, y) + EB

n,j,k(xn, y)], (3.3.19)

and the expected power consumption of MDs for tasks arriving at BS n in one second is

EL
n(xn) + EC

n (xn, y).

As before, our objective is to minimize the total expected power consumption of the

MDs for uploading and executing the tasks that are generated in one second, but now
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subject to hard deadline constraints. The problem is formulated as follows:

min
x,y

N∑
n=1

[EL
n(xn) + EC

n (xn, y)] s.t. (3.3.20)

N∑
n=1

αnxn + βfCy ≤ Bmax (3.3.21)

(fC/
J∑

j=1

PC
j qj)y ≥ λ (3.3.22)

xn ∈ {0, 1, . . . , Kn}, ∀n ∈ N (3.3.23)

0 ≤ y ≤ 1. (3.3.24)

3.4 General Approximate Allocation Solutions

In this section, we propose approximate solutions for optimization problems (3.3.10)-

(3.3.15) and (3.3.20)-(3.3.24), by decomposing them into convex optimization subprob-

lems which can be solved efficiently.

3.4.1 Approximate Solution for Soft Deadlines

In this subsection, we propose an approximate solution for the optimization problem

(3.3.10)-(3.3.15) by decomposing it into several convex subproblems that can be solved ef-

ficiently, solve them, and then keep the best solution. More specifically, we discretize vari-

able y ∈ [0, 1] by breaking [0, 1] into Y equal segments, so that y takes values ya = a/Y ,

for a = 0, 1, . . . , Y . With y fixed, we show that the relaxation of (3.3.10)-(3.3.15) can be

approximated by a convex optimization problem, which can be solved in polynomial time.

The resulting (fractional) xn’s are then rounded to integer values (and this is another source
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of suboptimality for our solution method). After solving the resulting Y + 1 problems, we

output the minimum solution x∗, y∗. Obviously, the quality of the approximation depends

on the discretization parameter Y .

We consider the relaxed version of problem (3.3.10)-(3.3.15), i.e., constraint (3.3.14)

has been replaced by xn ≥ 0,∀n. With y fixed, we show that the non-convex problem

(3.3.10)-(3.3.15) can be transformed into an equivalent convex optimization problem with

the PBn’s as the decision variables.

Lemma 1. When y is fixed, constraints (3.3.12), (3.3.13) can be replaced by constraint

N∑
n=1

(1− PBn)λn ≤ λ∗. (3.4.1)

Proof. Note that Pr[tWn,j,k + tCn,j,k ≤ dj] is a monotonically decreasing function of the ag-

gregate mean task arrival rate λ. Hence, by binary search in the range [0, yfC/
∑J

j=1 P
C
j qj],

we can approximate within any desired accuracy the maximum possible value of λ that sat-

isfies constraints (3.3.12) for all n, j, k. Let λ∗ be this maximum value (note that λ∗ < µC,

so stability is ensured). Using (3.3.4), the lemma follows.

Next, we note that the blocking probability PBn is monotonically decreasing in xn. Let

Pmin
Bn be the blocking probability when xn = Kn. Then we have the following

Lemma 2. When y is fixed, constraints (3.3.14) can be replaced by the equivalent con-

straints

Pmin
Bn ≤ PBn ≤ 1, ∀n ∈ N . (3.4.2)

Constraint (3.3.11) is the only remaining constraint with an explicit dependence on the
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xn’s. Since PBn is a function of xn, one could potentially use its inverse to replace xn

with a function of PBn. However, such an inversion function may not exist explicitly (and

even if it does, it may be non-convex). In its stead, we can use a convex upper bound

approximation F of the inversion of blocking probability, so that

xn ≤ F (PBn), ∀n ∈ N . (3.4.3)

Hence, the new convex optimization problem that approximates the original one when y is

fixed, is the following:

min
PB

N∑
n=1

[EL
n(PBn) + ET

n (PBn)] s.t. (3.4.4)

N∑
n=1

αnF (PBn) ≤ Bmax − βfCy (3.4.5)

N∑
n=1

(1− PBn)λn ≤ λ∗ (3.4.6)

Pmin
Bn ≤ PBn ≤ 1, ∀n ∈ N . (3.4.7)

After solving (3.4.4)-(3.4.7) and obtaining the PBn’s, we can compute the largest integral

x∗
n which achieves a blocking probability equal to or bigger than PBn, for all n ∈ N .

Algorithm GCASD (cf. Algorithm 1) codifies the solution method described above.

Theorem 3. Algorithm GCASD runs in O(Y (L+log µC

ϵ
+N logKmax)) time, where O(L)

is the running time for solving convex program (3.4.4)-(3.4.7).

Proof. Line 4 of the algorithm applies binary search in [0, µC] in order to get a λ∗ within ϵ of

the optimal and takes time O(log µC

ϵ
). Line 5 solves the convex problem (3.4.4)-(3.4.7) in

time O(L), e.g., by interior point methods (cf. Ch. 11 of Boyd and Vandenberghe (2014)).
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Algorithm 1 General Case Approximation for Soft Deadlines (GCASD)

Input: λn, p
T, pL, αn, Kn, β, f

L, fC, Y, sj, dj, qj, εj, P
C
j , P

G
n,j,k, PDFs of tW, tC

Output: resource assignments x∗, y∗

1: cost∗ = ∞
2: for all a = 0, . . . , Y do
3: y = a/Y
4: Obtain λ∗, the upper bound of λ, by binary search in [0, µC]
5: [PB, cost] = [solution, objective] of (3.4.4)-(3.4.7)
6: xint = max integral x with blocking probabilities ≥ PB

7: if cost < cost∗ then
8: x∗ = xint; y

∗ = y; cost∗ = cost
9: end if

10: end for
11: return x∗, y∗

Line 6 takes time O(N logKmax), by applying binary search in the range [0, Kmax] for each

xn, n = 1, 2, . . . , N (recall that Kmax is the largest Kn). Hence every iteration of the for-

loop of lines 2-10 runs in time O(L+ log µC

ϵ
+N logKmax), and there are O(Y ) iterations

(recall that Y is the granularity of y). The theorem follows.

3.4.2 Approximate Solution for Hard Deadlines

In this subsection, we use a similar approach in order to solve (3.3.20)-(3.3.24). Here we

decompose the original problem into several subproblems by discretizing both variable y

as before, and λ. Then, for every possible (fixed) pair (y, λ), the non-convex problem

(3.3.20)-(3.3.24) can be transformed into a convex optimization problem with PBn as its

decision variables, which can be solved in polynomial time. By calculating the pair (y∗, λ∗)

whose subproblem achieves minimum average power consumption, integer values x∗
n for

the original optimization problem are obtained from P ∗
Bn.

In more detail, we discretize y ∈ [0, 1] by breaking [0, 1] into Y equal segments, and
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then we discretize λ ∈ [0, yfC/
∑J

j=1 P
C
j qj] by breaking interval [0, yfC/

∑J
j=1 P

C
j qj]

into Λ equal segments. At iteration (m, i) of this discretization, y = y(m) and λ = λ(i)

are fixed. Then Pr[t̃Cn,j,k = t− l] can be calculated directly for any t and l, and the original

optimization problem (3.3.20)-(3.3.24) becomes

min
x

N∑
n=1

[EL
n(xn) + EC

n (xn)] s.t. (3.4.8)

N∑
n=1

αnxn ≤ Bmax − βfCy(m) (3.4.9)

N∑
n=1

(1− PBn)λn ≤ λ(i) (3.4.10)

xn ∈ {0, 1, . . . , Kn}, ∀n ∈ N . (3.4.11)

This is still a non-convex non-linear integer program, which cannot be solved efficiently.

As in Section 3.3, and by using (3.4.2)-(3.4.3), it becomes

min
PB

N∑
n=1

[EL
n(PBn) + EC

n (PBn)] s.t. (3.4.12)

N∑
n=1

αnF (PBn) ≤ Bmax − βfCy(m) (3.4.13)

N∑
n=1

(1− PBn)λn ≤ λ(i) (3.4.14)

Pmin
Bn ≤ PBn ≤ 1, ∀n ∈ N . (3.4.15)

Problem (3.4.12)-(3.4.15) is a convex program and can be solved efficiently. Hence, we

can obtain the optimal blocking probabilities P ∗
Bn, corresponding to a pair (y(m), λ(i)). We

can compute the largest integral x∗
n which achieves blocking probabilities no smaller than
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Algorithm 2 General Case Approximation for Hard Deadlines (GCAHD)

Input: λn, p
T, pL, αn, Kn, β, f

L, fC, Y, sj, dj, qj,Λ, P
C
j , P

G
n,j,k, PDFs of tW, tC

Output: resource assignments x∗, y∗

1: cost∗ = ∞, y = 0, λ = 0
2: while y ≤ 1 do
3: while λ ≤ yfC/

∑J
j=1 P

C
j qj do

4: [PB, cost] = [solution, objective] of (3.4.12)-(3.4.15)
5: xint = max integral x with blocking probabilities ≥ PB

6: if cost < cost∗ then
7: x∗ = xint; y

∗ = y; cost∗ = cost
8: end if

9: λ = λ+
yfC/

∑J
j=1 P

C
j qj

Λ

10: end while
11: y = y + 1

Y

12: end while
13: return x∗, y∗

P ∗
Bn, for all n ∈ N , by using binary search based on the fact that the PBn’s are decreasing

functions of the xn’s. After collecting the solutions for all iterations (m, i), we output the

minimum cost one x∗, y∗.

Algorithm GCAHD (cf. Algorithm 2) codifies the solution method described above.

Theorem 4. Algorithm GCAHD runs in O(Y Λ(L+N logKmax)) time, where O(L) is the

running time for solving convex program (3.4.12)-(3.4.15).

Proof. Line 4 solves convex problem (3.4.12)-(3.4.15) in time O(L), e.g., by interior point

methods (cf. Ch. 11 of Boyd and Vandenberghe (2014)). Line 5 takes time O(N logKmax),

by applying binary search in the range [0, Kmax] for each xn, n = 1, 2, . . . , N (recall that

Kmax is the largest Kn). Therefore, an iteration of the inner while-loop (lines 3-10) takes

time O(L + N logKmax), for a total of Λ iterations, while the outer while-loop (lines 2-

12) runs for a total of Y iterations (recall that Y and Λ are the granularity of y and λ

respectively). The theorem follows.
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3.5 Task Arrival and Offloading Assumptions

In the remainder of this chapter, we assume that tasks arrive from the MDs at BS n ac-

cording to a Poisson process with mean arrival rate λn. The Poisson process assumption

is commonly made in this type of situation, since the number of mobile devices in a given

coverage area is typically quite large, each contributing to a small fraction of the total load

(Khintchine (1932)). In this case, we can invoke the insensitivity property of the Erlang B

formula, to compute the probability of blocking at each BS (Burman (1981)). Note that,

typically, the Erlang B result is derived using the M/M/N/N Markovian queue, which

assumes exponentially distributed channel upload (i.e., service) times (Daley and Servi

(1998)). Due to insensitivity, the result holds for any service time distribution with the

same mean. Therefore, the blocking probability for a task arriving at BS n is

PBn =

(
λn

µW
n

)xn 1

xn!

[
xn∑
r=0

(
λn

µW
n

)r
1

r!

]−1

(3.5.1)

where µW
n denotes the mean service rate, which can be calculated by µW

n = 1/t̄Wn . Function

(3.5.1) is convex in xn (Messerli (1972)).

Note that due to the Poisson process task arrival assumption, the channel state sampled

by arriving tasks is given by the steady-state equilibrium probability distribution of the

Markovian channel at that MD. This follows from the PASTA rule (Wolff (1982)).

We assume that the aggregate task arrival process at ES is Poisson (Shanbhag and Tam-

bouratzis (1973)), and, therefore, arriving tasks sample the asymptotic equilibrium state

distribution of ES. This approximation is justified due to the mixing of arrivals at ES from

BSs operating independently. In this case, ES can be modeled as an M/G/1 queue, whose

waiting time is given by the random variable wC. Given λ and knowledge of the data
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upload distribution, the distribution of wC can be obtained by numerical inversion of the

probability generating function of system waiting time for M/G/1 (Khintchine (1932)). In

this case, the execution time of a task at the ES depends only on which class it belongs to,

i.e., tCn,j,k = tCj , for all n and k, and tCj = wC + qj/yf
C. Thus, Pr[tWn,j,k + tCj ≤ dj] can be

easily obtained.

When applying algorithms GCASD (Algorithm 1) and GCAHD (Algorithm 2) in this

case, the upper bound F used in problem (3.4.4)-(3.4.7) and (3.4.12)-(3.4.15) becomes

Berezner et al. (1998):

xn ≤ λn

µW
n

(1− PBn) +
1

PBn

, ∀n. (3.5.2)

3.5.1 Approximation with Soft Deadlines

In this case, problem (3.4.4)-(3.4.7) becomes:

min
PB

N∑
n=1

[EL
n(PBn) + ET

n (PBn)] s.t. (3.5.3)

N∑
n=1

αn(
λn

µW
n

(1− PBn) +
1

PBn

) ≤ Bmax − βfCy (3.5.4)

N∑
n=1

(1− PBn)λn ≤ λ∗ (3.5.5)

Pmin
Bn ≤ PBn ≤ 1, ∀n ∈ N . (3.5.6)

Problem (3.5.3)-(3.5.6) is convex, and Algorithm 1 can be implemented efficiently accord-

ing to Theorem 3.
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3.5.2 Approximation with Hard Deadlines

In this case, problem (3.4.12)-(3.4.15) becomes

min
PB

N∑
n=1

[EL
n(PBn) + EC

n (PBn)] s.t. (3.5.7)

N∑
n=1

αn(
λn

µW
n

(1− PBn) +
1

PBn

) ≤ Bmax − βfCy(m) (3.5.8)

N∑
n=1

(1− PBn)λn ≤ λ(i) (3.5.9)

Pmin
Bn ≤ PBn ≤ 1, ∀n ∈ N . (3.5.10)

Problem (3.5.7)-(3.5.10) is convex, and Algorithm 2 can be implemented efficiently ac-

cording to Theorem 4.

3.6 Simulation Results

In this section, we present simulation results to demonstrate the performance of our pro-

posed algorithms GCASD (Algorithm 1) and GCAHD (Algorithm 2). We adopt the two-

state Gilbert-Elliot channel model (Gilbert (1960)), i.e., the channel states change by fol-

lowing a Markov chain with two states, “Good” (G) and “Bad” (B). This model is com-

monly used to characterize the effects of burst noise in wireless channels, where the chan-

nel can abruptly transition between good and bad conditions (Blazek and Mecklenbräuker

(2018)). The Gilbert-Elliot channel is a difficult one for computation offloading algorithms

to deal with compared to those where there is much more correlation in the channel quality

as the offloading progresses. Let Bg and Bb, respectively, be the data transmission rate

when the channel is in the G and B states. We consider that all channels have the same Bg
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and Bb values but differ in their state transition probabilities that result in different propa-

gation models. The transition probabilities for propagation model k in BS n are denoted as

PGG
n,k , P

GB
n,k , P

BG
n,k , and PBB

n,k . In each time slot, the channel state Markov chain transitions

in accordance with these probabilities. Denote πG
n,k and πB

n,k, respectively, as the stationary

probabilities of a channel in BS n for propagation model k being in the G and B states.

Two sets of simulations are performed with set 1 for single class of tasks and set 2 for

multiple classes of tasks. Default parameters used in the simulations are summarized in

Table 3.2. The parameter settings that we use were taken from the references (Yi et al.

(2021); Masoudi and Cavdar (2021); Yue et al. (2022)). These references summarize pa-

rameter settings for various types of applications including those that are inherently delay

sensitive, such as gaming, face recognition and healthcare use. We intentionally use a wide

range of parameter values based on the referenced ranges so that we can make conclusions

that apply in general settings.

Table 3.2: Default Parameters

Parameter Value in set 1 Value in set 2
τ 1 s
pL 250 mW
pT 2.5 mW
λn 11, 13, 15 tasks/s
Kn 15, 15, 20
αn 1, 1, 1 $
β 0.3× 10−6 $ 0.25× 10−6 $
fC 75M cycles/s 200M cycles/s
f 1M cycles/s 2M cycles/s

Bmax 140 $ 90 $
Bg,Bb 2M, 0 bits per time slot 5M, 1M bits per time slot
sj 2M bits 5M, 10M, 15M bits
dj 4 s 6, 11, 16 s
qj 3M CPU cycles 10M, 20M, 30M CPU cycles
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3.6.1 Simulation set 1: single class of tasks

In this subsection, we will assume that all the tasks generated at the MDs have the same

data size s and same computation load q, i.e., sj = s and qj = q for all j. When the channel

is in the G state, the transmission rate of the wireless channel allows a task to be uploaded

within one time slot; while when the channel is in the B state, the data transmission rate

is zero. Since there is only one class of the tasks, subscript j can be dropped from the

notation.

Let tW
n,k be the time needed for uploading a task in BS n with channel model k. The

probability that one task in BS n with channel model k can be uploaded in l time slots is

given as follows

Pr[tWn,k = l] =

 πG
n,k, when l = 1

πB
n,kP

BB
n,k

l−2
PBG
n,k , when l ≥ 2

(3.6.1)

The mean wireless transmission time of a task in BS n uploaded through a channel with

propagation model k can be calculated as follows

t̄Wn,k =
∞∑
l=1

lPr[tWn,k = l] = 1 +
PGB
n,k

PBG
n,k

2
+ PGB

n,k P
BG
n,k

. (3.6.2)

Based on this, the mean wireless transmission time of the tasks in BS n is t̄Wn =∑In
k=1 P

G
n,k t̄

W
n,k, where PG

n,k is the probability that a task in BS n is uploaded through a

channel with propagation model k.

With a single class of tasks, the ES server becomes an M/D/1 queueing system,
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tCn,j,k = tC for all n, j and k, and the distribution of delay is given by Franx (2001)

Pr[tC ≤ t̂] =

(
1− λ

µC

) ⌊t̂µC⌋∑
z=0

[λ( z
µC − t̂)]

z

z!
e
−λ( z

µC
−t̂) (3.6.3)

where µC = yfC/q.

For comparison, we also run a discrete event simulation (DES) of the system using the

xn’s and y solutions obtained from the proposed algorithms to validate our model assump-

tions, and these solutions are denoted as DESSD and DESHD, respectively, for the soft

deadline (SD) and hard deadline (HD) cases. In addition, we simulate a DES-based OPT

scheme for each proposed algorithm as follows. For GCASD, we first obtain all the possi-

ble combinations of xn’s under constraint (3.3.14); for a given combination of xn’s, we can

obtain the solution of y based on (3.3.11) and (3.3.15), and then check if constraint (3.3.13)

is satisfied based on the current set of xn’s and y. If not, we go to the next set of xn’s and

repeat this procedure. If it is satisfied, we use this set of xn’s and y to run the DES for the

system, and then check if (3.3.12) is satisfied. If not, we proceed to the next combination

of xn’s and repeat the above procedure. If the constraints are satisfied, we save the obtained

average power. After going through all the possible combinations of xn’s, we obtain the

minimum average power and the corresponding xn’s and y. For GCAHD, we first obtain

all the possible combinations of xn’s under constraint (3.3.23); for a given combination of

xn’s, we can obtain the solution of y based on (3.3.21) and (3.3.24), and then check if con-

straint (3.3.22) is satisfied based on the current set of xn’s and y. If not, we go to the next

set of xn’s and repeat this procedure. If it is satisfied, we use this set of xn’s and y to run

the DES for the system. Then, we save the obtained mean power consumption. After going

through all the possible combinations of xn’s, we obtain the minimum average power and
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the corresponding xn’s and y.

In the simulation, we consider a cellular network consisting of 3 BSs. There are two

propagation models at each BS with transition probabilities PGG
n,1 = 0.9, PGG

n,2 = 0.7,

PBB
n,1 = 0.1, and PBB

n,2 = 0.3 for n = 1, 2, 3. The probabilities of the different channel

models in BS 1 are PG
1,1 = 0.8 and PG

1,2 = 0.2; and those in BSs 2 and 3 are PG
2,1 = 0.5,

PG
2,2 = 0.5, PG

3,1 = 0.2, and PG
3,2 = 0.8.
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Figure 3.2: Average power consumption versus cost budget (Single class of tasks)

Figures 3.2a and 3.2b show the average power consumption of MDs versus Bmax for

the SD and HD cases, respectively. In Figure 3.2a, when the tolerable violation of latency

ε is 1%, the average power consumption of MDs is a constant for all the solutions. This

is because all the tasks are executed locally regardless of the cost budget, since the tight

delay constraints cannot be satisfied if a task is offloaded. When ε is 3% or 5%, some tasks

are allowed to be offloaded, and the average power consumption of the MDs decreases

with Bmax for all the solutions. This happens since, when the cost budget is small, the

optimization is constrained by the cost budget, which limits the number of offloaded tasks;
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and with the increase of Bmax, more channel and ES resource is available, leading to more

MDs offloading their tasks. When Bmax is large, the budget constraint is loose, and the task

offloading completion is mainly affected by the changing wireless transmission conditions.

Figure 3.2a also shows that the average MD power consumption decreases with ε for all the

solutions, since larger ε makes it easier to meet the latency constraint through offloading,

which results in more offloaded tasks and saves power in the MDs.

By comparing the average MD power consumption for ε = 3% and ε = 5% in Fig-

ure 3.2a, it is seen that the gap is small when the cost budget is small. The gap then increases

as the cost budget increases, and finally becomes constant when the cost budget is suffi-

ciently large. When the cost budget is low, the number of channels is small, which forces

most tasks to be executed locally, regardless of the value of ε. As the cost budget increases,

more channels are available, and the offloading decisions are determined by both ε and the

available channel resources. When the cost budget is sufficiently high, the offloading deci-

sions are mainly determined by the value of ε. The figure also shows that the average MD

power consumption using GCASD is almost the same as using DESSD, which validates

the model and approximations used in designing GCASD. The performance of GCASD is

also close to DESSD-based OPT, which further shows good performance of the former.

By comparing Figures 3.2a and 3.2b, it can be seen that the average MD power con-

sumption for the HD case is slightly higher than that for the SD case with ε = 3% and

much lower than that for the SD case with ε = 1%. For the SD case, when ε = 1%, the

tight (soft) delay constraint forces all the tasks to be executed locally, which results in the

highest average power consumption of the MDs; and the power consumption decreases as

ε increases and more tasks are allowed to be offloaded. Without having to use CLE, the

SD solutions result in lower average MD power consumption than the corresponding HD
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solutions. However, this is at a price that up to ε of the tasks do not meet their completion

deadlines. On the other hand, using CLE in the GCAHD only incur slightly higher power

consumption of the MDs compared to GCASD when ε = 3% For the HD case, the total

average power consumption of the MDs decreases with Bmax when Bmax is small and be-

comes a constant when Bmax becomes larger for all schemes, which is the same as that of

the SD case with ε = 3% and 5%.
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Figure 3.3: Average power consumption versus mean arrival rate (Single class of tasks)

Figures 3.3a and 3.3b show the average power consumption versus λn (same for all

BSs) for the SD and HD cases, respectively. The figures show that the power consumption

increases linearly with λn for all schemes, since both the local execution power and the

uploading transmission power are proportional to the mean task arrival rate. The average

MD power consumption using GCAHD is close to that using GCASD with ε = 3% but

much lower than that using GCASD with ε = 1%. This demonstrates that the use of CLE

in GCAHD is minimized, while always ensuring the HD of the tasks. Figure 3.3a shows

that the performance of GCASD is very close to DESSD and DESSD-based OPT; and
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Figure 3.3b shows that the performance of GCAHD is very close to DESHD and DESHD-

based OPT. These observations are consistent with the ones from Figures 3.2a and 3.2b.

This further demonstrates the good performance of GCASD and GCAHD and validates the

model and approximations used in designing the proposed algorithms.
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Figure 3.4: Average power consumption versus available ES capacity (Single class of
tasks)

Figures 3.4a and 3.4b show the average power consumption of the MDs versus fC,

which is the ES capacity, for the SD and HD cases, respectively. For the SD case with

ε = 1%, all tasks are executed locally; and when ε = 3% and 5%, offloading is possible

for some tasks, and the number of tasks that can be offloaded increases with the ES capac-

ity, resulting in lower power consumption of the MDs. As the ES capacity is sufficiently

high, the average power consumption of MDs becomes a constant, since the offloading

decisions are determined by the cost budget which limits the number of wireless channels

for uploading tasks. Note that the slight increase in average power consumption when fC

is between 60 and 80 is caused by the discretization errors of variable y in algorithms 1
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and 2. Increasing the Y values in the algorithms helps reduce the discretization errors but

significantly increase the amount of time for running the simulations. Comparing the av-

erage power consumption of the HD and the SD cases shown in Figures 3.4a and 3.4b, we

have consistent observations as in previous figures.

3.6.2 Simulation set 2: multiple classes of tasks

In this subsection, tasks have multiple classes. The two-state Gilbert-Elliot channels are

considered. Let Bg and Bb, respectively, be the data transmission rates when a channel is

in the G and B states.

Given the channel state transision probabilities, the distribution of wireless transmission

time tWn,j,k for uploading a class j task in BS n through a channel with propagation model k

can be calculated from (Hekmati et al. (2020)).

At the ES, the system of serving the uploaded tasks becomes an M/G/1 queueing

system. Let B be a random variable representing the execution time of the tasks. We have

Pr[B =
qj
yfC ] = PC

j , then the probability density function of B can be written as

fB(b̃) =
J∑

j=1

Pr

[
B =

qj
yfC

]
δ

(
b̃− qj

yfC

)
=

J∑
j=1

PC
j δ

(
b̃− qj

yfC

)
, (3.6.4)

and the Laplace-Stieltjes transform of fB(b̃) is given by

g(s) =
J∑

j=1

PC
j e

−
qj

yfC
s
. (3.6.5)

The Laplace-Stieltjes transform of the probability density function of queuing time wC is

52



Ph.D. Thesis – H. Chen McMaster University – ECE

given by the Pollaczek-Khinchine transform (Khintchine (1932)) as

W ∗(s) =
(1− λb̄)s

s− λ(1− g(s))
, (3.6.6)

where b̄ is the mean of B. The distribution of wC can be obtained by numerical inversion

of (3.6.6).

In the simulation, we consider a cellular network consisting of 3 BSs, 3 task classes, and

2 channel propagation models. The channel state transition probabilities are PGG
n,1 = 0.9,

PBB
n,1 = 0.1, PGG

n,2 = 0.6, and PBB
n,1 = 0.4 for n = 1, 2, 3. The probabilities of accessing

channels with different propagation models in BS 1 are PG
1,1 = 0.8 and PG

1,2 = 0.2; those in

BSs 2 and 3 are PG
2,1 = 0.5, PG

2,2 = 0.5, PG
3,1 = 0.2, and PG

3,2 = 0.8. The probabilities of a

task belonging to different classes are PC
1 = 0.6, PC

2 = 0.3, and PC
3 = 0.1.
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Figure 3.5: Average power consumption versus cost budget (Multiple classes of tasks)

Figures 3.5a and 3.5b show the average power consumption of MDs versus Bmax for
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the SD and HD cases, respectively. In Figure 3.5a, when ε is 0.5%, all the tasks are exe-

cuted locally regardless of the cost budget, since offloading cannot satisfy the tight delay

constraints. When ε is 1% or 6%, the average power consumption of MDs decreases with

Bmax and then becomes a constant. By comparing the power consumption of the MD in the

SD and HD cases, we can see that the average power consumption of MDs for the HD case

is slightly higher than that for the SD case with ε = 1% and much lower than that for the SD

case with ε = 0.5%. Figures 3.6a and 3.6b show the total average power consumption of

the MDs versus fC. All the results show that our GCASD and GCAHD solutions achieve

the average power consumption performance that is very close to DES-based OPT, and the

observations in the multi-class simulations are consistent with the single-class simulations.
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Figure 3.6: Average power consumption versus available ES capacity (Multiple classes of
tasks)
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3.7 Summary

In this chapter, we have studied joint communication and computation resource manage-

ment for mobile computation offloading. The objective is to minimize the average power

consumption of the mobile devices subject to the completion time requirements of appli-

cations and a cost budget for the network resources. Our results show good performance

of the proposed solutions. This work will be extended in the next chapter by taking into

consideration the service requirements of the tasks in different task classes when making

the offloading decisions in order to further improve the average power consumption of the

mobile devices.
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Chapter 4

Task Class Partitioning for Mobile

Computation Offloading

4.1 Introduction

This chapter studies the use of task class partitioning (TCP) for mobile computation of-

floading (MCO) to address the problem of task scheduling so that delay constraints are

satisfied and energy consumption is minimized. Class partitioning can be used in cases

where mobile device (MD) tasks belong to one of a given set of task classes that can

each be executed locally or offloaded. Each traffic class definition includes the data up-

load and execution requirements of the class and its execution deadline, i.e., the time by

which task execution should be completed. Class partitioning is motivated by the follow-

ing simple example: An offloaded traffic class with high computational needs and a loose

execution delay constraint may unduly occupy the edge server (ES), thus preventing more

time-constrained tasks from using MCO. In this case, it may be beneficial to pre-assign

certain task classes to local execution so that others can more successfully exploit remote
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offloading. In TCP, the task classes are therefore partitioned into two sets, those task classes

to be executed locally and those that may be offloaded for remote execution. Depending

on the adaptability of class definition, TCP can be either static, when the task classes are

pre-defined and their definition does not change throughout the lifetime of the system, or

dynamic, when the class definition can adapt to a changing environment. It is clear that

the dynamic TCP is a sequence of static TCP instances, each corresponding to a period

of stable environment parameters. In this chapter, we study the static version of TCP, i.e.,

STCP.

In STCP, the number of possible task class partitions is clearly exponential in the num-

ber of task classes. A way to overcome this is to prioritize the classes based on the ad-

vantages that they provide and their MCO compatibility with other classes. The chapter

proposes two class partitioning approaches. In the first, task classes are prioritized accord-

ing to their delay constraints. The second approach uses a hierarchical ordering that first

prioritizes task classes according to power consumption, and then prioritizes task classes

within groups of similar power demand according to task delays. We show that the hierar-

chical algorithm produces significantly better solutions than the first one. Both are easily

implementable and computationally efficient. As a result, making the offloading decisions

requires little communication and computation overhead and the delay introduced by wait-

ing for the offloading decisions is low, which is advantageous when task deadlines are tight.

The chapter considers two different design problems. In the Basic Static Task Class

Partitioning (BSTCP) problem, the wireless channel capacities at each base station (BS)

and the ES computational capacity are given beforehand. The problem in this case is to

create the task class partition that minimizes the average MD power consumption while

satisfying the task execution deadline constraints. We show that the proposed static class
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partitioning algorithms can significantly reduce the MD power consumption without vi-

olating task delay constraints. The second problem is where the channel and execution

resources are not given, and the algorithms not only partition the task classes as before, but

determine the channel and execution resource assignments, subject to a cost budget con-

straint, as well. This is referred to as the Joint Static Task Class Partitioning and Network

Resource Allocation (JSTCP) problem.

Due to the static nature of the partitioning, the proposed algorithms are intended for

use in situations where the set of task classes remain relatively stable over the time peri-

ods of interest. This is not a strong assumption, since although the mixture of tasks may

continuously change, the classes in which these tasks belong may not do so. When task

class partitioning is combined with resource allocation in JSTCP, the problem is inherently

one of static resource allocation. The static assignment of wireless channel bandwidth and

computational capacity is subject to a cost budget and resources are not re-allocated dur-

ing network operation. In a design scenario using our algorithms for example, a network

designer could assign resources based on their knowledge (or prediction) of the character-

istics of the traffic flow that would be impinging on the resulting network. In a practical de-

sign, this would likely be done using worst-case traffic assumptions (e.g., anticipated “busy

hour” statistics.). The algorithms in this chapter could easily be adapted to more quasi-

static situations, where resource assignments are updated periodically based on evolving

worst-case (busy-hour) traffic conditions. Overall, static TCP is a natural first step towards

more sophisticated settings, e.g., dynamic TCP, which we leave for future work.

The main contributions of this chapter are summarized below.

• STCP is proposed as a way of improving the performance of computation offloading

under task execution time constraints.
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• Two main task class partitioning algorithms are proposed. The simpler algorithm

uses a latency-based task class ordering. The more sophisticated hierarchical algo-

rithm first sorts the task classes into sets based on their mean power consumption,

and within each set, the task classes are further ordered using a task completion time

criterion.

• The design algorithms consider both soft and hard task deadlines. In soft deadlines

(SDs), the probability of task completion deadline violation is upper bounded by a

class-specific value. Since the soft delay constraints are based on satisfying statistical

bounds, the chapter models the detailed delay distribution of the tasks. The models

permit arbitrary task upload and execution time distributions with any set of Marko-

vian channel models. In the hard deadline (HD) case, task deadlines must always be

respected. This is done by including Concurrent Local Execution (CLE) (Hekmati

et al. (2020)) in the algorithms. The chapter provides the only known mechanism for

class partitioning that always achieves this goal.

• Both BSTCP and JSTCP problems are introduced. In the former, STCP is applied

for a network with preallocated resources, while in the latter STCP is jointly studied

with network resource allocation. Both BSTCP and JSTCP are studied in the soft

and hard class deadline constraint cases.

• A variety of simulation results are presented that demonstrate the good perfor-

mance of the proposed algorithms. In the JSTCP case, our algorithms perform well

compared to both a state-of-the-art no-partitioning algorithm and the optimal no-

partitioning algorithm.

The remainder of the chapter is organized as follows. In Section 4.2, the prior work
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most related to this chapter is reviewed. The system model is then described in Section

4.3. In Section 4.4, the general task offloading decision problems for both SD and HD

are formulated. Following this, in Section 4.5, the partitioning algorithms are proposed. In

Section 4.6, the partitioning algorithms are used to obtain solutions of the BSTCP problem.

In Section 4.7, the JSTCP problem is formulated under a resource cost budget for both SD

and HD cases. In Section 4.8 simulation results that demonstrate the proposed designs are

given. Finally, we present a summary of this chapter in Section 4.9.

4.2 Related Work

This section reviews the most recent literature that relates to our work. In MCO, task com-

pletion time and MD energy consumption are two important performance metrics. In terms

of task completion time, some work considers tasks with hard completion deadlines under

static wireless channel conditions (Li et al. (2020); Ren and Xu (2021); Tan et al. (2022)),

in which case the fixed channel gains make it possible to predict the wireless transmission

time for an offloaded task. When the channel conditions vary with time, the uncertainty in

future channel condition results in uncertainty in the completion time of offloaded tasks.

In this case, an offloaded task may be discarded if it is not completed before the required

deadline (Yue et al. (2022)). Given the difficulty to satisfy hard completion deadlines

for offloaded tasks, some work considers mean delay performance of tasks in MCO, such

as (Wu et al. (2020); Wu and Wolter (2018)), and other work makes offloading decisions

to achieve a certain statistical delay bound (Qu et al. (2021); Li et al. (2022b)). In addi-

tion to the time-varying wireless channel conditions, the random task arrival process also

causes uncertainty in the future network conditions, which affects the MCO performance

and makes it difficult to support tasks with strict completion time requirements. In (Deng
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et al. (2020); Zaw et al. (2021)), offloading decisions for tasks are made by considering the

statistic information of task arrivals and the mean completion time of the tasks. Different

from the existing work, we study MCO with both time-varying wireless transmission chan-

nels and random task arrivals, and consider both hard and soft task completion deadlines.

Offloading decisions in MCO are often jointly considered with network resource allo-

cations to improve the offloading performance. For example, in (Zeng et al. (2022); Fang

et al. (2022)), no constraints are specified for task completion time. Instead, the objective

is to optimize a cost or utility function that is defined as a weighted sum of the MD en-

ergy consumption and average task completion time by jointly coordinating the co-channel

interference and the task offloading decisions. In (Tan et al. (2022)), orthogonal channel

allocations are jointly optimized with the task offloading decisions in order to minimize the

MD energy consumption subject to hard task completion time under static channel condi-

tions.

For tasks with strict completion time requirements, making the offloading decisions

should take the minimal amount of time upon the task arrival. To make the offloading

decisions, communication time may be required to collect input information needed for

making the decisions and deliver the decisions, depending on the specific algorithms, and

computation time is needed to run the decision making algorithms (Wu et al. (2020); Wu

and Wolter (2018)). However, most existing work ignores the decision making time upon

the task arrivals. In our work, the class partitioning is performed offline; and upon a task

arrival, if the task class is in the set that is allowed to offload, the MD only needs to check

if a channel is available in order to decide whether the task can be offloaded. The response

time to make the offloading decision is low.

An offloading decision can be binary, which means that a given task is either entirely
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executed at the MD or offloaded to an ES. Instead, in partial offloading, different portions

of a task are allowed to be executed simultaneously at both the MD and the ES (Mu et al.

(2020)) or at multiple ESs (Wu et al. (2018)). The additional flexibility of partial offloading

helps reduce the task completion time, while saving energy for the MDs. In networks with

highly dynamic topology, such as vehicular networks, partial offloading allows an MD to

offload different portions of a task to different computing devices in order to take advantage

of the short connection time to these computing devices (Wang et al. (2021, 2018)). Also,

a task can be divided continuously (Mu et al. (2019, 2020); Wu et al. (2018)), or it can be

modelled as mutually related subtasks and a binary offloading decision is made for each

subtask (Wu et al. (2019); Wang et al. (2021, 2018)). Different from partial offloading and

individual task partitioning, our work considers task class partitioning (TCP), which parti-

tions task classes into two sets for either remote or local execution. TCP can be combined

with partial task offloading. However, in order to focus on the benefit of TCP, we do not

apply partial offloading for individual tasks, i.e., after we partition task classes into locally

executed or offloaded, each task belonging to the latter is either entirely offloaded (if a

channel is available for data uploading) or executed locally (when no channel is available).

We leave the study of the combination of TCP with partial task offloading to future work.

4.3 System Model

This chapter considers the problem where wireless channels at a set of base stations and

ES capacity is leased for computation offloading. Let N be the total number of BSs, N =

{1, 2, . . . , N} be the set of BSs and xn be the number of wireless channels that are used in

BS n. Since the ES is located at the edge of the network, we focus on the dominant sources

of delay, i.e., wireless access at the BSs and task execution at the ES (Huawei Inc. (2016)).
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Tasks generated by an MD can be offloaded through the wireless network and executed on

the ES. Let fC be ES capacity (in the number of CPU cycles per second) and a fraction y,

0 ≤ y ≤ 1, of the capacity is used.

There are J classes of tasks generated by the MDs. Let J = {1, 2, . . . , J} be the set

of task classes. A class j task is defined by parameters sj , qj , and dj , where sj (in bits)

is the input data size needed for processing the task, qj (in number of CPU cycles) is the

computation load, and dj (in seconds) is the task deadline. A class j task may be executed

locally, in which case T L
j = qj/f

L and pLT L
j , respectively, are the amounts of time and

energy needed to process the task, where fL is the local processing speed in number of

CPU cycles per second and pL is the local processing power in Watts. We assume that

T L
j < dj for all j ∈ J so that the delay requirement can always be satisfied if a task is

executed locally.

A task may be processed remotely at the ES. Let tOFF
n,j be the total amount of time for

offloading a class j task generated by an MD in BS n, then tOFF
n,j = tWn,j + tCj , where tWn,j and

tCj , respectively, are the amount of time for uploading the task to the ES and the amount of

time the task experiences at the ES before the completion of its execution. Note that tWn,j

is a function of sj and the wireless data transmission rate. We consider fixed transmission

power at each MD and it adapts its transmission rate according to the current channel

conditions. In this case, the amount of time needed to upload the sj bits in order to offload

a class j task is determined by the channel conditions.

All the offloaded tasks from different BSs and in different classes are processed at

the ES according to a first-come-first-served queueing discipline. For a class j task, the

execution time at the ES is TC
j = qj/(yf

C). In addition to execution time, queueing at the

ES may incur additional latency. Let λES be the mean aggregate task arrival rate at the ES
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of all traffic classes from all BSs. The queueing delay of the offloaded tasks at the ES wC

is a function of λES, and its statistics are the same for all tasks belonging to all classes and

generated at all BSs. Since tCj = wC + TC
j , we have tOFF

n,j = tWn,j +wC + TC
j . Both tWn,j and

wC are random due to the randomness of the link gain of the wireless channel and the task

arrival process at the ES, respectively. Therefore, tOFF
n,j is also random.

4.4 Problem Formulation

The objective of this work is to minimize the mean power consumption of the MDs used

for processing their tasks, when the latter can be either executed locally by their MD or be

offloaded to the ES for execution, and under task delay constraints.

Both soft and hard delay constraints are considered. In the soft delay constraints case,

the delay requirements of tasks are achieved with a predefined probability, i.e., 1− εj with

εj ∈ (0, 1). Hence, our goal is to minimize the mean mobile power consumption such

that the probability that task execution deadline violation is bounded, i.e., the deadline

constraints can be violated, albeit rarely.

In the hard delay constraints case, the latency requirements of all the tasks should be

always satisfied. Due to the random wireless channel conditions and task arrival process,

guaranteeing the hard delay constraints is difficult for offloaded tasks. In (Hekmati et al.

(2020)) we proposed to use concurrent local execution (CLE) when it is uncertain that an

offloaded task can be completed before its deadline. More specifically, for an offloaded

task, if it is not completed before time tCLE
j = dj − T L

j , the MD starts to execute the task

locally and in parallel to the MCO. CLE aborts if the ES completes the task before dj in

order to save the energy consumption of the MD. Again, the goal is to make power efficient

offloading decisions which respect all task deadlines.
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Figure 4.1: Offloading Decision Making Process

We extend the notion of a task class to the notion of a BS-class tuple as follows: (n, j) ∈

N × J is the set of class j tasks arriving at BS n. Note that this allows us to distinguish

between the same task classes submitted to different BSs, so that the same task class may

be treated differently at different BSs. In both soft and hard delay constraints cases, we

adopt a two-step process in making the offloading decisions, as shown in Figure 4.1:

1. Class set partitioning: In this step, we partition the set N × J into subsets Θ and

(N × J ) \ Θ. Tasks in BS-classes (N × J ) \ Θ are always executed locally at

the MDs. Offloading decisions for tasks from the BS-classes of Θ are made in the

second step.

2. Local execution on blocking (LEB): This step applies only to tasks belonging in

BS-classes of Θ. Upon the arrival of a class j task at BS n with (n, j) ∈ Θ, if at

least one of the xn channels is available for immediate use, the MD reserves a free

channel and starts uploading the task; otherwise the task is blocked from offloading

and is executed locally at the MD. Note that LEB treats tasks from different task

classes the same, and, therefore, within the same BS, the same blocking probability
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applies to tasks of any class in J .

Observations:

• The class set partitioning of the first step is performed offline, as preprocessing to

MCO, and does not cause any additional delays to task processing. On the other

hand, the LEB decision for a task is made immediately upon the task arrival. LEB

requires minimal communication and computation overhead, and can be made with

nearly zero additional delay. Overall, the extra delay introduced to the offloading

decisions is negligible.

• Class set partitioning introduces a pre-offloading stage of ‘task filtering’, which will

‘filter-out’ tasks that would burden the offloading process due to their combination

of parameters. For example, if tasks of class j have large data size sj and very tight

deadline dj , then the tasks should not be offloaded, since they require a long channel

uploading time and have a high probability of missing their deadlines.

• With this two-step process for making the offloading decisions, either local execution

or remote offloading is initiated immediately at task release time, which may be

advantageous when task deadlines are tight. It also provides a simple mechanism for

assessing the ES workload at the MD. That is, when more wireless channels are used

for uploading tasks, a higher computation load is at the ES, in which case executing

tasks locally at the MDs is beneficial.

The problem formulation is presented first for soft completion deadlines, and then for

hard completion deadlines.
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4.4.1 Soft deadlines

With the soft delay constraints of the tasks, the power consumption of the MDs includes

• EDL, which is the mean power consumption of the MDs for executing tasks belong-

ing to classes in (N × J ) \Θ,

• EL, which is the mean power consumption of the MDs for executing tasks belonging

to classes in Θ locally (these tasks are blocked for offloading due to no wireless

channels upon their arrivals), and

• ET, which is the mean power consumption of the MDs for uploading tasks belonging

to classes in Θ.

The objective of class partitioning, together with the allocations of wireless and compu-

tation resources in case the latter are not given beforehand, is to minimize the mean power

consumption of the MDs, i.e.,

minEMD = EDL + EL + ET =
N∑

n=1

(
EDL

n + EL
n + ET

n

)
, (4.4.1)

where EDL
n is the portion of EDL consumed by the MDs in the nth BS, EL

n is the portion

of EL consumed by the MDs in the nth BS, and ET
n is the portion of ET consumed by the

MDs in the nth BS. These “BS n portions” are given below.

Let λn,j be the mean arrival rate of class j tasks in BS n. The local energy consumption

of the MDs in BS n for processing class j tasks with (n, j) /∈ Θ generated in one second is

EDL
n =

∑
j:(n,j)∈(N×J )\Θ

λn,jT
L
j p

L. (4.4.2)

67



Ph.D. Thesis – H. Chen McMaster University – ECE

Since this is the mean energy consumption for tasks generated in one second, it is equivalent

to the mean power consumption of the MDs for processing the tasks over a long term.

Similarly, EL
n and ET

n given below are also the mean power consumption of the MDs.

For BS n, let PB
n be the task blocking probability for all tasks with (n, j) ∈ Θ due to

no channel being available upon their arrival. Recall that all tasks are treated the same at

a BS for accessing a channel, and therefore, the blocking probability does not depend on

task class j. How to find PB
n is given in Section 4.6.2. The mean power consumption of all

the MDs at BS n for processing these tasks is

EL
n =

∑
j:(n,j)∈Θ

PB
n λn,jT

L
j p

L. (4.4.3)

The unblocked tasks in Θ are offloaded through the wireless channels to the ES. The mean

power consumption of the MDs in BS n for uploading these tasks is

ET
n =

∑
j:(n,j)∈Θ

(1− PB
n )λn,j t̄

W
n,j p

T, (4.4.4)

where t̄Wn,j is the mean of tWn,j , and can be calculated based on the statistics of the channel

conditions as shown in Section 4.6.1.

In the soft task deadlines case, the objective of minimizing the mean MD power con-

sumption is subject to the delay constraints

Pr[tOFF
n,j ≤ dj] = Pr[tWn,j + wC + TC

j ≤ dj] ≥ 1− εj (4.4.5)

for all n and j. Finding the distribution of tOFF
n,j is given in Section 4.6.4.
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4.4.2 Hard deadlines

The objective of minimizing the mean power consumption of the MDs can be written as

minEMD = EDL + EL + ET + ECLE, (4.4.6)

where the expressions for EDL, EL, and ET are same as in the soft deadline case. When

the task deadlines are hard and must be respected, CLE Hekmati et al. (2020) is used, i.e.,

the local execution of a task belonging to class j is initiated at tCLE
j = dj−T L

j , if offloading

is still ongoing.

The additional power consumption of the MDs incurred by CLE is

ECLE =
∑

(n,j)∈Θ

(
EO

n,j + EB
n,j

)
, (4.4.7)

where EO
n,j is the amount of local execution power when offloading is completed before the

task completion deadline and EB
n,j is the amount of local execution power when offloading

continues beyond the task deadline.

When tOFF
n,j < dj , the local execution time incurred by CLE is tOFF

n,j − tCLE
j because the

CLE stops as soon as the offloading is completed; and when tOFF
n,j ≥ dj , the local execution

time incurred by CLE is T L
j . Based on these two cases, EO

n,j and EB
n,j are

EO
n,j = (1−PB

n )λn,jp
L

∫ dj

t=tCLE
j

(t− tCLE
j ) Pr

[
tOFF
n,j = t

]
dt, (4.4.8)

EB
n,j = (1− PB

n )λn,jp
LT L

j

∫ ∞

dj

Pr
[
tOFF
n,j = t

]
dt. (4.4.9)
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4.5 Class Partitioning

One of the main contributions of this work is the development of class partitioning algo-

rithms that lead to the efficient implementation of the two-step computational offloading

decisions described in Section 4.4. Specifically, the algorithms determine to partition the

set (N×J ) into sets Θ and (N×J )\Θ, so that tasks belonging to class j in BS n proceed

to the second step of offloading decisions if (n, j) ∈ Θ, while other tasks are automatically

executed locally.

Instead of going through all 2NJ + 1 subsets of N × J in order to find the best Θ,

we first sort the NJ (n, j)-tuples in N × J into an ordered list η1, η2, . . . , ηNJ according

to a certain criterion, and then partition this list into subsets Θ = {η1, η2, . . . , ηθ} and

(N × J ) \ Θ = {ηθ+1, ηθ+2, . . . , ηNJ}, where θ = |Θ|. The rest of the section introduces

sorting criteria and methods to determine θ.

4.5.1 Partitioning based on delay constraints (PDC)

The first (and simpler) method orders task classes according to the delay constraints (4.4.5).

The intuition behind it is that if there is a class of tasks with extremely tight deadline, they

should not be allowed to offload, since it will most likely require too many resources to sat-

isfy their deadline constraint, assuming the deadline can indeed be satisfied by offloading.

As a result, the system will offload fewer tasks (with the rest executed locally on MDs).

Even if such tasks are offloaded (possibly at great cost), there is still a high probability that

offloading will fail to satisfy their tight delay constraints due to the stochastic nature of the

service system.

The PDC method includes two algorithms, PDC-S for SDs given in Algorithm 3 and

PDC-H for HDs given in Algorithm 4.
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Soft deadlines

Let λES be the aggregate mean task arrival rate at the ES. We notice that

Pr[tWn,j + wC + TC
j ≤ dj] in (4.4.5) is a decreasing function of λES. Let µC

j be the num-

ber of class j tasks that the ES can process in one second, i.e., µC
j = 1

TC
j

. If one assumed

that all offloaded tasks arriving at the ES come from a single BS n and belong to a single

task class j, binary search in the range [0, µC
j ] can be used to determine the maximum λES

that would satisfy delay constraint (4.4.5) in this case. Namely,

λ̂ES
n,j = max{λES : Pr

[
tWn,j + tCj ≤ dj

]
≥ 1− εj}. (4.5.1)

Note that although the values λ̂ES
n,j , calculated by (4.5.1), correspond to the simple scenario

of one BS and one task class, they can be used as an indication about the possibility that

tasks belonging to different classes can meet their delay constraints if offloaded. Therefore,

we use them in the general setting below when making class partitioning decisions.

If λ̂ES
n,j = 0 for a given (n, j)-tuple, tasks in class j from BS n are executed locally,

i.e., these (n, j)-tuples will not be included in Θ. This direct assignment to local execution

makes sense, since the delay constraints for these tasks cannot be satisfied, even if they

were the only kind of tasks offloaded to the ES. Next, a set R is formed to include all

(n, j)’s with λ̂ES
n,j > 0 as shown in line 2 of Algorithm 3, where R = |R|. The task classes

in set R are ordered in decreasing values of λ̂ES
n,j (line 3), since the smaller λ̂ES

n,j is, the tighter

the corresponding delay constraint is. The algorithm employs a linear search process for

the best θ, starting from 0 and going up to R. For a given θ, Θ is the set of the first θ (n, j)-

tuples in the ordering of R. Note that when θ = 0, no tasks are allowed to offload; and

when θ = R, all the tasks with λ̂ES
n,j > 0 are allowed to offload. The algorithm compares
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the resulting mean MD power consumption for each θ, and returns the Θ corresponding to

the θ that achieved the minimum mean MD power consumption.

Algorithm 3 PDC-S

Input: λn,j, p
T, pL, PB

n , f
L, fC, sj, dj, qj, εj , PDFs of tW, wC

Output: task class partition Θ∗ = {η1, η2, . . . , ηθ∗}
1: Find λ̂ES

n,j , for all n and j, from (4.5.1)
2: R = {(n, j) : λ̂ES

n,j > 0}; R = |R|
3: Sort classes in R in decreasing order of λ̂ES

n,j; let η1, η2, . . . , ηR be the resulting ordering

4: θ∗ = 0; Emin = ∞
5: for all θ = 0, 1, 2, . . . , R do
6: Θ = {η1, η2, . . . , ηθ}
7: Find mean MD power consumption EMD

8: if EMD < Emin then
9: Emin = EMD; θ∗ = θ

10: end if
11: end for
12: return Θ∗ = {η1, η2, . . . , ηθ∗}

Hard deadlines

While (4.4.5) is an explicit constraint in the problem formulation for soft deadlines, the

hard deadlines formulation does not contain such a constraint, since CLE guarantees the

task completion before its deadline. However, (4.4.5) (and (4.5.1)) can still be used to

obtain an ordering of the (n, j)-tuples. The basic procedure is as follows. Starting from

Θ = N × J and εj = ε = 1 for all j, the common ε is reduced in steps of size ω. For

every reduction, we calculate values λ̂ES
n,j exactly as in the SD case by using the current ε in

constraints (4.5.1). For each (n, j) with λ̂ES
n,j = 0, we remove (n, j) from Θ. This process

continues, until θ classes remain in Θ. Algorithm PDC-H (Algorithm 4) implements this

process. Note that in Algorithm 4, θ decreases from NJ down to 0 (instead of increasing
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from 0 to NJ), because this allows us to calculate our solutions for different θ with only

one swiping decrease of ε down from 1.

Algorithm 4 PDC-H

Input: λn,j, p
T, pL, PB

n , f
L, fC, sj, dj, qj , PDFs of tW, wC

Output: task class partition Θ∗

1: Θ = N × J ; Emin = ∞
2: εj = ε = 1, ∀j ∈ J
3: for all θ = NJ,NJ − 1, . . . , 2, 1, 0 do
4: while |Θ| > θ do
5: for all (n, j) ∈ N × J do
6: Find λ̂ES

n,j from (4.5.1)
7: if λ̂ES

n,j = 0 then
8: Θ = Θ \ {(n, j)}
9: end if

10: if |Θ| = θ then
11: break;
12: end if
13: end for
14: ε = ε− ω; εj = ε for all j ∈ J
15: end while
16: Find mean MD power consumption EMD

17: if EMD < Emin then
18: Emin = EMD; Θ∗ = Θ
19: end if
20: end for
21: return Θ∗

4.5.2 Hierarchical partitioning (HP)

Unlike the PDC algorithms, the hierarchical partitioning algorithm takes into account both

the mean power consumption and the task deadlines when ordering the tasks. This is imple-

mented in two phases. In the first phase, task classes are ordered and grouped according to

an estimated power consumption criterion. In the second phase, classes within each group
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are further ordered using a second criterion that takes task deadlines into account. This

partitioning method is given in Algorithm 5, where g is the index of the current group of

(n, j)-tuples and h is the index of the first (n, j)-tuple in the current group.

In the first phase of ordering, we prefer to offload the tasks that can save more power by

offloading than by executing locally. Thus, the sorting criterion is the difference between

power consumption of the MD for offloading the task and executing it locally, which is

defined as

ΦE
n,j = pT

sj
B̄n,j

− pLT L
j , (4.5.2)

where B̄n,j is the expected wireless transmission rate of class j tasks in BS n with the

expectation taken over the random channel conditions. An example is provided in Section

VIII. The (n, j)-tuples of N × J are ordered in increasing values of ΦE
n,j . After this

initial ordering, the (n, j)-tuples whose ΦE
n,j values differ by at most ξ (for some parameter

0 ≤ ξ ≤ 1) are grouped together (lines 2-9).

Within the same group, the (n, j)-tuples are further ordered according to a second set

of values defined as follows:

ΦD
n,j =

sj/B̄n,j + qj/(yf
C)

dj
=

sj
B̄n,jdj

+
qj

yfCdj
. (4.5.3)

That is, ΦD
n,j is a ratio between the minimum mean offloading time (sum of mean wireless

transmission time and ES execution time) over the deadline of class j tasks. Note that ΦD
n,j

does not consider any queueing delay at the ES. This is because the ES service system has

a single queue for all offloaded tasks, so that all task classes experience the same mean

queueing delay, and as a result, queueing delay does not affect the task class ordering.
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Within each group, the (n, j)-tuples are sorted in increasing values of ΦD
n,j (lines 10-13).

Parameter ξ regulates the trade-off between the effects of delay constraints and power

consumption on class ordering. When ξ = 0, there is one and only one BS-class in each

group, and the sorting is based only on ΦE
n,j , i.e., the second phase does not have any effect.

When ξ = 1, all the BS-classes belong in one group after the first phase, and the sorting is

solely based on ΦD
n,j in the second phase.

Finally, lines 15-22 find the partition that achieves the minimum MD power consump-

tion.

Running times: Let T be the running time of finding the mean MD power consumption

in line 7 of Algorithm 3, line 16 in Algorithm 4, and line 18 in Algorithm 5.

• For PDC-S given in Algorithm 3, line 1 takes time O(NJ log µC

ϵ
), where µC is the

maximum of µC
j and ϵ is the desired accuracy of the binary search, and line 3 takes

time O(NJ logNJ). The running time of PDC-S is O(NJ log µC

ϵ
+ NJ logNJ +

NJT ).

• For PDC-H given in Algorithm 4, within the for loop between lines 3 and 20,

the running time of lines 4-15 is O( 1
ω
NJ log µC

ϵ
). The running time of PDC-H is

O( 1
ω
(NJ)2 log µC

ϵ
+NJT ).

• For HP, the running time of Algorithm 5 is O(NJ log(NJ) +NJT ).

Observation: In line 7 of Algorithm 3, line 16 of Algorithm 4, and line 18 of Al-

gorithm 5, finding the mean MD power consumption EMD requires specific information

regarding the task classes, wireless channel statistics, resource availability of the network,

etc. In the following two sections, the mean MD power consumption is found for two sce-

narios, one with fixed xn’s and y, and the other with a cost budget that limits the total cost
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Algorithm 5 HP

Input: λn,j, p
T, pL, PB

n , f
L, fC, sj, dj, qj, B̄n,j, ξ, PDFs of tW, wC

Output: task class partition Θ∗ = {η′1, η′2, . . . , η′θ∗}
1: Sort the (n, j)-tuples in N × J in increasing order of ΦE

n,j; let η1, η2, · · · , ηNJ be the
resulting ordering

2: g = 1; h = 1; G1 = {η1}
3: for j = 2 to NJ do

4: if
∣∣∣∣ΦE

ηj
−ΦE

ηh

ΦE
ηh

∣∣∣∣ < ξ then

5: Gg = Gg ∪ {ηj}
6: else
7: g = g + 1; h = j; Gg = {ηh}
8: end if
9: end for

10: L = null ▷ L is a list of (n, j)-tuples
11: for g = 1 to G do
12: Sort the (n, j)-tuples in group g in increasing order of ΦD

n,j and append the ordered
tuples to L

13: end for
14: Let L = η′1, η

′
2, · · · , η′NJ be the ordered (n, j) list

15: θ∗ = 0; Emin = ∞
16: for θ = 0 to NJ do
17: Θ = {η′1, η′2, . . . , η′θ}
18: Find mean MD power consumption EMD

19: if EMD < Emin then
20: Emin = EMD; θ∗ = θ
21: end if
22: end for
23: return Θ∗ = {η′1, η′2, . . . , η′θ∗}

of the wireless channels and ES computing resources.

4.6 Preallocated Network Resources

In this section, we consider the BSTCP problem, i.e., the case where the available resources

for the network have been preallocated, i.e., xn’s and y are fixed and given. We assume that
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the arrival process of class j tasks at BS n follows a Poisson process with mean arrival

rate λn,j . The assumption is a common one, and justified by the large number of MDs that

generate the tasks (Khintchine (1932)). As a result, and because of the PASTA rule (Wolff

(1982)), the ES service system can be modeled as an M/G/1 queue. We model the wireless

channels between the MDs and the BSs as discrete-time Markov processes. The time slot

duration is denoted by τ in seconds. The Markovian transition probabilities are defined in

the usual way, i.e., given the channel state in the current time slot, there is a probability

associated to its transition to another state in the next time slot. These probabilities are

functions of the radio propagation environment that the MDs experience at the BS. Let

Kn = {1, 2, . . . , Kn} be the set of different possible Markovian wireless channel models

of BS n, and let Kn = |Kn|.

4.6.1 Distributions of tW
n,j

Define PG
n,j,k as the probability that a class j task, offloaded by an MD in BS n, encounters

channel model k. The distribution of tW
n,j is given as

Pr[tWn,j = l] =
∑
k∈Kn

Pr[tWn,j,k = l]PG
n,j,k, (4.6.1)

where tW
n,j,k (in number of time slots) is the amount of time for uploading a class j task

in BS n when the channel follows propagation model k. Given the Markov channel state

transition probabilities, the distribution of tW
n,j,k is given in (Hekmati et al. (2020)). The

mean of tWn,j can be found as

t̄Wn,j =
∞∑
l=0

lPr[tWn,j = l]. (4.6.2)
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4.6.2 Computing PB
n

PB
n is channel blocking probability for tasks in BS n with (n, j) ∈ Θ. For BS n, the mean

task arrival rate for all classes with (n, j) ∈ Θ is
∑

j:(n,j)∈Θ λn,j , and the mean service time

(uploading time through wireless transmissions) of the tasks is

t̄Wn =

∑
j:(n,j)∈Θ λn,j t̄

W
n,j∑

j:(n,j)∈Θ λn,j

. (4.6.3)

Given that the task arrivals follow a Poisson process, the Erlang-B formula can be used

to find PB
n even for non-exponentially distributed task uploads, as in (Chen et al. (2023)).

This is referred to as the insensitivity property of the formula (Burman (1981)). Thanks

to this property, the Erlang-B result holds for any service time distribution with the same

mean.

4.6.3 Distribution of wC

The aggregate task arrival process at ES is Poisson (Shanbhag and Tambouratzis (1973)),

and the service system at the ES is an M/G/1 queue. As arriving tasks sample the asymp-

totic equilibrium state distribution of the ES, the statistics of the queueing time experienced

at the ES by tasks in different classes and from different BSs are the same. The queueing

time distribution depends on the mean aggregate task arrival rate at the ES and the distri-

bution of the execution time of the tasks.

The mean task arrival rate at the ES is

λES =
∑

(n,j)∈Θ

λn,j(1− PB
n ). (4.6.4)
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Let TC be a random variable representing the execution time of a task arriving at the

ES. The probability that TC = TC
j is equal to the probability that a class j task arrives at

the ES. Since

Pr[TC = TC
j ] =

∑
n:(n,j)∈Θ(1− PB

n )λn,j

λES
, (4.6.5)

the probability density function of TC is

fTC(b̃) =
∑

j:(n,j)∈Θ

Pr
[
TC = TC

j

]
δ
(
b̃− TC

j

)
, (4.6.6)

and the Laplace-Stieltjes transform of fTC(b̃) is given by

g(s) =
∑

j:(n,j)∈Θ

Pr[TC = TC
j ]e

−TC
j s. (4.6.7)

For the queuing time wC, the Laplace-Stieltjes transform of its probability density func-

tion is given by the Pollaczek-Khinchine transform (Khintchine (1932)) as

W ∗(s) =
(1− λEST̄C)s

s− λES(1− g(s))
, (4.6.8)

where T̄C is the mean of TC. The distribution of wC can be obtained by numerical inversion

of (4.6.8).

4.6.4 Distribution of tOFF
n,j

Given the distribution of tWn,j and wC, we can find the distribution of tOFF
n,j = tWn,j + wC +

TC
j . Note that tWn,j and wC are independent since the wireless channel uploading time is
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independent of the ES service time.

In the soft deadline case, the joint probability distribution of total offloading delay tOFF
n,j

is

Pr[tOFF
n,j ≤ dj] = Pr[tWn,j + wC + TC

j ≤ dj] = Pr[tWn,j + wC ≤ dj − TC
j ]

=

⌊(dj−TC
j )/τ⌋∑

l=1

Pr[tWn,j = l] Pr[wC ≤ dj − TC
j − lτ ]. (4.6.9)

In the hard deadline case, in order to calculate the power consumption of MDs based

on CLE, time-related variables are discretized into multiples of τ with ã be the discretized

version of a. For dj and TC
j , their discretized versions are given as d̃j = ⌊dj/τ⌋ and

T̃C
j =

⌈
TC
j

τ

⌉
. Note that the discretization of dj takes the floor of dj/τ while that of TC

j takes

the ceiling of TC
j /τ in order to respect the task delay constraint. With this, the distribution

of the discretized version of tOFF
n,j is

Pr
[
t̃OFF
n,j = t

]
=

t−T̃C
j∑

l=1

Pr[tWn,j = l] Pr[wC = t− T̃C
j − l]. (4.6.10)

4.6.5 Computing EO
n,j and EB

n,j

With the discretization of time, the integrals in (4.4.8) and (4.4.9) become summations as

follows:

EO
n,j = (1− PB

n )λn,j p
L

d̃j∑
t=t̃CLE

j

(t− t̃CLE
j + 1)Pr

[
t̃OFF
n,j = t

]
, (4.6.11)

EB
n,j = (1− PB

n )λn,j p
L T L

j

∞∑
t=d̃j+1

Pr
[
t̃OFF
n,j = t

]
, (4.6.12)
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where t̃CLE
j is the discretized value of tCLE

j in number of time slots, i.e., t̃CLE
j =

⌈
tCLE
j /τ

⌉
.

In (4.6.11) and (4.6.12), Pr
[
t̃OFF
n,j = t

]
is given by (4.6.10).

4.7 Joint Task Class Partitioning and Network Resource

Allocation

In this section we consider the JSTCP problem, i.e., solving TCP in a system similar

to (Chen et al. (2023)). Instead of having a fixed number of channels from each BS and a

fixed amount of computing resources at the ES, the considered network can lease channels

from different BSs and computing resources from the ES, provided the total cost is within

a predefined budget Bmax. Note that this budget is normalized to the monetary cost for a

given time period, such as a day or a month. There are up to Mn channels at BS n, that can

be selected. The cost of renting a channel from BS n is αn. In order to use the computing

resources at the ES, CPU resources must also be leased at the ES. The cost (based on the

number of CPU cycles per second) for leasing on the CPU resource is denoted by β. The

fraction of available CPU speed for rental is y ∈ [0, 1], i.e., the CPU speed available is yfC.

Both xn’s and y are normalized to their respective monetary cost for the same time period

as Bmax. In this case, the following constraint should be satisfied:

∑N
n=1 αnxn + βyfC ≤ Bmax. (4.7.1)

In this system, x = [x1, x2, . . . , xN ] and y are decision variables, PB
n , wC, and tOFF

n,j all be-

come functions of x, y, and the task class partitioning, which complicates the calculations

and the problem becomes joint task class partitioning and resource allocations.
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Algorithms PDC-S and PDC-H require the computation of values λ̂ES
n,j , given by (4.5.1).

We make the simplifying assumption that the task distributions in each BS are all the same,

i.e., the probability that a task arriving at a BS belongs to a certain class task j ∈ J is the

same for all BSs. We also assume that this probability is known, e.g., by observing the past

history of offloading requests.

Under these assumptions, criterion (4.5.1) is simplified as follows. We first calculate

the values λ̂ES
n,j as in (4.5.1), and then define

λ̂ES
j = min

n
λ̂ES
n,j, (4.7.2)

for all j ∈ J , as the values used for ordering the task classes. In addition, the criteria used

in the HP algorithms will be changed from ΦE
n,j and ΦD

n,j to ΦE
j and ΦD

j , respectively. As a

result, in what follows we will be considering J instead of N × J , and Θ ⊆ J .

4.7.1 Soft Deadlines

For the soft task deadline case, we rewrite the mean power consumption of the MDs

in (4.4.1) as

EMD = EMD
Θ + EDL

J\Θ, (4.7.3)

where EMD
Θ is the MD power consumption for the tasks belonging to classes in Θ, i.e.,

EMD
Θ = EL+ET, and EDL

J\Θ is the local processing power consumption of the MDs for the
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tasks belonging to classes in J \Θ, given by

EDL
J\Θ =

N∑
n=1

∑
j∈J\Θ

λn,jT
L
j p

L. (4.7.4)

The general formulation of the joint class partitioning and resource allocation problem with

soft deadlines is the following:

min
Θ,x,y

EMD
Θ + EDL

J\Θ s.t. (4.7.5)

N∑
n=1

αnxn + βfCy ≤ Bmax (4.7.6)

Pr[tOFF
n,j ≤ dj] ≥ 1− εj,∀n, j (4.7.7)

xn ∈ {0, 1, . . . ,Mn},∀n = 1, 2, . . . , N (4.7.8)

0 ≤ y ≤ 1 (4.7.9)

Θ ⊆ J (4.7.10)

Note that x and y do not affect EDL
J\Θ. In general, problem (4.7.5)-(4.7.10) is computa-

tionally hard to solve exactly over all possible values of x, y,Θ. Instead, we would like to

obtain an approximate solution, based on limiting Θ to the J + 1 subsets for a single task

classes ordering.

Different y values may result in different orderings of task classes. Therefore, Al-

gorithm PDC-S (Algorithm 3) and Algorithm HP (Algorithm 5) need to be incorporated

into the approximation algorithm proposed in (Chen et al. (2023)) for computing a good

solution x, y. More specifically, the algorithm of (Chen et al. (2023)) discretizes vari-

able y ∈ [0, 1] by breaking [0, 1] into equal segments. For each y, we use Algorithm

PDC-S or Algorithm HP to obtain an ordered task class list. For each such Θ, line 7
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of Algorithm PDC-S (Algorithm 3) and line 18 of Algorithm HP (Algorithm 5) become

EMD = EDL
J\Θ+EMD∗

Θ , where EMD∗
Θ is the minimum mean power consumption of all MDs

for task classes in Θ. The algorithm of (Chen et al. (2023)) is used to find an x close to the

minimum power consumption EMD∗
Θ , i.e., for every y and every Θ of the ordering induced

by y, a good x is computed. The details are briefly summarized as follows: The original

problem (4.7.5)-(4.7.10) can be relaxed, by relaxing variables 0 ≤ xn ≤ Mn. With y

and Θ fixed, the original relaxation is transformed into a convex program, by noticing that

Pr[tOFF
n,j ≤ dj] is a monotonically decreasing function of the aggregate mean task arrival

rate λES. Therefore, binary search in the range [0, yfC/q̄], where q̄ is the average compu-

tation load of a task that can be easily computed, can be used to approximately calculate

the maximum possible value λ∗ that satisfies constraints (4.7.7) for all n, j. Using (4.6.4),

constraints (4.7.7) can be replaced by constraint

∑
(n,j)∈Θ

λn,j(1− PB
n ) ≤ λ∗. (4.7.11)

Next, we note that the blocking probability PB
n is monotonically decreasing in xn. Let

PB
n,min be the blocking probability when xn = Mn, then the relaxation constraints 0 ≤

xn ≤ Mn can be replaced by the equivalent constraints

PB
n,min ≤ PB

n ≤ 1, ∀n ∈ N . (4.7.12)

Finally, xn in constraint (4.7.6) can be replaced with any convex upper bound F (PB
n )

under the assumptions of Section 4.6, e.g., the one in (Berezner et al. (1998)): xn ≤
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(
∑

j:(n,j)∈Θ λn,j)t̄
W
n (1−PB

n )+1/PB
n , ∀n. After solving the new convex optimization prob-

lem on variables PB
n that approximates the original one when y and Θ are fixed, and obtain-

ing the PB
n ’s, we can compute the largest integral x∗

n which achieves a blocking probability

equal to or bigger than PB
n , for all n ∈ N . In the end, the algorithm outputs the combination

x∗, y∗,Θ∗ that achieves the minimum mean power consumption.

4.7.2 Hard Deadlines

The mean MD power consumption in the hard deadline case can be written as in (4.7.3),

and the general joint resource allocation and class partitioning problem with hard deadlines

is the following:

min
Θ,x,y

EMD = EMD
Θ + EDL

J\Θ s.t. (4.7.13)

N∑
n=1

αnxn + βfCy ≤ Bmax (4.7.14)

xn ∈ {0, 1, . . . ,Mn},∀n = 1, 2, . . . , N (4.7.15)

0 ≤ y ≤ 1 (4.7.16)

Θ ⊆ J (4.7.17)

where EDL
J\Θ is the same as in (4.7.4), and EMD

Θ = EL + ET + ECLE.

Algorithms 4 or 5, together with the solution method of (Chen et al. (2023)) are used in

this case in the similar way as in the soft deadline case, to produce good approximate so-

lutions. More specifically, in addition to discretizing y we also discretize λES ∈ [0, yfC/q̄]

by breaking interval [0, yfC/q̄] into Λ equal segments. For each fixed y, λES and Θ, prob-

ability Pr
[
t̃OFF
n,j = t

]
can be calculated directly for any t. By using (4.7.12) and F (PB

n ),
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the resulting convex program can be solved efficiently. Hence, we can obtain the optimal

blocking probabilities PB∗
n and compute the largest integral x∗

n which achieves blocking

probabilities no smaller than PB∗
n , for all n ∈ N , based on the fact that the PB

n ’s are de-

creasing functions of the xn’s. After collecting the solutions for all subproblems, we output

the minimum average power consumption with x∗, y∗,Θ∗.

4.8 Simulation Results

In this section, we present simulation results that demonstrate the performance of our al-

gorithms. Although our algorithms can be applied to any set of Markovian channel mod-

els, for our results we use a two-state Gilbert-Elliot channel model (Gilbert (1960)), i.e.,

the channel states change by following a Markov chain with two states, “Good” (G) and

“Bad” (B). This model is commonly used to characterize the effects of burst noise in wire-

less channels, where the channel can abruptly transition between good and bad conditions

(Blazek and Mecklenbräuker (2018)). Since the channel can make these abrupt transitions

in quality, computation offloading decisions may be more difficult compared to cases where

the channel states are more consistent as the channel offloading progresses. Let Bg and Bb

be the data transmission rates when the channel is in the G and B states, respectively. It is

assumed that all channels have the same Bg and Bb values but differ in their state transition

probabilities, which result in different propagation models. The transition probabilities for

propagation model k in BS n are denoted as PGG
n,k , P

GB
n,k , P

BG
n,k , and PBB

n,k . In each time slot,

the channel state Markov chain transitions in accordance with these probabilities. Denote

πG
n,k and πB

n,k, respectively, as the stationary probabilities of being in the G and B states for

a channel following propagation model k in BS n. The average wireless transmission rate
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of jth class tasks in BS n as

B̄n,j =
Kn∑
k=1

PG
n,j,k(π

G
n,kBg + πB

n,kBb). (4.8.1)

Given the channel state transition probabilities, the distribution of wireless transmission

time tWn,j,k for uploading a class j task in BS n through a channel with propagation model k

can be calculated from (Hekmati et al. (2020)).

We consider a network with 3 BSs. Within each BS, there are two (Markovian) channel

propagation models with transition probabilities PGG
n,1 = 0.9, PGG

n,2 = 0.6, PBB
n,1 = 0.1, and

PBB
n,2 = 0.4 for n = 1, 2, 3. We consider that for given n and k, PG

n,j,k values are the same for

all j ∈ J . That is, the probability of accessing the channels with a given propagation model

in a given BS does not depend on the task class. Therefore, PG
n,j,k can be reduced to PG

n,k by

dropping the subscript j, and their values are given as PG
1,1 = 0.8, PG

1,2 = 0.2, PG
2,1 = 0.5,

PG
2,2 = 0.5, PG

3,1 = 0.2, and PG
3,2 = 0.8. Other default parameter values are summarized

in Table 4.1. These parameter values are similar to those used in (Yue et al. (2022); Pham

et al. (2021); Li et al. (2022c); Alameddine et al. (2019)) and varied during the simulation.

We intentionally use a wide range of parameter values based on the referenced ranges so

that we can make conclusions that apply in general settings. In addition, we chose different

sets of parameters for the task classes in order to examine the performance of the proposed

solutions.

4.8.1 Task class ordering criteria

Before looking at performance of the proposed class partitioning algorithms, we first ex-

amine the performance of the different class ordering criteria used in these algorithms. For
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Table 4.1: Default Parameters

Parameter Value
τ 10 ms
pL 0.5 W
pT 0.1 W
λn,j 0.4 tasks/s
αn 1 /channel
β 2 /GHz
fL 200M cycles/s
ε 3 %
ξ 40 %

Bg,Bb 3M, 0.5M bits per time slot

Table 4.2: Task class parameters, set 1

sj (M bits) 4 8 12 16 24 28 32 46 50 54
qj (M CPU cycles) 54 50 46 32 28 24 16 12 8 4

dj (ms) 300 250 250 160 200 160 250 300 500 500

both PDC-S and PDC-H, the ordering of task classes are based on λ̂ES
n,j’s, which are cal-

culated based on the delay constraints. For HP, the ordering is based on both MD power

consumption (ΦE
n,j) and task delay constraints (ΦD

n,j).

We first consider preallcoated network resources with xn = 15 in all the BSs and the ES

capacity yfC = 25G CPU cycles/s. There are 10 task classes and their parameter values are

given in Table 4.2. In order to reflect the heterogenous nature of the classes, we consider 3

categories of task classes. The first 4 classes have relatively small input data sizes and large

computational loads, the next 3 classes have moderate input data sizes and computational

loads, and the last 3 classes have relatively large input data sizes and small computational

loads. For each of the class ordering methods, after the task classes have been ordered, the

set Θ includes the first θ classes in the class list, and the average MD power consumption

based on this partitioning is collected and shown in Figure 4.2.
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Table 4.3: Task class parameters, set 2

10 classes
sj (M bits) 2 3 6 9 30 32 35 70 75 80

qj (M CPU cycles) 40 42 45 47 21 23 25 2 4 6
dj (ms) 200 230 250 250 200 230 250 500 500 550

Table 4.4: Task class parameters, set 3

20 classes
sj (M bits) 1 2 3 5 6 8 10 31 33 35

qj (M CPU cycles) 79 72 69 67 65 64 62 39 38 38
dj (ms) 400 400 400 400 350 350 350 250 250 250

sj (M bits) 35 37 39 40 61 63 65 65 76 78
qj (M CPU cycles) 36 35 34 33 10 8 6 5 3 1

dj (ms) 250 280 280 280 300 300 500 500 600 600

Next, we consider that the available amount of network resources is optimized based

on task class partitioning, class completion deadlines, and resource cost budget. That is,

for each of the class ordering methods, after the classes have been ordered and the first θ

classes are included into the set Θ, the average MD power consumption is minimized by

optimizing xn’s and y subject to a cost budget. We consider two sets of task classes with

the parameter values given in Tables 4.3 and 4.4, respectively. For the case with 10 task

classes given in Tables 4.3, the total number of wireless channels in each BS is Mn = 20,

the total ES capacity is fC = 20 G CPU cycles/s, and the resource cost budget is 100. For

the case with 20 task classes given in Tables 4.4, the total number of wireless channels in

each BS is Mn = 25, the total ES capacity is fC = 40 G CPU cycles/s, and the resource

cost budget is 220. These parameter settings are similar to those in (Pham et al. (2021);

Liu et al. (2020); Šlapak et al. (2021)). The mean MD power consumption is shown in

Figure 4.3 for different θ values.

Both figures show that when θ is relatively small, increasing θ helps reduce the mean
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θ

Figure 4.2: Average power consumption versus θ (BSTCP)

MD power consumption; furthermore, the power consumption decreases much faster using

the hierarchical ordering than the delay-based ordering. However, as θ keeps increasing

and beyond a certain value, the mean MD power consumption using both ordering crite-

ria starts increasing, and the hierarchical ordering may result in much higher MD power

consumption than the delay-based criterion. The figures demonstrate that for both class or-

dering criteria, allowing too many task classes to offload can increase the mean MD power

consumption. This demonstrates the importance of task class partitioning. For example,

Figure 4.2 shows that, for the delay-based class ordering, when θ is 28 or larger, all tasks

are processed locally; and for the hierarchical class ordering, when θ is 19 or larger, all

tasks are processed locally. Meanwhile, the figures also show that for each class ordering

criterion, there is an optimum value of θ that minimizes the mean MD power consumption;

and the minimum achievable MD power consumption using the hierarchical ordering is
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Figure 4.3: Average power consumption versus θ (JSTCP)

much less than that using the delay-based ordering.

4.8.2 BSTCP

In this subsection, we examine BSTCP, i.e., the proposed task class partitioning algorithms

with preallocated network resources. There are 10 task classes with their parameter values

given in Table 4.2. Figure 4.4 shows the average MD power consumption versus xn (same

for all BSs) when yfC = 25 G CPU cycles/s. For comparison, we include the case of no

class partitioning, i.e., all tasks can be offloaded, provided a channel is available upon the

task arrival and the delay constraint can be satisfied (for SD only) (Chen et al. (2023)),

which is an example of the state of the art that considers the computation offloading prob-

lem without class partitioning but with both the same hard and soft deadline definitions.

Without class partitioning, the average MD power consumption is a constant for the SD

case, since all tasks are executed locally based on the simulated parameter setting. For the

HD case and without class partitioning, when xn increases, the average power consumption
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Figure 4.4: Average power consumption versus xn

decreases first and then increases and finally becomes constant as xn is sufficiently large.

By partitioning the task classes, both PDC and HP help significantly reduce the average

MD power consumption for both SD and HD cases. For all the offloading solutions, pro-

vided offloading is possible, the mean MD power consumption decreases with the number

of channels and then increases and finally keeps constant. This is because at first, increas-

ing number of channels helps more tasks to offload, which reduces the MD power con-

sumption; however too many offloaded tasks increases the queueing delay at the ES server,

which increases the MD power consumption due to CLE (for HD) or results in more local

executions (for SD). However, since the task arrival rates are fixed in the simulation, the

maximum amount of traffic load at the ES stops increasing when xn is sufficiently large,

and therefore, the MD power consumption stops increasing with xn.

Figure 4.5 shows the average MD power consumption versus y, where xn = 25 for

all n. Both PDC and HP help decrease the MD power consumption, and HP achieves
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Figure 4.5: Average power consumption versus y

lower power consumption than PDC. When y is relatively small, the average MD power

consumption using both PDC and HP decreases with y; and y is sufficiently large, the

average MD power consumption becomes constant for both PDC and HP. This is because

as y is sufficiently large, the queueing delay at the ES becomes almost zero, and further

increasing y does not change the offloading performance. However, the y values at which

the power consumption stops decreasing for PDC is much smaller than that for HP. This

is an indication that HP allows more tasks to be offloaded, and therefore, achieves lower

mean MD power consumption than PDC.

Figures 4.4 and 4.5 together indicate that for a given y value, there is an optimum

number of channels to minimize the MD power consumption; and for given xn, there is

a minimum value of y that achieves the minimum MD power consumption. Next, we
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examine the performance of joint task class partitioning and network resource allocations.

4.8.3 JSTCP

Table 4.5: Task class parameters, set 4

sj (M bits) 3 8 10 16 46 51 59 82 90 99
qj (M CPU cycles) 86 83 85 92 41 50 56 18 2 11

dj (ms) 440 500 520 580 320 380 430 520 700 780

Table 4.6: Task class parameters, set 5

10 classes
sj (M bits) 2 4 6 7 8 10 32 35 39 75

qj (M CPU cycles) 78 74 72 68 65 60 39 35 31 2
dj (ms) 60 80 100 60 120 120 500 500 500 1000

Table 4.7: Task class parameters, set 6

15 classes
sj (M bits) 2 3 6 8 10 31 33 35

qj (M CPU cycles) 72 69 65 64 62 39 38 38
dj (ms) 60 80 40 120 120 200 280 280

sj (M bits) 37 40 62 63 65 76 77
qj (M CPU cycles) 35 33 10 10 8 2 1

dj (ms) 280 280 400 400 1000 1000 1000

We consider two sets of task classes with the parameter values given in Tables 4.3

and 4.4, respectively. Default parameters used in this subsection are as follows. For the

case with 10 task classes given in Tables 4.3, the total number of wireless channels in each

BS is Mn = 20, the total ES capacity is fC = 20 G CPU cycles/s, and the resource cost

budget is 100. For the case with 20 task classes given in Tables 4.4, the total number of
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Table 4.8: Task class parameters, set 7

20 classes
sj (M bits) 2 4 6 30 31 32 33 33 34 35

qj (M CPU cycles) 80 70 60 40 39 38 38 37 36 35
dj (ms) 60 60 80 250 500 500 500 500 500 500

sj (M bits) 35 36 37 38 38 39 40 60 70 80
qj (M CPU cycles) 35 34 33 33 32 31 30 8 5 2

dj (ms) 500 500 500 250 500 500 500 500 1000 1200
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Figure 4.6: Average power consumption versus cost budget (sets 2 and 3)

wireless channels in each BS is Mn = 25, the total ES capacity is fC = 40 G CPU cycles/s,

and the resource cost budget is 220.

Figure 4.6 shows the average MD power consumption versus Bmax, which shows that

the proposed joint class partitioning and resource allocation solutions can greatly reduce

the average MD power consumption, compared to the no class partitioning achieved in

(Chen et al. (2023)). When the cost budget is relatively small, the power reduction is small

due to the limited amount of resources that limits the number of offloaded tasks. Note that
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Figure 4.7: Average power consumption versus ES capacity (sets 2 and 3)

all the tasks are executed locally for the SD case when there is no class partitioning. For all

the other offloading cases, the cost budget increases, the average MD power consumption

reduces, while using HP results in much lower average MD power consumption. When

the cost budget is sufficiently high that results in negligible channel blocking probability

and ES queueing delay, further increasing the cost budget does not help reduce the power

consumption.

Figure 4.7 shows the average MD power consumption versus ES capacity, fC. It is

seen that when the ES capacity is relatively low, the difference of average MD power con-

sumption between partitioning and no partitioning (Chen et al. (2023)) and between PDC

and HP is small. The small amount of computing resource limits the number of offloaded

tasks (without class partitioning) or task classes (with class partitioning), and as a result,

most tasks are executed locally. As the ES capacity increases, the joint class partitioning

and resource allocation solutions result in much lower average MD power consumption
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Figure 4.8: Average power consumption versus cost budget (set 4)

than the solutions without class partitioning. When the ES capacity is larger than a certain

value, further increasing it will not reduce the MD power consumption since the offloading

performance is limited by other factors such as cost budget. By comparing PDC and HP,

it is seen that HP can take better advantage of the ES capacity to reduce the MD power

consumption.

Next, we use a different set of the task class parameters as given in Table 4.5. We also

add another set of comparisons with the optimum resource allocation obtained by exhaus-

tive search for the no class partitioning case (Chen et al. (2023)). In this no partitioning-

OPT case, the optimum resource allocation is obtained by exhaustive search without class

partitioning. Figures 4.8 and 4.9 show the average MD power consumption. In Fig-

ure 4.8, the ES capacity is fC = 30 G CPU cycles/s; and in Figure 4.9, the cost budget

is Bmax = 100. In both figures, the number of available wireless channels in each BS
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Figure 4.9: Average power consumption versus ES capacity (set 4)

is Mn = 20. Different from the results shown in Figures 4.6 and 4.7, the new task class

parameters allow some tasks to be offloaded even for the SD case without class partition-

ing. However, the observations are consistent with before in terms of the effect of using

the proposed joint class partitioning and resource allocation solutions on the average MD

power consumption. In addition, our proposed algorithms can achieve significantly lower

power consumption for the mobile devices than the optimal power consumption without

class partitioning. This further demonstrates the importance of task class partitioning even

when it is only static, and verifies the good performance of our proposed algorithms.

Finally, we consider the effect of parameter ξ in Algorithm 5. We consider three sets

of task class parameters as given in Tables 4.6, 4.7, and 4.8. Other parameters used in

the simulation include xn = 20 for all BSs and ES capacity yfC = 40 G CPU cycles per

second. The results are shown in Figure 4.10. For each set of the task classes, the average
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ξ

Figure 4.10: Average power consumption versus ξ in HP

MD power consumption is higher when ξ is 0 or 1. In another word, in order to reduce the

average MD power consumption, the classes should not be ordered by ΦE
n,j only (ξ = 0)

or ΦD
n,j only (ξ = 1). Although finding the optimum value of ξ that minimizes the average

MD power consumption is not straightforward, we did notice that for each set of task class

parameters, there is a relatively large range of ξ values during which the average MD power

consumption is the minimum.

4.9 Summary

This chapter proposed using class partitioning to distinguish user applications when mak-

ing MCO offloading decisions. The proposed static class partitioning solutions help to

greatly reduce the MD power consumption while satisfying the application completion
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time requirements. In the next chapter, we consider supporting digital twins as a special

application in edge computing network. Unlike the scenarios in Chapters 3 and 4, all end

devices periodically upload their feature-related data to a shared edge server for process-

ing. We study the feature quality at the DTs by taking into consideration the shared data

transmission channels and edge server computing resources.
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Chapter 5

Digital Twin Model Selection for Feature

Accuracy

5.1 Introduction

In this chapter, we consider the use of digital twins (DTs) in edge computing networks. The

DT of a physical system (PS) is used to provide features on behalf of the PS, that can be

accessed by other objects. A given feature is created using a data processing model that uses

periodic updating from the PS to the DT as input. DT model selection accuracy problem

is considered, where multiple PSs communicate with their DTs at an edge server (ES) that

is located close to the PS’s serving base station (BS). Each DT communicates with its

associated PS, so that updates in the PS state can be incorporated into the features provided

by the DT. We assume that this communication happens periodically and is referred to

as synchronization. When a synchronization update occurs, the updating process involves

processing at the ES so that features can be updated and made available to the requesting

applications. The amount of processing needed, and the amount of data transferred when
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synchronization occurs is a function of the level of accuracy associated with the model and

the feature that is being provided. Since multiple DTs may be co-located at the same ES,

the synchronization update processing must share the ES execution capacity, and this can

limit the achievable accuracy of the provided features.

The objective of this chapter is to provide the best level of accuracy for a given set of

feature requests by selecting an appropriate set of DT models. This is referred to as the digi-

tal twin model selection problem and is done using a max-min criterion, i.e., the objective is

to maximize the minimum provided feature accuracy among the requested features, subject

to the synchronization and ES execution constraints. We first formulate the problem as an

integer program, which is reduced to an NP-complete feasibility problem. We then decom-

pose it into multiple subproblems and show that each subproblem is a modified Knapsack

problem. A polynomial-time approximation algorithm is proposed using a dynamic pro-

gramming fully polynomial time approximation scheme (FPTAS) to solve it efficiently, by

violating its constraints by a known factor. A generalization of the model selection problem

is then given and an approximation algorithm using relaxation and dependent rounding is

proposed to solve the problem efficiently with guaranteed small constraint violations. A

variety of simulation results are presented that demonstrate the excellent performance of

the proposed algorithms. The main contributions of this chapter are summarized below.

• A digital twin model selection problem is introduced. The objective is to make model

selections that maximize the minimum provided accuracy among the requested fea-

tures, subject to the PS/DT synchronization uploading and execution requirements.

The problem is shown to be NP-complete.

• The model selection problem is decomposed into multiple subproblems, each con-

sisting of a modified knapsack problem. A polynomial-time approximation algorithm
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is proposed using dynamic programming (FPTAS) to solve it efficiently by violating

its constraints by at most a given factor.

• A generalization of the model selection problem is given and an approximation al-

gorithm is proposed using relaxation and dependent rounding to solve it efficiently

with guaranteed small constraint violations.

• A variety of simulation results are presented that demonstrate the excellent perfor-

mance of the proposed algorithms. It is verified that our proposed FPTAS algorithm

is highly efficient when the system size is large. The approximate solution can be

obtained efficiently by violating its constraints by no more than a given factor. We

found that the proposed solution to the generalization achieves close-to-optimum

feature accuracy and its constraint violation can be reduced by running additional

rounds of the dependent rounding.

The remainder of the chapter is organized as follows. In Section 5.2, the prior work

most related to this chapter is reviewed. The system model and problem formulation is

then described in Section 5.3. Following this in Section 5.4, the polynomial-time approx-

imation algorithm using dynamic programming (FPTAS) is proposed. In Section 5.5, a

generalization of the model selection problem is given and an approximation algorithm

using relaxation and dependent rounding is proposed. In Section 5.6 simulation results

that demonstrate the proposed solutions are given. Finally, we present a summary of this

chapter in Section 5.7.

103



Ph.D. Thesis – H. Chen McMaster University – ECE

5.2 Related Work

An increasing amount of work has considered the feature similarity/accuracy provided by

a DT as an indicator of DT performance (Barricelli et al. (2019)). For example, the work

in (Yiping et al. (2021)) proposes a method for DT-driven defect class recognition using a

two-level deep learning architecture to detect and recognize novel classes. This includes

a lifelong learning strategy to upgrade the recognition model. The proposed method has

been shown to have a higher recognition accuracy for new defect classes compared to other

pre-trained DT models. In order to realize DT-driven defect recognition, i.e., real-time de-

fect recognition exploiting the real-time data collected by DT, the recognition model has

to be updated (i.e., synchronized) in real-time. It can be seen from this work that different

DT models created by different twinning methods can provide different accuracy levels

for defect recognition. Reference (Lu et al. (2020)) gives an exploratory analysis of the

geometric accuracy of digital twins generated for existing infrastructure using point clouds

in the system operation and maintenance stage, especially for structural health monitor-

ing purposes. A level of geometric accuracy (LOGA) is introduced as a measure of the

twinning quality of the resulting digital twins. This work provides prospective twinning

methods and deviation analysis for DT-driven structural health monitoring and indicates

that the twinning method and LOGA strongly depend on the application and what kind

of metadata is required. The work discussed above motivates the feature model selection

problem considered in this chapter.

The work in (Paldino et al. (2022)) investigates a digital twin approach for improv-

ing estimation accuracy in dynamic thermal rating of transmission lines. Compared to

existing physics-based standards, the estimation accuracy can be improved by adopting a
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data-driven digital twin using machine learning for the physical sensor data and the con-

ductor temperature. The DT is trained using a machine learning model on the measured

data. After the training phase, the DT then acts as a complete virtual equivalent. The work

in (Paldino et al. (2022)) also suggests another advantage of the DT, i.e., dimensionality

reduction. The proposed approach considers which sensor measurements have a significant

role through feature selection (Guyon and Elisseeff (2003)), which provides the system op-

erator with meaningful information in terms of sensor importance. This is shown to reduce

the amount of data collected without negatively impacting the model performance. This

work also provides motivation for digital twin model selection based on feature accuracy

that is considered in this chapter.

The work in (Dai and Zhang (2022)) integrates digital twins with vehicular edge com-

puting (VEC) networks to implement adaptive network management and scheduling. It

further proposes a DT empowered VEC offloading problem to minimize the total offload-

ing latency, subject to deadline requirements and ES computation constraints. This is used

to make offloading decisions and computational resource assignments. Reference (Lu et al.

(2021)) proposes a wireless digital twin edge network framework and formulates the adap-

tive edge association problem considering the placement and migration of DTs. The work

in (Zhou et al. (2022)) proposes a secure and latency-aware digital twin assisted resource

scheduling algorithm for a 5G edge computing-empowered distribution grid. It develops

a federated learning-based DT construction framework and formulates the DT-assisted re-

source scheduling problem to jointly optimize access scheduling, power control, and com-

putational resource allocation. In the above work, the DTs of network elements are used for

network management and resource allocations. Although the quality of the DTs directly

affects the service quality to network users, the amount of network resources required to

105



Ph.D. Thesis – H. Chen McMaster University – ECE

PS 3

PS 1

Models for different

features of PSs

Base station

Edge server

DT 1
DT 2

DT 3

PS 2

Figure 5.1: System Model

maintain the required quality of DTs has not been well studied. Unlike this work, in our

work we study the best DT feature accuracy obtained using model selection, subject to

resource constraints.

5.3 System Model and Problem Formulation

This chapter considers a wireless edge network where an ES hosts the DTs of multiple

PSs, as shown in Figure 5.1. As is typical for DTs, each PS collects its own status data and

periodically uploads the data to the DT, which then processes the data so that the different

features implemented at the DT are synchronized with the PS state.

Let N be the total number of the PSs in the system and K be the total number of the

features. Define βi,k ∈ {0, 1} as a binary variable representing the demand of PS i for

feature k: if βi,k = 1, PS i requires feature k, otherwise βi,k = 0. Let Ti,k be the data

refreshing period for feature k of PS i. There are Mk models that can be used at the DT to

obtain the state of feature k, each requiring different amounts of input data from the PS and

computation load at the ES, and resulting in different accuracy to reflect the feature status
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of the PS. Let I,K,Mk be the sets of PSs, features, and models for feature k, respectively.

Let Φi,k,m be the achieved accuracy for feature k of DT i when it is realized using model

m, si,k,m the corresponding amount of input data for the model, and Ti,k the period that PS

i uploads its feature-k related data to the ES. Let xi,k,m ∈ {0, 1} be the decision variable

indicating whether the DT of PS i chooses to use model m to realize feature k. Note that

xi,k,m = 0 if βi,k = 0. We assume that a DT can choose one and only one model to realize

a given feature, i.e.,
Mk∑
m=1

xi,k,m = 1, ∀i, k : βi,k = 1. (5.3.1)

When feature k is implemented by the i-th DT (i.e., βi,k = 1), the achieved accuracy for

this feature is

Ψi,k =

Mk∑
m=1

xi,k,mΦi,k,m. (5.3.2)

Our objective is the maximization of the minimum accuracy for all features of all DTs, i.e.,

maxx mini,k:βi,k=1Ψi,k, while respecting computational and data transmission constraints,

as well as the periodicity of DT updates.

More specifically, when the i-th PS uploads data to the ES, the data transmission rate Ri

should be at least the amount required for the timely transmission of the input data needed

by all the feature models, i.e.,

Ri ≥
K∑
k=1

Mk∑
m=1

si,k,m
Ti,k

xi,k,m. (5.3.3)

Let F be the computation capacity of the ES in number of CPU cycles per second and

fi,k,m denote the number of CPU cycles needed by the i-th DT in order to process feature
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k using model m. The following capacity constraint must hold:

N∑
i=1

K∑
k=1

Mk∑
m=1

fi,k,m
Ti,k

xi,k,m ≤ F. (5.3.4)

As a result of the discussion above, we obtain the following integer programming (IP)

formulation of the problem where xβ = [xi,k,m, ∀i, k,m and βi,k = 1]:

max
xβ

min
i,k:βi,k=1

Ψi,k s.t. (IP)

Mk∑
m=1

xi,k,m = 1, ∀i, k : βi,k = 1 (5.3.5)

K∑
k=1

Mk∑
m=1

si,k,m
Ti,k

xi,k,m ≤ Ri, ∀i (5.3.6)

N∑
i=1

K∑
k=1

Mk∑
m=1

fi,k,m
Ti,k

xi,k,m ≤ F (5.3.7)

xi,k,m ∈ {0, 1}, ∀i, k,m (5.3.8)

108



Ph.D. Thesis – H. Chen McMaster University – ECE

Equivalently, the problem can be formulated as follows:

max
xβ ,τ

τ s.t. (IP’)

Ψi,k ≥ τ, ∀i, k : βi,k = 1

Mk∑
m=1

xi,k,m = 1, ∀i, k : βi,k = 1

K∑
k=1

Mk∑
m=1

si,k,m
Ti,k

xi,k,m ≤ Ri, ∀i

N∑
i=1

K∑
k=1

Mk∑
m=1

fi,k,m
Ti,k

xi,k,m ≤ F

xi,k,m ∈ {0, 1}, ∀i, k,m

τ ≥ 0.

We observe that (5.3.2) implies that given i and k, the optimal Ψi,k can take one of the

Φi,k,m values, where m = 1, 2, . . . ,Mk. Therefore, the optimal τ can take one of at most

N
∑

k Mk values. Hence, in what follows we will assume that we have already ‘guessed’

(i.e., we try all possible values of) τ̂ , which is the optimal τ . Given τ̂ , we set xi,k,m := 0 for

all i, k,m that correspond to Φi,k,m < τ̂ , and reduce problem (IP’) to the following simpler
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feasibility problem:

max
xβ,τ̂

0 s.t. (FIP)

Mk∑
m=1

xi,k,m = 1, ∀i, k : βi,k = 1 (5.3.9)

K∑
k=1

Mk∑
m=1

si,k,m
RiTi,k

xi,k,m ≤ 1, ∀i (5.3.10)

N∑
i=1

K∑
k=1

Mk∑
m=1

fi,k,m
FTi,k

xi,k,m ≤ 1 (5.3.11)

xi,k,m ∈ {0, 1}, ∀i, k,m (5.3.12)

where xβ,τ̂ = [xi,k,m, ∀i, k,m, βi,k = 1 and Φi,k,m ≥ τ̂ ].

Theorem 5. Deciding whether problem (FIP) is feasible is NP-complete.

Proof. It is straight-forward to see that (FIP) is in NP. To prove it is NP-complete, we

reduce the KNAPSACK problem to it. Recall that the input to KNAPSACK is a set of n items,

each item k with a value vk and a weight wk, a value V and a capacity W . KNAPSACK

outputs ‘yes’ iff there is a subset of items of total value at least V and total weight at most

W . Given an instance of KNAPSACK, we construct an instance of (FIP) as follows: We set

i = 1 (i.e., we consider a single DT) and each feature corresponds to an item (i.e., K = n).

Each feature has two models, say 1,2, where x1,k,1 = 1 corresponds to picking item k,

while x1,k,2 = 1 corresponds to not picking it. We set R1 := W,F :=
∑n

k=1 vk − V ,

and T1,k := 1, s1,k,1 := wk, s1,k,2 := 0, f1,k,1 := 0, f1,k,2 := vk ∀k. Then it is clear that

constraint (5.3.9) will either pick or not pick item k, constraint (5.3.10) requires that the

picked item have total weight no more than W , and constraint (5.3.11) requires that the

total value of the items not picked is at most
∑n

k=1 vk − V . Hence, (FIP) is feasible iff the
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KNAPSACK instance is a ‘yes’ one.

Since there are no prospects of solving (FIP) in polynomial time, we will propose an

approximation algorithm. Before presenting the proposed algorithm, we observe that (FIP)

can be transformed into the following optimization problem

min
xβ,τ̂

N∑
i=1

K∑
k=1

Mk∑
m=1

fi,k,m
FTi,k

xi,k,m s.t. (OIP)

Mk∑
m=1

xi,k,m = 1, ∀i, k : βi,k = 1 (5.3.13)

K∑
k=1

Mk∑
m=1

si,k,m
RiTi,k

xi,k,m ≤ 1, ∀i (5.3.14)

xi,k,m ∈ {0, 1}, ∀i, k,m (5.3.15)

and the feasibility of (FIP) is equivalent to achieving an objective value smaller than 1 in

(OIP). In turn, (OIP) can be decomposed into N subproblems, with the ith one given as

follows

min
xβ,τ̂,i

K∑
k=1

Mk∑
m=1

fi,k,m
FTi,k

xi,k,m s.t. (OIPi)

Mk∑
m=1

xi,k,m = 1, ∀k : βi,k = 1

K∑
k=1

Mk∑
m=1

si,k,m
RiTi,k

xi,k,m ≤ 1,

xi,k,m ∈ {0, 1}, ∀k,m,

where xβ,τ̂ ,i = [xi,k,m, ∀k,m, βi,k = 1 and Φi,k,m ≥ τ̂ ], and the feasibility of (FIP) is

equivalent to checking that
∑N

i=1 opt(OIPi) ≤ 1.
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To summarize, solving problem (IP) is reduced to the following steps:

1. Sort {Φi,k,m, ∀i, k,m} in decreasing order as O = {Φ1,Φ2,Φ3, . . .}.

2. Starting with Φ1, set τ̂ equal the current element of O.

3. Set xi,k,m = 0 if Φi,k,m < τ̂ or βi,k = 0.

4. Solve (OIPi) for all i.

5. If
∑N

i=1 opt(OIPi) ≤ 1 then return τ̂ , else (i.e., if one of the (OIPi)’s is infeasible, or∑N
i=1 opt(OIPi) > 1) let τ̂ equal the next element in O, or return Infeasible if the

latter does not exist.

The general structure of our method is given in Algorithm 6.

Algorithm 6 General solution method
Input: N,K,Mk,Φi,k,m, si,k,m, fi,k,m, Ti,k, F, Ri, βi,k

Output: model selection x and minimum feature accuracy τ̂ or Infeasible
1: Sort {Φi,k,m, ∀i, k,m} in decreasing order as O = {Φ1,Φ2,Φ3, . . .}
2: for τ̂ = Φ1,Φ2,Φ3, . . . do
3: for all i, k,m do
4: if Φi,k,m < τ̂ ∨ βi,k = 0 then
5: xi,k,m = 0
6: end if
7: end for
8: Solve (OIPi) for all i
9: if (OIPi) feasible ∀i ∧

∑N
i=1 opt(OIPi) ≤ 1 then

10: return solution x, τ̂
11: end if ▷ ∃i :(OIPi) infeas., or

∑N
i=1 opt(OIPi) > 1

12: end for
13: return Infeasible
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5.4 An FPTAS for the problem

Since solving problem (IP) or (IP’) is NP-complete (Theorem 5), we propose a polynomial-

time approximation algorithm, that will guarantee a solution τs of (IP’) with τs ≥ τopt,

where τopt is the optimal solution, but by violating constraint (5.3.7) by a factor of at most

(1 + ε).

We show that subproblem (OIPi) is a modified Knapsack problem, which can be ap-

proximately solved by a polynomial time algorithm using Dynamic Programming (DP).

We transform the subproblem (OIPi) into the following modified Knapsack problem:

TYPED KNAPSACK

Input: K types of items, with Mk items of type k = 1, 2, . . . , K, weight wk,m

and value vk,m for each item m of type k, number W .

Output: Pick exactly one item of each type, so that their total weight is at most

W and their total value is minimized.
Note that TYPED KNAPSACK differs from the typical Knapsack problem in its types re-

quirement and the minimization of its total value (as opposed to maximization). Let

Mmax = maxk Mk.

5.4.1 FPTAS for TYPED KNAPSACK

We give a solution for TYPED KNAPSACK, based on a recursive definition of the minimum

weight of items that can achieve a total value exactly equal to a given value V . We abuse

notation a little and denote by Mk the set of items of type k.

Let OPT (k, V ) be the minimum weight of items from types 1, . . . , k that yields value

exactly V , when we pick exactly one item of each type. Then OPT (k, V ) is defined by

recursion (5.4.1). In (5.4.1), cases 1 and 2 are the base cases when there is no item to
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pick. In case 3, if all items of type k have values greater than V , then OPT (k, V ) = ∞;

otherwise, in case 4, OPT (k, V ) picks the item of type k achieving the minimum total

weight. Note that if OPT (k, V ) = ∞, then it is infeasible to achieve value exactly V

using exactly one item from types 1, 2, . . . , k.

OPT (k, V )=



0 if k = 0, V = 0,

∞ if k = 0, V > 0,

∞ if k > 0, min
m∈Mk

vk,m > V,

min
m∈Mk:vk,m≤V

{wk,m+OPT (k−1, V −vk,m)} if k > 0, min
m∈Mk

vk,m ≤ V,

(5.4.1)

A Dynamic Programming (DP) algorithm that solves TYPED KNAPSACK is given in

Algorithm 7, where Vmax =
∑K

k=1maxm∈Mk
vk,m.

Algorithm 7 DP algorithm for TYPED KNAPSACK problem
Input: K,Mk, Vmax, wk,m, vk,m,W
Output: minimum total value V ∗ or Infeasible

1: Find OPT (k, V ) for 0 ≤ k ≤ K and 0 ≤ V ≤ Vmax using DP by following (5.4.1)
2: V ∗ = ∞
3: for V = 0 : Vmax do
4: if OPT (K,V ) ≤ W then
5: V ∗ = min{V ∗, V }
6: end if
7: end for
8: if V ∗ = ∞ then
9: return Infeasible

10: else
11: return V ∗

12: end if

Unfortunately, the DP algorithm that solves TYPED KNAPSACK exactly is pseudo-

polynomial, since it runs in time O(KMmaxVmax) and Vmax is pseudo-polynomial on the

size of the input. However, we can apply the well-known value-scaling of the classical
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Knapsack problem to derive a Fully Polynomial-Time Approximation Scheme (FPTAS)

(Garey and Johnson (1979)) that produces a solution which exceeds the optimal total value

by a factor of at most (1 + ε), for any constant ε > 0.

Algorithm 8 FPTAS for TYPED KNAPSACK problem
Input: K,Mk, wk,m, vk,m,W, ε

Output: minimum total value V̂ ∗ or Infeasible
1: v̂k,m = ⌈vk,m/θ⌉ for all k,m
2: V̂ ∗ = ∞
3: for k′ = 1 : K do
4: for m′ = 1 : Mk′ do
5: v̂max = v̂k′,m′

6: v̂k,m = ∞ for all k,m with v̂k,m > v̂max

7: Run Algorithm 7 using v̂k,m for all k,m, which returns V ∗

8: V̂ ∗ = min{V̂ ∗, V ∗}
9: end for

10: end for
11: if V̂ ∗ = ∞ then
12: return Infeasible
13: else
14: return V̂ ∗

15: end if

The FPTAS algorithm for solving the TYPED KNAPSACK problem is given in Algo-

rithm 8, where θ = εvmax/K is defined as the scaling factor and ε ∈ (0, 1] is the precision

parameter. In line 1, the approximation algorithm rounds all item values up into integers

lying in a finite range [0, ⌈K/ε⌉], then it runs the DP algorithm on the rounded instance,

and finally returns the optimal solution of the rounded instance, which is the near optimal

solution to the original instance. We assume that we have “guessed” the largest value vmax

used by the optimal solution. The “guessing” is performed by exhaustive enumeration of

all items m for all types k as the “maximum-valued” item (given in the double for-loop

in the algorithm), and running Algorithm 7 for each choice (line 7), excluding all items of
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value greater than the guessed maximum item value (line 6); then we keep the solution of

minimum total item value. This exhaustive enumeration increases the running time of our

algorithm by a factor of O(
∑

k Mk) = O(KMmax). The obtained optimal solution to the

rounded instance is the near optimal solution to the original instance.

Theorem 6. For any given constant ε > 0, the algorithm returns a feasible solution (when

one exists) of total value at most (1 + ε)OPT , where OPT is the optimal solution value,

and runs in polynomial time O(K4M2
max/ε).

Proof. Let O be an optimal solution to TYPED KNAPSACK when we use the original val-

ues, and vmax the maximum item value used in O (which we have guessed). Let Ô be the

optimal solution obtained by the DP algorithm when run on the rounded-up values instance.

Let mk, m̂k be the items of type k picked by O, Ô, respectively. Let |O|, |Ô| be the values

achieved by these solutions when the original item values are used, i.e., |O| =
∑

k vmk
and

|Ô| =
∑

k vm̂k
. Note that |O| ≥ vmax. Then we have:

|Ô| ≤ θ
∑
k

v̂m̂k
(5.4.2)

≤ θ
∑
k

v̂mk
(5.4.3)

≤
∑
k

vmk
+Kθ (5.4.4)

≤ |O|+ εvmax ≤ (1 + ε)|O|, (5.4.5)

where (5.4.3) is due to the fact that Ô is an optimal solution for the rounded values. Al-

though vmax is unknown, the algorithm exhaustively tries all possibilities for vmax and re-

turns the solution that results in the smallest total value. Therefore, the returned solution

also satisfies (5.4.5).
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For the running time of the algorithm, first note that all rounded values are integers

in the range [0, ⌈K/ε⌉]. Therefore 0 ≤ Vmax ≤ K2/ε, and the running time of the DP

algorithm for a single ‘guess’ of vmax is O(K3Mmax/ε). Adding over all possible choices

for the vmax item, we get a total running time of O(K4M2
max/ε), which is polynomial on

the size of the TYPED KNAPSACK input.

5.4.2 Mapping of subproblem (OIPi) to TYPED KNAPSACK

The mapping of subproblem (OIPi) for a given PS-DT pair i to TYPED KNAPSACK is

straight-forward: Each feature k defines a type, and the models in Mk are the items of

type k. Item m of type k has weight wk,m =
si,k,m
RiTi,k

and value vk,m =
fi,k,m
FTi,k

. Finally,

we set W = 1. After the mapping, we run the FPTAS algorithm on the resulting TYPED

KNAPSACK instance, and that provides us with an approximate solution of subproblem

(OIPi), according to Theorem 6. Algorithm 6 is modified, so that line 8 uses the approxi-

mation algorithm for (OIPi), and the condition
∑N

i=1 opt(OIPi) ≤ 1 in line 9 is modified to∑N
i=1 opt(OIPi) ≤ 1 + ε.

5.5 Generalization with model upper & lower bounds

In this section, we will give a generalization of the model selection problem for DTs for-

mulated in section 5.3 and propose an approximation algorithm to solve it efficiently with

guaranteed small violation of constraints.

We introduce limitation constraints on the utilization of the models for the demanded

features of DTs, i.e., integer lower and upper bounds Lmin
m , Lmax

m on the times a model m for
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feature k can be used by different DTs, i.e.,

Lmin
m ≤

N∑
i=1

xi,k,m ≤ Lmax
m . (5.5.1)

As special cases, when Lmin
m = 0, model m may not be selected by any features; and when

Lmax
m = ∞, model m may be selected by all features. These extra constraints capture model

accuracy requirements, such as “the high-accuracy model m ∈ Mk must be used by at least

two sensors (i.e., Lmin
m = 2)”, or “computationally-heavy model m ∈ Mk can be used by

at most one camera (i.e., Lmax
m = 1)”.

Introducing the new constraints to the original problem (IP) results in the following

more general one:

max
xβ

min
i,k:βi,k=1

Ψi,k s.t. (GIP)

Mk∑
m=1

xi,k,m = 1, ∀i, k : βi,k = 1 (5.5.2)

N∑
i=1

xi,k,m ≥ Lmin
m , ∀k,∀m ∈ Mk (5.5.3)

N∑
i=1

xi,k,m ≤ Lmax
m , ∀k,∀m ∈ Mk (5.5.4)

K∑
k=1

Mk∑
m=1

si,k,m
Ti,k

xi,k,m ≤ Ri, ∀i (5.5.5)

N∑
i=1

K∑
k=1

Mk∑
m=1

fi,k,m
Ti,k

xi,k,m ≤ F (5.5.6)

xi,k,m ∈ {0, 1}, ∀i, k,m (5.5.7)

Using the same procedure of problem transformation for (IP) in section 5.3, with given
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τ̂ , the problem can be transformed to the following feasibility problem:

max
xβ,τ̂

0 s.t. (GFIP)

Mk∑
m=1

xi,k,m = 1, ∀i, k : βi,k = 1 (5.5.8)

N∑
i=1

xi,k,m ≥ Lmin
m , ∀k,∀m ∈ Mk (5.5.9)

N∑
i=1

xi,k,m ≤ Lmax
m , ∀k, ∀m ∈ Mk (5.5.10)

K∑
k=1

Mk∑
m=1

si,k,m
RiTi,k

xi,k,m ≤ 1, ∀i (5.5.11)

N∑
i=1

K∑
k=1

Mk∑
m=1

fi,k,m
FTi,k

xi,k,m ≤ 1 (5.5.12)

xi,k,m ∈ {0, 1}, ∀i, k,m (5.5.13)

Note that the added constraints are hard, i.e., we cannot violate them. In addition, the

equivalence to TYPED KNAPSACK does not hold anymore, and, therefore, the approxima-

tion algorithm of section 5.4 does not work in this case. Hence, we will propose a different

approximation algorithm in order to solve (GFIP) approximately in polynomial time, but

with a worse approximation guarantee, which is not surprising since we are solving a more

constrained problem.

5.5.1 An O( lnN
ln lnN )-approximation Algorithm

In this subsection, we present a polynomial-time approximation algorithm, that will guar-

antee a solution τs with τs ≥ τopt, where τopt is the optimal solution, by respecting exactly

constraints (5.5.8) (5.5.9) (5.5.10), but by violating constraints (5.5.11), (5.5.12) by a factor
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of at most O( lnN
ln lnN

).

We note that by relaxing constraints (5.5.13) in (GFIP) to xi,k,m ≥ 0, ∀i, k,m, problem

(GFIP) becomes a linear programming (LP) problem. This LP-relaxed problem is referred

to as Relaxed-(GFIP). When lines 8-11 in Algorithm 6 are applied to Relaxed-(GFIP)

instead of (OIPi), the algorithm returns solution τf ≥ τopt, unless the relaxed problem is

infeasible (and therefore, the original problem is also infeasible).

Let xf be the optimal fractional solution of Relaxed-(GFIP) achieving τf , computed

in polynomial time by an LP solver. Our approximation algorithm will use the dependent

rounding of (Gandhi et al. (2006)) to round the fractional components of xf to values 0 or

1 with the required guarantees. The rounded solution cannot have a τ value smaller than

τf , since Algorithm 6 guarantees that xi,k,m = 0 when Φi,k,m < τf (lines 3-7), and the

rounding does not change this fact.

First, we give a high-level description of the dependent rounding procedure of (Gandhi

et al. (2006)). Assume we are given a bipartite graph (V1, V2, E) with bipartition (V1, V2)

and a value xi,j ∈ [0, 1] for each edge (i, j) ∈ E. Initialize yi,j = xi,j for each (i, j) ∈ E.

Values yi,j will be probabilistically modified in several (at most |E|) iterations such that

yi,j ∈ {0, 1} at the end, at which point we will set Xi,j := yi,j for all (i, j) ∈ E, where Xi,j

are the (randomly) rounded final values for edges (i, j) ∈ E.

The iterations that modify y proceed as follows: We call an edge (i, j) floating if its

value yi,j is not integral (i.e., yi,j ∈ (0, 1)). Let Ẽ ⊆ E be the current set of floating edges.

If Ẽ = ∅, the process terminates by setting Xi,j := yi,j for all (i, j) ∈ E. Otherwise, find a

simple cycle or maximal path S in the subgraph (V1, V2, Ẽ) in O(|V1|+ |V2|) time running

depth-first-search (DFS). Partition the edge-set of S into two alternating matchings A and
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B. We define

α := min{γ > 0 : (∃(i, j) ∈ A : yi,j + γ = 1) ∨ (∃(i, j) ∈ B : yi,j − γ = 0)} (5.5.14)

β := min{γ > 0 : (∃(i, j) ∈ A : yi,j − γ = 0) ∨ (∃(i, j) ∈ B : yi,j + γ = 1)}. (5.5.15)

Then we execute the following randomized step:

• With probability β/(α+β) set yi,j := yi,j+α ∀(i, j) ∈ A, yi,j := yi,j−α ∀(i, j) ∈ B,

and

• with probability α/(α+β) set yi,j := yi,j−β ∀(i, j) ∈ A, yi,j := yi,j+β ∀(i, j) ∈ B.

In either case, at least one edge (i, j) ∈ Ẽ will stop being floating, i.e., yi,j ∈ {0, 1}, and,

therefore, after at most |E| iterations or O(|E|(|V1|+ |V2|)) time, all values y will become

integral and the rounding process terminates. Algorithm 9 codifies the dependent rounding

procedure. Note that dependent rounding is a randomized algorithm, and the final rounded

solution X are random variables.

We apply this framework to the fractional solution of Relaxed-(GFIP), that can be

obtained in polynomial time. The fractional solution corresponds to a bipartite graph

G = (V1, V2, E), with V1 = {(i, k) : βi,k = 1}, V2 = {m ∈ Mk, ∀k}, and

E = {((i, k),m) : 0 < xi,k,m < 1}.

Property (P2) of Dependent Rounding in (Gandhi et al. (2006)) states the following:

Theorem 7 (Degree-preservation). For a vertex u ∈ V1 ∪ V2, let du =
∑

v:(u,v)∈E xu,v be

the fractional degree of u. Then, if Xu,v is the rounded value of xu,v, Xu,v ∈ {⌊dv⌋, ⌈dv⌉}.

Theorem 7 ensures that the rounded solution will satisfy constraints (5.5.8), since these

are constraints on the fractional degree di,k of the vertices (i, k) ∈ V1 and di,k = 1. Also,
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Algorithm 9 Dependent rounding

Input: Bipartite graph (V1, V2, E), xi,j ∈ [0, 1] for each edge (i, j) ∈ E
Output: Xi,j ∈ {0, 1} for each edge (i, j) ∈ E

1: yi,j = xi,j, ∀(i, j) ∈ E; Ẽ = E
2: for all (i, j) ∈ Ẽ do
3: if yi,j ∈ {0, 1} then
4: Ẽ := Ẽ \ {(i, j)}
5: end if
6: end for
7: while Ẽ ̸= ∅ do
8: Simple cycle or maximal path S = DFS(V1, V2, Ẽ); S = A ∪ B for alternating

matchings A,B
9: Obtain α and β from (5.5.14) and (5.5.15)

10: With probability β/(α + β), yi,j := yi,j + α, ∀(i, j) ∈ A, and yi,j := yi,j −
α, ∀(i, j) ∈ B

11: With probability α/(α + β), yi,j := yi,j − β, ∀(i, j) ∈ A, and yi,j := yi,j +
β, ∀(i, j) ∈ B

12: for all (i, j) ∈ Ẽ do
13: if yi,j ∈ {0, 1} then
14: Ẽ := Ẽ \ {(i, j)}
15: end if
16: end for
17: end while
18: Xi,j = yi,j, ∀(i, j) ∈ E
19: return Xi,j

it ensures the satisfaction of constraints (5.5.9) and (5.5.10), since these constraints imply

Lmin
m ≤ dm ≤ Lmax

m and Lmin
m , Lmax

m are integers.

It remains to study by how much constraints (5.5.11), (5.5.12) are violated. If

[xi,k,m,∀i, k,m] is the fractional solution of Relaxed-(GFIP), let

DLP :=
N∑
i=1

K∑
k=1

Mk∑
m=1

fi,k,m
FTi,k

xi,k,m,

RLP
i :=

K∑
k=1

Mk∑
m=1

si,k,m
RiTi,k

xi,k,m, ∀i.
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The application of part (i) of Theorem 3.1 of (Gandhi et al. (2006)) (proved by (Panconesi

and Srinivasan (1997))) on the (randomly) rounded values Xi,k,m implies the following

Chernoff-type bounds:

Theorem 8.

Pr

[
N∑
i=1

K∑
k=1

Mk∑
m=1

fi,k,m
FTi,k

Xi,k,m ≥ (1 + ε)

]
≤ eε

(1 + ε)1+ε
, (5.5.16)

Pr

[
∃i :

K∑
k=1

Mk∑
m=1

si,k,m
RiTi,k

Xi,k,m ≥ (1 + ε)

]
≤ Neε

(1 + ε)1+ε
. (5.5.17)

Proof. Note that 0 ≤ fi,k,m
FTi,k

,
si,k,m
RiTi,k

≤ 1, ∀i, k,m, since, otherwise, the optimal LP solution

sets xi,k,m = 0. Also, assuming the solution of (GFIP) does not result in infeasibility,

i.e., DLP ≤ 1 and RLP
i ≤ 1 ∀i for some τ̂ , the properties of dependent rounding imply

that E[
N∑
i=1

K∑
k=1

Mk∑
m=1

fi,k,m
FTi,k

Xi,k,m] = DLP ≤ 1 and E[
K∑
k=1

Mk∑
m=1

si,k,m
RiTi,k

Xi,k,m] = RLP
i ≤ 1, ∀i.

Hence, given that properties (P1), (P3) of (Gandhi et al. (2006)) (extended by Theorem 4.4

of (Saha and Srinivasan (2018))) of Dependent Rounding hold, the conditions of Theorem

3.1 of (Gandhi et al. (2006)) are satisfied, and we have the inequalities of the theorem

statement.

As in Theorem 3.2 of (Gandhi et al. (2006)), setting ε = O( lnN
ln lnN

) guarantees a vi-

olation of (5.5.11), (5.5.12) by at most a factor O( lnN
ln lnN

) with probability larger than a

constant. By repeating the experiment, i.e., dependent rounding, a constant number of

times, the probability of success can be made bigger than any constant, e.g., 0.75.

As a result, with high probability the available resources need to be augmented only

by small amounts in order to render our solutions feasible for the system. Also, note that

although the upper bound of O( lnN
ln lnN

) for resource augmentation is guaranteed with high
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probability, the randomized nature of our algorithm suggests that we can have better results

if we run it a few times and keep the best solution.

5.6 Simulation Results

In this section, we present simulation results to demonstrate the performance of the pro-

posed solutions for both the original problem and the extended problem. For comparison,

we also obtain the optimum solutions using exhaustive search. We consider all the PSs

are uniformly distributed in the circular coverage area of a BS, which has the maximum

coverage of 150 m. The ES is located at the BS and hosts a DT for each of the PSs. The

transmission rate between PS i and the BS is Ri = wlog2(1 +
PT
i gi
σ2 ), where w is the wire-

less channel bandwidth, PT
i and gi are the wireless transmission power and the link gain

from PS i to the BS, respectively, and σ2 denotes the noise power at the BS receiver input.

Distance-based path loss is used for the link gains and the path loss exponent is 3. Default

parameters used in the simulation are summarized in Table 5.1, where U [a, b] denotes the

uniform distribution between a and b. These parameter values are similar to those used in

(Lu et al. (2021); Dai and Zhang (2022); Zhou et al. (2022)), and varied during the simula-

tion. We intentionally use a wide range of parameter values based on the referenced ranges

so that we can make conclusions that apply in general settings.

5.6.1 FPTAS for the Original Problem

In the first set of simulation, there are 6 PSs, the number of features (K) for each PS is

varied during the simulation, and each feature has 6 models. The simulations are performed

on a server with Ubuntu 18.04.6 LTS, Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz
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Table 5.1: Default Parameters

Parameter Value
Ti,k U [1, 5] s
si,k,m U [30, 150] M bits
fi,k,m U [50, 500] M CPU cycles
Φi,k,m U [0.7, 1]
F 2 GHz
PT
i 0.1 W
w 10 MHz
σ2 -120 dBm

and 196 GB memory. Table 5.2 shows the running time of the proposed approximation

solution and the optimum solution. As K increases, the size of the problem increases, and

the running time of both solutions increases. For the optimum solution, the running time

increases exponentially and quickly becomes prohibitively long, e.g., more than 24 days

when K = 10. Although the running time of our proposed solution is sometimes longer

than the optimum solution (but still short) when K is small (e.g., K = 4), it increases

much slower and is significantly shorter than the running time of the optimum solution

when K = 10. This demonstrates that our proposed solution is highly efficient when the

system size is large.

Table 5.2: Comparison of running time

Number of features (K) 2 4 6 8 10
Proposed solution 0.05s 0.15s 2.18s 5.12s 13.34s
Optimum solution 0.06s 0.09s 32.5s 16236s 24 days

In the second set of simulation, we compare the minimum achieved accuracies using

the proposed FPTAS solution and the optimum, respectively. Due to the long running time

of the optimum solution, the comparison can only be performed for small size systems.

In the simulation, there are 3 PSs, each PS requires 5 features, and each feature can be
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Figure 5.2: Minimum achieved accuracy versus ES computation capacity (original case)

implemented by using one of the 4 models (with different accuracy). The simulation results

are averaged over 100 independent experiments, each of which is for one set of randomly

generated PS locations and feature and model parameters.

Figure 5.2 shows the minimum achieved accuracy of features versus the ES CPU ca-

pacity F . First of all, the minimum achieved feature accuracy increases with the ES CPU

capacity in general. The increase is more significant when F is relatively small and grad-

ually becomes saturated as the wireless transmission rates eventually become the perfor-

mance bottleneck. It is also seen that the minimum achieved accuracy using the proposed

approximate solution can be higher than the optimum one, and the approximate solution

achieves this at the price of violating constraint (5.3.7), i.e., ES CPU capacity constraint,

by a factor of at most (1 + ε). Besides, we can see that when the ES CPU capacity is

relatively small, the minimum achieved feature accuracy with ε = 10% is higher than that
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Figure 5.3: Minimum achieved accuracy versus wireless channel bandwidth (original
case)

with ε = 5%, since the approximate solution can achieve a better minimum accuracy by

violating the ES capacity constraint more. However, as the ES CPU capacity becomes large

enough, the minimum achieved accuracies using the proposed solution is the same as the

optimum solution when the proposed solution does not violate the constraints.

Figure 5.3 shows the minimum achieved accuracy of features versus the wireless chan-

nel bandwidth w. The observations are similar as in Figure 5.2. The minimum achieved

feature accuracy increases with the wireless channel bandwidth in general and gradually

becomes a constant as the bandwidth is sufficiently large and the ES computation capacity

eventually becomes the performance bottleneck. It can be seen that the minimum achieved

accuracy using the proposed approximate solutions is always higher than the optimum one.

It is because the ES computation capacity used in this simulation is relatively small, i.e.,
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Figure 5.4: Minimum achieved accuracy versus ES computation capacity (generalized
case)

1.2 G CPU cycles/s, the ES CPU capacity constraint is always violated by a factor of at

most (1 + ε) in the approximate solutions.

5.6.2 Approximate Solution for the Generalization

In this subsection, we consider there are 5 PSs in the coverage of the BS, each PS requires

5 features, and each feature can be implemented by using one of the 4 models (with dif-

ferent accuracy). The input data si,k,m’s are randomly generated from U [2, 200] M bits.

The needed CPU cycles fi,k,m’s are randomly generated from U [5, 500] M CPU cycles.

In this case, we assume the model with the highest accuracy of the first feature has to be

used at least once. The models with the lowest accuracy of the first and the third features
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Figure 5.5: Constraint violation versus ES computation capacity

have to be used at most 4 times. The link gains include both the path loss and small-

scale fading given as gi = 10−3ρi
2d−3

i , where di denotes the distance between PS i and

the BS and ρi represents the additional channel small-scale fading which is assumed to be

Rayleigh distributed (Ju and Zhang (2014); Chen et al. (2019a)). Thus, ρi2 is an exponen-

tially distributed random variable with unit mean. Note that a 30 dB average signal power

attenuation is assumed at a reference distance of 1 m. The simulation results are averaged

over 100 independent experiments, each of which is for one set of randomly generated PS

locations and feature and model parameters.

Figure 5.4 shows the minimum achieved accuracy of features versus the ES CPU ca-

pacity F , where the proposed approximate method is applied by running one round of

dependent rounding. The figure shows that the minimum achieved accuracy using the

proposed approximate solution is very much close to the optimum. The gap is slightly
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higher when the wireless channel bandwidth is smaller. Meanwhile, Figure 5.5 shows the

corresponding constraint violation resulted from dependent rounding in the proposed ap-

proximate solution. Both the wireless channel bandwidth constraints (i.e., (5.5.5)) and the

computation capacity constraint (i.e., (5.5.6)) are considered. For the computing constraint,

the violation is calculated as percentage changes to the right-hand value after running the

algorithm. For the bandwidth constraints, the percentage change to the right-hand value is

calculated for each of the N constraints and then the maximum is taken. The figure shows

that as F increases, the computation constraint violation decreases in general. When F is

sufficiently large, there is no violation in the computation constraint. Note that the results

of the dependent rounding are random, and therefore, the change of the constraint viola-

tion is not monotonic. The changes in bandwidth constraint violation are mainly due to
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Figure 5.7: Constraint violation versus wireless channel bandwidth

the random effect of the dependent rounding. Figure 5.5 shows for both the bandwidth and

computation constraints, running additional rounds of the dependent rounding helps reduce

the constraint violation. Running additional rounds of the dependent rounding also helps

bring the approximate solution closer to the optimum. However, the results after running

five rounds of dependent rounding are not shown in Figure 5.4 because the approximate

solution after running the dependent rounding for one round is already very close to the

optimum.

Figure 5.6 shows the minimum achieved accuracy of features versus the wireless chan-

nel bandwidth w, when one round of dependent rounding is run in the proposed approxi-

mate solution. It is seen that the minimum achieved feature accuracy using the proposed

approximate solution is very much close to the optimum, although the gap is slightly larger

when the computation capacity is smaller. Figure 5.7 shows the constraint violation as the
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wireless channel bandwidth changes. As the channel bandwidth increases, the bandwidth

constraint violation decreases in general. When w is sufficiently large, there is no violation

in the bandwidth constraint. Increasing the channel bandwidth, the computation constraint

violation decreases in general, which is significantly smaller compared to the bandwidth

constraint violation. However, increasing the number of rounds of running the dependent

rounding helps reduce the violation in both types of constraints.

5.7 Summary

We have studied the model selection problem for optimizing feature accuracy of DTs in

an edge computing network. A different feature model requires a different amount of data

from the PS to the ES and a different amount of computation load at the ES. The objective

of the feature model selection is to optimize the feature accuracy, subject to the periodic

updates of the features and the network resource availability. Together with the previous

two chapters, we have seen that joint communication and computation resource manage-

ment results in some complicated optimization problems that require creative methods in

order to solve them efficiently.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis investigated resource management for mobile computation offloading (MCO)

and digital twins (DTs) in wireless edge networks under limited communication and com-

putation resource availability. The work consisted of three parts.

In the first part of the thesis, we studied joint wireless network and task service allo-

cation for mobile computation offloading. The objective is to minimize the average power

consumption of mobile devices (MDs) while satisfying the delay constraints of tasks and

the cost budget for network resources. The formulations presented included both soft and

hard task completion time deadlines. The designs were formulated as mixed integer non-

linear programs (MINLPs) and approximate solutions were obtained by decomposing the

formulations into convex subproblems. Simulation results were presented that characterize

the performance of the system and show various tradeoffs between task deadline violation,

average mobile device power consumption and the cost budget. Results were presented that
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demonstrate the quality of the proposed solutions, which can achieve close-to-optimum per-

formance over a wide range of system parameters. The optimum allocation was obtained by

doing exhaustive search-based discrete event simulations for assigning the wireless chan-

nels from each base station (BS) and edge server (ES) capacity.

In the second part of the thesis, we introduced algorithms for static task class partition-

ing in MCO. The algorithms are given a set of task classes that must be partitioned into two

sets, each containing task classes that are either executed locally by the MD or those classes

that can contend for remote ES execution. The objective is to find the task class partition

that gives the minimum mean mobile device power consumption subject to task comple-

tion time constraints. Algorithms for both soft and hard task completion time deadlines

were presented. The algorithms consider two different variations of the problem. In the

first, the wireless and computational resource capacities are given beforehand and the algo-

rithms determine the task class partitioning. In the second variation, the resource capacities

are not given, and the algorithms generate both capacity assignments and the partitioning

subject to a resource cost budget constraint. Two basic algorithms were introduced, the

first one uses latency based task class ordering, and the second orders the task classes in

an hierarchical way by first grouping task classes with similar mean power consumption

and then ordering the classes within the same group based on task completion time. A

variety of simulation results were presented that demonstrate the excellent performance of

the proposed class partitioning algorithms for both given and optimized network resource

assignments.

In the third part of the thesis, considered DTs, that provide features that represent the

real behavior of their associated physical systems (PSs). This is done using models that
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yield differing levels of system accuracy. In this thesis, we considered the DT model se-

lection problem where the DTs of multiple PSs are hosted at the same ES in a wireless

edge network. The objective is to maximize the minimum achieved accuracy among the re-

quested features by making appropriate model selections subject to communication channel

and ES resource availability. This problem was first formulated as an NP-complete integer

program. The thesis then reduced it to a feasibility problem and decomposed it into mul-

tiple subproblems that each consists of a modified Knapsack problem. A polynomial-time

approximation algorithm was proposed using dynamic programming fully polynomial-time

approximation scheme (FPTAS) to solve it efficiently by violating the constraint by at

most a given factor. A generalization of the model selection problem for DTs was then

introduced. A polynomial-time approximation algorithm using relaxation and dependent

rounding was proposed that finds approximate problem solutions that provide an asymp-

totic bound on constraint violation. A variety of simulation results were presented that

demonstrate the excellent performance of the proposed algorithms. It was verified that our

proposed FPTAS is highly efficient when the system size is large. The approximate solu-

tion can be obtained by violating its constraints no more than a given factor. The proposed

solution to the generalization achieved close-to-optimum feature accuracy and its violation

of constraints can be reduced by running additional rounds of the dependent rounding.

6.2 Future directions

There are several possible directions for future extensions of our work. Unlike assigning

aggregate channel resources from the network operator to each BS to support its associated

mobile device population in the first part of the thesis, a possible future research direction

is to allocate specific amount of wireless channels and computation resources of each BS
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and ES to individual MDs based on the task requirements, which may improve the MCO

performance.

An obvious future research direction is the study of dynamic task class partitioning and

the development of online task class partitioning algorithms. In addition to ideas presented

in this thesis, machine learning and deep learning techniques could also be used, in response

to quickly changing environments.

Another future research direction is the combination of task class partitioning with par-

tial task offloading. This adds the extra complication of dividing application tasks into

sub-tasks and the assignment of sub-tasks to a set of sub-classes that will have to be par-

titioned according to task class partitioning, possibly with the requirement that sub-task

precedence constraints are also satisfied.

For the DT work, a potential future research direction is the joint optimization of the

DT model selection and network resource allocations. Instead of sharing the entire ES

computation capacity and using fixed transmit power and equal channel bandwidth for

PSs, allocating a specific amount of network resources to each pair of PS and DT could

improve the DT performance, e.g., feature accuracy, based on its quality of service (QoS)

requirements.
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