
AUTOMATIC TRANSLATION OF MOORE FSM
INTO TDES SUPERVISORS

AUTOMATIC TRANSLATION OF MOORE FINITE STATE
MACHINES INTO TIMED DISCRETE EVENT SYSTEM

SUPERVISORS

BY
HINA MAHMOOD, M.Sc.

A Thesis
submitted to the Department of Computing and Software

and the School of Graduate Studies
of McMaster University

in partial fulfilment of the requirements
for the degree of

Doctor of Philosophy

© Copyright by Hina Mahmood, September 2023
All Rights Reserved

Doctor of Philosophy (2023) McMaster University
(Computing and Software) Hamilton, Ontario, Canada

TITLE: Automatic Translation of Moore Finite State Machines
into Timed Discrete Event System Supervisors

AUTHOR: Hina Mahmood
B.Sc., M.Sc. (Software Engineering),
International Islamic University, Islamabad, Pakistan.

SUPERVISOR: Dr. Ryan J. Leduc

NUMBER OF PAGES: xx, 336

ii

Abstract

In the area of Discrete Event Systems (DES), formal verification techniques are im-
portant in examining a variety of system properties including controllability and non-
blocking. Nonetheless, in reality, most software and hardware practitioners are not
proficient in formal methods which holds them back from the formal representation
and verification of their systems. Alternatively, it is a common observation that con-
trol engineers are typically familiar with Moore synchronous Finite State Machines
(FSM) and use them to express their controllers’ behaviour.

Taking this into consideration, we devise a generic and structured approach to
automatically translate Moore synchronous FSM into timed DES (TDES) supervi-
sors. In this thesis, we describe our FSM-TDES translation method, present a set of
algorithms to realize the translation steps and rules, and demonstrate the application
and correctness of our translation approach with the help of an example.

In order to develop our automatic FSM-TDES translation approach, we exploit
the structural similarity created by the sampled-data (SD) supervisory control theory
between the two models. To build upon the SD framework, first we address a related
issue of disabling the tick event in order to force an eligible prohibitable event in the
SD framework. To do this, we introduce a new synchronization operator called the SD
synchronous product (||SD), adapt the existing TDES and SD properties, and devise
our ||SD setting. We formally verify the controllability and nonblocking properties of
our ||SD setting by establishing logical equivalence between the existing SD setting
and our ||SD setting. We present algorithms to implement our ||SD setting in the DES
research tool, DESpot (2023).

The formulation of the ||SD operator provides twofold benefits. First, it simplifies
the design logic of the TDES supervisors that are modelled in the SD framework. This
results in improving the ease of manually designing SD controllable TDES supervi-
sors, and reduced verification time of the closed-loop system. We demonstrate these
benefits by applying our ||SD setting to an example system. Second, it bridges the gap
between theoretical supervisors and physical controllers with respect to event forc-
ing. This makes our FSM-TDES translation approach relatively uncomplicated. Our
automatic FSM-TDES translation approach enables the designers to obtain a formal
representation of their controllers without designing TDES supervisors by hand and
without requiring formal methods expertise.

iii

Overall, this work should increase the adoption of the SD supervisory control
theory in particular, and formal methods in general, in the industry by facilitating
software and hardware practitioners in the formal representation and verification of
their control systems.

iv

To my beloved parents
for their unconditional love, care, affection, support and prayers

v

Acknowledgements

In the name of ALLAH, the most Gracious, the most Merciful, whose blessings made
it possible for me to complete and defend this thesis with flying colours. Each moment
during the course of my Ph.D., I experienced the Grace of ALLAH, who enlightened
my thoughts with His wisdom, opened before me unexpected avenues and inspired
me to move forward even at the moments of despair.

I am thankful to my supervisor, Dr. Ryan Leduc, for providing me with this
thesis topic and his guidance. I am grateful to the chair of my Ph.D. supervisory
committee, Dr. Frantisek Franek, for stepping in as the reviewer of my thesis, and for
his immense support and encouragement all through my degree. I am also thankful
to my committee member, Dr. Emil Sekerinski, for his support and advice.

I would like to gratefully thank all those members of the CAS department who
made this Ph.D. journey a pleasant and memorable experience for me. First, I would
like to express my sincere gratitude to the Department Chair, Dr. Mark Lawford,
whose constant support and cooperation over the past several months made it possible
for me to successfully complete my Ph.D. I am grateful to him for patiently listening
to all my issues and resolving them in the best possible way. I am thankful to him
for providing me with department funding towards the end of my degree. I am also
thankful to him for all the time he gave to our meetings and promptly replying to all
my messages despite of his busy schedule, for calmly answering all my technical and
non-technical questions, and for providing valuable guidance related to the thesis and
defense; learned a lot from him in a short period of time.

I am thankful to the Graduate Advisor for Software Engineering, Dr. Spencer
Smith, for providing his useful advice and support in the hour of need, for staying
in touch with me and telling me about the Ombuds office. I am also thankful to the
Acting Associate Chair for Graduate Studies, Dr. Fei Chiang, for reaching out to me
herself during the challenging times and offering me her help and assistance.

Thanks to the Department Manager, Laurie LeBlanc, for giving me her time
to assess my situation and guiding me in the right direction to seek to resolve all
my issues quickly and effectively. Thanks to the Graduate Administrator, Stefanie
Bittcher, for always being so cordial and helpful, and especially for her tremendous
cooperation towards the end of my degree.

Last but not least, I would like to extend my deepest gratitude to my cohesive

vi

family and wonderful friends. I am indebted to my parents for their encouragement
and motivation throughout the years that made me so able that I am at this position
today. Thanks are due to my dependable and caring brothers, Dr. Salman, Imran
and Irfan, who always stand by me through thick and thin. Thanks to my sisterly
sister-in-laws, Aysha and Leena, for their friendly and enjoyable conversations. A very
special thanks to my adorable nephews, Ibrahim and Abdullah, and my sweet niece,
Alishba, for always making me forget my worries, and inspiring me to be fearless and
enjoy life from the unique perspective of being a kid again. I also thank Dr. Saba
Amin for her cheerful company and late night chats, after which I always feel fresh
and relaxed; blessed to have such amazing people in my life.

vii

Contents

Abstract iii

Dedication v

Acknowledgements vi

Contents viii

List of Figures xiv

List of Tables xvii

List of XML Input Files xviii

Abbreviations and Notation xix

1 Introduction 1
1.1 Introduction to Discrete Event Systems 2
1.2 Motivation . 2
1.3 Related Work . 3

1.3.1 Formal Implementation Approaches 4
1.3.2 Real-World Applications of SCT 5
1.3.3 Why Sampled-Data Supervisory Control? 6
1.3.4 Formal Verification of Existing Systems 6

1.4 Research Gap . 7
1.5 Our Proposal: FSM to TDES Translation 8

1.5.1 Related Issue . 9
1.5.2 Proposed Solution . 14

1.6 Research Questions . 15
1.7 Thesis Contributions . 15
1.8 Thesis Outline . 18

2 Preliminaries 20

viii

2.1 Linguistic Preliminaries . 20
2.1.1 Strings . 20
2.1.2 Languages . 21
2.1.3 Nerode Equivalence Relation 21

2.2 Discrete Event Systems . 21
2.2.1 Generator . 22
2.2.2 DES Synchronization . 23
2.2.3 Controllability . 25

2.3 Timed DES . 26
2.3.1 Controllability and Supervision 27
2.3.2 Control Equivalent Supervisors 28
2.3.3 TDES Properties . 29

3 Sampled-Data Supervisory Control 31
3.1 SD Controllers . 32
3.2 Concurrency and Timing Issues . 32
3.3 SD Assumptions . 33
3.4 SD Preliminaries . 34
3.5 SD Controllability . 36
3.6 Formal Model of SD Controller . 38
3.7 TDES to FSM Translation . 39

3.7.1 Translation Functions . 40
3.7.2 Translation Method . 42

3.8 Supervisory Control . 43
3.9 Verification Results . 46

3.9.1 SD Controller as a Supervisory Control 47
3.9.2 Controllability . 47
3.9.3 Event Generation . 48
3.9.4 Nonblocking . 48

4 Sampled-Data Synchronous Product 50
4.1 SD Synchronous Product Operator 50
4.2 Properties of SD Synchronous Product Operator 53

4.2.1 SD Synchronous Product Defines a TDES 54
4.2.2 Commutative Property . 56
4.2.3 Non-Associative Property . 60

4.3 SD Synchronous Product Setting . 62
4.4 SD Properties with SD Synchronous Product 63

4.4.1 Plant Completeness with ||SD 63
4.4.2 S-Singular Prohibitable Behaviour with ||SD 64
4.4.3 Timed Controllability with ||SD 64

4.5 SD Controllability with SD Synchronous Product 65

ix

4.6 ALF Modularity and SD Synchronous Product 67

5 Equivalence of SD and SD Synchronous Product Setting 70
5.1 Establishing Equivalence . 70

5.1.1 Why Equivalence is Needed? 70
5.1.2 How to Establish Equivalence? 71

5.2 Implicit Assumptions . 74
5.3 Equivalence of Languages . 74
5.4 Equivalence of SD Properties . 78

5.4.1 Plant Completeness . 79
5.4.2 S-Singular Prohibitable Behaviour 79
5.4.3 Timed Controllability . 80
5.4.4 SD Controllability . 81
5.4.5 ALF . 83

6 Equivalence using Minimal Automaton 84
6.1 Why Minimal Automaton is Needed? 84
6.2 Obtaining a Minimal Automaton . 85

6.2.1 Identify Distinct λ−Equivalent States 86
6.2.2 Construct a Minimal Automaton 88

6.3 SD Properties with Minimal Automata 90
6.3.1 CS Deterministic Supervisors 90
6.3.2 ALF . 92

7 Equivalence of SD Controllers 101
7.1 Preliminary Definitions . 101
7.2 Supporting Propositions . 104
7.3 Output Equivalent Controllers . 110

8 Controllability and Nonblocking Results for SD Synchronous Prod-
uct Setting 115
8.1 Supervisory Control V . 116

8.1.1 Construction of V . 116
8.1.2 Preliminary Definitions . 119
8.1.3 Map V is Well Defined . 120
8.1.4 Equivalence of V and V . 123

8.2 Controllability and Nonblocking Verification 125
8.2.1 SD Controller as a Supervisory Control 126
8.2.2 SD Controller and Controllability 128
8.2.3 SD Controller and Event Generation 130
8.2.4 SD Controller and Nonblocking 131

9 Symbolic Verification in SD Synchronous Product Setting 136

x

9.1 Predicates and Predicate Transformers 136
9.1.1 State Predicates . 137
9.1.2 Predicate Transformers . 137

9.2 Symbolic Representation . 138
9.2.1 State Subsets . 139
9.2.2 Transitions . 139

9.3 Symbolic Computation . 140
9.3.1 Transitions and Inverse Transitions 141
9.3.2 Predicate Transformers . 142

9.4 Construction of Closed-Loop System 144
9.5 Symbolic Verification . 146

9.5.1 Plant Completeness with ||SD 147
9.5.2 Untimed Controllability with ||SD 148
9.5.3 SD Controllability with ||SD 149

10 Flexible Manufacturing System 154
10.1 System Structure . 154
10.2 Plant Components . 155
10.3 Modular Supervisors . 157

10.3.1 Buffer Supervisors . 158
10.3.2 Robot to B4 to Lathe Path 164
10.3.3 Moving Parts from B4 to B6/B7 167
10.3.4 B6/B7 to AM to Exit Path 169

10.4 Results and Discussion . 174
10.4.1 Theoretical TDES . 174
10.4.2 Verification Results . 174
10.4.3 Miscellaneous Discussion . 178

11 Introduction to Moore FSM to TDES Translation 179
11.1 Moore System as an Input . 180

11.1.1 Individual Moore FSM . 181
11.1.2 Central FSM . 185

11.2 FSM-TDES Translation Prerequisites 185
11.2.1 Consistency Requirements . 187
11.2.2 Design Requirements . 188

11.3 FSM-TDES Translation Method . 189
11.3.1 Create State Set . 190
11.3.2 Populate Event Set . 193
11.3.3 Assign Initial State . 193
11.3.4 Generate Set of Marked States 194
11.3.5 Construct Transition Function 195
11.3.6 Make Translated Supervisor More Compact 211

xi

12 Moore FSM to TDES Translation Algorithms 213
12.1 Algorithmic Notation . 213

12.1.1 Size Function . 213
12.1.2 Subscript Notation . 214
12.1.3 Dot Notation . 214
12.1.4 Bracket Notation . 214

12.2 Main Algorithm . 215
12.2.1 Generate Hybrid Next State Logic 220
12.2.2 Generate Boolean Next State Logic 226
12.2.3 Generate TDES Supervisor 234

12.3 Complexity Analysis . 245

13 Combination Lock Example 248
13.1 System Description . 248

13.1.1 Structure and Specifications 248
13.1.2 System Components . 250

13.2 Design of Controllers . 252
13.2.1 Individual Moore FSM . 252
13.2.2 Central FSM . 257

13.3 Translated TDES Supervisors . 257
13.3.1 Open Lock . 258
13.3.2 Change Code . 258
13.3.3 Activate Alarm . 258

13.4 TDES Plant Models . 258
13.5 Verification Results . 259
13.6 Correctness of FSM-TDES Translation Approach 262

14 Conclusions and Future Work 263
14.1 Conclusions . 263
14.2 Future Work . 265

Bibliography 268

A Miscellaneous Definitions 277
A.1 Equivalence Relation . 277
A.2 Product Operator . 277
A.3 Meet Operator . 278
A.4 Selfloop Operation . 278
A.5 Bijective Function . 278

B Symbolic Verification 279
B.1 Symbolic Representation of Transitions 279
B.2 Symbolic Verification of ||SD Properties 280

xii

B.2.1 Nonblocking . 280
B.2.2 Activity Loop Free . 280
B.2.3 Proper Time Behaviour . 281
B.2.4 S-Singular Prohibitable Behaviour with ||SD 282

B.3 Symbolic Verification of SD Controllability with ||SD 282
B.3.1 Point ii.1 . 282
B.3.2 Point ii.2 . 283
B.3.3 Point iii . 286

C TDES to Moore FSM Translation 288
C.1 XML File Structure for Moore System 288

C.1.1 Individual Moore FSM . 289
C.1.2 Central FSM . 295

C.2 Generating Individual Moore FSM with DESpot 297
C.2.1 Algorithm C.1 . 300
C.2.2 Algorithm C.2 . 300

D Supporting Algorithms for Moore FSM to TDES Translation 308
D.1 Verify Central FSM . 308
D.2 Verify Individual Moore FSM . 311
D.3 Generate Enablement Information . 313

E Supplementary Material for Combination Lock Example 316
E.1 XML Files for Input FSM . 316

E.1.1 Individual Moore FSM . 316
E.1.2 Central FSM . 316

E.2 Deriving a Simplified Boolean Expression 321
E.3 Translated Non-Minimal TDES Supervisors 321
E.4 Correctness of FSM-TDES Translation Approach 323

E.4.1 Central FSM . 325
E.4.2 Individual Moore FSM . 325

xiii

List of Figures

1.1 An Overview of Flexible Manufacturing System 11
1.2 TDES Plant Robot . 12
1.3 TDES Supervisor B2 . 12
1.4 TDES Supervisor TakeB2 . 13
2.1 An Example TDES Automaton . 27
2.2 An Example to Illustrate Various TDES Properties 29
2.3 An Example Satisfying ALF Property 29
2.4 An Example Illustrating Non-Selfloop ALF Property 30
3.1 An Example for Event Sampling . 33
3.2 An Example Illustrating CS Deterministic Supervisor Property 35
3.3 An Example Failing S-Singular Prohibitable Behaviour Property 36
3.4 An Example of SD Controllability Point ii (⇒) 37
3.5 An Example of TDES to FSM Translation Method 43
4.1 An Example of SD Synchronous Product Operator 54
4.2 SD Synchronous Product Operator is Non-Associative 61
10.1 Conveyor Con2 . 156
10.2 Robot . 156
10.3 Lathe . 156
10.4 Conveyor Con3 . 156
10.5 Painting Machine PM . 156
10.6 Finishing Machine AM . 156
10.7 SysDownNup . 157
10.8 AddNoPtEntSys . 157
10.9 AddNoB6toAM . 157
10.10 AddNoB7toAM . 157
10.11 Supervisor B2 . 159
10.12 Supervisor HndlSysDwn . 159
10.13 Supervisor B2 . 160
10.14 Supervisor HndlSysDwn . 160
10.15 Supervisor B4 . 161
10.16 Supervisor B6 . 162
10.17 Supervisor B7 . 162

xiv

10.18 Supervisor B8 . 163
10.19 Supervisor B8 . 163
10.20 Supervisor TakeB2 . 165
10.21 Supervisor TakeB2 . 165
10.22 Supervisor B4Path . 166
10.23 Supervisor B4Path . 166
10.24 Supervisor LathePick . 167
10.25 Supervisor LathePick . 167
10.26 Supervisor TakeB4PutB6 . 168
10.27 Supervisor TakeB4PutB7 . 169
10.28 Supervisor TakeB4PutB7 . 169
10.29 Supervisor ForceB6toAM . 171
10.30 Supervisor ForceB7toAM . 171
10.31 Supervisor ForceInitAM . 172
10.32 Supervisor InitAM . 172
10.33 Supervisor AMChooser . 172
10.34 Supervisor AMChooser . 174
11.1 Moore FSM OpenLock . 181
11.2 Translated TDES Supervisor OpenLock 192
11.3 Dialog Box for Taking Input About Set of Marked States 194
11.4 TDES Supervisor OpenLock After Translating Boolean NSL of R-1.1 203
11.5 TDES Supervisor OpenLock After Translating Boolean NSL of R-2.1 206
11.6 TDES Supervisor OpenLock After Translating Boolean NSL of R-2.2 206
11.7 TDES Supervisor OpenLock After Translating Boolean NSL of R-3.2 207
11.8 TDES Supervisor OpenLock After Translating Boolean NSL of Table 11.4207
11.9 TDES Supervisor OpenLock After Adding Selfloop Transitions of Un-

controllable Events for Boolean NSL of R-1.1 209
11.10 Minimal TDES Supervisor OpenLock 211
13.1 An Overview of 4-bit Combination Lock 249
13.2 Block Diagram for 4-bit Combination Lock 251
13.3 Moore FSM ChangeCode . 255
13.4 Moore FSM ActivateAlarm . 256
13.5 Minimal TDES Supervisor ChangeCode 259
13.6 Minimal TDES Supervisor ActivateAlarm 260
13.7 Enter . 261
13.8 Open . 261
13.9 Change . 261
13.10 New . 261
13.11 Comparator . 261
13.12 Register . 261
13.13 Alarm . 261
C.1 Some Examples for the Global Don’t Care Transition, “<GDC>” . . . 298

xv

C.2 UML Class: FSMCarrier . 299
C.3 UML Struct: Transition . 299
E.1 Translated TDES Supervisor ChangeCode 322
E.2 Translated TDES Supervisor ActivateAlarm 324
E.3 Translated Moore FSM OpenLock . 325
E.4 Translated Moore FSM ChangeCode 330
E.5 Translated Moore FSM ActivateAlarm 332

xvi

List of Tables

1.1 Mapping Between Research Questions and Thesis Chapters/Sections . . 16
10.1 Meaning and Shorthand for Event Labels of FMS 155
10.2 FMS Example Results in the SD and ||SD Setting 175
11.1 Hybrid Next State Logic for OpenLock Moore FSM 196
11.2 Boolean Next State Logic for OpenLock Moore FSM 198
11.3 Unique Boolean Next State Logic for OpenLock Moore FSM 200
11.4 Valid Boolean Next State Logic for OpenLock Moore FSM 201
E.1 Boolean Next State Logic for Designed vs. Translated Moore FSM

OpenLock . 328
E.2 Boolean Next State Logic for Designed vs. Translated Moore FSM

ChangeCode . 331
E.3 Boolean Next State Logic for Designed vs. Translated Moore FSM Ac-

tivateAlarm . 334

xvii

List of XML Input Files

C.1 Moore FSM OpenLock . 290
C.2 Sample Moore FSM TestFSM . 292
C.3 Central FSM CombinationLock . 295
E.1 Moore FSM OpenLock . 317
E.2 Moore FSM ChangeCode . 317
E.3 Moore FSM ActivateAlarm . 318
E.4 Central FSM CombinationLock . 319

xviii

Abbreviations and Notation

ALF Activity Loop Free

BDD Binary Decision Diagram

CB Concurrent Behaviour

CSCE Concurrent Supervisory Control Equivalent

CS Deterministic Concurrent String Deterministic

DC Don’t Care

DEF Default

DES Discrete Event System

FMS Flexible Manufacturing System

FSM Finite State Machine

GDC Global Don’t Care

IEC International Electrotechnical Commission

IL Instruction List

IO Input-Output

LD Ladder Diagram

L.H.S Left Hand Side

MBSE Model-Based System Engineering

NSL Next State Logic

PLC Programmable Logic Controller

POS Product-of-Sums

xix

R.H.S Right Hand Side

SCT Supervisory Control Theory

SD Sampled-Data

SOP Sum-of-Products

||SD Sampled-Data Synchronous Product

TDES Timed Discrete Event System

TA Timed Automata

xx

Chapter 1

Introduction

The goal of the work presented in this thesis is to facilitate software and hardware de-
signers and practitioners in the formal representation and verification of their control
systems, thereby increasing the adoption of formal methods in industry. We achieve
these goals by reducing the complexity and improving the ease of formal design and
verification process for designers, especially those who are not proficient in formal
methods. To do this, we propose a generic and structured approach for the auto-
matic translation of Moore synchronous Finite State Machines (FSM) into Timed
Discrete Event System (TDES) supervisors. We base our work on the sampled-data
(SD) supervisory control theory (Wang, 2009; Wang and Leduc, 2012; Leduc et al.,
2014).

In this thesis, first, as a stepping stone, we present an approach to automate the
mechanism of forcing eligible prohibitable events in the SD supervisory control frame-
work. We formally verify our proposed setting, and provide algorithms to implement
our approach in the DES research tool, DESpot (2023). We demonstrate the benefits
of our approach through its application to an illustrative example. Then, we describe
our approach to automatically convert a Moore synchronous FSM into a TDES super-
visor. We design a set of algorithms to realize our FSM-TDES translation approach,
and show the correctness of our translation method with the help of an example.

In this chapter, first we introduce the area of Discrete Event Systems (DES) and
related terminology. Next, we explain our motivation for choosing this research topic,
and discuss some prior work related to ours. This is followed by the identification of
the research gap, and a description of our proposal and methodology to address this
gap. After that, we state the research questions that this thesis aims to answer, and
summarize the contributions of this thesis. Finally, we close this chapter by providing
an outline of how the rest of this thesis is organized.

1

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

1.1 Introduction to Discrete Event Systems
Discrete Event Systems (DES) are dynamic systems that encompass processes that are
discrete in time and state space, often asynchronous, and typically non-deterministic.
These systems evolve by changing state in accordance with the instantaneous occur-
rence of physical events. DES are quite common in industry and include a variety
of man-made systems namely manufacturing systems, computer and communication
networks, transport and logistic systems, and traffic control systems. These applica-
tions generally require some degree of control and coordination to ensure the orderly
flow of events according to the given specifications and/or to prevent the occurrence
of undesired chains of events.

In order to solve the control problem of DES and extend the control theory con-
cepts of continuous systems to DES, Wonham and Ramadge (1987); Ramadge and
Wonham (1989) introduced Supervisory Control Theory (SCT). This theoretical ap-
proach is based on automata theory and formal language models (Hopcroft and Ull-
man, 1979). SCT provides algorithms and methods for the analysis and control of
DES.

In SCT, uncontrolled behaviour of the DES is modelled by an automaton and
is referred to as the plant. In order to achieve desired behaviour as per the given
specifications, a supervisor is introduced that alters the unrestricted behaviour of the
plant by operating synchronously with it and using a feedback control mechanism.
SCT partitions the set of events into controllable and uncontrollable events, the former
being amenable to disablement by a supervisor. In SCT, a system is desired to have
two properties, controllability (undesired actions do not occur) and nonblocking (no
deadlock or livelock).

A timed DES (TDES) model adds timing information to an untimed DES in or-
der to deal with temporal specifications. The TDES modelling framework, proposed
by Brandin (1993); Brandin and Wonham (1994), extends the untimed DES by in-
troducing a new tick event. The tick event represents the passage of one time unit
and corresponds to the tick of a global clock to which the system is assumed to be
synchronized. It also introduces a new class of non-tick events called forcible events
that can preempt the occurrence of a tick event, when needed. Non-tick controllable
events are referred to as prohibitable events.

1.2 Motivation
With the increasing complexity of control systems, formal verification techniques have
become an important tool to check a variety of system properties including control-
lability and nonblocking. In order to design a new system that needs to be formally
verified, it must be expressed as a formal model. Likewise, one of the ways to formally
verify an existing system is to translate the software into a formal representation. To

2

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

be able to formalize new and existing systems, software designers and practitioners
are required to have expertise in formal methods. They need to manually design and
express their controllers as theoretical supervisors before providing them as an input
to a formal verification tool to check the desired system properties.

However, in reality, most of the software and hardware designers in industry are
not trained in formal methods, hence unfamiliar with formal modelling and verifi-
cation strategies (Vogel-Heuser et al., 2014). This does not only hinder them from
expressing their controllers using a formal representation, but also hold them back
from applying formal verification techniques to examine various properties of their
theoretical models. This is believed to be one of the primary reasons for the limited
adoption of formal methods in industry. At the same time, it is a common obser-
vation that many software and hardware designers are typically familiar with Moore
synchronous Finite State Machines (FSM) and use them to express their system con-
trollers.

The sampled-data (SD) supervisory control theory (Wang, 2009; Wang and Leduc,
2012; Leduc et al., 2014) is a generic, formal implementation approach that proposes
to implement TDES supervisors as SD controllers, a good example of which is a
Moore synchronous FSM (or Moore FSM, for short) (Brown and Vranesic, 2013).
One of the properties of the SD methodology is that it makes the design of TDES
supervisors consistent with the SD controllers by preventing software designers from
expressing logic in theoretical models that cannot be physically implemented. This
structural similarity created by the SD methodology between the TDES supervisors
and Moore FSM motivated us to go the opposite way, i.e. devise an approach to
automatically convert Moore FSM into TDES supervisors. In other words, we thought
of exploiting this structural similarity between the two models to do the automatic
reverse translation in order to facilitate the designers and practitioners in the formal
representation and verification of their control systems without them being proficient
in formal methods.

1.3 Related Work
This thesis aims at developing a generic, well-defined and automated approach to
translate Moore FSM into TDES supervisors in order to assist software designers,
especially non-specialists with little or no knowledge of formal methods, in the formal
representation and verification of their TDES systems. In this section, we review
some notable related prior research.

Specifically, we examine the existing formal approaches for the implementation of
SCT supervisors, and discuss real-world applications of SCT that have been reported
in the literature. Based on this review, we present our argument of why we have
selected the SD supervisory control theory (Leduc et al., 2014) as the basis of our work.
Then, we analyze some significant previous DES research on the formal verification

3

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

of existing systems.

1.3.1 Formal Implementation Approaches
Although theoretical aspects of SCT have received substantial attention in academia,
the implementation of DES supervisors is still an open issue (Vieira et al., 2017;
Zaytoon and Riera, 2017). This is due to the clear interpretation gap between the
roles a supervisor is assumed to play within the SCT modelling framework and the
roles a controller has to play in the real-world control systems (Zaytoon and Carre-
Meneatrier, 2001). Fabian and Hellgren (1998) discuss the DES supervisor imple-
mentation issues by highlighting discrepancy between the abstract SCT supervisors
and resulting control realization.

Below, we classify the existing DES implementation approaches based on untimed
and timed DES.

Untimed DES Approaches

SCT is primarily based on automata theory and regular languages (Hopcroft and
Ullman, 1979). Thus, a significant body of work uses automata as the primary means
of modelling DES.

Some of the early contributions to the implementation of automata-based SCT
supervisors on a programmable logic controller (PLC) (Bolton, 2015) using Ladder
Diagram (LD) (Antonsen, 2021) are presented in Arinez et al. (1993); Leduc (1996);
Lauzon et al. (1997). These studies allowed only one event to occur per cycle. Later
on, some significant approaches and algorithms for the PLC implementation of mono-
lithic and modular supervisors are discussed in de Queiroz and Cury (2002); Vieira
et al. (2006); Hasdemir et al. (2008); Silva et al. (2011); Vieira et al. (2017); Prenzel
and Provost (2018); James et al. (2019).

Based on the local modular supervisory control approach of de Queiroz and Cury
(2000), Leal et al. (2012) presented a methodology to turn a PLC into a state tran-
sition system, whereas Alves et al. (2022) discussed an implementation scheme for a
networked control system. Cantarelli (2006) represented supervisors as a Mealy ma-
chine and addressed concurrency among the events. Dietrich et al. (2002); Gouyon
et al. (2004) proposed different rules to choose from multiple events that are possi-
ble in a single scan cycle. The signal-interpreted approach of Fouquet and Provost
(2017) handled I/O signals instead of events, thereby avoiding the need to adapt an
event-based approach to a signal-based real environment.

An alternative approach to the automaton framework of SCT is a petri net based
approach to supervisory control design (Seatzu et al., 2013). Using petri net formal-
ism, the implementation of DES supervisors is discussed in Crockett et al. (1987);
Zhou et al. (1992); Hellgren et al. (2002); Thapa et al. (2005); Basile et al. (2013);
Feio et al. (2017).

4

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Timed DES Approaches

Unlike untimed DES, only a few studies have focused on the implementation of SCT
supervisors for time-sensitive systems. This is due to the added complexity of in-
corporating time in the DES modelling and control, where enabled events may only
occur within certain time bounds.

Brandin (1996) described an automata-based real-time supervisory control ap-
proach for automated manufacturing systems implemented in LD. Uzam (2012) pro-
posed an adhoc technique for PLC-based implementation of supervisors with time
delay functions. This technique is based on the LD implementation approach of
Uzam et al. (2009b) and the concept of postponed events from Gelen et al. (2010).
Recently, Szpak et al. (2020) presented an architecture for the implementation of
timed modular supervisors on a PLC and applied it to a real-world test-bench.

For the implementation of petri net controllers into LD, Uzam and Jones (1998) de-
veloped a heuristic-based method, whereas Jimenez et al. (2001); Moreira and Basilio
(2014) provided a set of translation rules. Uzam and Wonham (2006) presented a hy-
brid approach that coupled SCT supervisors to petri net plant models. This approach
was extended to monolithic supervisors in Uzam and Gelen (2009) and modular su-
pervisors in Gelen and Uzam (2014). Azkarate et al. (2021) described a systematic
way to implement a petri net controller using PLC. Besides PLC-based software im-
plementations, hard-wired implementations of petri net controllers are reported in
Chang et al. (1998) and Uzam et al. (2009a).

1.3.2 Real-World Applications of SCT
Despite the limited adoption of SCT in industry (Wonham et al., 2018), a few ap-
plications of SCT synthesis and implementation have been reported in the literature.
These include automata-based SCT application to the control of a rapid thermal
multiprocessor (Balemi et al., 1993), a manufacturing workcell (Lauzon et al., 1996),
an educational testbed simulating an automated car assembly line (Chandra et al.,
2003), waterway locks (Reijnen et al., 2017), a pseudo microgrid setting of a custom
power park (Kharrazi et al., 2019) and an AC microgrid (Ghasaei et al., 2021).

Some previous studies have investigated the application of SCT combined with
Model-Based System Engineering (MBSE) (Schiffelers et al., 2009; Van der Sanden
et al., 2015). Forschelen et al. (2012) examined the supervisor implementation issues
in MBSE using a theme park vehicle. Systematic approaches for the model-based
design and implementation of SCT supervisors are reported in literature for a patient
support table for magnetic resonance imaging scanner (Theunissen et al., 2014), an
industrial-size baggage handling system of an international airport (Swartjes et al.,
2017), an advanced driver assistance system tested in a real vehicle system (Korssen
et al., 2018) and robotic operating system-based applications (Torta et al., 2023).

5

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

1.3.3 Why Sampled-Data Supervisory Control?
A detailed analysis of previous research on the implementation of untimed and timed
DES reveals that these studies propose adhoc implementation approaches that are
application-specific. A vast majority of these approaches allow only one event to
execute per cycle, thus ignoring concurrency issues and limiting program efficiency.
Most of these studies to date are limited to PLC implementation, which further
restricts the applicability of the presented methodologies. Moreover, these approaches
do not guarantee a controllable and nonblocking implementation, even if designers
develop theoretical models that satisfy these properties.

To the best of our knowledge, the sampled-data (SD) supervisory control method-
ology (Wang, 2009; Wang and Leduc, 2012; Leduc et al., 2014) is the first generic,
automata-based formal implementation approach that addresses the implementation,
concurrency and timing issues in a well-defined way. The SD approach proposes to
implement TDES supervisors as SD controllers, a good example of which is a Moore
FSM (Brown and Vranesic, 2013). It allows multiple events to occur in a single clock
cycle.

The SD methodology provides sufficient conditions to guarantee that if a theo-
retical TDES is controllable, nonblocking, and satisfies the desired properties, then
the physical system will also exhibit correct behaviour, i.e. the implementation will
be controllable, nonblocking and abide by the specified control laws. It ensures this
by: 1) identifying a set of existing TDES properties, and especially introducing the
new property of SD controllability (Definition 3.5.1) that deals with concurrency
and timing issues, 2) establishing a formal representation of SD controllers as Moore
FSM, and 3) providing a formal translation method to convert TDES supervisors
into Moore FSM, which can either be implemented on a PLC, in hardware using a
hardware description language such as Verilog (Brown and Vranesic, 2013), or as a
computer software program.

Due to these distinctive characteristics of the SD supervisory control theory and
its applicability to a variety of TDES applications, we are using this approach as the
foundation of our work.

1.3.4 Formal Verification of Existing Systems
A number of existing studies have focused on the extraction of formal models from
existing systems. Both automata and petri nets have been used for the formalization
of existing PLC programs in order to do formal verification. Below, we outline some
important prior research in this area.

Automata-Based Verification

One of the initial studies focusing on the extraction of automata models from LD
programs is reported by Moon (1994). The author presented a verification method

6

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

that represents LD as a transition system and used a model checker to determine
whether the system operates as specified. Rossi and Schnoebelen (2000) described a
similar approach that uses a fragment of an LD program for symbolic model checking.

Over time, several approaches and algorithms have been developed to generate
Timed Automata (TA) models (Alur and Dill, 1994) from a PLC implementation.
Zoubek et al. (2003) provided an algorithm to translate seven LD instructions into
TA that can be given as an input to the model checking tool UPPAAL (2003) for au-
tomatic verification. Bauer et al. (2004) presented transformation schemes to convert
untimed and timed PLC programs for verification with Cadence-SMV and UPPAAL
respectively. Canet et al. (2000) and Zhou et al. (2009) discussed the conversion of
Instruction List (IL) (Adam and Adam, 2022) PLC programs into TA.

Caldwell et al. (2016) outlined the use of active learning to extract automata
specifications, expressed as a Time Delay Mealy Machine, from existing PLC software.
Peixoto et al. (2019) presented a model-based testing technique for the automatic
verification of LD programs using the Gungnir tool. Zhang et al. (2020) proposed a
learning algorithm to infer a Moore automaton from system requirements, which can
then be used to synthesize an SCT supervisor for the control of embedded systems.

Petri Net-Based Verification

An earlier study to extract petri nets from a subset of IL programs with restrictions
was performed by Heiner and Menzel (1998). Fujino et al. (2000) defined a set of rules
to transform PLC code into petri nets. Bender et al. (2008) discussed a model-driven
approach to formally verify LD programs using a model checker, Tina (Berthomieu
et al., 2004). Wightkin et al. (2011); Luo et al. (2018) developed algorithms to
translate PLC programs into petri net controllers. Quezada et al. (2014) presented
an element-to-element transformation methodology to obtain a petri net model from
an LD control program. Quezada et al. (2023) described the conversion of 8 logical
blocks of PLC LD into petri net formal models.

1.4 Research Gap
A review of previous studies on the formalization of existing systems reveals that most
of the existing work focuses on presenting approaches and algorithms that translate
PLC elements into automata or petri net equivalent representation on a case-by-case
basis. In most cases, these PLC elements of existing software are expressed in one
of the PLC programming languages, as defined by the International Electrotechnical
Commission-61131-3 standard (IEC, 2013).

Since PLC, in general, do not have a formal structure of their own, the approaches
described in literature to extract formal models from PLC implementation are typ-
ically unstructured, implementation-dependent and application-specific. Moreover,
they focus on the basic portions of a system, i.e. a subset of PLC elements, rather

7

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

than considering all elements of the system together. In addition, to our knowledge,
they do not consider and address concurrency and timing issues in a well-defined way.

1.5 Our Proposal: FSM to TDES Translation
In order to address the gaps identified in the previous section, we propose a generic,
structured and well-defined approach to automatically translate Moore FSM (Brown
and Vranesic, 2013) into TDES supervisors. Specifically, we advocate the notion of ex-
pressing new and existing system controllers as Moore FSM. We focus on Moore FSM
as they are a standard design structure for digital logic that many control engineers
are typically familiar with. Also, Moore FSM provide a complete specification and
concrete definition of the controller, yet they are generic enough to be independent
of any implementation language and can be expressed as a C program, as hardware
using Verilog (Brown and Vranesic, 2013), or as an LD program. In this way, Moore
FSM provide a widely accessible and portable means to express a controller, which is
more flexible than focusing on part of a platform dependent implementation language,
such as PLC LD.

To realize our proposal of FSM-TDES translation, we need to have a formal, struc-
tured representation that could make it possible to do the conversion automatically.
For this purpose, we make use of the SD supervisory control theory (Wang, 2009;
Wang and Leduc, 2012; Leduc et al., 2014) that provides a generic, well-defined, for-
mal framework that we use as the basis of our work. Besides many reasons discussed
in Section 1.3.3 for choosing the SD theory, we primarily exploit the structural simi-
larity that the SD methodology creates between TDES supervisors and Moore FSM,
while devising our automatic FSM-TDES translation approach.

By proposing the idea of automatic FSM-TDES translation, our aim is to enable
the software and hardware designers to design and express their system controllers
in a standard way that they are familiar with, i.e. as Moore FSM. Our FSM-TDES
translation approach will interpret their Moore FSM as SD controllers, and automat-
ically translate them into a formal TDES supervisor representation. The designers
can then use these translated TDES supervisors along with the application’s TDES
plant models to verify the correctness of their closed-loop systems by checking the
desired properties, without requiring them to design TDES supervisors by hand and
acquire formal methods expertise.

Preferably, we wish our FSM-TDES translation approach to generate TDES su-
pervisors in such a way that increases the likelihood of the closed-loop behaviour
to satisfy the desired properties of the TDES and SD framework, including the key
property of SD controllability (Definition 3.5.1). One of the checks enforced by the
SD controllability property is that if a prohibitable event is enabled, the tick event
must be disabled. Currently, in the SD framework, designers are responsible for man-
ually satisfying this condition at every state of the closed-loop system by explicitly

8

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

disabling tick while designing their TDES supervisors by hand. Since, we propose
to automatically generate TDES supervisors from Moore FSM, it is vital to devise a
way to automatically satisfy this condition without intervention of the designers. This
issue is closely related to the development of our FSM-TDES translation approach
and must be addressed first.

Below, we first discuss the existing way of manually disabling the tick event in the
SD framework, and analyze its intricacies to show how difficult it is currently for the
designers to utilize this method, and how complicated it would be for us to express
it algorithmically while developing our FSM-TDES translation approach. Then, we
present our idea for automatically disabling tick in the SD framework. Our proposed
solution provides twofold benefits: 1) it keeps our FSM-TDES translation approach
simple, and 2) it reduces the complexity of manually designing SD controllable TDES
supervisors in the existing SD supervisory control setting (“SD setting,” for short).
In order to demonstrate the existing method, we use a small independent chunk of
our illustrative example described later in this thesis (Chapter 10).

1.5.1 Related Issue
In the TDES framework, the standard method used by software designers to force
an event at a given state of the system is to “explicitly disable” the tick event at the
corresponding state of the TDES supervisor. This has the effect of removing the now
impossible behaviour that tick could occur before the forcible event, as the forced
event is guaranteed to occur before the tick.

In the SD supervisory control theory, all prohibitable events are treated as forcible
events (Section 3.3). The SD controllability property (Definition 3.5.1) requires that
a prohibitable event be forced in the same clock period (before tick) in which it is
enabled, and must remain disabled otherwise. Specifically, the forward implication
(⇒) of Point ii enforces this check to make sure that at a given state, if tick and a
prohibitable event is possible in the plant model, and the prohibitable event is enabled
by the TDES supervisor, then the supervisor must explicitly disable tick in order to
force the prohibitable event.

Failure to satisfy this property correctly can have serious consequences. For in-
stance, consider the following two scenarios:
1. At a given state, both tick and a prohibitable event is possible in the plant and

enabled by all modular TDES supervisors. This is highly undesirable as the SD
controller would not know whether to let tick occur or force a prohibitable event
at this state. This would make the translation of TDES supervisors into SD
controllers ambiguous.

2. A prohibitable event is enabled by a modular supervisor and the supervisor has
also disabled the tick event which was possible in the plant model. However, if
one of the other modular supervisors has disabled this prohibitable event or the

9

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

event is not currently possible in the plant, our system will become uncontrollable
(Definition 2.3.2).
In order to avoid these unwanted outcomes, it is important that all plant compo-

nents and modular supervisors coordinate and agree on the enablement/disablement
of tick and prohibitable events. For this purpose, currently the designers have to man-
ually keep track of two things while designing their TDES models by hand: 1) when
tick event is possible in the plant, and 2) when a given prohibitable event is possible
in the plant and is not disabled by any of the modular supervisors. In this case,
the designers must explicitly disable tick event in the supervisor model to force the
prohibitable event.

Clearly, keeping track of this information manually, and at the same time guar-
antee that Point ii (⇒) of SD controllability property is always satisfied at every
state of the closed-loop system is not a trivial and trouble-free task. This is further
complicated by the fact that multiple modular supervisors are usually in control of
the same prohibitable event. As a result, designers typically do not find it conve-
nient to manually satisfy Point ii (⇒) of SD controllability in the existing SD setting,
especially while developing modular solutions.

Moreover, the logic of disabling tick in the presence of an enabled prohibitable
event also needs to be explicitly specified in the design of various TDES supervisors
so that modular supervisors have sufficient knowledge of the plant’s behaviour as well
as each other’s behaviour, in order to work together appropriately. In order to make
the TDES models aware of each other’s behaviour with respect to the tick event and
common prohibitable events, designers currently rely on two nonautomatic methods:
1) duplicate the logic of one TDES model in the other model(s), or 2) add expansion
events, i.e. non-physical/virtual events that are added solely to aid in communication
between modular supervisors. Five such events, prefixed by “no”, are discussed in
Section 10.1.

Besides making the TDES modelling process demanding and laborious for design-
ers, these methods also increase the design complexity and size of TDES supervisors,
hence the overall SD system, in the existing SD setting. We briefly present an ex-
ample for the first method of duplicating logic and its associated complexities below.
Please see Section 10.3 for a comprehensive discussion on both methods.

Illustrative Example

In Chapter 10, we will discuss the TDES example of a Flexible Manufacturing System
(FMS) from Wang (2009); Wang and Leduc (2012) to apply our proposed automatic
tick disablement/event forcing approach and discuss our results. Here, we briefly
present one part of this example to concretely illustrate the aforementioned issues.

The FMS, shown in Figure 1.1, consists of two conveyor belts (Con2 and Con3)1,
four machines (Robot, Lathe, PM and AM), and five buffers (B2, B4, B6, B7 and B8)1.

1This example is taken from a larger example, which is why the part labels are not contiguous.

10

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Figure 1.1: An Overview of Flexible Manufacturing System

Each buffer has the capacity to hold a single part and it is desired that buffers never
overflow (try to put a part in the buffer when it already has one) or underflow (try
to remove a part from the buffer when it is empty). Please note that the behaviour
of buffers is treated as specifications, and will be implemented as TDES supervisors.
In Figure 1.1, event names preceded by ‘!’ represent uncontrollable events, and those
without ‘!’ are prohibitable events.

In the FMS, once a new part enters the system via Con2 (pt ent sys), it goes
to buffer B2 (pt ent B2). The Robot is responsible for taking parts from buffer B2
(R from B2) and pass them on to buffer B4 (R to B4) for further processing by the
Lathe. After processing, the part returns to buffer B4, from which Robot moves it
either to buffer B6 (R to B6) or B7 (R to B7). Please see Section 10.1 for a more
in-depth explanation of this system.

In order to manage and force the prohibitable event R from B2 as per the given
specifications, TDES plant model Robot (Figure 1.2), and modular TDES super-
visors, B2 (Figure 1.3) and TakeB2 (Figure 1.4), are designed in the existing SD
setting (Wang and Leduc, 2012). Please note that in the complete FMS example
(Chapter 10), R from B2 is under the control of four modular supervisors. To keep
our discussion simple, here we are considering only two of them that are tightly cou-
pled to one another. To understand the graphical representation and notation of a
TDES automaton, please see Section 2.3.

11

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

!R_to_B4

tick

!R_to_B6

tick

tick

tick

R_from_B2

B4_to_R_for_B6

tick

B4_to_R_for_B7

tick

!R_to_B7

tick

tick

1

2

3

4

5

6

7

8

Figure 1.2: TDES Plant Robot

tick

tick
tick

!pt_ent_B2tick

no_pt_ent_sys

pt_ent_sys tick

tick

R_from_B2
0

1 2 3

456

Figure 1.3: TDES Supervisor B2

Supervisor TakeB2 is primarily responsible for forcing event R from B2. In order
to keep the system timed controllable (Definition 2.3.2), it is important to make sure
that TakeB2 does not disable tick and try to force R from B2 when it is not possible
in Robot or disabled by supervisor B2 . Therefore, TakeB2 must take into account
the behaviour of these models before it attempts to force R from B2.

By looking at supervisor B2 , we note that it enables R from B2 after the part
has reached buffer B2 (pt ent B2). This means that TakeB2 needs to keep track of
the part’s progress. Once the part has reached buffer B2, only then TakeB2 should
disable tick and force R from B2, as this is the time when the prohibitable event will
be enabled by supervisor B2 and possible in Robot.

Now that we have manually figured out the “right time” for forcing R from B2,
this logic needs to be incorporated in the design of supervisor TakeB2 . This is done
by adding the event pt ent B2 to its event set, and duplicating the related behaviour
of B2 in TakeB2 , i.e. by replicating the event sequence “pt ent B2 − tick” from
supervisor B2 to TakeB2 . Only after the occurrence of this sequence of events,
TakeB2 forces R from B2 by disabling tick at state 2, thus making sure that system
does not become uncontrollable while it is trying to force R from B2.

12

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

!pt_ent_B2

R_from_B2

tick

tick
tick

tick

!R_to_B7
!R_to_B6

tick

!R_to_B7
!R_to_B6 !pt_ent_B2tick

!pt_ent_B2

0

1 2 3 4

567

Figure 1.4: TDES Supervisor TakeB2

It is notable that uncontrollable event pt ent B2 gets added to TakeB2 as part
of explicitly specifying this forcing logic, and now TakeB2 is also in charge of al-
lowing/disallowing this event to occur in the system. In this case, designers need to
effectively handle two more things. First, they must make sure that TakeB2 should
always allow pt ent B2 to happen, when needed. In other words, TakeB2 must
never block pt ent B2 when it is possible in the plant model, otherwise the system
will become uncontrollable. Second, designers must design TakeB2 in such a way
that pt ent B2 interleaves properly with the other events of TakeB2 , (i.e. R to B6
and R to B7), in order to prevent the violation of other desired SD properties and
overall system specifications.

It is obvious that duplicating the behaviour of supervisor B2 and specifying all
this additional logic in relation to pt ent B2 not only make the design of TakeB2
more complicated, but also add more states to TakeB2 , thus increasing its state size.
It is easy to see that this trend will continue to grow rapidly when the system has
several prohibitable events that are under the control of multiple modular supervisors
(as evident in Chapter 10). Not to mention the extra effort and time that designers
need to invest to manually figure out the logic and the right time for forcing every
single prohibitable event of the system, deal with the related complications, and then
explicitly specify all this logic in the design of various modular TDES supervisors.

From the above discussion, it is evident that automating this logic of disabling tick
in order to force an eligible prohibitable event, and express it algorithmically is not
straightforward. It will almost certainly make our FSM-TDES translation approach
and the translated TDES supervisors overly complicated. Moreover, our translation
approach will need to have complete information about the TDES plant models and
other supervisors in order to disable tick at the right time while generating TDES
supervisor from a given Moore FSM, which does not look feasible and practical.

This necessitates the need to formulate a new way to automatically force enabled
prohibitable events and disable tick in the SD framework. The devised method should
not only be helpful in the development of our FSM-TDES translation approach, but
also simplify the modelling process and logical design of TDES supervisors that are

13

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

manually designed in the existing SD setting.

1.5.2 Proposed Solution
In order to automatically satisfy the condition enforced by Point ii (⇒) of the SD con-
trollability property, we propose an approach to automate the mechanism of forcing
eligible prohibitable events in the SD supervisory control framework. Our approach
is inspired by the event forcing mechanism of physical controllers. In fact, we adopt
the controllers’ way of forcing events and apply it to our theoretical TDES setting. In
the case of controllers, the forcing of an event is indicated not by disabling the tick,
but by enabling the event. If a controller wants an event to occur, it simply enables
it. As soon as all the controllers that control this event enable it, the event occurs.
In this case, none of the controllers is explicitly responsible for forcing the event.

This is exactly what we propose to do in the SD framework. Using our proposed
approach, if a prohibitable event needs to be forced, it should simply be enabled in the
modular supervisor without explicitly disabling the tick. As soon as the prohibitable
event is enabled by all concerned supervisors and possible in the plant model, tick
“automatically” gets disabled to force the prohibitable event, thus automatically sat-
isfying the condition checked by Point ii (⇒) of the SD controllability property. Since
none of the supervisors is explicitly disabling the tick event, there is no concern of
making the system potentially uncontrollable by disabling tick at the wrong time.

In order to realize the above-mentioned logic, we change the way of constructing
the closed-loop system in the SD framework. Specifically, we devise a new synchro-
nization operator, named the SD synchronous product (||SD), to form the closed-loop
system. While synchronizing the plant and supervisor models, our SD synchronous
product operator checks to see that at a given state in the closed-loop system, whether
tick and a prohibitable event are both possible in the plant and enabled by all mod-
ular supervisors. If so, our ||SD operator disables the tick event at the corresponding
state of the closed-loop system without relying on any of the supervisor models to
explicitly do this action.

In this way, while manually designing TDES supervisors in the existing SD set-
ting, our approach essentially liberates the designers from manually keeping track of
the enablement/disablement of tick and prohibitable events in various plant and su-
pervisor models, and instead makes the forcing decision implicit. This implies that in
the presence of our ||SD operator, designers do not need to explicitly specify the event
forcing logic in any of the supervisor models. As none of the modular supervisors
is responsible for deciding when to force a prohibitable event, they no longer need
to keep track of each others’ behaviour. In other words, just like controllers, TDES
supervisors are only concerned about their own behaviour in our approach. They
simply enable the prohibitable event when they want it to occur.

By automating the tick disablement/event forcing mechanism in the theoretical
TDES setting, our approach aims at simplifying the design logic and modelling process

14

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

of TDES supervisors, hence the overall system, in the existing SD setting. This,
in turn, makes the existing SD setting more accessible to software and hardware
designers and practitioners. Also, our approach bridges the gap between theoretical
TDES supervisors and physical controllers by making the event forcing mechanism of
supervisors match with that of controllers. This will make our FSM-TDES translation
approach simple and straightforward.

Please refer to Section 10.3.2 to see how the design of supervisor TakeB2 of the
SD setting gets simplified in the presence of our proposed approach and taking into
consideration the automatic tick disablement mechanism of our ||SD operator.

1.6 Research Questions
In this thesis, we endeavour to answer the following research questions. Table 1.1
maps each research question to the corresponding chapter(s) and/or section(s) that
contribute towards answering this question.
RQ1: How to automate the mechanism of forcing eligible prohibitable events in the
SD supervisory control theory, and adapt the existing definitions and properties of
the SD theory to match the new setting?
RQ2: How to do formal verification of the proposed SD synchronous product setting
with respect to the desired properties of controllability and nonblocking?
RQ3: How to provide tool support for the verification of TDES systems that are
designed in the SD synchronous product setting?
RQ4: How does the SD synchronous product setting compare to the existing SD
setting with respect to the modelling process, logical design and verification time of
TDES systems?
RQ5: How to automatically translate Moore synchronous FSM into TDES super-
visors that are more likely to satisfy the desired properties of the SD synchronous
product setting?
RQ6: What is the effectiveness of the formulated Moore FSM-TDES translation
approach and the correctness of the resultant TDES supervisors?
RQ7: How to build compatibility between the two translation approaches (FSM-
TDES and TDES-FSM) of the SD supervisory control theory?

1.7 Thesis Contributions
The novel contributions of this thesis are outlined below:

15

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Table 1.1: Mapping Between Research Questions and Thesis Chapters/Sections
Research Questions Chapter(s) and/or Section(s)

RQ1 Section 1.5.2, Chapter 4
RQ2 Chapters 5−8
RQ3 Chapter 9 (see DESpot (2023) source code for implementation)
RQ4 Chapter 10
RQ5 Chapters 11−12
RQ6 Chapter 13
RQ7 Section C.2

1. An approach to automatically force eligible prohibitable events in the
SD supervisory control theory
In order to address RQ1 and solve the issue raised in Section 1.5.1, we propose
an approach to automatically disable the tick event, once tick and a prohibitable
event is possible in the TDES plant model and enabled by all TDES supervisors.
We do this by devising a new synchronization operator, called the SD synchronous
product (||SD), that changes the way of constructing closed-loop systems in the SD
framework. Based on the ||SD operator, we formulate our novel SD synchronous
product setting, and adapt the existing definitions and properties of the SD frame-
work to match with the proposed setting. This also paves our way to address RQ5
later in this thesis.

As stated in Section 1.5.2, our approach is inspired by the event forcing mech-
anism of physical controllers and we apply it to the theoretical TDES setting.
In this way, we essentially bridge the gap between theoretical TDES supervisors
and physical controllers, and make them behave in a similar way with respect to
forcing of events.

2. Establish logical equivalence between the SD and SD synchronous prod-
uct settings
In most cases, the closed and marked languages generated in our ||SD setting will
be different than the ones obtained in the existing SD setting. This implies that
the two settings are not identical. We bridge this gap between the two settings by
establishing logical equivalence. First, we identify the elements of the two settings
that need to be proven equivalent. Then, we formally prove that the correspond-
ing elements of the two settings are logically equivalent. In doing so, we partly
address RQ2.

3. Extend the controllability and nonblocking verification results of the
SD setting to the SD synchronous product setting
Due to the distinct nature of the SD and ||SD settings, the existing verification
results of the SD setting do not remain valid in our ||SD setting. In order to resolve
this issue and completely address RQ2, we formally verify our ||SD setting with
respect to the desired properties of controllability and nonblocking by making use

16

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

of the proven logical equivalence between the SD and ||SD settings.
By proving the existing verification results of the SD setting for our ||SD setting,

we have essentially transferred all benefits offered by the existing SD setting to
our proposed ||SD setting. This is advantageous for designers, as it guarantees that
if they design a theoretical TDES system in our ||SD setting that is controllable,
nonblocking and satisfy the desired ||SD properties, then their physically imple-
mented system will retain these properties and the system abides by the specified
control laws.

4. Tool support for the SD synchronous product setting
As part of addressing RQ3, we adapt predicate-based algorithms of the SD setting
(Wang, 2009) in order to check the corresponding properties in our ||SD setting. We
implement these algorithms in the DES research tool, DESpot (2023). By doing
so, we allow the designers to automatically verify the desired ||SD properties of the
TDES systems they design in our ||SD setting. This tool support also enables us
to address RQ4.

5. A comparison of the SD and SD synchronous product settings
For the purpose of addressing RQ4, we use the case study of a Flexible Manufac-
turing System. We compare the SD and ||SD settings with respect to the process of
manually designing TDES supervisors in the two settings, the logical design com-
plexity and size of the resultant TDES supervisors, and the time taken by DESpot
(2023) to run the desired verification checks. This comparison between the two
settings is crucial, as it clearly demonstrates the benefits that our ||SD operator
and ||SD setting offer to control system designers as compared to the existing SD
setting.

6. A structured approach for the automatic translation of Moore FSM
into TDES supervisors
In order to address the research gap identified in Section 1.4, we propose a novel,
generic and structured approach for the automatic translation of Moore syn-
chronous FSM into TDES supervisors. Specifically, we define the input format for
expressing the controllers as Moore FSM, identify the prerequisites of our FSM-
TDES translation method, and devise the steps and rules for converting a Moore
FSM controller into its equivalent TDES supervisor representation. In doing so,
we address major parts of RQ5.

We apply our FSM-TDES translation approach to the example of a 4-bit Com-
bination Lock in order to demonstrate its application, effectiveness and correct-
ness. This addresses RQ6.

Our FSM-TDES translation approach facilitates the designers in the formal
representation and verification of their existing and new systems. It enables the
designers to obtain a formal representation of their controllers without designing
TDES supervisors by hand. It also allows them to formally verify their control sys-
tems and make use of the SD supervisory control theory without being proficient

17

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

in formal methods.

7. Algorithms to realize the proposed FSM-TDES translation approach
We develop a set of algorithms to realize our FSM-TDES translation approach.
Specifically, our algorithms evaluate the preconditions of our FSM-TDES transla-
tion method, and implement the steps and rules to perform the actual translation
process. This addresses the remainder of RQ5.

8. Build compatibility between the two translation approaches defined in
the SD supervisory control framework
There are two translation approaches that are developed on the basis of the SD
supervisory control theory: i) the existing TDES-FSM translation method (Wang,
2009), and ii) the FSM-TDES translation approach proposed in this thesis. We
build compatibility between these two translation approaches by modifying the
TDES-FSM translation algorithms designed by Hamid (2014) for DESpot (2023).
This addresses RQ7.

The compatibility and consistency that we establish between the two transla-
tion approaches allow designers to go back and forth between the Moore FSM and
TDES supervisors, and automatically translate one model into the other without
experts’ intervention. This enhances the benefits the SD supervisory control the-
ory provides to the software and hardware designers and practitioners, and makes
it more useful and accessible to them.

1.8 Thesis Outline
The rest of this thesis is organized as follows:

Chapter 2 introduces the area of DES and TDES by describing the basic concepts
and terminology used in this thesis. Chapter 3 provides an overview of the sampled-
data (SD) supervisory control theory upon which our work is based.

In Chapter 4, we present a novel mechanism for constructing closed-loop systems in
the SD supervisory control framework. Specifically, we introduce our SD synchronous
product (||SD) operator and describe our ||SD setting.

In Chapters 5−7, we discuss and formally prove logical equivalence between the
existing SD supervisory control setting and our ||SD setting. Utilizing this equivalence,
we present the controllability and nonblocking verification results for our ||SD setting
in Chapter 8.

In Chapter 9, we provide predicate-based algorithms that we have adapted from
Wang (2009) to verify various TDES and SD properties in our ||SD setting. In Chap-
ter 10, we discuss the example of a Flexible Manufacturing System (FMS) to demon-
strate the application and utilization of our ||SD operator and ||SD setting, and present
our verification results for FMS.

In Chapter 11, we introduce our approach for the automatic translation of Moore

18

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

synchronous Finite State Machines (FSM) into TDES supervisors. In Chapter 12,
we present a series of algorithms that we have developed to realize our automatic
Moore FSM-TDES translation approach. In Chapter 13, we discuss the example of
a 4-bit Combination Lock system to demonstrate the application and correctness of
our FSM-TDES translation approach.

Finally, Chapter 14 finishes off this thesis by stating our conclusions and discussing
future work.

19

Chapter 2

Preliminaries

This chapter presents a summary of the fundamental Discrete-Event System (DES)
and Timed DES (TDES) terminology and concepts that we will use in this thesis.
Details can be found in Wonham and Cai (2018).

2.1 Linguistic Preliminaries
This section introduces key language concepts that are required to understand the
terminology given in the following sections.

2.1.1 Strings
Let Σ be a finite set of distinct symbols (events). We refer to Σ as an alphabet
e.g. Σ = {α, β, γ, σ}. A string s over Σ is a finite sequence of events of the form
s = σ1σ2 . . . σn, where σi ∈ Σ and 0 ≤ i ≤ n. A string with no events is called an
empty string, denoted as ε, where ε /∈ Σ.

Let Σ+ be the set of non-empty, finite sequences of events over Σ. We define Σ∗
to be the set of all finite sequences of events over Σ, including the empty string ε.
Thus, we have Σ∗ := Σ+ ∪ {ε}. Given a string s = σ1σ2 . . . σn, |s| = n is the length of
s. The empty string ε has a length of zero, i.e. |ε| = 0.
Definition 2.1.1. Let s, t ∈ Σ∗, where s = α1α2 . . . αm and t = β1β2 . . . βn. The
operation of catenation of strings s and t, cat : Σ∗ × Σ∗ → Σ∗, is defined as:

cat(ε, s) = cat(s, ε) = s s ∈ Σ∗

cat(s, t) = st = α1α2 . . . αmβ1β2 . . . βn s, t ∈ Σ+

As |s| = m and |t| = n, the length of catenated string is |cat(s, t)| = |s| + |t| =
m+ n.
Definition 2.1.2. For some s, t ∈ Σ∗, we say that t is a prefix of s, written as t ≤ s,
if (∃u ∈ Σ∗) s = tu.

20

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

By definition, a string s ∈ Σ∗ is a prefix of itself, since s ≤ s. Also, we have that
ε is a prefix of all strings, since (∀s ∈ Σ∗) ε ≤ s.

2.1.2 Languages
Languages are used to represent system behaviour. A language is defined as a set of
strings. Formally, a language L over Σ is any subset of Σ∗, i.e. L ⊆ Σ∗.
Definition 2.1.3. The prefix closure of language L ⊆ Σ∗ is the language L, defined
as L := {t ∈ Σ∗ | t ≤ s for some s ∈ L}.

This definition says that L consists of all prefixes of strings of L. By definition, a
language L is a subset of the prefix closure of itself, i.e. L ⊆ L. A language L is said
to be prefix-closed if L = L.

Let Pwr(Σ) denote the set of all possible subsets of Σ. For σ ∈ Σ, we will use the
notation Σ∗.σ to represent the set of all strings sσ for some s ∈ Σ∗.
Definition 2.1.4. For language L ⊆ Σ∗ and string s ∈ Σ∗, the eligibility operator
EligL : Σ∗ → Pwr(Σ) is defined as EligL(s) := {σ ∈ Σ | sσ ∈ L}.

In simple words, the eligibility operator returns a set of events σ ∈ Σ that can
follow string s to create a string sσ ∈ L.

2.1.3 Nerode Equivalence Relation
Definition 2.1.5. The nerode equivalence relation1 on Σ∗ with respect to L, i.e. Σ∗
mod L, is defined as:

(∀s, t ∈ Σ∗) s ≡L t or s ≡ t (mod L) iff (∀u ∈ Σ∗) su ∈ L iff tu ∈ L
This definition states that two strings s and t are nerode equivalent with respect

to L if and only if they can be extended by any string u ∈ Σ∗ such that either both
strings are in L or neither string is in L.

2.2 Discrete Event Systems
Supervisory control theory (SCT) (Wonham and Ramadge, 1987; Ramadge and Won-
ham, 1989) provides a formal framework for the analysis and control of discrete-event
systems (DES). SCT is automaton-based and models DES as the generator of a for-
mal language. The uncontrolled behaviour of the system of interest, modelled by
an automaton, is referred to as the plant DES. The desired behaviour of the con-
trolled plant is that its generated language be contained in a specification language.
To achieve this desired behaviour as per the given specifications, a supervisor DES,

1See Definition A.1.1 of equivalence relation in Appendix A.

21

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

modelled by an automaton, is introduced. Supervisor DES alters unrestricted be-
haviour of the plant DES within prescribed limits by operating synchronously with
it and using a feedback control mechanism.

This section presents the formal DES representation and fundamental concepts
related to DES.

2.2.1 Generator
Definition 2.2.1. A DES is formally represented as a generator which is defined as
a 5-tuple:

G = (Q,Σ, δ, qo, Qm)
where Q is the state set, Σ is the event set, δ : Q × Σ → Q is the partial transition
function, qo ∈ Q is the initial state, and Qm ⊆ Q is the set of marked states.

The event set Σ of DES G can be partitioned into the set of controllable events
(Σc) and uncontrollable events (Σu), i.e. Σ = Σc ∪̇ Σu, where ∪̇ represents disjoint
union of the two sets, Σc and Σu. Controllable events can be enabled or disabled
by a supervisor, and can occur only when a supervisor enables them. On the other
hand, uncontrollable events are not under the control of the supervisor. These events
are assumed to be always enabled. Once the plant DES reaches a state where an
uncontrollable event is possible, this event cannot be prevented from occurrence.

Each transition in δ is a 3-tuple (or triple) of the form (q, σ, q′), where δ(q, σ) = q′

such that q, q′ ∈ Q and σ ∈ Σ. We refer to q as the exit (source) state and q′ as the
entrance (destination) state.

The notation δ(q, σ)! means the transition is defined at state q ∈ Q for event
σ ∈ Σ. We extend δ to δ : Q× Σ∗ → Q in the natural way as:

δ(q, ε) = q for q ∈ Q
δ(q, sσ) = δ(δ(q, s), σ) for q ∈ Q, s ∈ Σ∗ and σ ∈ Σ, as long as q′ := δ(q, s)!

and δ(q′, σ)!
For the following definitions, let DES G = (Q,Σ, δ, qo, Qm).
Definition 2.2.2. A state q ∈ Q is reachable in G if (∃s ∈ Σ∗) δ(qo, s)! & δ(qo, s) = q.

This definition states that a state q is reachable if, starting from the initial state
qo, there exists a string s ∈ Σ∗ that can take us to state q.
Definition 2.2.3. The reachable state subset Qr of G is defined as:

Qr := {q ∈ Q | (∃s ∈ Σ∗) δ(qo, s) = q}
Definition 2.2.4. A DES G is reachable if all of its states are reachable, i.e. Qr = Q.
Definition 2.2.5. A DES G is said to be deterministic if it has a single initial state,
and for each q ∈ Q, and each σ ∈ Σ, there is at most one σ transition leaving q.
Note: In this thesis, we always assume that a DES is reachable, deterministic and
has a finite state space and a finite event set.

22

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Definition 2.2.6. The closed behaviour of G is defined as L(G) := {s ∈ Σ∗ | δ(qo, s)!}.
In simple words, we say that L(G) represents all possible sequences of events that

could occur in the system. Clearly, ε ∈ L(G) as long as Q 6= ∅.
Definition 2.2.7. The marked behaviour of G is defined as:

Lm(G) := {s ∈ Σ∗ | δ(qo, s)! & δ(qo, s) ∈ Qm}
The marked behaviour of G is interpreted as representing the set of all strings in Σ∗

that start at qo and end at a state in Qm. Marked behaviour represents “completed”
tasks carried out by the system that G is intended to model. Clearly, Lm(G) ⊆ L(G).
Definition 2.2.8. A DES G is said to be nonblocking if Lm(G) = L(G).

This definition says that any string that can be generated by G is a prefix of (i.e.
can always be extended to) a marked string of G. In other words, every string in
L(G) can be extended to a completed task in Lm(G).
Definition 2.2.9. For DES G, let λ be an equivalence relation2 on Q such that
(∀q, q′ ∈ Q) q ≡ q′ (mod λ) if and only if:

1. (∀s ∈ Σ∗) δ(q, s)!⇔ δ(q′, s)!
2. (∀s ∈ Σ∗) δ(q, s)! & δ(q, s) ∈ Qm ⇔ δ(q′, s)! & δ(q′, s) ∈ Qm

This definition means that for states q and q′ such that q ≡ q′ (mod λ), they have
the same future with respect to the closed behaviour L(G) and marked behaviour
Lm(G). Based on this, for string s ∈ L(G), a state q = δ(qo, s) represents all strings
in Σ∗ that are nerode equivalent to s mod L(G) and mod Lm(G).

The λ-equivalence relation allows us to reduce a reachable generator to a minimal
state version that represents the same closed and marked behaviour.
Definition 2.2.10. A DES G is said to be minimal if:

(∀q, q′ ∈ Q) q ≡ q′ (mod λ)⇔ q = q′

This definition states that for all states q, q′ ∈ Q, q is equivalent to q′ (mod λ) if
and only if q and q′ are the same state. In other words, G is minimal if it does not
have two distinct states q and q′ in Q that are λ-equivalent.

2.2.2 DES Synchronization
From the designer’s point of view, it is often easier to model the system as several
smaller DES components, rather than designing the whole system as a single, more
complex DES all at once. These multiple DES components are synchronized together
using a synchronization operator to construct the complete system. The commonly
used synchronization operators include the synchronous product, the product3, and

2See Definition A.1.1 of equivalence relation in Appendix A.
3See Definition A.2.1 of product operator in Appendix A.

23

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

the meet4 operator. Before defining the synchronous product operator formally, first
we will introduce the natural projection operator and its inverse.

Natural Projection

Let Li ⊆ Σ∗i , for i = 1, 2. Let Σ = Σ1 ∪ Σ2.
Definition 2.2.11. The natural projection Pi of Σ∗ onto Σ∗i , i.e. Pi : Σ∗ → Σ∗i , is
defined as:

Pi(ε) = ε

Pi(σ) =
{
ε if σ /∈ Σi

σ if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ) for s ∈ Σ∗, σ ∈ Σ
This definition says that the action of Pi on a string s is to erase all occurrences

of σ /∈ Σi, that are in s.
Definition 2.2.12. Let P−1

i : Pwr(Σ∗i)→ Pwr(Σ∗) be the inverse image function of
Pi, namely for L ⊆ Σ∗i , we have P−1

i (L) := {s ∈ Σ∗ |Pi(s) ∈ L}.

Synchronous Product

First, we will define the synchronous product of two languages L1 and L2 in terms of
natural projection.
Definition 2.2.13. Let Li ⊆ Σ∗i , for i = 1, 2. The synchronous product L1 ||L2 ⊆ Σ∗
is defined as L1 ||L2 := P−1

1 (L1) ∩ P−1
2 (L2).

Thus, s ∈ L1 ||L2 if and only if P1(s) ∈ L1 and P2(s) ∈ L2.
Now, we will define the synchronous product of two DES G1 and G2.
Definition 2.2.14. Let Gi = (Qi,Σi, δi, qo,i, Qm,i), for i = 1, 2. The synchronous
product of the two DES, represented as G = G1 ||G2, is defined as:

G := (Q1 ×Q2,Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 ×Qm,2)
where δ((q1, q2), σ) is only defined and equals:

(q′1, q′2) if σ ∈ (Σ1 ∩ Σ2), δ1(q1, σ) = q′1, δ2(q2, σ) = q′2 or
(q′1, q2) if σ ∈ Σ1 − Σ2, δ1(q1, σ) = q′1 or
(q1, q

′
2) if σ ∈ Σ2 − Σ1, δ2(q2, σ) = q′2

Let L(G1) and L(G2) be the closed behaviour, and Lm(G1) and Lm(G2) be the
marked behaviour of G1 and G2 respectively. Synchronizing G1 and G2 using the
synchronous product operator will generate the closed and marked behaviour of the
resultant DES G = G1 ||G2 as follows:

L(G) = L(G1) ||L(G2) and Lm(G) = Lm(G1) ||Lm(G2)
4See Definition A.3.1 of meet operator in Appendix A.

24

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

It follows from Definition 2.2.13 that:
L(G) = P−1

1 (L(G1)) ∩ P−1
2 (L(G2)) and Lm(G) = P−1

1 (Lm(G1)) ∩ P−1
2 (Lm(G2))

If both G1 and G2 are defined over the same alphabet Σ, i.e. Σ = Σ1 = Σ2, then:
L(G) = L(G1) ∩ L(G2) and Lm(G) = Lm(G1) ∩ Lm(G2)

However, if G1 and G2 are not defined over the same alphabet Σ, we can simply
add selfloops5 to each DES for the missing events at every state to extend them over
the same event set Σ, without any loss of generality.

It is important to note here that if Σ = Σ1 = Σ2, then synchronizing G1 and G2
using the synchronous product, product and meet operator will generate the same
closed and marked language of the resultant DES G. In this case, we have:

L(G) = L(G1 ||G2) = L(G1 ×G2) = L(meet(G1,G2)) = L(G1) ∩ L(G2)
Lm(G) = Lm(G1 ||G2) = Lm(G1 ×G2) = Lm(meet(G1,G2)) = Lm(G1) ∩ Lm(G2)
Note: In this thesis, we assume that we have m > 1 plant DES components, G1,G2,
. . . ,Gm, and that they are always combined using the synchronous product operator
to obtain the composite plant DES G, i.e. G = G1 ||G2 || . . . ||Gm. Likewise, we
have n > 1 modular supervisor DES, S1,S2, . . . ,Sn, and they are always assumed to
be combined using the synchronous product to construct the supervisor DES S, i.e.
S = S1 ||S2 || . . . ||Sn. We also assume that both G and S are always defined over the
same event set Σ, either by modelling the system in this way or by explicitly adding
selfloops later on, unless stated otherwise.

2.2.3 Controllability
Let DES G = (Q,Σ, δ, qo, Qm) be a plant and DES S = (X,Σ, ξ, xo, Xm) be a super-
visor. As per Definition 2.2.1, Σ = Σc ∪̇ Σu.

In order to construct the closed-loop system, we synchronize plant G and super-
visor S using a synchronization operator. The behaviour of G under the control of S
is referred to as the closed-loop behaviour of the system.
Definition 2.2.15. Supervisor S is controllable with respect to plant G if:

(∀s ∈ L(S) ∩ L(G)) (∀σ ∈ Σu) sσ ∈ L(G)⇒ sσ ∈ L(S)
This definition can be restated in terms of the eligibility operator as follows:

(∀s ∈ L(S) ∩ L(G))EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)
This definition states that for all legal strings s that are possible in the closed-loop

system, an uncontrollable event must be allowed by S if it is possible in G after s.
Note: In this thesis, as we will be focusing on timed DES models (introduced in the
next section), we will refer to this definition explicitly as the “untimed controllability”
definition.

5See Definition A.4.1 of selfloop operation in Appendix A.

25

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

2.3 Timed DES
Timed DES (TDES), introduced by Brandin (1993); Brandin and Wonham (1994),
is a discrete-time model that extends untimed DES theory by adding a new event
called the tick (τ) event. The tick event represents the passage of one time unit, and
corresponds to the tick of a global clock that the system is assumed to be synchronized
with. Thus, the event set of a TDES contains the tick event as well as other non-tick
events called activity events (Σact).
Definition 2.3.1. A TDES automaton G is formally represented as a 5-tuple:

G = (Q,Σ, δ, qo, Qm)
where Q is the state set, Σ = Σact ∪̇ {τ} is the event set, the partial function
δ : Q × Σ → Q is the transition function, qo ∈ Q is the initial state, and Qm ⊆ Q is
the set of marked states. We extend δ to δ : Q× Σ∗ → Q in the natural way.

TDES contain forcible events (Σfor) and prohibitable events (Σhib). Forcible events
represent a class of non-tick events which are guaranteed to occur before the next clock
tick, when required. Hence, they can be relied upon to preempt the tick event, when
needed. The method used by a TDES supervisor to indicate that an event σ ∈ Σfor

should be forced at a given state, is to disable tick at this state. This has the effect of
removing the now impossible behaviour that tick could occur before σ. Prohibitable
events are non-tick events that can be enabled or disabled by a supervisor.

Like a DES generator (Definition 2.2.1), the event set Σ of a TDES automaton can
be partitioned into the set of controllable events (Σc) and uncontrollable events (Σu),
i.e. Σ = Σc ∪̇ Σu. The set of controllable events in TDES theory is Σc = Σhib ∪̇ {τ},
where Σhib ⊆ Σact. The set of uncontrollable events is Σu = Σ− Σc = Σact − Σhib.

Let us consider a TDES G = (Q,Σ, δ, qo, Qm) with the following tuple information:
State set: Q = {q0, q1}
Event set: Σ = {e1, e2, tick}, where Σc = {e1, tick},Σu = {e2},Σact = {e1, e2}

and Σhib = {e1}
Transition function: δ = {(q0, e1, q1), (q1, e2, q1), (q1, tick, q0)}
Initial state: qo = q0
Set of marked states: Qm = {q0}
This TDES G is represented graphically in Figure 2.1. The states of G, q0 and

q1, are equated with the nodes (circles) of the graph. Transitions are represented
by arrows. Arrows are labelled by events, e1, e2 and tick, in Σ. The event name e2
in italics and preceded by “!”, indicates that the event is uncontrollable. The initial
state q0 is represented by a double circle, whereas a filled circle shows that q0 is also
a marked state.
Note: In this thesis, we will use the above-mentioned graphical notation to represent
our TDES models.

Since TDES framework is an extension of the DES theory, therefore all DES

26

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

e1

tick
!e2

q0 q1

Figure 2.1: An Example TDES Automaton

concepts and properties presented in the previous sections remain valid and applicable
to TDES theory. In the following sections, we introduce/restate only those definitions
that are specific to TDES framework.

2.3.1 Controllability and Supervision
Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm) be a
supervisor.
Definition 2.3.2. TDES supervisor S is timed controllable with respect to TDES
plant G if (∀s ∈ L(S) ∩ L(G)),

EligL(S)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σfor 6= ∅
This definition states that supervisor S must accept an uncontrollable event if it

is possible in the plant G after a legal string s. In addition, S must enable a tick
event if it is possible in G, unless there exists an eligible forcible event in the system
to preempt the tick.
Note: In this thesis, as we will only be dealing with TDES models, therefore we will
drop the word “timed”, and will refer to this property as “S is controllable with
respect to G” for simplicity.
Definition 2.3.3. A TDES supervisory control for G is any map V : L(G)→ Pwr(Σ)
such that (∀s ∈ L(G)),

V (s) ⊇
{

Σu ∪ ({τ} ∩ EligL(G)(s)) if V (s) ∩ EligL(G)(s) ∩ Σfor = ∅
Σu if V (s) ∩ EligL(G)(s) ∩ Σfor 6= ∅

In the following definitions, we write V/G to denote the pair (G, V), i.e. to
represent G under the supervision of V .
Definition 2.3.4. The closed behaviour of V/G is the language L(V/G) ⊆ L(G)
defined inductively as follows:

i. ε ∈ L(V/G)
ii. If s ∈ L(V/G), σ ∈ V (s), and sσ ∈ L(G) then sσ ∈ L(V/G)
iii. No other strings belong to L(V/G)
L(V/G) is prefix-closed, nonempty, and in the range {ε} ⊆ L(V/G) ⊆ L(G).

27

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Definition 2.3.5. The marked behaviour of V/G, Lm(V/G), is defined as:
Lm(V/G) := L(V/G) ∩ Lm(G)

Definition 2.3.6. V is said to be nonblocking for G if Lm(V/G) = L(V/G).

2.3.2 Control Equivalent Supervisors
Let G = (Q,ΣG, δ, qo, Qm) be a TDES plant. Let S1 = (X1,Σ1, ξ1, xo,1, Xm,1) and
S2 = (X2,Σ2, ξ2, xo,2, Xm,2) be two TDES supervisors.
Definition 2.3.7. Supervisors S1 and S2 are considered to be control equivalent for
a given plant G, if they produce the same closed-loop behaviour.

As this definition specifically focuses on the “closed-loop behaviour”, two points
are notable and worth elaborating.
1. This definition does not make any assumptions about how the two closed-loop sys-

tems are constructed, i.e. it is independent of the synchronization operators that
are used to form the two closed-loop systems. The two supervisors S1 and S2 may
be combined with G using the same synchronization operator, e.g. synchronous
product, or two different synchronization operators, e.g. S1 is combined with G
using synchronous product, and S2 is combined with G using the sampled-data
synchronous product operator (introduced in Section 4.1). As long as the closed-
loop behaviour of the two systems is the same, the definition remains applicable
and valid, and the choice of synchronization operator(s) is not important. This
will allow us to compare the action of two supervisors that are combined with the
same plant, but using different operators to construct the closed-loop systems.

2. The definition is given with respect to the closed-loop behaviour of the two sys-
tems, i.e. the closed and marked languages, and not in terms of the actual closed-
loop system automata. This is because a TDES representation of the two closed-
loop systems having the same closed-loop behaviour might not be exactly the
same due to different state labels. They might not even be identical up to state
relabelling as one TDES could be in its minimal form and the other one could
be a non-minimal version. However, irrespective of their minimal or non-minimal
representation, their closed and marked languages will still be same.
Based on the above discussion, we can restate the definition of two supervisors

being control equivalent for a given plant model (Definition 2.3.7) as follows.
Definition 2.3.8. Let Gcl,1 be the closed-loop system that is constructed by synchro-
nizing S1 and G, and let Gcl,2 be the closed-loop system that is formed by combining
S2 and G. Then S1 and S2 are said to be control equivalent for G if L(Gcl,1) = L(Gcl,2)
and Lm(Gcl,1) = Lm(Gcl,2).

28

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

!e1
e4 tick

!e3

e2
q0 q1 q2 q3

(a) TDES Plant G

!e1 e2 ticke4

!e3

x0 x1 x2 x3 x4

(b) TDES Supervisor S
Figure 2.2: An Example to Illustrate Various TDES Properties

e4
!e1

!e3

ticke2

tick

q0 q1 q2 q3

q4

(a) ALF TDES Plant G

tick

!e1 e4

!e3

e2 tick
x0 x1 x2 x3 x4

x5

(b) ALF TDES Supervisor S
Figure 2.3: An Example Satisfying ALF Property

2.3.3 TDES Properties
Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm) be a
supervisor.

We will use an example TDES plant G (Figure 2.2a) and TDES supervisor S
(Figure 2.2b) shown in Figure 2.2 to illustrate various TDES properties.

First, we want to impose a technical condition on our TDES to exclude the phys-
ically unrealistic possibility that a tick transition might be preempted indefinitely by
repeated execution of an activity loop within a fixed unit time interval.
Definition 2.3.9. TDES G is said to have an activity-loop if:

(∃q ∈ Q) (∃s ∈ Σ+
act) δ(q, s) = q

In Figure 2.2a, G has activity loops of “e1-e2-e3-e1” and “e4-e2-e3-e4” that could
preempt the tick event from occurring for an indefinite amount of time. Likewise,
tick event in S can be preempted indefinitely by repeated execution of “e1-e2-e3-e1”
activity loop, as shown in Figure 2.2b. To rule this out, we require that a TDES must
be activity-loop-free.
Definition 2.3.10. TDES G is activity-loop-free (ALF) if:

(∀q ∈ Qr) (∀s ∈ Σ+
act) δ(q, s) 6= q

Please note that this definition is given in terms of only the reachable states, since
unreachable states do not contribute to the closed and marked behaviour of a TDES.

One simple way to make our G and S of Figure 2.2 ALF is by adding a tick
transition after transition ‘e3’. This ALF version of G and S is shown in Figure 2.3.

Practically, it is not always possible to make supervisors ALF, as they typically
have selfloops of activity events. However, these selflooped events are sometimes not
possible in the plant model, thus making the closed-loop system ALF. Therefore,

29

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

!e3

!e1
e4 e2

x0 x1 x2 x3

(a) Non-Selfloop ALF TDES S

e2
!e1
e4 tick

x0 x1 x2 x3

(b) ALF TDES S′

Figure 2.4: An Example Illustrating Non-Selfloop ALF Property

in the sampled-data supervisory control theory (Wang, 2009; Leduc et al., 2014),
the authors desire that their supervisors should preferably satisfy a less restrictive
condition of being non-selfloop ALF.
Definition 2.3.11. Let S be a TDES, and let S′ be S with all activity event selfloops
removed. S is non-selfloop ALF if S′ is ALF.

This definition states that if we remove all activity event selfloops from a non-
selfloop ALF TDES S, then it must become ALF.

A non-selfloop ALF TDES S is shown in Figure 2.4a. If we remove the selfloop of
activity event e3 at state x2, the TDES becomes ALF, as shown in Figure 2.4b.

The following defintion is taken from Wong and Wonham (1996). Only plant
TDES are required to satisfy this property.
Definition 2.3.12. TDES G has proper time behaviour if:

(∀q ∈ Qr) (∃σ ∈ Σu ∪ {τ}) δ(q, σ)!
It says that at each reachable state, either an uncontrollable event or a tick event

must be possible. This ensures that a TDES can never express that a prohibitable
event must occur before the next tick, since a supervisor could disable that pro-
hibitable event, thus “stopping the clock”. This is neither desirable nor realistic.

TDES plant G shown in Figure 2.2a does not have proper time behaviour. The
reason is that at state q1, neither an uncontrollable event nor tick event is possible.
The only event possible at state q1 is the prohibitable event e2.

Usually, controllable events are often part of the supervisor’s implementation.
This means that supervisors can make these events to occur at any time, even when
the plant model says they can’t. In order to prevent the violation of the plant model,
the property of plant completeness was defined with respect to controllable events by
Balemi (1994). It has been adapted to use only prohibitable events for the sampled-
data supervisory control theory (Leduc et al., 2014), which is the basis of our work.
Definition 2.3.13. A TDES plant G is complete for TDES supervisor S if:

(∀s ∈ L(S) ∩ L(G)) (∀σ ∈ Σhib) sσ ∈ L(S)⇒ sσ ∈ L(G)
This definition states that for every state in G, if a prohibitable event σ is enabled

by S, it must be possible in G. This condition can be seen as dual to the definition
of S being controllable with respect to G (Definition 2.3.2).

In Figure 2.2, S enables prohibitable event e4 at state x2. However, event e4 is
not possible in G at state q2, thus violating the property of plant completeness.

30

Chapter 3

Sampled-Data Supervisory Control

Sampled-Data (SD) supervisory control theory (Wang, 2009; Wang and Leduc, 2012;
Leduc et al., 2014) focuses on the implementation of TDES supervisors as SD con-
trollers. It establishes sufficient conditions to ensure that if a theoretical TDES is
controllable, nonblocking, and satisfies these properties, then the physical implemen-
tation will also have these properties and exhibit correct behaviour as specified by
the control laws.

In this chapter, we will only focus on those aspects of the SD methodology that are
required to follow our work presented in the following chapters. To gain a thorough
understanding of the SD supervisory control theory, please refer to Wang (2009);
Wang and Leduc (2012); Leduc et al. (2014).

It is worth clarifying here that in the SD supervisory control setting (or “SD
setting,” for short) described in Wang (2009), the closed-loop system is constructed
by combining the TDES plant G = (Q,Σ, δ, qo, Qm) and the TDES supervisor S =
(X,Σ, ξ, xo, Xm) using the meet operator, i.e. meet(G,S), and all theoretical proofs
and results are given in terms of the meet. However, in Wang and Leduc (2012);
Leduc et al. (2014), the product operator is used to form the closed-loop system,
expressed as G× S, and discuss all verification results.

As noted in Section 2.2.2, if G and S are both defined over the same event set,
then meet(G,S), G × S, and G || S will produce the same closed and marked be-
haviours, and can thus be used interchangeably. To keep things simple and consistent
throughout this thesis, we will use the synchronous product operator to discuss the
SD supervisory control framework. In this case, we assume that S and G are defined
over the same event set. We will thus define the closed-loop system to be S ||G. The
system’s closed behaviour is thus defined as L(S ||G) = L(S)∩L(G), and its marked
behaviour as Lm(S ||G) = Lm(S) ∩ Lm(G).

31

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

3.1 SD Controllers
A sampled-data (SD) controller is driven by a global periodic clock whose clock edge
is associated with the tick (τ) event of the TDES. It views the system as a series of
inputs and outputs that can take the values of True and False only. On the rising
edge of the clock, it samples its inputs, changes its state based on the inputs and
current state, and updates its outputs based on the new state it has transitioned to.

To use an SD controller to manage a given system, an input is associated with each
non-tick event, called an activity event, and an output with each non-tick controllable
event, called a prohibitable event. The occurrence of an event is indicated by its input
going true during a given clock period. A prohibitable event is considered enabled
when its corresponding output has been set true by the controller, disabled otherwise.
If a prohibitable event is enabled at a given state, the controller will always make sure
it happens before the next clock edge. For example, in a digital logic implementation,
the output set to true is usually taken to mean that the event has occurred.

An SD controller samples inputs, changes state and updates outputs only on a
clock edge. This has the following implications: 1) An SD controller knows nothing
about the occurrence of events in a given sampling period (clock period) until the
next clock edge. 2) On the next clock edge, the only information it receives is which
events have occurred in a given sampling period. 3) Neither does it know anything
about the order the events occurred in, nor the number of times an event has occurred
in a given sampling period. 4) An SD controller updates the enablement and forcing
information on the clock edge and then keeps it unchanged for the entire clock period.

Figure 3.1 shows an example of event sampling with respect to an SD controller.
The left figure shows that Event1 and Event2 occurred in the 2nd sampling period.
However, an SD controller will know nothing about the occurrence of these events
until the next clock edge, i.e. 3rd rising edge of the clock. On the next clock edge,
the only information it receives is that Event1 and Event2 occurred in the sampling
period that has just ended, without any information about the order or frequency of
occurrence of these events (right figure). This means that an SD controller will not
know about the exact string that actually happened in the last sampling period, and
cannot differentiate between strings such as “Event1-Event2-τ”, “Event2-Event1-τ”,
“Event1-Event2-Event1-τ” or “Event2-Event2-Event1-τ”.

3.2 Concurrency and Timing Issues
Timed DES theory assumes that: 1) events occur in an interleaving fashion (we can
always determine the event ordering), 2) we know immediately when events occur,
and 3) enablement and forcing occur immediately (i.e. no communication delay).

Because these assumptions are not true in general for SD controllers, several con-
currency and timing issues arise when representing TDES supervisors as deterministic

32

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Figure 3.1: An Example for Event Sampling (Reprinted from Wang (2009))

SD controllers. For example, if multiple forcible events are enabled in a single clock
period (i.e. there is a choice), how does the controller decide which events to gener-
ate/force in the current clock period, and in which order to force the events? Likewise,
if an event is enabled for multiple clock periods (say 3 clock periods), how does the
controller decide when to force it and in which clock period (force it in the 1st, 2nd or
3rd clock period)? Also, if an SD controller is forcing multiple events (say e1 and e2)
in the same clock period, these events may only actually occur in a specific order (say
“e1-e2” only) even though the TDES model says they can occur in multiple orderings
(say “e2-e1” as well). This could even vary from one implementation to the other.

These issues have ramifications with respect to controllability, plant model cor-
rectness, and the SD controller’s ability to determine which state the TDES currently
is in. They could make the controller implementation block, uncontrollable, or violate
the specified control laws, even though our original TDES is nonblocking and con-
trollable. Also, these issues are important for the unambiguous translation of TDES
supervisors into SD controllers and to obtain a deterministic controller.

These issues are primarily addressed in the SD supervisory control framework by
introducing the property of SD controllability (Section 3.5).

3.3 SD Assumptions
The SD approach makes the following assumptions that must be met by the system
designer while developing the TDES models.
1. The set of prohibitable events is exactly equal to the set of forcible events, i.e.

Σfor = Σhib.
2. A prohibitable event is forced in the same sampling period in which it is enabled.

It is only allowed to occur once per clock period.
3. When an event is forced in a given sampling period, no assumptions are made

about exactly when the event will occur during that clock period. This is because
timing may vary depending upon the controller’s implementation.

33

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

4. The SD controllers will be implemented centrally with a common clock such that
they all are synchronized, i.e. they all sample inputs and update outputs at the
same time. Moreover, the controllers generate all prohibitable events, so that there
is no issue of communication delay with respect to event enablement/disablement.

5. An event is assumed to have “occurred” when its input goes true. If this happens
so close to the clock edge that it shows up in the next sampling period, then it
“occurs” immediately after the clock edge. The system designer should reflect this
in the plant model.

6. The length of an input pulse should be appropriate to be detected and interpreted
correctly by the controller. It should not be so short that it could be missed by
the controller (i.e. occurs between two clock edges). It should also not be so long
that the controller sees and interprets it as an event occurring multiple times in
different clock periods, when the event actually occurred only once in the current
clock period.
Assumptions 1, 4, 5 are not very restrictive and essentially represent modelling

issues. Assumptions 4, 5 partially deal with timing and communication delay issues.
Note: As we build our work on the SD supervisory control theory, these assumptions
apply to our study as well.

3.4 SD Preliminaries
Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm) be a
supervisor.

An SD controller samples inputs and changes state on the clock edge, which is
associated with the tick event of the TDES. This means an SD controller can only
observe strings ending with a tick. Additionally, it can also see the empty string (ε)
that represents the initial state of the system which is always known. Such strings
are referred to as sampled strings.
Definition 3.4.1. Given an event set Σ, the set of sampled strings, Lsamp, is defined
as Lsamp = Σ∗ . τ ∪ {ε}.

Sampled strings represent observable points in the system. If the controller is
implementing TDES supervisor S, states reached from the initial state by sampled
strings represent states in S that are at least partially observable. These states are
referred to as sampled states.
Definition 3.4.2. For supervisor S, the set of sampled states, Xsamp, is defined as:

Xsamp = {x ∈ X | (∃s ∈ L(S) ∩ Lsamp)x = ξ(xo, s)}
An SD controller changes state after each clock edge (tick). Its next state is

determined by all the strings that can occur containing a single tick event at the end,
since the last tick event. Such strings are referred to as concurrent strings.

34

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

!e2

e1
tick

e1

!e2

tick

x0

x1 x2 x3

x4 x5 x6

(a) Non-CS Deterministic Supervisor S

!e2

!e2

e1
tick

e1

x0

x1

x25 x36

x4

(b) CS Deterministic Supervisor S′

Figure 3.2: An Example Illustrating CS Deterministic Supervisor Property

Definition 3.4.3. Given a set of sampled strings Lsamp defined over an event set Σ,
the set of concurrent strings, Lconc, is defined as Lconc = Σ∗act . τ ⊂ Lsamp.

Two concurrent strings containing the same events but in different order/number
are indistinguishable to an SD controller. An occurrence operator is defined to capture
this uncertainity. The occurrence operator takes a string and returns the set of events
(occurrence image) that make up the string.
Definition 3.4.4. For s ∈ Σ∗, the occurrence operator, Occu : Σ∗ → Pwr(Σ), is
defined as Occu(s) := {σ ∈ Σ | s ∈ Σ∗.σ.Σ∗}.

If two concurrent strings with the same occurrence image are possible at a given
sampled state and they lead to two different states in S, this will make the trans-
lation of S into an SD controller ambiguous and the translated SD controller non-
deterministic. To circumvent this undesirable situation, TDES supervisors are re-
quired to be concurrent string deterministic.
Definition 3.4.5. A TDES supervisor S is concurrent string (CS) deterministic, if:

(∀s ∈ L(S) ∩ Lsamp) (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S) ∧Occu(s′) = Occu(s′′)]⇒
[ss′ ≡L(S) ss

′′ ∧ ss′ ≡Lm(S) ss
′′ ∧ ξ(xo, ss′) = ξ(xo, ss′′)]

A supervisor S failing the CS deterministic property is shown in Figure 3.2a. In
S, two concurrent strings, “e1-e2-τ” and “e2-e1-τ”, leave the initial state x0. Despite
having the same occurrence image of {e1, e2, τ}, they go to two different sampled
states, x3 and x6. In this case, we note that S fails Definition 3.4.5 because it is
not minimal (Definition 2.2.10). For example, states x3 and x6 are λ-equivalent
(Definition 2.2.9) and can be combined together. This is also true for states x2 and
x5. After combining these λ-equivalent states, the resulting minimal TDES S′ is
shown in Figure 3.2b. Please note that we cannot merge two or more states to obtain
a CS deterministic supervisor if they are not λ-equivalent.

One of the assumptions (Point 2 of Section 3.3) says that the controllers allow
prohibitable events to occur only once per sampling period. This must be reflected
in the TDES plant model and is captured by the following property.
Definition 3.4.6. For TDES plant G and TDES supervisor S, G is said to have

35

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

!e2e1

tick

e1

q0 q1 q2 q3

(a) TDES Plant G

e1 e1!e2

tick

x0 x1 x2 x3

(b) TDES Supervisor S
Figure 3.3: An Example Failing S-Singular Prohibitable Behaviour Property

S-singular prohibitable behaviour if:
(∀s ∈ L(S) ∩ L(G) ∩ Lsamp) (∀s′ ∈ Σ∗act) ss′ ∈ L(S) ∩ L(G)⇒

(∀σ ∈ Occu(s′) ∩ Σhib)σ /∈ EligL(G)(ss′)
An example failing the property of S-singular prohibitable behaviour is shown in

Figure 3.3. Plant G (Figure 3.3a) does not have S-singular prohibitable behaviour
with respect to supervisor S (Figure 3.3b). This is because the prohibitable event e1
is possible twice in the given sampling period in G, at state q0 and q2, and this event
is also allowed by S.

3.5 SD Controllability
Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm) be a
supervisor.

Assume a theoretical system with the following properties: 1) TDES G and S
have finite state spaces and finite event sets, 2) G has proper time behaviour and
is complete for S, 3) S is controllable with respect to G, 4) S is CS deterministic,
and 5) S ||G is ALF and nonblocking. Even if TDES satisfy the above-mentioned
properties, the actual system behaviour under the control of the corresponding SD
controller could block, violate the control laws, or exhibit behaviour not contained
in G. To address these issues and handle the problems discussed in Section 3.2, the
property of SD controllability is introduced.
Definition 3.5.1. TDES supervisor S is SD controllable with respect to TDES plant
G if, ∀s ∈ L(S) ∩ L(G), the following statements are satisfied:

i) EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)

ii) If τ ∈ EligL(G)(s), then τ ∈ EligL(S)(s)⇔ EligL(S)∩L(G)(s) ∩ Σhib = ∅

iii) If s ∈ Lsamp then

1) (∀s′ ∈ Σ∗act) [ss′ ∈ L(S) ∩ L(G)]⇒
[EligL(S)∩L(G)(ss′) ∪Occu(s′)] ∩ Σhib = EligL(S)∩L(G)(s) ∩ Σhib

2) (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S) ∩ L(G) ∧Occu(s′) = Occu(s′′)]⇒
ss′ ≡L(S)∩L(G) ss

′′ ∧ ss′ ≡Lm(S)∩Lm(G) ss
′′

36

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

e1

tick

tick

e1

tick

e1

q1 q2 q3

q4

(a) TDES G

tick

e1
e1

tick

e1

tick

x1 x2 x3

x4

(b) TDES Sup1

e1

tick

tick

x1 x2

x3

(c) TDES Sup2
Figure 3.4: An Example of SD Controllability Point ii (⇒)

iv) Lm(S) ∩ Lm(G) ⊆ Lsamp

We now give a brief explanation for each of these points.
Point i: This is the standard untimed controllability property (Definition 2.2.15).
Point ii: In the reverse direction (⇐), it says that a tick event cannot be disabled
unless there exists an eligible prohibitable event to preempt the tick. Together with
Point i, this implies standard timed controllability (Definition 2.3.2), since Σfor = Σhib

in the SD setting.
The forward direction (⇒) states that if a prohibitable event is enabled, tick must

be disabled. This captures the notion that a prohibitable event is enabled only when
it needs to be forced, otherwise it must remain disabled. This removes the ambiguity
about which sampling period an enabled prohibitable event should be forced in, by
making enabling and forcing essentially one and the same. This not only makes the
conversion of TDES supervisors into SD controllers simple and straightforward, but
also ensures that TDES behaviour is closer to the implementation by removing forcing
options that are not actually used in the physical system.

For plant G (Figure 3.4a), supervisor Sup1 (Figure 3.4b) does not satisfy Point
ii (⇒) as both tick and prohibitable event e1 are enabled at states x1 and x2. This
creates uncertainty about when event e1 should be forced (at state x1, x2 or x3) and
makes the translation of TDES supervisors into SD controllers ambiguous. However,
supervisor Sup2 (Figure 3.4c) satisfies this property and removes the ambiguous and
unused behaviour by allowing tick to occur at state x1 and forcing prohibitable event
e1 at state x2.
Point iii: For a sampled string s, the following two sub points must be satisfied.

Point iii.1: This point expresses that when a prohibitable event is possible in a
clock period, it must be possible immediately after the tick and stay possible for the
period until it occurs. This captures two ideas: 1) The enablement information of
an SD controller is constant for the entire clock period. 2) When a controller forces
a prohibitable event, the event must occur before the next tick, but we don’t know
when. So the event must be possible in the plant for the entire clock period till it
occurs and must be able to interleave with the other events occurring in the same clock
period. Point iii.1 bridges the gap between TDES supervisors and SD controllers by

37

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

restricting the way the TDES supervisors change their enablement information and
makes it consistent with the SD controllers. This property also emphasizes that if two
prohibitable events should occur in a specific order, they must be forced in separate
clock periods.

Point iii.2: This point states that if two concurrent strings with the same occur-
rence image are possible after a given sampled string, they must have the same future
with respect to the system’s closed behaviour (i.e. same control action must be taken
now and in the future for both strings), and with respect to its marked behaviour
(i.e. the strings are interchangeable with respect to reaching future marked states).
Point iv: All marked strings in the closed-loop system must be sampled strings.

It is worth noting that Point iii and Point iv apply to both G and S.

3.6 Formal Model of SD Controller
In the SD supervisory control framework, an SD controller is modelled as a Moore
synchronous Finite State Machine (FSM) (Brown and Vranesic, 2013). A Moore FSM
is a Moore state machine that changes state only on the rising or falling edge of the
clock. It chooses its next state based on its current state and inputs. Its outputs are
determined by its current state only.

Before giving the formal definition of an SD controller, first we need to introduce
some notation.

The inputs and outputs of an SD controller are represented as boolean vectors. A
boolean vector is a vector whose individual elements can only be assigned the values
of True (1) or False (0). These vectors of information change periodically with respect
to some clock.

Let k ∈ {0, 1, 2, . . .}. For any vector v = [v1, v2, . . . , vn] ∈ V or any of its element
vj where j ∈ {1, . . . , n}, “v(k)” and “vj(k)” is used to denote the value of v and
vj at time k. “At time k” means that k clock ticks have gone by since the starting
reference point, k = 0. For k = 0, v(0) represents the initial or starting value of v.
k = 0 represents the time when an SD controller has just been turned on or reset.
As index k takes on new values, vector v defines a sequence with respect to the clock
ticks, which are defined to be {v(k) | k = 0, 1, 2 . . .}, and is denoted as {v(k)}. A
‘clock tick’ corresponds to the occurrence of a tick event of a TDES.
Definition 3.6.1. An SD controller C is defined as a 6-tuple, C = (I, Z,Q,Ω,Φ,qres),
where:
• I is the set of possible boolean vectors that the inputs of the controller can take

on. Each vector i = [i0, i1, . . . , iv−1] ∈ I has v input variables. Each element of I
corresponds to a unique activity event in the system. When an element is set to
1, this means the corresponding event has occurred at least once in the previous
clock period, otherwise it is set to 0. Each input vector i(k′) ∈ {i(k)} is sampled at

38

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

the occurrence of a tick event, except for k = 0 which occurs when the controller
is turned on.

• Z is the set of possible boolean vectors that the outputs of the controller can take
on. Each vector z = [z0, z1, . . . , zr−1] ∈ Z has r output variables. Each element of
Z corresponds to a unique prohibitable event in the system. When an element is
set to 1, this means the corresponding event is enabled and the controller should
make the event occur before the next clock tick, where 0 means it is disabled.
Each output vector z(k′) ∈ {z(k)} is generated at the occurrence of a tick event,
except for k = 0 which occurs when the controller is turned on.

• Q is the set of possible boolean vectors that the states of the controller can take on.
Each vector q = [q0, q1, . . . , ql−1] ∈ Q has l state variables. Starting at k = 1, each
state q(k′) ∈ {q(k)} changes to next state q(k′ + 1) ∈ {q(k)} at the occurrence
of a tick event.

• Ω : Q× I → Q is the next-state function. It takes the current state q(k) ∈ Q and
an input vector i(k + 1) ∈ I, and returns the next state q(k + 1) ∈ Q such that
q(k + 1) = Ω(q(k), i(k + 1)).

• Φ : Q→ Z is the state-to-output map. For state q ∈ Q, the output z ∈ Z at this
state is defined as z = Φ(q).

• qres ∈ Q is the initial (reset) state for when the controller starts operating or is
reset. Thus we have q(0) = qres.
Starting at time k = 0, a specific run of the controller would give a specific

sequence of inputs {i(k)}. This sequence, combined with qres and Ω, will uniquely
define the current sequence of states, {q(k)}. In turn, {q(k)} and Φ will uniquely
define the current sequence of outputs, {z(k)}. To distinguish between two vector
sequences, different variables will be used, e.g. {i(k)} and {i(k′)}.

3.7 TDES to FSM Translation
In this section, we introduce the TDES to FSM translation method from Wang and
Leduc (2012). We focus on the aspects that are required to comprehend our work
presented in the following chapters. Please refer to Wang (2009); Wang and Leduc
(2012) for an in-depth discussion of the complete translation method.

The TDES to FSM translation starts with a CS deterministic supervisor S =
(X,Σ, ξ, xo, Xm). By using the information for S, it constructs the corresponding SD
controller C = (I, Z,Q,Ω,Φ,qres).

In order to do the translation, each item in the controller’s tuple (i.e. I, Z,Ω,
etc.) needs to be defined in terms of TDES S. To do this, the authors have defined
several translation functions. These functions capture the next state behaviour and
enablement information from S, associate events with elements of input and output
vectors, and associate sampled states of S with states of the controller. They also

39

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

map event subsets of input or output vectors, as well as define the controller’s next
state logic (Ω) and state-to-output map (Φ) in terms of supervisor S.

3.7.1 Translation Functions
Let TDES G = (Y,Σ, δ, yo, Ym) be a plant and TDES S = (X,Σ, ξ, xo, Xm) be a
supervisor. Let Σact ⊂ Σ be the set of all activity events, and Σhib ⊆ Σact be the
set of all prohibitable events. Let Xsamp ⊆ X be the set of sampled states of S.
Let C = (I, Z,Q,Ω,Φ,qres) be the controller implementation of a CS deterministic
supervisor S.

A formal TDES to FSM translation method has been developed by defining several
translation functions. These translation functions can be used to take the components
of S, and define the components of C. Below, we only list down those functions that
we need to prove our equivalence of the SD controllers presented in Chapter 7.

TDES Mapping Functions

The following two functions express the SD behaviour of a TDES.
Definition 3.7.1. Let S be a CS deterministic TDES. For x ∈ Xsamp and Σ′ ⊆ Σact,
the partial function of next sampling state function, ∆ : Xsamp×Pwr(Σact)→ Xsamp,
is defined as:

∆(x,Σ′) :=
{

ξ(x, s) if (∃s ∈ Lconc) ξ(x, s)! & Occu(s) ∩ Σact = Σ′
undefined otherwise

The next sampling state function represents how a TDES will move from one
sampled state to the next via concurrent strings.
Definition 3.7.2. Let TDES supervisor S be SD controllable with respect to TDES
plant G. For x ∈ Xsamp, the prohibited action function, ζ : Xsamp → Pwr(Σhib), is
defined as ζ(x) := {σ ∈ Σhib | ξ(x, σ)!}.

This function defines the control action that will take place at a given sampled
state x, i.e. it captures the prohibitable events that are enabled at x.

Event Mapping Functions

For the following event mapping functions, let ΣS ⊆ Σ be the event set of a CS
deterministic supervisor S.
Definition 3.7.3. Let bijective map1 γg : Σact → {0, . . . , |Σact| − 1} be the canonical
event mapping function such that (∀σ1, σ2 ∈ Σact)σ1 = σ2 ⇔ γg(σ1) = γg(σ2).

1See Definition A.5.1 of bijective function in Appendix A.

40

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Definition 3.7.4. The input event mapping function for C is a bijective map γ : ΣS∩
Σact → {0, 1, . . . , v − 1}, where v = |ΣS ∩ Σact|. It is defined such that:

(∀σ1, σ2 ∈ ΣS ∩ Σact) γg(σ1) < γg(σ2)⇒ γ(σ1) < γ(σ2)
Definition 3.7.5. The output event mapping function for C is a bijective map η : ΣS∩
Σhib → {0, 1, . . . , r − 1}, where r = |ΣS ∩ Σhib|. It is defined such that:

(∀σ1, σ2 ∈ ΣS ∩ Σhib) γg(σ1) < γg(σ2)⇒ η(σ1) < η(σ2)

Controller Functions

For the following definitions, let C be the corresponding controller for CS determin-
isitic supervisor S.
Definition 3.7.6. Let Σact ⊂ Σ be the set of global activity events. Let ig be a
single input vector that the system sees, i.e. it is globally available. ig = [ig,0, ig,1, . . . ,
ig,vg−1] is required to be defined over Σact, where vg = |Σact|. That is, for any event
σ ∈ Σact, there is an element in ig that corresponds to σ and only σ. We call {ig(k)}
a canonical input sequence, and ig ∈ {ig(k)} a canonical input vector2.
Definition 3.7.7. For CS deterministic supervisor S, let Λ : Xsamp → Q be an arbi-
trary injective map, where Xsamp ⊆ X. Λ is a state mapping function for C if, for all
x ∈ Xsamp, Λ(x) returns a vector of state variables q = [q0, q1, . . . , ql−1] such that:

(∀x1, x2 ∈ Xsamp) Λ(x1) = Λ(x2)⇔ x1 = x2

The initial state is also a sampled state, and is mapped to be Λ(xo) = qres = q(0).
Definition 3.7.8. Let γ be the input event mapping function for C. A bijective map
of input set mapping function for C, ΓI : Pwr(Σact) → I, is defined as follows. For
arbitrary ΣI ⊆ Σact, we have ΓI(ΣI) = [i0, i1, . . . , iv−1] such that for j = 0, 1, . . . , v−1,

ij :=
{

1 if (∃σ ∈ ΣI) γ(σ) = j
0 otherwise

Definition 3.7.9. Let η be the output event mapping function for C. A bijective
map of output set mapping function for C, ΓZ : Pwr(Σhib)→ Z, is defined as follows.
For arbitrary ΣZ ⊆ Σhib, we have ΓZ(ΣZ) = [z0, z1, . . . , zr−1] such that for j =
0, 1, . . . , r − 1,

zj :=
{

1 if (∃σ ∈ ΣZ) η(σ) = j
0 otherwise

Definition 3.7.10. Let ∆ be the next sampling state function for S, and let Xsamp ⊆
X. For state q ∈ Q and arbitrary input i ∈ I, the next state function Ω is defined as:

Ω(q, i) :=
{

Λ(∆(x,Γ−1
I (i))) if (∃x ∈ Xsamp) q = Λ(x) & ∆(x,Γ−1

I (i))!
arbitrary otherwise

2The use of “canonical” here refers to the size and ordering of the inputs, not to the actual values
of the input sequence or a given vector.

41

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Definition 3.7.11. Let ζ be the prohibited action function for S. For state q ∈ Q,
the state-to-output map Φ is defined as:

Φ(q) :=
{

ΓZ(ζ(x)) if (∃x ∈ Xsamp) q = Λ(x)
ΓZ(∅) otherwise

3.7.2 Translation Method
This section defines the TDES to FSM translation method from Wang (2009); Wang
and Leduc (2012), and provides a simple example.

To translate a TDES supervisor S = (X,Σ, ξ, xo, Xm) into an SD controller
C = (I, Z,Q,Ω,Φ,qres), S must be CS deterministic to ensure that the resulting
SD controller is deterministic. This translation method will not work otherwise. In
practice, S should preferably be non-selfloop ALF as well. However, this is just a
design aid, and not a hard requirement.

In order to construct an SD controller C, the values for each member of its tuple
need to be defined. To define I, Z and Q, the authors define the size of each vector,
as each element will represent a distinct σ ∈ Σact, σ ∈ Σhib, or state x ∈ Xsamp

respectively. For each i ∈ I, its size is defined as v = |Σact|. For each z ∈ Z, its size
is defined as r = |Σhib|.

To define the size of Q, the size of each q ∈ Q needs to be large enough to encode
a unique value for each x ∈ Xsamp ⊆ X. If each state contains l elements, 2 unique
values can be expressed. Thus, l is selected such that 2l−1 < |Xsamp| ≤ 2l.

The mapping functions (given in the previous section) are then used to associate
event subsets and sampled states to specific values in I (map ΓI), Z (map ΓZ) and
Q (map Λ). The initial/reset state is immediately set to qres = Λ(xo).

Next, Definition 3.7.10 is used to define the controller’s next state function, Ω. It
is notable that if the input vector does not represent a concurrent string accepted by
S, the next state (and thus the resulting logic) is defined arbitrary.

Finally, Definition 3.7.11 is used to define the controller’s state-to-output map, Φ.
Please note that if state q does not represent a sampled state (i.e. |Xsamp| < 2l, and
thus have unused states), then all of its outputs are set to False (0).

Informally, the translation process begins by taking the sampled states of S as
the states of C. The initial state of S would be the initial (reset) state of C. Next
step is to determine which concurrent strings are possible from a given sampled state.
The occurrence image of these concurrent strings would then define the next-state
conditions, and the state will be changed accordingly.

As an example, consider the CS deterministic supervisor S and its corresponding
translated FSM shown in Figure 3.5. The sampled states of S (Figure 3.5a), x0 (initial
state), x4 and x6, are equated to three states in the FSM (Figure 3.5b), qres = x0 =
[0, 0], x4 = [0, 1] and x6 = [1, 0]. We assume the ordering I = [e1, e2, w1, w2, u1, u2],
and Z = [e1, e2, w1, w2]. As only two prohibitable events, e1 and e2, are possible at
state x0 in S, only these outputs are set to 1 at state [0, 0] in the FSM. Similarly, all

42

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

e2 e1

tick

tick

w2w1

!u2!u1

e2e1

w1

tick

w2

tick
x0

x1 x2

x3

x4 x6x5

x7 x8

x9x10

(a) TDES Supervisor S

Q=[0, 0]

Z=[1,1,0,0]

Reset

DEF

Q=[0, 1]

Z=[0,0,0,0]

[1,1,0,0,0,0] [0,0,0,0,1,0]

DEF

Q=[1, 0]

Z=[0,0,1,1]

[0,0,0,0,0,1]

[0,0,1,1,0,0]

DEF

(b) Translated FSM
Figure 3.5: An Example of TDES to FSM Translation Method (Reprinted from

Wang (2009))

outputs are set to 0 at state [0, 1], and only w1 and w2 outputs are set to 1 at state
[1, 0].

Examining state x0, we see that the only concurrent strings leaving it are “e1-e2-
τ” and “e2-e1-τ”. They have the same occurrence image and both strings take us to
the same next state x4 in S. Thus, our next-state condition is that only when e1 and
e2 have occurred, we go to state [0, 1] in the FSM. Next-state conditions for other
sampled states are determined in the similar fashion.

As ξ of S is a partial function and Ω of C is a total function, a DEF (default)
transition usually needs to be added to the translated FSM. DEF is a shorthand
notation to cover input combinations that are not explicitly specified, i.e. it matches
all the remaining unspecified input combinations.

3.8 Supervisory Control
The concept of supervisory control V (Definition 2.3.3) is originally defined in terms
of the set of forcible events, Σfor. Since Σfor = Σhib in the SD setting, this definition
has been expressed with respect to the set of prohibitable events as follows.
Definition 3.8.1. A TDES supervisory control for G = (Y,Σ, δ, yo, Ym) is a map
V : L(G)→ Pwr(Σ), such that (∀s ∈ L(G)),

V (s) ⊇
{

Σu ∪ ({τ} ∩ EligL(G)(s)) if V (s) ∩ EligL(G)(s) ∩ Σhib = ∅
Σu if V (s) ∩ EligL(G)(s) ∩ Σhib 6= ∅

Note: In this thesis, as we will only be dealing with TDES models, therefore we will
drop the word “TDES”, and will often refer to this property as “V is a supervisory
control for G”.

43

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Definition 3.8.2. For TDES G = (Y,Σ, δ, yo, Ym), the concurrent behaviour of G is
defined to be a map CBG : L(G) ∩ Lsamp → Pwr(Lconc)3, such that for s ∈ L(G) ∩
Lsamp, CBG(s) := {s′ ∈ Lconc | ss′ ∈ L(G)}.

It says that the possible concurrent behaviour for G after sampled string s, is the
set of concurrent strings that can extend s to a string in the closed behaviour of G.

Since an SD controller only changes state when a tick occurs, it is difficult to relate
its control action directly to strings. Therefore, a corresponding supervisory control V
is constructed to express the enablement information that controller C would provide
to plant G. Precisely, it captures two ideas: 1) Enablement information changes
immediately after a tick event and then stays constant till the next tick. 2) As soon
as a prohibitable event is enabled, the controller will force the event to occur before
the next tick.

Algorithm 3.1 constructs supervisory control V (Proposition 3.3 (page 48) shows
that V is indeed a TDES supervisory control) by keeping track of how controller
C = (I, Z,Q,Ω,Φ,qres) changes state in response to strings generated by plant
G = (Y,Σ, δ, yo, Ym). A brief description of the algorithm, and variables used in
the algorithm follows.
• Pend ⊆ Lsamp×Q: Set of pending string-state pairs, (s,q), to be analyzed, where
s is a sampled string in L(G), and q ∈ Q is the corresponding state in C reached
by input sequences that would match the concurrent strings that make up s. If
s = ε, then q = qres.

• ΣV : Set of prohibitable events enabled by V (s) for current sampled string s that
is being processed.

• Σtemp: Copy of ΣV that is made while processing a concurrent string that extends
sampled string s that is currently being processed. It keeps track of the prohibitable
events in ΣV that have not yet occurred in substrings of the concurrent strings that
extend s in L(G).
For all strings s ∈ L(G), the algorithm starts by adding all uncontrollable events

(Σu) and tick (τ) event to V (s) from lines 1-3. This is done to satisfy Definition 3.8.1
of supervisory control V .

As controller always starts operating at its reset state, (ε,qres) is the 1st string-
state pair that is added to Pend at line 4. All string-state pairs that get added to
Pend during the execution of the algorithm are extracted and analyzed one by one
in the while-loop running from lines 5-31.

At lines 6-7, the next string-state pair to be analyzed, (s,q), is extracted and re-
moved from Pend. At line 8, for current state q of C, the output vector z is obtained
by applying the state-to-output map Φ (Definition 3.7.11). At line 9, z is used to
construct ΣV using the inverse of output set mapping function ΓZ (Definition 3.7.9).

3This map is different from the map of Definition 4.1 given in Leduc et al. (2014) due to an error
in the original definition.

44

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 3.1 Obtaining V from Controller C, Acting on Plant G
1: for all s ∈ L(G) do
2: V (s)← Σu ∪ {τ}
3: end for
4: Pend ← {(ε,qres)}
5: while Pend 6= ∅ do
6: (s,q)← a member from Pend
7: Pend← Pend− {(s,q)}
8: z← Φ(q)
9: ΣV ← Γ−1

Z (z)
10: if ΣV 6= ∅ then
11: V (s)← (V (s) ∪ ΣV)− {τ}
12: end if
13: for all s′ ← σ1σ2 . . . σj ∈ CBG(s) do // σj = τ by definition
14: if (Occu(s′) ∩ Σhib ⊆ ΣV) ∧ (ss′ ∈ L(S)) then
15: Σtemp ← ΣV

16: i← ΓI(Occu(s′)− {τ})
17: q′ ← Ω(q, i)
18: Pend← Pend ∪ {(ss′,q′)}
19: if j > 1 then
20: for i← 1 to j − 1 do
21: Σtemp ← Σtemp − σi
22: if Σtemp 6= ∅ then
23: V (sσ1σ2 . . . σi)← (V (sσ1σ2 . . . σi) ∪ ΣV)− {τ}
24: else
25: V (sσ1σ2 . . . σi)← (V (sσ1σ2 . . . σi) ∪ ΣV)
26: end if
27: end for
28: end if
29: end if
30: end for
31: end while
32: return V

ΣV now contains the set of all prohibitable events enabled by C at state q.
Lines 10-12 process V (s). If any prohibitable event is enabled at state q (line

10), the enablement information ΣV is added to V (s) for current sampled string
s (line 11). Also, since a prohibitable event is enabled and needs to be forced,
tick (added at line 2) gets removed from V (s) to satisfy Point ii (⇒) of the SD
controllability definition (Definition 3.5.1).

Lines 13-30 loops through all possible concurrent strings s′ that extend s in

45

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

L(G) (s′ = σ1σ2 . . . σj ∈ CBG(s)). However, at line 14, those concurrent strings
whose occurrence images contain prohibitable events that have been disabled by C
at state q (not in ΣV) are ignored. Line 14 also disregards concurrent strings that
do not represent a valid behaviour by extending s in L(S), thus restricting the valid
strings to L(S) ∩ L(G). As these illegal strings represent behaviour that will not
actually happen in the closed-loop system, they are left at their default enablement
information (line 2).

Line 15 copies ΣV to Σtemp. Using the occurrence image of concurrent string s′,
line 16 computes input vector i by applying input set mapping function ΓI (Def-
inition 3.7.8). At line 17, the next-state function Ω (Definition 3.7.10) is used to
compute the next state q′ of C that is reached from q by i. This new string-state
pair (ss′,q′) also needs to be analyzed, so it is added to Pend at line 18.

Line 19 checks to see if s′ contains any activity events (for j = |s′|, if j > 1). If
so, each substring σ1σ2 . . . σi, where i < j, is analyzed from lines 20-27.

Line 21 potentially removes one prohibitable event from Σtemp. If Σtemp con-
tains more prohibitable events that have not yet occurred (line 22), then tick is
removed from V (sσ1σ2 . . . σi) to force the remaining enabled prohibitable events in
the current sampling period (line 23). Otherwise, tick event is not removed from
V (sσ1σ2 . . . σi) (line 25). Moreover, in both cases, ΣV is added to V (sσ1σ2 . . . σi),
since the enablement information of C remains constant until the next tick.

It is worth clarifying that this algorithm abstractly describes how map V is related
to C. As L(G) may not be finite, there might be infinite number of string-state pairs
to analyze, and the algorithm may never terminate. In Wang (2009), the authors
have proven that map V constructed from C using this algorithm is well defined.
Definition 3.8.3. For plant G, and CS deterministic supervisor S that is SD con-
trollable for G, let C be the SD controller that is constructed from S using the
translation method described in Section 3.7, and let V be the map that is con-
structed from C using Algorithm 3.1. The marked behaviour of V/G is defined as
Lm(V/G) := L(V/G) ∩ Lm(S) ∩ Lm(G).
Definition 3.8.4. V is said to be nonblocking for G if Lm(V/G) = L(V/G).

3.9 Verification Results
Comprehensive theoretical proofs and results for verifying the control action of an
SD controller and comparing it to that of the TDES supervisor from which it was
converted are presented in Wang (2009); Leduc et al. (2014). In this section, we only
outline some significant conclusions, and restate those theorems/propositions that we
will refer to in our work presented in the subsequent chapters.

For TDES plant G, TDES supervisor S and an SD controller C, the system is
required to satisfy the following properties: 1) G and S have finite state spaces and
finite event sets, 2) G has proper time behaviour, 3) G is complete for S, 4) G has

46

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

S-singular prohibitable behaviour, 5) S || G is ALF, 6) S is SD controllable with
respect to G, 7) S is CS deterministic, and 8) C is an SD controller translated from S
as described in Section 3.7. Given that these conditions are met, the following results
have been proven for the SD supervisory control methodology.

3.9.1 SD Controller as a Supervisory Control
To compare the control action of S and C, a supervisory control V is constructed
using Algorithm 3.1. It is demonstrated in Wang (2009) that V is indeed a map that
expresses the enablement and forcing behaviour of C.

Proposition 3.1 given below is taken from Leduc et al. (2014). Although the control
action of C could be quite different than that of S, this proposition proves that if any
string is not accepted by S, it will also be rejected by C, i.e. if a certain path is not
possible in the theoretical model, it can never occur in the implemented system, thus
preventing the physical system to behave in an undesirable and unexpected way.
Proposition 3.1. (Leduc et al., 2014) For plant G and supervisor S, let S be CS
deterministic and SD controllable for G, and let G be complete for S, and have S-
singular prohibitable behaviour. Let C be the SD controller that is constructed from
S.
(∀s ∈ L(S) ∩ L(G) ∩ Lsamp) (∀s′ ∈ CBG(s))
If s takes C to state q and ss′ 6∈ L(S) then C will reject s′.

3.9.2 Controllability
Using Proposition 3.2, Theorem 3.1 given below proves that the closed-loop behaviour
of G under the control of C (represented as L(V/G)) is same as the closed-loop
behaviour of S and G. This is despite the fact that S can change its enablement and
forcing information at any time, as opposed to C that is restricted to do so only on
the clock edge and then it must keep it constant during the entire clock period. This
shows that SD controllers can be used to implement TDES supervisors and obtain
the expected closed-loop behaviour, at least with respect to the required enablement
and forcing actions of the controller.
Proposition 3.2. (Leduc et al., 2014) For CS deterministic supervisor S = (X,Σ, ξ,
xo, Xm), let C = (I, Z,Q,Ω,Φ,qres) be the SD controller that is constructed from S.
(∀s ∈ L(S) ∩ Lsamp)
String s will take C to state q = Λ(ξ(xo, s)) with outputs σ ∈ Σq = EligL(S)(s)∩Σhib

set to true.
Theorem 3.1. (Leduc et al., 2014) For plant G = (Y,Σ, δ, yo, Ym) and CS determin-
istic supervisor S = (X,Σ, ξ, xo, Xm) that is SD controllable for G, let both TDES
have finite state spaces, let G be complete for S, have proper time and S-singular
prohibitable behaviour, let S || G be ALF, let C = (I, Z,Q,Ω,Φ,qres) be the SD

47

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

controller that is constructed from S, and let V be the map that is constructed from
C using Algorithm 3.1. Then, L(V/G) = L(S) ∩ L(G).

By proving the following proposition, it has been demonstrated that map V is
indeed a TDES supervisory control for G.
Proposition 3.3. (Leduc et al., 2014) For plant G = (Y,Σ, δ, yo, Ym) and CS deter-
ministic supervisor S = (X,Σ, ξ, xo, Xm) that is SD controllable for G, let both TDES
have finite state spaces, let G be complete for S, have proper time and S-singular
prohibitable behaviour, let S || G be ALF, let C = (I, Z,Q,Ω,Φ,qres) be the SD
controller that is constructed from S, and let V be the map that is constructed from
C using Algorithm 3.1. Then map V is a TDES supervisory control for G.

3.9.3 Event Generation
Theorem 3.2 has been proven in Leduc et al. (2014) to show that C cannot generate
a prohibitable event when G won’t accept it. This result guarantees that illegal
transitions won’t occur, thus preventing the system from violating control laws. It
also means that G will accurately reflect the system’s behaviour when controlled by
C.
Theorem 3.2. (Leduc et al., 2014) For plant G = (Y,Σ, δ, yo, Ym) and CS determin-
istic supervisor S = (X,Σ, ξ, xo, Xm) that is SD controllable for G, let both TDES
have finite state spaces, let G be complete for S, have proper time and S-singular
prohibitable behaviour, let S || G be ALF, let C = (I, Z,Q,Ω,Φ,qres) be the SD
controller that is constructed from S, and let V be the map that is constructed from
C using Algorithm 3.1.
(∀s ∈ L(V/G) ∩ Lsamp) (∀s′ ∈ Σ∗act) (∀σ ∈ Σhib)
If ss′ ∈ L(V/G) and σ then physically occurs after ss′ and before any other events
can occur, then ss′σ ∈ L(G).

3.9.4 Nonblocking
Before discussing the nonblocking verification results, the following concept has been
introduced in the SD setting.
Definition 3.9.1. Let G = (Y,Σ, δ, yo, Ym) be a TDES plant, and let V and V ′ be
supervisory controls for G. V ′ is said to be concurrent supervisory control equivalent
(CSCE) to V if:

1. (∀s ∈ L(G))V ′(s) ⊆ V (s)
2. (∀s ∈ L(V ′/G) ∩ Lsamp) (∀s′ ∈ Lconc) ss′ ∈ L(V/G)⇒

(∃s′′ ∈ Lconc) ss′′ ∈ L(V ′/G) ∧Occu(s′) = Occu(s′′)
Point 1 requires that each event allowed by V ′(s) is also allowed by V (s). This is

to ensure that L(V ′/G) does not include any unwanted behaviour. Point 2 requires

48

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

that if V ′/G accepts a sampled string s, and V/G accepts a concurrent string s′ after
s, then V ′/G must accept a concurrent string s′′ that has the same occurrence image
as s′.

In the SD setting, the following theorem has been proven to show that G under
the control of C is nonblocking if and only if S ||G is nonblocking. This is true even
if only a single concurrent string, out of multiple possible concurrent strings with
the same occurrence image possible in the TDES model at a given sampled state, is
actually possible in the physical system. The SD approach has been proven to be
robust with respect to such variations and nonblocking.
Theorem 3.3. (Leduc et al., 2014) For plant G = (Y,Σ, δ, yo, Ym) and CS determin-
istic supervisor S = (X,Σ, ξ, xo, Xm) that is SD controllable for G, let both TDES
have finite state spaces, let G be complete for S, have proper time and S-singular
prohibitable behaviour, let S || G be ALF, let C = (I, Z,Q,Ω,Φ,qres) be the SD
controller that is constructed from S, and let V be the map that is constructed from
C using Algorithm 3.1. Let V ′ be a supervisory control for G. If V is nonblocking
for G and V ′ is CSCE to V , then V ′ is also nonblocking for G.

49

Chapter 4

Sampled-Data Synchronous
Product

In this chapter, we present a novel mechanism for constructing closed-loop system in
the SD supervisory control framework. Specifically, we devise a new synchronization
operator, called the sampled-data (SD) synchronous product, to combine TDES plant
G and TDES supervisor S to form the closed-loop system. After defining our SD
synchronous product operator, we discuss and prove the relevant fundamental prop-
erties of this synchronization operator. This is followed by a description of our SD
synchronous product setting.

As we are proposing a new way of constructing the closed-loop system, existing
properties of the SD supervisory control theory need to be adapted to work with our
new synchronization operator. The rest of this chapter focuses on adapting these
properties to make them compatible with our SD synchronous product setting. Fi-
nally, this chapter finishes off with some useful results about the activity-loop-free
property (Definition 2.3.10) with respect to our SD synchronous product setting.

4.1 SD Synchronous Product Operator
In this section, we define our new synchronization operator, called the sampled-data
(SD) synchronous product, represented as ||SD, to combine two TDES models. This
operator is specifically designed to synchronize TDES plant G and TDES supervisor
S in order to construct a closed-loop system in the SD supervisory control framework,
and to address the issues discussed in Section 1.5.1.

The SD synchronous product operator is basically an intelligent and powerful
version of the standard synchronous product operator. It is smart enough to auto-
matically disable a tick event in the closed-loop system, if both tick and prohibitable
events are possible in G and enabled by S.

This implies that in the presence of the SD synchronous product operator, while

50

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

designing the system, designers no longer need to keep track of the enablement/disable-
ment of tick event and prohibitable events, and incorporate this logic of explicit tick
disablement manually in various modular TDES supervisors. This also means that
while verifying the system model, the property of SD controllability Point ii (⇒)
no longer needs to be explicitly checked, as the SD synchronous product operator
guarantees that this property will always be satisfied at every state of the closed-loop
system (we elaborate this point later in Section 4.5).
Definition 4.1.1. Let TDES Gi = (Qi,Σi, δi, qo,i, Qm,i), for i = 1, 2. The sampled-
data (SD) synchronous product of two TDES, represented as G = G1 ||SD G2, is
defined as:

G := (Q1 ×Q2,Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 ×Qm,2)
where δ((q1, q2), σ), for (q1, q2) ∈ Q1×Q2 and σ ∈ Σ1∪Σ2, is only defined and equals:

i) (q′1, q′2) if σ ∈ (Σ1 ∩ Σ2) ∧ δ1(q1, σ) = q′1 ∧ δ2(q2, σ) = q′2 ∧
[(σ 6= τ) ∨ ((σ = τ) ∧ (∀σ′ ∈ Σhib)¬ δ((q1, q2), σ′)!)]

ii) (q′1, q2) if σ ∈ (Σ1 − Σ2) ∧ δ1(q1, σ) = q′1

iii) (q1, q
′
2) if σ ∈ (Σ2 − Σ1) ∧ δ2(q2, σ) = q′2

Note: From now on, we will refer to this synchronization operator by interchangeably
using its name “SD synchronous product” and its symbol “||SD” (to be concise).

We will now explain the logic used by the SD synchronous product operator to
construct the transition function δ, as this is the only element where the logic of the
SD synchronous product differs from the standard synchronous product operator.

The ||SD operator constructs the transition function δ of G based on the component
transition functions, δ1 of G1 and δ2 of G2. As δ1 and δ2 are partial functions, the
transition function δ constructed by ||SD is a partial function as well.

The ||SD operator states three rules to define δ. For every state (q1, q2) of G and
each σ ∈ Σ1 ∪ Σ2, these rules are used to determine: (I) If σ transition would be
defined at state (q1, q2) in G? (II) If so, what would be the destination state that σ
would take G to? These three rules defined by ||SD to construct δ are elaborated next.
i) Point i applies to events that G1 and G2 have in common. This point makes

a distinction between the tick and non-tick (activity) events, and specifies two
different rules for defining the tick and activity event transitions in G.
a) σ 6= τ

For an activity event σ, a transition will be defined at a state in G if it is defined
at the corresponding states in both G1 and G2. This means that G1 and G2 act
together to cooperatively determine and agree on the definition of σ transition,
and its corresponding destination state in G. This is essentially the same logic
that synchronous product uses to determine its transitions.

It is important to clarify here that the ||SD operator is not capable of adding
any non-tick transition to δ if it does not exist in either δ1 or δ2 or both. Likewise,

51

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

||SD cannot remove a non-tick transition from δ if it is defined in both δ1 and δ2.

b) σ = τ

This is the case where the logic of ||SD operator differs from the standard syn-
chronous product, i.e. the case of figuring out the definition of tick transitions in
G. This point says that a tick transition will be defined at a state in G if the
following conditions are satisfied:
I) tick transition is defined at the corresponding states in both G1 and G2.

II) No prohibitable event is possible at the current state in G.
Point I signifies that ||SD will not define a tick transition in G if it is blocked

by either G1 or G2 or both. This means that our synchronization operator is not
capable of adding any tick transition to δ on its own. It will ‘potentially’ add a
tick transition to δ only if it exists in both δ1 and δ2.

However, Point II imposes an important condition, which if not satisfied,
then ||SD operator is capable of deciding “not” to add a tick transition to δ, even
if is defined in both δ1 and δ2. In this case, ||SD is smart enough to automatically
“disable” a tick event if a prohibitable event is currently possible in G.

This means that if tick is defined in G1 and G2, ||SD will not immediately add
this tick transition to G. First, it will figure out whether or not any prohibitable
event σ′ is currently possible in G. To determine this, ||SD evaluates the transitions
for all prohibitable events one by one at the current state in G. Depending upon
whether σ′ is in (Σ1∩Σ2), (Σ1−Σ2), or (Σ2−Σ1), the ||SD operator will recursively
make use of Points i (σ 6= τ), ii or iii respectively to figure out if σ′ is defined at
the corresponding states in both G1 and G2.

If any prohibitable event transition is possible at the current state in G, Point
II fails, and ||SD will “not” add tick transition to G. In this way, the ||SD operator
disables the tick event to automatically satisfy Point ii (⇒) of the SD controlla-
bility definition (Definition 3.5.1) at every state of G. On the other hand, if none
of the prohibitable events is currently possible in G, Point II is satisfied, and ||SD

will define a tick transition in G, given that tick is currently possible in both G1
and G2.

Please note that since the ||SD operator only deals with TDES models, tick
event will certainly be present in both G1 and G2. Thus, ||SD will always use this
point (and never Point i (σ 6= τ), Point ii or Point iii) to determine the definition
of tick transition and its corresponding next state in G.

Points ii and iii are applicable to events that are present in the event set
of only one TDES, G1 or G2, respectively. These points of the SD synchronous
product’s definition are identical to the synchronous product’s definition.

ii) If an event σ is only in the event set of G1, then ||SD will use Point ii to determine
the definition and next state of σ transition in G. At a given state, σ will be
allowed to occur in G if it is possible at the corresponding state in G1. As G2

52

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

does not care about σ, it can neither prevent σ from occurring in G, nor it will
change its state as a result of this σ transition.

iii) Point iii applies to an event σ that is present only in the event set of G2. This
point says that σ transition will be defined at a state in G if it is possible at the
corresponding state in G2. G1 is not related to σ in any way, therefore it cannot
block σ transition in G. Also, the occurrence of σ transition will not have any
affect on G1’s current state.

Example

Figure 4.1 shows an example of the ||SD operator, and compares its synchronization
mechanism to that of the synchronous product operator. In the example, we have
two TDES, G1 (Figure 4.1a) and G2 (Figure 4.1b), that are defined over the same
event set Σ, such that Σ = {e1, e2, τ}, Σhib = {e1} and Σu = {e2}. At the initial
state, q0 of G1 and x0 of G2, both tick and prohibitable event e1 are defined.

If we construct G′ = G1 ||G2, the synchronous product operator enables both
tick and prohibitable event e1 at the initial state of G′, as shown in Figure 4.1c.

Figure 4.1d illustrates the result of synchronizing G1 and G2 using the ||SD oper-
ator. For G = G1 ||SD G2, we note that tick transition is not defined at the initial
state s0, although it is defined at the initial states of G1 and G2. The reason is that
both G1 and G2 have enabled prohibitable event e1 at their initial states. Therefore,
the ||SD operator enables prohibitable event e1 at the initial state of G and disables
the tick event, as desired to satisfy Point ii (⇒) of the SD controllability property.

We also note that this is the only difference between G′ and G, indicating that
the rest of the synchronization mechanism of the ||SD operator is essentially the same
as the synchronous product.

4.2 Properties of SD Synchronous Product
Operator

In this section, we discuss and prove some fundamental properties of our SD syn-
chronous product operator. We will start by showing that when we synchronize two
TDES automata using the ||SD operator, this will result in the generation of a model
that is also a TDES automaton.

For any synchronization operator, the two key properties of interest are commuta-
tivity and associativity. We will also examine our ||SD operator with respect to these
properties. Precisely, we demonstrate that the ||SD operator is commutative, but not
associative. These results will later help us in defining our strategy of constructing
the closed-loop system using the ||SD operator in our setting, described in Section 4.3.

53

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

e1

tick

tick

!e2

tick

q0 q3

q2q1

(a) TDES G1

tick

e1

tick

!e2

tick

x0

x1

x2

(b) TDES G2

tick

tick

!e2

tick

e1

tick

s0 s3

s2s1

(c) G′ = G1 ||G2

!e2

tick

e1

tick

tick

s0 s3

s2s1

(d) G = G1 ||SD G2

Figure 4.1: An Example of SD Synchronous Product Operator

4.2.1 SD Synchronous Product Defines a TDES
As we have defined a new synchronization operator to combine two TDES automata,
it is important to show that the resultant model is also a TDES automaton with all
of its elements being well defined. We formally prove this in the following proposi-
tion. As the SD synchronous product operator is an adapted version of the standard
synchronous product, we will base our argument on the fact that the model generated
by the synchronous product operator has these properties.
Proposition 4.1. Let G1 = (Q1,Σ1, δ1, qo,1, Qm,1) and G2 = (Q2,Σ2, δ2, qo,2, Qm,2)
be two TDES. The SD synchronous product of G1 and G2, represented as G1 ||SD G2,
defines a TDES automaton.
Proof. The SD synchronous product defines G = G1 ||SD G2 as a quintuple:

G := (Q1 ×Q2,Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 ×Qm,2)
By Definition 2.3.1, a TDES automaton is formally represented as a quintuple
(Q,Σ, δ, qo, Qm).
In order to prove that G is a TDES automaton, it is sufficient to show that G’s tuple
is comprised of the five standard elements of a TDES automaton’s tuple.

54

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

By looking at Definition 4.1.1 of the ||SD operator, it is obvious that the tuple elements
of Q,Σ, qo and Qm are defined by the ||SD operator in exactly the same way as the
synchronous product. Clearly these elements of G are well defined, as we know that
the synchronous product operator is well defined.
Below, we analyze the transition function δ to show that δ defined by ||SD is well
defined. We will base our argument on the fact that the transition function defined
by the synchronous product is well defined.
In order to show that δ is well defined, we need to show that δ unambiguously deter-
mines: (I) if σ ∈ (Σ1 ∪ Σ2) transition would be defined at state (q1, q2) ∈ Q1 × Q2
in G? (II) what would be the destination state for each σ transition that would be
defined in G?
I) By looking at the definition of δ in the SD synchronous product’s definition, we

note that Point ii and Point iii are identical to the synchronous product’s tran-
sition function. As the synchronous product’s transition function is well defined,
we deduce that Point ii and Point iii construct δ in a well defined way.
The only rule that makes δ different from the synchronous product’s transition
function is Point i. Therefore, it is sufficient to show that Point i constructs δ in
a well defined way.
Depending upon whether an event σ is a tick or a non-tick (activity) event, Point
i specifies two different rules for determining whether or not σ transition would be
defined at state (q1, q2) in G. Thus, we have two cases: (a) σ 6= τ, and (b) σ = τ.
In order to show that Point i constructs δ in a well defined, we need to show that
δ is constructed in a well defined way in both cases.
Case a) σ 6= τ

For an activity event σ, it is decided whether or not δ((q1, q2), σ)! in G, by evalu-
ating whether or not δ1(q1, σ)! and δ2(q2, σ)!.
This is the same logic that is used by the synchronous product’s transition func-
tion to figure out its transitions for shared events while synchronizing two TDES
models.
As the transition function of synchronous product is well defined, we conclude that
for each σ 6= τ, δ is well defined in the way it decides whether or not δ((q1, q2), σ)!
in G.
Case (a) complete.
Case b) σ = τ

In order to decide whether or not δ((q1, q2), τ)! in G, it is evaluated whether or
not: (1) δ1(q1, τ)!, (2) δ2(q2, τ)!, and (3) (∀σ′ ∈ Σhib) δ((q1, q2), σ′)!.
The process of determining if δ1(q1, τ)! in G1 and δ2(q2, τ)! in G2 is straightforward
and will always give a unique result without any ambiguity, since δ1 and δ2 are
individually well defined.

55

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

In order to figure out whether or not, for all σ′ ∈ Σhib, δ((q1, q2), σ′)!, it is examined
whether or not for each individual σ′, δ((q1, q2), σ′)!.
For individual σ′, depending upon whether σ′ ∈ (Σ1 ∩ Σ2), σ′ ∈ (Σ1 − Σ2) or
σ′ ∈ (Σ2 − Σ1), Point i (σ 6= τ), Point ii or Point iii will respectively be used
to determine whether or not δ1(q1, σ

′)! and/or δ2(q2, σ
′)!. Since we have already

shown that Point i (σ 6= τ), Point ii and Point iii construct δ in a well defined way,
we infer that for each individual σ′ ∈ Σhib, the process of determining whether or
not δ((q1, q2), σ′)! is well defined.
This implies that the overall process of determining whether or not, for all σ′ ∈
Σhib, δ((q1, q2), σ′)! will always give a unique result without any ambiguity.
Hence, we conclude that the overall decision process of δ to determine whether or
not δ((q1, q2), τ)! in G is well defined.
Case (b) complete.
By Cases (a) and (b), we conclude that Point i constructs δ in a well defined way.
As Points (i-iii) of the ||SD operator construct δ in a well defined way, hence we
conclude that δ is well defined in the way it determines if σ transition would be
defined at state (q1, q2) in G.
Part (I) complete.

II) By looking at the definition of δ in ||SD, we note that δ uses the same strategy as
the synchronous product’s transition function to determine the destination state
of each σ transition that would be defined in G. Since the transition function of
synchronous product is well defined, we deduce that δ is also well defined in this
perspective.
Part (II) complete.

By Parts (I) and (II), we conclude that the transition function δ, defined by ||SD, is
well defined.
We have thus shown that G’s quintuple defined by ||SD comprises of five standard
elements of a TDES automaton’s tuple and all these elements are well defined.
Hence, we conclude that G1 ||SD G2 defines a TDES automaton.

4.2.2 Commutative Property
The SD synchronous product operator is commutative up to isomorphism, i.e. G1 ||SD

G2 and G2 ||SD G1 will give us the same resultant TDES automaton up to relabelling
of state components in the composed states. More formally, TDES G and G′ are
isomorphic up to state relabelling if we can define a bijective function1 that maps G
to G′. Our next proposition formally proves this concept and property.
Proposition 4.2. Let G1 = (Q1,Σ1, δ1, qo,1, Qm,1) and G2 = (Q2,Σ2, δ2, qo,2, Qm,2)

1See Definition A.5.1 of bijective function in Appendix A.

56

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

be two TDES. The SD synchronous product of G1 and G2 is commutative up to
isomorphism.
Proof. Let G be a TDES constructed as G = G1 ||SD G2, and let G′ be a TDES
constructed as G′ = G2 ||SD G1.
The SD synchronous product operator defines G and G′ as follows:
G := (Q1 ×Q2,Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 ×Qm,2)
G′ := (Q2 ×Q1,Σ2 ∪ Σ1, δ

′, (qo,2, qo,1), Qm,2 ×Qm,1)
First, we note that the ||SD operator defines the event sets of G and G′ as Σ1 ∪ Σ2
and Σ2 ∪ Σ1 respectively.
The commutative property for set union says the order of sets in which we do the
union operation does not change the result. This means taking the union of sets Σ1
and Σ2 in either order will give the same resulting set, i.e. Σ = Σ1 ∪ Σ2 = Σ2 ∪ Σ1.
This implies that both G and G′ are defined over the same event set Σ. Therefore,
the quintuples of TDES automata G and G′ can be restated as follows:
G := (Q1 ×Q2,Σ, δ, (qo,1, qo,2), Qm,1 ×Qm,2)
G′ := (Q2 ×Q1,Σ, δ′, (qo,2, qo,1), Qm,2 ×Qm,1)
In order to show that the SD synchronous product of G1 and G2 is commutative up
to isomorphism, it is sufficient to show that G and G′ are isomorphic up to state
relabelling.
By definition, G and G′ are said to be isomorphic by states if there exists an iso-
morphic function, iso, that maps G to G′ while preserving all automata-theoretic
structure of G and G′, as defined by ||SD, up to relabelling of states.
We will show this first by defining a function iso, and proving that iso is indeed
an isomorphic map. Then we will show that iso maps G to G′ while preserving all
automata-theoretic structure of G and G′ up to state relabelling.
First, we will define and construct our function iso.
We define iso as: iso : G→ G′

Our goal is to define iso so we achieve the following result:
iso((Q1 ×Q2,Σ, δ, (qo,1, qo,2), Qm,1 ×Qm,2))=(Q2 ×Q1,Σ, δ′, (qo,2, qo,1), Qm,2 ×Qm,1)
To construct our function iso, we define two functions: (i) isoQ, and (ii) idΣ.
i) isoQ : Q1 ×Q2 → Q2 ×Q1 : (q1, q2) 7→ (q2, q1)

The function isoQ is defined to map the state set of G to the state set of G′.
Specifically, it takes a given state of G and maps it to its corresponding state in
G′ by swapping the elements of G’s state tuple.

(∀(q1, q2) ∈ Q1 ×Q2) isoQ ((q1, q2)) = (q2, q1)
Clearly, isoQ is bijective as Q1 ×Q2 and Q2 ×Q1 are the same size, and:

(∀(q2, q1) ∈ Q2 ×Q1) iso−1
Q ((q2, q1)) = (q1, q2)

57

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

ii) idΣ : Σ→ Σ : σ 7→ σ

idΣ is defined as an identity function on Σ. Since both G and G′ are defined over
the same event set Σ, this function maps the event set of G to the event set of G′
by mapping event σ to itself.

(∀σ ∈ Σ) idΣ (σ) = σ

Clearly, idΣ is bijective as it is an identity function.
Using these two functions, we can map each element of G’s quintuple to its corre-
sponding element in G′’s quintuple, as elaborated next.
We first note that for function f : X → Y , we can define for A ⊆ X,

f(A) = {f(x) |x ∈ A}
1) State Set

We will use isoQ(Q1 ×Q2) = {isoQ((q1, q2)) | (q1, q2) ∈ Q1 ×Q2}.
As isoQ is bijective, isoQ(Q1 ×Q2) = Q2 ×Q1.

2) Event Set
We will use idΣ(Σ) = {idΣ(σ) |σ ∈ Σ}. Clearly, idΣ(Σ) = Σ.

3) Transition Function
In order to clearly argue about the preservation of transitions of G and G′ later
in the proof, we will express our transitions as a 3-tuple. The transitions are
represented as a triple of the form (q, σ, q′) ⊆ Q× Σ×Q, where δ(q, σ) = q′. As
such, δ ⊆ (Q1 ×Q2)× Σ× (Q1 ×Q2) and δ′ ⊆ (Q2 ×Q1)× Σ× (Q2 ×Q1).
To convert δ, we will use:
isoQ×idΣ×isoQ(δ)={isoQ×idΣ×isoQ(((q1, q2), σ, (q′1, q′2)))|((q1, q2), σ, (q′1, q′2)) ∈ δ}
We will still need to show that this produces δ′. As isoQ and idΣ are bijective
functions, their cross product will also be bijective. As G1 and G2 are arbitrary
TDES, showing that the above produces δ′, is thus sufficient to prove the inverse
function applied to δ′ will produce δ.

4) Initial State
We will use isoQ ((qo,1, qo,2)) = (qo,2, qo,1).
Clearly, this is a bijective process as iso−1

Q ((qo,2, qo,1)) = (qo,1, qo,2).
5) Set of Marked States

We will use isoQ (Qm,1 ×Qm,2) = {isoQ((q1, q2)) | (q1, q2) ∈ Qm,1 ×Qm,2}.
As isoQ is bijective, isoQ (Qm,1 ×Qm,2) = Qm,2 ×Qm,1.

To map G to G′, we combine the above mappings, and we can express our function

58

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

iso as follows:
iso ((Q1 ×Q2,Σ, δ, (qo,1, qo,2), Qm,1 ×Qm,2)) =

(isoQ(Q1 ×Q2), idΣ(Σ), isoQ × idΣ × isoQ(δ), isoQ(qo,1, qo,2), isoQ(Qm,1 ×Qm,2)) =
(Q2 ×Q1,Σ, isoQ × idΣ × isoQ(δ), (qo,2, qo,1), Qm,2 ×Qm,1)

From the above discussion, it is clear that except for δ, every part of the conversion
correctly maps each remaining component of G onto the corresponding component
of G′, and in a bijective manner, i.e. applying the mapping in reverse will map these
components of G′ to the corresponding components of G.
Now all that remains is to show that isoQ × idΣ × isoQ(δ) = δ′.
The ||SD operator defines the transition function δ of G and δ′ of G′ as follows:
δ((q1, q2), σ) is only defined and equals:

i) (q′1, q′2) if σ ∈ (Σ1 ∩ Σ2) ∧ δ1(q1, σ) = q′1 ∧ δ2(q2, σ) = q′2 ∧
[(σ 6= τ) ∨ ((σ = τ) ∧ (∀σ′ ∈ Σhib)¬ δ((q1, q2), σ′)!)]

ii) (q′1, q2) if σ ∈ (Σ1 − Σ2) ∧ δ1(q1, σ) = q′1

iii) (q1, q
′
2) if σ ∈ (Σ2 − Σ1) ∧ δ2(q2, σ) = q′2

δ′((q2, q1), σ) is only defined and equals:
i) (q′2, q′1) if σ ∈ (Σ2 ∩ Σ1) ∧ δ1(q1, σ) = q′1 ∧ δ2(q2, σ) = q′2 ∧

[(σ 6= τ) ∨ ((σ = τ) ∧ (∀σ′ ∈ Σhib)¬ δ′((q2, q1), σ′)!)]
ii) (q2, q

′
1) if σ ∈ (Σ1 − Σ2) ∧ δ1(q1, σ) = q′1

iii) (q′2, q1) if σ ∈ (Σ2 − Σ1) ∧ δ2(q2, σ) = q′2

By examining and comparing the definitions of δ and δ′, we note that the rules
specified by δ and δ′ are logically identical, i.e. they specify the same logic, in terms
of δ1 of G1 and δ2 of G2, to make decisions about defining transitions and determining
next states.
The only difference is the way δ and δ′ label the exit and entrance states of their
transitions while specifying their rules. Precisely, if we swap the elements in exit and
entrance states’ tuples in the rules defined by δ, we essentially get the corresponding
rules defined by δ′. This means the definitions of δ and δ′ are identical up to reordering
of elements in the tuples of their exit and entrance states respectively.
This implies that G and G′, constructed by ||SD, essentially have the same set of
defined transitions, up to relabelling of their exit and entrance states respectively.
Our isomorphic function iso uses isoQ and idΣ to map the transition triples defined
in G to their corresponding transition triples in G′ as follows.

(isoQ ((q1, q2)), idΣ (σ), isoQ ((q′1, q′2))) = ((q2, q1), σ, (q′2, q′1)),
where (q1, q2), (q′1, q′2) ∈ Q1 ×Q2 and σ ∈ Σ

59

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

It is noticeable that isoQ maps the exit and entrance states of a given transition in
G to the respective exit and entrance states of its corresponding transition in G′ by
swapping the elements individually in exit and entrance states’ tuples.
Since G and G′ are defined over the same event set Σ, idΣ preserves the identity of
an event σ ∈ Σ by mapping σ of G to σ of G′.
This makes it evident that iso maps the transition triple of G to its corresponding
transition triple in G′ by relabelling the exit and entrance states, and preserving the
identity of the event, i.e. if σ transition takes G from state (q1, q2) to (q′1, q′2), iso
maps it to its corresponding σ transition that takes G′ from state (q2, q1) to (q′2, q′1).
As G starts at (qo,1, qo,2) and G′ at isoQ(qo,1, qo,2) = (qo,2, qo,1), then for any σ ∈ Σ such
that δ((qo,1, qo,2), σ) = (q′1, q′2), it will also be true that δ′((qo,2, qo,1), σ) = (q′2, q′1) =
isoQ((q′1, q′2)).
This means that all transitions leaving the initial state of G will have a matching
isomorphic transition leaving the initial state of G′. It is easy to see that all states
reached from the initial state of G will have an isomorphic state reached from the
initial state of G′.
Following this to the logical conclusion, any state reachable in G will have an iso-
morphic state reachable in G′. Also, at each reachable state (q1, q2) in G, the set of
transitions leaving (q1, q2) will be isomorphic to the set of transitions leaving state
(q2, q1) in G′.
Hence, we conclude that iso preserves the structure of the transition function of G
and G′ up to relabelling of exit and entrance states in the defined transitions. In
other words, isoQ × idΣ × isoQ(δ) = δ′.
We have thus shown that by using two bijective functions, isoQ and idΣ, our isomor-
phic function iso maps each individual element of G’s quintuple to its corresponding
element in G′’s quintuple while preserving its original structure, as defined by ||SD, up
to relabelling of states. Hence, we conclude that iso preserves all automata-theoretic
structure of G and G′ up to state relabelling.
In this way, by constructing our desired isomorphic function, iso, we have shown
that G and G′ are isomorphic up to state relabelling.
Hence, we conclude that the SD synchronous product of G1 and G2 is commutative
up to isomorphism.

4.2.3 Non-Associative Property
The SD synchronous product operator is inherently non-associative, i.e. the order of
synchronizing three or more TDES automata using ||SD is important and might make
a difference in the resultant TDES. In other words, if we have three TDES automata,
G1,G2 and G3, then in general (G1 ||SD G2) ||SD G3 6= G1 ||SD (G2 ||SD G3). Below, we
demonstrate it with the help of an example.

60

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

e1

e2

q0

q1

q2

q3

(a) TDES G1

e2

tick

e1

x0

x1

x2

x3

(b) TDES G2 (c) TDES G3

e1

e2qx0

qx1

qx2

(d) G1 ||SD G2 (e) G = (G1 ||SD G2) ||SD G3

tick

xy1xy0

(f) G2 ||SD G3

tick

qxy1qxy0

(g) G′ = G1 ||SD (G2 ||SD G3)
Figure 4.2: SD Synchronous Product Operator is Non-Associative

Figure 4.2 illustrates the non-associative nature of the ||SD operator using three
TDES automata, G1 (Figure 4.2a), G2 (Figure 4.2b) and G3 (Figure 4.2c). All TDES
are defined over the same event set Σ, such that Σ = {e1, e2, τ} and Σhib = {e1, e2}.

First, let us discuss the synchronization mechanism of ||SD for constructing TDES
G as G = (G1 ||SD G2) ||SD G3. Figure 4.2d shows the result of synchronizing G1 and
G2 using ||SD. As two prohibitable events, e1 and e2, are enabled at the initial states
of G1 and G2, ||SD disables tick event at the initial state of G1 ||SD G2. Thus, the only
events possible at the initial state of G1 ||SD G2 are e1 and e2.

In order to construct G, we synchronize G1 ||SD G2 with G3 using ||SD. We see
in Figure 4.2e that no events are possible at the initial state of G. This is because
prohibitable events e1 and e2 that are possible at the initial state of G1 ||SD G2 have
been blocked by G3 at its initial state. Likewise, tick event is possible in G3 but not
in G1 ||SD G2. This is because the tick event, that was originally possible in both G1
and G2, has already been disabled by ||SD while constructing G1 ||SD G2.

Now we will change the order of synchronizing our three TDES, and construct
TDES G′ as G′ = G1 ||SD (G2 ||SD G3). At the initial state, prohibitable events e1
and e2 are possible in G2 but not in G3. Thus, ||SD does not enable these events
at the initial state of G2 ||SD G3. As tick is possible in both G2 and G3, and no
prohibitable event is possible in G2 ||SD G3, ||SD defines a tick transition at the initial
state of G2 ||SD G3, as shown in Figure 4.2f.

61

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

To construct G′, we now synchronize G1 with G2 ||SD G3 using ||SD. G1 enables
prohibitable events e1 and e2 at its initial state, but since these events are not possible
in G2 ||SD G3, ||SD does not add their transitions at the initial state of G′. Given that
tick is possible in both G1 and G2 ||SD G3, and no prohibitable event is currently
possible in G′, ||SD enables tick at the initial state of G′, as shown in Figure 4.2g.

By comparing our G and G′, we note that G 6= G′. This example clearly demon-
strates that the order of synchronizing three TDES using ||SD does matter, and we
might get different resultant TDES. Hence, we deduce that the ||SD operator is inher-
ently non-associative.

4.3 SD Synchronous Product Setting
In our SD synchronous product setting (or “||SD setting,” for short), we will use the SD
synchronous product operator to combine our TDES plant G and TDES supervisor
S. Hence, our closed-loop system is S ||SD G. Due to the commutative property of
the ||SD operator, we can synchronize G and S in either order, i.e. G ||SD S = S ||SD G.
Note: For consistency, we will always write our closed-loop system as S ||SD G.

In our ||SD setting, we also assume that both G and S are defined over the same
event set. In case where G and S are not defined over the same alphabet, we can
simply add selfloops to each TDES for the missing events at every state to extend
them over the same event set, without any loss of generality.

In the real world, software designers typically design G and S in a modular fash-
ion, rather than as monolithic models. In this case, we assume that these modular
plant and supervisor models will be independently synchronized using the standard
synchronous product operator to obtain G and S respectively. For m > 1 plant
components, G1,G2, . . . ,Gm, our G will be obtained as G = G1 ||G2 || . . . ||Gm.
Similarly, for n > 1 modular supervisors, S1,S2, . . . ,Sn, our S will be constructed as
S = S1 ||S2 || . . . ||Sn.

There are two reasons for not using the ||SD operator to combine individual plant
and supervisor components to construct G and S respectively. The primary reason
is the non-associative nature of the ||SD operator due to which the order of combining
various plant (or supervisor) components becomes important, and different synchro-
nization order will potentially give us a different G (or S). Moreover, it might also
cause our closed-loop system to block, as no events remain possible in TDES G
(Figure 4.2e) of the example discussed in Section 4.2.3.

Secondly, applying the ||SD operator either to plant or supervisor models indi-
vidually does not look practical and reasonable. The key characteristic of ||SD is to
automatically disable a tick event in the resultant model in cases where source models
agree on the enablement of one or more prohibitable events. Strictly speaking, there is
no concept of enablement/disablement of tick event and forcing of prohibitable events

62

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

solely with respect to either plant or supervisor. Plant model just represents the be-
haviour of the physical system without any restrictions and constraints. A supervisor
is designed to impose control action on the plant model by operating synchronously
with it. Hence, it is not justifiable to combine either plant or supervisor components
independently using ||SD, and let only one model decide about the disablement of tick
event without having any knowledge of the other model’s behaviour.

Considering the non-associative property of the ||SD operator, it is also evident
that once we have formed the closed-loop system using ||SD, we cannot add any new
plant or supervisor component directly to S ||SD G. This might give us unexpected
and problematic results. After constructing S ||SD G, if we want to add more plant
or supervisor models, we need to form our closed-loop system again. We should first
reconstruct our G and S separately using the synchronous product, and then combine
G and S to obtain our closed-loop system S ||SD G.

However, one possible way to use the ||SD operator to combine plant and supervisor
components is to synchronize all system models in parallel. In this case, instead of
constructing G, S, and S ||SD G sequentially, we will synchronize m plant components
and n modular supervisors using ||SD all at once to construct our closed-loop system.
Hence, our closed-loop system will be G1 ||SD G2 ||SD . . . ||SD Gm ||SD S1 ||SD S2 ||SD . . . ||SD

Sn. In this way, the non-associative nature of the ||SD operator can be circumvented.

4.4 SD Properties with SD Synchronous Product
TDES and SD properties discussed in the SD setting (Chapter 3) assume that the
closed-loop system is formed by combining TDES plant G and TDES supervisor S
using the synchronous product. In our ||SD setting, as we have devised a new way of
constructing the closed-loop system, these properties need to be adapted with respect
to our SD synchronous product operator. In this section, we redefine the TDES and
SD properties to match with our ||SD setting.

We would like to clarify here that the definitions presented in the following sections
are conceptually similar (but not identical) to the ones given in the SD setting. For
this reason, we will use the same name followed by “with SD synchronous product”
to define the adapted version of these properties for our ||SD setting. As a shorthand,
we will simply write “〈property name〉 with ||SD”.

For the following definitions, let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES
S = (X,Σ, ξ, xo, Xm) be a supervisor. Please note that both G and S are defined
over the same event set Σ.

4.4.1 Plant Completeness with ||SD

Definition 4.4.1. A TDES plant G is complete with ||SD for TDES supervisor S if:
(∀s ∈ L(S ||SD G)) (∀σ ∈ Σhib) sσ ∈ L(S)⇒ sσ ∈ L(G)

63

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

In the ||SD setting, it says that for all strings s that are possible in S ||SD G, if a
prohibitable event σ is enabled by S after s, then it must be possible in G as well.

4.4.2 S-Singular Prohibitable Behaviour with ||SD

Definition 4.4.2. For TDES plant G and TDES supervisor S, we say that G has
S-singular prohibitable behaviour with ||SD if:

(∀s ∈ L(S ||SD G) ∩ Lsamp) (∀s′ ∈ Σ∗act) ss′ ∈ L(S ||SD G)⇒
(∀σ ∈ Occu(s′) ∩ Σhib) σ /∈ EligL(G)(ss′)

In the ||SD setting, this definition states that for a given sampling period, if a
prohibitable event σ has already occurred in S ||SD G, then σ must not be possible in
G again in the same sampling period.

4.4.3 Timed Controllability with ||SD

As we are building our work on the SD supervisory control, where Σfor = Σhib, we
will adapt and discuss the timed controllability property (Definition 2.3.2) in terms
of prohibitable events only.

In the SD setting, the closed-loop system is formed by combining plant and su-
pervisor TDES using the synchronous product. In this case, a supervisor is solely
in charge of enabling/disabling a tick event and forcing prohibitable events in the
closed-loop system. The correct behaviour of the supervisor with respect to these
decisions is ensured by checking the timed controllability property.

In our ||SD setting, we are constructing the closed-loop system using ||SD. Our
||SD operator is also capable of disabling a tick event, once a prohibitable event is
possible in the plant and enabled by the supervisor. Thus in our setting, in addition
to checking that supervisor is enabling/disabling tick at the right time, we also need to
make sure that the ||SD operator does not disable a tick event when it is not supposed
to, i.e. the ||SD operator must not disable a tick event when it is possible in the plant
and enabled by the supervisor, and no prohibitable events are currently possible in
S ||SD G. Otherwise, our system will become uncontrollable. We capture this notion
in the following timed controllability property adapted for our ||SD setting.
Definition 4.4.3. TDES supervisor S is timed controllable with ||SD with respect to
TDES plant G if for all s ∈ L(S ||SD G),

EligL(S ||SD G)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S ||SD G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S ||SD G)(s) ∩ Σhib 6= ∅
It states that all uncontrollable events that are currently possible in G must be

allowed to occur in the closed-loop system, S ||SD G. In addition, tick event must be
enabled in S ||SD G if it is possible in G, unless there exists an eligible prohibitable
event in S ||SD G to preempt it. This property makes sure that neither S nor the ||SD

64

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

operator can disable a tick event, if it is possible in G and no prohibitable events are
currently eligible to be forced in the closed-loop system to preempt tick.
Note: As our ||SD setting is specific to TDES, we will drop the word “timed”, and will
simply refer to this property as “S is controllable with ||SD with respect to G”.

It is notable that the untimed controllability property (Definition 2.2.15) is part of
the standard timed controllability definition (Definition 2.3.2). Since we have adapted
the timed controllability definition for our ||SD setting, the untimed controllability
property automatically gets redefined as part of it. Below, we explicitly state the
untimed controllability with ||SD property.
Definition 4.4.4. TDES supervisor S is untimed controllable with ||SD with respect
to TDES plant G if (∀s ∈ L(S ||SD G))EligL(G)(s) ∩ Σu ⊆ EligL(S ||SD G)(s).

4.5 SD Controllability with SD Synchronous
Product

This section provides a detailed explanation of how we have adapted the property
of SD controllability (Definition 3.5.1) defined in the SD setting into the property
of SD controllability with SD synchronous product (SD controllability with ||SD, as a
shorthand) for our ||SD setting.

In the SD setting, the closed-loop system is constructed by synchronizing G and
S using the synchronous product, along with the assumption that both G and S
are defined over the same event set. Therefore, the authors have defined the SD
controllability property with respect to the closed language L(S)∩L(G), and marked
language Lm(S) ∩ Lm(G).

As the synchronization mechanism of the ||SD operator is different than the syn-
chronous product, the closed and marked languages generated in the ||SD setting will
potentially be different than the ones assumed in the SD setting. Keeping this in
view, we need to modify the SD controllability definition with respect to the closed
and marked languages to make it suitable for our ||SD setting. Specifically, we have
replaced its L(S)∩L(G) with our closed language L(S ||SD G), and its Lm(S)∩Lm(G)
with our marked language Lm(S ||SD G) to make it work for our ||SD setting.

Below, we give a formal definition of the SD controllability with ||SD property.
This is followed by a description of how we logically adapted the individual points of
the SD controllability definition to define our SD controllability with ||SD property.
Definition 4.5.1. TDES supervisor S = (X,Σ, ξ, xo, Xm) is SD controllable with ||SD

with respect to TDES plant G = (Q,Σ, δ, qo, Qm) if, ∀s ∈ L(S ||SD G), the following
statements are satisfied:

i) EligL(S ||SD G)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S ||SD G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S ||SD G)(s) ∩ Σhib 6= ∅

65

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

ii) If s ∈ Lsamp then

1) (∀s′ ∈ Σ∗act) [ss′ ∈ L(S ||SD G)]⇒
[EligL(S ||SD G)(ss′) ∪Occu(s′)] ∩ Σhib = EligL(S ||SD G)(s) ∩ Σhib

2) (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S ||SD G) ∧Occu(s′) = Occu(s′′)]⇒
ss′ ≡L(S ||SD G) ss

′′ ∧ ss′ ≡Lm(S ||SD G) ss
′′

iii) Lm(S ||SD G) ⊆ Lsamp

Point i: It says that S is controllable with ||SD with respect to G (Definition 4.4.3).
Now we will discuss how this point logically corresponds to Point i and Point ii

of the SD controllability definition. Point i of the SD controllability definition is the
standard untimed controllability property. Together with Point ii reverse direction
(⇐), it becomes the timed controllability property (Definition 2.3.2) of the SD setting.
As we have adapted the timed controllability definition for our ||SD setting, we will
use our timed controllability with ||SD property instead. In this way, Point i of our SD
controllability with ||SD definition is logically equivalent to Point i and Point ii (⇐)
of the SD controllability definition.

In the forward direction (⇒), Point ii of the SD controllability definition states
that if a prohibitable event is enabled in the closed-loop system, then tick must be
disabled. It is noteworthy that this condition is essentially in agreement with the
synchronization mechanism of our ||SD operator. In simple words, this is exactly what
our ||SD operator does while synchronizing G and S, i.e. if a prohibitable event is
enabled in the closed-loop system, our ||SD operator automatically disables tick event
in the closed-loop system, even if it is possible in both G and S.

This implies that our ||SD operator guarantees that any closed-loop system con-
structed as S ||SD G will always satisfy the condition imposed by Point ii (⇒) of the SD
controllability definition. In our ||SD setting, as we construct our closed-loop system
as S ||SD G, this means that we do not need to explicitly check this condition, as it
will always be satisfied by the ||SD operator while synchronizing G and S. As a result,
we eliminate this explicit condition from our SD controllability with ||SD definition. In
fact, ensuring the automatic satisfaction of this condition and removing this explicit
check is the primary purpose of introducing the ||SD operator and our ||SD setting.

In this way, Points i and ii of the SD controllability definition get simplified, and
are represented only by Point i in our SD controllability with ||SD definition.
Point ii: As a result of the simplification discussed above, Point iii of the SD con-
trollability definition becomes Point ii of the SD controllability with ||SD definition.
These two points are logically identical except for the way they assume their closed-
loop systems to be constructed, which are different for the two settings, SD and ||SD.
Point iii: Point iii of the SD controllability with ||SD definition corresponds to Point
iv of the SD controllability definition. These two points essentially represent the same

66

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

logic. The only difference is their way of representing the marked behaviours, as per
the SD and ||SD setting.

Since Points ii and iii of the SD controllability with ||SD definition are logically
identical to Points iii and iv of the SD controllability definition respectively, we have
not reexamined these points here. Please refer to Definition 3.5.1 of SD controllability
to see a logical explanation of these points.

4.6 ALF Modularity and SD Synchronous
Product

In this section, we present and discuss some important results for the ALF property
with respect to our SD synchronous product operator in the ||SD setting.

In our ||SD setting, we wish our closed-loop system S ||SD G to be ALF to rule
out the possibility of having the physically unrealistic behaviour that activity events
can preempt tick for an indefinite amount of time. Instead of first constructing the
closed-loop system and then checking its ALF property, it would be much easier and
economical if we could find a way to determine whether our closed-loop system is
ALF or not before actually constructing it.

One possible way to do this is to apply the ALF check individually on S and G
before synchronizing them to construct the closed-loop system. The following propo-
sition formally proves that if S or G is ALF, then our closed-loop system constructed
as S ||SD G is guaranteed to be ALF.
Proposition 4.3. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S =
(X,Σ, ξ, xo, Xm) be a supervisor. If either S or G is ALF, then the closed-loop
system S = (Y,Σ, η, yo, Ym) constructed as S = S ||SD G is ALF.
Proof. Assume: S = S ||SD G and that either S or G is ALF. By Definition 2.3.10 of
the ALF property, this implies:

[(∀x ∈ Xr) (∀s ∈ Σ+
act) ξ(x, s) 6= x] ∨ [(∀q ∈ Qr) (∀s ∈ Σ+

act) δ(q, s) 6= q] (1)
Must show: S is ALF
By the ALF definition, it is sufficient to show: (∀y ∈ Yr) (∀s ∈ Σ+

act) η(y, s) 6= y,
where Yr ⊆ Y is the set of reachable states in S.
We will use proof by contradiction to show that S is ALF.
Assume S is not ALF, i.e. there exists an activity loop in S. By Definition 2.3.9 of
activity loop, this implies: (∃y ∈ Yr) (∃s′ ∈ Σ+

act) η(y, s′) = y (2)
Let y ∈ Yr, and let s′ ∈ Σ+

act such that η(y, s′) = y. (3)
As S = S ||SD G by (1), by the definition of state set Y in the ||SD operator (Defini-
tion 4.1.1), we have: y = (x, q), such that x ∈ X and q ∈ Q. (4)

67

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Also, by the definition of Y in ||SD, we know that y is a reachable state in S, only if
x is a reachable state in S and q is a reachable state in G, i.e. x ∈ Xr ∧ q ∈ Qr.
By (3), we have: η(y, s′) = y

⇒ η((x, q), s′) = (x, q) by (4)
As S and G are defined over the same event set Σ, by Point i of the ||SD definition,
we have that a transition will be defined at a state in S, only if it is defined at the
corresponding states in both S and G.
Since we have that transition for string s′ is defined at state y = (x, q) in S, this
implies that s′ transition is defined at state x in S and state q in G.
⇒ ξ(x, s′) = x ∧ δ(q, s′) = q by Point i of ||SD definition
These transitions indicate that both S and G are not ALF. This contradicts our
assumption of (1) that either S or G is ALF.
Thus, we deduce that our assumption of (2) is false, and S is ALF.
⇒ (∀y ∈ Yr) (∀s ∈ Σ+

act) η(y, s) 6= y

Hence, we conclude that if either S or G is ALF, then S = S ||SD G is ALF.

As S and G are typically designed modularly by designers, our S and G will most
likely be constructed as S = S1 || S2 || . . . || Sm and G = G1 ||G2 || . . . ||Gn, where
m,n > 1. Here, it is worthwhile to mention a proposition from Wang (2009) that
presents an easy and modular way of obtaining an ALF TDES. The following propo-
sition states that if each individual TDES is ALF, then their synchronous product is
ALF. This proposition is useful in our ||SD setting as we can make our S or G ALF
just by making sure that each individual plant or supervisor component is ALF, even
if these components are defined over different event sets.
Proposition 4.4. (Wang, 2009) For TDES G1 = (Q1,Σ1, δ1, qo,1, Qm,1) and G2 =
(Q2,Σ2, δ2, qo,2, Qm,2), if G1 and G2 are each ALF, then their synchronous product
G = G1 ||G2 is ALF.

In the presence of Proposition 4.3 and Proposition 4.4, it is evident that if we
want to construct an ALF closed-loop system in our ||SD setting, we simply need to
design ALF plant or supervisor components. This is because individual ALF plant
or supervisor components ensure that when we synchronize them using synchronous
product, our S or G will be ALF (Proposition 4.4). This in turn guarantees that
our closed-loop system constructed as S ||SD G will be ALF (Proposition 4.3). In
this way, we can verify the ALF property of our closed-loop system before actually
constructing S ||SD G, or even before constructing composite S and G.

For our closed-loop system S ||SD G, we are also interested in making sure that
our system does not try to “stop the clock”, i.e. it should never reach a state where
tick events are not possible anymore, as this behaviour is undesirable and physically
unrealistic. Therefore, we want to guarantee that after a finite number of activity
events, our system should always reach a state where the tick event is possible. In

68

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

the following proposition, we present sufficient conditions to ensure this behaviour.
Proposition 4.5. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S =
(X,Σ, ξ, xo, Xm) be a supervisor, and let S = (Y,Σ, η, yo, Ym) be the closed-loop
system constructed as S = S ||SD G. If both G and S have finite state spaces, G has
proper time behaviour, S is timed controllable with ||SD for G, and S is ALF, then:

(∀y ∈ Yr) (∃s ∈ Σ∗act) η(y, sτ)!
Proof. Assume initial conditions, and let y ∈ Yr.
Must show: (∃s ∈ Σ∗act) η(y, sτ)!
As both G and S have finite, non-empty state spaces (as they both contain an initial
state), it follows from the definition of state set Y in the ||SD operator (Definition 4.1.1)
that the closed-loop system S = S ||SD G has a finite, non-empty state space.
Let n = |Yr|.
By our initial assumption, we have that S is ALF. This implies that starting at state
y in S, the system can do at most n−1 activity event transitions before it has visited
all n reachable states. At this point, there must be no more activity event transitions
possible in S. Otherwise, the system would have to visit a state twice, thus creating
an activity loop and failing the ALF definition.
This idea can be formally expressed as follows:

(∃s ∈ Σ∗act) |s| ≤ n− 1 ∧ (∃y′ ∈ Yr) η(y, s) = y′ ∧ (∀σ ∈ Σact) ¬ η(y′, σ)! (1)
Now we will present our argument to show that tick transition is defined at state y′
in S.
By (1), we have that no activity events are possible at state y′ in S. As Σu ⊆ Σact,
this means that no uncontrollable events are possible at y′ in S.
By our initial assumption, we have that S is timed controllable with ||SD for G. This
implies that no uncontrollable events are defined at the corresponding state in G, as
S would not have restricted them, and there are none possible in S.
Lets refer to this state of G as q′ ∈ Q.
As G has proper time behaviour, this implies that tick is defined at state q′ in G.
By (1), we have that no activity events are possible at state y′ in S. As Σhib ⊆ Σact,
this means no prohibitable events are enabled at y′ in S.
We have that tick event is defined at state q′ in G and no prohibitable event is eligible
at state y′ to preempt the tick in S. As S is timed controllable with ||SD for G, this
implies that neither S nor the ||SD operator can disable the tick event at this point in
time. Thus, the tick event must be enabled at state y′ in S.
Thus, we have: η(y′, τ)!
⇒ η(η(y, s), τ)! by (1)
⇒ η(y, sτ)! by definition of transition function
Hence, we conclude (∀y ∈ Yr) (∃s ∈ Σ∗act) η(y, sτ)!.

69

Chapter 5

Equivalence of SD and SD
Synchronous Product Setting

Now that we have described our SD synchronous product setting in detail, our next
target is to establish equivalence between the SD setting (Chapter 3) and our ||SD

setting (Chapter 4). This chapter serves as the first stepping stone to achieve this
goal.

We begin this chapter by presenting a discussion on why this equivalence between
the two settings is needed, how it will be established, and how it will pave the way for
proving controllability, nonblocking and all SD verification results in our ||SD setting
(Chapter 8). After this discussion, we state some assumptions that apply to our com-
plete study. This is followed by our language equivalence results, where we establish
and formally prove equivalence between the closed and marked languages of the SD
and ||SD setting. Utilizing these results, we then demonstrate the equivalence between
various SD properties in the two settings.

5.1 Establishing Equivalence
In this section, we present a detailed discussion on establishing equivalence between
the SD and ||SD settings. First, we explain why we opted for establishing equivalence
between the two settings. After that, we provide a complete road map to establish
our desired equivalence by presenting a comprehensive description of how did we plan
to prove this equivalence and make use of it while performing our controllability and
nonblocking verification in the ||SD setting.

5.1.1 Why Equivalence is Needed?
In our ||SD setting, we have presented a novel way of constructing the closed loop sys-
tem by synchronizing TDES plant G and TDES supervisor S using the ||SD operator.

70

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

By doing this, we have essentially changed the way of obtaining closed and marked
languages for the system. Since our ||SD operator generates a new system language
that, in most cases, will not be the same as the language generated by synchronous
product in the SD setting, the controllability and nonblocking verification results of
the SD setting do not remain valid in our ||SD setting. This means that we need to
reprove all verification results of the SD setting for our ||SD setting.

There are two possible ways to perform controllability and nonblocking verification
in our ||SD setting: 1) prove all SD results from scratch, or 2) establish some kind of
logical equivalence between the SD and ||SD setting, so that the results that have
already been proven in the SD setting remain applicable to our ||SD setting as well.
This will allow us to reuse and base our results on some of the existing results from
the SD setting while performing the controllability and nonblocking verification in
our ||SD setting.

Hypothetically, we could follow the first approach and prove all SD results in our
||SD setting from scratch. But the issue with this approach is that there is no closed and
obvious form of the closed and marked language that is generated by synchronizing
G and S using the ||SD operator, i.e. L(S ||SD G) and Lm(S ||SD G). By this we mean
that, apparently, we cannot easily express these languages in terms of the natural
projection or its equivalent, as has been done for the synchronous product. For plant
G and an arbitrary supervisor S that are defined over the same event set Σ, we know
that L(S || G) = L(S) ∩ L(G) and Lm(S || G) = Lm(S) ∩ Lm(G). However, in
most cases, we do not expect to have this kind of equality for our ||SD operator, i.e.
L(S ||SD G) 6= L(S) ∩ L(G) and Lm(S ||SD G) 6= Lm(S) ∩ Lm(G). This is due to the
automatic tick disablement mechanism of the ||SD operator that is not present in the
synchronous product operator.

In the absence of such a closed and clear cut form for L(S ||SD G) and Lm(S ||SD G),
working with these languages and proving all SD verification results from scratch in
the ||SD setting does not look like a straightforward and trouble-free task. Due to these
reasons, we opt for the second approach of establishing logical equivalence between
the SD and ||SD setting, and then utilize this equivalence to perform our controllability
and nonblocking verification in the ||SD setting.

5.1.2 How to Establish Equivalence?
Note: In this discussion, in fact in the rest of this thesis, we need to talk about two
supervisors, one from the SD setting and the other from our ||SD setting. Since these
two supervisors will most likely be different (as they may satisfy different properties of
the two settings), therefore, in order to avoid any ambiguity, we will use two different
symbols to refer to them. The supervisor of the SD setting will be stated as S (S
maps and refers to S of Chapter 3), whereas the supervisor of our ||SD setting will be
referred to as S.

In the SD setting, since TDES plant G and TDES supervisor S are assumed to be

71

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

combined with the synchronous product, therefore all verification results have been
proven using the closed language L(S)∩L(G) and marked language Lm(S)∩Lm(G).
The authors have assumed that S is an arbitrary supervisor that satisfies certain SD
properties, independently and when combined with G to form the closed-loop system,
S ||G. This supervisor S is then used to generate its corresponding controller imple-
mentation in the SD setting using the translation method described in Section 3.7.
Therefore, in order to make the SD results valid in our ||SD setting and derive our
results based on these existing results, we need to satisfy all these conditions and
prove equivalence at all levels, i.e. 1) prove language equivalence, 2) satisfy all prop-
erties that have been considered as preconditions for concluding the controllability
and nonblocking verification results, and 3) prove controller’s equivalence.

To establish the required logical equivalence, first and foremost, we need to es-
tablish language equivalence between the two settings. Since the closed and marked
languages generated in the SD and ||SD settings are L(S)∩L(G) and L(S ||SD G), and
Lm(S)∩Lm(G) and Lm(S ||SD G) respectively, we can potentially establish language
equivalence between the two settings if we could somehow prove that L(S ||SD G) =
L(S) ∩ L(G) and Lm(S ||SD G) = Lm(S) ∩ Lm(G). To do this, we need to find an
appropriate and concrete definition for supervisor S of the SD setting, that is not
only guaranteed to exist, but should be based on or somehow related to our S ||SD G
to achieve the above-mentioned equivalence.

An intriguing idea is what if we define S = S ||SD G? Can we establish our desired
language equivalence between the two settings with this definition of S? Can we
demonstrate that S satisfies all the properties as required by existing verification
results of the SD setting? Can we prove that the controller implementation of S will
be according to the requirements of the SD setting? If we can prove these things,
then we can certainly define S = S ||SD G to prove the desired equivalence, and make
use of the existing SD results while verifying our ||SD setting.

This is exactly the approach that we adopt for proving equivalence between the
two settings. We start by establishing language equivalence between the two settings
and proving that if S = S ||SD G, then both settings have the same closed and
marked behaviours. Specifically, we prove that L(S ||SD G) = L(S) ∩ L(G) and
Lm(S ||SD G) = Lm(S) ∩ Lm(G) (Section 5.3).

Then, we focus on satisfying the preconditions (various SD properties) of the SD
verification results. Specifically, we demonstrate that if certain SD properties are
satisfied in the ||SD setting with respect to our supervisor S, this implies that their
corresponding SD properties are guaranteed to be satisfied with respect to supervisor
S = S ||SD G in the SD setting (Section 5.4). We also show how to process S to satisfy
some other properties that are required in the SD setting but may not be directly
satisfied as S = S ||SD G (Chapter 6).

Finally, we prove that the SD controller that is obtained by translating S in our
||SD setting is output equivalent to the controller that is generated by supervisor S of
the SD setting with respect to valid input strings, i.e. strings that are possible in the

72

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

two closed-loop behaviours (Chapter 7). In other words, controller implementation
of the two supervisors, S and S, will exhibit exactly the same control behaviour with
respect to TDES plant G.

Once we have this formal equivalence between the two settings in place, we will
successfully satisfy all the assumptions and preconditions that have been identified
for proving all verification results in the SD setting. Since we have fulfilled all the
prerequisites, we can rightly conclude the SD verification results. In this way, the
existing SD results become valid in the ||SD setting and we can easily reuse them
to build our controllability and nonblocking verification results of the ||SD setting
(Chapter 8).

Before closing this section, it is also important to clearly state the relationship that
we have established between the two settings to do our formal theoretical verification.
The basic idea is that in the ||SD setting, supervisor S is expected to be manually
designed by the designers for plant G, and is required to satisfy certain SD properties
with ||SD, defined in Chapter 4. It is worth-mentioning here that while designing S,
designers do not need to manually take care of the tricky condition imposed by Point
ii (⇒) of the SD controllability definition, as required in the SD setting. This S
should then be synchronized with G using our ||SD operator to construct S ||SD G.

Instead of using this S ||SD G as our closed-loop system for theoretical verification
of the ||SD setting, we treat this S ||SD G as the “supervisor” of the SD setting, i.e.
S = S ||SD G. We will be able to do this because of our equivalence results, since
these results ensure that S is guaranteed to satisfy all properties that a supervisor
of the SD setting is required to satisfy. It is noteworthy that S is also guaranteed
to automatically satisfy Point ii (⇒) of the SD controllability definition with respect
to G because of the synchronization mechanism of our ||SD operator that is used to
construct S = S ||SD G.

This S is then assumed to be synchronized with G using the synchronous product
to construct the closed-loop system S ||G, with closed language L(S) ∩ L(G) and
marked language Lm(S)∩Lm(G), as done in the existing SD setting. All the existing
SD verification results then follow immediately, as they have been proven using the
same closed and marked languages in the SD setting.

We would like to clarify that software and hardware practitioners do not actually
need to construct supervisor S or closed-loop system S || G of the SD setting in
practice. Also, they are not required to physically implement S as their controller.
This additional step is only considered and discussed here with respect to theoretical
verification of our ||SD setting. Practically, designers and practitioners only need to
design supervisor S with the desired SD properties of the ||SD setting. This supervisor
can then be translated to generate its corresponding controller implementation using
the translation method described in Section 3.7.

In this way, our ||SD setting inherently liberates the designers from manually de-
signing the potentially intricate supervisor of the SD setting that must satisfy all
SD conditions, especially the stringent SD controllability Point ii (⇒). Using our

73

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

approach, they should now be able to design a much simpler and less complicated
supervisor S of the ||SD setting that, when combined with G using the ||SD operator, is
equivalent in its closed-loop behaviour, control action and controller implementation
to the one required by the SD setting. In other words, by introducing the concrete
definition of S = S ||SD G, we essentially provide a way to automatically generate
a TDES S that qualifies as the supervisor of the SD setting by satisfying all the
required properties and conditions.

5.2 Implicit Assumptions
In this section, we list down our implicit assumptions that hold true for our ||SD setting.
Since these assumptions apply to our complete study, we are stating them together
at one place, and will not repeat them in any of the upcoming sections/chapters.
1. For TDES plant G and TDES supervisor S of the ||SD setting, we assume that both

G and S are always defined over the same event set. However, in the case where
G and S are not defined over the same alphabet, we can simply add selfloops to
each TDES for the missing events at every state to extend them over the same
event set, without any loss of generality. If we assume otherwise in any particular
section of this thesis, we will explicitly state that.

2. Let TDES S be constructed by synchronizing plant G and supervisor S using the
SD synchronous product operator, i.e. S = S ||SD G. Since both G and S are
defined over the same event set, by definition of the ||SD operator, the resultant
TDES S will also have the same event set as G and S.

3. As G and S are defined over the same event set, by Definition 2.2.14 of the
synchronous product, we have that L(S ||G) = L(S) ∩ L(G) and Lm(S ||G) =
Lm(S) ∩ Lm(G). In the rest of this thesis, we might interchangeably use these
two representations of synchronous product without explicit explanation.

4. In the SD supervisory control theory, it has been assumed that the set of pro-
hibitable events (Σhib) is exactly equal to the set of forcible events (Σfor), i.e.
Σfor = Σhib. Since we are using this methodology as the basis of our work, this
assumption holds true for our study as well.

5. All TDES discussed in this thesis are assumed to be reachable and deterministic
with a finite state space and a finite event set.

5.3 Equivalence of Languages
In this section, we present our desired language equivalence results for the SD and
||SD setting. Specifically, we formally prove that the closed and marked languages
generated in the two settings are equivalent.

74

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm) be a
supervisor. Let S = (Y,Σ, η, yo, Ym) be a TDES constructed as S = S ||SD G.

We start by proving two propositions that will help us in showing our main lan-
guage equivalence result. The basic idea of these two propositions has been taken
from Definition 4.1.1 of our SD synchronous product operator.

By looking at the synchronization mechanism of the ||SD operator, we note that
||SD ‘potentially’ adds a transition to S = S ||SD G, only if that transition is defined
in both S and G. It does not add any transition to S that is not defined in either S
or G. This implies that the strings defined in L(S) are going to be a subset of the
strings that are defined in both L(S) and L(G). The proposition given below uses
proof by induction to formally prove this notion.
Proposition 5.1. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S =
(X,Σ, ξ, xo, Xm) be a supervisor. Let TDES S = S ||SD G = (Y,Σ, η, yo, Ym), then:
(i) L(S) ⊆ L(S), and (ii) L(S) ⊆ L(G).
Proof. We will prove these two points together.
Assume: S = S ||SD G (1)
Must show: L(S) ⊆ L(S) and L(S) ⊆ L(G)
Sufficient to show: L(S) ⊆ L(S) ∩ L(G)
Let s ∈ L(S). Must show this implies: s ∈ L(S) ∩ L(G)
We will use induction on the length of s to show: s ∈ L(S) ∩ L(G)
Base Case: s = ε

As S contains an initial state xo, and G contains an initial state qo, it follows that
ε ∈ L(S) and ε ∈ L(G).
⇒ ε ∈ L(S) ∩ L(G)
Base case complete.
Inductive Step: For some k ≥ 0, we assume:
• s = σ1 . . . σk ∈ L(S) ∩ L(S) ∩ L(G) (2)
• sσk+1 ∈ L(S) (3)
We will now show this implies: sσk+1 ∈ L(S) ∩ L(G)
By (2), we have: s ∈ L(S)
⇒ η(yo, s)! by definition of L(S) (4)
We have S = S ||SD G by (1). The ||SD operator defines the initial state of S as an
ordered pair of the initial states of S and G.
⇒ η((xo, qo), s)! by definition of yo in ||SD definition (5)
As S and G are defined over the same event set Σ, by Point i of the ||SD operator’s
definition, we have that a transition will be defined at a state in S, only if it is
defined at corresponding states in both S and G. Also, we know that the ||SD operator
is defined in such a way that it may remove a tick transition from S under certain

75

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

conditions, even though that tick transition is possible in both S and G, but it cannot
add any tick or non-tick transition to S that is not defined in either S or G.
Since, by (4), we have that string s is defined at state yo in S, by (5) this implies
that s is defined at state xo in S and state qo in G.
⇒ ξ(xo, s)! ∧ δ(qo, s)! by Point i of ||SD definition (6)
By (3), we have: sσk+1 ∈ L(S)
⇒ η(yo, sσk+1)! by definition of L(S)
⇒ η(η(yo, s), σk+1)! by (4) and definition of transition function
⇒ η(η((xo, qo), s), σk+1)! by (5)
As σk+1 transition is defined in S, by Point i of the ||SD definition, this implies that
σk+1 transition is defined at corresponding states in both S and G.
⇒ ξ(ξ(xo, s), σk+1)! ∧ δ(δ(qo, s), σk+1)! by (6) and Point i of ||SD definition
⇒ ξ(xo, sσk+1)! ∧ δ(qo, sσk+1)! by definition of transition function
⇒ sσk+1 ∈ L(S) ∧ sσk+1 ∈ L(G) by definition of L(S) and L(G)
⇒ sσk+1 ∈ L(S) ∩ L(G)
Inductive step complete.
By our base case and inductive step, we have shown that for some arbitrary string s,
s ∈ L(S) implies s ∈ L(S) ∩ L(G). Thus, we have shown that L(S) ⊆ L(S) ∩ L(G).
Hence, we conclude: (i) L(S) ⊆ L(S), and (ii) L(S) ⊆ L(G).

In the next proposition, we prove same idea with respect to marked languages of
S, G and S = S ||SD G. Specifically, we show that the marked strings that make up
Lm(S) is a subset of the marked strings that are defined in both Lm(S) and Lm(G).
This proof is partially based on the result of our previous proposition.
Proposition 5.2. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S =
(X,Σ, ξ, xo, Xm) be a supervisor. Let TDES S = S ||SD G = (Y,Σ, η, yo, Ym), then:
(i) Lm(S) ⊆ Lm(S), and (ii) Lm(S) ⊆ Lm(G).
Proof. We will prove these two points together.
Assume: S = S ||SD G. Sufficient to show: Lm(S) ⊆ Lm(S) ∩ Lm(G)
Let s ∈ Lm(S). Must show this implies: s ∈ Lm(S) ∩ Lm(G)
We have: s ∈ Lm(S)
⇒ η(yo, s)! ∧ η(yo, s) ∈ Ym by definition of Lm(S)
⇒ s ∈ L(S) ∧ η(yo, s) ∈ Ym by definition of L(S) (1)
As S = S ||SD G, thus by Proposition 5.1, we have: L(S) ⊆ L(S) and L(S) ⊆ L(G)
⇒ s ∈ L(S) ∧ s ∈ L(G) by Proposition 5.1 (2)
The ||SD operator defines the initial state of S as an ordered pair of the initial states
of S and G, and the set of marked states of S as cross product of the set of marked
states of S and G.

76

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

By (1), we have: η(yo, s) ∈ Ym
⇒ η((xo, qo), s) ∈ Xm ×Qm by (2) and definition of yo and Ym in ||SD definition
⇒ ξ(xo, s) ∈ Xm ∧ δ(qo, s) ∈ Qm by Point i and definition of Ym in ||SD definition
⇒ s ∈ Lm(S) ∩ Lm(G)
Hence, we conclude: (i) Lm(S) ⊆ Lm(S), and (ii) Lm(S) ⊆ Lm(G).

Based on the above two propositions, we now present our main result of proving
language equivalence between the SD and our ||SD setting. In the following proposition,
we prove that the closed and marked languages generated by synchronizing TDES
supervisor S and TDES plant G using ||SD operator in the ||SD setting are the same as
the closed and marked languages obtained by combining TDES supervisor S = S ||SD

G and TDES plant G using synchronous product operator in the SD setting.
Proposition 5.3. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S =
(X,Σ, ξ, xo, Xm) be a supervisor. Let TDES S = S ||SD G = (Y,Σ, η, yo, Ym), then:
(i) L(S) = L(S) ∩ L(G), and (ii) Lm(S) = Lm(S) ∩ Lm(G).
Proof. Assume: S = S ||SD G
i) Show: L(S) = L(S) ∩ L(G)

Sufficient to show: (1) L(S) ⊆ L(S) ∩ L(G), and (2) L(S) ∩ L(G) ⊆ L(S).
1) Show: L(S) ⊆ L(S) ∩ L(G)
Let s ∈ L(S). Must show this implies: s ∈ L(S) ∩ L(G) (1)
As s ∈ L(S) by (1), sufficient to show: s ∈ L(G)
As S = S ||SD G, thus by Proposition 5.1, we have: L(S) ⊆ L(S) ∩ L(G)
⇒ s ∈ L(G) by (1) and Proposition 5.1
We thus conclude that L(S) ⊆ L(S) ∩ L(G).
2) Show: L(S) ∩ L(G) ⊆ L(S)
This follows automatically from the definition of set intersection.
By Parts (1) and (2), we conclude that L(S) = L(S) ∩ L(G).

ii) Show: Lm(S) = Lm(S) ∩ Lm(G)
Proof is identical to Part (i) up to relabelling closed languages L(S), L(G) and
L(S) to marked languages Lm(S), Lm(G) and Lm(S) respectively, and replacing
Proposition 5.1 with Proposition 5.2 in Part (1).

By our assumptions, we know that S = S ||SD G, L(S ||G) = L(S) ∩ L(G), and
Lm(S ||G) = Lm(S) ∩ Lm(G). This means that Proposition 5.3 can be stated in
multiple ways. Below we derive a corollary based on our main language equivalence
result. We will then refer to the various points of this corollary to directly cite the
result in the required form in the upcoming proofs.

77

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Corollary 5.1. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ,
xo, Xm) be a supervisor. Let TDES S = S ||SD G = (Y,Σ, η, yo, Ym), then:

i) L(S) = L(S ||G) ii) Lm(S) = Lm(S ||G)
iii) L(S ||SD G) = L(S ||G) iv) Lm(S ||SD G) = Lm(S ||G)
v) L(S ||SD G) = L(S) ∩ L(G) vi) Lm(S ||SD G) = Lm(S) ∩ Lm(G)

Proof. Assume: S = S ||SD G

i) Show: L(S) = L(S ||G)
As both S and G are defined over Σ, we thus have: L(S ||G) = L(S) ∩ L(G)
The result follows automatically from Proposition 5.3.

ii) Show: Lm(S) = Lm(S ||G)
Proof is identical to Part (i) up to relabelling closed languages L(S), L(G) and
L(S) to marked languages Lm(S), Lm(G) and Lm(S) respectively.

iii) Show: L(S ||SD G) = L(S ||G)
As S = S ||SD G, the result follows immediately from Part (i).

iv) Show: Lm(S ||SD G) = Lm(S ||G)
As S = S ||SD G, the result follows immediately from Part (ii).

v) Show: L(S ||SD G) = L(S) ∩ L(G)
As S = S ||SD G, the result follows immediately from Proposition 5.3(i).

vi) Show: Lm(S ||SD G) = Lm(S) ∩ Lm(G)
As S = S ||SD G, the result follows immediately from Proposition 5.3(ii).

5.4 Equivalence of SD Properties
In this section, we prove equivalence between the two versions of various properties
that are defined in the SD and ||SD setting.

In our ||SD setting, we expect TDES supervisor S to be manually designed by
software designers, and is required to satisfy certain properties. By introducing the
||SD setting, we are devising a way to automatically construct the supervisor of the
SD setting as S = S ||SD G. This means we must also provide a way to automatically
satisfy various properties that the supervisor of the SD setting is required to satisfy.
This is discussed in the following subsections. Specifically, in these subsections, we
formally prove that if certain ||SD properties are satisfied with respect to S and TDES
plant G in our ||SD setting, this implies that the corresponding SD properties are
guaranteed to be satisfied with respect to TDES supervisor S = S ||SD G and G in
the SD setting.

78

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

5.4.1 Plant Completeness
In the SD setting, it is required that plant TDES should be complete for the supervisor
TDES. In the following proposition, we prove that if plant G is complete with ||SD for
supervisor S in our ||SD setting, then this is sufficient to ensure that G is complete for
supervisor S = S ||SD G in the SD setting.
Proposition 5.4. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant, TDES S = (X,Σ, ξ,
xo, Xm) be a supervisor, and TDES S = S ||SD G = (Y,Σ, η, yo, Ym) be a supervisor.
If G is complete with ||SD for S, then G is complete for S.
Proof. Assume: S = S ||SD G, and G is complete with ||SD for S (1)
To show that G is complete for S, it is sufficient to show:

(∀s ∈ L(S) ∩ L(G)) (∀σ ∈ Σhib) sσ ∈ L(S)⇒ sσ ∈ L(G)
Let s ∈ L(S) ∩ L(G) and let σ ∈ Σhib. Assume: sσ ∈ L(S) (2)
Must show this implies: sσ ∈ L(G)
By (2), we have: s ∈ L(S) ∩ L(G)
⇒ s ∈ L(S ||SD G) by (1) and Corollary 5.1(v) (3)
As S = S ||SD G by (1), thus by Proposition 5.1, we have: L(S) ⊆ L(S)
⇒ sσ ∈ L(S) by (2) and Proposition 5.1 (4)
⇒ sσ ∈ L(G) by (1-4)
Hence, we conclude that G is complete for S.

5.4.2 S-Singular Prohibitable Behaviour
One of the assumptions made in the SD setting is that controllers allow prohibitable
events to occur only once per sampling period. This should be reflected in the plant
model as well. Hence, plant G is required to satisfy S-singular prohibitable behaviour
with respect to supervisor S in the SD setting. The following proposition proves that
if G has S-singular prohibitable behaviour with ||SD with respect to supervisor S in
the ||SD setting, then G is guaranteed to have S-singular prohibitable behaviour with
respect to supervisor S = S ||SD G in the SD setting.
Proposition 5.5. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant, TDES S = (X,Σ, ξ,
xo, Xm) be a supervisor, and TDES S = S ||SD G = (Y,Σ, η, yo, Ym) be a supervisor. If
G has S-singular prohibitable behaviour with ||SD, then G has S-singular prohibitable
behaviour.
Proof. Assume: S = S ||SD G, and G has S-singular prohibitable behaviour with ||SD

(1)

79

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

To show that G has S-singular prohibitable behaviour, it is sufficient to show:
(∀s ∈ L(S) ∩ L(G) ∩ Lsamp) (∀s′ ∈ Σ∗act) ss′ ∈ L(S) ∩ L(G)⇒

(∀σ ∈ Occu(s′) ∩ Σhib) σ /∈ EligL(G)(ss′)
Let s ∈ L(S) ∩ L(G) ∩ Lsamp, and let s′ ∈ Σ∗act. Assume: ss′ ∈ L(S) ∩ L(G) (2)
Let σ ∈ Occu(s′) ∩ Σhib. Must show: σ /∈ EligL(G)(ss′) (3)
By (2), we have: s ∈ L(S) ∩ L(G) ∩ Lsamp
⇒ s ∈ L(S ||SD G) ∩ Lsamp by (1) and Corollary 5.1(v) (4)
By (2), we have: ss′ ∈ L(S) ∩ L(G)
⇒ ss′ ∈ L(S ||SD G) by (1) and Corollary 5.1(v) (5)
⇒ σ /∈ EligL(G)(ss′) by (1-5)
Hence, we conclude that G has S-singular prohibitable behaviour.

5.4.3 Timed Controllability
In the SD setting, supervisor TDES is assumed to be timed controllable with respect
to plant TDES. The following proposition proves that while designing supervisor S
of the ||SD setting, if designers make sure that S is timed controllable with ||SD with
respect to plant G, this guarantees that supervisor S = S ||SD G is timed controllable
with respect to G in the SD setting.
Proposition 5.6. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant, TDES S = (X,Σ, ξ,
xo, Xm) be a supervisor, TDES S = S ||SD G = (Y,Σ, η, yo, Ym) be a supervisor, and
let Σfor = Σhib. If S is timed controllable with ||SD for G, then S is timed controllable
for G.
Proof. Let S = S ||SD G and Σfor = Σhib. (1)
Assume: S is timed controllable with ||SD for G (Definition 4.4.3) (2)
Must show: S is timed controllable for G
Substituting (1) in Definition 2.3.2 of timed controllability, it is sufficient to show:
(∀s ∈ L(S) ∩ L(G))

EligL(S ||SD G)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σhib 6= ∅
(3)

Let s ∈ L(S) ∩ L(G).
⇒ s ∈ L(S ||SD G) by (1) and Corollary 5.1(v) (4)
As S = S ||SD G by (1), applying Corollary 5.1(v) on the R.H.S of (3), we get:

EligL(S ||SD G)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S ||SD G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S ||SD G)(s) ∩ Σhib 6= ∅
(5)

80

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

By (4) and (5), we thus have s ∈ L(S ||SD G) and:

EligL(S ||SD G)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S ||SD G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S ||SD G)(s) ∩ Σhib 6= ∅
This is true by our assumption of (2), as s is an arbitrary string.
Hence, we conclude that S is timed controllable for G.

5.4.4 SD Controllability
One of the most important assumptions made by the authors while proving control-
lability and nonblocking verification results in the SD setting is that the supervisor
TDES is SD controllable with respect to the plant TDES. The proposition given
below provides sufficient conditions to automatically satisfy this property in the SD
setting. It proves that in the ||SD setting, if designers create a supervisor S that is
SD controllable with ||SD with respect to plant G, then supervisor S = S ||SD G is
guaranteed to be SD controllable with respect to G in the SD setting.
Proposition 5.7. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant, TDES S = (X,Σ, ξ, xo,
Xm) be a supervisor, TDES S = S ||SD G = (Y,Σ, η, yo, Ym) be a supervisor, and let
Σfor = Σhib. If S is SD controllable with ||SD for G, then S is SD controllable for G.
Proof. Let S = S ||SD G and Σfor = Σhib. (1)
Assume: S is SD controllable with ||SD for G (Definition 4.5.1) (2)
Must show S is SD controllable for G. By Definition 3.5.1 of SD controllability, it is
sufficient to show the following:
(∀s ∈ L(S) ∩ L(G))
i) EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)

ii) If τ ∈ EligL(G)(s), then τ ∈ EligL(S)(s)⇔ EligL(S)∩L(G)(s) ∩ Σhib = ∅

iii) If s ∈ Lsamp then

1) (∀s′ ∈ Σ∗act) [ss′ ∈ L(S) ∩ L(G)]⇒
[EligL(S)∩L(G)(ss′) ∪Occu(s′)] ∩ Σhib = EligL(S)∩L(G)(s) ∩ Σhib

2) (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S) ∩ L(G) ∧Occu(s′) = Occu(s′′)]⇒
ss′ ≡L(S)∩L(G) ss

′′ ∧ ss′ ≡Lm(S)∩Lm(G) ss
′′

iv) Lm(S) ∩ Lm(G) ⊆ Lsamp

Let s ∈ L(S) ∩ L(G).
⇒ s ∈ L(S ||SD G) by (1) and Corollary 5.1(v) (3)
Now we will analyze the four points of the SD controllability definition individually.
i) To show Point i, we need to show: EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)

81

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

This concept can be restated as: EligL(S)(s) ⊇ EligL(G)(s) ∩ Σu (4)
In the next step, we will combine this with Part(a) of Point ii, and show this
matches Point i of Definition 4.5.1, and is thus satisfied by (2).

ii) Point ii of the SD controllability definition represents an “if and only if” statement.
We will analyze it in two parts.
If τ ∈ EligL(G)(s) then:
a) Reverse implication (⇐): τ ∈ EligL(S)(s)⇐ EligL(S)∩L(G)(s) ∩ Σhib = ∅
b) Forward implication (⇒): τ ∈ EligL(S)(s)⇒ EligL(S)∩L(G)(s) ∩ Σhib = ∅
Part a) The reverse implication can be restated as:

EligL(S)(s) ⊇ EligL(G)(s) ∩ {τ} if EligL(S)∩L(G)(s) ∩ Σhib = ∅ (5)
Combining (4) and (5), we get:

EligL(S)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σhib 6= ∅

Applying (1) on the L.H.S., and (1) and Corollary 5.1(v) on the R.H.S, we get:

EligL(S ||SD G)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S ||SD G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S ||SD G)(s) ∩ Σhib 6= ∅
(6)

As this now matches Point i of Definition 4.5.1, it is satisfied by (2).
Part b) The forward implication says that if tick is possible in L(S)∩L(G), then
no prohibitable events are possible after string s in L(S) ∩ L(G).
From (3), we have: s ∈ L(S) ∩ L(G) and s ∈ L(S ||SD G)
We now need to show: τ ∈ EligL(S)(s)⇒ EligL(S)∩L(G)(s) ∩ Σhib = ∅
Assume: τ ∈ EligL(S)(s)
⇒ τ ∈ EligL(S ||SD G)(s) as S = S ||SD G by (1) (7)
We now need to show this implies: EligL(S)∩L(G)(s) ∩ Σhib = ∅
By (1) and Corollary 5.1(v), it is sufficient to show: EligL(S ||SD G)(s) ∩ Σhib = ∅
As we have τ ∈ EligL(S ||SD G)(s) by (7), this follows automatically from Point i of
Definition 4.1.1 of the ||SD operator. (8)
Combining with Point i and Part(a) of Point ii, we have now satisfied both Points
i and ii of the SD controllability definition.

iii) From Corollary 5.1(v,vi), we have:
L(S ||SD G) = L(S) ∩ L(G) and Lm(S ||SD G) = Lm(S) ∩ Lm(G)

We can thus rewrite Point iii of Definition 3.5.1 using these identities as follows:
If s ∈ Lsamp then (9)
1) (∀s′ ∈ Σ∗act) [ss′ ∈ L(S ||SD G)]⇒

[EligL(S ||SD G)(ss′) ∪Occu(s′)] ∩ Σhib = EligL(S ||SD G)(s) ∩ Σhib

(10)

82

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

2) (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S ||SD G) ∧Occu(s′) = Occu(s′′)]⇒
ss′ ≡L(S ||SD G) ss

′′ ∧ ss′ ≡Lm(S ||SD G) ss
′′ (11)

As this now exactly matches Point ii of Definition 4.5.1, it is satisfied by (2).
iv) From Corollary 5.1(vi), we have: Lm(S ||SD G) = Lm(S) ∩ Lm(G)

We can thus rewrite Point iv of Definition 3.5.1 as: Lm(S ||SD G) ⊆ Lsamp (12)
As this now exactly matches Point iii of Definition 4.5.1, it is satisfied by (2).

Combining (3), (6) and (8-12), we have shown that Points (i-iv) of the SD controlla-
bility definition are satisfied for S and G, as required.
Hence, we conclude that S is SD controllable for G.

5.4.5 ALF
In order to show our equivalence result with respect to the ALF property, we will
make use of one of the propositions from Wang (2009). Proposition 5.8 stated below
says that the synchronous product of two TDES will be ALF, if one TDES is ALF,
and the ALF TDES contains all events in the event set of the other TDES.
Proposition 5.8. (Wang, 2009) Let G1 = (Q1,Σ1, δ1, qo,1, Qm,1) and G2 = (Q2,Σ2,
δ2, qo,2, Qm,2) be two TDES. If G1 is ALF and Σ1 ⊇ Σ2, then G1 ||G2 is also ALF.

In the SD setting, one of the preconditions of the controllability and nonblocking
verification results is that the closed-loop system constructed by synchronizing the
plant and supervisor models using the synchronous product is ALF. In order to au-
tomatically satisfy this condition of the SD setting, we require that the closed-loop
system constructed as S ||SD G in the ||SD setting must be ALF. This is because if
S = S ||SD G is ALF, then the closed loop system constructed as S ||G in the SD
setting is guaranteed to be ALF by Proposition 5.8 (as both S and G are defined over
the same event set (Section 5.2)). Please note that in Section 4.6, we have already
presented an easy and modular way of making S ||SD G ALF.

83

Chapter 6

Equivalence using Minimal
Automaton

In this chapter, we present some more results with respect to establishing equivalence
between the SD and our ||SD setting. The primary focus of this chapter is on describ-
ing the approach that we have formulated to process TDES S = S ||SD G (if required)
and ensure that S satisfies the property of concurrent string (CS) deterministic su-
pervisors, as required by the supervisor of the SD setting.

This chapter begins with a discussion on why supervisor S needs to be CS de-
terministic, and the significance of minimizing S. Then, we present our algorithms
to obtain the minimal version of S from its non-minimal TDES automaton. After
that, we identify sufficient conditions and formally prove that minimized S is guar-
anteed to be CS deterministic. Finally, we finish this chapter off by revisiting and
re-evaluating our equivalence results presented in the previous chapter to make sure
that they remain valid with the minimal version of S as well.

6.1 Why Minimal Automaton is Needed?
The SD supervisory control methodology (Chapter 3) presents a formal translation
method to translate a TDES supervisor into an SD controller. This translation pro-
cess requires that the TDES supervisor must be CS deterministic (Definition 3.4.5).
Otherwise, this conversion technique is not guaranteed to work. Since we are defining
a concrete way to automatically construct TDES S = S ||SD G that we intend to use
as the supervisor of the SD setting, we need S to be CS deterministic.

We also want to make S CS deterministic because in the SD setting, the developed
translation method is used to convert the CS deterministic TDES supervisor into an
SD controller (in fact, the controller would otherwise be non-deterministic). This CS
deterministic supervisor and its corresponding SD controller have then been used in
the SD setting as the basis to conclude various SD controllability and nonblocking

84

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

verification results. As we want to make these existing SD verification results valid in
our ||SD setting, and use them to derive and conclude our controllability and nonblock-
ing verification results of the ||SD setting, we must make sure that all preconditions of
the SD verification results are satisfied.

Moreover, one of the goals of defining our ||SD setting is to enable the software
and hardware practitioners to design and implement our TDES supervisor S instead
of the potentially more complex supervisor of the SD setting. In order to be able
to do that, we need to show that the SD controller generated by translating S in
our ||SD setting is output equivalent (Definition 7.1.2) to the SD controller that is
obtained by converting S in the SD setting (this is demonstrated in Chapter 7). To
theoretically prove this equivalence, we assume and require that the two supervisors S
and S have been translated into their corresponding SD controllers. For this reason,
both supervisors must be CS deterministic, as their translation into SD controllers is
not possible otherwise.

In our ||SD setting, since we want practitioners to design and implement our TDES
supervisor S, therefore we require them to design S in such a way that it must satisfy
the property of CS deterministic supervisor. However, making S CS deterministic
does not guarantee that S = S ||SD G will be CS deterministic. This is owing to the
fact that in order to construct S, S needs to be synchronized with TDES plant G
using ||SD operator, and neither G nor the ||SD operator guarantees to preserve the
property of CS deterministic supervisor in any way. This means if S = S ||SD G is not
CS deterministic, then we need to somehow process S to make it CS deterministic.

Our approach of making S CS deterministic relies on generating its minimal ver-
sion. As we are proposing a strategy of obtaining a CS deterministic version of S, it is
also important to show that S will indeed become CS deterministic after applying our
state space minimization algorithms (presented in the next section), and satisfying
some other conditions. We formally prove this in Section 6.3.1.

In summary, if S = S ||SD G is CS deterministic in its original form, we can
directly use it as the supervisor of the SD setting and generate its corresponding SD
controller. However, if S = S ||SD G is not CS deterministic in its current form,
then S must be minimized using our state space minimization algorithms to make it
CS deterministic, and essentially make it work within our ||SD setting for use in our
proofs. In practice, we would never need to actually minimize S, as once we have
proven the required equivalence, we would just implement our S as an SD controller.

6.2 Obtaining a Minimal Automaton
In this section, we present our approach to minimize a given TDES automaton, i.e.
obtain an equivalent TDES automaton that has as few states as possible as any
automaton accepting the same closed and marked languages. This minimal TDES
automaton is unique for the given language up to relabelling of states.

85

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Let G = (Q,Σ, δ, qo, Qm) be a TDES automaton. Without any loss of generality,
we assume that G is a reachable automaton. We will describe our approach of ob-
taining the minimal version of TDES automaton G in two steps: 1) identify distinct
λ-equivalent states of G, and 2) construct minimal TDES automaton G′. We elabo-
rate these two steps and present their corresponding algorithms in the following two
subsections. Please note that these algorithms are generic (not specific to our S) and
can be used to generate the minimal version of any given TDES automaton.

6.2.1 Identify Distinct λ−Equivalent States
Algorithm 6.1 identifies distinct λ-equivalent states of a generator G (where δ is a
partial function). The algorithm begins by unflagging all state pairs at Step 0. We
have added this step just to ensure the accuracy of our results. Our approach to find
all possible sets of λ-equivalent states of G, is by flagging state pairs that are not
λ-equivalent at Steps 1-4. It is notable that as the relation λ is symmetric, for states
q1, q2 ∈ Q, if we flag state pair (q1, q2), we must also flag pair (q2, q1).

At Step 1, we flag every state pair such that one state of the pair is marked and
the other state is unmarked, as marked and unmarked states are not λ-equivalent.
Step 2 is performed for every remaining unflagged state pair (q1, q2) ∈ Q × Q. At
Step 2.1, we look for some event σ ∈ Σ, such that σ is defined at exactly one state
of the state pair, i.e. either at q1 or q2. If such σ exists, we flag state pairs (q1, q2) and
(q2, q1) (Step 2.1.1). This is because q1 and q2 are not λ-equivalent, as they have
different sets of σ transitions leaving them.

At Step 3, we initialize our boolean variable flagging to True. Step 4 is repeated
as long as flagging is True, i.e. there is a possibility to flag more state pairs. At
Step 4.1, we set flagging to False by assuming that no more state pairs could be
flagged in the current iteration. However, if we are able to flag more state pairs,
then we set flagging to True again (Step 4.2.1.2) to repeat Step 4 one more time.
This is because there is a possibility that flagging might propagate from the recently
flagged state pairs to some unflagged state pair(s) in the next iteration. However, if
we do not flag any state pairs in the current iteration of Step 4, flagging remains
False, and while loop of Step 4 terminates.

Step 4.2 is performed for every unflagged state pair (q1, q2) ∈ Q × Q. At Step
4.2.1, we check to see if there is some event σ, such that σ is defined at both q1 and
q2, and σ leads them to a state pair that is flagged. If so, we flag (q1, q2) and (q2, q1)
(Step 4.2.1.1). The reason is that σ takes q1 and q2 to some destination states that
are not λ-equivalent. Once Step 4 finishes, the flagging process is complete and the
state pairs that are not flagged correspond to states that are λ-equivalent.

At Step 5, we create a list L, and add all non-singular (a state pair with distinct
states) unflagged state pairs to L. This means that if a state is only λ-equivalent
to itself, then (q, q) ∈ Q × Q will not be added to L. Only unflagged state pairs
(q1, q2) ∈ Q × Q, with q1 6= q2, will be added to L. At Step 6, we initialize our

86

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 6.1 Identify Distinct λ-Equivalent States of Generator G
Step 0: For every pair (q1, q2) ∈ Q×Q, unflag (q1, q2).
Step 1: For every pair (q1, q2) ∈ Q×Q, if (q1 ∈ Qm∧q2 /∈ Qm)∨(q1 /∈ Qm∧q2 ∈ Qm),

then:
Step 1.1: Flag (q1, q2), (q2, q1).

Step 2: For every pair (q1, q2) ∈ Q×Q not flagged at Step 1:
Step 2.1: For some σ ∈ Σ, if (δ(q1, σ)! ∧ ¬δ(q2, σ)!) ∨ (¬δ(q1, σ)! ∧ δ(q2, σ)!),

then:
Step 2.1.1: Flag (q1, q2), (q2, q1).

Step 3: Set flagging := True.
Step 4: While (flagging):

Step 4.1: Set flagging := False.
Step 4.2: For every pair (q1, q2) ∈ Q×Q not flagged at Steps 1 and 2:

Step 4.2.1: For some σ ∈ Σ such that δ(q1, σ)! ∧ δ(q2, σ)!, if (δ(q1, σ),
δ(q2, σ)) is flagged, then:

Step 4.2.1.1: Flag (q1, q2), (q2, q1).
Step 4.2.1.2: Set flagging := True.

Step 5: Add all unflagged, non-singular pairs (no pairs (q, q) ∈ Q×Q) to list L.
Step 6: Set k := 0.
Step 7: While L 6= ∅:

Step 7.1: Set k := k + 1.
Step 7.2: Take a pair (q1, q2) from L. Create a new set Ek and add both states

q1 and q2 of the pair to Ek. Remove all occurrences of the pair
(q1, q2) and (q2, q1) from L.

Step 7.3: For every pair (q′1, q′2) in L, if the pair has exactly one state in common
with Ek, then add the uncommon state of the pair to Ek. Remove
all occurrences of the pair (q′1, q′2) and (q′2, q′1) from L. Then, repeat
this step until no pair in L has exactly one state in common with Ek.

counter variable k to 0, and increment it by 1 (Step 7.1) every time we construct a
new set of λ-equivalent states, Ek.

At Step 7, we use the list L to form disjoint sets of λ-equivalent states in such a
way that each state is exactly in one set, all states in the same set are λ-equivalent, and
no two states from different sets are λ-equivalent. These sets will thus contain at least
two (and possibly more) distinct λ-equivalent states that need to be combined. We
use the transitive property (i.e. if x ≡ y and y ≡ z, then x ≡ z) of the λ-equivalence
relation to form these sets. Step 7 is repeated until L becomes empty.

At Step 7.2, we create a new set Ek by removing one state pair (q1, q2) from
L, and adding both states of the pair to Ek. As these two states of the pair are
λ-equivalent, they must be in the same set. We then remove all occurrences of (q1, q2)
and (q2, q1) from L. This ensures that each state pair is added to only one set exactly

87

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

once, and guarantees that all sets of λ-equivalent states are disjoint.
At Step 7.3, we check to see if there exists a state pair (q′1, q′2) in L that has

exactly one state in common with Ek. If yes, this means the common state is λ-
equivalent to all other states of Ek. As two states of the pair are λ-equivalent, this
step adds the uncommon state of the pair to Ek as well. This ensures that all states
in the same set are λ-equivalent. As both states of this pair have now been added
to the appropriate set, we remove all occurrences of (q′1, q′2) and (q′2, q′1) from L. This
step is repeated until there does not exist any state pair in L that has exactly one
state in common with Ek. It is notable that if no state of the pair is in common with
Ek, then the states of the pair are not λ-equivalent to the states of Ek. In this case,
they must not be added to Ek, as only λ-equivalent states must be in the same set.

After Step 7.3 is complete for set Ek, there is no state pair in L that has one
or more states in common with Ek. For other state pairs that are in L but not
λ-equivalent to the states of Ek, we repeat Step 7 and create new sets, as needed.

Upon completion, Algorithm 6.1 creates one or more disjoint sets of λ-equivalent
states of the input TDES automaton G, if G was not minimal. However, if G was
already in its minimal form, our algorithm will flag all state pairs at Steps 1-4, as no
two distinct states of G are λ-equivalent. In this case, there will be no non-singular
(i.e. no pairs (q, q) ∈ Q×Q) unflagged pairs to be added to list L at Step 5. As L
is empty, Step 7 is not executed and no sets of λ-equivalent states will be formed by
the algorithm.

6.2.2 Construct a Minimal Automaton
A TDES automaton is said to be minimal (Definition 2.2.10) if it does not have
two distinct states that are λ-equivalent. This means in order to obtain a minimal
version of a non-minimal TDES, all distinct λ-equivalent states of the non-minimal
automaton should be merged and replaced by a single “aggregate” state. This process
is called state aggregation (Cassandras and Lafortune, 2008). For example, if the non-
minimal TDES automaton G has n > 1 distinct λ-equivalent states q1, . . . , qn ∈ Q,
these n states should be replaced by a single aggregate state, say q, in the minimal
TDES automaton, such that q behaves like q1, . . . , qn. There can be one or more
groups of distinct λ-equivalent states in the non-minimal automaton. The minimal
automaton will have an aggregate state corresponding to each one of these groups.

Let TDES automaton G′ = (Q′,Σ, δ′, q′o, Q′m) be the minimum-state version of the
non-minimal TDES automaton G. Here, the state space Q′ represents the smallest
set of states after combining all states within each group of distinct λ-equivalent states
of G. Σ is the event set of G′ and is same as the event set of G. δ′ is the resulting
transition function, q′o ∈ Q′ is the initial state, and Q′m ⊆ Q′ is the set of marked
states of the minimal automaton G′. To clearly argue about the transitions of G and
G′, we will express transitions as a 3-tuple (as described in Section 2.2.1).

By utilizing the disjoint sets of distinct λ-equivalent states of G identified by

88

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 6.2 Construct Minimal TDES Automaton G′ from G
Step 1: G′ := G, such that Q′ := Q,Σ := Σ, δ′ := δ, q′o := qo, Q

′
m := Qm.

Step 2: For every set Ek of distinct λ-equivalent states of G:
Step 2.1: For all q ∈ Ek, remove q from Q′.
Step 2.2: Add q′ to Q′, such that q′ /∈ Q and q′ /∈ Q′.
Step 2.3: If qo ∈ Ek, then q′o := q′.
Step 2.4: If (Ek ∩Qm 6= ∅), then:

Step 2.4.1: For all q′′ ∈ Ek, remove q′′ from Q′m.
Step 2.4.2: Add q′ to Q′m.

Step 2.5: For every transition (q1, σ, q2) ∈ δ′:
Step 2.5.1: If q1 ∈ Ek, then replace q1 with q′ in the transition triple in δ′.
Step 2.5.2: If q2 ∈ Ek, then replace q2 with q′ in the transition triple in δ′.

Algorithm 6.1, Algorithm 6.2 presents steps for the iterative construction of minimal
automaton G′. The algorithm begins by copying the non-minimal automaton G to
G′. Step 1 copies the state set Q to Q′, event set Σ to Σ, transition function δ to δ′,
initial state qo to q′o, and the set of final states Qm to Q′m. At Step 2, we iteratively
update the automaton structure of G′ to make it minimal. This step is repeated for
each set of λ-equivalent states Ek, where 1 ≤ k ≤ t and t ≥ 1 is the total number of
sets of distinct λ-equivalent states formed by Algorithm 6.1.

Steps 2.1 and 2.2 merge all λ-equivalent states of set Ek and replace them with
a single aggregate state in G′. In other words, we remove all distinct λ-equivalent
states of Ek from Q′ and add one state, q′, corresponding to Ek in Q′. It is important
to make sure that the state label q′ does not already exist in Q or Q′. At Step 2.3,
we check to see if Ek contains the initial state of G. If so, we make q′ the initial
state of G′. The set of marked states of G′ should include all aggregate states that
correspond to sets that contain the marked states of G. At Step 2.4, we determine
if Ek contains any marked state. If so, all the λ-equivalent states of Ek are removed
from Q′m and replaced by the corresponding aggregate state q′.

At Step 2.5, we perform relabelling of λ-equivalent states of Ek in the transitions
of δ′. This is required because all the distinct λ-equivalent states of set Ek have been
replaced by a single aggregate state in G′. Therefore, all the transitions, copied from
δ to δ′ at Step 1, that have these λ-equivalent states as their exit and/or entrance
states should now have the corresponding aggregate state q′ as their exit and/or
entrance states respectively in δ′.

It is important to clarify here that Step 2.5 does not add or remove any transitions
from δ′. It just relabels the exit and/or entrance states of transitions in δ′ by replacing
the state labels of λ-equivalent states with their corresponding aggregate state labels.
In other words, we can say that δ′ is essentially δ, with the distinct λ-equivalent states
of G being replaced by their corresponding aggregate states in G′. In this way, every
iteration of Step 2 updates the automaton structure of G′ to make it minimal.

89

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

It is noteworthy that Algorithm 6.2 does not make any changes to states that
are identified by Algorithm 6.1 as not being λ-equivalent. At Step 1, Algorithm
6.2 copies the entire automaton structure of G to G′. Thus, these non-λ-equivalent
states and their transitions are a part of G′ and remain unchanged throughout the
execution of Step 2, as they do not belong to any set Ek. Therefore, the automaton
structure of G′ with respect to these non-λ-equivalent states is the same as G.

Once Algorithm 6.2 completes its execution, G′ will have as few states as any
automaton accepting the same closed and marked language as G. In other words, G′
now represents the minimal version of G.

6.3 SD Properties with Minimal Automata
In this section, we discuss our equivalence results for all SD properties with respect
to replacing S = S ||SD G with a minimal version of S, referred to as min(S) (i.e.
the result of applying Algorithms 6.1 and 6.2 to TDES S). We would need to do this
if S is not CS deterministic in its current form, and would use min(S) to address
this (Section 6.3.1). If we make this change, we will need to re-evaluate our previous
equivalence results from Chapter 5 with respect to min(S), and present new results
for the property of CS deterministic supervisors with min(S).

In order to assess our previous results with respect to replacing S by min(S),
we first note that our equivalence results of the SD and ||SD setting for language
equivalence (Section 5.3), plant completeness (Section 5.4.1), S-singular prohibitable
behaviour (Section 5.4.2), timed controllability (Section 5.4.3) and SD controllability
(Section 5.4.4) are all proved in terms of the closed and/or marked languages of the
involved TDES, and not the actual automaton structure. As the state space minimiza-
tion Algorithms 6.1 and 6.2 produce minimal automaton with the same closed and
marked languages as the original, i.e. L(min(S)) = L(S) and Lm(min(S)) = Lm(S),
it thus follows that the results from Sections 5.3 and 5.4.1-5.4.4 remain valid if we
replace S by min(S). As a result, we do not need to adapt or reprove these results.

The only definition that is given in terms of the states of TDES automaton is the
definition of ALF (Definition 2.3.10). Since we intend to minimize S by merging var-
ious groups of distinct λ-equivalent states, the state space of min(S) will be different
than the non-minimal S. This implies that while talking about min(S), we can no
longer argue in terms of the states and state tuples of S. Hence, we will revisit our
ALF equivalence results (discussed in Section 5.4.5) later in this section to make them
work with min(S). However, we will first describe our new CS deterministic result
with respect to S and min(S).

6.3.1 CS Deterministic Supervisors
Our ultimate goal of generating the minimal version of S = S ||SD G is to make it CS
deterministic, if it is not already. However, minimizing S alone does not guarantee

90

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

that min(S) will always be CS deterministic. We also need to make sure that our
TDES supervisor S is SD controllable with ||SD for TDES plant G to guarantee that
min(S) is CS deterministic. This is proved in our next proposition (Proposition 6.2).
In order to prove our desired result, we will use Proposition 6.1 from Wonham and
Cai (2018). This proposition says that for a given TDES G, two strings s and s′

are nerode equivalent with respect to L(G) and Lm(G) if and only if both of these
strings start from the initial state and take us to states that are λ-equivalent.
Proposition 6.1. (Wonham and Cai, 2018) For a generator G = (Y,Σ, η, yo, Ym),
we have (∀s, s′ ∈ Σ∗) η(yo, s) ≡ η(yo, s′) (mod λ)⇔ s ≡L(G) s

′ ∧ s ≡Lm(G) s
′.

Proposition 6.2. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S =
(X,Σ, ξ, xo, Xm) be a supervisor. Let TDES S = min(S ||SD G) = (Y,Σ, η, yo, Ym) be
a supervisor, where min(S ||SD G) is constructed using Algorithms 6.1 and 6.2. If S
is SD controllable with ||SD for G, then S is CS deterministic.
Proof. Assume initial conditions.
Must show: S is CS deterministic. By Definition 3.4.5, it is sufficient to show:

(∀s ∈ L(S) ∩ Lsamp) (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S) ∧Occu(s′) = Occu(s′′)]⇒
[ss′ ≡L(S) ss

′′ ∧ ss′ ≡Lm(S) ss
′′ ∧ η(yo, ss′) = η(yo, ss′′)]

We have S = min(S ||SD G), and thus L(S) = L(S ||SD G) and Lm(S) = Lm(S ||SD G).
(1)

Let s ∈ L(S) ∩ Lsamp, and let s′, s′′ ∈ Lconc. (2)
By (1), this implies: s ∈ L(S ||SD G) ∩ Lsamp (3)
Assume: ss′, ss′′ ∈ L(S) and Occu(s′) = Occu(s′′) (4)
By (1), this implies: ss′, ss′′ ∈ L(S ||SD G) (5)
Must show this implies: ss′ ≡L(S) ss

′′ ∧ ss′ ≡Lm(S) ss
′′ ∧ η(yo, ss′) = η(yo, ss′′)

We have that S is SD controllable with ||SD for G. By (2-5), we note that all assump-
tions of Point ii.2 of the SD controllability with ||SD definition are satisfied.
⇒ ss′ ≡L(S ||SD G) ss

′′ ∧ ss′ ≡Lm(S ||SD G) ss
′′

⇒ ss′ ≡L(S) ss
′′ ∧ ss′ ≡Lm(S) ss

′′ by (1) (6)
⇒ η(yo, ss′) ≡ η(yo, ss′′) (mod λ) by Proposition 6.1
⇒ η(yo, ss′) = η(yo, ss′′) by Definition 2.2.10 of minimal S (7)
By (6) and (7), we have thus shown that S is CS deterministic.

The above proposition tells us that as long as S is SD controllable with ||SD for
G, S = min(S ||SD G) will be CS deterministic. We note that if S ||SD G is already
minimal, then Algorithms 6.1 and 6.2 will not make any changes, and S ||SD G =
min(S ||SD G). This implies that S ||SD G will be CS deterministic in this case.
However, if S ||SD G is not minimal, then we just take S = min(S ||SD G), and we
have a CS deterministic supervisor in both cases.

91

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

As discussed in Section 5.1, we intend to base our controllability and nonblocking
verification results of the ||SD setting on some of the existing results of the SD setting.
To do this, we will need to construct an SD controller from S, a prerequisite of which
is that S must be CS deterministic. We now know that this will require considering
S = S ||SD G if S ||SD G is minimal, or S = min(S ||SD G) is S ||SD G is not minimal.

It is worth noting that in either case, both S ||SD G and min(S ||SD G) will have
the same closed and marked languages, i.e. L(S ||SD G) = L(min(S ||SD G)) and
Lm(S ||SD G) = Lm(min(S ||SD G)). This in turn means that all equivalence results
that are solely related to the closed and marked languages remain applicable to both
S ||SD G and min(S ||SD G).

However, whether we use S = S ||SD G or S = min(S ||SD G) will affect our
argument about defining the states of S in terms of the states of S and G. Precisely,
if S = S ||SD G, then state y ∈ Y of S will be a cross product of the states x ∈ X
of S and q ∈ Q of G, i.e. y = (x, q). But this might not be true if we minimize the
automaton S ||SD G and use it as our S, i.e. S = min(S ||SD G). Therefore, in our
future proofs, whenever we want to argue in terms of the states of S, we will consider
two ways of constructing S separately.

6.3.2 ALF
In order to keep our ALF result of Section 5.4.5 valid for S = min(S ||SD G), we
need to show that the ALF property is preserved by the TDES minimization process.
Before we prove this, we first give three utility propositions. Their goal is to allow us to
convert key information (information about λ-equivalent states and their successors,
converting transition in G′ to transition in G and vice versa, and translating state
reachability) from G′ = min(G) to equivalent results about G. This will be key in
removing redundancies from later proofs to make them more compact.

Please note that for a non-minimal TDES G, Algorithm 6.1 will create t ≥ 1
sets of distinct λ-equivalent states (Definition 2.2.9) of G. For each such set Ek
(1 ≤ k ≤ t), Algorithm 6.2 will replace all instances of state q ∈ Ek from G′. Each
instance would be replaced by a unique aggregate state q′, such that q′ /∈ Q and
q′ /∈ Q′ (before the replacement). As each Ek gets associated with a unique state q′
by this replacement, we will refer to Ek as Eq′ in the following propositions to make
it clear that the λ-equivalent states in Eq′ were replaced by q′ when Algorithm 6.2
was executed and G′ was constructed.
Proposition 6.3. Let G = (Q,Σ, δ, qo, Qm) be a non-minimal TDES and G′ =
min(G) = (Q′,Σ, δ′, q′o, Q′m) be the TDES constructed using Algorithms 6.1 and 6.2.
Then:
i) (∀qa, qb ∈ Q) qa ≡ qb (mod λ)⇒ (∀s ∈ Σ∗) δ(qa, s)!⇒ δ(qa, s) ≡ δ(qb, s)(mod λ)
ii) (∀q′, q′′ ∈ Q′) (∀s ∈ Σ∗) δ′(q′, s) = q′′ ⇒ (∃ qa, qb ∈ Q) δ(qa, s) = qb ∧ (qa = q′ ∨

qa ∈ Eq′) ∧ (qb = q′′ ∨ qb ∈ Eq′′)

92

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

iii) (∀qa, qb ∈ Q) (∀s ∈ Σ∗) δ(qa, s) = qb ⇒ (∃q′, q′′ ∈ Q′) δ′(q′, s) = q′′ ∧ (q′ = qa ∨
qa ∈ Eq′) ∧ (q′′ = qb ∨ qb ∈ Eq′′)

Proof. Assume initial conditions.
i) Show: (∀qa, qb ∈ Q) qa ≡ qb (mod λ) ⇒ (∀s ∈ Σ∗) δ(qa, s)! ⇒ δ(qa, s) ≡ δ(qb, s)

(mod λ)
Let qa, qb ∈ Q. Assume: qa ≡ qb (mod λ) (1)
Let s ∈ Σ∗. Assume: δ(qa, s)!
⇒ δ(qb, s)! by (1)
By Definition 2.2.9, it is sufficient to show Parts (1) and (2) below.
Part 1) Show: (∀s′ ∈ Σ∗) δ(δ(qa, s), s′)!⇔ δ(δ(qb, s), s′)!
By definition of δ, it is sufficient to show: (∀s′ ∈ Σ∗) δ(qa, ss′)!⇔ δ(qb, ss′)!
This follows automatically from (1), Point 1 of the λ-equivalence definition, and
the fact that s, s′ ∈ Σ∗ implies ss′ ∈ Σ∗.
Part 2) Show: (∀s′ ∈ Σ∗) δ(δ(qa, s), s′)! ∧ δ(δ(qa, s), s′) ∈ Qm ⇔ δ(δ(qb, s), s′)! ∧
δ(δ(qb, s), s′) ∈ Qm

By definition of δ, it is sufficient to show:
(∀s′ ∈ Σ∗) δ(qa, ss′)! ∧ δ(qa, ss′) ∈ Qm ⇔ δ(qb, ss′)! ∧ δ(qb, ss′) ∈ Qm

This follows automatically from (1), Point 2 of the λ-equivalence definition, and
the fact that s, s′ ∈ Σ∗ implies ss′ ∈ Σ∗.
By Parts (1) and (2), we have proven Part (i).

ii) Show: (∀q′, q′′ ∈ Q′) (∀s ∈ Σ∗) δ′(q′, s) = q′′ ⇒ (∃ qa, qb ∈ Q) δ(qa, s) = qb ∧
(qa = q′ ∨ qa ∈ Eq′) ∧ (qb = q′′ ∨ qb ∈ Eq′′)
Let q′, q′′ ∈ Q′ and s ∈ Σ∗. Assume: δ′(q′, s) = q′′ (2)
To be consistent with Algorithm 6.2, we will treat δ ⊆ Q × Σ × Q as a relation,
where (q1, σ, q2) ∈ δ if and only if δ(q1, σ) = q2. Similarly, we will treat δ′ ⊆
Q′ × Σ×Q′, where (q′1, σ, q′2) ∈ δ′ if and only if δ′(q′1, σ) = q′2.
As s ∈ Σ∗, we have two cases: (1) s = ε, or (2) s ∈ Σ+.
Case 1) s = ε

As δ′(q′, s) = q′′ by (2), this implies q′ = q′′. (3)
We now have two cases: (a) q′ ∈ Q, or (b) q′ /∈ Q.
Case 1.a) q′ ∈ Q
We can then take qa = qb = q′ = q′′, and we immediately have δ(qa, ε) = δ(qa, s) =
qa = qb.
Case 1.b) q′ /∈ Q
⇒ ∃qa ∈ Eq′ , as Eq′ is not empty by Algorithm 6.1.
We thus have qa ∈ Q (by Algorithms 6.1 and 6.2), and can set qb = qa, and we

93

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

have δ(qa, ε) = δ(qa, s) = qa = qb.
As q′ = q′′ by (3), we have Eq′ = Eq′′ , thus qb ∈ Eq′′ as qa = qb and qa ∈ Eq′ .
By Cases (1.a) and (1.b), we have proven the desired condition for Case (1)
(s = ε).
Case 2) s ∈ Σ+

Let n = |s| ≥ 1.
⇒ (∃σ1, σ2, . . . , σn ∈ Σ) s = σ1σ2 . . . σn

As δ′(q′, s) = q′′ by (2), and δ′ ⊆ Q′ ×Σ×Q′, we can conclude there exists states
q′1, q

′
2, . . . , q

′
n+1 ∈ Q′ such that they form the following sequence of transitions in

δ′:
(q′1, σ1, q

′
2), (q′2, σ2, q

′
3), . . . , (q′n, σn, q′n+1),where q′1 = q′ and q′n+1 = q′′ (4)

By Algorithm 6.2, there exists states q1, q2, . . . , qn, qn+1 ∈ Q, and that δ ⊆ Q ×
Σ×Q contains the corresponding sequence of transitions:

(q1, σ1, q2), (q2, σ2, q3), . . . , (qn, σn, qn+1),
where for 1 ≤ i ≤ n+ 1, qi = q′i or qi ∈ Eq′i

(5)

We thus have: δ(q1, s) = qn+1

We can thus take qa = q1 and qb = qn+1, and we have δ(qa, s) = qb, qa = q′ or
qa ∈ Eq′ , and qb = q′′ or qb ∈ Eq′′ by (4) and (5).
Case (2) complete.

By Cases (1) and (2), we have constructed suitable qa, qb ∈ Q with properties:
δ(qa, s) = qb ∧ (qa = q′ ∨ qa ∈ Eq′) ∧ (qb = q′′ ∨ qb ∈ Eq′′)

Part (ii) complete.

iii) Show: (∀qa, qb ∈ Q) (∀s ∈ Σ∗) δ(qa, s) = qb ⇒ (∃q′, q′′ ∈ Q′) δ′(q′, s) = q′′ ∧
(q′ = qa ∨ qa ∈ Eq′) ∧ (q′′ = qb ∨ qb ∈ Eq′′)
Let qa, qb ∈ Q and s ∈ Σ∗. Assume: δ(qa, s) = qb (6)
As s ∈ Σ∗, we have two cases: (1) s = ε, or (2) s ∈ Σ+.
Case 1) s = ε

As δ(qa, s) = qb by (6), this implies: qa = qb (7)
We now have two cases: (a) qa ∈ Q′, or (b) qa /∈ Q′.
Case 1.a) qa ∈ Q′
We can thus take q′ = q′′ = qa = qb, and we immediately have δ′(q′, ε) = q′ = q′′.
Case 1.b) qa /∈ Q′
By Algorithms 6.1 and 6.2, this implies: (∃q′ ∈ Q′) qa ∈ Eq′ (8)
As qa = qb by (7), we also set q′′ = q′, and we have q′′ ∈ Q′ with qb ∈ Eq′′ .
As q′ ∈ Q′ by (8), we have δ′(q′, ε) = q′ = q′′.
By Cases (1.a) and (1.b), we have proven the desired condition for Case (1)

94

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

(s = ε).
Case 2) s ∈ Σ+

Let n = |s| ≥ 1.
⇒ (∃σ1, σ2, . . . , σn ∈ Σ) s = σ1σ2 . . . σn

As δ(qa, s) = qb by (6), and δ ⊆ Q × Σ × Q, we can conclude there exists states
q1, q2, . . . , qn+1 ∈ Q such that they form the following sequence of transitions in δ:

(q1, σ1, q2), (q2, σ2, q3), . . . , (qn, σn, qn+1),where q1 = qa and qn+1 = qb (9)
By Algorithm 6.2, there exists states q′1, q′2, . . . , q′n, q′n+1 ∈ Q′, and that δ′ ⊆ Q′ ×
Σ×Q′ contains the corresponding sequence of transitions:

(q′1, σ1, q
′
2), (q′2, σ2, q

′
3), . . . , (q′n, σn, q′n+1),

where for 1 ≤ i ≤ n+ 1, q′i = qi or qi ∈ Eq′i
(10)

We thus have: δ′(q′1, s) = q′n+1

We can thus take q′ = q′1, and q′′ = q′n+1, and by (9) and (10) we have:
(q′, q′′ ∈ Q′) ∧ (δ′(q′, s) = q′′) ∧ (q′ = qa ∨ qa ∈ Eq′) ∧ (q′′ = qb ∨ qb ∈ Eq′′)

Case (2) complete.
By Cases (1) and (2), we have constructed suitable q′, q′′ ∈ Q′ with the desired
properties.
Part (iii) complete.

By Parts (i)-(iii), we conclude that Points (i-iii) of the proposition are satisfied.

Proposition 6.4. Let G = (Q,Σ, δ, qo, Qm) be a non-minimal TDES and G′ =
min(G) = (Q′,Σ, δ′, q′o, Q′m) be the TDES constructed using Algorithms 6.1 and 6.2.
Then for q′, q′′ ∈ Q′ and s ∈ Σ∗ such that δ′(q′, s) = q′′, the following properties hold:
i) q′, q′′ ∈ Q ⇒ δ(q′, s) = q′′ ii) q′, q′′ /∈ Q ⇒ (∀q1 ∈ Eq′) (∃q2 ∈ Eq′′) δ(q1, s) = q2
iii) [q′ /∈ Q ∧ q′′ ∈ Q]⇒ (∀q ∈ Eq′) δ(q, s) = q′′

iv) [q′ ∈ Q ∧ q′′ /∈ Q]⇒ (∃q ∈ Eq′′) δ(q′, s) = q

Proof. Assume initial conditions.
Let q′, q′′ ∈ Q′, and s ∈ Σ∗. Assume: δ′(q′, s) = q′′

By Proposition 6.3(ii), we can conclude:
(∃qa, qb ∈ Q) δ(qa, s) = qb ∧ (qa = q′ ∨ qa ∈ Eq′) ∧ (qb = q′′ ∨ qb ∈ Eq′′) (1)

We will now show that Points (i-iv) are satisfied.
i) Show: q′, q′′ ∈ Q⇒ δ(q′, s) = q′′

Assume: q′, q′′ ∈ Q
It thus follows by Algorithm 6.2 that both q′ and q′′ are λ-equivalent only to
themselves, and we can thus conclude by (1) that qa = q′ and qb = q′′.
⇒ δ(q′, s) = q′′ by (1)
Part (i) complete.

95

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

ii) Show: q′, q′′ /∈ Q⇒ (∀q1 ∈ Eq′) (∃q2 ∈ Eq′′) δ(q1, s) = q2

Assume: q′, q′′ /∈ Q (2)
By (1), we have: (qa = q′ ∨ qa ∈ Eq′) ∧ (qb = q′′ ∨ qb ∈ Eq′′)
⇒ qa ∈ Eq′ and qb ∈ Eq′′ by (2) and Algorithm 6.2
Let q1 ∈ Eq′ .
As δ(qa, s) = qb by (1), and qa ∈ Eq′ , it follows that δ(q1, s)!.
By Proposition 6.3(i), we have: δ(qa, s) ≡ δ(q1, s)(mod λ)
⇒ δ(q1, s) ∈ Eq′′ as qb ∈ Eq′′
We can thus take q2 = δ(q1, s), and we have q1 ∈ Eq′ , q2 ∈ Eq′′ , and δ(q1, s) = q2,
as required.
Part (ii) complete.

iii) Show: [q′ /∈ Q ∧ q′′ ∈ Q]⇒ (∀q ∈ Eq′) δ(q, s) = q′′

Assume: q′ /∈ Q ∧ q′′ ∈ Q (3)
By (1) and Algorithm 6.2, we can conclude: qa ∈ Eq′ and qb = q′′

⇒ δ(qa, s) = q′′ by (1) (4)
Let q ∈ Eq′ .
As δ(qa, s) = q′′ and qa ∈ Eq′ , it follows that δ(q, s)!.
By Proposition 6.3(i), we have: δ(qa, s) ≡ δ(q, s)(mod λ)
As q′′ ∈ Q by (3), it follows by Algorithm 6.2 that q′′ is only λ-equivalent to itself.
⇒ δ(q, s) = q′′ by (4)
We thus have q ∈ Eq′ and δ(q, s) = q′′, as required.
Part (iii) complete.

iv) Show: [q′ ∈ Q ∧ q′′ /∈ Q]⇒ (∃q ∈ Eq′′) δ(q′, s) = q

Assume: q′ ∈ Q ∧ q′′ /∈ Q
By (1) and Algorithm 6.2, we can conclude: qa = q′, qb ∈ Eq′′ and δ(q′, s) = qb

We can thus take q = qb, and we have q ∈ Eq′′ with δ(q′, s) = q, as required.
Part (iv) complete.

By Parts (i)-(iv), we conclude that Points (i-iv) of the proposition are satisfied.

Proposition 6.5. Let G = (Q,Σ, δ, qo, Qm) be a non-minimal TDES and G′ =
min(G) = (Q′,Σ, δ′, q′o, Q′m) be the TDES constructed using Algorithms 6.1 and
6.2. Then for q′ ∈ Q′r, the following properties hold: (i) q′ ∈ Q ⇒ q′ ∈ Qr, and
(ii) q′ /∈ Q⇒ (∃q ∈ Eq′) q ∈ Qr.
Proof. Let q′ ∈ Q′r and assume initial conditions.
As q′ ∈ Q′r, we have: (∃s ∈ Σ∗) δ′(q′o, s) = q′

96

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

i) Show: q′ ∈ Q⇒ q′ ∈ Qr

Assume: q′ ∈ Q (1)
We have two cases: (1) q′o ∈ Q, or (2) q′o /∈ Q.
Case 1) q′o ∈ Q
⇒ q′o, q

′ ∈ Q by (1)
By Proposition 6.4(i), we have: δ(q′o, s) = q′ (2)
As q′o ∈ Q, we have: q′o = qo by Steps 1 and 2.3 of Algorithm 6.2
⇒ δ(qo, s) = q′ by (2)
⇒ q′ ∈ Qr

Case 2) q′o /∈ Q
⇒ q′o /∈ Q and q′ ∈ Q by (1)
By Proposition 6.4(iii), we have: (∀q ∈ Eq′o) δ(q, s) = q′

As qo ∈ Eq′o by Algorithm 6.2, we thus have: δ(qo, s) = q′

⇒ q′ ∈ Qr

By Cases (1) and (2), we have q′ ∈ Qr, as required.
Part (i) complete.

ii) Show: q′ /∈ Q⇒ (∃q ∈ Eq′) q ∈ Qr

Assume: q′ /∈ Q (3)
We have two cases: (1) q′o ∈ Q, or (2) q′o /∈ Q.
Case 1) q′o ∈ Q
⇒ q′o ∈ Q and q′ /∈ Q by (3)
By Proposition 6.4(iv), we have: (∃q ∈ Eq′) δ(q′o, s) = q (4)
As q′o ∈ Q, we have: q′o = qo by Steps 1 and 2.3 of Algorithm 6.2
⇒ δ(qo, s) = q by (4)
⇒ q ∈ Qr

Case 2) q′o /∈ Q
⇒ q′o, q

′ /∈ Q by (3)
By Proposition 6.4(ii), we have: (∀q1 ∈ Eq′o) (∃q ∈ Eq′) δ(q1, s) = q

As qo ∈ Eq′o by Algorithm 6.2, we thus have: δ(qo, s) = q

⇒ q ∈ Qr

By Cases (1) and (2), we have constructed q ∈ Eq′ with q ∈ Qr.
Part (ii) complete.

By Parts (i) and (ii), we conclude that Points (i-ii) of the proposition are satisfied.

Now we will present our main ALF result. The theorem given below proves that if

97

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

a non-minimal TDES having a finite state space is ALF, then the minimal version of
this TDES will also be ALF. This will allow us to use our ALF result of Section 5.4.5
whether S = S ||SD G or S = min(S ||SD G).
Theorem 6.1. Let G = (Q,Σ, δ, qo, Qm) be a TDES with finite state space. Let
TDES G′ = min(G) = (Q′,Σ, δ′, q′o, Q′m) be the minimal version of G that is con-
structed using Algorithms 6.1 and 6.2. If G is ALF, then G′ is ALF.
Proof. Assume initial conditions.
Assume G is ALF and has a finite state space. (1)
If G is minimal, then G = G′, and it follows immediately that G′ is ALF.
We now consider the case that G is non-minimal.
To show that G′ is ALF, it is sufficient to show: (∀q′ ∈ Q′r)(∀s ∈ Σ+

act) δ′(q′, s) 6= q′

We will use proof by contradiction to show our desired result.
Assume G′ is not ALF.
⇒ (∃q′ ∈ Q′r) (∃s ∈ Σ+

act) δ′(q′, s) = q′ (2)
We will now show this implies G is not ALF, contradicting (1).
To do this, we will need to construct q ∈ Qr and s′ ∈ Σ+

act such that δ(q, s′) = q.
We have two cases: (i) q′ ∈ Q, or (ii) q′ /∈ Q.
Case i) q′ ∈ Q
As δ′(q′, s) = q′ by (2), we apply Proposition 6.4(i) and conclude: δ(q′, s) = q′

As q′ ∈ Q′r by (2), and q′ ∈ Q, we apply Proposition 6.5(i) and conclude: q′ ∈ Qr

We thus take q = q′, s′ = s, and we have q ∈ Qr, s′ ∈ Σ+
act by (2), and δ(q, s′) = q,

thus contradicting G being ALF.
Case ii) q′ /∈ Q
As δ′(q′, s) = q′ by (2), we apply Proposition 6.4(ii) and conclude:

(∀q1 ∈ Eq′) (∃q2 ∈ Eq′) δ(q1, s) = q2 (3)
As q′ ∈ Q′r by (2), we apply Proposition 6.5(ii) and conclude: (∃q1 ∈ Eq′) q1 ∈ Qr (4)
Applying this to (3), we have: (∃q2 ∈ Eq′) δ(q1, s) = q2

As q2 ∈ Eq′ , we could apply (3) to q2 and so on to create a chain of transitions.
Let n = |Eq′|. As Eq′ ⊆ Q by Algorithm 6.1 and the fact that Q is finite by (1), we
have n <∞. (5)
Starting with q1, we could apply (3) repeatedly n times and construct a chain of
transitions in δ as: q1

s−→ q2
s−→ · · · s−→ qn

s−→ qn+1, where for 1 ≤ i ≤ n + 1, qi ∈ Eq′ .
(6)

As q1 ∈ Qr by (4), it follows that each qi ∈ Qr. (7)
We note that as n < ∞ by (5), after the nth transition (q1 → qn), it is possible that
each qi was a distinct state in Eq′ , but the transition δ(qn, s) = qn+1 must then involve

98

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

a duplicate state. (8)
This means states q1, . . . , qn+1 must contain two duplicate states.
Let 1 ≤ i < n+ 1 be the index for the first duplicate state, and let 1 < j ≤ n+ 1 be
the index for the second occurrence of this state (i.e. qi = qj). (9)
Let k = j − i. This is the number of transitions separating the two states (i.e. for q2
and q1, 2-1=1).
We then take q = qi and s′ = s . . . s. We thus have q ∈ Qr by (7), s′ ∈ Σ+

act as s ∈ Σ+
act

by (2), and δ(q, s′) = q by (6), (8) and (9), which contradicts G being ALF.
By Cases (i) and (ii), we have proven that G is not ALF, which contradicts (1).
As our assumption that G′ is not ALF caused a contradiction, we thus conclude that
G′ is ALF.

In the SD setting, one of the preconditions of the SD controllability and nonblock-
ing verification results is that the closed-loop system formed by synchronizing TDES
plant and supervisor models using the synchronous product will not “stop the clock”.
In Leduc et al. (2014), this has been proven using the following proposition.
Proposition 6.6. (Leduc et al., 2014) If TDES plant G = (Q,Σ, δ, qo, Qm) and
TDES supervisor S = (X,Σ, ξ, xo, Xm) both have finite state spaces, G has proper
time behaviour, S ||G = (Y,Σ, η, yo, Ym) is ALF, and S is timed controllable for G,
then (∀y ∈ Yr) (∃s ∈ Σ∗act) η(y, sτ)!.

Since we wish to make our S eligible to be used as the supervisor of the SD
setting, we need to show that this result is satisfied by our S as well. As there are
two possible ways to construct S, i.e. S = S ||SD G or S = min(S ||SD G), below we
show this result with respect to both cases.
Proposition 6.7. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant, TDES S = (X,Σ, ξ,
xo, Xm) be a supervisor, and TDES S = S ||SD G be a supervisor. Let TDES S ′ =
min(S) = (X ′,Σ, ξ′, x′o, X ′m) be constructed using Algorithms 6.1 and 6.2. Let the
closed-loop system be S ′ ||G = (Y,Σ, η, yo, Ym). If both G and S have finite state
spaces, G has proper time behaviour, S is timed controllable with ||SD for G, and S
is ALF, then:

(∀y ∈ Yr) (∃s ∈ Σ∗act) η(y, sτ)!

Proof. Assume initial conditions.
To obtain our desired result, we will show that the assumptions of Proposition 6.6 are
satisfied. It is notable that if S = S ||SD G is already minimal, then S = S ′. Thus,
we need to prove conditions for both S and S ′.
First, we have that G has finite state space and proper time behaviour. (1)
Next, we have that both G and S have finite state spaces.
⇒ S has a finite state space (2)
⇒ S ′ = min(S) has a finite state space by Algorithms 6.1 and 6.2 (3)

99

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

By our initial assumptions, S is timed controllable with ||SD for G.
⇒ S is timed controllable for G by Proposition 5.6 (4)
As state space minimization does not change the automaton’s closed behaviour, we
have L(S ′) = L(S). As timed controllability is a language based property, this implies
that S ′ is timed controllable for G. (5)
We have that S = S ||SD G is ALF.
⇒ S ||G is ALF by Proposition 5.8 (6)
We now have two cases: (i) S is minimal, or (ii) S is non-minimal.
Case i) S is minimal
This means S = S ′ = min(S) as Algorithms 6.1 and 6.2 will make no changes. We
can thus use properties for S.
By (1), (2), (4) and (6), all assumptions of Proposition 6.6 are satisfied.
Case ii) S is non-minimal
This means S 6= S ′ = min(S), so we must use the results for S ′.
As S is ALF, we can conclude by Theorem 6.1 that S ′ is ALF.
⇒ S ′ ||G is ALF by Proposition 5.8 (7)
By (1), (3), (5) and (7), all assumptions of Proposition 6.6 are satisfied.

By Cases (i) and (ii), we can apply Proposition 6.6 and conclude:
(∀y ∈ Yr) (∃s ∈ Σ∗act) η(y, sτ)!

100

Chapter 7

Equivalence of SD Controllers

In this chapter, we present our final set of results with respect to establishing equiva-
lence between the SD and our ||SD setting. Specifically, this chapter proves the output
equivalence between the two SD controllers that are generated by translating CS de-
terministic TDES supervisors S and S of the ||SD and SD settings respectively. In
other words, we will show that the two SD controllers generate the same sequence of
outputs in response to a given valid (possible according to system model) sequence
of inputs.

We begin this chapter by stating some preliminary definitions that we have defined
for our ||SD setting. Then, we present our supporting propositions that will help us in
proving our final result that the two SD controllers translated from S and S produce
the same output information for the same valid input sequence with respect to the
closed-loop behaviour.

Please note that the functions and notation used in this chapter have already
been introduced in Chapter 3. We will provide a brief introduction, but recommend
the reader to refresh the details (specifically Sections 3.6 and 3.7) before reading this
section.

7.1 Preliminary Definitions
In this section, we present some definitions that we have adapted from Wang (2009)
to define the concepts related to SD controllers in our ||SD setting.

One of the goals of devising the ||SD setting is to liberate the software and hardware
practitioners from designing and implementing a potentially intricate supervisor in
the SD setting. Rather, we want them to design and implement a much simpler
TDES supervisor S in the ||SD setting. In order to do that, it is important to show
that the SD controller generated by translating CS deterministic supervisor S in our
||SD setting is output equivalent to the SD controller that is obtained by translating
CS deterministic supervisor S (possibly min(S)) of the SD setting. In other words,

101

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

we wish to prove that whether practitioners physically implement S or S, they are
going to achieve the same physical control action with respect to a given TDES plant
G. This result will also be essential for the proofs of Chapter 8 so we can use the SD
controller for S and apply it for proofs using S.

It is important to clarify that we do not require the two SD controllers to be
identical. We only wish to demonstrate that they produce the same enablement and
forcing information for a given plant G for valid input sequences.

First, we provide a definition for valid input sequences with respect to the closed-
loop behaviour. It is worth-mentioning that the definition given below is generic with
respect to forming the closed-loop system, Gcl. By this we mean that our definition
is independent of the operator that is used to form Gcl. Gcl could be constructed
by synchronizing TDES plant and supervisor models using the ||SD operator, the syn-
chronous product, the meet or the product operator. For this definition, we are only
interested in the language obtained as a result of combining the plant and supervisor
models, i.e. L(Gcl). Our goal is to ensure that whichever operator we use to obtain
L(Gcl), our definition will remain applicable and valid.
Definition 7.1.1. For TDES plant G = (Q,ΣG, δ, qo, Qm) and CS deterministic
TDES supervisor S = (X,ΣS, ξ, xo, Xm), let Gcl = (Y,Σ, η, yo, Ym) be the closed-
loop system constructed by synchronizing S and G. For system event set Σ, with
canonical event mapping function γg, global input vector ig, and activity event set
Σact, a canonical input sequence {ig(k)} is said to be input valid for L(Gcl), if:

(∀k ∈ {1, 2, . . .}) (∃ s1, s2, . . . , sk ∈ Lconc) [s1s2 . . . sk ∈ L(Gcl)] ∧
[(∀n ∈ {1, 2, . . . , k}) (∀σ ∈ Σact) ig,γg(σ) (n) = 1 iff σ ∈ Occu(sn)]

In the above definition, γg is a bijective map that associates each σ ∈ Σact with
a unique element of input vector ig = [ig,0, ig,1, . . . , ig,v−1] (v = |Σact|), {ig(k)} =
{ig(1), ig(2), . . .} is a sequence of input vectors taken at different sampling instances,
ig,γg(σ) (n) is element ig,γg(σ) (the element γg associate with σ) of the nth vector in
sequence {ig(k)}, and σ ∈ Occu(sn) means the string sn contains event σ. For more
information, see Sections 3.4, 3.6 and 3.7.

Essentially, in this definition, we require the input sequence {ig(k)} to correspond
to a sequence of concurrent strings that our closed-loop system Gcl will accept. This
is necessary as the TDES supervisor to SD controller translation method (Section 3.7)
only dictates outputs for these inputs and leaves the outputs for other inputs unspec-
ified. This means controllers could differ for input sequences that are not possible in
the system.

Before we proceed to our next definition, please note that in our ||SD setting,
we construct our closed-loop system as S ||SD G, whereas the SD setting constructs
the closed-loop system as S ||G. Because of our language equivalence results (Sec-
tion 5.3), we know that both closed-loop systems have the same closed and marked
languages. This implies that input sequences that represent valid input strings in the
behaviour of the two closed-loop systems will be the same.

102

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

In order to prove our controller equivalence results, we wish to prove that two
SD controllers, C1 and C2, are output equivalent with respect to the closed-loop
behaviour for plant G and supervisors S1 and S2, where C1 is constructed from
S1 and C2 is constructed from S2. For this definition, we are assuming that the
two closed-loop systems, represented by TDES Gcl,1 and Gcl,2, have the same closed
languages, i.e. L(Gcl,1) = L(Gcl,2). Before we present our formal definition, three
points are notable and worth elaborating.
1. This definition is independent of the synchronization operators that are used to

form the closed-loop systems. As long as the closed-loop behaviour of the two
systems is the same, the definition remains applicable and valid, and the choice
of synchronization operator(s) is trivial.

2. This definition is stated with respect to the closed-loop behaviour of the two
systems, and not in terms of the actual system automata. This is because the
TDES representation of the two closed-loop systems might not be exactly the
same due to different state labels or if one TDES is non-minimal, despite them
having the same closed behaviour.

3. As the closed behaviour of the two closed-loop systems is the same, i.e. L(Gcl,1) =
L(Gcl,2), using either L(Gcl,1) or L(Gcl,2) will not make any difference because
we are eventually referring to the same language. However, to be clear and avoid
any ambiguity, instead of using either one of these two labels, we will refer to this
language using a more generic label L(Gcl), without any loss of generality.

Definition 7.1.2. For TDES plant G = (Y,ΣG, δ, yo, Ym), let Sj = (Xj,Σj, ξj,
xo,j, Xm,j) (j = 1, 2) be two CS deterministic TDES supervisors. Let Gcl,j be the
closed-loop system formed by synchronizing G and Sj. Let S1 and S2 be control
equivalent for G, i.e. L(Gcl) = L(Gcl,1) = L(Gcl,2). For system event set Σ,
with canonical event mapping function γg, and activity event set Σact, let Cj =
(Ij, Zj, Qj,Ωj,Φj,qres,j) be the SD controller constructed from Sj. Let rj be the
number of output variables for a vector in Zj, and ηj be the output event mapping
function for Cj. C1 and C2 are said to be output equivalent with respect to the closed-
loop behaviour L(Gcl) if, for any canonical input sequence {ig(k)} that is input valid
for L(Gcl) and induced output zj(k′) = [zj,0(k′), zj,1(k′), . . . , zj,rj−1(k′)] ∈ Zj at time
k′ = {0, 1, 2, . . .}, the following conditions are satisfied:

1. r1 = r2

2. (∀ 0 ≤ i < r1) η−1
1 (i) = η−1

2 (i)
3. (∀k′ ∈ {0, 1, 2, . . .}) z1(k′) = z2(k′)
In the above definition, zj(k′) is the current output vector for controller Cj, at

time k′. Also, ηj is a bijective map that associates each σ ∈ Σhib ∩ Σj with a unique
element in zj(k′) in a way that respects the event ordering of γg. See Section 3.7.1
for details.

In this definition, Point 1 requires that output vectors of the two controllers must

103

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

be the same size, i.e. they must have same number of output variables. Point 2
enforces the condition that the two output vectors must have the same prohibitable
events stored in exactly the same order/sequence. Finally, Point 3 imposes the con-
straint that for any value of k′, the two output vectors must have the same enablement
information, i.e. one controller should enable a prohibitable event if and only if the
other does. This means that the two controllers must agree with respect to the en-
ablement of prohibitable events at the reset state, and must continue to agree in the
future as well.

The above definition gives us a way to compare the output information of the
SD controller translated from supervisor S in the ||SD setting to the SD controller
translated from S (or min(S), if S is not minimal) in the SD setting. If the two
controllers are output equivalent with respect to the shared closed-loop behaviour,
then they will assert the same enablement and forcing action on plant G. This
will allow us to implement the controller for S, but apply the controllability and
nonblocking results of the SD setting to S and this controller.

7.2 Supporting Propositions
In this section, we introduce two supporting propositions that will be used in the next
section to prove our main result that the corresponding SD controllers generated in the
SD and ||SD settings are output equivalent. Please recall that as per our assumptions
(Section 5.2), all TDES are deterministic automata.

To convert a TDES supervisor to an SD controller, it must be CS deterministic.
As discussed in Section 6.3.1, we might need to minimize the TDES supervisor S
in order to make it CS deterministic. As λ-equivalent states (Definition 2.2.9) are
combined during the state minimization process, this will make it complicated to
compare S to our supervisor S of the ||SD setting. As a result, in the proofs presented
in this section, we will refer to the sets of distinct λ-equivalent states, labelled as
Ek(|Ek| ≥ 2), that are created by Algorithm 6.1 during the minimization process.
We will refer to Ek as Eq′ , where q′ is the aggregate state label associated with Ek by
Algorithm 6.2. Please refer to Section 6.3.2 for details.

In Proposition 7.1 given below, Xsamp (Definition 3.4.2) is the set of sampled
states for TDES supervisor S. These are the states of S that are reached from the
initial state by a sampled string (Definition 3.4.1). The prohibited action function ζ
(Definition 3.7.2) is associated with a specific supervisor, and maps sampled states of
the supervisor to the set of prohibitable events enabled at these states.
Proposition 7.1. Let S = (X,Σ, ξ, xo, Xm) be a non-minimal TDES supervisor and
S′ = min(S) = (X ′,Σ, ξ′, x′o, X ′m) be the minimal TDES constructed using Algorithms
6.1 and 6.2. Let ζ be the prohibited action function for S and ζ ′ be the prohibited
action function for S′. Then, for x1, x2 ∈ X and x′ ∈ X ′, the following properties
hold:

104

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

i) x1 ≡ x2 (mod λ)⇒ (∀σ ∈ Σ) ξ(x1, σ)!⇒ ξ(x2, σ)!
ii) [x1 ≡ x2 (mod λ) ∧ x1, x2 ∈ Xsamp]⇒ ζ(x1) = ζ(x2)
iii) [x′ /∈ X ∧ x′ ∈ X ′samp]⇒ (∀x ∈ Ex′ ∩Xsamp) ζ(x) = ζ ′(x′)
iv) [x′ ∈ X ∧ x′ ∈ X ′samp]⇒ x′ ∈ Xsamp ∧ ζ(x′) = ζ ′(x′)
Proof. Let x1, x2 ∈ X and x′ ∈ X ′. Assume initial conditions. (1)
i) Show: x1 ≡ x2 (mod λ)⇒ (∀σ ∈ Σ) ξ(x1, σ)!⇒ ξ(x2, σ)!

Assume: x1 ≡ x2 (mod λ)
Let σ ∈ Σ. Let s = σ.
As s ∈ Σ∗, ξ(x1, s)! ⇔ ξ(x2, s)! follows automatically from Definition 2.2.9 of
λ-equivalence.
Part (i) complete.

ii) Show: [x1 ≡ x2 (mod λ) ∧ x1, x2 ∈ Xsamp]⇒ ζ(x1) = ζ(x2)
Assume: x1 ≡ x2 (mod λ) and x1, x2 ∈ Xsamp (2)
To show ζ(x1) = ζ(x2), by Definition 3.7.2 of ζ it is sufficient to show:

{σ ∈ Σhib | ξ(x1, σ)!} = {σ ∈ Σhib | ξ(x2, σ)!}
As Σhib ⊆ Σ and x1 ≡ x2 (mod λ) by (2), this follows automatically from Part (i).
Part (ii) complete.

iii) Show: [x′ /∈ X ∧ x′ ∈ X ′samp]⇒ (∀x ∈ Ex′ ∩Xsamp) ζ(x) = ζ ′(x′)
Assume: x′ /∈ X and x′ ∈ X ′samp (3)
As x′ /∈ X, this means that x′ was added to S′ by Algorithm 6.2.
Let x ∈ Ex′ ∩Xsamp. (4)
We first note that by Definition 3.7.2, we have:

ζ(x) = {σ ∈ Σhib | ξ(x, σ)!} and ζ ′(x′) = {σ ∈ Σhib | ξ′(x′, σ)!}
To show that ζ(x) = ζ ′(x′), it is sufficient to show: (∀σ ∈ Σhib) ξ(x, σ)!⇔ ξ′(x′, σ)!
Let σ ∈ Σhib.
Part 1) Show: ξ(x, σ)!⇒ ξ′(x′, σ)!
Assume: ξ(x, σ)!
Let xb = ξ(x, σ), and thus xb ∈ X.
By Proposition 6.3(iii), we can conclude:

(∃x′1, x′2 ∈ X ′) ξ′(x′1, σ) = x′2 ∧ (x′1 = x ∨ x ∈ Ex′1) ∧ (x′2 = xb ∨ xb ∈ Ex′2) (5)
As x ∈ Ex′ by (4), it follows that x /∈ X ′.
As (x′1 = x ∨ x ∈ Ex′1) by (5), it follows that x 6= x′1, thus following that x ∈ Ex′1 .
⇒ x′ = x′1 as Algorithm 6.1 will put a state in X into at most one distinct set of

λ-equivalent states

105

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

⇒ ξ′(x′, σ) = x′2 by (5)
⇒ ξ′(x′, σ)!

Part 2) Show: ξ′(x′, σ)!⇒ ξ(x, σ)!
Assume: ξ′(x′, σ)!
Let x′′ = ξ′(x′, σ). (6)
We have two cases: (a) x′′ ∈ X, or (b) x′′ /∈ X.
Case 2.a) x′′ ∈ X
⇒ x′ /∈ X and x′′ ∈ X by (3)
By Proposition 6.4(iii), we can conclude: (∀xa ∈ Ex′) ξ(xa, σ) = x′′

As x ∈ Ex′ by (4), we have: ξ(x, σ) = x′′

⇒ ξ(x, σ)!
Case 2.b) x′′ /∈ X
⇒ x′, x′′ /∈ X and ξ′(x′, σ) = x′′ by (3) and (6)
By Proposition 6.4(ii), we can conclude: (∀xa ∈ Ex′) (∃xb ∈ Ex′′) ξ(xa, σ) = xb

As x ∈ Ex′ by (4), we have: ξ(x, σ) = xb
⇒ ξ(x, σ)!
By Cases (2.a) and (2.b), we have ξ(x, σ)!. We thus conclude ξ′(x′, σ)!⇒ ξ(x, σ)!.
By Parts (1) and (2), we conclude that for σ ∈ Σhib, ξ(x, σ)!⇔ ξ′(x′, σ)!.
We thus conclude ζ(x) = ζ(x′).
Part (iii) complete.

iv) Show: [x′ ∈ X ∧ x′ ∈ X ′samp]⇒ x′ ∈ Xsamp ∧ ζ(x′) = ζ ′(x′)
Assume: x′ ∈ X and x′ ∈ X ′samp (7)
We will now show this implies: x′ ∈ Xsamp and ζ(x′) = ζ ′(x′)
Part 1) Show: x′ ∈ Xsamp

By Definition 3.4.2 of sampled states, it is sufficient to show:
x′ ∈ {xa ∈ X | (∃s ∈ L(S) ∩ Lsamp)xa = ξ(xo, s)}

As x′ ∈ X by (7), all that remains is to show: (∃s ∈ L(S) ∩ Lsamp)x′ = ξ(xo, s)
As x′ ∈ X ′samp by (7), it follows that: (∃s ∈ L(S′) ∩ Lsamp)x′ = ξ′(x′o, s) (8)
We have two cases: (a) x′o ∈ X, or (b) x′o /∈ X.
Case 1.a) x′o ∈ X
As x′ ∈ X by (7), and x′o ∈ X, we apply Proposition 6.4(i) and conclude:
ξ(x′o, s) = x′

As x′o ∈ X, it follows by Algorithms 6.1 and 6.2 that x′o = xo.
⇒ ξ(xo, s) = x′

106

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Case 1.b) x′o /∈ X
As x′ ∈ X by (7), x′o /∈ X, and ξ′(x′o, s) = x′ by (8), we can apply Proposi-
tion 6.4(iii) and conclude: (∀xa ∈ Ex′o) ξ(xa, s) = x′

As x′o /∈ X, by Algorithms 6.1 and 6.2 we can conclude xo ∈ Ex′o .
⇒ ξ(xo, s) = x′

By Cases (1.a) and (1.b), we have: ξ(xo, s) = x′

⇒ s ∈ L(S) ∩ Lsamp by (8)
⇒ x′ ∈ Xsamp

Part (1) complete.

Part 2) Show: ζ(x′) = ζ ′(x′)
To show ζ(x′) = ζ ′(x′), by Definition 3.7.2 it is sufficient to show:

(∀σ ∈ Σhib) ξ(x′, σ)!⇔ ξ′(x′, σ)!
Let σ ∈ Σhib.
Part 2.a) Show: ξ(x′, σ)!⇒ ξ′(x′, σ)!
Assume: ξ(x′, σ)!
Let xb = ξ(x′, σ).
By Proposition 6.3(iii), we can conclude:

(∃x′a, x′b ∈ X ′) ξ′(x′a, σ) = x′b ∧ (x′a = x′ ∨ x′ ∈ Ex′a) ∧ (x′b = xb ∨ xb ∈ Ex′
b
)

As x′ ∈ X ∩X ′ by (1) and (7), by Algorithms 6.1 and 6.2 we have x′a = x′, as x′
is λ-equivalent only to itself.
⇒ ξ′(x′, σ) = x′b
⇒ ξ′(x′, σ)!
Part (2.a) complete.

Part 2.b) Show: ξ′(x′, σ)!⇒ ξ(x′, σ)!
Assume: ξ′(x′, σ)!
Let x′b = ξ′(x′, σ).
⇒ x′b ∈ X ′, x′ ∈ X ∩X ′, and ξ′(x′, σ) = x′b by (1) and (7) (9)
By Proposition 6.3(ii), we can conclude:

(∃xa, xb ∈ X) ξ(xa, σ) = xb ∧ (xa = x′ ∨ xa ∈ Ex′) ∧ (xb = x′b ∨ xb ∈ Ex′
b
)

As x′ ∈ X by (9), by Algorithms 6.1 and 6.2 this implies that x′ is λ-equivalent
only to itself.
⇒ xa = x′

⇒ ξ(x′, σ) = xb
⇒ ξ(x′, σ)!
Part (2.b) complete.
By Parts (2.a) and (2.b), we conclude (∀σ ∈ Σhib) ξ(x′, σ)!⇔ ξ′(x′, σ)!.

107

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

⇒ ζ(x′) = ζ ′(x′)
Part (2) complete.
By Parts (1) and (2), we thus conclude x′ ∈ Xsamp and ζ(x′) = ζ ′(x′).
Part (iv) complete.

By Parts (i)-(iv), we conclude that Points (i-iv) of the proposition are satisfied.

We now introduce another supporting proposition that will be key in proving our
main result of output equivalent controllers. The following proposition shows that
a sampled string accepted by the closed-loop system of our ||SD setting, S ||SD G,
will take each supervisor S, S and S ′ to a state with the same prohibitable events
enabled. This means whether we use S or S ′, we get the same result that matches
our supervisor S.
Proposition 7.2. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S =
(X,Σ, ξ, xo, Xm) be a supervisor. Let G be complete with ||SD for S. Let TDES
S = S ||SD G = (Y,Σ, η, yo, Ym) be a supervisor and S ′ = min(S) = (Y ′,Σ, η′, y′o, Y ′m)
be the minimal TDES constructed using Algorithms 6.1 and 6.2. Let ζS, ζS and ζS′

be the prohibited action functions for supervisors S, S and S ′ respectively. Then:
(∀s ∈ L(S ||SD G) ∩ Lsamp) ζS(ξ(xo, s)) = ζS(η(yo, s)) = ζS′(η′(y′o, s))

Proof. Assume initial conditions. Let S = S ||SD G and S ′ = min(S). (1)
Let s ∈ L(S ||SD G) ∩ Lsamp. (2)
Let Xsamp, Ysamp and Y ′samp be the sets of sampled states for S, S and S ′ respectively.
First, we note that s ∈ L(S ||SD G) means that s ∈ L(S) by definition. As state
minimization process does not affect the closed behaviour of an automaton, this
implies s ∈ L(S ′). (3)
⇒ η(yo, s)! and η′(y′o, s)!
Let y = η(yo, s) and y′ = η′(y′o, s). (4)
By Definition 4.1.1 of ||SD operator, we have: (∃x ∈ X) (∃q ∈ Q) y = (x, q) (5)
As both G and S are defined over Σ, it follows by the definition of ||SD that:

ξ(xo, s) = x and δ(qo, s) = q (6)
⇒ s ∈ L(S) and s ∈ L(G) (7)
⇒ s ∈ L(S) ∩ Lsamp by (2)
⇒ x ∈ Xsamp by Definition 3.4.2 of sampled states
As s ∈ L(S) by (3), by (2) we have: s ∈ L(S) ∩ Lsamp
As y = η(yo, s) by (4), by Definition 3.4.2 we have: y ∈ Ysamp (8)
Similarly, we have: y′ ∈ Y ′samp (9)
This means that ζS(x), ζS(y) and ζS′(y′) are defined.
We will now show: ζS(ξ(xo, s)) = ζS(η(yo, s)) = ζS′(η′(y′o, s))

108

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

By (4) and (6), it is sufficient to show: ζS(x) = ζS(y) = ζS′(y′)
We will show this in two steps.
Part 1) Show: ζS(x) = ζS(y)
By Definition 3.7.2 of ζ, it is sufficient to show:

{σ ∈ Σhib | ξ(x, σ)!} = {σ ∈ Σhib | η(y, σ)!}
This is equivalent to showing: (∀σ ∈ Σhib) ξ(x, σ)!⇔ η(y, σ)!
Let σ ∈ Σhib. (10)
Part 1.a) Show: ξ(x, σ)!⇒ η(y, σ)!
Assume: ξ(x, σ)! (11)
⇒ sσ ∈ L(S) by (6) and (7)
As s ∈ L(S) ∩ L(G) by (7), σ ∈ Σhib by (10), and G is complete with ||SD for S by
(1), we can conclude: sσ ∈ L(G)
⇒ δ(q, σ)! by (6)
As ξ(x, σ)! by (11), δ(q, σ)!, σ ∈ Σhib by (10), and y = (x, q) by (5), by the definition
of ||SD, we conclude: η((x, q), σ)!
⇒ η(y, σ)!
Part 1.b) Show: η(y, σ)!⇒ ξ(x, σ)!
Assume: η(y, σ)!
⇒ η((x, q), σ)! by (5)
⇒ ξ(x, σ)! by definition of ||SD and the fact that G and S are defined over Σ
By Parts (1.a) and (1.b), we can conclude: (∀σ ∈ Σhib) ξ(x, σ)!⇔ η(y, σ)!
⇒ ζS(x) = ζS(y)
Part (1) complete.

Part 2) Show: ζS(y) = ζS′(y′)
By (4), we have: y = η(yo, s)
Using η(yo, s) = y, we can apply Proposition 6.3(iii) and conclude:

(∃y′a, y′b ∈ Y ′) η′(y′a, s) = y′b ∧ (y′a = yo ∨ yo ∈ Ey′a) ∧ (y′b = y ∨ y ∈ Ey′
b
) (12)

From Algorithms 6.1 and 6.2, we know that yo belongs to at most one set of λ-
equivalent states (Ek), and that either yo = y′o or yo ∈ Ey′o .
⇒ η′(y′o, s) = y′b
⇒ y′b = y′ as y′ = η′(y′o, s) by (4)
⇒ y′ = y ∨ y ∈ Ey′ by (12)
We thus have two cases: (a) y′ = y, or (b) y ∈ Ey′ .
Case 2.a) y′ = y (13)
⇒ y′ ∈ Y
As we have y′ ∈ Y ∩Y ′ by (4), and y′ ∈ Y ′samp by (9), we can apply Proposition 7.1(iv)

109

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

and we have: ζS(y′) = ζS′(y′)
⇒ ζS(y) = ζS′(y′) by (13)
Case 2.b) y ∈ Ey′ (14)
By Algorithms 6.1 and 6.2, this implies: y′ /∈ Y
As y′ ∈ Y ′ by (4), y′ /∈ Y , and y′ ∈ Y ′samp by (9), we can apply Proposition 7.1(iii)
and conclude: (∀ya ∈ Ey′ ∩ Ysamp) ζS(ya) = ζS′(y′)
As y ∈ Ey′ by (14) and y ∈ Ysamp by (8), we can conclude: ζS(y) = ζS′(y′)
By Cases (2.a) and (2.b), we have: ζS(y) = ζS′(y′)
Part (2) complete.
Combining Parts (1) and (2), we can conclude: ζS(x) = ζS(y) = ζS′(y′)
By (4) and (6), we can conclude ζS(ξ(xo, s)) = ζS(η(yo, s)) = ζS′(η′(y′o, s)), as re-
quired.

7.3 Output Equivalent Controllers
In this section, we present our main result for output equivalence between two SD
controllers that are translated using the method presented in Section 3.7.

Theorem 7.1 given below proves that an SD controller translated from supervisor
S will be output equivalent to a controller translated from supervisor S ′ = min(S ||SD

G). In this theorem, we only consider the controller for S ′ = min(S ||SD G), and
not S = S ||SD G. This is because if S is already minimal, then min(S ||SD G) = S.
Thus, examining S ′ without assuming that S is minimal will cover both cases. Also,
in Proposition 7.2, we have already proven that for a valid sampled string, both S
and S ′ produce the same enablement information for prohibitable events.
Theorem 7.1. Let TDES G = (Y,Σ, δ, yo, Ym) be a plant, TDES S = (X,Σ, ξ, xo, Xm)
be a CS deterministic supervisor that is SD controllable with ||SD for G, and let G be
complete with ||SD for S. Let TDES supervisor S ′ = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X ′m)
constructed using Algorithms 6.1 and 6.2 be CS deterministic. Let C = (I, Z,Q,Ω,Φ,
qres) be the SD controller translated from S, and C′ = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the
SD controller translated from S ′. Then, C and C′ are output equivalent with respect
to the closed-loop behaviour L(Gcl), with Gcl = S ||SD G.
Proof. Assume initial conditions.
First, we will describe our setting and notation for the proof.
Let Σact ⊂ Σ be the set of activity events and Σhib ⊆ Σact be the set of prohibitable
events.
Let Gcl = S ||SD G and S ′ = min(S ||SD G). (1)
As state minimization process does not change the closed behaviour of an automaton,
thus we have: L(Gcl) = L(S ′)

110

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

By Corollary 5.1(iii), we have L(S ||SD G) = L(S ′ ||G). We thus have: L(Gcl) =
L(S ||SD G) = L(S ′ ||G)
As S and S ′ are control equivalent (Definition 2.3.8), this means we can apply Defi-
nition 7.1.2 of output equivalence to S and S ′.
LetXsamp ⊆ X andX ′samp ⊆ X ′ be the sets of sampled states for S and S ′ respectively.
Let Λ : Xsamp → Q and Λ′ : X ′samp → Q′ be the injective state mapping functions
(Definition 3.7.7) for C and C′ respectively.
Let ΓZ : Pwr(Σhib)→ Z and ΓZ′ : Pwr(Σhib)→ Z ′ be the bijective output set mapping
functions (Definition 3.7.9) for C and C′ respectively.
Let Φ : Q → Z and Φ′ : Q′ → Z ′ be the state-to-output maps (Definition 3.7.11) for
C and C′ respectively.
Let ζ : Xsamp → Pwr(Σhib) and ζ ′ : X ′samp → Pwr(Σhib) be the prohibited action
functions (Definition 3.7.2) for S and S ′ respectively.
Let γg be the canonical event mapping function (Definition 3.7.3) for the system.
This is the default way to order event variables in vectors.
Let v = |Σact|.
As both S and S ′ are defined over Σ, it follows that each input vector i ∈ I and
i′ ∈ I ′ is the same size, i.e. each contains v variables.
Let γ : Σact → {0, 1, . . . , v − 1} and γ′ : Σact → {0, 1, . . . , v − 1} be the input event
mapping functions (Definition 3.7.4) for C and C′ respectively. By definition of γ and
γ′, we have:

(∀σ1, σ2 ∈ Σact) γg(σ1) < γg(σ2)⇒ γ(σ1) < γ(σ2) ∧ γ′(σ1) < γ′(σ2)
This implies that there is only one way to define γ and γ′, and they both must equal
γg, i.e. γ = γ′ = γg. (2)
Let {ig(k′′)} be a canonical input sequence with respect to γg (i.e. its event variables
ordering matches γg), and let the sequence be input valid for L(Gcl). (3)
As γ = γ′ = γg by (2), it follows that {ig(k′′)} can be used as input vectors for C and
C′ directly, without any conversion.
Let r = |Σhib|.
As both S and S ′ are defined over Σ, this implies that each output vector z ∈ Z and
z′ ∈ Z ′ is the same size, i.e. each contains r variables. (4)
Let η : Σhib → {0, 1, . . . , r−1} and η′ : Σhib → {0, 1, . . . , r−1} be the bijective output
event mapping functions (Definition 3.7.5) for C and C′ respectively. By definition
of η and η′, we have:

(∀σ1, σ2 ∈ Σhib) γg(σ1) < γg(σ2)⇒ η(σ1) < η(σ2) ∧ η′(σ1) < η′(σ2)
This implies that there is only one way to define η and η′. Thus we have η = η′. (5)
We note that the definition of ΓZ and ΓZ′ is defined in terms of η and η′ respectively.
Since η = η′ by (5), this implies that ΓZ = ΓZ′ . (6)

111

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

This implies that output vectors z and z′ are the same size (r) and represent pro-
hibitable events in exactly the same order.
For input sequence {ig(k′′)}, let z(k) ∈ Z and z′(k) ∈ Z ′ be the induced output vector
at time k for controllers C and C′ respectively.
Let q(k) ∈ Q and q′(k) ∈ Q′ be the induced state vectors at time k for C and C′

respectively.
Now, we will prove our main result.
To show that C and C′ are output equivalent with respect to L(Gcl), by Defini-
tion 7.1.2 we need to show:
1. Both output vectors z and z′ are of size r.
2. (∀ 0 ≤ i < r) η−1(i) = η′−1(i)
3. (∀k ∈ {0, 1, 2, . . .}) z(k) = z′(k)

We note that Points 1 and 2 follow immediately from (4) and (5) respectively.
Now all that remains is to show: (∀k ∈ {0, 1, 2, . . .}) z(k) = z′(k)
Let k ∈ {0, 1, . . .}.
We first note that by the TDES to FSM translation method (Section 3.7), we have:

z(k) = Φ(q(k)) and z′(k) = Φ′(q′(k))
By definition of Φ and Φ′, we have:

z(k) = Φ(q(k)) = ΓZ(ζ(x)) and z′(k) = Φ′(q′(k)) = ΓZ′(ζ ′(x′))
where q(k) = Λ(x) and q′(k) = Λ′(x′) for some x ∈ Xsamp and x′ ∈ X ′samp

(7)

As ΓZ = ΓZ′ by (6), all we need to complete the proof is to construct a suitable
x ∈ Xsamp and x′ ∈ X ′samp and show that ζ(x) = ζ ′(x′).
We have two cases: (1) k = 0, and (2) k ∈ {1, 2, . . .}.
Case 1) k = 0
By definition of the TDES to FSM translation method (Section 3.7), we have:

q(0) = qres = Λ(xo) and q′(0) = q′res = Λ′(x′o) (8)
Let s = ε.
⇒ ξ(xo, s) = xo and ξ′(x′o, s) = x′o (9)
As s = ε ∈ Lsamp = {ε} ∪ Σ∗.τ, and S and G have initial states implies that S ||SD G
has an initial state, it follows that s ∈ L(S ||SD G) ∩ Lsamp.
By applying Proposition 7.2, we conclude: ζ(ξ(xo, s)) = ζ ′(ξ′(x′o, s))
⇒ ζ(xo) = ζ ′(x′o) by (9)
We note that by Definition 3.4.2 of sampled states, initial states are always sampled
states. We then take x = xo and x′ = x′o. We thus have x ∈ Xsamp and x′ ∈ X ′samp,
q(k) = Λ(x) and q′(k) = Λ′(x′) by (8), k = 0, and ζ(x) = ζ ′(x′).

112

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Case 2) k ∈ {1, 2, . . .}
As {ig(k′′)} is input valid for L(Gcl) by (3), we have:

(∃s1, s2, . . . , sk ∈ Lconc) [s1s2 . . . sk ∈ L(Gcl)] ∧
[(∀n ∈ {1, 2, . . . , k}) (∀σ ∈ Σact) ig,γg(σ) (n) = 1 iff σ ∈ Occu(sn)]

Let s = s1s2 . . . sk, and we have s ∈ Lsamp as Lconc = Σ∗act.τ (Definition 3.4.1). (10)
As Gcl = S ||SD G and S ′ = min(S ||SD G) by (1), we have: s ∈ L(S ′) ∩ Lsamp (11)
As L(S ||SD G) ⊆ L(S) by Proposition 5.1, we have: s ∈ L(S) ∩ Lsamp
By applying Proposition 3.2, we conclude:

q(k) = Λ(ξ(xo, s)) and q′(k) = Λ′(ξ′(x′o, s)) (12)
Let x = ξ(xo, s) and x′ = ξ′(x′o, s). (13)
⇒ x ∈ Xsamp and x′ ∈ X ′samp as s ∈ Lsamp by (10) (14)
As s ∈ L(S ||SD G) ∩ Lsamp by (11), by applying Proposition 7.2 we conclude:

ζ(ξ(xo, s)) = ζ ′(ξ′(x′o, s))
⇒ ζ(x) = ζ ′(x′) by (13)
We thus have x ∈ Xsamp and x′ ∈ X ′samp by (14), q(k) = Λ(x) and q′(k) = Λ′(x′) by
(12) and (13), and ζ(x) = ζ ′(x′).
By Cases (1) and (2), we have constructed a suitable x and x′ with ζ(x) = ζ ′(x′).
We thus conclude by (7) that z(k) = z′(k), as required.
Hence, we conclude that C and C′ are output equivalent with respect to the closed-
loop behaviour, L(Gcl).

We close this section with a proposition that we will find useful in Chapter 8. It
essentially shows that SD controllers C and C′ will produce the same output for every
sampled string accepted by the closed-loop system, Gcl = S ||SD G.
Proposition 7.3. Let TDES G = (Y,Σ, δ, yo, Ym) be a plant, TDES S = (X,Σ, ξ, xo,
Xm) be a CS deterministic supervisor that is SD controllable with ||SD for G, and
let G be complete with ||SD for S. Let TDES supervisor S ′ = min(S ||SD G) =
(X ′,Σ, ξ′, x′o, X ′m) constructed using Algorithms 6.1 and 6.2 be CS deterministic.
Let C = (I, Z,Q,Ω,Φ,qres) be the SD controller translated from S, and C′ =
(I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller translated from S ′. Let Λ and Λ′ be
the state mapping functions for C and C′ respectively. Then:

(∀s ∈ L(S ||SD G) ∩ Lsamp) Φ(Λ(ξ(xo, s))) = Φ′(Λ′(ξ′(x′o, s)))
Proof. Assume initial conditions.
Let ζ and ζ ′ be the prohibited action functions (Definition 3.7.2) for S and S ′ respec-
tively.
Let η and η′ be the bijective output event mapping functions (Definition 3.7.5) for C
and C′ respectively.

113

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Let ΓZ and ΓZ′ be the bijective output set mapping functions (Definition 3.7.9) for
C and C′ respectively.
Let s ∈ L(S ||SD G) ∩ Lsamp. (1)
Applying Proposition 7.2, we conclude: ζ(ξ(xo, s)) = ζ ′(ξ′(x′o, s)) (2)
Let q = Λ(ξ(xo, s)) and q′ = Λ′(ξ′(x′o, s)). (3)
Applying Theorem 7.1, we conclude that C and C′ are output equivalent with respect
to L(Gcl).
This implies η = η′, and thus ΓZ = ΓZ′ , as they are defined in terms of η and η′

respectively. (4)
By Definition 3.7.11 of Φ, we have: Φ(q) = ΓZ(ζ(x)) if (∃x ∈ Xsamp) q = Λ(x)
As s ∈ Lsamp by (1), we can take x = ξ(xo, s) and we have x ∈ Xsamp, and Λ(x) = q
by (3).
We thus have: Φ(q) = ΓZ(ζ(ξ(xo, s)))
Similarly, we can take x′ = ξ′(x′o, s) and we have x′ ∈ X ′samp, and Λ′(x′) = q′ by (3).
⇒ Φ′(q′) = ΓZ′(ζ ′(ξ′(x′o, s)))
As ΓZ = ΓZ′ by (4), and ζ(ξ(xo, s)) = ζ ′(ξ′(x′o, s)) by (2), we have: Φ(q) = Φ′(q′)
⇒ Φ(Λ(ξ(xo, s))) = Φ′(Λ′(ξ′(x′o, s))) by (3)

114

Chapter 8

Controllability and Nonblocking
Results for SD Synchronous
Product Setting

In this chapter, we present the controllability and nonblocking verification results for
our ||SD setting. This chapter begins with the construction of a TDES supervisory
control V , stating the relevant definitions, and proving its various properties. After
that, we thoroughly describe and formally prove our controllability and nonblocking
results. Essentially, we show that if our theoretical ||SD system is controllable, non-
blocking and abide by the specified control laws, then the physically implemented
system will also have these properties, given that the ||SD system satisfies our adapted
properties that were originally identified by the SD supervisory control methodology.

Please note that in this chapter, we will use the notation of TDES supervisor
S, SD controller C and TDES supervisory control V while discussing about our ||SD

setting. The notation of TDES supervisor S, SD controller C and TDES supervisory
control V will be used while referring to the SD setting, and they map to S, C and
V of Chapter 3 respectively. In this chapter, whenever we refer to an SD controller
constructed from a supervisor, we will always assume that it is translated using the
method described in Section 3.7.

From this chapter onwards, we will take our SD supervisor S to be S = min(S ||SD

G), i.e. the minimal version of S ||SD G that is constructed using Algorithms 6.1 and
6.2. The reason is that if S ||SD G is already minimal, there is no change. However, if
it is not already minimal, we must minimize it to ensure that S is CS deterministic.
Our assumption that we are always using the minimal version of S ||SD G will keep
things simple.

Let TDES G = (Q,Σ, δ, qo, Qm) be a plant, TDES S = (X,Σ, ξ, xo, Xm) be a
supervisor, C = (I, Z,Q,Ω,Φ,qres) be an SD controller, and the closed-loop system
of our ||SD setting be S ||SD G. For the rest of this chapter, we require our system
to satisfy the following properties: 1) G and S have finite state spaces and finite

115

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

event sets, 2) G has proper time behaviour, 3) G is complete with ||SD for S, 4) G has
S-singular prohibitable behaviour with ||SD, 5) S ||SD G is ALF, 6) S is SD controllable
with ||SD for G, 7) S is CS deterministic, and 8) C is an SD controller translated from
S using the translation method described in Section 3.7.

By looking at Proposition 4.5, it is evident that these conditions are sufficient to
guarantee that our system will not “stop the clock”, i.e. for any string s ∈ L(S ||SD G),
our ||SD system will always be able to do a tick event after at most a finite number
of activity events. This ensures that after a sampled string, all new behaviour of the
system can be represented as a sequence of concurrent strings.

8.1 Supervisory Control V
In the SD supervisory control theory (Wang, 2009; Leduc et al., 2014), the authors
have pointed out that an SD controller is more constrained than a TDES supervisor.
This is due to the fact that an SD controller only changes state on the occurrence
of the tick event, whereas a supervisor can do so every time an event occurs. This
in turn implies that the enablement and forcing information of an SD controller does
not always exactly match with that of a TDES supervisor.

To address this issue in the SD setting, a TDES supervisory control is used to
express the enablement and forcing behaviour of an SD controller in terms of strings.
In Wang (2009), the authors presented Algorithm 3.1 to construct this supervisory
control. This algorithm’s definition is then used to argue about the behaviour of the
SD controller in various controllability and nonblocking verification proofs of the SD
setting. Since we are building our work on the SD supervisory control methodology,
we will adopt the same approach to capture the control action of SD controller in our
||SD setting and prove our desired results.

In this section, we first discuss the construction of a TDES supervisory control V
in our ||SD setting (we will formally prove that V is indeed a TDES supervisory control
later in Proposition 8.4). Specifically, we explain how we have adapted Algorithm
3.1 to make it compatible with our ||SD setting. Then, we present some definitions in
relation to our V . Finally, we prove some properties with respect to V that will help
us in proving our ||SD controllability and nonblocking verification results afterwards.

8.1.1 Construction of V
Note: To be clear in our discussion and avoid any ambiguity, we will refer to S, C,
V and ΣV of Algorithm 3.1 as S, C, V and ΣV respectively.

In order to construct TDES supervisory control V from our SD controller C in
the ||SD setting, we adapt Algorithm 3.1 from Wang (2009). Our algorithm for the ||SD

setting is presented as Algorithm 8.1. It is worth-mentioning that the two algorithms

116

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 8.1 Obtaining V from Controller C, Acting on Plant G
1: for all s ∈ L(G) do
2: V (s)← Σu ∪ {τ}
3: end for
4: Pend← {(ε,qres)}
5: while Pend 6= ∅ do
6: (s,q)← a member from Pend
7: Pend← Pend− {(s,q)}
8: z← Φ(q)
9: ΣV ← Γ−1

Z (z)
10: if ΣV 6= ∅ then
11: V (s)← (V (s) ∪ ΣV)− {τ}
12: end if
13: for all s′ ← σ1σ2 . . . σj ∈ CBG(s) do // σj = τ, by definition of Lconc
14: if (Occu(s′) ∩ Σhib ⊆ ΣV) ∧ (ss′ ∈ L(S ||SD G)) then
15: Σtemp ← ΣV

16: i← ΓI(Occu(s′)− {τ})
17: q′ ← Ω(q, i)
18: Pend← Pend ∪ {(ss′,q′)}
19: if j > 1 then
20: for i← 1 to j − 1 do
21: Σtemp ← Σtemp − σi
22: if Σtemp 6= ∅ then
23: V (sσ1σ2 . . . σi)← (V (sσ1σ2 . . . σi) ∪ ΣV)− {τ}
24: else
25: V (sσ1σ2 . . . σi)← (V (sσ1σ2 . . . σi) ∪ ΣV)
26: end if
27: end for
28: end if
29: end if
30: end for
31: end while
32: return V

are logically identical, although they differ at line 14, where L(S) of Algorithm 3.1
has been replaced by L(S ||SD G) in Algorithm 8.1.

Please note that the complete description of Algorithm 3.1 to construct TDES
supervisory control from an SD controller is given in Section 3.8. Most of the items
given in Algorithm 8.1 are defined in Section 3.7. The map of Occu is defined in
Section 3.4, and TDES supervisory control and CBG are defined in Section 3.8. In
this section, we only focus on explaining and comparing those aspects of the two

117

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

algorithms that differ and need clarification.
For all strings s ∈ L(G), Algorithm 3.1 sets the default enablement information

at lines 1-3 by adding all uncontrollable events and tick event to V(s) . This is done
to satisfy Definition 3.8.1 of TDES supervisory control. As this definition is given
only in terms of L(G), it remains valid in our ||SD setting as well. Therefore, this part
of Algorithm 3.1 remains unchanged in Algorithm 8.1.

By looking at Algorithm 3.1, we note that it updates the default enablement
information only for those strings that represent valid behaviour in the closed-loop
system. These strings are identified at lines 13-14. Line 13 of Algorithm 3.1
considers all possible concurrent strings s′ that extend a sampled string s in L(G).
The if statement at line 14 then uses the following two conditions to filter out those
strings that do not meet the required criteria.
1) Occu(s′) ∩ Σhib ⊆ ΣV

This condition excludes concurrent strings that are possible in the closed behaviour
of G, but their occurrence images contain prohibitable events that are not in ΣV .
As these prohibitable events are disabled by controller C, therefore these strings
will not occur in the physical system.

Since we are using the translation method of the SD setting to generate our
SD controller C from TDES supervisor S, therefore this condition does not need
to be changed for our ||SD setting, and shows up as it is in Algorithm 8.1.

2) ss′ ∈ L(S)
In Algorithm 3.1, this condition disregards concurrent strings that do not represent
valid behaviour in L(S) after sampled string s. This ensures to restrict the set of
valid strings to concurrent strings that are accepted by the supervisor. Ultimately,
it results in restricting the valid strings overall to L(S)∩L(G) in the SD setting.

Using the same logic for our ||SD setting, we want to restrict the set of valid
strings to our closed-loop behaviour, L(S ||SD G). In order to do that, we cannot
simply replace L(S) at line 14 of Algorithm 3.1 with L(S) in our Algorithm 8.1.
This is due to the fact that in the SD setting, supervisor S is solely responsible
for the enablement/disablement of tick event in the closed-loop system. However,
in our ||SD setting, the task of enabling/disabling the tick event is cooperatively
performed by supervisor S and ||SD operator. In our case, a tick event that is
possible in G might be enabled by S too. Still, this tick event might not be
possible in the closed-loop system as our ||SD operator is authorized to remove tick
from the closed-loop system in the presence of enabled prohibitable events. To
further clarify, in most cases, our closed-loop behaviour L(S ||SD G) 6= L(S)∩L(G)
due to the synchronization mechanism of our ||SD operator.

For this reason, in order to restrict the set of valid strings to our closed-loop
behaviour, we have replaced their L(S) with our L(S ||SD G) at line 14. By making
this change, we guarantee that if a string does not represent valid behaviour in
our closed-loop system, then its enablement information, once assigned at line 2,

118

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

will remain unmodified throughout the execution of Algorithm 8.1.
It is worth clarifying that this replacement does not change the original logic

of Algorithm 3.1 for constructing supervisory control from the SD controller. In
fact, this change at line 14 actually ensures that the original logic of Algorithm
3.1 remains untouched in Algorithm 8.1. We will formally prove this in Proposi-
tion 8.2 by showing that the two supervisory controls V and V constructed using
Algorithms 8.1 and 3.1 respectively are equal with respect to a given plant G.

Another way, probably an easier and straightforward one, to look at this
modification at line 14 is that in our ||SD setting, we have concretely defined
S = S ||SD G, or S = min(S ||SD G) for that matter. We have already proven in
our previous chapters that S possesses all the required properties and does qualify
to be used as the supervisor of the SD setting. Since L(S) = L(S ||SD G), replacing
L(S) with L(S ||SD G) does not bring any logical change at line 14, as the two
closed languages are the same. Therefore, both algorithms will restrict the up-
date of enablement information to the same set of valid strings in the closed-loop
behaviour due to the way we have constructed S in the ||SD setting.
Another important point that we want to highlight is about line 11 of Algorithm

3.1. If any prohibitable event is enabled at state q′ in C (line 10), this prohibitable
event needs to be forced in the current sampling period. Therefore, line 11 removes
tick event from V(s) to satisfy Point ii (⇒) of the SD controllability definition. This
tick was added at line 2 while initializing V(s) with its default enablement informa-
tion.

It is worth recalling here that Point ii (⇒) of the SD controllability definition
does not exist in our definition of SD controllability with ||SD property, and we are
not checking this condition explicitly in our ||SD setting. We are able to get rid of
this explicit check because of the synchronization mechanism of our ||SD operator
that guarantees to automatically satisfy this condition while forming the closed-loop
system. Therefore, although tick event does get removed at line 11 in Algorithm
8.1, it is for a different reason. In our case, this removal of tick is not to satisfy
any point of the SD controllability with ||SD definition. Rather, it is to keep things
consistent with the synchronization mechanism used by our ||SD operator to construct
the closed-loop system; hence, line 11 remains unmodified in Algorithm 8.1.

8.1.2 Preliminary Definitions
In order to define the closed behaviour of V/G, represented as L(V/G), Defini-
tion 2.3.4 uses TDES plant G and supervisory control V . This definition neither
takes into account the supervisor model nor the synchronization operator while defin-
ing L(V/G). Thus, this definition remains valid for our ||SD setting and does not need
to be redefined. Below, we present some definitions in relation to V that are specific
to our ||SD setting.

119

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Definition 8.1.1. For TDES plant G and CS deterministic TDES supervisor S that
is SD controllable with ||SD for G, let C be the SD controller constructed from S using
the translation method described in Section 3.7, and let V be the map constructed
from C using Algorithm 8.1. In the ||SD setting, the marked behaviour of V/G,
represented as Lm(V/G)||SD , is defined as:

Lm(V/G)||SD := L(V/G) ∩ Lm(S ||SD G)
Definition 8.1.2. In the ||SD setting, V is said to be nonblocking for G if:

Lm(V/G)||SD = L(V/G)

8.1.3 Map V is Well Defined
In Wang (2009), map V generated from SD controller C using Algorithm 3.1 is shown
to be well defined. Since we have modified Algorithm 3.1 to suit our needs, it is
important to show the same result in our ||SD setting so that we can consider V as a
potential TDES supervisory control.

The proposition given below proves that map V constructed from SD controller C
using Algorithm 8.1 is well defined. As Algorithms 3.1 and 8.1 are logically identical,
we have taken the basic idea of this proof from Wang (2009) to prove our desired
result.
Proposition 8.1. For TDES plant G = (Y,Σ, δ, yo, Ym), and CS deterministic TDES
supervisor S = (X,Σ, ξ, xo, Xm) that is SD controllable with ||SD for G, let C be the
SD controller constructed from S using the translation method described in Sec-
tion 3.7, and let V be the map constructed from C using Algorithm 8.1. Then, map
V is well defined.
Proof. Assume initial conditions.
In order to show that map V is well defined, we need to show that for all s ∈ L(G),
Algorithm 8.1 defines V (s) in only one way. We will show this by analyzing the logic
used by Algorithm 8.1 to construct V (s) from C.
By examining Algorithm 8.1, first we note that for all s ∈ L(G), the algorithm
initializes V (s) at line 2, and then potentially updates it at lines 11, 23 and 25.
Further examination reveals that for all s /∈ L(S ||SD G) ∩ Lsamp, the algorithm adds
Σu and {τ} to V (s) at line 2, and these strings are not evaluated again in the
algorithm. This means for all such s, V (s) is defined only once at line 2. Therefore,
it is evident that for all s /∈ L(S ||SD G) ∩ Lsamp, V (s) is well defined.
Now we will analyze all the remaining strings s, such that s ∈ L(S ||SD G) ∩ Lsamp.
Let s ∈ L(S ||SD G) ∩ Lsamp
⇒ (∃u ∈ Σ∗) su ∈ L(S ||SD G) ∩ Lsamp by definition of prefix closure of L
⇒ su ∈ L(S) ∩ L(G) ∩ Lsamp by Proposition 5.1
⇒ su ∈ L(S) ∩ Lsamp

120

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

⇒ s ∈ L(S) as L(S) is a prefix-closed language (1)
After line 2, the enablement information of V (s) can be modified at lines 11, 23
and 25 of the algorithm. By analyzing these lines, we observe that line 11 updates
V (s) if s ∈ Lsamp. Otherwise, if s /∈ Lsamp, then V (s) could possibly be updated once
or more at line 23 or 25. Thus, we have two cases: (1) s ∈ Lsamp, and (2) s /∈ Lsamp.
Case 1) s ∈ Lsamp
Algorithm 8.1 evaluates string-state pairs (s,q), by retrieving them one by one from
the set Pend at line 6. This means the algorithm re-evaluates V (s) of only those
strings that were added to Pend.
If a sampled string s is never added to Pend, its V (s) cannot be modified at line
11. Such sampled strings will retain their default enablement information that was
assigned to them at line 2. Hence, for such s, V (s) will always be well defined.
Thus, without any loss of generality, we assume that s was added to Pend at some
point during the execution of Algorithm 8.1.
Line 11 updates V (s) by adding the set of enabled prohibitable events, ΣV , and
removing the tick event. As we want to show that the algorithm defines V (s) in only
one way, it is sufficient to show that whenever line 11 is executed for s, we always
have the same ΣV to append to V (s). Clearly, as long as ΣV is the same, executing
line 11 once or more will not make any difference, as V (s) will be updated in the
same way every time.
By reviewing the algorithm, we note that ΣV is formed from output vector z of
controller C at line 9. This output vector z is in turn obtained from state q of C at
line 8. This means that ΣV is uniquely defined by state q. Thus, it is sufficient to
show that sampled string s will always be paired with state q of controller C.
As s ∈ Lsamp, by Definition 3.4.1 of Lsamp, we have two possible cases: (a) s = ε, and
(b) s ∈ Σ∗.τ.
Case 1.a) s = ε

The controller C always starts at its initial or reset state, qres. By the definition of
SD controller, qres corresponds to the empty string, ε.
From line 4 of the algorithm, it is clear that ε is always paired with state qres of C.
Hence, we conclude that if s = ε, then s is always paired with the same state qres of
C.
Case (1.a) complete.

Case 1.b) s ∈ Σ∗.τ
By examining the algorithm, we note that for every string-state pair (s,q) added to
Pend, the non-empty sampled string s of the pair is constructed by concatenating
one or more concurrent strings together. Thus, for every such s, we have:

(∃n ∈ {1, 2, . . .}) (∃s1, s2, . . . , sn ∈ Lconc) s1s2 . . . sn = s

121

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

By Definition 3.4.3 of concurrent string, we have: Lconc = Σ∗act.τ
This implies that for a given sampled string s, there is only one way to define the
sequence of concurrent strings s1s2 . . . sn. In other words, the sequence of concurrent
strings s1s2 . . . sn in one sampled string s will always be the same.
Except for the first pair (ε,qres), all string-state pairs are added to Pend at line 18.
These pairs are determined at lines 16 and 17 of the algorithm. These two lines show
that starting from the initial state qres, each subsequent state of C is determined by
the current state and the occurrence image of the next concurrent string which is
possible in the closed-loop system.
As S is a CS deterministic supervisor and s ∈ L(S)∩Lsamp by (1), by the definition of
translation functions ΓI (Definition 3.7.8), Ω (Definition 3.7.10), Λ (Definition 3.7.7)
and ∆ (Definition 3.7.1), it is evident that the sequence of states reached by the
sequence of concurrent strings s1s2 . . . sn will be unique. This implies the state q of
controller C that is reached by sampled string s = s1s2 . . . sn will also be unique.
Hence, we conclude that if s = Σ∗.τ, then s is always paired with the same state q
of C.
Case (1.b) complete.

By Cases (1.a) and (1.b), we have shown that sampled string s will always be paired
with the same state q of controller C. In other words, whenever line 11 is executed
for s ∈ Lsamp, we always have same ΣV to append to V (s).
Hence, we conclude that for s ∈ Lsamp, Algorithm 8.1 defines V (s) in only one way.
Case (1) complete.

Case 2) s /∈ Lsamp
If s /∈ Lsamp, this implies: (∃t ∈ Lsamp) (∃t′ ∈ Lconc) t < s < tt′

This in turn implies: (∃j > 1) (∃σ1, . . . , σj ∈ Σ) t′ = σ1 . . . σj

As t′ ∈ Lconc, by the definition of Lconc, σj = τ.
We thus have: (∃i ∈ {1, . . . , j − 1}) tσ1, . . . , σi = s

In the above setting, we have j > 1. This is because if we consider j = 0 or j = 1,
then t < s < tt′ would cause a contradiction.
If j = 0, then t′ = ε. As t′ ∈ Lconc, by the definition of Lconc, t′ 6= ε. Moreover, t′ = ε
implies tt′ = t. In this case, we would have t < s < t, that could not be true in any
case.
If j = 1, then t′ = τ. Since we require t < s, s must contain at least one event more
than t, and since s /∈ Lsamp, s 6= ε and must not end with a τ. As t′ contains only
one event, τ, this would not allow s < tt′ and s /∈ Lsamp. Thus, we must have j > 1.
We note that in Algorithm 8.1, if: i) t was never added to Pend, or ii) t was added
to Pend but for all such t′ discussed above, if t′ fail the condition at line 14, then
V (s) will never be updated in the algorithm after its initialization. This implies that

122

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

V (s) will keep the value assigned to it on line 2, even after the complete execution
of the algorithm. In such case, we know that V (s) will be well-defined.
Thus, without any loss of generality, we assume that t was added to Pend, and our
t′ passes the condition at line 14.
This implies: t, tt′ ∈ L(S ||SD G)
We have: t′ = σ1 . . . σi σi+1 . . . σj ∈ Lconc
As s = tσ1 . . . σi, it is obvious, from the definition of Lconc, that there is only one
way to define activity events σ1 . . . σi, and thus the sampled string t. This implies
that there is only one way to define s = tσ1 . . . σi. Of course, it is possible that there
might be multiple ways to define σi+1 . . . σj.
From the result of Case (1), we know that whenever line 11 is executed for a given
t ∈ Lsamp, we always have the same ΣV to append to V (t).
By examining Algorithm 8.1, we note that for s /∈ Lsamp, the portion of the algorithm
that we are interested in, with respect to the modification of V (s), is defined from
lines 19-28.
In this section, we see that lines 23 and 25 update V (s) by appending ΣV , which we
know will always be same for t ∈ Lsamp. In addition, V (s) is determined by tσ1, . . . , σi
which is also unique for our s, as discussed above. Thus, it is evident that whenever
line 23 or 25 is executed, we always get the same updated V (s).
Hence, we conclude that for s /∈ Lsamp, Algorithm 8.1 defines V (s) in only one way.
Case (2) complete.
By Cases (1) and (2), we have shown that for all s ∈ L(S ||SD G) ∩ Lsamp, Algorithm
8.1 defines V (s) in only one way.
Thus, we have shown that for all s ∈ L(G), V (s) is well defined.
Hence, we conclude that map V , constructed from SD controller C using Algorithm
8.1, is well defined.

8.1.4 Equivalence of V and V
As discussed in Section 8.1.1, Algorithm 8.1 is logically equivalent to Algorithm 3.1
in its way of constructing TDES supervisory control from the SD controller. By
Theorem 7.1, we know that the two SD controllers C and C, of the ||SD and SD
setting respectively, are output equivalent with respect to the closed-loop behaviour,
S ||SD G. This means that for a given plant G, two maps V and V constructed from
SD controllers C and C using Algorithms 8.1 and 3.1 should also be equivalent. This
is formally proven in our next proposition.

This equivalence result essentially bridges the gap between the two settings in
terms of their supervisory controls. This further paves our way for reusing some of
the existing SD results in deriving and concluding our controllability and nonblocking
verification results presented in the next section.

123

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Proposition 8.2. Let TDES G = (Y,Σ, δ, yo, Ym) be a plant to be controlled. Let
TDES S = (X,Σ, ξ, xo, Xm) be a CS deterministic supervisor that is SD control-
lable with ||SD for G, and let G be complete with ||SD for S. Let TDES supervi-
sor S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X ′m) constructed using Algorithms 6.1 and
6.2 be CS deterministic. Let C = (I, Z,Q,Ω,Φ,qres) be the SD controller con-
structed from S, and V be the map constructed from C using Algorithm 8.1. Let
C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller constructed from S, and V be the
map constructed from C using Algorithm 3.1. Then, V = V .
Proof. Assume initial conditions.
We first note that L(S) = L(min(S ||SD G)) = L(S ||SD G), as state space minimiza-
tion does not change the closed-loop behaviour of an automaton. (1)
We next note that Algorithm 3.1 will be applied to S and C, while Algorithm 8.1
will be applied to S and C.
We note that Algorithms 3.1 and 8.1 are identical except for line 14, where Algorithm
3.1 has ss′ ∈ L(S) and Algorithm 8.1 has ss′ ∈ L(S ||SD G).
However, as L(S) = L(S ||SD G) by (1), line 14 is now identical for both. Hence, the
two algorithms now only differ by the fact that Algorithm 8.1 is applied to C while
Algorithm 3.1 is applied to C. (2)
We will now show that we can replace controller C by C in Algorithm 3.1, and V = V
will immediately follow.
First, we need to prove the following claim.
Claim: In the tuples added to Pend in either algorithm, the string t of the tuple will
always satisfy: t ∈ L(S ||SD G) ∩ Lsamp
As for our purpose, the two algorithms are equal by (2), we will examine Algorithm
8.1 but the result will equally apply to Algorithm 3.1.
We will prove this by induction.
Base Case:
We first note that at line 4, Pend is initialized to (ε,qres). We thus have ε ∈ L(S ||SD

G)∩Lsamp, as ε ∈ Lsamp by Definition 3.4.2, and as S and G have initial states, and
by Definition 4.1.1 of the ||SD operator.
Inductive Step:
Show: s ∈ L(S ||SD G) ∩ Lsamp at line 6 ⇒ ss′ ∈ L(S ||SD G) ∩ Lsamp at line 18
Assume: s ∈ L(S ||SD G) ∩ Lsamp at line 6
For ss′ to reach line 18, we have s′ ∈ CBG(s) and ss′ ∈ L(S ||SD G) from lines 13
and 14.
⇒ ss′ ∈ L(S ||SD G) and s′ ∈ Lconc by Definition 3.8.2 of CBG

⇒ ss′ ∈ L(S ||SD G) ∩ Lsamp by Definition 3.4.3 of Lconc
By base case and inductive step, we conclude that each string t of the tuple at line
6 satisfies t ∈ L(S ||SD G) ∩ Lsamp.

124

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Claim proven.
This implies that for both algorithms, we only care about the outputs of controllers
C and C for strings t ∈ L(S ||SD G) ∩ Lsamp.
Applying Proposition 7.3, it follows that C and C provide exactly the same output
for strings t ∈ L(S ||SD G) ∩ Lsamp.
This means we can replace controller C by controller C in Algorithm 3.1 without
affecting the algorithm.
The application of Algorithms 3.1 and 8.1 are now identical, so we immediately have
V = V , as required.

8.2 Controllability and Nonblocking Verification
This section presents our controllability and nonblocking verification results for the
||SD setting. Essentially, we show that the behaviour of TDES plant G under the
action of SD controller C is the same as the behaviour of G under the supervision
of TDES supervisor S, given that ||SD system satisfies the properties that are stated
in the beginning of this chapter. Our results clearly indicate that if the theoretical
||SD system is controllable, nonblocking and satisfies the specified properties, then the
physically implemented system will also have these properties, and the SD controller
will behave as expected with respect to control action, event forcing and nonblocking.

As discussed before, instead of proving all results from scratch, we will use some
of the existing SD results to derive and conclude our formal ||SD verification results.
We will do this by utilizing the equivalence that we have established between the SD
and our ||SD setting in the previous chapters. As we will be needing these equivalence
results in various proofs, we summarize them together in the following corollary. We
will then simply cite this corollary in our upcoming proofs, instead of repeating the
same argument in multiple proofs.
Corollary 8.1. For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor
S = (X,Σ, ξ, xo, Xm) that is SD controllable with ||SD for G, let both TDES have
finite state spaces, let G be complete with ||SD for S and has S-singular prohibitable
behaviour with ||SD, and let S ||SD G be ALF. Let TDES S = min(S ||SD G) =
(X ′,Σ, ξ′, x′o, X ′m) be constructed using Algorithms 6.1 and 6.2. Then, the following
properties are satisfied: (1) S ||SD G has a finite state space, (2) S has a finite state
space, (3) L(S) = L(S ||SD G) and Lm(S) = Lm(S ||SD G), (4) G is complete for S,
(5) G has S-singular prohibitable behaviour, (6) S is SD controllable for G, (7) S
is CS deterministic, (8) S is ALF, and (9) S ||G is ALF.
Proof. Assume initial conditions. (1)
1) Show: S ||SD G has a finite state space

By (1), we have that G and S have finite state spaces. It follows from Defini-
tion 4.1.1 of the ||SD operator that S ||SD G has a finite state space.

125

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

2) Show: S has a finite state space
By (1), we have that S = min(S ||SD G) is constructed using Algorithms 6.1 and
6.2. It thus follows automatically from Point (1) that S has a finite state space.

3) Show: L(S) = L(S ||SD G) and Lm(S) = Lm(S ||SD G)
By (1), we have that S = min(S ||SD G) is constructed using Algorithms 6.1
and 6.2. As state space minimization process does not affect the closed and
marked languages of an automaton, we conclude that L(S) = L(S ||SD G) and
Lm(S) = Lm(S ||SD G).

4) Show: G is complete for S
By (1), we have that G is complete with ||SD for S. As plant completeness is a
language based property, by Point (3) and Proposition 5.4, we conclude that G is
complete for S.

5) Show: G has S-singular prohibitable behaviour
By (1), we have that G has S-singular prohibitable behaviour with ||SD. By
Point (3) and Proposition 5.5, we conclude that G has S-singular prohibitable
behaviour.

6) Show: S is SD controllable for G
By (1), we have that S is SD controllable with ||SD for G. By Point (3) and
Proposition 5.7, we conclude that S is SD controllable for G.

7) Show: S is CS deterministic
By (1), we have that S is SD controllable with ||SD for G and S = min(S ||SD G) is
constructed using Algorithms 6.1 and 6.2. Applying Proposition 6.2, we conclude
that S is CS deterministic.

8) Show: S is ALF
By Point (1) we have that S ||SD G has a finite state space, and by (1) we have
that S ||SD G is ALF and S = min(S ||SD G) is constructed using Algorithms 6.1
and 6.2. Applying Theorem 6.1, we conclude that S is ALF.

9) Show: S ||G is ALF
By Point (8), we have that S is ALF. As S and G are defined over the same Σ,
by Proposition 5.8 we conclude that S ||G is ALF.

8.2.1 SD Controller as a Supervisory Control
In the ||SD setting, the controlled behaviour of the closed-loop system, S ||SD G, is a
combination of the control action of TDES supervisor S and tick disablement mech-
anism of the ||SD operator. This means a tick event that is possible in TDES plant
G might be enabled by S too. However, it still might not be possible in S ||SD G,
as our ||SD operator is capable of removing tick from the closed-loop system in the
presence of enabled prohibitable events. As this path is not possible in the theoretical
system model, we want to make sure that our SD controller forbids such strings from

126

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

occurring in the implemented system as well, thus preventing the physical system to
behave in an undesirable and unexpected way.

We show this in our next proposition by providing sufficient conditions and proving
that if a concurrent string is not possible in our theoretical closed-loop system S ||SD G,
then the SD controller C will not allow it to occur in the physical implementation.
By proving this result, we essentially guarantee that the physical system under the
control action of SD controller C does not violate the behaviour, constraints and
control laws specified by our theoretical ||SD system.

It is important to point out that in the following proposition, we are not comparing
the control action of C with S only. This is because in the ||SD setting, designers are
not required to manually incorporate all of the logic of explicit tick disablement in
the supervisor model, as they have the option of leaving it up to the ||SD operator to
automatically perform this task for them while constructing the closed-loop system.
This implies that the individual control action of S might not always match with C,
which is neither required nor expected in the presence of the ||SD operator. Therefore,
our goal is to ensure that the control action of C always remains exactly in line with
the controlled behaviour of S ||SD G, and not only S, which is what we are proving in
the proposition given below.
Proposition 8.3. For TDES plant G = (Y,Σ, δ, yo, Ym), let TDES S = (X,Σ, ξ,
xo, Xm) be a CS deterministic supervisor that is SD controllable with ||SD for G. Let
G be complete with ||SD for S and have S-singular prohibitable behaviour with ||SD.
Let C = (I, Z,Q,Ω,Φ,qres) be the SD controller constructed from S.
(∀s ∈ L(S ||SD G) ∩ Lsamp) (∀s′ ∈ CBG(s))
If s takes C to state q and ss′ 6∈ L(S ||SD G), then C will reject s′.
Proof. Assume initial conditions. (1)
Let s ∈ L(S ||SD G) ∩ Lsamp and s′ ∈ CBG(s). (2)
Assume: s takes C to state q and ss′ /∈ L(S ||SD G) (3)
We will now show this implies C will reject s′.
We will use Proposition 3.1 of the SD setting to show our desired result. To do this,
we first need to setup things for the SD setting, and show that the preconditions are
satisfied.
Let S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X ′m) be constructed using Algorithms 6.1 and
6.2. (4)
⇒ L(S) = L(S ||SD G) by Corollary 8.1 (5)
We note that except for the CS deterministic property, the remaining conditions
needed to apply Proposition 3.1 are all language based. Thus, if they apply to S ||SD G,
they also apply to S.
By Corollary 5.1(v), we have: L(S ||SD G) = L(S) ∩ L(G)
⇒ s ∈ L(S) ∩ L(G) ∩ Lsamp by (2) (6)
By (1), we have that S is SD controllable with ||SD for G. By (4) and Corollary 8.1,

127

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

we conclude that S is CS deterministic. (7)
Let C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller constructed from S.
Let Λ and Λ′ be the state mapping functions (Definition 3.7.7) for C and C respec-
tively.
As S is CS deterministic by (7) and s ∈ L(S) ∩ Lsamp by (6), by Proposition 3.2 we
conclude that s will take C to state q′ = Λ′(ξ′(x′o, s)). (8)
As s ∈ L(S ||SD G) ∩ Lsamp by (2), by Proposition 5.1 we conclude that s ∈ L(S) ∩
Lsamp.
We can thus apply Proposition 3.2 and conclude q = Λ(ξ(xo, s)). (9)
As ss′ /∈ L(S ||SD G) by (3), this implies ss′ /∈ L(S) by (5). (10)
We now have s ∈ L(S) ∩ L(G) ∩ Lsamp by (6), s′ ∈ CBG(s) by (2), S is CS deter-
ministic by (7), s takes C to state q′ by (8), and ss′ /∈ L(S) by (10). Also, by (1), (5)
and Corollary 8.1 we have that G is complete for S and has S-singular prohibitable
behaviour, and S is SD controllable for G.
We can now apply Proposition 3.1 and conclude that C will reject s′ at state q′. (11)
As all assumptions of Proposition 7.3 are satisfied, we thus conclude:

Φ(Λ(ξ(xo, s))) = Φ′(Λ′(ξ′(x′o, s)))
⇒ Φ(q) = Φ′(q′) by (8) and (9)
As q and q′ have the same output, it follows that if C rejects s′ at state q′ (by (11)),
then C will also reject s′ at state q, as required.

8.2.2 SD Controller and Controllability
In general, a TDES supervisor is more expressive than an SD controller in terms
of updating its enablement and forcing information. This is because a supervisor
can change this information every time an event occurs. On the other hand, an SD
controller is restricted to update its enablement and forcing actions only after a tick
event, and then it must keep this information constant until the occurrence of the
next tick.

For our ||SD setting, we are interested in showing that despite these differences
between the supervisor and the SD controller, the closed-loop behaviour of TDES
plant G and TDES supervisor S is exactly the same as the closed-loop behaviour of
G and SD controller C. Please note that the closed-loop behaviour of G and C is
represented as L(V/G).

This notion is proved in our next theorem. We base our result on Theorem 3.1
of the SD setting. Our result is useful as it demonstrates that when we implement
our supervisor S as an SD controller C, we are guaranteed to get the same expected
closed-loop behaviour in the physical implementation as our theoretical ||SD system,
at least with respect to the required enablement and forcing actions of the controller.

128

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Theorem 8.1. For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S =
(X,Σ, ξ, xo, Xm) that is SD controllable with ||SD for G, let both TDES have fi-
nite state spaces, let G be complete with ||SD for S, have proper time behaviour
and S-singular prohibitable behaviour with ||SD, and let S ||SD G be ALF. Let C =
(I, Z,Q,Ω,Φ,qres) be the SD controller constructed from S, and let V be the map
constructed from C using Algorithm 8.1. Then:

L(V/G) = L(S ||SD G)
Proof. Assume initial conditions. (1)
Must show: L(V/G) = L(S ||SD G)
In order to use Theorem 3.1 of the SD setting to conclude our desired result, we first
need to setup things and show that its preconditions are satisfied.
Let S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X ′m) be constructed using Algorithms 6.1 and
6.2. (2)
By (1), (2) and Corollary 8.1, we conclude that S is CS deterministic.
Let C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller constructed from S, and let V be
the map constructed from C using Algorithm 3.1.
Let L(V/G) be the closed behaviour of V/G, and let L(V/G) be the closed behaviour
of V/G.
Now we will show that L(V/G) = L(S ||SD G).
We first apply Proposition 8.2 and conclude: V = V
By Definition 2.3.4 of L(V/G) and L(V/G), this implies: L(V/G) = L(V/G)
By Corollary 5.1(v), we have: L(S ||SD G) = L(S) ∩ L(G)
Thus, to show that L(V/G) = L(S ||SD G), it is sufficient to show:

L(V/G) = L(S) ∩ L(G)
By (1), (2), and Corollary 8.1, we have that G and S have finite state spaces, G is
complete for S, G has proper time and S-singular prohibitable behaviour, S is CS
deterministic and SD controllable for G, and S ||G is ALF.
We can now apply Theorem 3.1 and conclude L(V/G) = L(S)∩L(G), as required.

Our next proposition shows that map V constructed from SD controller C using
Algorithm 8.1 is indeed a TDES supervisory control for TDES plant G. We will base
our result on Proposition 3.3 of the SD setting which shows similar result for map V
that is constructed from SD controller C using Algorithm 3.1.
Proposition 8.4. For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor
S = (X,Σ, ξ, xo, Xm) that is SD controllable with ||SD for G, let both TDES have
finite state spaces, let G be complete with ||SD for S, have proper time behaviour
and S-singular prohibitable behaviour with ||SD, and let S ||SD G be ALF. Let C =
(I, Z,Q,Ω,Φ,qres) be the SD controller constructed from S, and let V be the map

129

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

constructed from C using Algorithm 8.1. Then, map V is a TDES supervisory control
for G.
Proof. Assume initial conditions. (1)
In order to apply Proposition 3.3 of the SD setting, we first need to setup things and
show that its preconditions are satisfied.
Let S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X ′m) be constructed using Algorithms 6.1 and
6.2. (2)
By (1), (2) and Corollary 8.1, we conclude that S is CS deterministic.
Let C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller constructed from S, and let V be
the map constructed from C using Algorithm 3.1.
By (1), (2) and Corollary 8.1, we have that G and S have finite state spaces, G is
complete for S, G has proper time and S-singular prohibitable behaviour, S is CS
deterministic and SD controllable for G, and S ||G is ALF.
We can now apply Proposition 3.3 and conclude that map V is a TDES supervisory
control for G. (3)
We next apply Proposition 8.2 and conclude: V = V
As V is a TDES supervisory control for G by (3) and V = V , it follows immediately
that V is also a TDES supervisory control for G.

8.2.3 SD Controller and Event Generation
In a typical system, prohibitable events are often part of a supervisor’s implementation
and they completely depend on the supervisor’s discretion for their occurrence. In
our ||SD setting, this means that the resulting SD controller could potentially make
these prohibitable events to occur whenever it wants, possibly even when the plant
model does not want them to happen. The occurrence of a prohibitable event might
correspond to setting an output of the controller to true, executing a software routine,
or sending a message.

In the following theorem, we provide sufficient conditions to make sure that the
aforementioned undesirable situation does not occur in our ||SD setting. Specifically,
we formally prove that if the stated conditions are met, then the SD controller C,
translated from TDES supervisor S, cannot generate a prohibitable event when TDES
plant G won’t accept it.

This result is beneficial as it forbids the occurrence of illegal transitions and pre-
vents the implemented system from violating control laws. It also means that plant
model will accurately reflect the ||SD system’s behaviour when controlled by the SD
controller C.
Theorem 8.2. For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S =
(X,Σ, ξ, xo, Xm) that is SD controllable with ||SD for G, let both TDES have fi-
nite state spaces, let G be complete with ||SD for S, have proper time behaviour

130

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

and S-singular prohibitable behaviour with ||SD, and let S ||SD G be ALF. Let C =
(I, Z,Q,Ω,Φ,qres) be the SD controller constructed from S, and let V be the map
constructed from C using Algorithm 8.1.
(∀s ∈ L(V/G) ∩ Lsamp) (∀s′ ∈ Σ∗act) (∀σ ∈ Σhib)
If ss′ ∈ L(V/G) and σ then physically occurs after ss′ and before any other events
can occur, then ss′σ ∈ L(G).
Proof. Assume initial conditions. (1)
Let s ∈ L(V/G) ∩ Lsamp, s′ ∈ Σ∗act, and σ ∈ Σhib. (2)
Assume: ss′ ∈ L(V/G) and that σ physically occurs after ss′ and before any other
events can occur (3)
Must show: ss′σ ∈ L(G)
We will use Theorem 3.2 of the SD setting to show our desired result. To do this,
we first need to establish the preconditions of Theorem 3.2 and then the result will
follow.
Let S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X ′m) be constructed using Algorithms 6.1 and
6.2. (4)
By (1), (4) and Corollary 8.1, we conclude that S is CS deterministic.
Let C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller constructed from S, and let V be
the map constructed from C using Algorithm 3.1.
Let L(V/G) be the closed behaviour of V/G.
We can first apply Proposition 8.2 and conclude: V = V
⇒ L(V/G) = L(V/G)
⇒ s ∈ L(V/G) ∩ Lsamp, s′ ∈ Σ∗act, and σ ∈ Σhib by (2)
We also have that ss′ ∈ L(V/G) and that σ physically occurs after ss′ and before
any other events can occur by (3).
By (1), (4) and Corollary 8.1, we have that G and S have finite state spaces, G is
complete for S, G has proper time and S-singular prohibitable behaviour, S is CS
deterministic and SD controllable for G, and S ||G is ALF.
We can now apply Theorem 3.2 and conclude ss′ ∈ L(G).

8.2.4 SD Controller and Nonblocking
One of the fundamental properties that a TDES is required to satisfy is nonblocking.
In the ||SD setting, we wish to guarantee that if our theoretical ||SD system is nonblock-
ing, then the physical system implemented under the control action of SD controller
will retain this property. This is the main focus of our next proof.

The following proposition proves that if specified conditions are satisfied in the
||SD setting, then the closed-loop behaviour of TDES plant G and SD controller C is

131

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

nonblocking if and only if the closed-loop behaviour of G and TDES supervisor S is
nonblocking.
Proposition 8.5. For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor
S = (X,Σ, ξ, xo, Xm) that is SD controllable with ||SD for G, let both TDES have
finite state spaces, let G be complete with ||SD for S, have proper time behaviour
and S-singular prohibitable behaviour with ||SD, and let S ||SD G be ALF. Let C =
(I, Z,Q,Ω,Φ,qres) be the SD controller constructed from S, and let V be the map
constructed from C using Algorithm 8.1. Then V is nonblocking for G if and only if
S ||SD G is nonblocking.
Proof. Assume initial conditions. (1)
Must show: V is nonblocking for G if and only if S ||SD G is nonblocking
To show this, it is sufficient to show:

L(V/G) = L(S ||SD G) and Lm(V/G)||SD = Lm(S ||SD G)

Applying Theorem 8.1 (by (1)), we conclude: L(V/G) = L(S ||SD G) (2)
Now all that remains is to show: Lm(V/G)||SD = Lm(S ||SD G)
By Definition 8.1.1 of Lm(V/G)||SD , we have:

Lm(V/G)||SD = L(V/G) ∩ Lm(S ||SD G)
= L(S ||SD G) ∩ Lm(S ||SD G) by (2)
= Lm(S ||SD G) as Lm(S ||SD G) ⊆ L(S ||SD G)

We thus conclude that V is nonblocking for G if and only if S ||SD G is nonblocking.

In the SD supervisory control theory, the SD setting is proven to be robust with
respect to multiple variations of concurrent strings and nonblocking. Specifically, if
theoretical TDES system is nonblocking, then TDES plant G under the control of
SD controller C is shown to be nonblocking, even if multiple concurrent strings with
the same occurrence image are possible at a given sampled state in the theoretical SD
system and only one of these concurrent strings is actually possible in the physical
implementation.

We also wish to demonstrate such robustness with respect to nonblocking for our
||SD setting. In order to be able to do that, first we present a supporting proposition
that will help us in proving our main result. In the following proposition, we show that
for any V ′ that is a TDES supervisory control for TDES plant G, V ′ is concurrent
supervisory control equivalent (CSCE: Definition 3.9.1) to TDES supervisory control
V of the ||SD setting if and only if V ′ is CSCE to TDES supervisory control V of the
SD setting.
Proposition 8.6. Let TDES G = (Y,Σ, δ, yo, Ym) be a plant to be controlled. Let
TDES S = (X,Σ, ξ, xo, Xm) be a CS deterministic supervisor that is SD control-
lable with ||SD for G, and let G be complete with ||SD for S. Let TDES supervi-
sor S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X ′m) constructed using Algorithms 6.1 and

132

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

6.2 be CS deterministic. Let C = (I, Z,Q,Ω,Φ,qres) be the SD controller con-
structed from S, and V be the map constructed from C using Algorithm 8.1. Let
C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller constructed from S, and V be the
map constructed from C using Algorithm 3.1. Then, for all V ′ that are TDES su-
pervisory controls for G, V ′ is concurrent supervisory control equivalent to V if and
only if V ′ is concurrent supervisory control equivalent to V .
Proof. Assume initial conditions. (1)
Let V ′ be a TDES supervisory control for G.
Must show: V ′ is concurrent supervisory control equivalent (CSCE) to V if and only
if V ′ is CSCE to V
Let L(V/G), L(V/G) and L(V ′/G) be the closed behaviours of V/G, V/G and V ′/G
respectively.
We can now apply Proposition 8.2 (by (1)) and conclude: V = V (2)
⇒ L(V/G) = L(V/G) (3)
We next note that by Definition 3.9.1, if V ′ is CSCE to V , this implies:
1) (∀s ∈ L(G))V ′(s) ⊆ V (s)
2) (∀s ∈ L(V ′/G) ∩ Lsamp) (∀s′ ∈ Lconc) ss′ ∈ L(V/G)⇒

(∃s′′ ∈ Lconc) ss′′ ∈ L(V ′/G) ∧Occu(s′) = Occu(s′′)
However, as V = V by (2), and L(V/G) = L(V/G) by (3), we can substitute into
the above and get:
1) (∀s ∈ L(G))V ′(s) ⊆ V(s)
2) (∀s ∈ L(V ′/G) ∩ Lsamp) (∀s′ ∈ Lconc) ss′ ∈ L(V/G)⇒

(∃s′′ ∈ Lconc) ss′′ ∈ L(V ′/G) ∧Occu(s′) = Occu(s′′)
This implies that V ′ is CSCE to V .

We will now present our final result that proves the robustness of the ||SD setting
with respect to different variations of concurrent strings and nonblocking. Our next
theorem shows that if a theoretical ||SD system satisfies the stated conditions and the
closed-loop behaviour of TDES plant G and SD controller C is nonblocking, then
any of its CSCE variations will also be nonblocking. This theorem makes use of
Theorem 3.3 of the SD setting to conclude the desired result.

This result is beneficial as it provides liberty to practitioners to choose any specific
implementation of S ||SD G without having to worry about potential blocking of the
physical system. If they fulfill the specified conditions, then they are guaranteed that
the physical system under the action of the SD controller C will be nonblocking, even
if their chosen implementation only allows a subset of variations of a concurrent string
out of all variations possible in S ||SD G.
Theorem 8.3. For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S =

133

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

(X,Σ, ξ, xo, Xm) that is SD controllable with ||SD for G, let both TDES have fi-
nite state spaces, let G be complete with ||SD for S, have proper time behaviour
and S-singular prohibitable behaviour with ||SD, and let S ||SD G be ALF. Let C =
(I, Z,Q,Ω,Φ,qres) be the SD controller constructed from S, and let V be the map
constructed from C using Algorithm 8.1. Then, for all V ′ that are TDES supervisory
controls for G, if V is nonblocking for G and V ′ is concurrent supervisory control
equivalent to V , then V ′ is also nonblocking for G.
Proof. Assume initial conditions. (1)
Let V ′ be a TDES supervisory control for G.
Assume: V ′ is concurrent supervisory control equivalent (CSCE) to V and that V is
nonblocking for G. By Definition 8.1.2, this implies: Lm(V/G)||SD = L(V/G) (2)
Must show: V ′ is nonblocking for G
Let L(V ′/G) and Lm(V ′/G) be the closed and marked behaviour of V ′/G.
Sufficient to show: Lm(V ′/G)||SD = L(V ′/G)
We first define our setting and notation for the proof.
Let S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X ′m) be constructed using Algorithms 6.1 and
6.2. (3)
By (1), (3) and Corollary 8.1, we conclude that S is CS deterministic.
Let C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller constructed from S, and let V be
the map constructed from C using Algorithm 3.1.
Let L(V/G) and L(V/G) be the closed behaviours of V/G and V/G respectively.
We now apply Proposition 8.2 and conclude: V = V
⇒ L(V/G) = L(V/G) (4)
Now we will show that Lm(V ′/G)||SD = L(V ′/G).
By Definition 8.1.1 of Lm(V ′/G)||SD , it is sufficient to show:

L(V ′/G) ∩ Lm(S ||SD G) = L(V ′/G)
⇒ L(V ′/G) ∩ Lm(S) ∩ Lm(G) = L(V ′/G) by Corollary 5.1(vi)
⇒ Lm(V ′/G) = L(V ′/G) by Definition 3.8.3 of Lm(V ′/G)
This means, in order to show that V ′ is nonblocking for G in our ||SD setting, it is
sufficient to show that V ′ is nonblocking for G in the SD setting (Definition 3.8.4).
We will show this by using Theorem 3.3 of the SD setting. We will first establish the
preconditions of Theorem 3.3 and then the result will follow.
By (2), we have: Lm(V/G)||SD = L(V/G)
⇒ L(V/G) ∩ Lm(S ||SD G) = L(V/G) by Definition 8.1.1 of Lm(V/G)||SD

⇒ L(V/G) ∩ Lm(S ||SD G) = L(V/G) by (4)
⇒ L(V/G) ∩ Lm(S) ∩ Lm(G) = L(V/G) by Corollary 5.1(vi)

134

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

⇒ Lm(V/G) = L(V/G) by Definition 3.8.3 of Lm(V/G)
By Definition 3.8.4, this indicates that V is nonblocking for G.
Applying Proposition 8.6, we note that as V ′ is CSCE to V by (2), this implies that
V ′ is CSCE to V .
By (1), (3) and Corollary 8.1, we have that G and S have finite state spaces, G is
complete for S, G has proper time and S-singular prohibitable behaviour, S is CS
deterministic and SD controllable for G, and S ||G is ALF.
We now apply Theorem 3.3 and conclude that V ′ is nonblocking for G in the SD
setting.
By showing that V ′ is nonblocking for G in the SD setting, we have thus shown that
V ′ is nonblocking for G in our ||SD setting, as required.

135

Chapter 9

Symbolic Verification in SD
Synchronous Product Setting

In this chapter, we discuss theoretical concepts and predicate-based algorithms to
symbolically verify various properties in our ||SD setting. This chapter is based on
symbolic verification of the SD supervisory control methodology presented in Wang
(2009), who in turn built upon the symbolic computation and verification work done
by Song (2006) and Ma (2004).

We begin this chapter by introducing the fundamental concepts of predicates and
predicate transformers. This is followed by a discussion on how to use logic formulas to
represent state subsets and transitions in our ||SD setting. After that, we describe the
symbolic computation of transitions, inverse transitions and predicate transformers.
Finally, we present algorithms that can be used to verify various properties in our
||SD setting. All data representations, computations and verifications discussed in this
chapter are based on ordered binary decision diagrams (BDD) (Bryant, 1986, 1992).

Please note that the algorithms discussed in this chapter were originally developed
as part of the SD supervisory control methodology by Wang (2009). We have tweaked
them to match our adapted properties of the ||SD setting introduced in Chapter 4.
Since some properties of our ||SD setting are logically similar to the SD setting, their
corresponding algorithm steps remain unchanged. These unmodified algorithms are
included in Appendix B for the sake of completeness.
Note: In this chapter, we will represent logical equivalence between state predicates
by ‘≡’, logical true by ‘T ’ and logical false by ‘F ’ respectively. Also, we will use S to
refer to the supervisor of the SD setting (Chapter 3).

9.1 Predicates and Predicate Transformers
This section introduces the concepts of state predicates and predicate transformers
from Song (2006).

136

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

9.1.1 State Predicates
For the following definitions, let TDES G = (Q,Σ, δ, qo, Qm).
Definition 9.1.1. A predicate P defined on state set Q is a function P : Q→ {T, F}
identified by the corresponding state subset QP := {q ∈ Q |P (q) = T} ⊆ Q.

If q ∈ QP , then q |= P means “q satisfies P” or “P includes q”. Thus, we have
q |= P ⇐⇒ P (q) = T .
Definition 9.1.2. A predicate defined on the state set of a TDES is referred to as
a state predicate. The state predicate true is identified by Q, state predicate false by
∅, and state predicate Pm by Qm.

We write Pred(Q) to represent the set of all predicates defined on Q. Thus,
Pred(Q) is identified by Pwr(Q). For P ∈ Pred(Q), st(P) denotes the corresponding
state subset QP ⊆ Q which identifies P . We use pr(Q) to represent the predicate
that is identified by Q.

For q ∈ Q and P, P1, P2 ∈ Pred(Q), the following predicate operations can be
used to build various boolean expressions:
• (¬P)(q) = T ⇐⇒ P (q) = F

• (P1 ∧ P2)(q) = T ⇐⇒ P1(q) = T and P2(q) = T

• (P1 ∨ P2)(q) = T ⇐⇒ P1(q) = T or P2(q) = T

• (P1 − P2)(q) = T ⇐⇒ P1(q) = T and P2(q) = F

Definition 9.1.3. The partial order relation � over Pred(Q) is defined as:
(∀P1, P2 ∈ Pred(Q))P1 � P2 ⇐⇒ (P1 ∧ P2) ≡ P1

It is obvious that QP1 ⊆ QP2 ⇐⇒ P1 � P2. Thus, we have (∀q ∈ Q) q |= P1 =⇒
q |= P2.
Definition 9.1.4. For some state set Q, let P1, P2 ∈ Pred(Q). P1 is a subpredicate
of P2 if P1 � P2. We say P1 is stronger than P2, and P2 is weaker than P1.

Sub(P) represents the set of all subpredicates of P ∈ Pred(Q) such that Sub(P)
is identified by Pwr(QP).

9.1.2 Predicate Transformers
Let TDES G = (Q,Σ, δ, qo, Qm) and P ∈ Pred(Q). A predicate transformer is defined
as a function f : Pred(Q) → Pred(Q). In our subsequent sections, we will use the
following predicate transformers from Song (2006).

i) R(G, P)
The reachability predicate R(G, P) holds true for those states in G that can be
reached from qo by states satisfying P . It is inductively defined as follows:
1. qo |= P =⇒ qo |= R(G, P).

137

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

2. q |= R(G, P) & σ ∈ Σ & δ(q, σ)! & δ(q, σ) |= P =⇒ δ(q, σ) |= R(G, P).
3. No other states satisfy R(G, P).

In simple words, a state q |= R(G, P) if and only if there exists a path from
qo to q in G and each state in that path satisfies P . R(G, true) represents the set
of all reachable states in Q.

ii) CR(G, P)
The coreachability predicate CR(G, P) holds true for those states in G that can
reach a marked state by states satisfying P . It is inductively defined as follows:
1. Pm ∧ P ≡ false =⇒ CR(G, P) ≡ false.
2. q |= Pm ∧ P =⇒ q |= CR(G, P).
3. q |= CR(G, P) & q′ |= P & σ ∈ Σ & δ(q′, σ)! & δ(q′, σ) = q =⇒ q′ |=

CR(G, P).
4. No other states satisfy CR(G, P).

In other words, a state q |= CR(G, P) if and only if there exists a path from q
to some marked state in G and each state in that path satisfies P . CR(G, true)
represents the set of all coreachable states in Q.

iii) CR(G, P ′,Σ′, P)
Let P ′ ∈ Pred(Q) and Σ′ ⊆ Σ. Once G, P ′ and Σ′ are fixed, CR(G, P ′,Σ′, P)
becomes a predicate transformer. The predicate CR(G, P ′,Σ′, P) holds true for
those states in G that can reach a state satisfying P ′ by states satisfying P and
transitions with events in Σ′. It is inductively defined as follows:
1. P ′ ∧ P ≡ false =⇒ CR(G, P ′,Σ′, P) ≡ false.
2. q |= P ′ ∧ P =⇒ q |= CR(G, P ′,Σ′, P).
3. q |= CR(G, P ′,Σ′, P) & q′ |= P & σ ∈ Σ′ & δ(q′, σ)! & δ(q′, σ) = q =⇒ q′ |=
CR(G, P ′,Σ′, P).

4. No other states satisfy CR(G, P ′,Σ′, P).
This means that a state q |= CR(G, P ′,Σ′, P) if and only if there exists a path

from q to a state satisfying P ′ in G and each state in that path satisfies P and
each transition event σ is in Σ′.

By comparing the definitions of CR and CR, we note that CR(G, Pm,Σ, P) ≡
CR(G, P).

9.2 Symbolic Representation
In this section, we present the symbolic representation for states and transitions in
our ||SD setting. Specifically, we discuss how to use logic formulas to represent state
subsets and transitions for our ||SD system. We have based our work on the symbolic

138

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

representation of the SD setting given in Wang (2009), who in turn borrowed it from
Song (2006).

Let TDES G = (Q,Σ, δ, qo, Qm) = G1 ||SD G2 ||SD . . . ||SD Gn be constructed
by synchronizing component TDES Gi = (Qi,Σi, δi, qo,i, Qm,i) where i = 1, 2, . . . , n,
using the SD synchronous product operator. For any state q ∈ Q, by the definition of
Q in the ||SD operator (Definition 4.1.1), we have q = (q1, q2, . . . , qn), where qi ∈ Qi.

It is worth pointing out that TDES G might contain some unreachable states.
However, checking for unreachable states while verifying different properties of the
TDES is expensive, and does not seem to provide any benefit as these unreachable
states do not contribute towards the closed and marked behaviour of G, i.e. L(G)
and Lm(G). As a result, the property is first checked (possibly including unreachable
states) and then a reachability check is performed over the entire system, and any
unreachable states are excluded from the results. This also allows us to do one
reachability check, and share the results across several algorithms.

9.2.1 State Subsets
Definition 9.2.1. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, let i = 1, 2, . . . , n and
qi ∈ Qi. The state variable vi for the ith component TDES Gi is a variable of domain
Qi. If vi is assigned the value qi, then vi = qi returns T , otherwise it returns F .

Please note that ‘=’ has been used to test if vi has been assigned the value qi.
Definition 9.2.2. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, the state variable vector
v is a vector [v1, v2, . . . , vn] of state variables vi from each component TDES Gi, where
i = 1, 2, . . . , n. For state subset A ⊆ Q, the predicate PA for A can be written as:

PA(v) :=
∨
q∈A

(v1 = q1 ∧ v2 = q2 ∧ . . . ∧ vn = qn)

For convenience, instead of PA(v), we will simply write PA if v is understood.

9.2.2 Transitions
Definition 9.2.3. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, let Σhib ⊂ Σ and σ ∈ Σ.
A transition predicate Nσ : Q × Q → {T, F} is a boolean function that identifies all
the transitions for σ in G and is defined as follows:

(∀q, q′ ∈ Q)Nσ(q, q′) :=

T if δ(q, σ)! & δ(q, σ) = q′ & ((σ 6= τ) OR

((σ = τ) & (∀σ′ ∈ Σhib)¬ δ(q, σ′)!))
F otherwise

For each TDES, two different sets of state variables are needed to distinguish
between source and destination states of transitions. These state variables and their
corresponding vectors are defined below.
Definition 9.2.4. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, let i = 1, 2, . . . , n.
For each component TDES Gi, we have the normal state variable vi (source state)

139

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

and the prime state variable v′i (destination state), both with domain Qi. For G, we
have the normal state variable vector v = [v1, v2, . . . , vn] and the prime state variable
vector v′ = [v′1, v′2, . . . , v′n].

For each σ ∈ Σ, the transition predicate for σ, Nσ, can be written as follows:

Nσ(v,v′) :=

∧

{1≤i≤n}

 ∨
{qi,q′i∈Qi|δi(qi,σ)=q′i}

(vi = qi) ∧ (v′i = q′i)
 if X

F otherwise

where X = (σ 6= τ) OR
σ = τ & (∀σ′ ∈ Σhib)¬

 ∧
{1≤i≤n}

 ∨
{qi∈Qi|δi(qi,σ′)!}

(vi = qi)

Essentially, it says that for each σ ∈ Σ−{τ}, if we set v = q and v′ = q′ such that
δ(q, σ) = q′, then Nσ(v,v′) will return T . However, for σ = τ, Nσ(v,v′) will return
T only if we set v = q and v′ = q′ such that δ(q, σ) = q′ and for all events σ′ ∈ Σhib,
¬ δ(q, σ′)!.

When a TDES is designed as several smaller component TDES, designers often
model these components over different event sets. In order to use the above-mentioned
formula for Nσ, selfloops need to be added at every state of the component TDES
for events that are missing from their event sets. This makes the transition predicate
a lot more complicated and cluttered. In order to resolve this issue, the following
version of Nσ has been defined.
Definition 9.2.5. To represent the transition for a given σ ∈ Σ, we use the transition
tuple (vσ,v′σ, Nσ) such that vσ := {vi ∈ v |σ ∈ Σi},v′σ := {v′i ∈ v′ |σ ∈ Σi} and Nσ

is defined as:

Nσ(v,v′) :=

∧

{1≤i≤n|σ∈Σi}

 ∨
{qi,q′i∈Qi|δi(qi,σ)=q′i}

(vi = qi) ∧ (v′i = q′i)
 if X

F otherwise

where X = (σ 6= τ) OR
σ = τ& (∀σ′ ∈ Σhib)¬

 ∧
{1≤i≤n|σ′∈Σi}

 ∨
{qi∈Qi|δi(qi,σ′)!}

(vi = qi)

It is noteworthy that although selflooped transitions are not explicitly specified in
the above definition, the tuple still expresses the selfloop information. This implies
that this definition can be used to create transition tuples for selflooped components
as well.

9.3 Symbolic Computation
By using the logic formula representation for state subsets and transitions of our ||SD

system defined in the previous section, this section discusses the symbolic computation
of transitions, inverse transitions and predicate transformers with respect to our ||SD

140

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

setting. We have built our work on the symbolic computation work done by Song
(2006), which was used for the SD setting by Wang (2009).

9.3.1 Transitions and Inverse Transitions
Let TDES G = (Q,Σ, δ, qo, Qm) = G1 ||SD G2 ||SD . . . ||SD Gn be constructed by
synchronizing component TDES Gi = (Qi,Σi, δi, qo,i, Qm,i) where i = 1, 2, . . . , n,
using the SD synchronous product operator.

For any state q ∈ Q and event σ ∈ Σ, we want to compute the transition δ(q, σ).
An efficient way to compute transitions is to compute the predicate of the set of next
states from the predicate of the set of current states.

For P ∈ Pred(Q), we can directly compute the function δ̂ : Pred(Q) × Σ →
Pred(Q) which is defined as follows:
(∀P ∈ Pred(Q)) (∀σ ∈ Σ) δ̂(P, σ) := pr({q′ ∈ Q | (∃q |= P) δ(q, σ) = q′ ∧ ((σ 6= τ) ∨

((σ = τ) ∧ (∀σ′ ∈ Σhib)¬ δ(q, σ′)!))})
In order to compute the predicate of the set of source states from the predicate

of the set of destination states, we define the inverse function δ̂−1 : Pred(Q) × Σ →
Pred(Q) as follows:

(∀P ∈ Pred(Q)) (∀σ ∈ Σ) δ̂−1(P, σ) := pr({q ∈ Q | δ(q, σ) |= P ∧ ((σ 6= τ) ∨
((σ = τ) ∧ (∀σ′ ∈ Σhib)¬ δ(q, σ′)!))})

As BDD (Bryant, 1986, 1992) does not support first order logic by itself, Song
(2006) has used the existential quantifier elimination method for finite domain (Arnon,
1988) to compute δ̂(P, σ) and δ̂−1(P, σ). We will use the same method to compute
our functions δ̂ and δ̂−1 in the ||SD setting.
Definition 9.3.1. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, let σ ∈ Σ and
(vσ,v′σ, Nσ) be the transition tuple for σ in G. For i = 1, 2, . . . , n, if vi ∈ vσ and
v′i ∈ v′σ, then ∃viNσ and ∃v′iNσ are defined as follows:

∃viNσ :=
∨

qi∈Qi

Nσ[qi/vi] ∃v′iNσ :=
∨

qi∈Qi

Nσ[qi/v′i]

Here, Nσ[qi/vi] is the resulting predicate with each term vi of Nσ substituted by
qi, and Nσ[qi/v′i] is the resulting predicate with each term v′i of Nσ substituted by qi.
In simple words, ∃vi and ∃v′i eliminate the variables vi and v′i respectively from Nσ.

For σ ∈ Σ, let (vσ,v′σ, Nσ) be the transition tuple for σ in G. For k ∈ {1, 2, . . . , n},
let vσ = {v̂1, v̂2, .., v̂k} and v′σ = {v̂′1, v̂′2, . . . , v̂′k}.

For convenience, we write ∃vσNσ to represent ∃v̂1(∃v̂2 . . . (∃v̂kNσ) . . .). The re-
sulting logic formula ∃vσNσ contains only the prime variables in v′σ. If we substitute
all the prime variables by normal variables, denoted as ∃vσNσ[v′σ → vσ], then the
resulting predicate represents the set of destination states for σ transitions in G. This
means that each state in this set has a σ transition entering it, as defined by our Nσ.

141

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

This variable substitution is required because normal variables are used to express
the logic formula of a state subset predicate.

Likewise, for convenience, we write ∃v′σNσ to represent ∃v̂′1(∃v̂′2 . . . (∃v̂′kNσ) . . .).
The resulting logic formula ∃v′σNσ contains only the normal variables in vσ, therefore
no variable substitution is required in this case. ∃v′σNσ represents the predicate for
the set of source states for σ transitions in G. This means that each state in this set
has a σ transition leaving it, as defined by our Nσ.

From the above description, it is obvious that ∃vσNσ[v′σ → vσ] computes the
predicate representing the set of destination states {q′ ∈ Q | (∃q ∈ Q) δ(q, σ) = q′ ∧
((σ 6= τ) ∨ ((σ = τ) ∧ (∀σ′ ∈ Σhib)¬δ(q, σ′)!))}. Similarly, ∃v′σNσ computes the
predicate representing the set of source states {q ∈ Q | δ(q, σ)! ∧ ((σ 6= τ) ∨ ((σ =
τ) ∧ (∀σ′ ∈ Σhib)¬δ(q, σ′)!))}.

By using the existential quantifier elimination method, we can now compute δ̂ and
δ̂−1 symbolically as follows.
Definition 9.3.2. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, let σ ∈ Σ, P ∈ Pred(Q)
and (vσ,v′σ, Nσ) be the transition tuple for σ in G. Then, δ̂(P, σ) is computed as
follows:

δ̂(P, σ) := (∃vσ(Nσ ∧ P)) [v′σ → vσ]
In the above definition, by first computing Nσ∧P , we are restricting σ transitions

to only those source states that satisfy P .
Definition 9.3.3. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, let σ ∈ Σ, P ∈ Pred(Q)
and (vσ,v′σ, Nσ) be the transition tuple for σ in G. Then, δ̂−1(P, σ) is computed as
follows:

δ̂−1(P, σ) := ∃v′σ(Nσ ∧ (P [vσ → v′σ]))
In this definition, P [vσ → v′σ] returns predicate P with its normal variables

substituted by prime variables. As prime variables represent destination states, this
has the effect of restricting σ transitions to only those destination states that satisfy
P .

9.3.2 Predicate Transformers
In order to compute the predicate transformers R and CR defined in Section 9.1.2,
Algorithms 9.1 and 9.2 have been taken from Song (2006). Please refer to Song (2006)
for a detailed description of these algorithms.

Let TDES G = (Q,Σ, δ, qo, Qm) = G1 ||SD G2 ||SD . . . ||SD Gn be constructed
by synchronizing component TDES Gi = (Qi,Σi, δi, qo,i, Qm,i) where i = 1, 2, . . . , n,
using the SD synchronous product operator. Let P ∈ Pred(Q).

142

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 9.1 R(G, P)
1: P1 ← P ∧ pr({qo})
2: repeat
3: P2 ← P1
4: for i← 1 to n do
5: P3 ← false
6: repeat
7: Pnew ← P1 − P3
8: P3 ← P1

9: P1 ← P1 ∨
(∨
σ∈Σi

(δ̂(Pnew, σ) ∧ P)
)

10: until P1 ≡ P3
11: end for
12: until P1 ≡ P2
13: return P1

Reachability Check

Algorithm 9.11 computes R(G, P) by taking two parameters as input, a TDES G
and a predicate P . It then computes and returns a predicate P1 containing the set of
states in G that are reachable by the initial state qo via states satisfying P .

It is interesting to note that this algorithm has been used in the SD setting by
Wang (2009), and we will also use the same algorithm in our ||SD setting without any
modification. Although the steps of the algorithm are the same, it will most likely
give different results in the SD and the ||SD setting.

In the SD setting, the input to Algorithm 9.1 is TDES G that represents the
closed-loop system formed by combining plant and supervisor models defined over the
same event set using the synchronous product. For this input, it returns a predicate
representing the set of reachable states of this closed-loop system. This predicate is
primarily computed at line 9 by using the definition of δ̂ that is specified for the SD
setting.

In the following sections, while discussing symbolic verification of our ||SD setting,
we will use Algorithm 9.1 to perform reachability check on the TDES that represents
our closed-loop system. In this case, the input to this algorithm will be TDES G that
represents the SD synchronous product of plant and supervisor models, and its output
will be the predicate containing the set of reachable states of our closed-loop system.
As we are using this algorithm in the ||SD setting, it is implicit that the algorithm
will perform all computations based on the function δ̂ that we have defined for our

1Readers will find some differences between Algorithm 6.3 given in Song (2006) and our Algorithm
9.1. This is because of the logical errors that were present in the original algorithm and we have
fixed those errors in this version.

143

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 9.2 CR(G, P ′,Σ′, P)
1: P1 ← P ′ ∧ P
2: repeat
3: P2 ← P1
4: for i← 1 to n do
5: repeat
6: P3 ← P1

7: P1 ← P1 ∨
(∨
σ∈Σ′∩Σi

(δ̂−1(P1, σ) ∧ P)
)

8: until P1 ≡ P3
9: end for

10: until P1 ≡ P2
11: return P1

||SD setting. Please recall that the function δ̂(P, σ) (Definition 9.3.2) relies on Nσ to
compute the predicate, and the definition of Nσ in our ||SD setting (Definition 9.2.5)
is different from the SD setting (Definition B.1.3).

Therefore, due to different ways of constructing the input TDES G that is passed
in to this algorithm, line 9 uses different underlying definitions of δ̂ in the SD and ||SD

settings. For this reason, the seemingly same looking Algorithm 9.1 will potentially
generate different results in the two different settings.

Coreachability Check

Algorithm 9.2 computes and returns predicate P1 containing the set of states of input
TDES G that can reach a state satisfying P ′ by states satisfying P and transitions
with events in Σ′.

Like Algorithm 9.1, we are using Algorithm 9.2 of the SD setting unchanged in our
||SD setting. As explained above, the only difference is the TDES G that we provide as
an input to this algorithm. Based on how TDES G has been constructed, Algorithm
9.2 uses the corresponding definition of function δ̂−1, which in turn relies on Nσ, to
compute the required predicate in the SD and the ||SD setting, as appropriate.

Please note that we will use this algorithm to compute CR(G, P) which is equiv-
alent to CR(G, Pm,Σ, P).

9.4 Construction of Closed-Loop System
In our ||SD setting, we construct the closed-loop system by synchronizing TDES plant
G and TDES supervisor S using the SD synchronous product operator, i.e. S ||SD G.
Instead of designing monolithic TDES, if G and S are modelled in a modular fashion,

144

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

then we assume that these component plant and supervisor models are independently
combined using product operator to form G and S respectively.

In case, if plant and supervisor components are combined using synchronous prod-
uct, then we can simply add selfloops at every state of the component TDES for events
that are missing from their event sets to obtain our G and S.

For TDES plant components G′i = (Yi,Σi, δi, yo,i, Ym,i) and G′ = G′1 ||G′2 || . . . ||
G′k, where i = 1, 2, . . . , k, let Gi = selfloop(G′i,Σ−Σi). The TDES plant G is then
defined as follows:

G = G1 ×G2 × . . .×Gk = (Y,Σ, δ, yo, Ym)
For modular TDES supervisors S′j = (Xj,Σj, ξj, xo,j, Xm,j) and S′ = S′1 ||S′2 || . . . ||

S′n, where j = 1, 2, . . . , n, let Sj = selfloop(S′j,Σ − Σj). The TDES supervisor S is
then defined as follows:

S = S1 × S2 × . . .× Sn = (X,Σ, ξ, xo, Xm)
Using this approach, both G and S are now defined over the same event set Σ.

Finally, we construct our closed-loop system, Gcl, as follows:
Gcl = S ||SD G = (Q,Σ, η, qo, Qm)

Here, all five elements of Gcl’s tuple are defined as per Definition 4.1.1 of the SD
synchronous product operator. Please note that at this stage, Gcl might contain some
unreachable states.

Next, we borrow some definitions of the SD setting from Wang (2009). As our
strategy of constructing G and S from component TDES is same as the SD setting,
these definitions work well in our ||SD setting just by changing the way of constructing
the closed-loop system.
Definition 9.4.1. Let Gcl = S ||SD G = (Q,Σ, η, qo, Qm), where G = G1 × G2 ×
. . . × Gk = (Y,Σ, δ, yo, Ym) and S = S1 × S2 × . . . × Sn = (X,Σ, ξ, xo, Xm). For a
given event σ ∈ Σ, the σ plant transition predicate NG,σ : Q × Q → {T, F} can be
expressed as follows:

NG,σ(v,v′) :=
∧

{1≤i≤k}

 ∨
{yi,y′i∈Yi|δi(yi,σ)=y′i}

(vi = yi) ∧ (v′i = y′i)

Likewise, the σ supervisor transition predicate NS,σ : Q × Q → {T, F} can be
expressed as follows:

NS,σ(v,v′) :=
∧

{1≤j≤n}

 ∨
{xj ,x′j∈Xj |ξj(xj ,σ)=x′j}

(vj+k = xj) ∧ (v′j+k = x′j)

It is noteworthy that NG,σ and NS,σ are defined on Q × Q and use the variables
v and v′ like Nσ. We will use NG,σ to determine if there is a σ transition defined at
the plant portion of the indicated states. Similarly, NS,σ will be used to determine if
there is a σ transition defined at the supervisor portion of the indicated states. They
must be defined over Q× Q so that we can compare and combine their results with
other state predicates on Q.

145

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Definition 9.4.2. For TDES plant G = (Y,Σ, δ, yo, Ym) and some σ ∈ Σ, let NG,σ be
the σ plant transition predicate. For P ∈ Pred(Q), the function δ̂G : Pred(Q)×Σ→
Pred(Q) is defined as follows:

δ̂G(P, σ) := (∃v(NG,σ ∧ P))[v′ → v]
The inverse function δ̂−1

G : Pred(Q)× Σ→ Pred(Q) is defined as follows:
δ̂−1

G (P, σ) := ∃v′(NG,σ ∧ (P [v→ v′]))
Definition 9.4.3. For TDES supervisor S = (X,Σ, ξ, xo, Xm) and some σ ∈ Σ,
let NS,σ be the σ supervisor transition predicate. For P ∈ Pred(Q), the function
ξ̂ : Pred(Q)× Σ→ Pred(Q) is defined as follows:

ξ̂(P, σ) := (∃v(NS,σ ∧ P))[v′ → v]
The inverse function ξ̂−1 : Pred(Q)× Σ→ Pred(Q) is defined as follows:

ξ̂−1(P, σ) := ∃v′(NS,σ ∧ (P [v→ v′]))

9.5 Symbolic Verification
In this section, we discuss predicate-based algorithms from Wang (2009) that we
have modified to verify various properties of our ||SD system. Please note that due to
space limitations, we will not provide a detailed explanation for the unchanged parts
of these modified algorithms. Please refer to Wang (2009) for the complete logical
description of all algorithms. The unmodified algorithms that can be used to check
other ||SD properties are included in Appendix B for the sake of completeness.

With respect to the unchanged algorithms given in Appendix B, we wish to point
out that although the steps of these algorithms remain unaltered, the input TDES
that we pass in to these algorithms for verification are certainly different than the
ones assumed in the SD setting. Also, the underlying definitions for some variables
and functions used by these algorithms have changed with respect to our ||SD setting.
Therefore, in order to use these algorithms to verify properties in our ||SD setting, it
is an implicit assumption that these algorithms operate on our input, and use the
variable and function definitions that we have specified in this chapter for our ||SD

setting.
Precisely, algorithms for the following properties remain unchanged in our ||SD

setting. Please refer to Sections B.2 and B.3 for further details.
1. Nonblocking (Algorithm B.1)
2. Activity-loop-free (ALF) (Algorithm B.2)
3. Proper time behaviour (Algorithm B.3)
4. S-singular prohibitable behaviour with ||SD (Algorithm B.5: lines 12-16)
5. SD controllability with ||SD

i. Point ii (Algorithms B.4, B.5, B.6, B.7, B.8)

146

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

ii. Point iii (Algorithm B.9)
Now we will discuss our modified algorithms for the ||SD setting. With TDES

plant G = (Y,Σ, δ, yo, Ym) and TDES supervisor S = (X,Σ, ξ, xo, Xm), our closed-
loop system is Gcl = S ||SD G = (Q,Σ, η, qo, Qm). As per the definition of state set Q
in the ||SD operator, for every state q ∈ Q, there must exist a state x ∈ X and y ∈ Y
such that q = (x, y).

The system event set Σ is defined as Σ = Σhib ∪̇Σu ∪̇ {τ}, where Σhib and Σu

represent the set of prohibitable events and uncontrollable events of Gcl respectively.
The set of controllable events is Σc = Σhib ∪̇ {τ}, and the set of activity events is
Σact = Σhib ∪̇Σu.

9.5.1 Plant Completeness with ||SD

According to Definition 4.4.1 of plant completeness with ||SD property, the states of
Gcl, where a prohibitable event is enabled at the corresponding state in S but it is
not possible at the corresponding state in G, are the incomplete states that cause
this property to fail. We can express the set of these states, Qincomplete, and its
corresponding predicate Pincomplete := pr(Qincomplete) as follows:

Qincomplete := {q = (x, y) ∈ Q | (∃σ ∈ Σhib) ξ(x, σ)! & ¬ δ(y, σ)!}

Pincomplete :=
∨

σ∈Σhib

(
ξ̂−1(true, σ) ∧ ¬ δ̂−1

G (true, σ)
)

Here, ξ̂−1 (Definition 9.4.3) and δ̂−1
G (Definition 9.4.2) are the inverse functions for

supervisor S and plant G respectively.
Our G is considered to be complete with ||SD for S if none of the states of Qincomplete

are reachable, i.e. Qincomplete ∩Qreach = ∅, where Qreach is the set of reachable states
of Gcl. This implies that Pincomplete ∧ Preach ≡ false, where Preach := pr(Qreach) is
the predicate representing the set of states in Qreach. Otherwise, Pincomplete ∧ Preach
contains the set of states that cause this property to fail.

This is the logic used by Algorithm 9.32 to verify plant completeness with ||SD

property. It is notable that our plant completeness with ||SD definition is similar to
the plant completeness property (Definition 2.3.13) except for the actual supervisor
TDES and the way of constructing the closed-loop system. Therefore, we are passing
our TDES supervisor S of the ||SD setting as input to Algorithm 9.3. Also, at line
5 of Algorithm 9.3, we are performing reachability check on our closed-loop system
“S ||SD G” instead of the closed-loop system of the SD setting “G×S” that was used
in the original algorithm. The rest of the algorithm steps are essentially unaltered.

2The value returned by this algorithm is a boolean, True or False, instead of a state predicate.

147

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 9.3 CheckPlantCompleteness(G, S)
1: Pincomplete ← false
2: for all (σ ∈ Σhib) do
3: Pincomplete ← Pincomplete ∨ (ξ̂−1(true, σ) ∧ ¬ δ̂−1

G (true, σ))
4: end for
5: Pincomplete ← Pincomplete ∧R(S ||SD G, true)
6: if (Pincomplete 6≡ false) then
7: return False
8: end if
9: return True

9.5.2 Untimed Controllability with ||SD

The standard untimed controllability property (Definition 2.2.15) gets redefined as
part of the timed controllability with ||SD definition (Definition 4.4.3). Therefore, its
corresponding algorithm needs to be amended for use in the ||SD setting.

According to Definition 4.4.4 for untimed controllability with ||SD, if an uncon-
trollable event is possible at a state in G but it is not possible at the corresponding
composite state in Gcl, then this composite state of Gcl is considered bad as it will
make our S uncontrollable with ||SD with respect to our G. The set of these bad
states, Qbad, and its corresponding predicate Pbad := pr(Qbad) can be expressed as
follows:

Qbad := {q = (x, y) ∈ Q | (∃σu ∈ Σu) δ(y, σu)! & ¬ η(q, σu)!}

Pbad :=
∨

σu∈Σu

(
δ̂−1

G (true, σu) ∧ ¬ δ̂−1(true, σu)
)

Here, δ̂−1
G (Definition 9.4.2) and δ̂−1 (Definition 9.3.3) are the inverse functions for

G and Gcl respectively.
In order for S to be untimed controllable with ||SD for G, none of the Qbad states

should be reachable, i.e Qbad ∩Qreach = ∅, where Qreach is the set of reachable states
of Gcl. This implies that Pbad ∧ Preach ≡ false, where Preach := pr(Qreach) is the
predicate representing the set of states in Qreach. Otherwise, Pbad ∧ Preach holds the
set of states where Gcl is not allowing an uncontrollable event that is possible at the
corresponding state in G.

Algorithm 9.4 essentially makes use of the above-mentioned logic to verify the
untimed controllability with ||SD property in our ||SD setting. In addition to passing
our ||SD supervisor S as an input, our algorithm differs from the original algorithm of
the SD setting at lines 5 and 3, where we use our closed-loop system, S ||SD G, and
its inverse function, δ̂−1, respectively.

148

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 9.4 CheckUntimedControllability(G, S)
1: Pbad ← false
2: for all (σu ∈ Σu) do
3: Pbad ← Pbad ∨ (δ̂−1

G (true, σu) ∧ ¬ δ̂−1(true, σu))
4: end for
5: Pbad ← Pbad ∧R(S ||SD G, true)
6: if (Pbad 6≡ false) then
7: return False
8: end if
9: return True

9.5.3 SD Controllability with ||SD

All algorithms that contribute in verifying the property of SD controllability with ||SD

assume that G has proper time behaviour (Algorithm B.3) and Gcl is ALF (Algorithm
B.2). These algorithms make use of several variables and functions to verify the SD
controllability with ||SD property. We would like to clarify two points about these
variables and functions.
1. Gcl stated in these variables and functions refer to our closed-loop system, i.e.

Gcl = S ||SD G, which is different from the original Gcl of the SD setting that was
assumed to be constructed as G× S.

2. In our ||SD setting, the underlying definitions for some of these variables and func-
tions are different from the original ones that were defined in the SD setting. We
will explicitly highlight them in our discussion. Since we are using these algo-
rithms in our ||SD setting, it is obvious that all variables and functions will be
evaluated using the definitions given in this chapter for our ||SD setting.
The following variables and functions are used in the upcoming algorithms:

• Preach: The predicate of the set of reachable states of Gcl.
• PSF : The predicate of the set that contains sampled states of Gcl found by the

algorithm.
• ZSP : This set contains the predicates of sampled states in Gcl found and not yet

analyzed by the algorithm.
• NG,σ, NS,σ: Transition predicates for σ for G and S respectively, as in Defini-

tion 9.4.1.
• Nσ: Transition predicate for σ for Gcl , as in Definition 9.2.5. Please note that our

definition for Nσ is different from Nσ of the SD setting (Definition B.1.3).
• δ̂: Transition function for state predicates for Gcl, as in Definition 9.3.2. Please

recall that δ̂ relies on Nσ which makes the computation logic of δ̂ different in the
SD and the ||SD setting.

149

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 9.5 CheckSDControllability(G,S)
1: Gcl ← S ||SD G
2: Preach ← R(S ||SD G, true)
3: if (CheckSDCPointi(G,S, Preach) = False) then
4: return False
5: end if
6: SDControllable← True
7: PSF ← pr{qo}
8: ZSP ← {pr{qo}}
9: pNerFail← ∅

10: while (ZSP 6= ∅) do
11: Pss ← Pop(ZSP)
12: SDControllable←AnalyzeSampledState(G,S, PSF , ZSP , Preach, Pss, pNerFail)
13: if (¬SDControllable) then
14: return False
15: end if
16: end while
17: if (pNerFail 6= ∅) then
18: SDControllable← RecheckNerodeCells(pNerFail)
19: if (¬SDControllable) then
20: return False
21: end if
22: end if
23: if (¬CheckSDCPointiii(Preach)) then
24: return False
25: end if
26: return True

• δ̂G: Transition function for state predicates for G only, as in Definition 9.4.2.
• ξ̂: Transition function for state predicates for S only, as in Definition 9.4.3.
• pNerFail: This set pNerFail ⊆ Pwr(Pred(Q)) is a set of sets of predicates that

stores information where Point ii.2 of SD controllability with ||SD property may
have failed.

• SDControllable: This flag asserts if S is SD controllable with ||SD with respect to
G.
Algorithm 9.5 serves as the entry point for checking various points of the SD

controllability with ||SD property. At line 3, it calls Algorithm 9.6 to verify Point
i of SD controllability with ||SD definition. It is note worthy that Point i essentially
represents the timed controllability with ||SD property which includes the untimed
controllability with ||SD check. Since we have already discussed Algorithm 9.4 for

150

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

verifying untimed controllability with ||SD, we will not discuss it again. For the same
reason, untimed controllability with ||SD check is not showing up in Algorithm 9.6.

In order to verify Point ii of SD controllability with ||SD, processing starts with the
initial state of Gcl which is always a sampled state (line 7). As verification proceeds, a
reachability tree is created for a given sampling period, and required checks including
the check of S-singular prohibitable behaviour with ||SD are performed (line 12). If
any of the desired properties fails, the algorithm terminates, except for Point ii.2
where the algorithm continues after recording the problematic nerode cells. These
cells and Point ii.2 is then tested again afterwards (line 18).

Finally, the algorithm verifies Point iii of SD controllability with ||SD at line 23
by making use of Algorithm B.9.

Point i

Algorithm 9.6 verifies the timed controllability part of Point i of SD controllability
with ||SD. We have derived this algorithm from Algorithm 9.7 that was developed
by Wang (2009) to verify Point ii of SD controllability (Definition 3.5.1) in the SD
setting.

At lines 2-5, Algorithm 9.7 checks the forward implication (⇒) of Point ii of SD
controllablility. It determines if there exists a reachable state in Gcl = G× S where
both tick and prohibitable events are enabled. If such a such exists, Point ii (⇒) fails,
and the algorithm returns False.

Please recall that Point ii (⇒) of SD controllability does not exist in our defini-
tion of SD controllability with ||SD, and we are not required to check this condition
explicitly in our ||SD setting. We are able to get rid of this explicit check because of
the distinct synchronization mechanism of our ||SD operator that guarantees to auto-
matically disable a tick event in the closed-loop system Gcl = S ||SD G, if both tick
and a prohibitable event is possible in G and enabled by S. This means that our
||SD operator will never enable both tick and prohibitable event at any state of Gcl

while synchronizing G and S to form the closed-loop system. Since this condition is
automatically satisfied in our ||SD setting, we do not need lines 2-5 of Algorithm 9.7
and did not include them in our Algorithm 9.6.

At lines 6-9, Algorithm 9.7 checks the reverse implication (⇐) of Point ii of SD
controllability. It determines if there exists a reachable state in Gcl = G× S where
no prohibitable event is eligible, and tick is possible in G but disabled by S. If such
a such exists, Point ii (⇐) fails, and the algorithm returns False. This is essentially
the timed part of the timed controllability definition (Definition 2.3.2) used in the SD
setting.

In our Algorithm 9.6, we have modified this logic to check our corresponding
condition by using our closed-loop system Gcl = S ||SD G instead of their supervisor
S. This change is in line with the timed part of our timed controllability with ||SD

property (Definition 4.4.3) that we have defined for our ||SD setting.

151

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 9.6 CheckSDCPointi(G,S, Preach)
1: Pq−hib ←

∨
σ∈Σhib

∃v′Nσ

2: Pbad ← ∃v′NG,tick ∧ ¬ (∃v′Ntick) ∧ ¬Pq−hib
3: if (Pbad ∧ Preach 6≡ false) then
4: return False
5: end if
6: return True

Algorithm 9.7 CheckSDContii(G,S, Preach)
1: Pq−hib ←

∨
σ∈Σhib

∃v′Nσ

2: Pbad ← ∃v′Ntick ∧ Pq−hib
3: if Pbad ∧ Preach 6≡ false then
4: return False
5: end if
6: Pbad ← ∃v′NG,tick ∧ ¬ (∃v′NS,tick) ∧ ¬Pq−hib
7: if Pbad ∧ Preach 6≡ false then
8: return False
9: end if

10: return True

Line 1 of Algorithm 9.6 identifies the states of Gcl that have one or more pro-
hibitable events defined. Line 2 determines if there exists a bad state in Gcl where
neither tick nor a prohibitable event is eligible in Gcl, but tick is possible at the
corresponding state in G. If such a bad state exists and is reachable in Gcl (line
3), then the timed check of Point i of our SD controllability with ||SD fails, and the
algorithm returns False at line 4. Otherwise, it returns True at line 6.

Point ii

In order to verify Point ii of SD controllability with ||SD, we will reuse several variables
from Wang (2009). Please note that we have redefined two variables, Σposs and Bconc,
to make the corresponding algorithms compatible with our ||SD setting.
• ΣElig: The set of prohibitable events eligible in both G and S at qss, where qss is

the sampled state in Gcl that we are processing.
• Pq: The predicate of current state in Gcl.
• Σposs: Wang (2009) defines this variable to be the set of events eligible in both

G and S at predicate Pq of current state in Gcl = G × S. This is because every
event that is possible in G and S will be enabled in Gcl by the product operator.
However, this might not be true for our ||SD operator with respect to the tick event.

In our ||SD setting, we define Σposs to be the set of events that are eligible in

152

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Gcl = S ||SD G at predicate Pq of current state in Gcl. Therefore, this set contains
activity events that are eligible in both G and S at predicate Pq of current state
in Gcl. Additionally, it also contains a tick event if it is eligible in G and S, and
no prohibitable event is possible at predicate Pq of current state in Gcl to preempt
the tick.

• ΣGposs: The set of prohibitable events eligible in G at predicate Pq of current state
in Gcl.

• nextLabel: This number represents the next unused node in Bmap. It is used to
name newly discovered nodes of the reachability tree.

• Bmap: This partial function Bmap : N → Pred(Q) maps the nodes of the reach-
ability tree to the predicates of the states of Gcl that the nodes represent. This
function will sometimes be treated like the set Bmap ⊆ N × Pred(Q). Note that
N = {0, 1, 2, . . .} is the set of natural numbers.

• Bp: This is the set of nodes pending to be expanded in the reachability tree.
• Bconc: The set Bconc ⊆ N ×Pred(Q) contains the nodes that represent concurrent

strings and the sampled states the strings lead to.
In Wang (2009), for (b, q) ∈ Bconc, node b is a node at which tick is eligible in

G and S, and q is the sampled state of Gcl = G× S that the tick leads to.
In our ||SD setting, for (b, q) ∈ Bconc, we define b to be a node at which tick is

eligible in Gcl = S ||SD G, and q is the sampled state of Gcl that the tick leads to.
• OccuB: The partial function OccuB : N → Pwr(Σ) maps the nodes of the reacha-

bility tree to the occurrence image of the string that they represent. This function
will sometimes be treated like the set OccuB ⊆ N × Pwr(Σ).
The actual algorithm steps to verify Points ii.1, ii.2 and iii of SD controllability

with ||SD are essentially the same as Wang (2009). Please refer to Section B.3 to
get an overview of these unmodified algorithms. This includes any function calls in
Algorithm 9.5 that have not been discussed in this chapter. Please note that in order
to verify Points ii and iii of SD controllability with ||SD property, all these algorithms
make use of the variable and function definitions specified in this chapter for our ||SD

setting.

153

Chapter 10

Flexible Manufacturing System

In this chapter, we present an example of a Flexible Manufacturing System (FMS) to
demonstrate the application, utilization and benefits of our SD synchronous product
operator and the ||SD setting. This is the same TDES example that has been discussed
in Wang (2009); Wang and Leduc (2012) to illustrate the SD supervisory control
methodology, who in turn based it on the untimed FMS example given in Hill (2008).
We have intentionally selected the same system so that we could clearly compare and
discuss the complexity of designing modular TDES supervisors by hand and the size
of resultant supervisor models in the SD and ||SD setting, i.e. in the absence and
presence of our ||SD operator.

We begin this chapter by describing the structure and workflow of the FMS. Then,
we provide its various TDES plant components. After that, we analyze the original
design of each modular TDES supervisor developed in the SD setting and discuss how
it gets simplified in our ||SD setting in the presence of the ||SD operator. Finally, we close
this chapter by presenting a comprehensive discussion on our software implementation
and verification results for the FMS example.

10.1 System Structure
The Flexible Manufacturing System (FMS), shown in Figure 1.1, consists of six ma-
chines and five buffers, where each buffer has the capacity to hold a single part. These
buffers are treated as specifications and it is desired that buffers never overflow or
underflow.

The basic idea of the FMS is that a part enters the system via conveyor Con2 and
passes to a handling Robot via buffer B2. The Robot then passes the part to Lathe
via buffer B4. The Lathe can generate two types of parts, A and B. Once the Robot
receives the part back from Lathe via B4, it sends the part either to buffer B6 or B7
depending upon the part type. Precisely, type A part goes to B6 while type B part
goes to B7. From B7, part B goes to a painting machine PM via conveyor Con3 and

154

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Table 10.1: Meaning and Shorthand for Event Labels of FMS
Label Meaning Shorthand Label Meaning Shorthand

921 Part enters system pt ent sys 922 Part enters B2 pt ent B2
933 Robot takes from B2 R from B2 934 Robot to B4 R to B4
937 B4 to Robot for B6 B4 to R for B6 938 Robot to B6 R to B6
939 B4 to Robot for B7 B4 to R for B7 930 Robot to B7 R to B7
951 B4 to Lathe (A) B4 to L A 952 Lathe to B4 (A) L to B4 A
953 B4 to Lathe (B) B4 to L B 954 Lathe to B4 (B) L to B4 B
961 Initialize AM init AM 963 B6 to AM B6 to AM
964 Finished from B6 fin from B6 965 B7 to AM B7 to AM
966 Finished from B7 fin from B7 971 B7 to Con3 B7 to C3

no921 No part enters system no pt ent sys 972 Con3 to B8 C3 to B8
no963a No B6 to AM (a) no B6 to AM a 973 B8 to Con3 B8 to C3
no963b No B6 to AM (b) no B6 to AM b 974 Con3 to B7 C3 to B7
no965a No B7 to AM (a) no B7 to AM a 981 B8 to PM B8 to PM
no965b No B7 to AM (b) no B7 to AM b 982 PM to B8 PM to B8

buffer B8. After completing its operation, PM returns the part to B7 via the same
route. From B6 and B7, the part goes to the finishing machine AM, from where the
finished part finally exits the system.

Table 10.1 shows the mapping of numeric event labels, used in Wang and Leduc
(2012), to their meaning. Odd numbered event labels represent prohibitable events,
whereas even numbered labels represent unconrollable events. Instead of the numeric
labels, we will use the meaningful shorthand event labels in our TDES models for the
sake of readability and comprehension. Our shorthand corresponding to each event
label in given in Table 10.1.

It is notable that there are five event labels in Table 10.1 that are prefixed by
“no”. These labels do not represent any physical events of the FMS. Rather, they are
prohibitable expansion events that were introduced by Wang and Leduc (2012) to aid
in communication between various modular TDES supervisors in order to satisfy the
properties of the SD supervisory control methodology. We will discuss these events
further in our subsequent sections.

Please recall from Section 2.3 that in the graphical TDES models, an event name
given in italics and preceded by “!” indicates an uncontrollable event, a double circle
represents the initial state, and a filled circle shows that the state is marked.

10.2 Plant Components
The FMS consists of six plant components: two conveyors Con2 and Con3, Robot,
Lathe, PM and AM. Their TDES models are shown in Figures 10.1-10.6. One more
TDES plant model, SysDownNup, is given in Figure 10.7. This plant component

155

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

pt_ent_sys

tick

tick

!pt_ent_B2

tick

1
4

32

Figure 10.1: Conveyor Con2

!R_to_B4

tick

!R_to_B6

tick

tick

tick

R_from_B2

B4_to_R_for_B6

tick

B4_to_R_for_B7

tick

!R_to_B7

tick

tick

1

2

3

4

5

6

7

8

Figure 10.2: Robot

tick

B4_to_L_A

B4_to_L_B

tick

tick

!L_to_B4_A

tick

tick

!L_to_B4_B

tick

1
2

3

4

5

6

Figure 10.3: Lathe

tick

tick

tick

!C3_to_B8

tick

B7_to_C3

B8_to_C3

tick

tick

!C3_to_B7

1
2

3

4

5

6

Figure 10.4: Conveyor Con3

tick

tick

B8_to_PM

tick

!PM_to_B8

tick

1
4

32

Figure 10.5: Painting
Machine PM

init_AM

tick

tick

tick

!fin_from_B7

tick

tick

!fin_from_B6tick

B7_to_AM

B6_to_AM
tick

tick

1

4

5

6

7

8

3

2

Figure 10.6: Finishing Machine AM

is added to introduce a shutdown mechanism in the FMS. This could correspond to
a physical switch to turn off/restart the system. When the shutdown event occurs,
Con2 stops accepting new parts and all existing parts exit the system after being
processed. In the shutdown state, all components of the physical system go idle, i.e.
return to their marked states in the corresponding TDES models. The restart event
brings the system back up again.

156

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick
tick

!shutdown

tick

!restart

tick

1
4

3
2

Figure 10.7:
SysDownNup

tick no_pt_ent_sys

tick1
2

Figure 10.8:
AddNoPtEntSys

tick no_B6_to_AM_a
no_B6_to_AM_b

tick1

2

Figure 10.9:
AddNoB6toAM

tick

no_B7_to_AM_a
no_B7_to_AM_btick

1
2

Figure 10.10:
AddNoB7toAM

As all these plant models represent the actual uncontrolled behaviour of the phys-
ical system, they are the same in the SD and ||SD setting. This will make it easy for
us to compare the design of modular TDES supervisors in the two settings, since in
both cases, supervisors needed to be designed for the same TDES plant components
and the same specifications.

In order to introduce five prohibitable expansion events to the system, three addi-
tional plant components were added by Wang and Leduc (2012) as part of the super-
visor design. These plant TDES are shown in Figures 10.8-10.10. We will examine
them further in the next section while discussing the design of modular supervisors.

10.3 Modular Supervisors
Now we will discuss the design of modular TDES supervisors for FMS in the ||SD

setting. Our approach is to first present the modular TDES supervisors that were
originally designed in the SD setting, and then discuss how they get simplified in the
presence of our ||SD operator by comparing them with the TDES supervisor models
that we have designed for our ||SD setting. Essentially, there are two key takeaways
from our discussion presented in this section:
1. It is noticeable how easy it becomes for the designers to design modular TDES

supervisors in the presence of our ||SD operator and satisfy the same system spec-
ifications. This is because they no longer need to manually keep track of the en-
ablement/disablement of tick and prohibitable events, nor incorporate this logic

157

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

explicitly in various supervisor models.
2. It is striking how the size and logical complexity of many of the modular supervi-

sors get reduced in the presence of our ||SD operator. The reason is that different
supervisor models do not need to communicate with each other and keep track of
each other’s behaviour about enablement/disablement of tick event and forcing
of prohibitable events. Also, as we will see in Section 10.4, these simplifications
make it easy and efficient to verify different properties of the closed-loop system.
Please note that in order to clearly differentiate between TDES models of the SD

supervisory control and our ||SD setting, names of TDES plants and supervisors that
are used in the SD setting but are removed or modified in the ||SD setting, will be
stated in bold italics. We will refer to TDES supervisors that appear in the ||SD

setting using bold text only.

10.3.1 Buffer Supervisors
Buffer supervisors control the flow of parts in and out of the buffers. They are pri-
marily responsible for making sure that buffers do not overflow or underflow. Please
note that while discussing buffer supervisor B2, we will also examine supervisor
HndlSysDwn, as these two supervisors are closely related with respect to the shut-
down/restart mechanism of the FMS.

B2 and HndlSysDwn

Supervisor B2 , shown in Figure 10.11, is designed in the SD setting to make sure
that buffer B2 does not overflow or underflow. It guarantees this by watching the
part’s progress once a new part enters the system (pt ent sys). B2 first waits for
the part to enter buffer B2 by keeping track of event pt ent B2, and then it allows
the Robot to take the part from B2 by enabling the prohibitable event R from B2.
This prevents the underflow of buffer B2. B2 also ensures that another part does not
enter the system (pt ent sys) until the previous part has been removed from buffer
B2 (R from B2), thus preventing overflow.

Another crucial task performed by B2 is to decide when to force the prohibitable
event pt ent sys. As soon as the system is turned on, B2 causes Con2 to accept a new
part into the system by enabling and forcing pt ent sys. Please recall that in order
to force a prohibitable event in the SD supervisory control theory, tick event must be
explicitly disabled by the supervisor to satisfy Point ii (⇒) of SD controllability. For
this reason, tick has been disabled at state 0 of B2 to force pt ent sys.

By looking at supervisor B2 , we observe that as soon as Robot takes the part
(R from B2) and buffer B2 becomes empty, B2 allows a new part to enter the system
by forcing pt ent sys. This behaviour is acceptable as long as the system is up and
running. However, once the system is shutdown, then Con2 must stop accepting

158

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

tick
tick

!pt_ent_B2tick

no_pt_ent_sys

pt_ent_sys tick

tick

R_from_B2
0

1 2 3

456

Figure 10.11: Supervisor B2

tick

pt_ent_sys

!shutdown

pt_ent_sys
tick

tick
no_pt_ent_sys

!restart

tick

no_pt_ent_sys

0

1
2

3

Figure 10.12: Supervisor
HndlSysDwn

new parts and system must empty out after processing the existing parts so that all
machines can go to their idle (marked) states, as desired by the system specifications.

This means that after shutdown, pt ent sys needs to be disabled and must not be
forced anymore, until the system is restarted. Since tick has already been disabled at
state 0 to force pt ent sys, designers must figure out some other way to stop forcing
pt ent sys without duplicating information from other parts of the system. Moreover,
if pt ent sys is not forced at state 0, some other prohibitable event needs to be forced
in the absence of an eligible tick event. Otherwise, the system becomes uncontrollable.

In order to resolve this issue in the SD setting, a prohibitable expansion event
no pt ent sys is introduced to the system by designing and including an additional
plant TDES, AddNoPtEntSys (Figure 10.8). At state 0 of supervisor B2 , a loop of
concurrent string “no pt ent sys−tick” is added that allows B2 to force no pt ent sys
when pt ent sys needs to be disabled to achieve the desired behaviour, while keeping
the system controllable and not “stopping the clock”.

Another supervisor HndlSysDwn, shown in Figure 10.12, is designed in the SD
setting to make sure that the two events, pt ent sys and no pt ent sys, are enabled
and disabled at the right time. Specifically, when the system is initially turned on or
restarted, HndlSysDwn enables pt ent sys and disables no pt ent sys to allow new
parts to enter the system for processing. When the system is shutdown, it enables
no pt ent sys and disables pt ent sys to stop Con2 from accepting new parts into the
system.

This discussion clearly shows that forcing a prohibitable event by explicitly dis-
abling tick, along with making sure that system does not become uncontrollable is not
a straightforward and trouble-free task. In this simple example, when prohibitable
event pt ent sys is under the control of only two modular supervisors, designers have
to add one extra plant TDES, a prohibitable expansion event and several additional
transitions in the supervisor models to specify the correct forcing mechanism.

All this extra design effort is required because the logic for forcing a prohibitable

159

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

pt_ent_sys

tick

!pt_ent_B2

tick

R_from_B2

tick

tick

tick

0

1 2

34

Figure 10.13: Supervisor B2

pt_ent_sys
tick

!shutdown

tick

pt_ent_sys

tick

!restart

tick

0

1
2

3

Figure 10.14: Supervisor
HndlSysDwn

event needed to be manually specified in the supervisor model, and tick event was ex-
plicitly disabled at one state of the supervisor in order to force the prohibitable event.
Certainly, this situation becomes more complicated when the prohibitable event to
be forced is under the control of several modular supervisors. Not to mention, the be-
haviour of the plant model also needs to be considered to make sure that prohibitable
event is possible in the plant when supervisor models are collectively trying to force
it. We will see a glimpse of this intricate situation later in Section 10.3.4.

Now we will discuss our buffer supervisor B2, shown in Figure 10.13, that we have
designed in our ||SD setting. Precisely, we have derived B2 from B2 by trimming away
its extra design logic that is not required in our ||SD setting.

In the ||SD setting, we do not need to manually decide when to force a prohibitable
event, nor incorporate this logic explicitly in any of the supervisor models. Rather, we
can simply enable a prohibitable event to indicate that we want this event to occur,
without disabling the tick and the ||SD operator will force the event automatically
(by deleting the tick) as soon as event is enabled by all supervisors, and the event is
possible in the plant. That is why, we have enabled both tick and prohibitable event
pt ent sys at state 0 of our supervisor B2. Also, the synchronization logic of our ||SD

operator guarantees that the property checked by Point ii (⇒) of SD controllability
will always be satisfied at every state of the closed-loop system.

Since B2 is not disabling tick at state 0, we do not need to worry about the logic
of figuring out how to keep our system controllable with ||SD if pt ent sys cannot or
should not be forced. In other words, we are not required to have any alternative
expansion event to force in place of pt ent sys in order to make sure that we do not
“stop the clock”. This implies that the above-mentioned issue, that designers had
to face and resolve in order to explicitly force a prohibitable event while designing
supervisors in the SD setting, does not exist in our ||SD setting. The development and
use of the ||SD synchronization operator has completely and permanently resolved this
issue in our ||SD setting.

160

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

!R_to_B4

R_from_B2
tick

!L_to_B4_A

!L_to_B4_B

tick

tick

tick

tick

B4_to_R_for_B7
tick

B4_to_R_for_B6

tick
B4_to_L_B
B4_to_L_A

tick

0

3

2

1

6

5

4

7

Figure 10.15: Supervisor B4

As a result, we have altogether removed the expansion event no pt ent sys from
our FMS plant and supervisor models designed in the ||SD setting. Specifically, we
are able to remove plant TDES AddNoPtEntSys from the system. In supervisor
B2, we have not defined the concurrent string of “no pt ent sys − tick” at state 0.
Also, our supervisor HndlSysDwn shown in Figure 10.14, that we have developed
corresponding to supervisor HndlSysDwn of the SD setting, does not include any
transitions to enable no pt ent sys once the system has been shutdown.

Another simplification is that we have removed the state changing tick transition
between events pt ent sys and pt ent B2 of B2 , and only included a selfloop of tick
event at state 1 in our supervisor B2. This is because our plant model Con2 al-
ready guarantees that these two events cannot occur in the same sampling period.
Therefore, there is no need to replicate this logic in B2. Due to the same system
specifications, the rest of the logic of our supervisors B2 and HndlSysDwn is the
same as their corresponding supervisors B2 and HndlSysDwn of the SD setting.

B4

Supervisor B4, shown in Figure 10.15, has been designed in the SD setting to fulfill
the specification that buffer B4 never overflows or underflows. It ensures this by
enabling/disabling related events at the right time. Since this supervisor does not
force any prohibitable event, its design remains unchanged in our ||SD setting.

An additional role performed by supervisor B4 is to ensure that once a part enters
buffer B4, the correct follow-up action is performed to take it out of B4. To do this, it
first makes sure that once a part is moved from buffer B2 to B4, it does go to Lathe for
processing. This is ensured by enabling events B4 to L A/B4 to L B after R to B4.
Also, supervisor B4 assures that after being processed by Lathe, the part goes to the
correct buffer, B6 or B7, depending upon its type. It guarantees this by enabling

161

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

!R_to_B6

B4_to_R_for_B6
tick

tick

B6_to_AM

tick

0

1 2

3

Figure 10.16: Supervisor
B6

tick

tick

B7_to_AM

tick

B7_to_C3

tick

tick

!C3_to_B7

B8_to_C3
B4_to_R_for_B7
tick

!R_to_B7

0

2

1

4

3

5

Figure 10.17: Supervisor B7

event B4 to R for B6 after a type A part is generated by Lathe and put into buffer
B4 (L to B4 A), and enabling event B4 to R for B7 after a type B part is produced
by Lathe and placed into buffer B4 (L to B4 B). We will need this information while
discussing supervisors in Sections 10.3.2 and 10.3.3.

B6 and B7

In order to prevent the overflow and underflow of buffers B6 and B7, TDES supervisors
B6 (Figure 10.16) and B7 (Figure 10.17) have been designed in the SD setting.
These supervisors are strictly responsible for enabling/disabling prohibitable events
to manage their respective buffers. Since they do not force any prohibitable event by
explicitly disabling the tick event, they remain unchanged for our ||SD setting.

B8

Figure 10.18 shows buffer supervisor B8 of the SD setting. B8 not only prevents
the overflow and underflow of buffer B8, it also controls the flow of parts once the
part arrives at buffer B7 (R to B7), goes to PM and then comes back to B7. It does
this by watching the part’s progress and then forcing prohibitable events B7 to C3,
B8 to PM and B8 to C3 as needed, by explicitly disabling tick at states 2, 6 and 10
respectively to manually satisfy Point ii (⇒) of SD controllability.

It is notable that prohibitable events B7 to C3 and B8 to C3 are also under the
control of supervisor B7. This means that B8 needs to make sure that these events
must be enabled by B7 and possible in plant TDES Con3 before it tries to force
them by disabling the tick, so that supervisor model does not become uncontrollable
with respect to G.

In order to force the prohibitable event B7 to C3, B8 needs to know that the part
has arrived at buffer B7. This is achieved by replicating the logic of supervisor B7

162

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

B7_to_C3

tick

!R_to_B7

tick

tick!C3_to_B8

tick

tick

tick

B8_to_PM

!PM_to_B8

tick

B8_to_C3tick tick

0

1

2 3 4 5 6

7

891011

Figure 10.18: Supervisor B8

tick

!PM_to_B8

tick

tick

B8_to_C3

tick

tick
B7_to_C3

!C3_to_B8

tick

B8_to_PM

0

1 2 3

45

Figure 10.19: Supervisor B8

into B8 , i.e. by repeating the sequence of events “R to B7− tick” in B8 . The fact
that B8 cannot just enable a prohibitable event without knowing the part’s progress
and other supervisor’s current behaviour, and needs to explicitly disable tick at the
right time to force the prohibitable event has made things overly complicated and
redundant. This point is also highlighted by Wang and Leduc (2012) while discussing
the design of their FMS supervisors.

Figure 10.19 shows buffer supervisor B8 that we have designed for our ||SD setting,
with its state size being half (6 states) as compared to the original supervisor B8
(12 states). This is because in the presence of the ||SD operator, B8 can simply
enable prohibitable events without explicitly deciding when to force them. Therefore,
B8 does not need to have redundant logic to keep track of the part’s progress and
supervisor B7’s behaviour. Consequently, B8 gets simplified in two major ways.

First, we have not duplicated the related logic of supervisor B7 in B8 by exclud-
ing the uncontrollable event R to B7 from B8. Second, since B8 does not need to
explicitly decide when to force prohibitable events, we have enabled both tick and pro-
hibitable events B7 to C3, B8 to PM and B8 to C3 at states 0, 2 and 5 respectively
of B8. Our ||SD operator will automatically disable tick and force the appropriate

163

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

prohibitable event when it is enabled by all concerned supervisors and possible in the
plant model G, thus keeping our system controllable with ||SD.

It is worth-mentioning that although we have added a selfloop of prohibitable
event B7 to C3 at state 0 of supervisor B8, this prohibitable event cannot happen
more than once in the same sampling period. This is because our G is required to
have S-singular prohibitable behaviour with ||SD with respect to our supervisor model
S. Moreover, once B7 to C3 has occurred in the given sampling period, it will be
disabled by supervisor B7 anyway.

The fact that we are able to enable both tick and prohibitable event B7 to C3 at
state 0 of supervisor B8 due to our ||SD operator has also allowed us to remove two
explicit state changing tick transitions that were present in the original supervisor
B8 , and include only a selfloop of tick event at state 0 in B8. First, we have omitted
the state changing tick transition between events B7 to C3 and C3 to B8. The reason
being that our plant model Con3 makes sure that tick always happens between these
two events, and B8 is not preventing this tick from occurring by explicitly forcing
any event. Second, we have eliminated the state changing tick transition after event
B8 to C3. This is due to the fact that supervisor B7 and plant component Con3
already ensure that B8 to C3 and B7 to C3 do not happen after one another in the
same sampling period. Con3 also guarantees that B8 to C3 and C3 to B8 occur in
different sampling periods. Therefore, there is no need to replicate this logic in B8.
We have also removed the redundant logic of state changing tick transition between
B8 to PM and PM to B8 of B8 and replaced it with a selfloop of tick event at state
3 in B8 due to the plant TDES PM.

10.3.2 Robot to B4 to Lathe Path
In order to resolve some nonblocking and concurrency issues along the Robot to
B4 to Lathe path of the FMS, three supervisors are designed in the SD setting:
TakeB2 , B4Path and LathePick. We will discuss them one by one along with the
simplifications that we have made while redesigning them for our ||SD setting.

TakeB2

In the FMS, the Robot is responsible for serving buffers B2 and B4. Since both
buffers cannot be served at the same time, it is essential to dictate the order in which
Robot should provide service to these buffers without blocking the system or starving
any one of them. This order of service is specified by supervisor TakeB2 of the SD
setting, shown in Figure 10.20.

TakeB2 forces the Robot to first serve buffer B2, followed by buffer B4, and then
alternate between the two. It waits until there is a part in buffer B2 by watching
event pt ent B2, after which it moves the part to buffer B4 by forcing the prohibitable
event R from B2 and disabling tick at state 2 (see Section 1.5.1 for the explanation
of its forcing logic). It does not allow the Robot to serve B2 again, i.e. force another

164

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

!pt_ent_B2

R_from_B2

tick

tick
tick

tick

!R_to_B7
!R_to_B6

tick

!R_to_B7
!R_to_B6 !pt_ent_B2tick

!pt_ent_B2

0

1 2 3 4

567

Figure 10.20: Supervisor TakeB2

R_from_B2

tick

tick

!R_to_B7
!R_to_B6

tick

0

1

2

Figure 10.21:
Supervisor TakeB2

R from B2, until Robot has moved the previous part to either buffer B6 (R to B6)
or B7 (R to B7) from B4 after being processed by Lathe.

This alternate order of serving buffers B2 and B4 also prevents the potential
blocking issue that is likely to happen if Robot is allowed to serve buffer B2 two
times in a row. In this case, Robot might move second part from B2 to now empty
buffer B4 while first part is being processed by Lathe, thus leaving no place for the
first part to return to B4.

Figure 10.21 shows the supervisor TakeB2 that we have designed in our ||SD

setting. Using our approach, TakeB2 can simply enable the prohibitable event
R from B2 without explicitly deciding when to force it. That is why, we have enabled
both tick and R from B2 at state 0 of TakeB2, leaving it up to our ||SD operator to
automatically disable tick and make the forcing decision for us when R from B2 is
possible in TDES plant model Robot (Figure 10.2) and enabled by supervisors B2
(Figure 10.13), B4 (Figure 10.15), B4Path (Figure 10.23) and TakeB2.

As TakeB2 is not explicitly disabling tick while enabling R from B2, this implies
that it neither needs to have knowledge about the behaviour of other TDES models,
nor does it have to keep track of the part’s progress. Therefore, TakeB2 does not need
to duplicate the design logic (“pt ent B2− tick”) of B2. In fact, there is no need to
include the uncontrollable event pt ent B2 in TakeB2 at all. As a result, all concerns
and issues (highlighted in Section 1.5.1) that designers had to deal with after including
the event pt ent B2 in TakeB2 automatically vanish in our ||SD setting. Also, it is
easy to see that TakeB2 specifies the same order for serving buffers B2 and B4 by
Robot as TakeB2 and addresses the blocking issue but in a much simplified way, i.e.
reducing 8-state supervisor TakeB2 to 3-state TakeB2.

It is notable that TakeB2 also makes sure that events pt ent B2 and R from B2
do not occur in the same sampling period. This is already ensured by supervisor
B2, therefore we have not cloned this logic in TakeB2. Also, we have replaced the
explicit state changing tick transition between R from B2 and R to B6/R to B7 of
TakeB2 with a selfloop of tick at state 1 in TakeB2 due to the plant model Robot.

165

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick
R_from_B2

!R_to_B4

tick

tick

B4_to_R_for_B7
B4_to_R_for_B6

tick

0

1 2

3

Figure 10.22: Supervisor
B4Path

!R_to_B4

R_from_B2
tick

B4_to_R_for_B7
B4_to_R_for_B6

tick

tick

0

1

2

Figure 10.23: Supervisor B4Path

B4Path

Supervisor B4Path, given in Figure 10.22, works with buffer supervisor B4 (Fig-
ure 10.15) to ensure proper behaviour on the Robot−B4−Lathe path. It contributes
to the correct behaviour of the system by disabling R from B2 once a part is moved
to buffer B4 from B2 (R to B4). Also, only after moving the part from B2 to B4, it
enables B4 to R for B6 and B4 to R for B7.

Figure 10.23 shows our supervisor B4Path that fulfills the same specification as
B4Path. The only way in which the two supervisors differ is that unlike B4Path,
B4Path does not contain an explicit state changing tick transition after event
B4 to R for B6/B4 to R for B7. We are able to skip this transition because our
plant model Robot and buffer supervisor B4 already ensure that these two events
occur in different sampling periods than events R from B2 and R to B4, as desired.

LathePick

Supervisor LathePick, shown in Figure 10.24, specifies the order for producing two
types of parts by Lathe. It forces Lathe to start with type A part, then produce
type B part, and then alternate between the two. It does this by forcing prohibitable
events B4 to L A and B4 to L B at states 2 and 6 respectively.

As supervisor B4 is also in charge of enabling/disabling events B4 to L A and
B4 to L B, LathePick needs to have knowledge about the behaviour of B4 so that
it can make its forcing decisions correctly. We note that B4 enables these two events
after the occurrence of event R to B4. Therefore, LathePick replicates this logic
from B4 and waits for the occurrence of event R to B4. Once R to B4 happens, then
LathePick forces B4 to L A/B4 to L B to avoid any controllability issues.

Figure 10.25 illustrates our 3-state supervisor LathePick that does the same job
as the 8-state LathePick supervisor. In the ||SD setting, since our supervisors are
not required to decide precisely when to force a prohibitable event, therefore we have

166

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

B4_to_L_Atick

tick

!R_to_B4

tick

tick

!R_to_B4

tick tickB4_to_L_B

0

1 2 3
4

567

Figure 10.24: Supervisor LathePick

B4_to_L_A

tick

tick

B4_to_L_B

tick

0

1

2

Figure 10.25: Supervisor
LathePick

not included event R to B4 in LathePick. Also, LathePick enables both tick and
prohibitable events B4 to L A and B4 to L B at states 0 and 2 respectively, leaving
it up to the ||SD operator to make the forcing decision while keeping the supervisor
controllable with ||SD with respect to G.

It is notable that supervisor B4 and plant model Lathe guarantee that events
B4 to L B and B4 to L A occur in different sampling periods. That is why, we have
not added an explicit state changing tick transition after B4 to L B in LathePick.

10.3.3 Moving Parts from B4 to B6/B7
In order to resolve some nonblocking and concurrency issues associated with mov-
ing parts from buffer B4 to B6 and B7, two supervisors, TakeB4PutB6 and
TakeB4PutB7 , are designed in the SD setting. Below, we discuss the original
design of these supervisors followed by their remodelling for our ||SD setting.

TakeB4PutB6

The primary purpose of designing supervisor TakeB4PutB6 , shown in Figure 10.26,
in the SD setting is to decide when to force event B4 to R for B6. As this prohibitable
event is under the control of three other modular supervisors, B4, B4Path and B6,
TakeB4PutB6 must not try to force B4 to R for B6 when it is disabled by any of
the other supervisors, or not possible in plant TDES Robot.

In order to have knowledge about the behaviour of the other models, TakeB4PutB6
duplicates the logic by watching for event L to B4 A. As soon as type A part enters
buffer B4 from Lathe (L to B4 A), TakeB4PutB6 forces B4 to R for B6 to initiate
the movement of part A from B4 to B6. It then waits for event B6 to AM, signalling
that the part has been moved from B6 to AM and now B6 is ready to accept another
part A. TakeB4PutB6 also makes sure that L to B4 A interleaves properly with
B6 to AM by specifying the logic for these events to occur in any order.

167

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

!L_to_B4_A

tick

tick

!L_to_B4_A

B6_to_AM

tick
B4_to_R_for_B6

B6_to_AM

tick

0

1 2 3 4

5

Figure 10.26: Supervisor TakeB4PutB6

In our ||SD setting, we do not need to design and include any supervisor corre-
sponding to TakeB4PutB6 because of the following two reasons: 1) In the presence
of the ||SD operator, we are not required to explicitly decide and specify when to
force B4 to R for B6 by keeping track of other supervisors’ behaviour. In fact, when
B4 to R for B6 is possible in Robot and enabled by supervisors B4, B4Path and
B6, the ||SD operator will automatically disable tick to force B4 to R for B6 in the
closed-loop system. 2) Our buffer supervisor B6 already ensures that Robot cannot
begin to move type A part from buffer B4 to B6 (B4 to R for B6) until the previous
part has been taken out of B6 and moved to AM (B6 to AM). B6 guarantees this
by disabling event B4 to R for B6 once it has happened, and re-enables it only after
event B6 to AM has occurred.

As a result, we do not need to specify/replicate any logic and no supervisor exists
in our ||SD setting corresponding to supervisor TakeB4PutB6 of the SD setting.

TakeB4PutB7

Supervisor TakeB4PutB7 designed in the SD setting is shown in Figure 10.27.
Besides deciding when to force the prohibitable event B4 to R for B7 to initiate the
movement of type B part from buffer B4 to B7, TakeB4PutB7 also handles a
potential blocking issue as part B moves along the B7−PM−B7 path.

In order to determine when to force the prohibitable event B4 to R for B7,
TakeB4PutB7 must take into account the behaviour of supervisors B4, B4Path
and B7, and plant model Robot, as these models are also in charge of enabling/dis-
abling B4 to R for B7. Therefore, event L to B4 B is added to TakeB4PutB7 to
replicate the related logic from supervisor B4 and determine the right time for forcing
B4 to R for B7. As soon as L to B4 B occurs, TakeB4PutB7 disables tick to force
B4 to R for B7 at state 2.

When part B is placed in buffer B7 from B4, it first goes to PM for processing. It
is possible that another part B is put in the now empty buffer B7 by Robot, leaving no
place for the returning part, thus blocking the system. Supervisor TakeB4PutB7

168

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick B4_to_R_for_B7 tick

tick

!L_to_B4_B

B7_to_AM

tick

!L_to_B4_BB7_to_AM

tick

0

1 2 3 4

5

Figure 10.27: Supervisor TakeB4PutB7

B4_to_R_for_B7

tick

tick

B7_to_AM

tick

0

1

2

Figure 10.28: Supervisor
TakeB4PutB7

prevents this situation from happening by waiting for the part to return to buffer
B7 from PM and then moved to AM (B7 to AM), before allowing the Robot to
take another part B from B4 (B4 to R for B7) to be placed into B7. The design
logic for proper interleaving of events L to B4 B and B7 to AM is also specified in
TakeB4PutB7 .

To fulfill these specifications, our 3-state supervisor TakeB4PutB7 designed for
the ||SD setting is given in Figure 10.28. Since we do not need to manually decide
when to force B4 to R for B7, we have neither added the logic for keeping track of
other supervisors’ behaviour and the plant model, nor forcing of event B4 to R for B7
in TakeB4PutB7. As a result, our supervisor does not contain the waiting event
L to B4 B, and enables both tick and prohibitable event B4 to R for B7 at state 0.

Once B4 to R for B7 has occurred, TakeB4PutB7 disables this event to avoid
the above-mentioned blocking issue. This event is re-enabled after the occurrence of
B7 to AM, i.e. when part B returning from PM is moved from buffer B7 to AM.
Also, we note that buffer supervisor B7 already guarantees that events B7 to AM
and B4 to R for B7 always occur in different sampling periods. For this reason,
we have not added an explicit state changing tick transition after B7 to AM in
TakeB4PutB7, as present in supervisor TakeB4PutB7 of the SD setting.

10.3.4 B6/B7 to AM to Exit Path
Now we will discuss the movement of parts from buffers B6 and B7 to finishing ma-
chine AM, from where finished parts finally exit the system. In order to resolve several
concurrency issues along this path, supervisors ForceB6toAM , ForceB7toAM ,
ForceInitAM and AMChooser have been designed in the SD setting. These su-
pervisors are heavily dependent upon one another and work closely together to make
several decisions. We will analyze them one by one, and then discuss how their design
and logic get simplified in the presence of our ||SD operator.

Parts are moved from buffers B6 and B7 to AM using prohibitable events B6 to AM

169

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

and B7 to AM respectively. Before accepting and processing any part, AM needs to
initialize, which is indicated by prohibitable event init AM. This means the first thing
that needs to determined and specified along this path is when to force these three
prohibitable events by explicitly disabling tick in order to satisfy Point ii (⇒) of the
SD controllability property. We must also make sure that when one modular super-
visor is trying to force a prohibitable event, it must be enabled by all the concerned
supervisors and possible in plant TDES AM, to keep the system controllable.

This is further complicated by the fact that parts might be waiting in both buffers
B6 and B7 to go to AM for processing. This implies that another decision that needs
to be made is to determine which buffer to service first. Ideally, these decisions should
be reflected in the supervisor models without significant reuse of logic which seemed
non-obvious, as stated in Wang and Leduc (2012).

The solution devised in the SD setting to address the above-mentioned issues
is to introduce four new prohibitable expansion events that provide communica-
tion between the modular supervisors. These expansion events are no B6 to AM a,
no B6 to AM b, no B7 to AM a and no B7 to AM b. They are introduced to the
system by designing two additional plant TDES, AddNoB6toAM (Figure 10.9)
and AddNoB7toAM (Figure 10.10).

ForceB6toAM and ForceB7toAM

Supervisor ForceB6toAM , shown in Figure 10.29, is designed in the SD setting
to force the prohibitable event B6 to AM. As B6 to AM is under the control of su-
pervisors B6 and TakeB4PutB6 , ForceB6toAM replicates the design logic from
B6 by adding the watch event R to B6. ForceB6toAM waits for the occurrence
of R to B6, signalling that there is a part in buffer B6 waiting to go to AM. It then
forces B6 to AM by explicitly disabling tick at state 2 in accordance with Point ii
(⇒) of SD controllability.

However, if B6 to AM is currently not possible in the plant TDES AM (Fig-
ure 10.6) or disabled by other supervisors, ForceInitAM (Figure 10.31) and AM-
Chooser (Figure 10.33) that are also in control of B6 to AM, then ForceB6toAM
has no way of knowing this. In this case, system will become uncontrollable because
B6 to AM could not be forced and tick is already disabled by ForceB6toAM .

This issue is handled by adding a loop of concurrent string “no B6 to AM a/no B6
to AM b− tick” at state 2 of supervisor ForceB6toAM . The idea is to use expan-
sion events, no B6 to AM a or no B6 to AM b, as alternative forcing options when
B6 to AM could not be forced. Since enablement information needs to be coordi-
nated between three supervisors, that is why the designers have added two expansion
events, ‘a’ and ‘b’.

As no B6 to AM a and no B6 to AM b are meant to be used as substitute forcing
options for B6 to AM, they must only be enabled when it is not possible to force
B6 to AM. Also, it is important to make sure that only one of these three prohibitable

170

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

tick

!R_to_B6
tick

B6_to_AM

no_B6_to_AM_a
no_B6_to_AM_b

tick

0
3

421

Figure 10.29: Supervisor
ForceB6toAM

!C3_to_B7

tick

no_B7_to_AM_a
no_B7_to_AM_b

B7_to_AM

tick

tick

tick

0
3

421

Figure 10.30: Supervisor
ForceB7toAM

events is possible in the system at a given time. Supervisors ForceInitAM and
AMChooser contain the logic to fulfill these two requirements.

In order to force the prohibitable event B7 to AM, supervisor ForceB7toAM ,
shown in Figure 10.30, has been designed in the SD setting. As B7 to AM is under the
control of supervisors B7 and TakeB4PutB7 , therefore ForceB7toAM duplicates
the design logic from supervisor B7 by including the watch event C3 to B7. The rest
of the logic of ForceB7toAM is same as ForceB6toAM . Also, ForceB7toAM
communicates with plant component AM, and supervisors ForceInitAM and
AMChooser in a similar fashion as ForceB6toAM .

ForceInitAM

Figure 10.31 shows supervisor ForceInitAM of the SD setting that is primarily
responsible for deciding when to force prohibitable event init AM. By disabling tick
at state 0, it forces init AM right away. After AM has processed the part received from
buffer B6 or B7 (B6 to AM/B7 to AM), this supervisor then waits for the finished
part to leave the system (fin from B6/fin from B7) before forcing another init AM.

Another task performed by ForceInitAM is to make sure that ‘a’ and ‘b’ ex-
pansion events are never eligible in the system at the same time. It ensures this by
enabling ‘a’ events when B6 to AM/B7 to AM are not possible in the plant TDES
AM. When they are possible in AM, ForceInitAM enables ‘b’ events instead.

As supervisor AMChooser (Figure 10.33) ignores ‘a’ events, this guarantees that
‘a’ events will never be disabled when ForceInitAM needs them. As ForceInitAM
never disables ‘b’ events when B6 to AM/B7 to AM are possible in AM, this ensures
that ‘b’ events will never be disabled when AMChooser needs them.

By manually devising and explicitly incorporating this intricate logic in the su-
pervisor models, designers made sure that the two supervisors do not interfere with
each other with respect to these expansion events.

171

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

no_B7_to_AM_a
no_B6_to_AM_a

init_AM
tick

no_B7_to_AM_b
no_B6_to_AM_b

no_B7_to_AM_a
no_B6_to_AM_a

tick

no_B7_to_AM_a
no_B6_to_AM_a
tick

!fin_from_B7
!fin_from_B6

no_B7_to_AM_a
no_B6_to_AM_a

tick B7_to_AM
B6_to_AM

tick
no_B7_to_AM_b
no_B6_to_AM_b

0
5 4

3
2

1

Figure 10.31: Supervisor ForceInitAM

tick

!fin_from_B7
!fin_from_B6tick

tick

init_AM

tick

B7_to_AM
B6_to_AM

tick

0
4 3

2
1

Figure 10.32: Supervisor InitAM

tick

!R_to_B6

no_B7_to_AM_b
no_B6_to_AM_b

no_B7_to_AM_b
no_B6_to_AM_b
tick

!C3_to_B7

!R_to_B6

tick

no_B7_to_AM_b
no_B6_to_AM_b

tick
no_B6_to_AM_b

B7_to_AM

tick

!C3_to_B7

no_B7_to_AM_b
no_B6_to_AM_b

tick
no_B7_to_AM_b

!C3_to_B7

B6_to_AM

tick

no_B6_to_AM_b
no_B6_to_AM_b
tick

B7_to_AM

tick

no_B6_to_AM_b

tick
no_B7_to_AM_b

B6_to_AM

tick

!C3_to_B7

no_B7_to_AM_b

tick

no_B7_to_AM_b

tick

!R_to_B6

no_B6_to_AM_b

no_B6_to_AM_b
tick

!R_to_B6

B7_to_AM

0
1

2 3 4 5 6 7

8

9

1011

12

13

Figure 10.33: Supervisor AMChooser

AMChooser

The primary purpose of the supervisor AMChooser , given in Figure 10.33, of the
SD setting is to dictate the order in which AM accepts the parts from buffers B6
and B7, when both buffers have a part waiting to be processed by AM. If parts A
and B arrive in both buffers (R to B6, C3 to B7) in the same sampling period, then
AMChooser forces AM to first take the part from B7 (B7 to AM), and then from
B6 (B6 to AM). The reason is that there are more machines along the B7−PM−B7
path that should be kept busy. If only one buffer has a part waiting, then this part

172

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

is taken by AM for processing.
In order to enforce this order for processing parts, AMChooser sometimes has

to disable prohibitable events B6 to AM and B7 to AM. In such cases, it enables the
appropriate ‘b’ expansion events as a forcing alternative. This also guarantees that
substitute forcing options of B6 to AM and no B6 to AM b are never enabled at the
same time. The same is true for B7 to AM and no B7 to AM b.

Remodelling of Modular Supervisors for the ||SD Setting

In the SD setting, the only reason for introducing four prohibitable expansion events
was to aid in communication between various modular supervisors in order to specify
the explicit forcing decisions, while making sure that all desired properties and system
specifications are satisfied. In the ||SD setting, since modular supervisors are only
concerned about their own behaviour, this eradicates the need to add expansion
events to our ||SD system. As a result, we can exclude all these expansion events and
their corresponding plant models, AddNoB6toAM and AddNoB7toAM , from
our set of FMS plant components for the ||SD setting.

In the SD setting, the primary purpose of designing supervisors ForceB6toAM
and ForceB7toAM was to decide when to force prohibitable events B6 to AM and
B7 to AM respectively. Since we have the ||SD operator that automatically makes
these forcing decisions for us, we will not include these two supervisors in our set of
FMS modular supervisors. Please note that the order of occurrence of events enforced
by these two supervisors is already present in the corresponding buffer supervisors,
B6 and B7.

Our ||SD supervisor InitAM, shown in Figure 10.32, manages the initialization
of AM and the movement of parts along the B6/B7−AM−exit path. Since we are
not required to explicitly force prohibitable event init AM, we have enabled both
tick and init AM at state 0. Also, plant TDES AM already makes sure that events
B6 to AM/B7 to AM and fin from B6/fin from B7 occur in different sampling pe-
riods. Therefore, we have not duplicated this logic in InitAM, as specified by
ForceInitAM in the SD setting.

It is worth noting how simple this supervisor’s design and logic has become in
the absence of all expansion events and their transitions, as compared to its corre-
sponding supervisor ForceInitAM of the SD setting. With no expansion events, we
do not need to do any extra design effort to figure out how many other supervisors
InitAM will communicate with, determine the number of expansion events required
for communication, and then enable/disable all expansion events at the right time by
keeping track of plant and other supervisors’ behaviours.

Figure 10.34 illustrates our supervisor AMChooser of the ||SD setting. Essentially,
we have derived it from supervisor AMChooser of the SD setting after removing all
expansion event transitions. AMChooser enforces the same order on AM for accept-
ing parts from buffers B6 and B7 as AMChooser . However, unlike AMChooser ,

173

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

!R_to_B6

tick

tick
!C3_to_B7

B6_to_AM

tick

tick

!C3_to_B7

tick

!C3_to_B7

!R_to_B6

tick

B7_to_AM

tick

B6_to_AM

tick

!R_to_B6

tick

tick

B7_to_AM

tick

B7_to_AM

!R_to_B6

tick

tick

!C3_to_B7

tick

0
1

2 3 4 5 6
7

8

9
1011

1213

Figure 10.34: Supervisor AMChooser

our supervisor AMChooser does not need to keep track of the plant model and
other supervisors’ behaviour to enable/disable appropriate expansion events at the
right time. This results in greatly reducing the complexity of its design and logic.

10.4 Results and Discussion
Now it is time to present and discuss our results for the FMS example. Our complete
results are shown in Table 10.2. In order to be clear and precise in our discussion, we
will refer to the FMS TDES models designed in the SD setting as the “SD system”,
and the simplified FMS TDES models designed for our ||SD setting as the “||SD system”.

10.4.1 Theoretical TDES
By looking at the theoretical TDES models discussed in the previous section, we
note that for the same FMS specifications, we are able to model our ||SD system by
designing fewer plant components and modular supervisors. This is because, unlike
the SD system, we did not have to introduce and manage five prohibitable expansion
events to aid in communication between different modular supervisors and make
explicit forcing decisions in our ||SD system. These results are summarized in the
topmost section of Table 10.2.

10.4.2 Verification Results
In order to evaluate the performance of verifying our ||SD properties, we implemented
the SD synchronous product operator and our tweaked algorithms (presented in Chap-
ter 9) as part of the DES research tool, DESpot (2023). Our code is based on the

174

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Table 10.2: FMS Example Results in the SD and ||SD Setting
SD System ||SD System

Plant Components 10 7
Modular Supervisors 15 12

System Events 31 26
Supervisor
Properties Verification Time (seconds)

CS Deterministic < 1 < 1
Non-Selfloop ALF < 1 < 1

Closed-Loop System
Properties

SD
Algorithms

||SD

Algorithms
SD

Algorithms
||SD

Algorithms
Nonblocking < 1 < 1 < 1 < 1

Untimed Controllability < 1 < 1 < 1 < 1
Timed Controllability < 1 < 1 < 1 < 1

Proper Time Behaviour < 1 < 1 < 1 < 1
Plant Completeness < 1 < 1 < 1 < 1

ALF 2 2 1 1
SD Controllability &
S-Singular Prohibi-

table Behaviour
30 26 False 7

Check All 32 28 False 8
State Size 82,608 82,608 56,244 49,020

source code written by Wang (2009) that verifies the SD supervisory control method-
ology. The code uses the BuDDy package (Lind-Nielsen, 2002), a C++ library that
implements standard BDD structures and operations.

In the rest of this discussion, we will refer to the algorithms implemented by Wang
(2009) as the “SD algorithms”. These SD algorithms check various properties in the
SD setting (Chapter 3) and rely on the standard synchronous product operator to
form the closed-loop system. On the other hand, the adapted algorithms that we have
implemented for our ||SD setting will be referred to as the “||SD algorithms”. These ||SD

algorithms verify the ||SD version of the properties (introduced in Chapter 4) and use
our SD synchronous product operator to construct the closed-loop system. Please
recall that, as mentioned in Chapter 9, although we are reusing some algorithms of
the SD setting in our ||SD setting without modifying their steps, still these algorithms
are actually different in the two settings because of their way of constructing the
closed-loop system in order to verify the desired properties.

In order to analyze and compare the FMS SD and ||SD systems in detail, we decided
to run SD and ||SD algorithms on both systems. In other words, we not only verified
our ||SD system in our ||SD setting by running our ||SD algorithms, but we also tested
it in the SD setting by running SD algorithms to find out which properties does it
fail to satisfy (algorithms return “False”) in the SD setting in the absence of our ||SD

175

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

operator. Similarly, besides running SD algorithms on the SD system, we also ran
our ||SD algorithms on the SD system to evaluate its performance in our ||SD setting.

Table 10.2 shows our verification results for running various SD and ||SD algorithms
on the SD and ||SD systems. These tests are performed on a machine running Windows
10 with 16GB of RAM and 2.6GHz Intel 6-core processor.

Supervisor Properties

As the ultimate goal of designing TDES supervisors in the SD supervisory control
theory is to generate the corresponding SD controller, we started by verifying two
properties that play an important role in this translation process. These two proper-
ties are CS deterministic and non-selfloop ALF supervisors. As shown in Table 10.2,
TDES supervisors of both SD and ||SD systems passed each of these checks in less
than 1 second.

Our next step is to verify various properties of the SD and ||SD closed-loop systems
by running the SD and ||SD algorithms. Before we analyze the results of these tests in
detail, first we wish to highlight some important points about state sizes of the two
systems that are constructed by the SD and ||SD algorithms.

State Space Size of Closed-Loop System

By looking at the state size of the SD system given in Table 10.2, we observe that
although SD and ||SD algorithms use different synchronization operators to construct
the closed-loop system, state size of the SD system is same in both cases, i.e. 82,608.
The reason is that the SD system was originally designed for the SD setting, where
designers are responsible for manually satisfying Point ii (⇒) of SD controllability.
In this case, the ||SD operator does not find any states where it has to disable tick
in the presence of an enabled prohibitable event while constructing the closed-loop
system. Consequently, the synchronization mechanism of the ||SD operator essentially
becomes equivalent to the standard synchronous product operator. This results in
having the same state space for the SD system in both cases.

On the contrary, SD and ||SD algorithms specify different state sizes for our ||SD

system. Specifically, our ||SD closed-loop system constructed by the SD algorithms has
56,244 states, whereas ||SD algorithms construct the state space of 49,020 states. This
is because, keeping in view the synchronization mechanism of the ||SD operator, we
have enabled both tick and prohibitable events at various states of the TDES super-
visors while modelling our ||SD system. As the synchronous product operator is not
capable of automatically disabling tick event in the presence of enabled prohibitable
events while forming the closed-loop system, this is why the SD algorithms construct
a bigger state space for our ||SD system than our ||SD algorithms.

In essence, the key point to note is that state size for the FMS example has reduced
from 82,608 states in the SD setting to 49,020 states in our ||SD setting. This represents
a reduction of 40% in the overall state space of the FMS closed-loop system.

176

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

This decrease in the state space is because of two reasons. First, in the presence of
our ||SD operator, less number of TDES plant and supervisor components are required
to model the same system specifications. Second, as evident in Section 10.3, the size
and logical design complexity of most of the modular supervisors of the SD system
have been greatly reduced for our ||SD system.

Next, we discuss our results of verifying various properties of the SD and ||SD

systems by running SD and ||SD algorithms.

Closed-Loop System Properties

As shown in Table 10.2, both SD and ||SD systems satisfy the properties of nonblock-
ing, untimed controllability, timed controllability, proper time behaviour and plant
completeness in both settings. Each of these checks is completed individually in less
than 1 second.

By running the ALF test, both SD and ||SD systems are found to be ALF. However,
this check was completed for the SD system in 2 seconds, whereas our ||SD system took
only 1 second to pass this test in the SD and ||SD settings. Given the fact that we
have reused the ALF algorithm of the SD setting in our ||SD setting without changing
its steps, this difference in verification time can be attributed to different state sizes
of the SD and ||SD systems. As our ||SD system has a reduced state space as compared
to the SD system, this property gets verified more efficiently for our ||SD system in
both settings.

Currently, in DESpot, the check for S-singular prohibitable behaviour is imple-
mented as part of the SD controllability test. Therefore, we verified these two prop-
erties together for the SD and ||SD systems. Using SD algorithms, it took 30 seconds
to verify these properties for the SD system. However, when we checked these prop-
erties of the SD system using our ||SD algorithms, verification time dropped to 26
seconds. This is because our ||SD algorithm tests the property of SD controllability
with ||SD, which does not include an explicit check for Point ii (⇒) of SD controllabil-
ity. This saves time by performing one less check in the presence of our ||SD operator
as compared to the SD setting.

When we tried to verify the property of SD controllability for our ||SD system using
SD algorithms, the algorithms returned False. The reason is quite obvious. Since we
have not explicitly disabled tick while enabling prohibitable events at various states
of the modular ||SD supervisors, our ||SD system fails to satisfy the constraint imposed
by Point ii (⇒) of SD controllability in the SD setting.

In order to test the properties of SD controllability with ||SD and S-singular pro-
hibitable behaviour with ||SD for the ||SD system, we ran our corresponding ||SD algo-
rithms. Our ||SD system not only passed these checks but the verification process was
completed within 7 seconds, as opposed to the SD system that took 30 seconds to
pass these tests in the SD setting.

This indicates that for the FMS example, we have verified these two properties of

177

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

our ||SD system 4x faster as compared to the SD system. In other words, we recorded
a 76.6% reduction in verification time and more than 300% increase in performance
in our ||SD setting as compared to the SD setting with respect to the verification of
these two properties.

This significant reduction in verification time is primarily due to the smaller state
size of our ||SD system as compared to the SD system, that we are able to achieve due
to the automatic tick disablement mechanism of the ||SD operator. Moreover, our ||SD

algorithms check one less condition as part of the SD controllability with ||SD property
in the presence of the ||SD operator.

In DESpot, we also have an option to check the desired system properties all at
once (Check All). In the SD setting, it took 32 seconds to verify all properties of
the SD system, while our ||SD system passed all tests in 8 seconds in our ||SD setting.
On the whole, our results demonstrate a time reduction of 75% and performance
increase of exactly 300% in our ||SD setting compared to the SD setting. This shows
that we are able to do complete verification of our FMS ||SD system 4x faster than its
corresponding FMS SD system.

10.4.3 Miscellaneous Discussion
We will close this section by discussing two important points.
1. It is worth-mentioning that, apparently, our ||SD operator does more work than the

synchronous product while synchronizing plant and supervisor models to construct
the closed-loop system. This is because our ||SD operator is required to figure out
whether to enable/disable tick event at every state of the closed-loop system using
a more complex logic than synchronous product.

Nevertheless, we are still able to notice a visible decline in the overall verifica-
tion time of the FMS example in our ||SD setting as compared to the SD setting.
This suggests that the slightly complicated synchronization logic of our ||SD oper-
ator has not adversely affected the overall performance of our ||SD algorithms.

2. We would like to point out that we ran the SD algorithms on our ||SD system
because we wanted to inspect that other than manually satisfying Point ii (⇒)
of SD controllability, is there any other reason/significance which necessitates the
design of a complicated SD system instead of modelling a simpler ||SD system? As
shown in Table 10.2, our results indicate that our ||SD system satisfies all properties
in the SD setting except for Point ii (⇒) of SD controllability.

This makes it evident that the design and verification of the FMS example got
a lot more complicated in the SD setting just because this one property needed to
be satisfied manually. This clearly shows the significance of our ||SD operator that
has made the design and verification process of our FMS ||SD system relatively
simple, easy and efficient, by providing a guarantee to automatically satisfy this
intricate property in our ||SD setting.

178

Chapter 11

Introduction to Moore FSM to
TDES Translation

In this chapter, we present a novel approach for the automatic translation of Moore
synchronous Finite State Machines (FSM) into TDES supervisors. In devising this
approach, we utilize the structural similarity created by the SD supervisory control
theory between the two models (Wang, 2009; Wang and Leduc, 2012; Leduc et al.,
2014). In this chapter, we will explain our translation approach with the help of
an illustrative example. In Chapter 12, we will formalize the approach by providing
algorithms.

In Wang (2009); Wang and Leduc (2012), the authors provide a formal and struc-
tured way of translating a TDES supervisor into an SD controller, modelled as a
Moore FSM (Brown and Vranesic, 2013). This TDES-FSM translation method,
briefly discussed in Section 3.7, has been implemented in the DES research tool,
DESpot (2023), by Hamid (2014). Following a two-step approach, Hamid has devel-
oped algorithms to convert a TDES supervisor into a Moore FSM, which is then used
to generate Verilog code for the digital logic implementation (Brown and Vranesic,
2013).

While developing our FSM-TDES translation approach, one of our major goals
is to make our approach consistent and compatible with the existing TDES-FSM
translation method and its corresponding DESpot implementation. This provides an
additional benefit by enabling the system designers to go back and forth between the
two models using the two translation approaches, i.e. easily translate one model into
the other, regardless of whether they started with a TDES supervisor or a Moore
FSM.

It is obvious that Hamid’s TDES-FSM implementation approach was not de-
veloped taking into consideration the possibility of doing the reverse (FSM-TDES)
translation. For this reason, we needed to make some changes in the existing TDES-
FSM translation approach of DESpot in order to build compatibility between the two
translation approaches. We will discuss some of these changes in this chapter, but

179

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

please refer to Appendix C for details on how we have updated Hamid’s TDES-FSM
translation algorithms to implement these changes.

We begin this chapter by describing the input structure for Moore FSM that we
will use for our FSM-TDES translation approach, and the changes we have made to
the FSM output format of Hamid (2014). We will discuss them at a high level here,
but leave the detailed description for Appendix C. Next, we list down some consis-
tency and design requirements that must be satisfied by the input Moore FSM before
they could be considered “valid” for the FSM-TDES translation. This is followed
by an in-depth explanation of our complete FSM-TDES translation approach. We
demonstrate our translation method step by step with the help of an example.
Note: From now on, we will refer to “Moore synchronous FSM” as “Moore FSM” or
simply as “FSM” for conciseness.

11.1 Moore System as an Input
For any physical system, the designers can choose to design either a single, more
complex TDES supervisor or multiple modular supervisors. Hamid’s (2014) DESpot
TDES-FSM implementation method works well in both cases by generating one indi-
vidual Moore FSM corresponding to each TDES supervisor. Besides these individual
FSM, his translation algorithm also generates one central FSM for the system. The
central FSM file defines the global input and output signals, and contains information
about each individual Moore FSM. The central and individual FSM are stored in the
XML file format (Ray, 2003).

Just like TDES designers, the control practitioners may wish to model a system
controller either as a monolithic Moore FSM or as multiple individual FSM. Our
FSM-TDES translation approach, presented in this chapter, is capable of handling
both possibilities, and generates one TDES supervisor corresponding to each input
Moore FSM.

For a given control system, the input to our FSM-TDES translation method is a
Moore system that consists of: 1) one central FSM file for the system, and 2) one
or more individual FSM files, where each individual file contains one Moore FSM’s
specifications. We require that all FSM files must be expressed in XML format.
Basically, we have customized Hamid’s output XML file format to suit our needs and
make our stuff compatible with what already exists.

Below, we describe the input format for central and individual FSM, as well as
the changes that we have made. Please note that in Chapter 13, we apply our FSM-
TDES translation approach to an example of a 4-bit Combination Lock. We will use
a small portion of this example to explain our input structure.

The 4-bit Combination Lock is a digital lock system that uses a 4-bit passcode
to provide secured access to authentic users, and has three user buttons: Enter,
Change and Reset. Users can unlock the combination lock, either to open the door

180

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

or change the currently saved passcode, by entering the existing passcode and pressing
the appropriate button (Enter or Change). However, if the user enters an incorrect
passcode, the alarm goes off. Alarm can only be cancelled by pressing the Reset
button, which will also reset the currently saved passcode to its default value. Please
refer to Section 13.1 for a thorough explanation of the complete system specification
and functionality.

11.1.1 Individual Moore FSM
Figure 11.1 shows the OpenLock Moore FSM from the Combination Lock example.
We will use this graphical FSM to illustrate our discussion. Please see Section C.1.1
in Appendix C for a description of the XML file for OpenLock. Our FSM-TDES
translation method requires the designers to specify one XML file corresponding to
each individual Moore FSM that needs to be translated.

The OpenLock FSM consists of two states, “1” and “2”, and three signals, open,
enter and equal. At each state of OpenLock, the value of the output open is indicated.
The FSM arrows represent next state boolean conditions in terms of inputs, enter
and equal. In the boolean expressions, “·” symbol represents the AND operator,
“+” represents the OR operator, and “!” represents the NOT operator. The arrow
labelled Reset indicates the reset state of OpenLock. Please note that in our
figures, we will write “ . ” instead of “·”, as “ . ” is easier to produce. Please refer
to Section 13.2.1 to gain familiarity with the complete graphical notation of a Moore
FSM.

The OpenLock FSM, as the name suggests, controls the functionality of un-
locking the Combination Lock. In the lock state (state “1”, where output of signal
open = 0), if the user enters the correct passcode (indicated by the input signal, equal)
and presses the Enter button (represented by the input signal, enter), the door opens

Reset

ST: 1
open = 0

enter. equalenter

ST: 2
open = 1

!enter + !equal

!enter

Figure 11.1: Moore FSM OpenLock

181

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

(state “2”, where open = 1). The door stays open until the user presses Enter again,
after which the system returns back to its locked state. Please see Section 13.2.1 to
gain an insight into the functional design of this FSM.

Our FSM-TDES translation method requires that the next state conditions of the
FSM must be specified either: 1) as boolean expressions, or 2) using one of our three
reserved keywords.

1) Boolean Expressions
Currently, Hamid’s (2014) TDES-FSM translation method, implemented in DESpot
(2023), generates the next state conditions as boolean expressions in the sum-of-
products (SOP) form (Brown and Vranesic, 2013). Therefore, we also require that
all boolean expressions must be expressed in our input FSM only as SOP. This is
not a hard requirement as any boolean function can be represented in both the
SOP and product-of-sums (POS) form. Also, we can convert a boolean expression
expressed in one form into the other, either manually, or using any automated
tool or website. In future, it would be beneficial to incorporate the support for
handling the next state conditions expressed as POS boolean expressions in our
translation method.

It is notable that a boolean expression may be specified either in a minimal or
non-minimal form. Presently, DESpot’s TDES-FSM translation method generates
boolean expressions only in a non-minimal form. However, the control designers
might find it convenient to write compact boolean expressions in a minimal form
while designing their individual FSM by hand. Keeping this in view, our FSM-
TDES translation method is capable of handling both minimal and non-minimal
boolean expressions. In the OpenLock FSM (Figure 11.1), that we have manu-
ally designed, we have specified all the next state conditions as minimal boolean
expressions in the SOP form.

While expressing next state conditions as boolean expressions, each FSM input
can take on the value of either: i) True (1), ii) False (0), or iii) Don’t Care (d).
In a boolean expression, if we want to specify the value of ‘1’ for an input, we
write the signal name in the uncomplemented form. For example, the next state
condition of “enter · equal” at state “1” of OpenLock means that this condition
will be True if both enter and equal are ‘1’. As per the SD supervisory control
theory, this means that both enter and equal have occurred in the clock period
that has just ended.

Writing an input name in the complemented form in a boolean expression
specifies the value of ‘0’ for the corresponding signal. For example, at state “1”
of OpenLock, the boolean expression of “!enter” means that this next state
condition will be True if enter signal has the value of ‘0’. In other words, if enter
did not occur in the previous clock period.

If any FSM input is not included in a boolean expression, this means we are
treating this signal as a Don’t Care (abbreviated as “DC,” from now on). For
example, the next state condition of “enter · equal” means that open signal has

182

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

been specified as a DC and has the value of ‘d’. Basically, “enter · equal” is the
minimal form of two non-minimal boolean expressions, “enter · equal · open” and
“enter · equal · !open”. At state “1” of OpenLock, this next state condition means
that FSM goes from state “1” to state “2” if both enter and equal are ‘1’. It does
not matter whether open is ‘0’ or ‘1’, i.e. we don’t care about the occurrence of
open, hence open is a ‘d’.

2) Reserved Keywords
In order to enable the designers to conveniently specify some generic next state
conditions in their individual FSM, we allow the use of the following three key-
words as shorthand notations. As we are introducing these keywords for our
FSM-TDES translation approach, we need to modify DESpot’s existing TDES-
FSM translation algorithms and add support for these keywords to make the two
translation approaches compatible with each other. Please refer to Section C.2 in
Appendix C to see our modified algorithms.
i) Tick: <TICK>
One of the possible next state conditions that needs to be specified at every state
of an FSM is that all FSM input signals have the value of ‘0’, i.e. none of the
FSM inputs occurred in the previous clock period. For example, if an FSM has
three inputs, open, enter and equal, the boolean expression to represent this next
state condition is “!open · !enter · !equal”. It is obvious that as the signals of an
FSM increase in number, this boolean expression becomes lengthier.

As this next state condition is generic for all individual FSM, i.e. ‘0’ for all FSM
inputs regardless of how many signals an FSM have, we introduce the keyword
of <TICK> to represent it. We are using TICK as our keyword because this
next state condition of the FSM corresponds to a concurrent string of the TDES
supervisor that does not contain any activity events, i.e. a concurrent string that
only contains a tick event.

ii) Global Don’t Care: <GDC>
While defining the next state conditions of an FSM, designers may wish to specify
an input combination at an FSM state where every signal of the FSM is a DC.
We refer to this next state condition as the “Global Don’t Care (GDC)” condition.
The reason is that the FSM does not care what the value of each signal is. Rather,
it always goes to the same next state, which could even be the current state of the
FSM, depending upon its design logic. This means that at a given FSM state, all
the specified input combinations have the very same destination state.

As discussed earlier, if we want to specify an FSM signal as a DC, we can simply
exclude this signal from our boolean expression to make it compact. However,
expressing GDC by following this strategy becomes complicated, as every signal of
the FSM is a DC. To handle this situation, we introduce the keyword of <GDC>.

It is noteworthy that GDC covers all possible next state conditions that could
be defined at an FSM state. This means that if we specify GDC at any given

183

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

state of the FSM, then it must be the only transition defined at this state and no
other next state conditions could be specified at this FSM state. Otherwise, our
FSM might become non-deterministic.

iii) Default: <DEF>
In the TDES-FSM translation approach, Wang (2009) introduces the shorthand
notation of a default transition, abbreviated as DEF. This is because the transi-
tion function of a TDES supervisor is a partial function, whereas the next state
function of a Moore FSM must be a total function. Wang added a selfloop of
DEF transition at every state of the translated FSM in order to cover the next
state conditions (input combinations) that are not explicitly specified in the TDES
supervisor. In other words, Wang used a selfloop of DEF in the translated FSM
to represent invalid transitions of the supervisor. By this, we mean transitions
that the supervisor asserts cannot occur.

At any given state of the FSM, DEF is equivalent to taking the logical OR
of all the next state conditions that are explicitly defined at this state, and then
negating the result. It is notable that at any FSM state, if the explicitly specified
next state conditions cover all possible input combinations, then DEF will be
empty at this state.

While implementing Wang’s TDES-FSM translation approach in DESpot (2023),
Hamid (2014) interpreted the DEF transition in a completely different and con-
tradictory way. In his translated FSM, Hamid uses DEF to represent all the input
combinations that do not cause a state change, i.e. DEF represents all the next
state conditions that are selflooped. Hamid did not take into account whether
these next state conditions were explicitly defined in the supervisor or not, and
treated both valid and invalid selflooped next state conditions in the same way.

In our FSM-TDES translation approach, we will use DEF transition with
its original and correct meaning, as defined by Wang (2009). Please refer to
Section C.2 to see our modified TDES-FSM translation algorithms of DESpot that
generate the output FSM XML file with correct meaning of the DEF transition.

It is worth clarifying that we discourage the use of DEF while manually design-
ing FSM because it is really easy to misinterpret and misuse the DEF transition
and introduce design errors. For instance, since DEF is always defined as a self-
loop, it looks very tempting just to define one DEF transition at every state of
the FSM to cover all the next state conditions that do not cause an explicit state
change (as Hamid (2014) did for his translated FSM). However, by doing so, de-
signers make the valid selflooped next state conditions of their FSM invalid by
merging them together and using DEF to represent all of them.

In this case, since the manually designed FSM does not specify the correct next
state conditions that designers actually wanted to specify, it is obvious that the
corresponding TDES supervisor generated by our FSM-TDES translation method
will be incorrect. Precisely, valid transitions will be missing from the translated
supervisor because valid selflooped next state conditions were merged with DEF

184

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

in the input FSM, and our translation method does not generate anything cor-
responding to DEF. Since the translated supervisor is logically incorrect, this in
turn makes it more likely that it will fail the desired TDES and ||SD properties
(Chapter 4).

The only situation when designers must write a DEF transition in the input
FSM is if no valid next state conditions exist at an FSM state. In this case, design-
ers must specify a selfloop of DEF transition in order to fulfill the requirement of
making the FSM’s next state function a total function.

11.1.2 Central FSM
Our FSM-TDES translation approach requires the designers to specify one central
FSM file corresponding to the control system whose one or more individual FSM
need to be translated into TDES supervisor(s). We use the same XML file format
for specifying our central FSM that Hamid (2014) has defined while implementing
his TDES-FSM translation method in DESpot (2023). As a result, the corresponding
DESpot algorithm to generate the central FSM XML file remains unmodified. Please
refer to Section C.1.2 in Appendix C to see a discussion on the central FSM XML file
of our Combination Lock example.

While implementing the TDES-FSM translation method in DESpot, Hamid allows
an event to belong to the project that may or may not belong to the event set of any
TDES supervisor. This event is not under the control of any supervisor and is assumed
to be always allowed by the supervisor model. Consequently, in the translated FSM,
its corresponding signal appears in the global list of signals in the central FSM, but
does not belong to any individual FSM. If this is an output signal, this means its
value will always be set to True (1).

For our FSM-TDES translation approach, this assumption does not cause any
issues with respect to input signals (uncontrollable events). However, it is not suitable
for our translation approach with respect to output signals (prohibitable events). The
reason being, this allowance might cause our translated supervisors to fail the desired
||SD properties, especially the property of plant completeness with ||SD (Definition 4.4.1)
and S-singular prohibitable behaviour with ||SD (Definition 4.4.2).

In order to make it more likely that our translated supervisors satisfy the desired
||SD properties, we require that every output signal included in the global list of
signals in the central FSM must belong to at least one individual FSM. Please refer
to Section C.2 to see how we incorporate this constraint in our DESpot’s TDES-FSM
translation algorithm.

11.2 FSM-TDES Translation Prerequisites
In this section, we list down some consistency and design requirements that must
be satisfied by the Moore FSM designers when specifying the central and individual

185

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

FSM for translation. Our FSM-TDES translation method (described in Section 11.3)
and its corresponding algorithms (presented in Chapter 12) are specifically designed
to be implemented in DESpot (2023). For this reason, we have also included some
consistency requirements with respect to the central FSM and the DESpot project.
This DESpot project is the one within which our FSM-TDES translation process
is being performed. We assume that the current DESpot project already contains
the TDES plant models of the physical system for which the controllers have been
designed as Moore FSM.

It is worth clarifying that although software designers can use our translation
method to automatically generate TDES supervisors from Moore FSM, the TDES
plant models for the given control system must be available to perform the desired
system verification checks, and might need to be designed manually. However, it
is generally believed that designing plant models is much more straightforward and
less challenging than designing supervisors. This is because the plant TDES simply
represents the existing uncontrolled system behaviour as it is. On the other hand,
in order to design the supervisor, control designers need to create the desired speci-
fications from scratch. Then, they need to model these specifications in such a way
that the resultant supervisor model should work correctly with the plant, and should
be able to control the physical system as expected while satisfying all the desired ||SD

properties.
Moreover, even if the plant models are designed manually, they need not be mod-

elled by the same designers who developed the Moore FSM. It is quite possible that
there is only one person in the design team who is proficient in formal methods, hence
they could model the plant TDES. The rest of the team members, who do not have
expertise in formal methods, could simply design the Moore FSM.

It is also possible that the plant models could potentially be developed by an
external formal methods expert, or might even be provided by the control system
manufacturer. In either case, we anticipate that our FSM-TDES translation ap-
proach should facilitate software designers, with limited or no knowledge of formal
methods, in the formal representation and verification of their control systems, just
by expressing their controllers in a way that they are familiar with, i.e. as Moore
FSM.

Please note that we are stating and checking only those requirements that are
vital to make our translation method work. Other DESpot specific checks, like using
only valid characters that DESpot allows to name the FSM, states and signals, or
following certain naming conventions, can easily be incorporated while implementing
our algorithms in DESpot (which is left as future work due to time constraints). For
this reason, our translation method and algorithms do not focus on these DESpot
specific implementation checks.

186

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

11.2.1 Consistency Requirements
One of the prerequisites for our FSM-TDES translation method is that the informa-
tion specified in the central FSM, all individual FSM and the current DESpot project
must be consistent. Specifically, we impose the following consistency checks on the
input FSM XML files and the current DESpot project. We are labelling these con-
sistency requirements as CR-1, CR-2, . . . , CR-8 and will use these labels to refer
to them in our later sections and chapters.

Central FSM and DESpot Project

CR-1: The name of the central FSM must be same as the name of the DESpot
project within which the FSM-TDES translation process is taking place. We impose
this check to make sure that the translation process is initiated within the correct
DESpot project.
CR-2: The number of global output signals listed in the central FSM must be equal
to the number of prohibitable events in the DESpot project. Also, the names of all
global output signals and prohibitable events must match.
CR-3: The number of global input signals listed in the central FSM must be equal
to the number of uncontrollable events in the DESpot project. Also, the names of all
global input signals and uncontrollable events must match.

Requirements CR-2 and CR-3 ensure that TDES plant models present in the
current DESpot project match with the input Moore FSM that the designers wish to
translate.
CR-4: Every global output signal listed in the central FSM must be present as an
input-output (IO) signal in at least one individual FSM specified in the central FSM,
and vice versa.
CR-5: In the central FSM, every input signal of an individual FSM must belong to
the list of global input signals.

Requirements CR-4 and CR-5 are required by our translation method. They
will be helpful in generating the TDES supervisors that, when synchronized with the
TDES plant models, are more likely to satisfy the desired ||SD properties.

Central FSM and Individual FSM

CR-6: The number of Moore FSM listed in the central FSM must be equal to the
number of FSM specified individually. Also, the FSM names specified in the central
and individual FSM XML files must match.
CR-7: For every Moore FSM, the list of local IO signals specified in the central and
individual FSM must be the same.

187

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

CR-8: For every Moore FSM, the list of local input signals specified in the central
and individual FSM must be the same.

11.2.2 Design Requirements
Every individual FSM, that the designers wish to translate to a supervisor, must
satisfy the following design requirements. We will use the labels of these design
requirements (DR-1, DR-2, . . . , DR-13) to refer to them in our discussion later
on.
DR-1: Every individual FSM must have a unique name.

As we will use the FSM name as the name of the translated supervisor, it is ad-
visable to use only those characters and letters in the FSM name that are allowed in
the supervisor’s name by DESpot. Otherwise, DESpot will reject the translated su-
pervisor. Please refer to the help documentation of DESpot (2023) for further details
on valid/invalid characters and letters. Also, our reserved keywords (introduced in
Section 11.1.1), and special characters and delimiters used in XML input files (e.g.
‘ · ’, ‘!’, ‘=’, ‘<’, ‘>’, etc.) must not be used in the FSM name.

Please note that this requirement also applies to the names of the FSM states, as
they will be used as the state names in the translated supervisor.
DR-2: The name of every IO and input signal must be unique.
DR-3: For every individual FSM, the list of states must not be empty. Also, at every
state of the FSM, its corresponding output information (represented as outputvector
in the XML file (Section C.1.1)) must be specified.
DR-4: At every state of the FSM, the signals included in the output information
must be listed as IO signals in the individual FSM’s list of signals.
DR-5: At every state of the FSM, at least one transition must be defined to specify
the next state logic (NSL). If no valid next state conditions exist at a state, a DEF
transition must be specified to make the FSM’s next state function a total function.
DR-6: At every state of the FSM, all possible next state conditions must be specified
to make the FSM’s next state function a total function. If all next state conditions
are not covered by the explicitly specified transitions, then a DEF transition must
be included to satisfy this requirement.
DR-7: The DEF transition must always be defined as a selfloop transition.
DR-8: Every transition must specify valid next state condition(s), either as a boolean
expression or using one of our reserved keywords. The transition’s next state condi-
tions (represented by inputvector in the XML file (Section C.1.1)) must not be left
empty.
DR-9: For next state conditions that are expressed as boolean expressions, the sig-
nals included in every boolean expression must be listed in the FSM’s list of signals.

188

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

DR-10: At any given state of the FSM, if GDC transition is specified, then it must
be the only transition specified at this state. No other valid next state conditions
could be specified at this state.
DR-11: At any given state of the FSM, if the output of an IO signal is set to True
(1), then this signal must show up, either as occurring (1) or as a DC (d), in at least
one of the “valid” next state conditions represented by the transitions specified at
this state. However, if an IO signal is not occurring (0) in any valid transition, then
the output of this signal must be set to False (0) at this state.
DR-12: The end state of every specified transition must be listed in the FSM’s list
of states.
DR-13: At every state of the FSM, all the specified NSL must be deterministic, i.e.
there must be only one destination state for any given next state condition.

11.3 FSM-TDES Translation Method
Now we are ready to present our FSM-TDES translation method in detail. In order to
perform the translation, we assume that the user initiates the FSM-TDES translation
process in DESpot (2023) by providing one central FSM and one or more individual
Moore FSM XML files as an input with respect to the current DESpot project.
Of these files, we use only the individual Moore FSM files to perform the actual
translation process, and generate one TDES supervisor corresponding to each Moore
FSM. However, both central and individual FSM XML files are used to verify the
desired consistency and design requirements.

Our translation method begins by examining the central FSM file, individual FSM
files and the DESpot project for verifying requirements CR-1−8 and DR-1−2, listed
in Section 11.2. If any of these requirements is not satisfied, our translation process
terminates immediately by generating an appropriate error message for the user.

Otherwise, our translation method proceeds to analyze the individual Moore FSM
files in more detail. Specifically, we perform the remaining design checks, DR-3−12,
on each FSM file. Again, the translation process terminates if any of these checks
fails. However, if all of these checks pass, then we process each FSM’s information to
convert it into a form that we can directly use to perform the actual translation.

Once an individual Moore FSM has been successfully processed, we perform the
actual translation process and convert this FSM to its corresponding TDES supervisor
representation. We do this by creating and populating the supervisor’s quintuple,
Si = (Xi,Σi, ξi, xo,i, Xm,i), where 0 ≤ i < n, and n is the total number of individual
Moore FSM that are provided as input for the translation. Here, Xi is the state set,
Σi is the event set, ξi : Xi × Σi → Xi is the partial transition function, xo,i is the
initial state, and Xm,i is the set of marked states for the ith TDES supervisor that is
translated from the ith Moore FSM.

It is notable that DESpot requires every supervisor to have a unique name within

189

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

the project. Therefore, our translation method uses the name of each individual FSM
as the name of the corresponding translated supervisor.

After generating all supervisors, we assume that these translated supervisor mod-
els get added to the current DESpot project. This will enable the designers to synchro-
nize these translated supervisors with the TDES plant models using our ||SD operator.
The designers can then verify the desired properties of their closed-loop system by
running the ||SD algorithms (discussed in Chapter 9).

We would like to mention here that one of our major goals while devising our
FSM-TDES translation approach is that our translation method should generate su-
pervisors that are more likely to satisfy the required ||SD properties. This point should
become more clear as we will introduce our translation rules and unfold our transla-
tion method step by step in the following sections.

Below, we describe the FSM-TDES translation method by explaining how our
translation method uses the information specified in the XML file of the individual
Moore FSM to populate each element of the supervisor’s quintuple. We will use the
OpenLock FSM (Figure 11.1, XML Input File C.1 from Appendix C) of the 4-bit
Combination Lock as an example. For simplicity, we assume that OpenLock is the
first FSM of the system that is being translated, i.e. i = 1, and our translation
method populates the quintuple of S1 = (X1,Σ1, ξ1, xo,1, Xm,1) for the OpenLock
TDES supervisor.

Please recall from Chapter 3 that in the SD supervisory control theory (Wang,
2009; Leduc et al., 2014), a Moore synchronous FSM is used to model an SD controller.
Therefore, we will use several concepts related to SD controllers while describing our
translation method. Please refer to Chapter 3 to refresh your memory about these
concepts.

11.3.1 Create State Set
In order to create a state set for each translated supervisor, we start by analyzing the
behaviour of an SD controller. In the SD supervisory control theory, an SD controller
changes state only on the clock edge, which is equivalent to the occurrence of a tick
event in the TDES theory. This essentially means that the states of a Moore FSM
correspond to the sampled states of a TDES supervisor.

Keeping this in view, our translation method adds the states of each FSM to the
state set of its corresponding translated supervisor. For example, the OpenLock
Moore FSM (Figure 11.1) has two states, “1” and “2”. Thus, our translation method
adds both of these states to the state set of the translated supervisor OpenLock, i.e.
Xsamp,1 = {1, 2} ⊆ X1.

Next, we note that unlike an SD controller, a supervisor knows immediately when
an event occurs, and then it updates its enablement and forcing information right
away, potentially by changing its state. This indicates that, in most of the cases, a
supervisor will probably have more states than its corresponding FSM representation.

190

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

This implies that in addition to sampled states, our translation method also needs
to add one or more non-sampled or intermediate states to the translated supervisor.
These intermediate states are needed to represent the transitions of individual events
(tick and activity events) that make up the concurrent strings which are defined at
each sampled state.

In our translation method, we add intermediate states to the translated supervisor
related to each state of the FSM. The number of intermediate states that we add
depends upon the output information and “valid” next state conditions that are
defined at each FSM state. Precisely, for a given FSM state q (that does not have
a GDC transition), we can use the formula given below to calculate the number of
intermediate states that our translation method adds to the translated supervisor.
The reason our formula has 2n − 1 and not 2n − 2 (i.e. subtracting for the start and
end states that are sampled states) is to account for the tick transition to terminate
the concurrent string.

Number of intermediate states = 2n − 1,
where n = number of IO signals whose outputs are set to True (1) at state q +
number of unique input signals that show up either as ‘1’ or ‘d’ in at least one
of the valid next state conditions specified at q.

However, if a GDC transition is specified at q, then we can use the following
formula to calculate the number of intermediate states that our translation method
adds to the state set of the translated supervisor:

Number of intermediate states for <GDC> = 2n − 1,
where n = number of IO signals whose outputs are set to True (1) at state q.

In the case of a GDC transition, we are not considering the input signals of the
FSM. The reason being, by our GDC definition (Section 11.1.1), all input signals
have the value of ‘d’ in the GDC next state condition. We will further elaborate this
point in Section 11.3.5 while discussing the construction of transition function for the
translated supervisor.

Please note that in the above-mentioned formulas, we are considering the IO
and input signals that belong to the individual Moore FSM that we are currently
translating, rather than the global list of output and input signals.

The OpenLock FSM, shown in Figure 11.1, has three signals: one IO signal
(open) and two input signals (enter and equal). At state “1” of the FSM, the output
of open is set to False (0). For the input signals, we note that both of these signals
appear in the uncomplemented form in the boolean expression “enter · equal”, i.e.
they both have the value of ‘1’ in this next state condition. This means the number of
intermediate states that our translation method will add to the translated supervisor
corresponding to state “1” of the FSM is:

20+2 − 1 = 22 − 1 = 4− 1 = 3

191

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

!equal

!enter

tick

!equal

!enter

tick

!equal

!enter

tick

!enter
!equal

tick
open

!equal

!enter

tick
!equal

!enter

tick

!equal

!enter

tick

open

!equal

!enter

tick

open

!equal

!enter

tick

!equal

!enter

tick

!enter
!equal

tick

open

!enter
!equal

1

x1

x3

x2 2 x5

x4 x6

x7

x10
x9

x8

Figure 11.2: Translated TDES Supervisor OpenLock

Likewise, we can calculate the number of intermediate states that will be added to
the state set of the translated supervisor corresponding to state “2” of OpenLock.
At state “2”, the output of IO signal open is set to True (1). In the “enter” next
state condition specified at state “2”, enter has the value of ‘1’, whereas equal is a ‘d’.
Thus, the number of intermediate states is:

21+2 − 1 = 23 − 1 = 8− 1 = 7
This means that our translation method adds 3+7 = 10 intermediate states to the

translated supervisor related to the two states of the OpenLock FSM. Please recall
that we also have two sampled states in the event set of the translated supervisor.
Hence, in total, our translation method creates a state set of 10 + 2 = 12 states for
the translated supervisor OpenLock.

Figure 11.2 shows the complete TDES supervisor OpenLock that we have gen-
erated corresponding to the OpenLock FSM by applying our complete FSM-TDES
translation method. We will only focus on the states of this translated supervisor
for now. Please recall from Section 2.3 that in the graphical TDES models, an event
name given in italics and preceded by “!” indicates an uncontrollable event, a double
circle represents the initial state, and a filled circle shows that the state is marked.

192

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Also, please note that “!” symbol used in a TDES model has a different meaning
than “!” of an FSM, where it represents a NOT operator in the latter.

The translated supervisor has two sampled states (“1” and “2”) that correspond
to the two states of the OpenLock FSM. The concurrent strings defined at sampled
state “1” use three intermediate states (x1-x3) to represent transitions of the indi-
vidual events. Similarly, the concurrent strings defined at sampled state “2” make
use of seven intermediate states (x4-x10) to define the individual event transitions.
Overall, the state set of the translated supervisor that our translation method has
created is X1 = {1, 2, x1, x2, . . . , x10}. For simplicity, we are ignoring the issue that
state labels x1, x2, . . . , x10 might have already existed in the input FSM. In such a
situation, we would have to modify the names of intermediate states to make them
unique.

It is worth noting that for the sampled states of the translated supervisor Open-
Lock, we have used the same name as the FSM state names. For naming the in-
termediate states, we use characters and letters that are allowed by DESpot as part
of the state name. Please refer to Algorithm 12.8, discussed in Section 12.2.3, to
see how our translation method names the non-sampled states that get added to the
translated supervisor.

11.3.2 Populate Event Set
Our translation method uses the list of signals specified in each individual FSM to
create and populate the event set of the corresponding translated supervisor. Pre-
cisely, the IO signals of the FSM become the prohibitable events of the supervisor,
whereas input signals become the uncontrollable events.

Besides, we also add a tick event to the event set of each translated supervisor.
This is because the clock edge, that an SD controller uses for sampling its inputs,
changing its state, and updating its outputs, is associated with the occurrence of a
tick event in the SD theory.

The OpenLock FSM (Figure 11.1) has one IO signal (open) and two input signals
(enter, equal). This means the event set of the translated supervisor OpenLock
(Figure 11.2) is Σ1 = {open, enter, equal, tick}, where Σhib,1 = {open} and Σu,1 =
{enter, equal}.

11.3.3 Assign Initial State
In our translation method, the reset/initial state of each individual FSM becomes the
initial state of the corresponding supervisor. The reset state of the OpenLock FSM
(Figure 11.1) is state “1”. This implies the initial state of the translated supervisor
OpenLock (Figure 11.2) is xo,1 = 1.

193

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Figure 11.3: Dialog Box for Taking Input About Set of Marked States

11.3.4 Generate Set of Marked States
It is interesting to note that, unlike TDES theory, there is no concept of marked
behaviour (Definition 2.2.7) in the SD controllers and Moore FSM. However, in order
to make it possible to satisfy the property of nonblocking (Definition 2.2.8), one or
more states of each translated supervisor must be marked.

In order to do that, when designers initiate the FSM-TDES translation process
in DESpot (2023), we ask them to provide this marking information separately. We
assume that while reading each input Moore FSM XML file, DESpot displays a dialog
box to the designers asking them to specify the set of states they want to mark in
each translated supervisor.

The dialog box for taking the marking information for OpenLock FSM is shown
in Figure 11.3. The dialog box gives two options to the designers to choose from:
1) mark the initial state, or 2) mark all sampled states. We intend to take this
marking information corresponding to each Moore FSM. This will enable the designers
to select different options for each translated supervisor. This information should
then be stored in the appropriate data structures that are populated by DESpot after
reading each input Moore FSM XML file (see Section 12.2 for details).

Please note that we are providing only two marking options to the designers to keep
things simple. Once the translation process is complete, the designers always have
the option of opening the translated supervisors in the DESpot editor and customize
marking information (mark/unmark any state) as they want.

It is worth clarifying that, hypothetically, we could have provided a third option
of “mark all states” to the designers. However, we excluded this option intentionally
because we strive to develop a translation method that should be able to generate
supervisors with increased likelihood of satisfying the desired ||SD properties. This
is to satisfy Point iii of the SD controllability with ||SD definition (Definition 4.5.1)
which requires that all marked strings in the closed-loop system must be sampled
strings. Otherwise, our supervisor will not be SD controllable with ||SD. This implies
that only sampled states should be marked at a minimum.

194

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

For the OpenLock FSM, let us assume that designers choose to mark only the
initial state. Therefore, the set of marked states of the OpenLock supervisor (Fig-
ure 11.2) generated by our translation method is Xm,1 = {1}.

11.3.5 Construct Transition Function
In order to construct a transition function for each translated supervisor, our trans-
lation method uses the NSL (next state conditions and end states) that are specified
at each state of the input FSM. Specifically, we make use of the next state conditions
to generate occurrence images of the concurrent strings that need to be defined at the
sampled states of the translated supervisor. Then, we use these occurrence images to
define transitions for individual events at the sampled and non-sampled states of the
supervisor.

We have designed our translation method in such a way that it first generates
a supervisor only with respect to explicit state changing transitions. Once we have
defined all the state changing transitions and added them to the transition function,
then we add selfloops of uncontrollable events and/or tick event at the appropriate
states of the translated supervisor.

By using OpenLock FSM (Figure 11.1) as an example, below we describe six steps
for generating occurrence images from the given next state conditions and construct-
ing the translated supervisor’s transition function. While explaining these steps, we
will also discuss how our FSM-TDES translation rules construct supervisors in such
a way that increase the probability of the generated supervisor models to satisfy the
desired ||SD properties.

Step 1: Generate Hybrid Next State Logic

In order to generate occurrence images from the next state conditions, we start by
generating hybrid next state logic at each state of a given Moore FSM. We do this
by converting each next state condition into a hybrid vector. A hybrid vector h is
similar to a boolean vector (defined in Section 3.6), except that in addition to the
boolean values of ‘0’ (False) and ‘1’ (True), it can also store the value of ‘d ’ which
is a shorthand notation for a “Don’t Care” condition.

Let H be the set of possible hybrid vectors that the inputs of the FSM can take
on. For an individual FSM, each hybrid vector h ∈ H is of size s, i.e. each hybrid
vector has s elements, where s is the number of IO and input signals of the FSM.
Every element of h corresponds to a unique FSM signal such that:

h = [h[0], h[1], . . . , h[s− 1]], h[j] ∈ {0, 1, d}, where j = 0, 1, . . . , s− 1
For example, the OpenLock FSM (Figure 11.1) has three signals, open, enter

and equal. Therefore, the hybrid vectors that we generate corresponding to the next
state conditions of OpenLock has three elements, i.e. s = 3. For simplicity, we
use the order of the FSM signal specified in the Moore FSM XML file as the index

195

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Table 11.1: Hybrid Next State Logic for OpenLock Moore FSM

Row No. Start State Hybrid Vectors End Stateopen enter equal
R-1 1 d 1 1 2
R-2 1 d 0 d 1
R-3 1 d d 0 1
R-4 2 d 1 d 1
R-5 2 d 0 d 2

of each FSM signal in the hybrid vector. This implies that in the hybrid vectors of
OpenLock (XML Input File C.1 in Appendix C), the IO signal open is at index 0,
and input signals enter and equal are at indexes 1 and 2 respectively.

As stated in Section 11.1.1, the next state conditions of a Moore FSM can be
specified either using boolean expressions or one of our three reserved keywords. Now
we will describe how our translation method generates hybrid vectors corresponding
to each of these four next state conditions.
1) Boolean Expressions

Our translation method generates one hybrid vector corresponding to each boolean
expression that represents the next state condition(s) at a given state of the FSM.
We use the interpretation of boolean expressions, given in Section 11.1.1, to assign
values to each individual element of the hybrid vectors.

In a given boolean expression, if the name of an FSM signal appears in the
uncomplemented form, we assign the value of ‘1’ to that signal in the hybrid vector.
However, if a signal appears in the complemented form, then hybrid vector stores
the value of ‘0’ at the corresponding index. If a signal name does not appear in
the boolean expression, this means the signal has been treated as a DC. In this
case, we add ‘d’ to the appropriate element of the hybrid vector.

Table 11.1 shows the hybrid NSL that our translation method generates corre-
sponding to the OpenLock FSM (Figure 11.1). At state “1” of OpenLock, the
next state conditions are specified using three boolean expressions. That is why
we have three hybrid vectors that have state “1” as the start state in the table.

In Table 11.1, the row R-1 represents the hybrid NSL that we have generated
corresponding to the first boolean expression “enter · equal”. Since both enter
and equal appear in the boolean expression in the uncomplemented form, we have
stored the value of ‘1’ for these two signals in the generated hybrid vector. The IO
signal open has the value of ‘d’, since it is not present in this boolean expression.

The row R-2 represents the hybrid NSL corresponding to the second boolean
expression, “!enter”. Since enter shows up in the complemented form, that is
why we have assigned the value of ‘0’ to the enter signal in the hybrid vector.
The other two signals, open and equal, are DC (‘d’). The same logic applies to
the third boolean expression, “!equal”, specified at state “1” of OpenLock. Its
corresponding hybrid NSL is shown in the row R-3 of Table 11.1.

196

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

After generating hybrid NSL corresponding to state “1”, our translation method
moves on to state “2” of the OpenLock FSM. Using the same logic discussed
above, we generate hybrid vectors for the boolean expressions that are specified
at state “2”. These hybrid NSL are given in rows R-4 and R-5 of Table 11.1.

2) <TICK>
By the definition of TICK (Section 11.1.1), it is the shorthand notation for a
boolean expression in which every IO and input signal of an FSM appears in the
complemented form. Therefore, the hybrid vector that our translation method
generates corresponding to the TICK next state condition will have the value of
‘0’ for all FSM signals.

3) <GDC>
As GDC must be the only valid transition specified at an FSM state, we generate
one hybrid vector corresponding to GDC. By definition, the GDC transition
represents a next state condition when every signal at the given state of an FSM
is a DC. We treat the IO signals of the GDC transition in a standard way, and
assign the value of ‘d’ to each element of the hybrid vector that corresponds to an
IO signal.

However, we plan to handle the input signals of GDC in a slightly different way
while generating transitions of the translated supervisor. This is because we wish
to translate the GDC transition of the FSM into corresponding TDES transitions
in an efficient way, and have a compact TDES representation for the FSM’s GDC
transition. Specifically, instead of generating the state changing transitions, we
want our translation method to add only selfloop transitions to the supervisor
corresponding to the input signals of GDC. This point will become more clear
at Step 6.

In order to do that, instead of assigning the value of ‘d’, we assign the value
of ‘0’ to each element of the hybrid vector that corresponds to the input signal of
the FSM. Also, we associate a flag with each state of the FSM and set this flag
to True where a GDC transition is defined. At Step 6, we will use this flag to
identify the presence of a GDC transition at the FSM state(s). We will then use
a different translation strategy to add TDES transitions corresponding to these
input signals of the GDC than for the input signals of the rest of the next state
conditions.

4) <DEF>
The DEF transition is a shorthand notation to cover all invalid next state condi-
tions that cannot occur at a given state in the physical system. Since the transition
function of a TDES supervisor is a partial function, we do not need to generate
any transitions in the translated supervisor corresponding to the invalid next state
conditions of the FSM (see Section 11.1.1 for the related discussion). Therefore,
our translation method simply ignores the DEF transition, and does not generate
any hybrid vector corresponding to DEF.

197

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Table 11.2: Boolean Next State Logic for OpenLock Moore FSM

Row No. Start State Boolean Vectors End Stateopen enter equal
R-1.1 1 0 1 1 2
R-1.2 1 1 1 1 2
R-2.1 1 0 0 0 1
R-2.2 1 0 0 1 1
R-2.3 1 1 0 0 1
R-2.4 1 1 0 1 1
R-3.1 1 0 0 0 1
R-3.2 1 0 1 0 1
R-3.3 1 1 0 0 1
R-3.4 1 1 1 0 1
R-4.1 2 0 1 0 1
R-4.2 2 0 1 1 1
R-4.3 2 1 1 0 1
R-4.4 2 1 1 1 1
R-5.1 2 0 0 0 2
R-5.2 2 0 0 1 2
R-5.3 2 1 0 0 2
R-5.4 2 1 0 1 2

Step 2: Generate Boolean Next State Logic

The next step of our translation method is to convert the hybrid NSL into boolean
NSL. In other words, we translate each hybrid vector into its equivalent boolean vector
representation. Please recall that in Wang’s (2009) boolean vectors (see Section 3.6),
every individual element can be assigned the value of either ‘0’ (False) or ‘1’ (True).
This implies that we need to process the DC value that is represented by ‘d’ in our
hybrid vectors, and express it in terms of ‘0’ and ‘1’ only.

To do this, we split each hybrid vector with a ‘d’ into two or more boolean vectors.
The number of boolean vectors that we generate corresponding to each hybrid vector
depends upon the number of ‘d’ values that we have in one hybrid vector. Precisely, if
a hybrid vector has n elements that have the value of ‘d’, then our translation method
generates 2n boolean vectors corresponding to this hybrid vector.

For the OpenLock FSM (Figure 11.1), Table 11.2 shows the boolean NSL that are
generated by our translation method. For the hybrid NSL given in R-1 of Table 11.1,
we generate two boolean NSL, as shown in rows R-1.1 and R-1.2 of Table 11.2. This
is because there is only one element, open, that has the value of ‘d’ in the hybrid
vector, hence 21 = 2 boolean vectors.

In the generated boolean vectors, open takes on the value of ‘0’ in one boolean
vector (R-1.1), and ‘1’ in the other boolean vector (R-1.2). The values for the other

198

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

two signals, enter and equal, as well as the end state remain unchanged in the two
boolean NSL.

The hybrid NSL shown in R-2 of Table 11.1 has the value of ‘d’ for two elements.
Its corresponding 22 = 4 boolean NSL are given in rows R-2.1−R-2.4 of Table 11.2.
For the two ‘d’ elements of open and equal in the hybrid vector, we generate all
possible boolean combinations of 00 (R-2.1), 01 (R-2.2), 10 (R-2.3) and 11 (R-2.4)
in the boolean vectors. The value of enter remains unmodified. Other hybrid NSL of
Table 11.1 are converted into boolean NSL by applying the same technique, as shown
in Table 11.2.

Step 3: Identify Nondeterministic Next State Logic

At this point, we note that the process of converting hybrid NSL into boolean NSL
might result in the generation of duplicate boolean vectors that have the same start
state. This is evident in Table 11.2, as rows R-2.1 and R-3.1 represent the same
boolean vector of 000 at state “1” of the OpenLock FSM. Likewise, R-2.3 and
R-3.3 specify the identical boolean vector of 100 at state “1”.

The reason for getting these duplicate boolean vectors is that starting at state
“1” of OpenLock, the next state conditions of “!enter” and “!equal” represented
by the hybrid vectors of rows R-2 and R-3 respectively in Table 11.1 are overlap-
ping, i.e. at state “1”, both of these hybrid vectors cover the next sate conditions
of “!open · !enter · !equal” (000) and “open · !enter · !equal” (100). However, this over-
lapping of the next state conditions is not really obvious in the hybrid NSL, and
becomes crystal clear in the boolean NSL. This kind of overlapping is quite common
when designers prefer to write boolean expressions in a simplified form.

Taking this into consideration, after generating the boolean NSL, our translation
method looks for duplicate boolean vectors that have the same start state. If we are
able to find such boolean vectors, then we need to examine their end states. This
is because if two or more identical boolean vectors starting at the same state have
different end states, this implies that designers have specified nondeterministic NSL in
the input FSM. As our translation method only focuses on deterministic Moore FSM
(DR-13), this will be considered as a discrepancy and our translation method will
terminate immediately by generating an appropriate error message for the designers.

On the other hand, if two or more identical boolean vectors have the same start
states as well as the same end states, this means that we have multiple instances of
this NSL in the input FSM. In this case, our translation method retains only one
instance of this boolean NSL, and removes all the duplicate instances. We are able
to do this because there is no need to process the same NSL multiple times while
generating transitions of the translated supervisor.

By looking at Table 11.2, we note that the boolean NSL specified at R-2.1 and
R-3.1 are identical, i.e. not only their start states and boolean vectors, but their end
states are also same. Therefore, our translation method removes the second instance

199

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Table 11.3: Unique Boolean Next State Logic for OpenLock Moore FSM

Row No. Start State Boolean Vectors End Stateopen enter equal
R-1.1 1 0 1 1 2
R-1.2 1 1 1 1 2
R-2.1 1 0 0 0 1
R-2.2 1 0 0 1 1
R-2.3 1 1 0 0 1
R-2.4 1 1 0 1 1
R-3.2 1 0 1 0 1
R-3.4 1 1 1 0 1
R-4.1 2 0 1 0 1
R-4.2 2 0 1 1 1
R-4.3 2 1 1 0 1
R-4.4 2 1 1 1 1
R-5.1 2 0 0 0 2
R-5.2 2 0 0 1 2
R-5.3 2 1 0 0 2
R-5.4 2 1 0 1 2

of this boolean NSL by eliminating the row R-3.1. Similarly, since the boolean NSL
represented by R-2.3 and R-3.3 are also identical, we delete R-3.3 from the set
of boolean NSL for the OpenLock FSM. Table 11.3 shows the boolean NSL after
removing duplicate instances.

Step 4: Remove Invalid Next State Logic

While designing the individual Moore FSM to provide as an input to our translation
method, designers need to specify the output information and NSL at every state of
the FSM. Here, it is worth remembering that an IO signal occurs in a composite SD
controller only when its global output is set to True (1). The global output for an IO
signal is determined by ANDing the local outputs of all the individual SD controllers
that have this signal in their list of signals. This implies that the global output of
an IO signal can never be ‘1’ at a state if an individual SD controller sets its local
output for this IO signal to ‘0’ (False).

Since the output information of an SD controller remains constant for the entire
clock period, this implies that an IO signal with global output of ‘0’ cannot occur
until the next clock edge. This in turn means that all the next state conditions that
have the value of ‘1’ for this IO signal become invalid, as they cannot occur at the
current state of the FSM.

Since the transition function of the TDES supervisor is a partial function, it seems
logical and reasonable that our translation method does not generate any concurrent
string transitions at the given sampled state in the supervisor corresponding to these

200

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Table 11.4: Valid Boolean Next State Logic for OpenLock Moore FSM

Row No. Start State Boolean Vectors End Stateopen enter equal
R-1.1 1 0 1 1 2
R-2.1 1 0 0 0 1
R-2.2 1 0 0 1 1
R-3.2 1 0 1 0 1
R-4.1 2 0 1 0 1
R-4.2 2 0 1 1 1
R-4.3 2 1 1 0 1
R-4.4 2 1 1 1 1
R-5.1 2 0 0 0 2
R-5.2 2 0 0 1 2
R-5.3 2 1 0 0 2
R-5.4 2 1 0 1 2

invalid next state conditions of the FSM. Therefore, we can simply remove these
invalid next state conditions from the set of boolean NSL, as we do not need to
process them any further.

The OpenLock FSM (Figure 11.1) sets the local output of the IO signal open to
‘0’ at state “1”. Since the global output of open cannot be ‘1’ in the composite SD
controller at this point, all the next state conditions specified in OpenLock at this
state that have open as ‘1’ become invalid. We can simply remove these invalid NSL
from OpenLock, as there is no way they could occur in the physical system.

By looking at the boolean NSL of Table 11.3, we note that four invalid next state
conditions are represented by boolean vectors of rows R-1.2, R-2.3, R-2.4 and R-3.4,
as they contain a ‘1’ for open. After removing these four invalid boolean vectors, the
remaining boolean NSL are shown in Table 11.4. In the next step, our translation
method will use these boolean NSL to generate the concurrent string transitions at
sampled state “1” of the translated supervisor.

It is worth clarifying that we have not eliminated any boolean NSL that are
specified at state “2” of OpenLock. Since the output of the open signal is set to ‘1’
at state “2”, the boolean vectors that have open as ‘1’ seem to represent valid next
state conditions. Also, we cannot remove the boolean vectors that have open as ‘0’.
This is because OpenLock does not have any information about the behaviour of
other individual FSM. Hence, it is possible that the output of open might be set to
‘0’ by some other FSM. If this happens, the global output of open will be set to ‘0’,
and then the next state conditions that will be valid in the physical system would be
those that have open as ‘0’. In this case, if we eliminate the next state conditions with
open as ‘0’ from OpenLock and another FSM set the output of open to ‘0’, there
will be no valid next state conditions possible at the current state and our system
will block.

201

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Step 5: Generate State Changing TDES Transitions

Now we are ready to construct the transition function of the TDES supervisor by
utilizing the valid NSL of the Moore FSM. Our translation method processes one
state of the FSM at a time. Then, it uses the boolean vectors that start at this FSM
state one by one to define all the concurrent string transitions at the corresponding
sampled state in the supervisor.

General Concepts
Essentially, our translation method treats the boolean vectors of the NSL as occur-
rence images of the concurrent strings that need to be defined at the corresponding
sampled states of the supervisor. The FSM signals that appear as ‘1’ in a boolean
vector correspond to activity events that make up the concurrent string. Please recall
that a concurrent string always ends with a tick. Therefore, we will always include a
tick event in the occurrence image of any given concurrent string.

Our translation method adds a state changing transition (as opposed to a selfloop
transition) to the supervisor for each individual event of the concurrent string that
we need to define in our translated supervisor. The only exception to this is a tick
only concurrent string (i.e. occurrence image = {tick}), that has the same start and
end state. For example, the boolean NSL specified at R-2.1 and R-5.1 of Table 11.4
have all FSM signals as ‘0’, and have the same start and end states. In this case,
our translation method adds a selfloop of tick event instead of specifying it as a state
changing transition.

For each boolean vector, our translation method defines “n!” (i.e. n × (n − 1) ×
. . .×1) concurrent strings with the same occurrence image at the source sampled state
of the supervisor. Here, n is the number of FSM signals that appear as ‘1’ in the
boolean vector (number of activity events that make up the concurrent string), and ‘!’
represents the factorial operation. In simple words, we generate all possible sequences
of activity events that are present in the occurrence image of a given concurrent string.

By generating all possible sequences of activity events, we essentially try to make
sure that Point ii.1 of the SD controllability with ||SD property (Definition 4.5.1) is sat-
isfied by our translated supervisors. Specifically, we ensure that when a prohibitable
event is possible in a clock period, it must be possible immediately after the tick and
stay possible for the clock period until it occurs. Also, it guarantees that an event
possible in a given clock period should be able to interleave with the other events
occurring in the same sampling period. This is important as we do not know which
concurrent string will actually be possible in the plant TDES that designers intend
to use for ||SD verification.

Applying to OpenLock FSM
For the OpenLock FSM (Figure 11.1), let us consider that our translation method
starts by taking state “1” of the FSM. It will then generate concurrent string transi-
tions at sampled state “1” of the supervisor corresponding to the four valid boolean

202

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

!equal

!enter!equal

!enter

1

x1

x3

x2 2

Figure 11.4: TDES Supervisor OpenLock After Translating Boolean NSL of R-1.1

NSL that start at the FSM state “1” in Table 11.4.
The boolean vector specified in row R-1.1 of Table 11.4 has the value of ‘1’ for

two FSM signals, enter and equal. This means our translation method will generate
2! = 2 concurrent strings with the occurrence image of {enter, equal, tick} at sampled
state “1” of the supervisor. Specifically, we generate the concurrent strings of “enter-
equal-tick” and “equal-enter-tick” that take the translated supervisor from sampled
state “1” to sampled state “2”, as shown in Figure 11.4. In this way, we generate
all possible strings containing enter and equal exactly once, but in any order, ending
with a tick event.

It is worth-mentioning that our translation method always generates a determin-
istic TDES supervisor (Definition 2.2.5). We guarantee this by making sure that any
event, that we want to define at a given state of the supervisor, is not already defined
at this state. Specifically, if an event’s transition already exists at the given state, then
our translation method will simply reuse the already defined transition to keep our
TDES deterministic. Otherwise, we define a new transition for this event at the given
state and add this newly defined transition to the transition function. Please refer to
Algorithm 12.8 (discussed in Section 12.2.3) to see how we have concretely realized
this strategy and other translation rules of our FSM-TDES translation method.

Processing State “1”
Now we will discuss how our translation method constructs the portion of the trans-
lated supervisor, shown in Figure 11.4, corresponding to the boolean NSL of R-1.1 of
Table 11.4. At sampled state “1” of the supervisor, the first concurrent string that we
want to define is “enter-equal-tick”. Since we have just started the translation process
and no event is already defined at state “1”, we define a new enter transition at state
“1” that takes us to a new non-sampled state, say x1. As this is a new transition
that we have defined at state “1” of the supervisor, our translation method adds this
transition (1, enter, x1) to the transition function ξ1.

After enter, the next activity event that we need to define as part of the current
concurrent string is equal. We will define equal at state x1. As equal transition does
not already exist at x1, our translation method adds a new equal transition that takes
the translated supervisor to a new non-sampled state, say x2. We also add this new
transition (x1, equal, x2) to ξ1.

After defining all the activity event transitions, now our translation method should

203

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

add a tick transition at the end to complete the definition of this concurrent string.
Since tick is the last event of this concurrent string, it should take us to the destination
sampled state “2”, specified as the end state in the boolean NSL, R-1.1. Therefore,
we define a tick transition at state x2, and add (x2, tick, 2) to ξ1. In this way, our
translation method completes the definition of the first concurrent string “enter-equal-
tick” at sampled state “1” of the supervisor, and also updates the transition function
ξ1 with respect to this concurrent string.

The second concurrent string that we need to define at sampled state “1” of the
supervisor corresponding to the same boolean vector of R-1.1 is “equal-enter-tick”.
Our translation method uses the same strategy discussed above to define the equal
transition at state “1”, and adds the transition (1, equal, x3) to ξ1.

After equal, the remaining part of this concurrent string that we need to define
is “enter-tick”. As enter is not already defined at state x3, our translation method
defines a new enter transition at x3. While deciding about the destination state of
the enter transition, we note that there already exists a state in the supervisor that
has the same set of events possible which we want to define after the enter transition,
i.e. state x2 has a tick event possible. Moreover, the tick transition defined at x2
goes to sampled state “2”, which is the destination state of the current concurrent
string. This implies that the existing state x2 has the same future that the current
concurrent string has once we have defined the enter transition. We thus simply reuse
the existing non-sampled state x2 as the destination state of the enter transition, and
add (x3, enter, x2) to ξ1. This completes the second concurrent string “equal-enter-
tick” of the translated supervisor. In this way, our translation method has constructed
the chunk of the supervisor shown in Figure 11.4 corresponding to the boolean NSL
of R-1.1.

More examples of reusing non-sampled states can be seen at state “2” of the
partially translated supervisor OpenLock, shown in Figure 11.8. For the boolean
vector of R-4.4 of Table 11.4, our translation method generates 3! = 6 concurrent
strings with the same occurrence image that start at sampled state “2” and end at
sampled state “1” in the translated supervisor.

While generating these six concurrent strings, our translation method starts reusing
the non-sampled states as soon as it has defined different sequences of any two ac-
tivity events. For example, starting at sampled state “2”, we converge “open-enter”
and “enter-open” to a single non-sampled state x6. This is because we know that
after defining open and enter transitions in a different order, the set of events that are
still possible in these two concurrent strings are the same (equal and tick), as overall
they have the same occurrence image. Therefore, our translation method converges
them to a single state x6, and then defines a single equal transition followed by a
tick to complete the definition of these two concurrent strings. Reusing states like
this guarantees that two or more activity event strings, containing the same activity
events but in different order, always converge to a single non-sampled state in the
translated supervisor, given that these activity event strings are part of two or more

204

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

concurrent strings that start at the same sampled state and have the same occurrence
image.

Non-Sampled State Reusability Issue
We would now like to clarify that our translation method will not reuse any non-
sampled states while defining concurrent strings that correspond to two different
boolean vectors. The reason being, since these concurrent strings have different ac-
tivity events possible in a given clock period, this might result in the violation of
given control specifications. In simple words, this might result in the enablement of
an activity event in one concurrent string that is supposed to be disabled as per its oc-
currence image. This could happen because this activity event is enabled in the other
concurrent string with a different occurrence image and we are reusing one or more
non-sampled states in both concurrent strings. As a result, this activity event now
becomes possible in both concurrent strings after reaching the non-sampled state(s)
that we have reused.

While defining concurrent strings from different boolean vectors, the only scenario
in which our translation method reuses non-sampled states is when an event is already
defined at a given state of the supervisor. In this case, we do not want to define
another transition for the same event at the given state, otherwise the translated
supervisor becomes non-deterministic.

However, it is important to point out that starting at the source sampled state,
even if we reuse some non-sampled states while defining the initial activity event
transitions of the concurrent strings to keep the TDES deterministic, these two con-
current strings will certainly diverge at some later point. The reason being, since
they have different occurrence images, hence different activity event transitions need
to be defined overall. Once they go to different paths, our translation method never
converges them back to a single non-sampled state with the purpose of reusing any
existing non-sampled state of the supervisor.

Finishing State “1”
Now we will resume our discussion about the step by step translation of OpenLock
FSM into its corresponding supervisor. After translating the boolean NSL of R-1.1 of
Table 11.4, our translation method takes the subsequent NSL specified at R-2.1. As all
FSM signals have the value of ‘0’ in this boolean vector, we generate 0! = 1 concurrent
string with the occurrence image of {tick} corresponding to this boolean vector. Since
tick is not already defined at sampled state “1” of the translated supervisor, our
translation method adds a tick selfloop transition at state “1”. We also add the
transition (1, tick, 1) to ξ1. Figure 11.5 shows the addition of this tick transition to
the previously translated supervisor of Figure 11.4.

After that, our translation method translates the third NSL specified at R-2.2 of
Table 11.4. As only one FSM signal, equal, has the value of ‘1’ in this boolean vector,
our translation method will generate 1! = 1 concurrent string, “equal-tick”, that has

205

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

!enter

tick

!equal !enter

!equal

1

x1

x3

x2 2

Figure 11.5: TDES Supervisor OpenLock After Translating Boolean NSL of R-2.1

tick

!enter

!equal

tick

tick

!enter

!equal

1

x1

x3

x2 2

Figure 11.6: TDES Supervisor OpenLock After Translating Boolean NSL of R-2.2

the occurrence image of {equal, tick}. In order to define this concurrent string, we
need to define the equal transition at sampled state “1” of the supervisor. However, as
stated earlier, before defining a new transition, our translation method always checks
to find out if an event is already defined at the given state or not.

While analyzing the events that are already defined at state “1”, we discover
that an equal transition already exists at state “1” (Figure 11.5). In this case, our
translation method simply reuses and follows the existing equal transition. Also, since
this transition is already defined in the supervisor, we know that it must exist in the
transition function. Hence, we do not need to add any new transition to ξ1. We then
determine the destination state of this equal transition.

As equal is the only activity event in the current concurrent string, we now need
to add a tick transition at the end to complete the definition of “equal-tick”. Since
tick is not already defined at x3, our translation method adds a tick transition at
x3 that takes the supervisor to the destination sampled state “1”. We also add this
transition (x3, tick, 1) to ξ1. Figure 11.6 shows the translated supervisor after defining
the concurrent string “equal-tick”.

Our translation method handles the boolean NSL R-3.2 of Table 11.4 in a similar
way. Figure 11.7 shows the result after this translation. This completes the translation
of NSL that are specified at state “1” of the OpenLock FSM.

After that, our translation method proceeds to the next FSM state and begins to
translate the eight boolean NSL that start at state “2”, as shown in Table 11.4. By
applying the same translation procedure and rules that we have described above for
state “1”, we generate all concurrent string transitions at sampled state “2” of the

206

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

!equal

tick
tick

tick

!enter!equal

tick

!enter

1

x1

x3

x2 2

Figure 11.7: TDES Supervisor OpenLock After Translating Boolean NSL of R-3.2

tick
open

tick
!enter

!equal

tick

!equal

tick

!enter

tick

!enter

!equal

tick

!enter

!equal

tick

tick

!equal

tick

!enter

open

tick

!enter

opentick

!equal

open

tick

1

x1

x3

x2 2 x5

x4 x6

x7

x10

x9

x8

Figure 11.8: TDES Supervisor OpenLock After Translating Boolean NSL of
Table 11.4

translated supervisor. The resultant supervisor OpenLock is shown in Figure 11.8.

Step 6: Add Appropriate Selfloop Transitions

This is the last step for constructing the transition function of the translated super-
visor. At this step, our translation method adds transitions for the uncontrollable
events and/or the tick event to the supervisor, if needed. We add these transitions
to increase the likelihood of satisfying the desired ||SD properties by the translated
supervisors and the resulting closed-loop system constructed using our ||SD operator.

207

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

The property of untimed controllability with ||SD (Definition 4.4.4), which is also a
part of Point i of the SD controllability with ||SD definition (Definition 4.5.1), requires
that an uncontrollable event possible in the plant TDES must be allowed to occur
in the closed-loop system. This implies that the translated supervisor models must
allow an uncontrollable event to occur whenever it is possible in the plant. Also, we
cannot predict how many times an uncontrollable event is going to occur in a given
sampling period, i.e. it may occur multiple times.

In order to generate supervisors that are more likely to be untimed controllable
with ||SD with respect to the plant TDES, our translation method adds selfloops of
uncontrollable events that could occur in a given sampling period, i.e. input signals
that show up as ‘1’ in the given boolean vector. We add these selfloop transitions at
those non-sampled states that are part of the concurrent string transition(s) which
were defined at Step 5 corresponding to the given boolean vector. Also, we add
these selfloops only if the uncontrollable event transition is not already defined at the
non-sampled state, in order to keep the translated supervisor deterministic.

It is notable that we need to add these selfloop transitions only at the non-sampled
states of the supervisor, and not at the source sampled state for the given boolean
vector. The reason is that our translation method generates all possible sequences of
activity events that could occur in a given sampling period. Therefore, an uncontrol-
lable event that appears as ‘1’ in the given boolean vector always gets defined as a
state changing transition at the source sampled state by our translation method at
Step 5. The only exception to this is a GDC transition, that we will discuss shortly.

Applying to OpenLock FSM
For the OpenLock FSM, the boolean vector of R-1.1 of Table 11.4 has the value
of ‘1’ for two input signals, enter and equal. We have three non-sampled states,
x1, x2 and x3, as part of the two concurrent strings, “enter-equal-tick” and “equal-
enter-tick”, that get defined in the supervisor as part of processing this boolean
vector (Figure 11.8). This means that our translation method needs to define selfloop
transitions of enter and equal at x1, x2 and x3, if these uncontrollable event transitions
do not already exist at these states.

By looking at the translated supervisor of Figure 11.8, constructed at Step 5, we
note that enter needs to be selflooped at x1 and x2, whereas equal should be selflooped
at x2 and x3. Hence, our translation method adds the transitions of (x1, enter, x1),
(x2, enter, x2), (x2, equal, x2) and (x3, equal, x3) to the transition function ξ1. The
resulting translated supervisor OpenLock is shown in Figure 11.9.

For the boolean vector specified by R-2.1, since none of the input signals appear
as ‘1’, our translation method does not generate any new transitions. For R-2.2, the
input signal equal has the value of ‘1’. The only non-sampled state that is related to
the concurrent string “equal-tick” of this boolean vector is x3 (Figure 11.9). Since the
equal selfloop transition already exists at x3 (was added while processing the boolean
vector of R-1.1 above), we do not add new transition to the translated supervisor.

208

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick

!equal

tick

open

!equaltick

!enter
!equal

tick
open

!equal

!enter
tick

!equal

!enter

tick

open

!enter

tick
!enter

tick

!equal

!enter

tick

!equal

!enter

tick

!equal

!enter

tick

open

tick

1

x1

x3

x2 2 x5

x4 x6

x7

x10
x9

x8

Figure 11.9: TDES Supervisor OpenLock After Adding Selfloop Transitions of
Uncontrollable Events for Boolean NSL of R-1.1

The same logic applies to R-3.2 ’s boolean vector, as enter transition already exists
at x1 as a selfloop.

By using the aforementioned logic, our translation method adds selfloop transi-
tions of uncontrollable events corresponding to the rest of the boolean NSL of Ta-
ble 11.4. Figure 11.2 shows our resultant translated supervisor OpenLock. It is
worth-mentioning that while realizing Steps 5 and 6 in our translation Algorithm
12.8, we do not traverse the boolean vectors multiple times. Rather, we gather all the
required information to perform Step 6 while traversing the boolean NSL at Step
5. This is done to improve the efficiency of our translation method and algorithm.

Processing <GDC> Transitions
In order to identify the presence of a GDC transition at any sampled state of the
supervisor, our translation method uses the flag that we set at Step 1. First, it is
worth clarifying that for the GDC transition, our translation method will not add
any selfloop transitions for prohibitable events in the supervisor. This is because
of one of the SD assumptions which says that controllers allow prohibitable events
to occur only once per sampling period (Section 3.3). That is why, our translation
method generates state changing transitions for prohibitable events at Step 5, which
completes the translation of the supervisor with respect to the prohibitable event

209

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

transitions.
As for the uncontrollable events, our translation method adds selfloops for all

uncontrollable events that belong to the current supervisor at the source sampled
state of the GDC transition. Also, we will add these selfloop transitions at all of
the non-sampled states that are part of the concurrent string transition(s) which are
defined corresponding to the boolean vector(s) of the GDC transition at Step 5.

Please recall that GDC is the only valid transition defined at an FSM state (design
requirement DR-10), and none of the uncontrollable event transitions were defined
for GDC at Step 5. For this reason, we could simply add the selfloop transitions at
these states without even checking whether or not an uncontrollable event’s transition
already exists at the state.

Adding tick Transitions
Another important property that we want our translated supervisors to satisfy is
timed controllability with ||SD (Definition 4.4.3). Please note that this property is also
part of Point i of the SD controllability with ||SD definition. This property requires
that if tick event is possible in the plant TDES and no prohibitable event is possible in
the closed-loop system, then tick must be enabled in the closed-loop system. For our
purposes, we need to make sure that tick must be enabled in the translated supervisor
if no prohibitable event is possible in the closed-loop system.

In order to ensure this, at each sampled state of the supervisor where tick event is
not already defined at Step 5, our translation method adds a tick selfloop transition.
Also, at every non-sampled state where tick transition does not already exist, we add
a tick transition from the non-sampled state back to its source sampled state. Please
recall that we are not reusing non-sampled states while defining concurrent strings
that correspond to two different boolean vectors (see discussion at Step 5). Even if
we reuse non-sampled states across two different boolean vectors in order to keep our
TDES deterministic, these boolean vectors will certainly start at the same sampled
state. As a result, each non-sampled state has only one source sampled state.

Lastly, please note that our translation method adds a tick transition at every
sampled and non-sampled state of the supervisor where tick is not already defined.
This might result in having one or more states in the translated supervisor where
both tick and prohibitable events are enabled. This is not going to violate any of the
desired ||SD properties or create any other issue. The reason being, our ||SD operator
will automatically remove the unnecessary tick events while constructing the closed-
loop system, in order to force the enabled prohibitable event(s) in the current sampling
period.

This completes Step 6, and thus our FSM-TDES translation method. In the
next section, we discuss a final step that can be performed to make the translated
supervisors more compact.

210

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

!equal

tick

!enter

!equal

tick

!enter

!equal

tick

!enter

!equal
!enter

tick

!equal
!enter

tick

open

tick
!equal

!enter

open

!equal
tick

!enter

!equal
!enter

tick

1

x1

x3

x2 2 x4

x6 x5

Figure 11.10: Minimal TDES Supervisor OpenLock

11.3.6 Make Translated Supervisor More Compact
While devising our FSM-TDES translation method and rules, our primary goal is to
generate a “correct” TDES supervisor from the input Moore FSM without violating
any of the given control specifications. Therefore, it is probable that the supervisor
generated by our translation method might have one or more λ-equivalent states
(Definition 2.2.9). In other words, the translated supervisor might not be in its
minimal form (Definition 2.2.10).

Keeping this in view, the last step of our translation approach is to obtain the
minimal version of the translated supervisor by performing the state space minimiza-
tion process (described in Section 6.2). In future, this approach and its corresponding
algorithms (Algorithms 6.1 and 6.2) should be implemented in DESpot (2023) while
implementing our translation approach and algorithms.

In order to obtain the minimum-state version of our translated supervisors for this
thesis, we used the minstate procedure of the XPTCT software package, which is a
computation tool for supervisory control synthesis (Feng and Wonham, 2006). The
completely translated supervisor OpenLock is shown in Figure 11.2, and its minimal
version generated by XPTCT is shown in Figure 11.10.

After minimizing the OpenLock supervisor, we observe a reduction in the number
of states as well as the number of transitions. Precisely, the number of states decreased
from 12 states in the translated supervisor to 8 states in its minimal version. The
number of transitions declined from 40 to 26.

This reduction in the overall size and complexity of the supervisor is primarily
because of the fact that our translation method is generating state changing transi-
tions at Step 5 from the given boolean vectors. We are generating state changing

211

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

transitions in order to make sure that prohibitable events occur only once during
a sampling period. Also, adding selfloops of uncontrollable events instead of state
changing transitions while generating the supervisor might result in missing some
sequences of activity events from the translated supervisor. This might generate a
supervisor that is not SD controllable with ||SD and fails Point ii.1 of this desired
property.

Another reason for this room for minimization in the translated supervisor is that
we are not reusing any non-sampled states while defining concurrent strings that
correspond to two different boolean vectors, except to keep our TDES deterministic.
As discussed at Step 5, we have developed our translation method this way because
reusing non-sampled states during the translation process might result in the violation
of the given control specifications and generation of a supervisor with undesired and
incorrect system language.

In future, it would be advantageous to improve our FSM-TDES translation ap-
proach in such a way that there is no need to apply a state space minimization
algorithm separately at the end to make the translated supervisor more compact. In
other words, the translation method itself should generate a supervisor that does not
only satisfy all the desired ||SD properties, but is also in its minimal form.

212

Chapter 12

Moore FSM to TDES Translation
Algorithms

In this chapter, we present the algorithms that we have developed to realize the
Moore FSM-TDES translation approach described in Chapter 11. We begin this
chapter by introducing the notation that we use in our algorithms. Next, we present
the main algorithm that serves as the entry point to our proposed FSM-TDES trans-
lation approach for DESpot (2023). Then, we provide algorithms to perform various
consistency checks on the DESpot project, central FSM and individual Moore FSM.

This is followed by the algorithms that we have developed to verify the design of
each individual Moore FSM and process its information to convert it into a form that
we can directly use to perform the actual FSM-TDES translation. After that, we de-
scribe the translation algorithm to generate a TDES supervisor corresponding to each
input Moore FSM. Finally, we close this chapter by analyzing the time complexity of
the FSM-TDES translation algorithm. Please note that due to time constraints, we
have left the implementation of these algorithms in DESpot as future work.

12.1 Algorithmic Notation
In our algorithms, we will be dealing primarily with sets, sets of tuples and sets of
sets of tuples. Besides the common symbols and operations used in set theory, we
will use the following notation to access and manipulate the sets, and their tuples
and elements in our algorithms.

12.1.1 Size Function
In our algorithms, we will use a size function to get the size of a set. For example,
for a set named mainFSMS, we write |mainFSMS| to get the number of elements
of this set. If we pass a string to this function, then we assume that it returns the

213

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

length of the string, i.e. |s| returns the length of string s. We could also pass a
hybrid/boolean vector to this function, in which case it returns the size (number of
elements) of the given hybrid/boolean vector.

12.1.2 Subscript Notation
While managing a set of tuples, sometimes we need to access the individual tuples
of the set in a specific sequence/order. In order to be able to do that, we will treat
our set like a list, and assume that each individual tuple of the list can be accessed
using an index. We will write the index of the tuple that we want to access using the
subscript notation.

For example, let mainFSMS be a set of tuples that we will treat like a list. We
write mainFSMSi to access the ith tuple of this list, where 0 ≤ i < |mainFSMS|.

12.1.3 Dot Notation
In our algorithms, we will work with n-element tuples, where n > 0. We will use the
dot notation to access an individual element of the tuple. Let f = (fsmName,ΣlocIO,
ΣlocIn) be a 3-element tuple. We write f.fsmName to access the first element of the
tuple f . Likewise, we write f.ΣlocIO and f.ΣlocIn to refer to the second and third
elements of this tuple respectively.

Please note that in order to refer to an element of a tuple, we are using its name
(not the index) to keep things simple and memorable. Also, an individual element of
a tuple could itself be a set or set/list of tuples.

Sometimes, in our algorithms, we will use the dot notation together with the
subscript notation. Let mainFSMS be a set/list of 3-element tuples, where each
tuple is of the form (fsmName,ΣlocIO,ΣlocIn). Then, mainFSMSi.fsmName refers
to the first element of the ith tuple of this list, where 0 ≤ i < |mainFSMS|.

12.1.4 Bracket Notation
We will use the bracket notation for managing strings, hybrid vectors and boolean
vectors in our algorithms. We will access an individual character of a string by
specifying its index inside the brackets. For example, for string s = “enter · equal”,
we write s[i] to refer to the ith character of s, where 0 ≤ i < |s|.

For hybrid vectors, we will refer to an individual element of the vector by writing
its index inside the brackets. Let h be a hybrid vector of size s. We write h[i] to refer
to the ith element of h, where 0 ≤ i < s. This notation for hybrid vectors also applies
to boolean vectors.

Please note that in our algorithms, we will often use this bracket notation in
combination with other notations described above, as needed. For example, we could
write HQi.h[j] to refer to the jth element of the hybrid vector h, such that h is an

214

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

element of the ith tuple in the list of tuples HQ, where 0 ≤ i < |HQ| and 0 ≤ j < |h|.
In simple words, we have a list of tuples HQ, where each tuple of HQ has a hybrid
vector as one of its elements. HQi refers to the ith tuple of the list HQ. We then
access the hybrid vector h of this ith tuple by writing HQi.h, and the jth element of
this hybrid vector h by writing HQi.h[j].

12.2 Main Algorithm
Algorithm 12.1 (MFSMtoTDES Main) serves as the main entry point to perform the
translation of Moore FSM into TDES supervisors for DESpot (2023). This algorithm
makes a call to the other algorithms that we have developed as part of realizing our
FSM-TDES translation approach (Chapter 11).

Algorithm 12.1 Assumptions
Algorithm 12.1 makes the following three assumptions:
1. As discussed in Section 11.2, the FSM-TDES translation process should be ini-

tiated in a DESpot project that already contains the TDES plant models of the
physical system for which the controllers have been designed as Moore FSM. We
assume that the information of the current DESpot project is available to us while
performing the translation process.

2. We assume that the input XML files for the central and individual Moore FSM (see
Section C.1 for details) have already been read and parsed, and the information is
available to us in the form of variables. These variables could be sets, sets of tuples,
or sets of sets of tuples (described shortly). Please note that the development of
these algorithms to read and parse the XML files has been left as future work due
to time constraints. We require that the information read from the XML files has
been stored in the variables only once, i.e. there are no duplicate elements.

3. In our FSM-TDES translation algorithms, we have added some error messages. In
case of an error during the translation process, we assume that DESpot displays
the appropriate message to the users in a dialog box. Please note that these error
messages are generic and have been added primarily to improve the comprehen-
sion and readability of the algorithms. While implementing these algorithms in
DESpot, these error messages could be made more informative and helpful by
adding specific details about the error causing FSM, etc.

XML Variables for FSM
Below, we list and define the variables that we use in Algorithm 12.1. We assume
that these variables have already been populated by the algorithms that read and
parse the input XML files of the central and individual Moore FSM.

215

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

1. The information about the current DESpot project is accessible to us in the form
of the following variables:
• projName: A string variable that contains the name of the current DESpot

project.

• Σhib: The set of prohibitable events in the project.

• Σu: The set of uncontrollable events in the project.
2. The information specified in the central FSM XML file (described in Section C.1.2)

is available to us by means of the following variables:
• mainFSM : A string variable that stores the name of the central FSM.
• Σgout: The set of global output signals specified in the central FSM.
• Σgin: The set of global input signals specified in the central FSM.
• mainFSMS: A set of all the individual Moore FSM that are listed in the

central FSM XML file. Each element of this set stores information about one
individual FSM, and is a 3-tuple of the form (fsmName,ΣlocIO, ΣlocIn). Here,
fsmName refers to the name of the individual FSM, ΣlocIO is a set of the FSM’s
local IO signals, and ΣlocIn is a set of the FSM’s local input signals. Sometimes,
we will treat this set like a list in our algorithms (see Section 12.1.2 for details).

3. While reading and parsing the XML files of the individual Moore FSM (described
in Section C.1.1), the information is stored for us in the following variables:
• FSMS: This set stores all the individual Moore FSM that have been provided

as an input to the FSM-TDES translation process. Each element of this set is
a tuple that stores information about the individual FSM specified in the given
XML file. Each tuple consists of the variables defined below.
– name: A string variable that stores the name of the individual Moore FSM.
– resetState: A string variable containing the initial/reset state of the FSM.
– ΣIO: The set of IO signals of the FSM.
– ΣIn: The set of input signals of the FSM.
– Q: The set of states of the FSM. For simplicity, we assume that all states in Q

are labelled in the form of q0, q1, q2, This is to ensure that these names
are distinct from the non-sampled state names we will generate in Algorithm
12.8 of the form x0, x1, x2,

– QZ: Let Z be a set of strings. The set QZ ⊆ Q×Z contains the states of the
FSM and their corresponding output information. For (q, outputV ector) ∈
QZ, outputV ector is a string that contains a comma separated list of the IO
signals whose outputs are set to True at state q of the FSM.

– Qinvect: Before defining Qinvect, we will first introduce the variable IQ.

216

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Let IS be a set of strings. The set IQ ⊆ IS×Q contains the possible next
state conditions of the FSM and their corresponding destination states. For
(inputV ector, q′) ∈ IQ, inputV ector is a string that represents a next state
condition, and q′ is the destination state reached by this next state condition.
Please note that the next state condition can either be expressed as a boolean
expression or using one of our keywords (<TICK>, <GDC> or <DEF>).

The partial function Qinvect : Q→ Pwr(IQ) maps the states of an FSM to
the next state logics (NSL) that are specified at these states. In simple words,
for a given state q of the FSM, this function returns a set of tuples of the form
(inputV ector, q′), i.e. a set of all the next state conditions that are defined at
q, and their corresponding destination states. This function will sometimes
be treated like the set Qinvect ⊆ Q× Pwr(IQ).

– marking: An enumerated data type to specify the marking information for
the TDES supervisor that will be generated corresponding to the individual
Moore FSM. Currently, we provide the following two marking options to the
designers to choose from:
i) Initial: Mark only the initial state of the translated supervisor.
ii) Sampled: Mark all sampled states of the translated supervisor, and nothing

else.

FSM-TDES Variables
We need to process the information that is available to us for each individual Moore
FSM and convert it into a form that we can directly use to perform the FSM-TDES
translation. We have developed several algorithms to do the required processing and
then store the processed information in our desired variables. Since we have declared
the new variables in Algorithm 12.1, we will define and describe these variables in
this section. Specifically, by using the information stored in the above-mentioned
variables for each individual FSM, our algorithms populate the following variables
that we will ultimately use to perform the translation process.
• QElig: The partial function QElig : Q→ Pwr(ΣIO) maps the states of an individual

Moore FSM to the set of IO signals that are eligible to occur at these states, i.e.
their outputs are set to True. Sometimes, in our algorithms, we will treat this
function like the set QElig ⊆ Q×Pwr(ΣIO). Algorithm D.3 (given in Appendix D)
populates the set QElig by processing the information stored in the set QZ.

• Qnsz: Before defining Qnsz, we will first introduce the variable HQ.
Let H be a set of hybrid vectors. The set HQ ⊆ H ×Q contains the possible

hybrid vectors of the Moore FSM, and their corresponding destination states. For
(hybridV ector, q′) ∈ HQ, hybridV ector represents a next state condition, and q′

is the destination state reached by this next state condition. Sometimes, we will
treat this set like a list in our algorithms.

217

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

The partial function Qnsz : Q → Pwr(HQ) maps the states of an FSM to the
NSL that are specified at these states. In simple words, for a given state q of the
FSM, this function returns a set of tuples of the form (hybridV ector, q′), i.e. a set
of hybrid vectors that represents the next state conditions defined at q, and their
corresponding destination states. Sometimes, we will treat this function like the
set Qnsz ⊆ Q × Pwr(HQ). Algorithm 12.2 populates the set Qnsz by processing
the information stored in the set Qinvect.

• QDC : The partial function QDC : Q→ Boolean maps the states of an FSM to the
boolean value of True or False. Precisely, for a given state q of the Moore FSM,
this function returns True if the next state condition specified at q is a global don’t
care, i.e. a GDC transition is defined at q. Otherwise, it returns False.

In our algorithms, we will sometimes treat this function like the set QDC ⊆
Q × Boolean. We will use the information stored in Qinvect to populate the set
QDC in Algorithm 12.2.

• QDEF : The partial function QDEF : Q → Boolean maps the states of an FSM to
the boolean value of True or False. Precisely, for a given state q of the Moore
FSM, this function returns True if the set of next state conditions defined at q
includes the DEF transition. If DEF is missing at q, this function returns False.

Sometimes, we will treat this function like the set QDEF ⊆ Q × Boolean. We
will use the information stored in Qinvect to populate the set QDEF in Algorithm
12.2.
In order to store the translated TDES supervisors, we define the following variables

in Algorithm 12.1:
• supName: A string variable to store the name of the supervisor that is currently

being translated. We will use the name of the individual Moore FSM as the name
of the corresponding supervisor.

To keep things simple, we will ignore the issue that the name of each TDES
in the DESpot project must be unique, and the project could already contain a
TDES with the same name as the FSM. We leave the resolution of such a conflict
(such as popping up a dialog box to the user) as an implementation detail.

• S: This variable is used to store the TDES supervisor that is currently being
translated. S is a quintuple of the form S = (X,ΣS, ξ, xo, Xm). Here, X is the
state set, ΣS is the event set, ξ : X × ΣS → X is the partial transition function,
xo ∈ X is the initial state, and Xm ⊆ X is the set of marked states of the translated
supervisor.

• TDES: The set TDES ⊆ String×S stores the names of the translated supervisors
and their corresponding quintuples. For (supName,S) ∈ TDES, supName is the
name of the translated supervisor whose quintuple is stored in S. We will use
“Push” method to add the tuples of the translated supervisors to TDES.

218

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Besides these variables, we will use an implementation-independent method “print()”
in our algorithms to indicate that we wish to display a message to the DESpot users
in a dialog box. The message to be printed is enclosed in quotation marks, i.e.
print(“message”).

Algorithm 12.1
Algorithm 12.1 (MFSMtoTDES Main) calls several other algorithms to perform the
FSM-TDES translation process. Specifically, it calls Algorithm D.1 (VerifyCen-
tralFSM), Algorithm D.2 (VerifyIndividualFSM), Algorithm D.3 (GenerateEnable-
mentInfo), Algorithm 12.2 (GenerateHybridNextStateLogic), Algorithm 12.3 (Gen-
erateBooleanNextStateLogic) and Algorithm 12.8 (GenerateTDESSupervisor).

Please note that Algorithms D.1−D.3 are presented in Appendix D. These algo-
rithms do the required setup and perform some consistency checks. We have moved
them to Appendix D so we can focus on the algorithms that implement the key part
of our FSM-TDES translation approach described in Chapter 11.

Algorithm 12.1 begins by verifying the consistency requirement CR-1 at lines 1-
4. At lines 5-7, Algorithm 12.1 calls Algorithm D.1 to perform some consistency and
design checks using the information specified in the central FSM. If any of the checks
fail, Algorithm D.1 returns False and the FSM-TDES translation process terminates
immediately by returning False to the caller algorithm.

At lines 8-10, we call Algorithm D.2 to analyze the information specified in the
individual Moore FSM and perform the required consistency checks. Again, we end
the translation process at once if any of the consistency requirements is not satisfied
by the input Moore FSM.

At lines 12-26, we loop through all individual Moore FSM that are stored in
the FSMS variable. By taking one individual Moore FSM at a time, Algorithm 12.1
calls other algorithms to do the desired design checks, process the FSM’s information,
translate it into a TDES supervisor, and finally add the name of the translated
supervisor along with its quintuple to the TDES variable. Once all Moore FSM
have been successfully translated into supervisors, we notify DESpot users about the
successful completion of the translation process at line 27.

Since our FSM-TDES translation approach uses the FSM name as the name of the
translated supervisor, we assign the name of the FSM that we are currently processing
to the supName variable at line 14. At lines 15-17, we call Algorithm D.3 to process
the output information of the current Moore FSM and generate the corresponding
enablement information for the supervisor. This algorithm also evaluates the related
design requirements that must be satisfied by the FSM.

At lines 18-20, we call Algorithm 12.2 to generate hybrid NSL from the NSL
specified in the current Moore FSM. This hybrid NSL is then converted to the boolean
NSL by calling Algorithm 12.3 at lines 21-23. Algorithms 12.2 and 12.3 also
perform some related design checks on the current FSM while processing its NSL. If
any of these algorithms finds any discrepancy in the NSL of the current FSM, they

219

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.1 MFSMtoTDES Main()
1: if (mainFSM 6= projName) then
2: print(“Error! Project and central FSM names do not match.”)
3: return False
4: end if
5: if (¬VerifyCentralFSM(mainFSMS,Σgout,Σgin,Σhib,Σu)) then
6: return False
7: end if
8: if (¬VerifyIndividualFSM(mainFSMS, FSMS)) then
9: return False

10: end if
11: TDES ← ∅
12: for all (fsm ∈ FSMS) do
13: QElig, Qnsz, QDEF , QDC ,S← ∅
14: supName← fsm.name
15: if (¬GenerateEnablementInfo(fsm,QElig)) then
16: return False
17: end if
18: if (¬GenerateHybridNextStateLogic(fsm,Qnsz, QDEF , QDC)) then
19: return False
20: end if
21: if (¬GenerateBooleanNextStateLogic(fsm,Qnsz, QElig, QDEF , QDC)) then
22: return False
23: end if
24: GenerateTDESSupervisor (fsm,Qnsz, QDC ,S)
25: Push(TDES, (supName,S))
26: end for
27: print(“Success! The Moore FSM-TDES supervisors translation process is com-

plete. ”)
28: return True

return False and Algorithm 12.1 immediately suspends the translation process.
After processing the NSL of the current FSM, we call the translation Algorithm

12.8 at line 24 to generate a TDES supervisor corresponding to the current Moore
FSM. Finally, at line 25, we save the name and quintuple of the translated supervisor
in the TDES variable before proceeding to the translation of the next Moore FSM.

12.2.1 Generate Hybrid Next State Logic
Algorithm 12.2 processes the NSL of an individual Moore FSM (fsm.Qinvect) to gen-
erate the corresponding hybrid NSL (Qnsz). Specifically, we generate hybrid vectors

220

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

from the given next state conditions (input vectors) of the FSM. This algorithm
primarily realizes Step 1 of Section 11.3.5.

While processing the NSL, Algorithm 12.2 also performs the related design checks
on the current FSM. If the FSM fails to satisfy any of these design requirements, we
return False to Algorithm 12.1 after printing the appropriate error message.

The following local variables are defined and used by Algorithm 12.2. Please refer
to Section 12.2 to see the definition of other variables used in the algorithm.
• signalCount: This integer variable stores the total number of IO and input signals

that belong to the current FSM.
• IQ: A set of tuples of the form (inputV ector, q′), where inputV ector is a string

that represents a next state condition, and q′ ∈ Q is the destination state reached
by this next state condition.

• hybridV ector[signalCount]: A hybrid vector hybridV ector ∈ H that has signal-
Count elements, i.e. the size of the hybridV ector is equal to signalCount. The
indexes for the hybridV ector elements range from 0 to signalCount− 1.

• HQ: A set of tuples of the form (hybridV ector, q′), where hybridV ector ∈ H is
a hybrid vector representing a next state condition, and q′ ∈ Q is the destination
state reached by this next state condition.

• isDisabled: This flag is set to True if the currently processed signal appears in
the current input vector in the complemented form, i.e. !<signalname>.

• Σdis: This set stores the IO and input signals that appear in the currently processed
input vector in the complemented form.

• Σen: This set stores the IO and input signals that appear in the currently processed
input vector in the uncomplemented form, i.e. without “!”.

• signal: This string variable temporarily holds the characters, as we read the name
of a signal (one character at a time) from the input vector that we are currently
processing.

• µ: The signal mapping function for an individual Moore FSM fsm ∈ FSMS is
defined to be a bijective map µ : fsm.ΣIO∪fsm.ΣIn → {0, 1, . . . , s−1}, where s =
|fsm.ΣIO ∪ fsm.ΣIn|. In simple words, this function maps the signals of the given
Moore FSM to their corresponding indexes in the hybrid vector hybridV ector ∈ H
of size s.
At line 1 of Algorithm 12.2, we populate the signalCount variable by assigning

to it the total number of IO and input signals of the FSM that we are currently
translating. At lines 2-78, we loop through the state set of the current FSM (fsm.Q).
By taking one FSM state q at a time (line 2), we retrieve the set of all NSL that
are defined at q by using the partial function Qinvect, and store it in IQ (line 3). At
lines 4-7, we perform design check DR-5 which requires that at least one NSL must
be specified at every state of the FSM. We do this by making sure that the set IQ is

221

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.2 GenerateHybridNextStateLogic(fsm,Qnsz, QDEF , QDC) Part I
1: signalCount← |fsm.ΣIO ∪ fsm.ΣIn|
2: for all (q ∈ fsm.Q) do
3: IQ← fsm.Qinvect(q)
4: if (IQ = ∅) then
5: print(“Error! At every state of the FSM, at least one next state condition

must be specified. Please specify a <DEF> transition, if no valid next
state conditions exist at a state.”)

6: return False
7: end if
8: HQ← ∅
9: Push(QDEF , (q, False))

10: Push(QDC , (q, False))
11: for all (nsl ∈ IQ) do
12: hybridV ector[signalCount]
13: isDisabled← False
14: Σdis,Σen ← ∅
15: signal← “”
16: if (nsl.inputV ector = “”) then
17: print(“Error! In the FSM, the transition input vectors cannot be left

empty. Please specify valid next state conditions in the empty input
vectors or remove the entire transition of the empty input vectors.”)

18: return False
19: else if (nsl.inputV ector = <DEF>) then
20: if (nsl.q′ 6= q) then
21: print(“Error! In the FSM, the <DEF> transition must always

be specified as a selfloop.”)
22: return False
23: end if
24: QDEF (q)← True
25: else
26: if (nsl.inputV ector = <TICK>) then
27: for (i← 0 to signalCount− 1) do
28: hybridV ector[i]← 0
29: end for
30: else
31: for (i← 0 to signalCount− 1) do
32: hybridV ector[i]← d
33: end for
34: if (nsl.inputV ector = <GDC>) then
35: QDC(q)← True

222

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.2 GenerateHybridNextStateLogic(fsm,Qnsz, QDEF , QDC) Part II
36: else
37: for (i← 0 to |nsl.inputV ector| − 1) do
38: if (nsl.inputV ector[i] = “!”) then
39: isDisabled← True
40: else if (nsl.inputV ector[i] = “.”) then
41: if (isDisabled) then
42: Σdis ← Σdis ∪ {signal}
43: else
44: Σen ← Σen ∪ {signal}
45: end if
46: isDisabled← False
47: signal← “”
48: else
49: signal← signal + nsl.inputV ector[i]
50: end if
51: end for
52: if (isDisabled) then
53: Σdis ← Σdis ∪ {signal}
54: else
55: Σen ← Σen ∪ {signal}
56: end if
57: for all (σ ∈ Σdis ∪ Σen) do
58: if (σ /∈ fsm.ΣIO ∪ fsm.ΣIn) then
59: print(“Error! The signals specified in the transition input

vectors must be listed in the FSM’s list of signals.”)
60: return False
61: end if
62: if (σ ∈ Σdis) then
63: hybridV ector[µ(σ)]← 0
64: else
65: hybridV ector[µ(σ)]← 1
66: end if
67: end for
68: end if
69: end if
70: if (nsl.q′ /∈ fsm.Q) then
71: print(“Error! The states specified as the end states of the transi-

tions must be listed in the FSM’s list of states.”)
72: return False
73: end if
74: HQ← HQ ∪ {(hybridV ector, nsl.q′)}

223

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.2 GenerateHybridNextStateLogic(fsm,Qnsz, QDEF , QDC) Part III
75: end if
76: end for
77: Push(Qnsz, (q,HQ))
78: end for
79: return True

not empty.
At line 9, we add a tuple of the current state q along with the boolean value of

False to the set QDEF . This is because by default, we assume that a DEF transition
is not defined at q and all the possible next state conditions have been explicitly
specified at q. However, while processing the NSL defined at q, if we come across a
DEF transition afterwards, then we update this boolean value to True at line 24.

Similarly, at line 10, we update the set QDC . Initially, we are assuming that
GDC transition is not defined at q. Hence, we add a tuple of the current state q
along with the boolean value of False to QDC . However, later on, if we detect a
<GDC> keyword in the next state condition(s) specified at q, then we update this
boolean value to True at line 35.

At lines 11-76, we loop through the set IQ to process all the NSL that are defined
at q. We take one NSL (nsl) at a time (line 11). In order to process the current
next state condition represented by the input vector (nsl.inputV ector), we define an
if-elseif-else block at lines 16-75.

First, at line 16, we use the if statement to verify design requirement DR-8
by making sure that the input vector of the current NSL is not empty. If DR-8 is
satisfied, the if condition evaluates to False.

In this case, the algorithm proceeds to the else if block at lines 19-24. At line
19, we determine if the current next state condition defines a DEF transition, i.e. if
the current input vector contains the <DEF> keyword. If so, we verify design check
DR-7 at lines 20-23. DR-7 requires that DEF transition must always be defined
as a selfloop in the FSM. If DR-7 passes, we update the tuple of the current state q
in QDEF at line 24 by replacing the default boolean value of False with True. This
indicates that DEF transition has been defined at state q in the FSM to cover the
invalid next state conditions.

Please recall that our FSM-TDES translation method does not generate any tran-
sitions in the supervisor corresponding to invalid next state conditions covered by the
DEF transition of the FSM. Therefore, in the case of DEF, the algorithm does not
execute the else block to construct or populate any hybrid vector. It directly jumps
to lines 75-76, and then proceeds to take the subsequent NSL from IQ at line 11.

However, if the current input vector does not define a DEF transition, then we
are left with three valid possibilities, i.e. the input vector defines a TICK, GDC or
a boolean expression. We assess and process these three valid possibilities inside the

224

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

else block starting at line 25.
At line 26, we determine if the current input vector defines a TICK transition.

If so, at lines 27-29, we assign the value of ‘0’ to all elements of the hybrid vector
(hybridV ector). On the other hand, if the possibility of TICK gets ruled out, then
the current input vector should either represent a GDC transition or a boolean
expression. In both cases, we initialize all elements of the hybrid vector to the ‘d’
value at lines 31-33.

If the current input vector represents a GDC transition (line 34), then we update
the tuple of the current state q in QDC by replacing the default boolean value of False
with True (line 35). This indicates that a GDC transition exists at q. Please note
that we do not make any changes in the hybrid vector corresponding to GDC, as
every element of the hybrid vector already contains the value of ‘d’.

However, if the current input vector does not represent a GDC transition, then it
should contain a next state condition expressed as a boolean expression. In this case,
at lines 36-68, we read the boolean expression from the input vector, and generate
the corresponding hybrid vector by updating the hybrid vector initialized at lines
31-33.

At lines 37-51, we read the characters of the current input vector one by one. If
we read a complement symbol “!” (line 38), this means the signal that we are about
to read appears in the complemented form in the input vector. In this case, we set
the isDisabled boolean variable to True (line 39).

If we come across a period (“.”, line 40), this implies that we have read one com-
plete signal name from the input vector. If this signal appears in the complemented
form in the input vector, i.e. isDisabled = True, we add it to Σdis (lines 41-42).
Otherwise, we add the signal to Σen (lines 43-44). As we will start reading a new
signal name now, given that the input vector has not ended, we set isDisabled to its
default value of False (line 46). Also, we clear out the string signal that we used
to store the current signal name (line 47).

For all other characters that we read from the input vector, we simply append the
character to the end of the signal string (line 49). Once we have read all characters
of the input vector, depending upon the value of isDisabled, we add the last read
signal name to Σdis or Σen at lines 52-56.

At lines 57-67, we loop through all signals of Σdis and Σen by taking one signal
at a time. First, at lines 58-61, we verify design requirement DR-9 by making sure
that the current signal of the boolean expression belongs to the list of signals of the
current FSM, i.e. it belongs to either fsm.ΣIO or fsm.ΣIn.

If DR-9 is satisfied, then we update the value of the current signal in the hybrid
vector at lines 62-66. Precisely, if the current signal belongs to Σdis, we assign the
value of ‘0’ to the element of the hybrid vector that corresponds to this signal (lines
62-63). Otherwise, we assign the value of ‘1’ to the element of hybrid vector that
corresponds to the current signal (lines 64-65).

225

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

It is worth clarifying that if an input vector contains a simplified boolean expres-
sion, then the signal(s) that have been treated as DC, will not appear in the given
boolean expression. Hence, these signals belong to neither Σdis nor Σen. Please recall
that we initialized all elements of the hybrid vector to ‘d’ at lines 31-33. As a result,
the elements of the hybrid vector that correspond to the DC signals of the boolean
expression already have the value of ‘d’ assigned to them, as desired.

After generating a hybrid vector corresponding to the current input vector, we
perform the design check DR-12 at lines 70-73. In simple words, we verify that
the end (destination) state of the current input vector (nsl.q′) belongs to the list of
states of the current FSM (fsm.Q).

At line 74, we add the hybrid NSL, i.e. the generated hybrid vector along with
its destination state, to the set HQ. Once we have generated all hybrid NSL corre-
sponding to the current FSM state q, and added them to HQ, we finally add this
tuple of q and HQ to Qnsz at line 77.

12.2.2 Generate Boolean Next State Logic
Algorithm 12.3 is primarily responsible for generating, processing and verifying the
boolean NSL for the current Moore FSM. It does so by making use of several other
algorithms that convert hybrid vectors into boolean vectors, process the boolean
NSL, and perform various design checks. If any of the required design checks fails,
Algorithm 12.3 returns False to Algorithm 12.1 after displaying the appropriate
error message. Specifically, Algorithm 12.3 (GenerateBooleanNextStateLogic) calls
Algorithm 12.4 (ConvertHybridToBooleanNSL), Algorithm 12.5 (IdentifyNondeter-
ministicNSL), Algorithm 12.6 (RemoveInvalidNSL) and Algorithm 12.7 (CheckFor-
ValidNSL).

In addition to the variables introduced in Section 12.2, Algorithm 12.3 defines the
following local variables:
• signalCount: This integer variable stores the total number of IO and input signals

that belong to the FSM that is being processed.
• Σen: This set contains the IO signals whose outputs are set to True at the current

state of the FSM. In terms of the supervisor, this set contains prohibitable events
that are enabled at the corresponding sampled state of the supervisor.

• Σdis: This set contains the IO signals whose outputs are set to False at the current
state of the FSM. In terms of the supervisor, this set contains prohibitable events
that are disabled at the corresponding sampled state of the supervisor.
Algorithm 12.3 begins by populating the signalCount variable at line 1. At lines

2-37, we loop through the state set of the current FSM (fsm.Q). By taking one FSM
state q at a time (line 2), we pop the set of hybrid NSL that are defined at q from
Qnsz, and store it in HQ (line 3).

226

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.3 GenerateBooleanNextStateLogic(fsm,Qnsz, QElig, QDEF , QDC)
Part I

1: signalCount← |fsm.ΣIO ∪ fsm.ΣIn|
2: for all (q ∈ fsm.Q) do
3: HQ← Pop(Qnsz(q))
4: if (QDC(q)) then
5: if (|HQ| = 1) then
6: for all (σ ∈ fsm.ΣIn) do
7: HQ0.hybridV ector[µ(σ)]← 0
8: end for
9: else

10: print(“Error! At any given state of the FSM, if <GDC> is specified
as the next state condition, then it must be the only next state cond-
ition specified at this state. No other valid next state conditions could
be specified.”)

11: return False
12: end if
13: end if
14: ConvertHybridToBooleanNSL(HQ, signalCount)
15: if (¬QDC(q)) then
16: if (¬ IdentifyNondeterministicNSL(HQ, signalCount)) then
17: return False
18: end if
19: if (¬QDEF (q)) then
20: if (|HQ| 6= 2signalCount) then
21: print (“Error! At any given state of the FSM, if <DEF> transi-

tion is not specified, then the next state logic for all possible input
combinations must be explicitly specified/covered by the input
vectors.”)

22: return False
23: end if
24: end if
25: end if
26: Σen ← QElig(q)
27: Σdis ← fsm.ΣIO − Σen

28: if (Σdis 6= ∅) then
29: RemoveInvalidNSL(HQ,Σdis)
30: end if
31: if (¬QDC(q) ∧ Σen 6= ∅) then
32: if (¬CheckForValidNSL(HQ,Σen)) then
33: return False
34: end if

227

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.3 GenerateBooleanNextStateLogic(fsm,Qnsz, QElig, QDEF , QDC)
Part II

35: end if
36: Push(Qnsz(q), HQ)
37: end for
38: return True

At line 4, we check for a GDC transition at current state q of the FSM by using
the partial function QDC . If GDC is defined at q, then we verify DR-10 which
requires that GDC must be the only valid NSL defined at q. We evaluate this at
line 5 by making sure that the set HQ contains only one hybrid NSL, i.e. it has only
one hybrid vector. This hybrid vector stores the value of ‘d’ for every element, as per
the logic of generating hybrid vectors described in Algorithm 12.2.

If DR-10 is satisfied, then at lines 6-8, we replace the value of ‘d’ with ‘0’ for
each element of the hybrid vector that corresponds to the input signal of the FSM.
Please refer to Step 1 of Section 11.3.5 to gain an insight into why this replacement
is required in the hybrid vector for the input signals of GDC.

At line 14, we call Algorithm 12.4 to generate boolean NSL from the hybrid NSL
defined at state q. Specifically, we convert each hybrid vector into its corresponding
boolean vector representation.

Lines 16-24 are executed only if a GDC transition is not defined at the current
state q (line 15). First, at lines 16-18, we call Algorithm 12.5 that verifies DR-13
by checking for nondeterministic boolean NSL defined at q. This algorithm is also
responsible for removing any duplicate boolean NSL at q. Since DR-10 requires that
GDC must be the only valid transition defined at a given FSM state, we cannot have
nondeterministic or duplicate boolean NSL in the case of GDC. That is why, we call
Algorithm 12.5 only if a GDC transition does not exist at q.

After that, at line 19, we check to see whether or not a DEF transition is defined
at q. If not, we perform design check DR-6 at lines 20-23. Specifically, at line 20,
we examine the number of unique boolean NSL defined at q (|HQ|) to make sure that
all possible next state conditions (2signalCount) are explicitly specified at q to make the
FSM’s next state function a total function.

Clearly, DR-6 does not need to be verified if DEF is defined at q. This is because
the main purpose of including DEF is to make sure that DR-6 is always satisfied. In
other words, DR-6 can never fail in the presence of DEF, hence there is no need to
do an explicit check. Also, we do not need to verify DR-6 in the case of GDC. Since
each element of the hybrid vector has a ‘d’ for GDC, therefore GDC automatically
covers all possible next state conditions by definition.

Please note that it is acceptable to specify both DEF and GDC transitions at
a given state of the input FSM. This is essentially the current behaviour of DESpot,
as it generates a selfloop of DEF at every state of the FSM while performing the

228

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

TDES-FSM translation process. However, in this case, the DEF transition will be
empty, as GDC covers all possible next state conditions.

At lines 26-27, we populate the local variables Σen and Σdis respectively by
making use of the enablement information for the current state q (QElig(q)) generated
by Algorithm D.3 (given in Appendix D). At lines 28-30, we use the enablement
information of q to remove the invalid NSL from the set of boolean NSL defined at
q. Precisely, if one or more IO signals have the output of False at state q (line 28),
then we call Algorithm 12.6 to perform the desired task (line 29).

At lines 32-34, we call Algorithm 12.7 to verify design requirement DR-11. It
is obvious that DR-11 does not need to be verified if GDC exists at q or Σen is
empty. For this reason, we call Algorithm 12.7 only if GDC is not defined at q and
the output of at least one IO signal is set to True at q (line 31).

After generating, processing and verifying the boolean NSL defined at q, we store
the verified set of valid boolean NSL corresponding to state q (HQ) in Qnsz at line
36.

Convert Hybrid to Boolean Next State Logic

Algorithm 12.4 performs the task of converting hybrid NSL into boolean NSL. Specif-
ically, it translates each hybrid vector into its corresponding boolean vector represen-
tation. This algorithm primarily realizes Step 2 of Section 11.3.5. Please refer to
the description of Step 2 to refresh your memory about the technique of converting
hybrid vectors into boolean vectors.

Algorithm 12.4 makes use of the following local variables. Please refer to Algo-
rithm 12.3 to see the definition of other variables used in Algorithm 12.4.
• tmpnsl: This is a 2-element tuple of the form (hybridV ector, q′), where hybridV ector
∈ H is a hybrid vector that represents a next state condition, and q′ is the desti-
nation state reached by this next state condition. We use the tmpnsl variable to
temporarily store the hybrid NSL that we are currently processing.

• tmpHQ: A set of tuples of the form (hybridV ector, q′). We use the tmpHQ variable
to temporarily store the set of hybrid NSL after processing them.
In Algorithm 12.4, we loop through all the FSM signals that are represented by

the elements of the hybrid vector (lines 1-14). For each element (i), we loop through
all the hybrid NSL that are stored in HQ (lines 3-10). By taking one hybrid NSL
(HQj) at a time, we examine its hybrid vector (HQj.hybridV ector) to see if the
current element of this hybrid vector (HQj.hybridV ector[i]) has the value of ‘d’ (line
4). If not, we proceed to the next hybrid NSL of HQ to evaluate the value stored at
the current element of its hybrid vector.

However, if the current element of the currently processed hybrid vector contains
the value of ‘d’, this means we need to break down this ‘d’ value into its corresponding
boolean values of ‘1’ and ‘0’. In other words, we need to break down this hybrid vector

229

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.4 ConvertHybridToBooleanNSL(HQ, signalCount)
1: for (i← 0 to signalCount− 1) do
2: tmpHQ, tmpnsl← ∅
3: for (j ← 0 to |HQ| − 1) do
4: if (HQj.hybridV ector[i] = d) then
5: tmpnsl← HQj

6: tmpnsl.hybridV ector[i]← 1
7: HQj.hybridV ector[i]← 0
8: tmpHQ← tmpHQ ∪ {tmpnsl}
9: end if

10: end for
11: if (tmpHQ 6= ∅) then
12: HQ← HQ ∪ {tmpHQ}
13: end if
14: end for

into two vectors, where ‘d’ should be replaced by ‘1’ in one vector, and ‘0’ in the other
vector.

In order to do that, we copy the current hybrid NSL to tmpnsl (line 5). Then,
we replace ‘d’ with ‘1’ in the current element of tmpnsl’s hybrid vector (line 6).
Likewise, we overwrite ‘d’ with ‘0’ in the current element of HQj’s hybrid vector that
we are currently processing (line 7). After that, we add the hybrid NSL of tmpnsl
to tmpHQ (line 8).

We repeat these steps (lines 5-8) for each hybrid NSL whose hybrid vector has
the value of ‘d’ for the current element. Once we get rid of d’s in all the hybrid
vectors for the current element, we add the set of converted hybrid NSL of tmpHQ
to HQ (line 12). We do this only if at least one hybrid vector had ‘d’ for the current
element, i.e. the set tmpHQ is not empty (line 11).

After processing all hybrid NSL of HQ for the current element, we proceed to
process the next element of the hybrid vectors. Once we have processed all the
elements, HQ will contain only boolean NSL when the algorithm ends.

Identify Nondeterministic Next State Logic

Algorithm 12.5 realizes Step 3 of Section 11.3.5. Specifically, this algorithm performs
design check DR-13 to identify the presence of any nondeterministic boolean NSL at
a given state of the FSM. Also, it detects and removes any duplicate boolean NSL.

In addition to the variables defined by Algorithm 12.3, Algorithm 12.5 makes use
of one local variable.
• identical: This boolean flag is set to False if two boolean vectors that we are

currently comparing are not identical. Otherwise, it retains its default value of

230

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.5 IdentifyNondeterministicNSL(HQ, signalCount)
1: for (i← 0 to |HQ| − 1) do
2: for (j ← (|HQ|− 1) down to (i+ 1)) do // looping backwards, j− 1 in

// every iteration
3: identical← True
4: for (k ← 0 to signalCount− 1) do
5: if (HQi.hybridV ector[k] 6= HQj.hybridV ector[k]) then
6: identical← False
7: end if
8: end for
9: if (identical) then

10: if (HQi.q
′ 6= HQj.q

′) then
11: print (“Error! At any given state of the FSM, the next state

conditions specified by all input vectors must be deterministic.”)
12: return False
13: else
14: HQ← HQ−HQj

15: end if
16: end if
17: end for
18: end for
19: return True

True.
In order to detect whether or not the set HQ contains nondeterministic or dupli-

cate boolean NSL, we need to compare the boolean vectors as well as their destination
states. Algorithm 12.5 uses nested for loops to perform this comparison.

The outer for loop starts by taking the first boolean NSL that is present at index 0
in HQ, and loops forward in every iteration (lines 1-18). The inner for loop begins
with the last element of HQ, and loops backward in every iteration (lines 2-17).
Before comparing any two boolean vectors, we set the identical boolean flag to True,
assuming that the boolean vectors we are about to compare are identical (line 3).

We loop through all elements of the two boolean vectors that we need to com-
pare (lines 4-8). We compare the boolean vectors by comparing the values of their
corresponding elements (line 5). If they have different values for at least one cor-
responding element, we set identical to False (line 6). This indicates that the
currently compared boolean vectors are not identical.

After comparing all elements of the boolean vectors, if identical remains True,
this implies that the two boolean vectors are identical. If so (line 9), we compare
the destination states of these identical boolean vectors. If their destination states
are different (line 10), this means we have nondeterministic NSL in HQ and the

231

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.6 RemoveInvalidNSL(HQ,Σdis)
1: for all (σ ∈ Σdis) do
2: for (i← (|HQ| − 1) down to 0) do // looping backwards, i− 1 in

// every iteration
3: if (HQi.hybridV ector[µ(σ)] = 1) then
4: HQ← HQ−HQi

5: end if
6: end for
7: end for

design requirement DR-13 fails. In this case, we return False to Algorithm 12.3
after displaying an error message (lines 11-12).

However, if two identical boolean vectors have the same destination states, this
indicates that we have deterministic but duplicate boolean NSL in HQ. Therefore,
we remove the latter instance of this duplicate boolean NSL from HQ (line 14). In
this way, at the successful completion of this algorithm, the set HQ contains only
unique boolean NSL.

Remove Invalid Next State Logic

Algorithm 12.6 performs Step 4 of Section 11.3.5 by removing the invalid NSL at a
given state of the FSM. Please refer to Algorithm 12.3 for the definition of variables
used in Algorithm 12.6.

Algorithm 12.6 uses a nested for loop to perform the desired task. The outer
for loop loops through the set Σdis that contains IO signals whose outputs are set
to False at the current FSM state (lines 1-7). By taking one disabled IO signal at
a time, the inner for loop loops through all the boolean NSL of the set HQ (lines
2-6). This for loop begins with the last element of HQ, and loops backward in every
iteration.

If the current IO signal appears as ‘1’ in the boolean vector of the currently
processed NSL (line 3), we remove this boolean NSL from HQ (line 4). After
removing all the invalid NSL from HQ for the currently disabled IO signal, we take
the next disabled IO signal from Σdis, and repeat the same steps. At the successful
termination of this algorithm, HQ contains only valid boolean NSL that could occur
in the physical system.

Check for Valid Next State Logic

Algorithm 12.7 is developed to verify design requirement DR-11 at a given state of
the FSM. In addition to the variables defined by Algorithm 12.3, Algorithm 12.7 uses
the following local variable:

232

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.7 CheckForValidNSL(HQ,Σen)
1: for all (σ ∈ Σen) do
2: hasNSL← False
3: for (i← 0 to |HQ| − 1) do
4: if (HQi.hybridV ector[µ(σ)] = 1) then
5: hasNSL← True
6: end if
7: end for
8: if (¬hasNSL) then
9: print (“Error! At any given state of the FSM, if the output of an IO

signal is set to True, then it must show up, either as occurring (1) or
as a Don’t Care (d), in at least one of the valid next state conditions,
that are represented by the input vectors specified at that state.”)

10: return False
11: end if
12: end for
13: return True

• hasNSL: This flag is set to True if an IO signal, whose output is set to True
at an FSM state, shows up as ‘1’ in at least one of the boolean vectors that are
defined at this state. Otherwise, it retains its default value of False.
Algorithm 12.7 uses a nested for loop to check DR-11. The outer for loop loops

through the set Σen that contains IO signals whose outputs are set to True at the
current FSM state (lines 1-12). Before checking DR-11 for each IO signal, we set
the hasNSL flag to False, assuming that the current IO signal fails DR-11 (line
2).

For each IO signal in Σen, the inner for loop loops through all the boolean NSL
stored in HQ (lines 3-7). If the current IO signal appears as ‘1’ in the boolean
vector of the currently processed NSL (line 4), we set hasNSL to True (line 5).
This indicates that the current IO signal satisfies DR-11.

However, after looping through all the NSL of HQ, if hasNSL remains False,
this implies that the currently enabled IO signal does not occur in any of the boolean
NSL of HQ. If so (line 8), DR-11 fails, and we return False to Algorithm 12.3 after
printing an error message (lines 9-10).

If DR-11 is satisfied for the current IO signal, we take the next enabled IO signal
from Σen, and repeat the same steps. The successful execution of this algorithm
indicates that DR-11 is satisfied at the current state of the FSM.

233

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

12.2.3 Generate TDES Supervisor
Algorithm 12.8 performs the process of generating a TDES supervisor from an in-
dividual Moore FSM. It does so by creating and populating the quintuple of the
supervisor S = (X,ΣS, ξ, xo, Xm), where X is the state set, ΣS is the event set,
ξ : X×ΣS → X is the partial transition function, xo is the initial state, and Xm is the
set of marked states. Specifically, Algorithm 12.8 realizes the FSM-TDES translation
logic described in Sections 11.3.1−11.3.4 and Steps 5-6 of Section 11.3.5. Please
refer to these sections to refresh your memory about the translation method, as we
will not restate any part of this method here.

Local Variables
In addition to the variables introduced in Section 12.2, Algorithm 12.8 defines and
uses the following local variables to generate a supervisor:
• stateNumber: This integer variable is used while creating names for new non-

sampled (intermediate) states that we add to the supervisor during the translation
process.

• Xrelated: This set keeps track of the non-sampled states of the supervisor that
are related to the currently processed boolean vector. Basically, these are the
non-sampled states that get processed (added/reused) while we are generating all
possible sequences of concurrent string transitions corresponding to the current
boolean vector.

• Xpend: This set contains the states of the supervisor that are pending to be pro-
cessed, as we are in the process of generating all possible sequences of concurrent
string transitions from the current boolean vector.

• Tposs: The partial function Tposs : X → Pwr(ΣS) maps the states of a supervisor to
the events that are possible at these states with respect to the currently processed
boolean vector. Sometimes, we will treat this function like the set Tposs ⊆ X ×
Pwr(ΣS).

We will use the information stored in Tposs to define the transitions in the
supervisor. Also, Tposs will enable us to reuse non-sampled states, while we are
in the process of generating all possible sequences of concurrent strings from the
boolean vector that we are currently processing.

• Tdef : The partial function Tdef : X → Pwr(ΣS) maps the states of a supervisor to
the events that are defined at these states. In other words, for a given state x of the
supervisor, this function returns the set of events for which the transitions already
exist at x. This function will sometimes be treated like the set Tdef ⊆ X×Pwr(ΣS).

We will use the information stored in Tdef to make sure that the supervisor
remains deterministic, and we do not add any nondeterministic or duplicate tran-
sitions to the transition function ξ.

234

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

• Σuncont: This set contains the uncontrollable events that are present in the occur-
rence image of the concurrent string that we are currently generating. In terms
of an FSM, Σuncont stores the input signals that show up as ‘1’ in the currently
processed boolean vector.

• Tuncont: The partial function Tuncont : X → Pwr(Σu) maps the states of a supervisor
to the uncontrollable events that should be selflooped at these states, if they are
not already defined. We will sometimes treat this function like the set Tuncont ⊆
X × Pwr(Σu).

If the currently processed boolean vector is not part of a GDC transition, we
will use Σuncont to populate Tuncont for each of the related non-sampled states. In
case of GDC, we will populate Tuncont for the source sampled state and the related
non-sampled states using fsm.ΣIn.

• Ttick : Let Xsamp ⊆ X be the set of sampled states of the supervisor. This partial
function Ttick : Xsamp → Pwr(X) maps the sampled states of a supervisor to their
related non-sampled states. We will sometimes treat this function like the set
Ttick ⊆ Xsamp × Pwr(X).

At the end of the translation process, if a tick transition does not already exist
at any non-sampled state, we will use the information stored in Ttick to define a
tick transition at the non-sampled state that goes back to its source sampled state.
Please refer to Step 6 of Section 11.3.5 for details.

• addedToPend: This boolean flag is set to True if a non-sampled destination state
x′ ∈ X is recently added to Xpend, as we are in the process of defining a σ ∈ ΣS
transition at state x ∈ X in the supervisor.

• futureExists: This boolean flag is set to True if there exists a non-sampled
state x′ ∈ Xrelated that has the same future, i.e. same set of events possible, as
the destination state of the currently processed σ ∈ ΣS transition. In this case,
instead of adding a new non-sampled state to the supervisor, we will reuse x′ by
making it the destination state for the σ transition.

Initializing the Translation Process
For the current Moore FSM, Algorithm 12.8 begins to generate a TDES supervisor by
populating its event set ΣS at line 4. We assign the initial state xo of the supervisor
at line 5. At lines 6-10, we generate the set of marked states Xm of the supervisor
according to the marking option selected by the designers while initiating the FSM-
TDES translation process in DESpot (see Section 11.3.4 for details).

At lines 11-110, we loop through all states of the current FSM (fsm.Q). By
taking one FSM state q at a time, we create the state set X, define all possible
sequences of the concurrent string transitions, and construct the transition function
ξ of the supervisor by processing the boolean NSL defined at q.

At lines 12-14, we add the currently processed FSM state q to the state set X, if

235

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.8 GenerateTDESSupervisor (fsm,Qnsz, QDC ,S) Part I
1: Xrelated, Xpend, Tposs, Tdef , Ttick , Tuncont,Σuncont ← ∅
2: X,ΣS, ξ, xo, Xm ← ∅
3: stateNumber ← 0
4: ΣS ← fsm.ΣIO ∪ fsm.ΣIn ∪ {τ}
5: xo ← fsm.resetState
6: if (fsm.marking = Initial) then
7: Xm ← {xo}
8: else if (fsm.marking = Sampled) then
9: Xm ← fsm.Q

10: end if
11: for all (q ∈ fsm.Q) do
12: if (q /∈ X) then
13: Push(X, q)
14: end if
15: Push(Tposs, (q, ∅))
16: Push(Tdef , (q, ∅))
17: Push(Ttick , (q, ∅))
18: if (QDC(q)) then
19: Push(Tuncont, (q, fsm.ΣIn))
20: end if
21: HQ← Qnsz(q)
22: for (i← 0 to |HQ| − 1) do
23: for all (σ ∈ fsm.ΣIO ∪ fsm.ΣIn) do
24: if (HQi.hybridV ector[µ(σ)] = 1) then
25: Tposs(q)← Tposs(q) ∪ {σ}
26: if (σ ∈ fsm.ΣIn) then
27: Σuncont ← Σuncont ∪ {σ}
28: end if
29: end if
30: end for
31: Push(Xpend, q)
32: while (Xpend 6= ∅) do
33: x← Pop(Xpend)
34: if (x = q ∧ Tposs(x) = ∅) then
35: Tposs(x)← {τ}
36: end if
37: for all (σ ∈ Tposs(x)) do
38: futureExists← False
39: addedToPend← False
40: if (σ 6= τ) then

236

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.8 GenerateTDESSupervisor (fsm,Qnsz, QDC ,S) Part II
41: if (σ ∈ Tdef (x)) then
42: x′ ← ξ(x, σ)
43: if (x′ /∈ Xrelated) then
44: Push(Xrelated, x

′)
45: Push(Xpend, x

′)
46: addedToPend← True
47: end if
48: else
49: for all (x′ ∈ Xrelated) do
50: if (x 6= x′ ∧ [(Tposs(x)− {σ} = Tposs(x′)) ∨

(Tposs(x)− {σ} = ∅ ∧ Tposs(x′) = {τ})]) then
51: Push(ξ, (x, σ, x′))
52: Tdef (x)← Tdef (x) ∪ {σ}
53: futureExists← True
54: end if
55: end for
56: if (¬ futureExists) then
57: x′ ← “x”+stateNumber
58: stateNumber ← stateNumber + 1
59: Push(X, x′)
60: Push(ξ, (x, σ, x′))
61: Tdef (x)← Tdef (x) ∪ {σ}
62: Push(Tposs, (x′, ∅))
63: Push(Tdef , (x′, ∅))
64: Push(Tuncont, (x′, ∅))
65: Push(Xrelated, x

′)
66: Push(Xpend, x

′)
67: addedToPend← True
68: end if
69: end if
70: if (addedToPend) then
71: if (Tposs(x)− {σ} = ∅) then
72: Tposs(x′)← {τ}
73: else
74: Tposs(x′)← Tposs(x)− {σ}
75: end if
76: end if
77: else
78: if (HQi.q

′ /∈ X) then
79: Push(X,HQi.q

′)
80: end if

237

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.8 GenerateTDESSupervisor (fsm,Qnsz, QDC ,S) Part III
81: Push(ξ, (x, τ, HQi.q

′))
82: Tdef (x)← Tdef (x) ∪ {τ}
83: end if
84: end for
85: end while
86: if (QDC(q)) then
87: for all (x ∈ Xrelated) do
88: Tuncont(x)← Tuncont(x) ∪ fsm.ΣIn

89: end for
90: else if (Σuncont 6= ∅) then
91: for all (x ∈ Xrelated) do
92: for all (σ ∈ Σuncont) do
93: if (σ /∈ Tuncont(x)) then
94: Tuncont(x)← Tuncont(x) ∪ {σ}
95: end if
96: end for
97: end for
98: end if
99: for all (x ∈ Xrelated) do
100: if (x /∈ Ttick(q)) then
101: Ttick(q)← Ttick(q) ∪ {x}
102: end if
103: end for
104: Σuncont, Tposs(q)← ∅
105: for all (x ∈ Xrelated) do
106: Tposs(x)← ∅
107: end for
108: Xrelated ← ∅
109: end for
110: end for
111: while (Tuncont 6= ∅) do
112: (x,Σuncont)← Pop(Tuncont)
113: for all (σ ∈ Σuncont) do
114: if (σ /∈ Tdef (x)) then
115: Push(ξ, (x, σ, x))
116: Tdef (x)← Tdef (x) ∪ {σ}
117: end if
118: end for
119: end while

238

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm 12.8 GenerateTDESSupervisor (fsm,Qnsz, QDC ,S) Part IV
120: while (Ttick 6= ∅) do
121: (q,Xrelated)← Pop(Ttick)
122: for all (x ∈ Xrelated) do
123: if (τ /∈ Tdef (x)) then
124: Push(ξ, (x, τ, q))
125: Tdef (x)← Tdef (x) ∪ {τ}
126: end if
127: end for
128: end while
129: for all (q ∈ fsm.Q) do
130: if (τ /∈ Tdef (q)) then
131: Push(ξ, (q, τ, q))
132: Tdef (q)← Tdef (q) ∪ {τ}
133: end if
134: end for
135: S← (X,ΣS, ξ, xo, Xm)

q does not already exist in X. At line 15, we add a tuple for state q of the supervisor
to the set Tposs. The second element of this tuple is an empty set. Later on (at line
25), while processing the boolean NSL defined at q, we will update the set of events
that are possible at q in Tposs. Similarly, at line 16, we add a tuple to the set Tdef
corresponding to q. We initialize the second element of this tuple with an empty set,
indicating that no events are currently defined at q in the supervisor. Likewise, at
line 17, we add q’s tuple to the set Ttick while initializing its second element with an
empty set.

Lines 18-20 are executed only if a GDC transition exists at state q of the
FSM, i.e. QDC(q) = True. Please recall that in the case of a GDC transition,
our translation method (Section 11.3) does not define any state changing transitions
for the input signals of the FSM. This implies that we need to add selfloops of all
uncontrollable events (input signals) at state q of the supervisor. In order to do that
at the end of this algorithm, we add a tuple of q along with the set of current FSM’s
input signals (fsm.ΣIn) to the set Tuncont.

At line 21, we retrieve the set of all NSL defined at q from Qnsz, and store it in the
HQ variable. At lines 22-109, we loop through the set HQ, take one NSL at a time,
and then use it to generate all possible sequences of concurrent string transition(s)
at state q in the supervisor.

Lines 23-30 update Tposs(q) and populate Σuncont by looping through all signals
of the FSM. Specifically, we take one signal σ at a time (line 23), and determine
whether or not σ shows up in the boolean vector of the currently processed NSL as a
‘1’. If it does (line 24), we add σ to the set of events that are possible at q (line 25).

239

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Moreover, if σ is an input signal (uncontrollable event, line 26), we add σ to Σuncont

(line 27). Afterwards, we will use Σuncont to update Tuncont, only if GDC does not
exist at q. Please recall from Algorithm 12.3 that in the case of GDC, we assigned
the value of ‘0’ to each element of the vector that corresponds to the input signals of
the FSM. Therefore, Σuncont will be empty for GDC anyway.

At line 31, we add the sampled state q of the supervisor to Xpend. This indicates
that q is pending to be processed by the translation algorithm, i.e. we need to define
appropriate transitions at q by using the information stored in Tposs(q). Lines 32-85
loop through the set Xpend until it becomes empty. At line 33, we remove one state
x from Xpend for processing.

Lines 34-36 are executed if the boolean vector that we are currently processing
represents a TICK (tick only) transition. At line 34, we use an if statement to
determine if we have a TICK transition by checking two conditions: 1) the state x
that we are currently processing is a sampled state (since TICK transition can be
defined only at a sampled state), and 2) no activity events are possible at x (Tposs(x)
will be empty corresponding to TICK of an FSM). If both conditions evaluate to
True, we add a tick event to Tposs(x) to indicate that tick is the only event that is
possible at x (line 35).

At lines 37-84, we loop through each event σ that is possible at state x of the
supervisor. Before initiating the process to define a σ transition at x, we set the
boolean flags, futureExists and addedToPend, to False (lines 38-39). If σ is
an activity event (line 40), we execute lines 41-76 to define a σ transition at x.
Otherwise (line 77), we execute lines 78-82 to define a tick transition at x.

Defining a non-tick Transition
Our strategy to define a non-tick σ transition at x is to first determine whether or not
a σ transition already exists at x. If it does, we simply reuse the existing σ transition.
However, if σ is not already defined at x, then we define a new σ transition at x. We
do this either by using an existing non-sampled state as the destination state for the
σ transition, or by adding a new non-sampled state to the supervisor. Now we will
discuss how the algorithm realizes this logic to define a non-tick σ transition at x.

In order to evaluate whether or not a σ transition exists at x, we use the set
Tdef . If a σ transition is already defined at x (line 41), we execute lines 42-47. At
line 42, we get the destination state of this σ transition from the partial transition
function ξ and store it in x′. Then, we determine whether or not this non-sampled
destination state x′ is present in Xrelated. If not (line 43), we add x′ to sets Xrelated

and Xpend (lines 44-45). As we have added a new element to Xpend, we update the
value of the boolean flag addedToPend to True (line 46).

Please note that due to the check performed at line 43, we add a non-sampled
state x′ to Xrelated and Xpend only when we come across x′ for the first time while
processing the current boolean vector. If we encounter x′ multiple times while defining
different possible sequences of the concurrent string with the same occurrence image

240

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

corresponding to the current boolean vector, we do not add x′ again to neither Xrelated

nor Xpend.
It is also notable that at line 43, we are only checking for the existence of x′ in

Xrelated, and not in Xpend. The reason is that we always add a non-sampled state
x′ to Xrelated and Xpend together. However, we remove states one by one from Xpend

for processing. If we check Xpend for the existence of x′, we might end up adding
x′ to Xpend again, even though we have already processed x′ after removing it from
Xpend earlier. But this is not the case with Xrelated. Since we do not remove any
non-sampled states from Xrelated while processing the current boolean vector, the set
Xrelated keeps track of all the non-sampled states that we have encountered till now
while processing the current boolean vector. This is regardless of whether these non-
sampled states have already been processed or are pending to be processed by the
algorithm.

Lines 49-68 are executed if a σ transition does not already exist at x (line 48).
Before defining a σ transition at x, we first need to decide about its destination state,
i.e. do we need to add a new non-sampled state to the supervisor as the destination
state for σ, or does there already exist a non-sampled state that we can reuse as the
destination state for the σ transition?

In order to answer these questions, we loop through the set Xrelated (lines 49-
55). For each state x′ of Xrelated, we compare the future of x′ with the future of the
destination state for the σ transition (line 50). In order to do this comparison, we
first make sure that we are not comparing the currently processed state x to itself, i.e.
x 6= x′. After that, we specify two main conditions in the if statement to compare
the futures. If any of these conditions evaluates to True, this means the futures of x
and x′ are same, and we can reuse the existing state x′ as the destination state for
the σ transition.

The first condition of the if statement after the AND operator (∧) will be True
if the set of events possible at x′ (Tposs(x′)) is equal to the set of events that will be
possible at the destination state for σ transition. We determine the set of events that
are possible at the destination state for σ transition by excluding σ from the set of
events that are possible at x (Tposs(x)− {σ}).

It is noteworthy that if σ is the only activity event possible at x, i.e. Tposs(x) =
{σ}, then we have Tposs(x) − {σ} = ∅. In this case, we do not need to find a state
x′ ∈ Xrelated that does not have any events possible, i.e. Tposs(x′) = ∅. Rather, we
should look for some x′ that has only tick event possible, i.e. Tposs(x′) = {τ}. This is
because a concurrent string always ends with a tick. If any such x′ exists in Xrelated,
we should reuse this x′ as the destination state for the σ transition. We evaluate
this scenario by defining a composite condition after the OR operator (∨) in the if
statement.

Please note that Xrelated contains the non-sampled states that are related only
to the current boolean vector. Therefore, while reusing x′ in the above-mentioned
scenario, there is no need to examine the destination state of the tick transition that

241

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

is possible at x′. In other words, it is guaranteed that this tick will always take us to
the correct destination sampled state.

If we find a state x′ in Xrelated that we can reuse as the destination state for
the σ transition (line 50), then we execute lines 51-53 to perform the desired
steps. Precisely, we define a σ transition at x and add the transition (x, σ, x′) to the
transition function ξ (line 51). As we have defined a new σ transition at x, we add
this information to Tdef by updating the set of events for which the transitions exist
at x (line 52). Accordingly, we update the futureExists boolean variable to True
(line 53).

Lines 56-68 are executed if futureExists = False, i.e. there does not exist a
non-sampled state in Xrelated that has the same future as the destination state for the
σ transition. In this case, we need to add a new non-sampled state to the supervisor.
At line 57, we construct the name of this new state by appending stateNumber to
“x”, and store it in x′. For example, if we are adding the first non-sampled state to
the supervisor, then we create the state name “x0”, and assign this name to x′. At
line 58, we increment the stateNumber variable by 1 in order to use the subsequent
integer value while creating the name for the next non-sampled state.

At line 59, we add the newly created non-sampled state x′ to X. At line 60,
we define a σ transition at x, and add the transition (x, σ, x′) to ξ. Line 61 adds
the information about the definition of this σ transition to Tdef by updating the set
corresponding to x in Tdef . As we have added a new state x′ to the supervisor, we
add new tuples for x′ to sets Tposs, Tdef , and Tuncont at lines 62-64. Also, we add
x′ to Xrelated and Xpend at lines 65-66. Accordingly, we update the boolean flag
addedToPend to True at line 67.

Now that we have completed the processing for defining the non-tick σ transition
at x, we need to check the value of the addedToPend flag. This is required in order
to determine whether or not we have come across the destination state x′ for the first
time while processing the current boolean vector. If this is is the first time that we
are dealing with x′ while processing the current boolean vector, i.e. addedToPend =
True (line 70), we should specify the future of x′ by updating the set of events that
are possible at x′ in Tposs. We do this at lines 71-75.

We consider two cases while specifying the future of x′. If σ was the only event
possible at x, then we have Tposs(x)−{σ} = ∅ (line 71). This indicates that we have
defined all activity events in the concurrent string that we are generating correspond-
ing to the current boolean vector. In this case, we add a tick event to Tposs(x′) to
signify that only tick is possible at x′ (line 72). On the other hand, there could be
some other activity events possible at x besides σ. If so (line 73), we specify the set
of events possible at x′ by excluding σ from the set of events that are possible at x
(line 74).

Defining a tick Transition
If the currently processed event is a tick event, i.e. σ = τ (line 77), then we define

242

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

a tick transition at x by performing the required steps at lines 78-82. It is notable
that a concurrent string always ends with a tick. Therefore, the destination state of
the current boolean vector becomes the destination state of this tick transition.

At lines 78-80, we add the destination sampled state of the tick transition
(HQi.q

′) to X, if it does not already exist in X. At line 81, we define a tick
transition at x and add the transition (x, τ, HQi.q

′) to ξ. At line 82, we update
Tdef (x) by adding a tick event to the set of events that are defined at x.

It is worth clarifying that we are defining a tick transition at x without checking
whether or not a tick transition already exists at x. This is because of the fact
that our translation method (Section 11.3), and hence this translation algorithm,
does not reuse any non-sampled states while defining concurrent string transitions
corresponding to two different boolean vectors defined at x. The only exception to this
is when we have to reuse a non-sampled state in order to keep the TDES deterministic.
Even in that case, we cannot have a tick transition already possible/defined at x that
is going to the same/different destination sampled state. Please refer to Step 5 of
Section 11.3.5 for details.

After processing the current event σ, we proceed to take the next event that is
possible at x from Tposs(x) to generate its transition at x. Once we have defined
transitions for all the events that are possible at x, this completes the processing of
the current state x. After that, we extract another state from Xpend for processing.
We then repeat the steps discussed above to define transitions for the events that
are possible at this subsequent state taken from Xpend. We repeat this process until
all states of the supervisor that are related to the current boolean vector have been
processed, i.e. Xpend = ∅.

At this point, Xpend = ∅ signifies that we have generated all possible sequences of
concurrent string transitions in the supervisor corresponding to the current boolean
vector. It is notable that if the current boolean vector represents a non-TICK tran-
sition, then we have defined only state changing transitions in the supervisor till now
with respect to the current boolean vector.

Preparing to Add Selfloop Transitions
Please recall that at Step 6 of Section 11.3.5, our translation method adds transitions
for tick and uncontrollable events at the appropriate states of the supervisor, if needed.
In order to perform this step at the end of this algorithm, we update our sets at lines
86-103 to store the required information corresponding to the currently processed
boolean vector.

At lines 86-98, we update the set Tuncont. Specifically, for each non-sampled
state that gets processed as part of the current boolean vector, i.e. for each state
x ∈ Xrelated, we update its corresponding set of uncontrollable events in Tuncont.

In order to correctly update Tuncont, we begin by checking whether or not GDC
is defined at the source sampled state q of the current boolean vector. If GDC exists
at q (line 86), we execute the for loop to update Tuncont (lines 87-89). Precisely, for

243

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

each non-sampled state x of Xrelated, we add the set of current FSM’s input signals
(fsm.ΣIn) to Tuncont(x).

However, if GDC does not exist at q, we update the set of uncontrollable events
in Tuncont for the related non-sampled states at lines 91-97. We perform these steps
if at least one input signal appears as ‘1’ in the current boolean vector, i.e. the set
Σuncont is not empty (line 90). In this case, we use a nested for loop to loop through
the set of related states (Xrelated), and the set of uncontrollable events (Σuncont) that
might need to be selflooped at these related states at the end of this algorithm (lines
91-97). For each state x of Xrelated, we add an event σ from Σuncont to Tuncont(x),
if σ does not already exist in Tuncont(x). This makes sure that we do not add any
duplicate instances of uncontrollable events to Tuncont(x).

At lines 99-103, we update the set Ttick corresponding to the source sampled
state q of the current boolean vector. Please recall that Xrelated contains all the non-
sampled states that get processed as part of the current boolean vector. Therefore,
we add each state x of Xrelated to Ttick(q). We do this only if x does not already
belong to Ttick(q) in order to guarantee that Ttick(q) does not contain any duplicate
non-sampled states.

After updating our sets with respect to the current boolean vector, we now reset
some of our variables at lines 104-108. We do this in order to prepare these variables
for the processing of the next boolean vector. First, we empty out the set Σuncont

at line 104. Since our translation method does not reuse any non-sampled states
across different boolean vectors, we need to reset the set of events that are possible
at a given state in Tposs. Precisely, we reset the set of events that are possible at q
in Tposs at line 104. At lines 105-107, we empty out the set of events in Tposs for
all the non-sampled states that get processed as part of the current boolean vector,
i.e. for all states of Xrelated. Finally, we remove all non-sampled states from Xrelated

at line 108.
After resetting the variables, we take the next boolean NSL defined at q from

HQ and start processing it. Once we have processed all the NSL corresponding to
state q, we proceed to the next FSM state. In other words, we take the next FSM
state from fsm.Q, and then process its boolean NSL one by one in order to generate
the corresponding concurrent string transitions in the supervisor. After processing
all FSM states, we now have a supervisor that is complete with respect to the state
changing transitions of the activity events.

Adding Selfloops of Uncontrollable and tick Events
The rest of this algorithm uses the information stored in our sets to realize Step 6
of Section 11.3.5. At lines 111-119, we loop through the set Tuncont to add selfloops
of uncontrollable events in the supervisor, if needed. At line 112, we extract one
element of Tuncont. For every uncontrollable event σ that we need to add as a selfloop
at state x (line 113), we first determine whether or not σ is already defined at x
by using the set Tdef (x). If σ transition does not exist at x (line 114), we define a

244

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

selfloop of σ at x, and add this transition (x, σ, x) to the transition function ξ (line
115). As we have defined a new σ transition at x, we update Tdef (x) accordingly.

At lines 120-128, we loop through the set Ttick . We use the elements of Ttick to
define a tick transition at each of the non-sampled states of the supervisor where tick
event is not already defined. We define this tick transition from a non-sampled state
x back to its source sampled state q. We add the transition (x, τ, q) to ξ (line 124),
and update Tdef (x) accordingly (line 125).

At lines 129-134, we loop through the set fsm.Q to add a selfloop of tick event
at every sampled state q of the supervisor where tick event is not already defined. We
define a tick transition at q by adding the transition (q, τ, q) to ξ (line 131). Then,
we update Tdef (q) accordingly (line 132).

This completes the translation of the current Moore FSM into a TDES supervisor,
as per the FSM-TDES translation method described in Section 11.3. Finally, we end
the algorithm by assigning the five elements (X,ΣS, ξ, xo, Xm) that we have populated
during this algorithm to the quintuple of the supervisor S.

12.3 Complexity Analysis
Now we are ready to analyze Algorithm 12.8 and determine its worst case time com-
plexity for translating an individual Moore FSM into a TDES supervisor. Please
note that in the following analysis, we will only focus on the significant operations
performed by the algorithm, and ignore the constant time operations.

In order to make our discussion concise and clear, we will use the following vari-
ables as shorthand notations to refer to the variables used in Algorithm 12.8 for an
individual Moore FSM:
1. Let n be the number of FSM states, i.e. n = |fsm.Q|.
2. Let u be the number of IO signals, u = |fsm.ΣIO|.
3. Let i be the number of input signals, i = |fsm.ΣIn|.
4. Let s be the number of FSM signals, s = u+ i = |fsm.ΣIO ∪ fsm.ΣIn|.

By looking at Algorithm 12.8, we note that it consists of four loops that are
executed sequentially. Specifically, the algorithm has two for loops at lines 11-110
(FL-1) and 129-134 (FL-2), and two while loops at lines 111-119 (WL-1) and
120-128 (WL-2). We will analyze each of these additive loops one by one.

Analyzing FL-1
In Algorithm 12.8, the outermost for loop starting at line 11 executes n times. Inside
this loop, the nested for loop beginning at line 22 runs at most 2s times. Please
recall that the variable HQ contains all the boolean NSL that are defined at an FSM
state. Hence, for an FSM having s number of signals, the number of possible boolean
NSL defined at an FSM state is bounded by 2s.

245

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Within this for loop, we have several for loops at lines 23-30, 87-89, 91-97,
99-103 and 105-107, and a while loop at lines 32-85. Next, we analyze all these
sequential loops one by one.

The for loop at lines 23-30 has the worst case time complexity of O(s). The two
for loops at lines 99-103 and 105-107 have the complexity of O(2s) each. Please
recall that Xrelated stores the non-sampled states of the supervisor that are related to
the currently processed boolean vector. As per the formula defined in Section 11.3.1,
the number of non-sampled states that our translation method adds corresponding
to an FSM state has an upper bound of 2s − 1, assuming that all output signals are
enabled and every IO and input signal of the FSM shows up as ‘1’ in the currently
processed boolean vector. Ignoring the constant of 1, we get the complexity of O(2s)
for each of these two for loops.

The for loop at lines 87-89 is executed only in the case of a GDC transition.
Please recall that we assign the value of ‘0’ to each element of the boolean vector that
corresponds to an input signal of the FSM. This implies the for loop starting at line
87 runs at most 2u times. Hence, it has the worst case complexity of O(2u).

The nested for loop at lines 91-97 has the worst case complexity of O(i·2s). This
is because the for loop starting at line 91 has the complexity of O(2s), and the for
loop at lines 92-96 gives the complexity of O(i).

We note that O(s) ≤ O(2u) ≤ O(2s) ≤ O(i·2s). Since the five for loops analyzed
above are additive, their worst case time complexity after ignoring the lesser terms is
O(i·2s).

Now we will analyze the while loop at lines 32-85. The for loop at lines 49-55
has the complexity of O(2s). The for loop starting at line 37 runs at most s times.
This implies the for loop at lines 37-84 has the complexity of O(s·2s). The while
loop starting at line 32 is limited by O(2s). Therefore, the while loop at lines 32-85
has the worst case time complexity of O(s·2s).

It is notable that the while loop and five for loops analyzed above are additive.
Hence, they have an overall worst case time complexity of O(s·2s), since O(i·2s) ≤
O(s·2s).

Based on the foregoing analysis, we deduce that the for loop at lines 22-109 has
the complexity of O(s·2s). This in turn implies that the worst case time complexity
of the for loop at lines 11-110 (FL-1) is O(n·s·2s).

Analyzing WL-1
The for loop at lines 113-118 has the complexity of O(i). The while loop starting
at line 111 is limited by O(n·2s). This is because Tuncont contains information about
the uncontrollable events that need to be selflooped at the end of the translation
algorithm. This information is stored corresponding to each state of the supervisor.
Please recall from Section 11.3.1 that our translation method adds a maximum of
2s − 1 non-sampled states corresponding to each FSM state. This gives us the worst
case state space of n·2s for the translated supervisor. As a result, the worst case time

246

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

complexity of the while loop at lines 111-119 (WL-1) is O(n·i·2s).

Analyzing WL-2
The for loop at lines 122-127 has the complexity of O(2s). The while loop starting
at line 120 is executed n times. Therefore, the time complexity of the while loop
at lines 120-128 (WL-2) is O(n·2s).

Analyzing FL-2
The for loop at lines 129-134 (FL-2) has the complexity of O(n).

Overall Complexity
We note that the two for loops and two while loops at lines 11-110 (FL-1), 111-119
(WL-1), 120-128 (WL-2) and 129-134 (FL-2) are sequential, hence additive. It is
evident that O(n) ≤ O(n·2s) ≤ O(n·i·2s) ≤ O(n·s·2s). Consequently, we conclude
that the worst case time complexity of Algorithm 12.8 is O(n·s·2s).

247

Chapter 13

Combination Lock Example

In this chapter, we present the example of a 4-bit Combination Lock to demonstrate
the application of our Moore FSM-TDES translation approach presented in Chapters
11 and 12. This example is based on the Combination Lock example to which Hamid
(2014) applied his DESpot (2023) algorithms for TDES-FSM translation, but with
some refined functionality.

We begin this chapter by describing the overall structure and specifications of the
4-bit Combination Lock. Then, we discuss the design of modular controllers for this
lock system and express them as individual Moore FSM. This is followed by the trans-
lation of these Moore FSM into TDES supervisors using our FSM-TDES translation
approach. After that, we introduce TDES plant models for the Combination Lock
and discuss verification results of the closed-loop system in our ||SD setting. Finally,
we close this chapter by presenting our conclusions with respect to the correctness of
our FSM-TDES translation approach using the Combination Lock example. Please
see Section E.4 (Appendix E) for details on how we arrived at these conclusions.

13.1 System Description
In this section, we introduce our 4-bit Combination Lock system by presenting its
structure, specifications and components.

13.1.1 Structure and Specifications
The 4-bit Combination Lock is a digital lock system that uses a 4-bit passcode to
provide secured access to authentic users. In addition to the numeric pad to enter
the 4-bit passcode, the combination lock has three user buttons labelled as Enter,
Change and Reset.

The users of the Combination Lock can perform two primary tasks: 1) open the
lock, and 2) change the existing 4-bit passcode. To perform either of these two tasks,

248

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

4-bit
Combination

Lock

Reset

open
new
alarm

enter
change

Clock

Input X[3:0]

Figure 13.1: An Overview of 4-bit Combination Lock

the user must first enter the correct existing passcode and then press the appropriate
button (Enter or Change). If user enters an incorrect passcode, the alarm goes off.
Once the system goes to the alarm state, the normal system functionality becomes
unavailable to the users. The alarm can only be cancelled by pressing the Reset
button, which also resets the currently saved passcode to its default value.

An overview of the 4-bit Combination Lock is shown in Figure 13.1. At an abstract
level, the system can receive three binary input signals from the users: enter, change
and reset. The users need to press the appropriate buttons to provide these input
signals to the system. The label of “Input X[3:0]” represents the 4-bit passcode that
will be provided by the users as an input to perform their desired task. The system
generates three output signals that are observable by the users: open, new and alarm.

Below, we describe the two functionalities of the 4-bit Combination Lock in detail.
1) Open the Lock

In order to open the combination lock, the user inputs the 4-bit passcode and sets
the input signal enter to ‘1’ for one clock cycle by pressing the Enter button.
If the 4-bit passcode matches the stored combination, the system gets unlocked
and the door opens. The opening of the door is represented by the output signal
open being set to ‘1’. The door stays open until the user presses the Enter button
again, i.e. sets enter signal to ‘1’ for one clock cycle. At this point, the door closes
(output of open signal is set to ‘0’) and the system goes back to its locked state.

However, if a user tries to open the lock by entering the incorrect passcode,
the alarm goes off. This is indicated by setting the output signal alarm to ‘1’. In
the alarm state, the system ceases its normal operation and users cannot access
the regular system functionality. The alarm can only be cancelled (alarm output
set to ‘0’) by pressing the Reset button, i.e. by setting the reset input signal to
‘1’ for one clock cycle.

2) Change Saved Code
In order to change the existing passcode, the user inputs the 4-bit passcode and

249

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

sets the input signal change to ‘1’ for one clock cycle by pressing the Change
button. If the 4-bit passcode matches the stored combination, the system sets the
new output signal to ‘1’. This is an indication to the user that system is ready
to accept the new passcode. The user provides the new passcode and presses the
Change button to set the change signal to ‘1’ for one clock cycle. The system
saves the new passcode and sets the output of new back to ‘0’.

However, if the user attempts to change the existing passcode by entering the
incorrect passcode, then the alarm goes off as described above.
With respect to the input signals of the Combination Lock, we make two important

assumptions. As stated earlier, users provide input signals to the system by pressing
the appropriate buttons. In this context, we first assume that the input signals
provided by the users have been preprocessed into pulses before they reach the system.
In simple words, when user presses any button, its corresponding input signal should
be set to ‘1’ for exactly one clock cycle, and then it must be set to ‘0’ for the next
clock cycle. In this way, we ensure that the system sees the inputs only once rather
than across multiple clock edges.

Secondly, we assume that the clock frequency is much higher than the rate at
which the users could generate input signals by pressing the buttons. In other words,
the clock must be fast enough that several clock cycles must have gone by between
any two button presses. For example, while changing the existing passcode, the user
enters the new passcode and presses the Change button. In this case, the clock must
be sufficiently fast to detect the change input at the next clock edge, save the new
passcode, and have the change signal set back to ‘0’ for at least one clock cycle, before
the user could press any other button to initiate the next task which will be detected
on the following clock edge. This makes sure that the system responds correctly to
the users’ inputs and it does not miss anything.

13.1.2 System Components
Figure 13.2 shows the block diagram for the 4-bit Combination Lock system. In
order to design the Combination Lock with the aforementioned specifications, we
decompose the system into three interacting components. Below, we discuss each of
these components one by one.

1) Controller expressed as a Moore FSM
The primary component of the 4-bit Combination Lock that we are interested in
is the system controller. We will design and express this controller as a Moore
FSM. Instead of designing a monolithic controller, we will develop three modular
controllers that work together to provide the desired system functionality. We will
discuss the design of each modular FSM in Section 13.2.1.

As shown in Figure 13.2, the inputs and outputs of the Combination Lock
system (Figure 13.1) become the inputs and outputs of the Moore FSM. Besides

250

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Combination
Lock FSM

4-bit
Comparator

D[3:0] Q[3:0]X[3:0]

enter

change

equal

open
new
alarm

save_code

Reset Clock

4-bit
Register

Input

Figure 13.2: Block Diagram for 4-bit Combination Lock

these signals, we have two internal signals, equal and save code, that facilitate
interaction between the three system components.

In order to open the lock or change the current passcode, the user must first
enter the system’s existing passcode. Depending upon whether or not the input
passcode (X[3:0]) matches the currently saved passcode, the system needs to take
the appropriate future action. This matching/unmatching of the two passcodes
is indicated by the equal signal. Precisely, if the two passcodes match (they are
equal), the value of equal signal will be ‘1’. Otherwise, equal will be ‘0’. We feed
this equal signal as an input to the FSM so that the system controller will act
accordingly.

Besides the three output signals that are observable by the users, the FSM
generates the output signal save code that is internal to the system. While chang-
ing the existing passcode, when the user enters the new passcode and presses
Change, the FSM sets the output signal save code to ‘1’. This indicates to the
system that the new passcode provided by the user as an input must be saved on
the next clock edge. After saving the new passcode, the output of save code is set
back to ‘0’.

2) 4-bit Register
In order to store the 4-bit passcode for the Combination Lock system, we use a
4-bit register. A register is a standard digital logic element that is used to store
information. Please refer to Brown and Vranesic (2013) for details.

251

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

We connect the FSM to a 4-bit register by feeding the output signal save code
of the FSM as an input to the register. This signifies that if the value of save code
is ‘1’ on the clock edge, then the passcode present on the D input must be stored
by the register.

Applying a reset signal to the 4-bit register clears the currently stored passcode
and resets the register to its default value.

3) 4-bit Comparator
In order to compare the 4-bit passcode set as an input by the user (X[3:0]) to the
passcode that is currently stored in the 4-bit register, we use a 4-bit comparator.
A comparator is a standard digital logic element that is used to compare two
binary numbers (Brown and Vranesic, 2013).

If the two passcodes that the 4-bit comparator is comparing in the current
clock cycle are equal, the comparator sets the equal signal to ‘1’. Otherwise, the
value of equal signal remains ‘0’. Please note that the equal signal generated by
the 4-bit comparator is a repeating signal, rather than a one-time signal.

Please note that for our purposes, we are only interested in the design of the
Combination Lock controller expressed as Moore FSM. Therefore, we will not explain
the internal design and working of the other two components of the Combination Lock,
i.e. 4-bit register and 4-bit comparator, and assume that these two components are
already available to us for use.

13.2 Design of Controllers
In this section, we discuss the design of the controller for the 4-bit Combination Lock
system. In order to apply our FSM-TDES translation approach, we model and express
the controller as a complete Moore system. Specifically, the Moore system consists of:
1) one central FSM for the 4-bit Combination Lock, and 2) three individual Moore
FSM to realize the system specifications described in Section 13.1. We will provide
this Moore system as an input to our FSM-TDES translation method.

13.2.1 Individual Moore FSM
In the real world, control designers typically find it easier to design several modular
controllers instead of developing a large monolithic system controller all at once.
Keeping this in view, we design three modular controllers expressed as individual
Moore FSM to realize the functionality of the 4-bit Combination Lock system.

The three modular controllers that we design are OpenLock, ChangeCode and
ActivateAlarm. The OpenLock Moore FSM focuses on the functionality of open-
ing the combination lock. The ChangeCode FSM contains the logic for changing
the existing 4-bit passcode. The ActivateAlarm FSM specifies the sequence for
activating the system alarm.

252

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Below, we first introduce the graphical notation for expressing the Moore FSM.
Then, we elaborate the design of the three individual Moore FSM for the 4-bit Com-
bination Lock.

Graphical Notation for Moore FSM

For an individual Moore FSM, we represent the states as boxes, with the state name
written inside the box. Each state name is preceded by the label “ST:”. For example,
“ST: 1” written inside a box means that the name of this FSM state is 1.

At each state of the FSM, we specify the output values for all the input-output
(IO) signals that belong to this FSM. We state this output information inside the state
box. The output value of ‘1’ means that the output of the IO signal has been set to
True by the FSM at the current state. Whereas, the output value of ‘0’ indicates
that the output of the IO signal has been set to False, and this IO signal cannot
occur at the current state of the FSM.

We use arrows to represent the transition of the FSM from one state to the next.
Each arrow is labelled with one or more next state conditions that are expressed as
either boolean expressions or using one of the three reserved keywords (introduced in
Section 11.1.1). The FSM will move from one state to the other on the clock edge
when a given next state condition is satisfied, i.e. it evaluates to True.

In the boolean expressions, “·” symbol represents the AND operator, “+” rep-
resents the OR operator, and “!” represents the NOT operator. However, in the
figures, we will write “ . ” instead of “·”, as “ . ” is easier to produce.

Every FSM has one initial/reset state. We represent this state with an incoming
arrow that starts at a filled circle and is labelled with “Reset”. Whenever the system
is reset, all FSM go back to their initial/reset state regardless of their current state.
It is notable that reset mechanism is inherent in the design of a Moore FSM. Hence,
we will not explicitly show a reset transition at any state of the individual FSM.

Moore FSM-1: OpenLock

In order to model the functionality to lock and unlock the 4-bit Combination Lock,
we design the Moore FSM OpenLock shown in Figure 11.1 (given in Section 11.1.1
on page 181). The OpenLock FSM has two states: state 1 that represents the
lock state, and state 2 that depicts the unlock state. We assume that initially the
OpenLock FSM will be in its lock state. That is why, we have selected state 1 as the
initial/reset state for OpenLock. While designing OpenLock, we use three signals:
one IO signal, open, and two input signals, enter and equal.

In the lock state, the door secured by the 4-bit Combination Lock cannot be
opened, unless user unlocks the system. For this reason, we set the output of the IO
signal open to ‘0’ at state 1. In terms of the Moore FSM, open = 0 means that open
cannot occur in the physical system while OpenLock is at state 1.

253

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

In order to unlock the Combination Lock and open the door, the user must input
the correct existing passcode and press Enter. In the context of the FSM, this means
that in the lock state, OpenLock must receive enter and equal signals in the same
clock cycle in order to go from state 1 to state 2. We can express this condition as a
boolean expression by writing enter · equal. For all next state conditions other than
enter · equal, OpenLock must stay in the same state, i.e. state 1. In order to model
this, we take the complement of the next state condition enter · equal and specify it
as a selfloop transition at state 1, i.e. !(enter · equal) = !enter + !equal by DeMorgan’s
Theorem (Brown and Vranesic, 2013).

In this way, we have explicitly specified all possible next state conditions at state
1 of the OpenLock FSM. This provides the benefit that we do not not need to
add a DEF transition to make the next state function a total function at state 1
of OpenLock. Please refer to Section 11.1.1 to see the related discussion on DEF
transition and FSM’s total function.

At state 2 of OpenLock, we set the output of open to ‘1’. This signifies that
the OpenLock FSM allows the door to be opened while it is in the unlock state.
The door should stay open until user presses the Enter button, after which the door
closes and the system goes back to its lock state. In terms of the FSM, this means
that OpenLock must go from state 2 to state 1 when it receives the enter signal, i.e.
enter = 1. Otherwise, as long as enter = 0, OpenLock must stay at state 2.

We model this in OpenLock by specifying the boolean expression of enter that
takes the FSM from state 2 to state 1. We use the complement of this next state
condition, i.e. !enter to indicate that OpenLock must stay at state 2 as long as
the user does not press Enter. This completes the design of the OpenLock Moore
FSM as per the system specifications given in Section 13.1. XML Input File E.1
(Section E.1.1 of Appendix E) represents the OpenLock FSM in our XML file format.

Moore FSM-2: ChangeCode

The second individual FSM that we have designed for the 4-bit Combination Lock is
shown in Figure 13.3. The Moore FSM ChangeCode models the specifications for
changing the existing 4-bit passcode of the Combination Lock. The ChangeCode
FSM has three states labelled as 1, 2 and 3, with state 1 being the initial/reset
state of the FSM. In order to realize the required functionality, we use four signals
in ChangeCode: two IO signals, new and save code, and two input signals, change
and equal.

The ChangeCode FSM starts at its initial/reset state 1. At state 1, we set the
outputs of the two IO signals, new and save code, to ‘0’. This indicates that the
process of changing the existing passcode has not yet been initiated by the user.

To change the existing 4-bit passcode, the user must enter the correct existing
passcode and press the Change button. We model this in ChangeCode by specify-
ing a transition from state 1 to state 2 with the next state condition of change · equal.

254

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Reset

ST: 1
new = 0

save_code = 0

change. equal

ST: 2
new = 1

save_code = 0

ST: 3
new = 1

save_code = 1

!change + !equal

save_code !change + !new

!save_code

change. new

Figure 13.3: Moore FSM ChangeCode

For all the next state conditions other than change · equal, ChangeCode must stay
at state 1. We determine these other next state conditions as !(change · equal) =
!change + !equal (DeMorgan’s Theorem (Brown and Vranesic, 2013)). We add a self-
loop transition at state 1 of ChangeCode and label it with this boolean expression,
as shown in Figure 13.3.

At state 2 of ChangeCode, we set the output value of the IO signal new to
‘1’. This indicates that user has initiated the task of changing the existing passcode,
and the ChangeCode FSM is now in the “new” state. In the new state, when
user enters the new passcode and presses Change, the system should save the new
passcode. We model this in ChangeCode by adding a state changing transition
of change · new that goes from state 2 to state 3. At state 2, we specify the rest
of all possible next state conditions by defining a selfloop transition labelled with
!(change · new) = !change + !new (DeMorgan’s Theorem (Brown and Vranesic, 2013)).

At state 3, we set the outputs of both IO signals, new and save code, to ‘1’. This
shows that in the process of changing the existing passcode, user has provided the
new passcode and now it needs to be stored in the 4-bit register on the next clock
edge. Please see the description of save code signal in Section 13.1.2.

Once the new passcode is stored in the 4-bit register, the process of changing the
existing 4-bit passcode is complete. We model this in ChangeCode by defining the
state changing transition of save code that goes from state 3 to state 1. We specify

255

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Reset

ST: 1
open = 1
new = 1

alarm = 0

enter. !equal. !open
+

change. !equal. !new

!enter. !change + !enter. new + equal +
open. !change + open. new

ST: 2
open = 0
new = 0

alarm = 1

 <GDC>

Figure 13.4: Moore FSM ActivateAlarm

the rest of the possible next state conditions at state 3 of ChangeCode by adding a
selfloop transition of !save code. XML Input File E.2 (Section E.1.1) represents the
ChangeCode FSM in our XML file format.

Moore FSM-3: ActivateAlarm

Figure 13.4 shows the third and last individual Moore FSM ActivateAlarm for the
4-bit Combination Lock. The ActivateAlarm FSM is responsible for detecting if
the user tries to access any system functionality by entering an incorrect passcode,
i.e. does not match the saved passcode. In response, it activates the alarm and ceases
the normal system operation, until user presses Reset to cancel the alarm and reset
the system.

The ActivateAlarm FSM comprises of two states: state 1 that represents the
initial/reset state, and state 2 that the FSM goes to once the alarm is activated. In
order to model the required specifications, we use six signals in the ActivateAlarm
FSM: three IO signals, open, new and alarm, and three input signals, enter, change
and equal.

At state 1 of ActivateAlarm, we set the output of alarm IO signal to ‘0’. This
is to specify that system alarm must remain deactivated while ActivateAlarm is at
state 1. Since alarm has not been activated yet, users should be able to access the
regular system functionality and operate the 4-bit Combination Lock as normal. We
express this logic in ActivateAlarm by setting the outputs of open and new IO sig-
nals to ‘1’. Please note that the two system functionalities of opening the combination

256

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

lock and changing the existing 4-bit passcode are primarily managed by the other two
FSM, OpenLock and ChangeCode respectively. Therefore, ActivateAlarm must
not disable the outputs of open and new signals during the normal system operation.

In the normal mode, if user tries to perform any task by entering the incorrect
existing passcode, then alarm must go off. We model this by adding a state changing
transition at state 1 that takes ActivateAlarm to state 2. We label this transition
by expressing the next state conditions as a boolean expression in the sum-of-products
(SOP) form, (enter · !equal · !open) + (change · !equal · !new).

For all the remaining next state conditions, alarm must remain deactivated and
ActivateAlarm must stay in the same state, i.e. state 1. We determine these
remaining next state conditions by taking the complement of the state changing next
state conditions, i.e. !((enter · !equal · !open) + (change · !equal · !new)). By applying
boolean algebra properties (Brown and Vranesic, 2013), we obtain a simplified version
of this boolean expression in the SOP form and specify it as a selfloop transition at
state 1 of ActivateAlarm, as shown in Figure 13.4. Please refer to Section E.2 to
see the steps for deriving this simplified boolean expression.

State 2 of ActivateAlarm represents the alarm state of the system. At state 2,
we set the alarm output to ‘1’ to indicate that once system reaches this state, alarm
must be activated. In the alarm state, the regular system functionality becomes
unavailable to the users. We enforce this by setting the outputs of open and new to
‘0’ at state 2. In other words, in the alarm state, the users will not be able to open
the lock (since open = 0) or change the existing 4-bit passcode (since new = 0).

At state 2 of ActivateAlarm, we add a selfloop of the GDC transition (intro-
duced in Section 11.1.1). This is to model the system requirement that no matter
what input combination(s) the system receives in the alarm state, alarm must remain
activated. The only way to cancel the alarm is by pressing the Reset button. XML
Input File E.3 (Section E.1.1) represents the ActivateAlarm FSM in our XML file
format.

13.2.2 Central FSM
XML Input File E.4 (Section E.1.2) shows the central FSM for the 4-bit Combination
Lock system in our XML file format.

13.3 Translated TDES Supervisors
In this section, we present the results of applying our FSM-TDES translation al-
gorithms (given in Chapter 12) to the Moore FSM of the 4-bit Combination Lock
example. Please note that the Combination Lock system satisfies all FSM-TDES
translation prerequisites stated in Section 11.2, as verified by our algorithms.

For the Combination Lock, our FSM-TDES translation algorithms generate three

257

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

modular TDES supervisors, i.e. one TDES supervisor corresponding to each indi-
vidual Moore FSM. It does so by creating and populating each TDES supervisor’s
quintuple Si = (Xi,Σi, ξi, xo,i, Xm,i), where i = {1, 2, 3}. Here, Xi is the state set,
Σi is the event set, ξi : Xi × Σi → Xi is the partial transition function, xo,i is the
initial state, and Xm,i is the set of marked states for the ith TDES supervisor that is
translated from the ith Moore FSM.

13.3.1 Open Lock
While describing our FSM-TDES translation method in Section 11.3, we used the
OpenLock Moore FSM (Figure 11.1) as an example. The result of this translation
is a non-minimal TDES supervisor OpenLock, shown in Figure 11.2. The trans-
lated TDES has 12 states and 40 transitions. Its minimal version is presented in
Figure 11.10, and has 8 states and 26 transitions.

13.3.2 Change Code
For the ChangeCode FSM (Figure 13.3), the translated non-minimal TDES super-
visor is shown in Figure E.1 (Section E.3). Its minimal version is given in Figure 13.5.
After minimization, the state space reduced from 28 states in the translated super-
visor to 14 states in its minimal version. The number of transitions decreased from
104 to 51.

13.3.3 Activate Alarm
The non-minimal TDES supervisor translated from the ActivateAlarm FSM (Fig-
ure 13.4) is shown in Figure E.2 (Section E.3). Its minimal version is presented
in Figure 13.6. After minimization, the state space reduced from 34 states in the
translated supervisor to 14 states in its minimal version. The number of transitions
declined from 169 to 73.

13.4 TDES Plant Models
In order to verify the desired properties of the closed-loop system by running our ||SD

verification checks (discussed in Chapter 9) in DESpot (2023), we need to synchronize
the translated TDES supervisors with the TDES plant models using our ||SD operator.
Keeping this in view, we design the TDES plant components for the 4-bit Combination
Lock system. Our plant TDES are shown in Figures 13.7-13.13.

By looking at the plant models, we note that each plant component models one
activity (non-tick) event of the physical system. Each plant component allows the
activity event to occur at most once per clock period. We are able to model the plant
TDES this way because of our assumption (stated in Section 13.1.1) that the clock

258

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

!change

!equal

tick

!change
!equal

new
tick

!change
!equal

new

tick

!change

!equal

tick

!change

!equal

tick

!change
!equal

tick

!change

!equal

tick

!change
!equal

tick

!change
!equal

tick

!change
!equal

new

tick

!change
!equal

new

save_code tick

!change

!equal

new

tick

!change
!equal

save_code

tick
!change
!equal

new

save_code

tick

1

x1

x3

x2

2

x4

x6

x7

x8

x9 x10

3

x5

x11

Figure 13.5: Minimal TDES Supervisor ChangeCode

frequency of the system is much higher than the rate at which users could generate the
input signals (uncontrollable events). Moreover, our ||SD setting (Chapter 4) assumes
that controllers allow prohibitable events to occur once per clock period.

13.5 Verification Results
For any physical system, the ultimate goal of developing theoretical TDES supervisor
models is to verify the desired properties of the closed-loop system before the actual
implementation. Therefore, for the 4-bit Combination Lock system, we performed
the desired ||SD checks by utilizing our BDD ||SD algorithms (Chapter 9) that we have
implemented in DESpot (2023). In this section, we present and discuss the verification
results of evaluating the ||SD properties for the Combination Lock example.

Using our BDD ||SD algorithms, we found that the Combination Lock system sat-
isfies all of the desired ||SD properties. These properties include CS deterministic

259

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

ne
w

tic
k

!e
nt
er

!c
ha
ng
e

!e
qu
al

tic
k

op
en

!e
nt
er

!c
ha
ng
e

!e
qu
al

ne
w

tic
k

op
en

!c
ha
ng
e

!e
nt
er

!e
qu
al !e
nt
er

!c
ha
ng
e

!e
qu
al

tic
k

al
ar
mne
w

tic
k

op
en

!c
ha
ng
e

!e
nt
er

!e
qu
al

ne
w

tic
k

op
en

!e
nt
er

!c
ha
ng
e

!e
qu
al

ne
w

tic
k

op
en

!c
ha
ng
e

!e
nt
er

!e
qu
al

ne
w

tic
k

!c
ha
ng
e

!e
nt
er

!e
qu
al

tic
k

op
en

!c
ha
ng
e

!e
nt
er

!e
qu
al

ne
w

tic
k

op
en

!e
nt
er

!c
ha
ng
e

!e
qu
al

tic
k

op
en

!e
nt
er

!c
ha
ng
e

!e
qu
al

ne
w

tic
k

!e
nt
er

!c
ha
ng
e

!e
qu
al

tic
k

!e
nt
er

!c
ha
ng
e

!e
qu
al

tic
k

!e
nt
er

!c
ha
ng
e

!e
qu
al

1

2

x1
x2

x3

x4

x5

x6
x7

x8

x9

x1
0

x1
1

x1
2

Figure 13.6: Minimal TDES Supervisor ActivateAlarm

260

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

tick
!enter

tick
1

2

Figure 13.7: Enter

tick
open

tick
1

2

Figure 13.8: Open

tick

tick
!change

1

2

Figure 13.9: Change

tick

tick
new

1

2

Figure 13.10: New

tick
!equal

tick
1

2

Figure 13.11: Comparator

tick

save_code
tick

1

2

Figure 13.12: Register

alarm
tick

tick
1

2

Figure 13.13: Alarm

supervisors, non-selfloop ALF supervisors, proper time behaviour, ALF, nonblock-
ing, plant completeness with ||SD, S-singular prohibitable behaviour with ||SD and SD
controllability with ||SD (that covers the untimed and timed controllability with ||SD

properties). The closed-loop system had 264 states, and verification took less than 1
second. We performed these tests on a machine running Windows 10 with 16GB of
RAM and 2.6GHz Intel 6-core processor.

We would like to briefly discuss about the property of nonblocking (Definition 2.2.8),
which is primarily determined by the marking information of a TDES. In other words,
changing the marking of states in a TDES might cause this property to pass or fail.
For example, if we change the marking of the TDES supervisor ChangeCode (Fig-
ure 13.5) from “mark all sampled states” to “mark only initial state”, the closed-loop
system, that is nonblocking in its current form, will start to block.

Therefore, if the closed-loop system blocks with the translated TDES supervisors,
the designers might need to change the marking information to make the system

261

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

nonblocking. If designers are unsure about which marking option to select, we recom-
mend that they should choose to mark all sampled states instead of just marking the
initial state of each TDES supervisor. This increases the probability of the closed-loop
system to satisfy the nonblocking property.

We will close this section by restating that one of our major goals while addressing
this research problem was to develop an automatic FSM-TDES translation approach
that should generate TDES supervisors that are more likely to satisfy the desired ||SD

properties. Our ||SD verification results for the Combination Lock example and the
discussion of this section makes it evident that our devised FSM-TDES translation
approach is “capable” of generating TDES supervisors that satisfy the desired ||SD

properties. However, we cannot guarantee that this will always be the case for every
control system.

13.6 Correctness of FSM-TDES Translation
Approach

As mentioned in Section 11.3.6, our primary goal while devising the FSM-TDES
translation approach is to formulate an automatic translation method that should
be capable of generating a “correct” TDES supervisor from the Moore FSM without
violating the given control specifications. By looking at the supervisors that our
FSM-TDES translation approach has generated for the 4-bit Combination Lock, it is
evident that the translated TDES supervisors fulfill the desired system specifications
and abide by all the given control laws.

However, in order to rigorously verify the correctness of our FSM-TDES transla-
tion approach for the Combination Lock system, we decided to complete the cycle
of FSM-TDES-FSM translation for this system. Specifically, we started our Combi-
nation Lock example by manually designing its controllers expressed as Moore FSM
(Section 13.2). Then, we converted these Moore FSM into TDES supervisors by
applying our FSM-TDES translation approach (Section 13.3). In Section E.4 of Ap-
pendix E, we convert the translated TDES supervisors back to Moore FSM using the
TDES-FSM translation method defined by Wang (2009) (described in Section 3.7.2)
and our modified TDES-FSM translation algorithms (presented in Section C.2).

The results of our translation cycle indicate that although our manually designed
Moore FSM that we started with are not identical to the result of our FSM-TDES-
FSM translation, they generated the same outputs and reacted the same to the valid
next state conditions that could occur in the system. Hence, we conclude that, at
least for this example, our FSM-TDES translation approach produced correct results.

262

Chapter 14

Conclusions and Future Work

This chapter presents our conclusions and gives some directions for further research
related to this study.

14.1 Conclusions
The research work presented in this thesis focuses on the automatic translation of
Moore synchronous Finite State Machines (FSM) (Brown and Vranesic, 2013) into
Timed Discrete Event System (TDES) supervisors in order to facilitate software and
hardware designers and practitioners in the formal representation and verification of
their new and existing systems. We build our work on the sampled-data (SD) super-
visory control theory (Wang, 2009; Wang and Leduc, 2012; Leduc et al., 2014). Par-
ticularly, we make use of the structural similarity created by the SD theory between
the two models while developing our automatic FSM-TDES translation approach.

The first part of this thesis (Chapters 4-10) focuses on presenting an approach to
automate the mechanism of forcing eligible prohibitable events in the SD supervisory
control framework. We introduced a new synchronization operator, called the SD
synchronous product (||SD), that provides a novel way of constructing closed-loop
systems in the SD framework. Our ||SD operator is smart enough to automatically
disable a tick event in the closed-loop system, if both tick and a prohibitable event
is possible in the plant TDES and enabled by all modular TDES supervisors. We
adapted the TDES and SD properties of the existing SD supervisory control setting
(“SD setting,” for short) in order to make them compatible with our ||SD operator.

Our approach provides twofold benefits: 1) In the existing SD setting, it liber-
ates the designers from manually satisfying the intricate property of SD controllability
Point ii (⇒) (Definition 3.5.1) while developing their TDES supervisors by hand. This
results in simplifying the TDES modelling process and improving the ease of manually
designing SD controllable TDES supervisors, thus making the SD framework more
accessible to designers. 2) While devising this approach, we adopted the controllers

263

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

way of event forcing and applied it to our theoretical TDES setting. This essentially
bridges the gap between TDES supervisors and physical controllers by making them
behave in a similar way with respect to forcing of events. This proved to be advanta-
geous for us in the development of our automatic FSM-TDES translation approach
later in this study, by making it relatively uncomplicated and straightforward.

After formulating our ||SD setting, we established logical equivalence between the
existing SD setting and our proposed ||SD setting with respect to their closed and
marked languages, TDES and SD properties, and the SD controllers that are obtained
by translating the TDES supervisors designed in the two settings. By making use
of this equivalence, we formally verified our ||SD setting with respect to the desired
properties of controllability and nonblocking. Specifically, we proved that if designers
create a theoretical TDES system in our ||SD setting that is controllable, nonblocking
and satisfy the required ||SD properties, then the physical implementation will retain
these properties and the system abides by the control laws. By proving this, we have
essentially transferred all benefits of the SD setting to our ||SD setting.

After theoretical verification, we focused on providing tool support for our ||SD

setting. We adapted the predicate-based algorithms of the SD setting (Wang, 2009)
to verify the corresponding properties in our ||SD setting. We implemented these
algorithms and our ||SD operator in the DES research tool, DESpot (2023). This tool
support enables the designers to automatically verify the desired properties of their
TDES systems that they design in our ||SD setting.

Finally, we showed the application and strengths of our devised approach by ap-
plying it to an example of a Flexible Manufacturing System (FMS). By comparing the
modular TDES supervisors designed for FMS in the SD and ||SD settings, we demon-
strated that our ||SD operator has greatly simplified the design logic and reduced the
state size of the TDES supervisors. Consequently, for the FMS example, we noted a
reduction of 75% in the time taken by DESpot to run the ||SD verification checks as
compared to the corresponding SD checks.

In the second part of this thesis (Chapters 11-13), we presented a generic and
structured approach to automatically translate Moore synchronous FSM into TDES
supervisors. First, we specified the input structure for concretely expressing the
system controllers that are represented as Moore FSM. Next, we identified a set of
consistency and design requirements that the input Moore FSM must satisfy in order
to be considered “valid” for translation. Then, we defined the translation steps and
well-defined rules to automatically convert a Moore FSM into an equivalent TDES
supervisor representation. We devised our FSM-TDES translation method in such
a way that the translated TDES supervisors are more likely to satisfy the desired
properties of the ||SD setting. After that, we developed a set of algorithms to express
our complete FSM-TDES translation approach algorithmically.

In order to demonstrate the application of our FSM-TDES translation approach,
we translated the system controllers of a 4-bit Combination Lock, expressed as Moore

264

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

FSM, into TDES supervisors. We verified the correctness of our FSM-TDES transla-
tion method for the Combination Lock example by completing the FSM-TDES-FSM
translation cycle for this example. This translation cycle also helped us in verifying
the changes that we made in Hamid’s (2014) TDES-FSM translation algorithms to
make the existing TDES-FSM translation method consistent with our FSM-TDES
translation approach. This compatibility between the two translation approaches of
the SD theory allows the designers to translate one model into the other without
experts’ intervention, hence enhancing the utility of the SD theory.

We conclude this research by stating that our automatic FSM-TDES translation
approach should be of great utility to software and hardware practitioners in the for-
mal representation and verification of their existing systems, as well as new systems
that are designed to be formally verified. The presented approach enables the design-
ers to express their system controllers in a generic and standard way that they are
familiar with, i.e. as Moore FSM. Hence, our approach should be particularly useful
to practitioners that have limited or no knowledge of formal methods by enabling
them to formally verify their systems and identify the potential design and imple-
mentation issues they might be having, without designing formal TDES supervisors
by hand. It should also be beneficial to those with expertise in formal methods, since
expressing a controller in terms of a Moore FSM is typically easier and more intuitive
than developing the corresponding TDES supervisors. Overall, we anticipate this re-
search work to be advantageous in increasing the adoption of SD supervisory control
theory in particular, and formal methods in general, in the industry by simplifying
the formal design and verification process of control systems.

14.2 Future Work
Some future research directions to extend the work presented in this thesis as well as
to address its limitations follow.

Improvements for Automatic FSM-TDES Translation Approach

1. Our primary goal while devising our FSM-TDES translation approach was to gen-
erate a “correct” TDES supervisor from the input Moore FSM, without violating
the given control specifications. Now that we have a correct translation method,
a useful next step would be to improve the efficiency of the translation process
and focus on generating a “compact” supervisor while retaining its logical design
correctness.

One feasible way to do this is to come up with the FSM-TDES translation rules
that directly operate on the hybrid next state logic (NSL) for generating TDES
transitions, instead of the boolean NSL of our current approach (Section 11.3.5).
The elimination of boolean NSL should not only make the translation process
efficient, but is also expected to pave the way for generating a TDES supervisor

265

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

in its minimal form (Definition 2.2.10). As a result, unlike our current transla-
tion approach, there would be no need to perform a separate TDES state space
minimization step at the end of the translation process.

2. In this work, we have demonstrated the correctness of our FSM-TDES transla-
tion approach by completing the FSM-TDES-FSM translation cycle for our 4-bit
Combination Lock example. However, in order to generalize and strengthen the
claims that we made in Section 13.6, the correctness of our FSM-TDES translation
method and the translated TDES supervisors should be proven formally.

3. With respect to the theoretical research work presented in this thesis, it would be
beneficial to make the following implementation extensions in DESpot (2023):
• We have developed a set of algorithms to realize our FSM-TDES translation

approach (Chapter 12) and the TDES state space minimization process (Sec-
tion 6.2). However, the implementation of these algorithms has been left as
future work due to time constraints. Therefore, it would be significantly useful
to provide tool support for our FSM-TDES translation approach by implement-
ing these algorithms in DESpot.

• In order to completely automate the FSM-TDES translation process in DESpot,
algorithms should be developed and implemented to read our input XML files
for the central and individual Moore FSM, parse the information, and populate
the appropriate variables, as described in Section 12.2.

• For the purpose of making the existing TDES-FSM translation method (Wang,
2009) compatible with our FSM-TDES translation approach, we have presented
two TDES-FSM translation algorithms in Section C.2. These algorithms are
meant to replace Hamid’s (2014) TDES-FSM translation algorithms in DESpot.
Our algorithms should be implemented in DESpot in order to allow the de-
signers to automatically translate one model into the other and take complete
advantage of the SD supervisory control theory.

4. We have demonstrated the application of our FSM-TDES translation approach
by applying it to the small example of a 4-bit Combination Lock (Chapter 13).
The primary reason for choosing this small system is that, currently, we do not
have tool support for our FSM-TDES translation approach. Once our approach
is implemented in DESpot, it would be interesting to apply it to translate larger
controllers and gain an insight into its performance and efficiency.

5. Our FSM-TDES translation approach relies on a generic input format, i.e. an
XML file, for expressing the system controllers as Moore FSM. In future, it
would be beneficial to provide implementation-specific support for our transla-
tion method, i.e. develop and implement methods to automatically generate our
XML input files from existing controllers that have been implemented in C, PLC
LD (Antonsen, 2021) or Verilog (Brown and Vranesic, 2013). This is expected to
further facilitate the designers by liberating them from writing the XML input

266

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

files by hand, thus making our FSM-TDES translation method more accessible to
them.

Improvements for Automatic Event Forcing/tick Disablement Approach

1. As part of this study, we implemented our ||SD operator and related ||SD prop-
erties by tweaking predicate-based algorithms of the SD setting that have been
implemented by Wang (2009) in DESpot (2023). Wang’s implemented algorithms
perform a monolithic check to verify various TDES and SD properties of the
closed-loop system. On the other hand, Hamid (2014) has implemented a modu-
lar method to verify these properties in DESpot. Therefore, it would be beneficial
to implement our ||SD operator and complete ||SD setting using Hamid’s modular
verification method and gauge the performance gain.

2. We have verified our approach by applying it to an example of a Flexible Manu-
facturing System (Chapter 10). We noted improvement in the ease of manually
designing SD controllable TDES supervisors, reduction in the state space, and
decrease in verification time of the overall system. In future, it would be useful
to check the efficacy of our approach and ||SD setting, and reaffirm our results by
applying it to TDES with larger state spaces.

3. Some interesting further studies include the extension of our approach and ||SD

setting to fault-tolerant supervisory control (Mulahuwaish, 2019) and hierarchical
interface-based supervisory control (Leduc, 2001).

267

Bibliography

Adam, H.-J. and Adam, M. (2022). PLC Programming in Instruction List According
To IEC 61131-3: A Systematic and Action-Oriented Introduction in Structured
Programming. Springer, Berlin, Heidelberg, 1st edition.

Alur, R. and Dill, D. L. (1994). A Theory of Timed Automata. Theoretical Computer
Science, 126(2), 183–235.

Alves, M. R. C., Rudie, K., and Pena, P. N. (2022). A Security Testbed for Networked
DES Control Systems. IFAC-PapersOnLine, 55(28), 128–134.

Antonsen, T. M. (2021). PLC Controls with Ladder Diagram (LD): IEC 61131-3 and
Introduction to Ladder Programming. Books on Demand.

Arinez, J., Benhabib, B., Smith, K., and Brandin, B. (1993). Design of a PLC-Based
Supervisory Control System for a Manufacturing Workcell. In Proceedings of the
Canadian High Technology Show and Conference, Canada.

Arnon, D. S. (1988). A Bibliography of Quantifier Elimination for Real Closed Fields.
Journal of Symbolic Computation, 5(1-2), 267–274.

Azkarate, I., Ayani, M., Mugarza, J. C., and Eciolaza, L. (2021). Petri Net-Based
Semi-Compiled Code Generation for Programmable Logic Controllers. Applied Sci-
ences, 11(15).

Balemi, S. (1994). Input/Output Discrete Event Processes and Communication De-
lays. Discrete Event Dynamic Systems, 4(1), 41–85.

Balemi, S., Hoffmann, G., Gyugyi, P., Wong-Toi, H., and Franklin, G. (1993). Su-
pervisory Control of a Rapid Thermal Multiprocessor. IEEE Transactions on Au-
tomatic Control, 38(7), 1040–1059.

Basile, F., Chiacchio, P., and Gerbasio, D. (2013). On the Implementation of In-
dustrial Automation Systems Based on PLC. IEEE Transactions on Automation
Science and Engineering, 10(4), 990–1003.

268

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M., and
Stursberg, O. (2004). Verification of PLC Programs Given as Sequential Function
Charts. In Integration of Software Specification Techniques for Applications in
Engineering, volume 3147 of Lecture Notes in Computer Science, pages 517–540.
Springer, Berlin, Heidelberg.

Bender, D. F., Combemale, B., Crégut, X., Farines, J. M., Berthomieu, B., and Verna-
dat, F. (2008). Ladder Metamodeling and PLC Program Validation through Time
Petri Nets. In Proceedings of the 4th European Conference on Model Driven Ar-
chitecture: Foundations and Applications (ECMDA-FA’08), pages 121–136, Berlin,
Heidelberg. Springer.

Berthomieu, B., Ribet, P.-O., and Vernadat, F. (2004). The Tool TINA – Construc-
tion of Abstract State Spaces for Petri Nets and Time Petri Nets. International
Journal of Production Research, 42(14), 2741–2756.

Bolton, W. (2015). Programmable Logic Controllers. Elsevier, 6th edition.

Brandin, B. A. (1993). Real-Time Supervisory Control of Automated Manufactur-
ing Systems. Ph.D. Thesis, Department of Computer and Electrical Engineering,
University of Toronto, Toronto, ON, Canada.

Brandin, B. A. (1996). The Real-Time Supervisory Control of an Experimental Man-
ufacturing Cell. IEEE Transactions on Robotics and Automation, 12(1), 1–14.

Brandin, B. A. and Wonham, W. M. (1994). Supervisory Control of Timed Discrete-
Event Systems. IEEE Transactions on Automatic Control, 39(2), 329–342.

Brown, S. and Vranesic, Z. (2013). Fundamentals of Digital Logic with Verilog Design.
McGraw-Hill Education, New York, 3rd edition.

Bryant (1986). Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8), 677–691.

Bryant, R. E. (1992). Symbolic Boolean Manipulation with Ordered Binary Decision
Diagrams. ACM Computing Surveys (CSUR), 24, 293–318.

Caldwell, B., Cardell-Oliver, R., and French, T. (2016). Learning Time Delay Mealy
Machines From Programmable Logic Controllers. IEEE Transactions on Automa-
tion Science and Engineering, 13(2), 1155–1164.

Canet, G., Couffin, S., Lesage, J.-J., Petit, A., and Schnoebelen, P. (2000). Towards
the Automatic Verification of PLC Programs Written in Instruction List. In Pro-
ceedings of the IEEE International Conference on Systems, Man and Cybernetics
(SMC’2000), pages 2449–2454, USA.

269

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Cantarelli, M. (2006). Control System Design Using Supervisory Control Theory:
From Theory to Implementation. Master’s Thesis, University of Cagliari, Italy.

Cassandras, C. G. and Lafortune, S. (2008). Introduction to Discrete Event Systems.
Springer US, New York, NY, 2nd edition.

Chandra, V., Huang, Z., and Kumar, R. (2003). Automated Control Synthesis for an
Assembly Line using Discrete Event System Control Theory. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 33(2),
284–289.

Chang, N., Kwon, W. H., and Park, J. (1998). Hardware Implementation of Real-
Time Petri-Net-Based Controllers. Control Engineering Practice, 6(7), 889–895.

Crockett, D., Desrochers, A., DiCesare, F., and Ward, T. (1987). Implementation of
a Petri Net Controller for a Machining Workstation. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 1861–1867, USA.

de Queiroz, M. H. and Cury, J. E. R. (2000). Modular Supervisory Control of Large
Scale Discrete Event Systems. In Discrete Event Systems, pages 103–110. Springer,
Boston, MA.

de Queiroz, M. H. and Cury, J. E. R. (2002). Synthesis and Implementation of Local
Modular Supervisory Control for a Manufacturing Cell. In Proceedings of the 6th
International Workshop on Discrete Event Systems (WODES’02), pages 377–382,
Spain.

DESpot (2023). www.cas.mcmaster.ca/~leduc/DESpot.html.

Dietrich, P., Malik, R., Wonham, W. M., and Brandin, B. A. (2002). Implementation
Considerations in Supervisory Control. In Synthesis and Control of Discrete Event
Systems, pages 185–201. Springer US, Boston, MA.

Fabian, M. and Hellgren, A. (1998). PLC-Based Implementation of Supervisory Con-
trol for Discrete Event Systems. In Proceedings of the 37th IEEE Conference on
Decision and Control, volume 3, pages 3305–3310, USA.

Feio, R., Rosas, J., and Gomes, L. (2017). Translating IOPT Petri Net Models into
PLC Ladder Diagrams. In Proceedings of the IEEE International Conference on
Industrial Technology (ICIT’17), pages 1211–1216, Canada.

Feng, L. and Wonham, W. M. (2006). TCT: A Computation Tool for Supervisory
Control Synthesis. In Proceedings of the 8th International Workshop on Discrete
Event Systems (WODES 2006), pages 388–389, Michigan, USA.

270

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Forschelen, S. T. J., van de Mortel-Fronczak, J. M., Su, R., and Rooda, J. E. (2012).
Application of Supervisory Control Theory to Theme Park Vehicles. Discrete Event
Dynamic Systems, 22(4), 511–540.

Fouquet, K. and Provost, J. (2017). A Signal-Interpreted Approach to the Supervisory
Control Theory Problem. IFAC-PapersOnLine, 50(1), 12351–12358.

Fujino, K., Imafuku, K., Yuh, Y., and Hirokazu, N. (2000). Design and Verification
of the SFC Program for Sequential Control. Computers & Chemical Engineering,
24(2-7), 303–308.

Gelen, G. and Uzam, M. (2014). The Synthesis and PLC Implementation of Hybrid
Modular Supervisors for Real Time Control of an Experimental Manufacturing
System. Journal of Manufacturing Systems, 33(4), 535–550.

Gelen, G., Uzam, M., and Dalci, R. (2010). The Concept of Postponed Event in
Timed Discrete Event Systems and its PLC Implementation. In Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics (SMC’10),
pages 2753–2759, Turkey.

Ghasaei, A., Zhang, Z. J., Wonham, W. M., and Iravani, R. (2021). A Discrete-Event
Supervisory Control for the AC Microgrid. IEEE Transactions on Power Delivery,
36(2), 663–675.

Gouyon, D., Pétin, J.-F., and Gouin, A. (2004). A Pragmatic Approach for Mod-
ular Control Synthesis and Implementation. International Journal of Production
Research, 42(14), 2839–2858.

Hamid, A. (2014). Implementation of Sampled-Data Supervisory Control. Master’s
Thesis, Department of Computing and Software, McMaster University, Hamilton,
ON, Canada.

Hasdemir, İ. T., Kurtulan, S., and Gören, L. (2008). An Implementation Methodology
for Supervisory Control Theory. The International Journal of Advanced Manufac-
turing Technology, 36(3), 373–385.

Heiner, M. and Menzel, T. (1998). A Petri Net Semantics for the PLC Language
Instruction List. In Proceedings of the 4th Workshop on Discrete Event Systems
(WODES’98), pages 161–166, Italy.

Hellgren, A., Lennartson, B., and Fabian, M. (2002). Modelling and PLC-Based
Implementation of Modular Supervisory Control. In Proceedings of the 6th Inter-
national Workshop on Discrete Event Systems (WODES’02), pages 371–376, Spain.

Hill, R. C. (2008). Modular Verification and Supervisory Controller Design for
Discrete-Event Systems Using Abstraction and Incremental Construction. Ph.D.
Thesis, Department of Mechanical Engineering, University of Michigan.

271

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Hopcroft, J. and Ullman, J. (1979). Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Menlo Park.

IEC (2013). IEC 61131-3: Third Edition. International Standard, International
Electrotechnical Commission (IEC), Switzerland.

James, L. D., Teixeira, C. A., and Leal, A. B. (2019). Formal Design and Implemen-
tation of Supervisory Controller for a Didactic Manufacturing Cell. In Proceedings
of the IEEE International Conference on Industrial Technology (ICIT’19), pages
935–940, Australia.

Jimenez, I., Lopez, E., and Ramirez, A. (2001). Synthesis of Ladder Diagrams from
Petri Nets Controller Models. In Proceeding of the IEEE International Symposium
on Intelligent Control (ISIC’01), pages 225–230, Mexico.

Kharrazi, A., Mishra, Y., and Sreeram, V. (2019). Discrete-Event Systems Supervi-
sory Control for a Custom Power Park. IEEE Transactions on Smart Grid, 10(1),
483–492.

Korssen, T., Dolk, V., van de Mortel-Fronczak, J., Reniers, M., and Heemels, M.
(2018). Systematic Model-Based Design and Implementation of Supervisors for
Advanced Driver Assistance Systems. IEEE Transactions on Intelligent Trans-
portation Systems, 19(2), 533–544.

Lauzon, S., Ma, A., Mills, J., and Benhabib, B. (1996). Application of Discrete-Event-
System Theory to Flexible Manufacturing. IEEE Control Systems Magazine, 16(1),
41–48.

Lauzon, S. C., Mills, J. K., and Benhabib, B. (1997). An Implementation Method-
ology for the Supervisory Control of Flexible Manufacturing Workcells. Journal of
Manufacturing Systems, 16(2), 91–101.

Leal, A., L. L. da Cruz, D., and Hounsell, M. (2012). PLC-Based Implementation of
Local Modular Supervisory Control for Manufacturing Systems. In Manufacturing
System, pages 159–182.

Leduc, R. J. (1996). PLC Implementation of a DES Supervisor for a Manufacturing
Testbed: An Implementation Perspective. Master’s Thesis, Department of Com-
puter and Electrical Engineering, University of Toronto, Toronto, ON, Canada.

Leduc, R. J. (2001). Hierarchical Interface-Based Supervisory Control. Ph.D. The-
sis, Department of Computer and Electrical Engineering, University of Toronto,
Toronto, ON, Canada.

Leduc, R. J., Wang, Y., and Ahmed, F. (2014). Sampled-Data Supervisory Control.
Discrete Event Dynamic Systems, 24(4), 541–579.

272

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Lind-Nielsen, J. (2002). BuDDy: Binary Decision Diagram Package. IT-University
of Copenhagen (ITU).

Luo, J., Zhang, Q., Chen, X., and Zhou, M. (2018). Modeling and Race Detection of
Ladder Diagrams via Ordinary Petri Nets. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 48(7), 1166–1176.

Ma, C. (2004). Nonblocking Supervisory Control of State Tree Structures. Ph.D.
Thesis, Department of Computer and Electrical Engineering, University of Toronto,
Toronto, ON, Canada.

Moon, I. (1994). Modeling Programmable Logic Controllers for Logic Verification.
IEEE Control Systems Magazine, 14(2), 53–59.

Moreira, M. V. and Basilio, J. C. (2014). Bridging the Gap Between Design and
Implementation of Discrete-Event Controllers. IEEE Transactions on Automation
Science and Engineering, 11(1), 48–65.

Mulahuwaish, A. (2019). Fault-Tolerant Supervisory Control. Ph.D. Thesis, Depart-
ment of Computing and Software, McMaster University, Hamilton, ON, Canada.

Peixoto, R. J. S., da Silva, L. D., and Perkusich, A. (2019). Model-Based Testing of
Software for Automation Systems using Heuristics and Coverage Criterion. Software
and Systems Modeling (SoSyM), 18(2), 797–823.

Prenzel, L. and Provost, J. (2018). PLC Implementation of Symbolic, Modular Su-
pervisory Controllers. IFAC-PapersOnLine, 51(7), 304–309.

Quezada, J. C., Medina, J., Flores, E., Seck Tuoh, J. C., and Hernández, N. (2014).
Formal Design Methodology for Transforming Ladder Diagram to Petri Nets. The
International Journal of Advanced Manufacturing Technology, 73(5), 821–836.

Quezada, J. C., Flores, E., Baños, E., and Quezada, V. (2023). Petri Net Models
of Discrete Logics Used in Control Algorithms Developed in Ladder Diagram Lan-
guage. The International Journal of Advanced Manufacturing Technology, 124(7),
2597–2612.

Ramadge, P. J. and Wonham, W. M. (1989). The Control of Discrete Event Systems.
Proceedings of the IEEE, 77(1), 81–98.

Ray, E. T. (2003). Learning XML. O’ Reilly Media, Inc., 2nd edition.

Reijnen, F. F. H., Goorden, M. A., van de Mortel-Fronczak, J. M., and Rooda, J. E.
(2017). Supervisory Control Synthesis for a Waterway Lock. In Proceedings of
the IEEE Conference on Control Technology and Applications (CCTA’17), pages
1562–1568, USA.

273

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Rossi, O. and Schnoebelen, P. (2000). Formal Modeling of Timed Function Blocks
for the Automatic Verification of Ladder Diagram Programs. In Proceedings of
4th International Conference on Automation of Mixed Processes: Hybrid Dynamic
Systems (ADPM’2000), pages 177–182, Germany.

Schiffelers, R. R. H., Theunissen, R. J. M., van Beek, D. A., and Rooda, J. E.
(2009). Model-Based Engineering of Supervisory Controllers using CIF. Electronic
Communication of the European Association of Software Science and Technology,
21(9), 1–10.

Seatzu, C., Silva, M., and van Schuppen, J. H., editors (2013). Control of Discrete-
Event Systems: Automata and Petri Net Perspectives. Lecture Notes in Control
and Information Sciences. Springer-Verlag, London.

Silva, D. B., Vieira, A. D., Loures, E. F. R., Busetti, M. A., and Santos, E. A. P.
(2011). Dealing with Routing in an Automated Manufacturing Cell: A Supervisory
Control Theory Application. International Journal of Production Research, 49(16),
4979–4998.

Song, R. (2006). Symbolic Hierarchical Interface-based Supervisory Control. Master’s
Thesis, Department of Computing and Software, McMaster University, Hamilton,
ON, Canada.

Swartjes, L., van Beek, D. A., Fokkink, W. J., and van Eekelen, J. A. W. M. (2017).
Model-Based Design of Supervisory Controllers for Baggage Handling Systems.
Simulation Modelling Practice and Theory, 78, 28–50.

Szpak, R., de Queiroz, M. H., and Cury, J. E. R. (2020). Synthesis and Imple-
mentation of Supervisory Control for Manufacturing Systems Under Processing
Uncertainities and Time Constraints. 53(4), 229–234.

Thapa, D., Dangol, S., and Wang, G.-N. (2005). Transformation from Petri Nets
Model to Programmable Logic Controller using One-to-One Mapping Technique.
In Proceedings of the International Conference on Computational Intelligence for
Modelling, Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), pages
228–233, Austria.

Theunissen, R. J. M., Petreczky, M., Schiffelers, R. R. H., van Beek, D. A., and
Rooda, J. E. (2014). Application of Supervisory Control Synthesis to a Patient
Support Table of a Magnetic Resonance Imaging Scanner. IEEE Transactions on
Automation Science and Engineering, 11(1), 20–32.

Torta, E., Reniers, M., Kok, J., van de Mortel-Fronczak, J., and van de Molengraft,
M. (2023). Synthesis-Based Engineering of Supervisory Controllers for ROS-Based
Applications. Control Engineering Practice, 133.

274

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

UPPAAL (2003). www.uppaal.com.

Uzam, M. (2012). A General Technique for the PLC-Based Implementation of RW
Supervisors with Time Delay Functions. The International Journal of Advanced
Manufacturing Technology, 62(5), 687–704.

Uzam, M. and Gelen, G. (2009). The Real-Time Supervisory Control of an Exper-
imental Manufacturing System Based on a Hybrid Method. Control Engineering
Practice, 17(10), 1174–1189.

Uzam, M. and Jones, A. H. (1998). Discrete Event Control System Design using Au-
tomation Petri Nets and their Ladder Diagram Implementation. The International
Journal of Advanced Manufacturing Technology, 14(10), 716–728.

Uzam, M. and Wonham, W. M. (2006). A Hybrid Approach to Supervisory Control of
Discrete Event Systems Coupling RW Supervisors to Petri Nets. The International
Journal of Advanced Manufacturing Technology, 28(7), 747–760.

Uzam, M., Koç, İ. B., Gelen, G., and Aksebzeci, B. H. (2009a). Asynchronous Im-
plementation of Discrete Event Controllers Based on Safe Automation Petri Nets.
The International Journal of Advanced Manufacturing Technology, 41(5), 595–612.

Uzam, M., Gelen, G., and Dalci, R. (2009b). A New Approach for the Ladder
Logic Implementation of Ramadge-Wonham Supervisors. In Proceedings of the
22nd International Symposium on Information, Communication and Automation
Technologies (ICAT’09), pages 113–119, Sarajevo, Bosnia and Herzegovina.

Van der Sanden, B., Reniers, M., Geilen, M., Basten, T., Jacobs, J., Voeten, J., and
Schiffelers, R. (2015). Modular Model-Based Supervisory Controller Design for
Wafer Logistics in Lithography Machines. In ACM/IEEE 18th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS), pages
416–425, Canada.

Vieira, A., Santos, E., Hering de Queiroz, M., Leal, A., Neto, A., and Cury, J.
(2017). A Method for PLC Implementation of Supervisory Control of Discrete
Event Systems. IEEE Transactions on Control Systems Technology, 25(1), 175–
191.

Vieira, A. D., Cury, J. E. R., and de Queiroz, M. H. (2006). A Model for PLC
Implementation of Supervisory Control of Discrete Event Systems. In Proceedings
of the IEEE Conference on Emerging Technologies and Factory Automation, pages
225–232, Prague, Czech Republic.

Vogel-Heuser, B., Diedrich, C., Fay, A., Jeschke, S., Kowalewski, S., Wollschlaeger,
M., and G, P. (2014). Challenges for Software Engineering in Automation. Journal
of Software Engineering and Applications, 7, 440–451.

275

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Wang, Y. (2009). Sampled-Data Supervisory Control. Master’s Thesis, Department
of Computing and Software, McMaster University, Hamilton, ON, Canada.

Wang, Y. and Leduc, R. J. (2012). Sampled-Data Controller Implementation. Inter-
national Journal of Control, 85(9), 1343–1360.

Wightkin, N., Buy, U., and Darabi, H. (2011). Formal Modeling of Sequential Func-
tion Charts With Time Petri Nets. IEEE Transactions on Control Systems Tech-
nology, 19(2), 455–464.

Wong, K. C. and Wonham, W. M. (1996). Hierarchical Control of Timed Discrete-
Event Systems. Discrete Event Dynamic Systems, 6(3), 275–306.

Wonham, W. M. and Cai, K. (2018). Supervisory Control of Discrete-Event Systems.
Springer International Publishing.

Wonham, W. M. and Ramadge, P. J. (1987). On the Supremal Controllable Sublan-
guage of a Given Language. SIAM Journal on Control and Optimization, 25(3),
637–659.

Wonham, W. M., Cai, K., and Rudie, K. (2018). Supervisory Control of Discrete-
Event Systems: A Brief History. Annual Reviews in Control, 45, 250–256.

Zaytoon, J. and Carre-Meneatrier, V. (2001). Synthesis of Control Implementation
for Discrete Manufacturing Systems. International Journal of Production Research,
39(2), 329–345.

Zaytoon, J. and Riera, B. (2017). Synthesis and Implementation of Logic Controllers
– A Review. Annual Reviews in Control, 43, 152–168.

Zhang, H., Feng, L., and Li, Z. (2020). Control of Black-Box Embedded Systems
by Integrating Automaton Learning and Supervisory Control Theory of Discrete-
Event Systems. IEEE Transactions on Automation Science and Engineering, 17(1),
361–374.

Zhou, M., He, F., Gu, M., and Song, X. (2009). Translation-Based Model Checking for
PLC Programs. In Proceedings of the 33rd Annual IEEE International Computer
Software and Applications Conference, pages 553–562, USA.

Zhou, M. C., Dicesare, F., and Rudolph, D. L. (1992). Design and Implementation
of a Petri Net Based Supervisor for a Flexible Manufacturing System. Automatica,
28(6), 1199–1208.

Zoubek, B., Roussel, J.-M., and Kwiatkowska, M. (2003). Towards Automatic Ver-
ification of Ladder Logic Programs. In Proceedings of IMACS Multiconference on
Computational Engineering in Systems Applications (CESA’03), France.

276

Appendix A

Miscellaneous Definitions

In this appendix, we give some miscellaneous definitions that are used in the funda-
mental DES concepts described in Chapter 2.

A.1 Equivalence Relation
Definition A.1.1. Let X be a nonempty set. Let E ⊆ X ×X be a binary relation
on X. The relation E is an equivalence relation on X if:
1. (∀x ∈ X)xEx (E is reflexive)
2. (∀x, x′ ∈ X)xEx′ ⇒ x′Ex (E is symmetric)
3. (∀x, x′, x′′ ∈ X)xEx′ & x′Ex′′ ⇒ xEx′′ (E is transitive)

In this definition, we use the standard infix notation xEx′ to represent the ordered
pair (x, x′) ∈ E. Instead of xEx′, we shall often write x ≡ x′(mod E).

A.2 Product Operator
Definition A.2.1. Let G1 = (Q1,Σ, δ1, qo,1, Qm,1) and G2 = (Q2,Σ, δ2, qo,2, Qm,2) be
two DES defined over the same event set Σ. The product of two DES is defined as:

G1 ×G2 := (Q1 ×Q2,Σ, δ1 × δ2, (qo,1, qo,2), Qm,1 ×Qm,2)
where δ1 × δ2 : Q1 ×Q2 × Σ→ Q1 ×Q2 is given by:

(δ1 × δ2) ((q1, q2), σ) := (δ1(q1, σ), δ2(q2, σ))
whenever δ1(q1, σ)! and δ2(q2, σ)!.

By this definition, we have:
L(G1 ×G2) = L(G1) ∩ L(G2) and Lm(G1 ×G2) = Lm(G1) ∩ Lm(G2)

277

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

A.3 Meet Operator
Definition A.3.1. The meet of two DES G1 and G2, represented as G = meet(G1,G2),
is the reachable sub-DES of the product DES G1 ×G2.

A.4 Selfloop Operation
Definition A.4.1. Let G = (Q,Σ, δ, qo, Qm) be a DES defined over Σ. Let Σ′ be
another set of events such that Σ ∩ Σ′ = ∅. The selfloop operation on G is used to
generate a new DES G′ by selflooping each event in Σ′ at every state of G. Formally,
this is expressed as:

G′ = selfloop(G,Σ′) = (Q,Σ ∪ Σ′, δ′, qo, Qm)
where δ′ : Q× (Σ ∪ Σ′)→ Q is a partial function defined as:

δ′(q, σ) :=

δ(q, σ) σ ∈ Σ, δ(q, σ)!
q σ ∈ Σ′

undefined otherwise

A.5 Bijective Function
Definition A.5.1. A function f : A→ B is:
1. injective if for every x, y ∈ A, x 6= y ⇒ f(x) 6= f(y);
2. surjective if for every b ∈ B there is an a ∈ A with f(a) = b;
3. bijective if f is both injective and surjective.

278

Appendix B

Symbolic Verification

In this appendix, we provide some content related to symbolic verification from Wang
(2009) for the sake of completeness. Specifically, we restate the definition for sym-
bolic representation of transitions in the SD supervisory control theory that we have
referred to in Chapter 9. Also, we present some predicate-based algorithms that we
are reusing to verify some properties in our ||SD setting. Please see Wang (2009) for
complete details.

B.1 Symbolic Representation of Transitions
Let G = (Q,Σ, δ, qo, Qm) = G1×G2× . . .×Gn be the product TDES of component
TDES Gi = (Qi,Σi, δi, qo,i, Qm,i) for i = 1, 2, . . . , n. For any state q ∈ Q, we have
q = (q1, q2, . . . , qn) where qi ∈ Qi.
Definition B.1.1. For G = G1 ×G2 × . . . ×Gn, let σ ∈ Σ. A transition predicate
Nσ : Q×Q→ {T, F} identifies all the transitions for σ in G and is defined as follows:

(∀q, q′ ∈ Q)Nσ(q, q′) :=
{
T if δ(q, σ)! & δ(q, σ) = q′

F otherwise
In order to distinguish between source states and destination states, two different

vectors of state variables are needed, as defined below.
Definition B.1.2. For G = G1 ×G2 × . . . ×Gn, let i = 1, 2, . . . , n. For each Gi,
we have the normal state variable vi (source state) and the prime state variable v′i
(destination state), both with domain Qi. For G, we have the normal state variable
vector v = [v1, v2, . . . , vn] and the prime state variable vector v′ = [v′1, v′2, . . . , v′n].

For each σ ∈ Σ, we can write the transition predicate for σ, Nσ, as below. Essen-
tially, if we set v = q and v′ = q′ such that δ(q, σ) = q′, then Nσ(v,v′) will return
T .
Definition B.1.3. We use the transition tuple (vσ,v′σ, Nσ) to represent the transition

279

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

on σ, where vσ := {vi ∈ v |σ ∈ Σi},v′σ := {v′i ∈ v′ |σ ∈ Σi}, and

Nσ(v,v′) :=
∧

{1≤i≤n|σ∈Σi}

 ∨
{qi,q′i∈Qi|δi(qi,σ)=q′i}

(vi = qi) ∧ (v′i = q′i)

B.2 Symbolic Verification of ||SD Properties
In this section, we present some predicate-based algorithms from Wang (2009) that
can be reused in our ||SD setting without altering the actual algorithm steps. It is
notable that we will only mention the underlying modifications while using these
algorithms to verify properties in our ||SD setting. Please see the complete description
of these algorithms in Wang (2009).

B.2.1 Nonblocking
Algorithm B.11 checks the property of nonblocking on the input TDES G. As this
property has not changed for our ||SD setting, we can use this algorithm from the SD
setting to check our ||SD system.

Algorithm B.1 Nonblocking(G)
1: Preach ← R(G, true)
2: Pcoreach ← CR(G, Pm,Σ, Preach)
3: if (Preach ∧ ¬Pcoreach 6≡ false) then
4: return False
5: end if
6: return True

As we are interested in making sure that our closed-loop system is nonblocking,
we will provide our closed-loop system of the ||SD setting as an input to this algorithm,
which is different from the closed-loop system used in the SD setting. Also, R (Algo-
rithm 9.1) and CR (Algorithm 9.2) will be computed using our function definitions,
as explained in Section 9.3.2.

B.2.2 Activity Loop Free
As the original activity-loop-free (ALF) property remains unchanged in our ||SD set-
ting, we can use Algorithm B.2 of the SD setting without changing its steps.

The only difference is the TDES G that we provide as an input to this algorithm.
In our ||SD setting, parameter G will represent our closed-loop system that we want

1Line 2 of this algorithm is different from the corresponding line of Algorithm 6.5 given in Wang
(2009). This is due to the incorrect number of parameters specified in the original algorithm. We
have fixed this error in this version.

280

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm B.2 ALF(G)
1: Pchk ← R(G, true)
2: Ptmp ← false
3: for (q |= Pchk) do

4: Pvisit ←
(∨
σ∈Σact

δ̂(pr({q}), σ)
)
∧Pchk

5: overlap← False
6: Pnext ← Pvisit
7: repeat

8: Pnext ←
(∨
σ∈Σact

δ̂(Pnext, σ)
)
∧Pchk

9: Ptmp ← Pvisit
10: if (Pvisit ∧ Pnext 6≡ false) then
11: overlap← True
12: end if
13: Pvisit ← Pvisit ∨ Pnext
14: if (q |= Pvisit) then
15: return False
16: end if
17: until (Pvisit ≡ Ptmp)
18: Pchk ← Pchk − pr({q})
19: if (¬ overlap) then
20: Pchk ← Pchk − Pvisit
21: end if
22: end for
23: return True

to make sure is ALF. As our input G is constructed in a different way than the
closed-loop system of the SD setting, Algorithm B.2 will use our R (Algorithm 9.1)
at line 1, and our Definition 9.3.2 of the function δ̂ at lines 4 and 8 to compute the
required predicates while verifying the ALF property in our ||SD setting. Please recall
that δ̂ relies on Nσ, and the definition of Nσ in our ||SD setting (Definition 9.2.5) is
different from the SD setting (Definition B.1.3).

B.2.3 Proper Time Behaviour
The property of proper time behaviour is defined only in terms of TDES plant G.
As G is same in the SD and ||SD settings, Algorithm B.3 remains unmodified with
respect to its steps, underlying functions, and input G.

281

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm B.3 ProperTimeBehaviour(G)

1: P1 ←
∨

σ∈Σu∪{τ}
δ̂−1

G (true, σ)

2: P2 ← R(G, true)
3: if (P2 − P1 6≡ false) then
4: return False
5: end if
6: return True

B.2.4 S-Singular Prohibitable Behaviour with ||SD

The property of S-singular prohibitable behaviour with ||SD is verified at lines 12-16
of Algorithm B.5. Please note that we have redefined the meaning of variables Σposs,
Bconc, and node b in our ||SD setting, as discussed in Section 9.5.3. Please refer to
Section B.3.2 for further details on Algorithm B.5.

B.3 Symbolic Verification of SD Controllability
with ||SD

In this section, we present algorithms from Wang (2009) that can be used to verify
Point ii and Point iii of our SD controllability with ||SD property. Please recall that
these two points correspond to Points iii and iv respectively of the SD controllability
property (Definition 3.5.1) in the SD setting.

It is worth-mentioning that these algorithms can be used in our ||SD setting without
modifying their steps. However, the input parameters and the underlying definitions
for some variables and functions used by these algorithms have changed in our ||SD

setting. Therefore, it is our implicit assumption that while verifying properties in our
||SD setting, these algorithms use the variable and function definitions as specified in
Chapter 9. In particular, from Chapter 9, we have used functions, δ̂ (Definition 9.3.2)
and δ̂G (Definition 9.4.2), as well as R (Algorithm 9.1) to calculate Preach. Please
refer to Section 9.5.3 for the definition of variables used in the following algorithms.

B.3.1 Point ii.1
In order to verify Point ii.1 of SD controllability with ||SD, Algorithm B.4 analyzes
the concurrent behaviour of sampled state qss represented by predicate Pss. Starting
at qss, it builds a reachability tree until all nodes terminate at a tick event or one of
the checks fails. As the tree is built, Point ii.1 of SD controllability with ||SD property
is tested at line 22.

This algorithm also calls Algorithms B.5 and B.6 that contribute in verifying Point
ii.2 of SD controllability with ||SD.

282

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm B.4 AnalyzeSampledState(G,S, PSF , ZSP , Preach, Pss, pNerFail)
1: Bmap ← {(0, Pss)}
2: Bconc ← ∅
3: Bp ← {0}
4: nextLabel← 1
5: OccuB ← {(0, ∅)}
6: while (Bp 6= ∅) do
7: b← Pop(Bp)
8: Pq ← Bmap(b)
9: Σposs ← ∅

10: ΣGposs ← ∅
11: for all (σ ∈ Σ) do
12: if (δ̂(Pq, σ) 6≡ false) then
13: Σposs ← Σposs ∪ {σ}
14: end if
15: if (δ̂G(Pq, σ) 6≡ false) then
16: ΣGposs ← ΣGposs ∪ ({σ} ∩ Σhib)
17: end if
18: end for
19: if (Pq ≡ Pss) then
20: ΣElig ← Σposs ∩ Σhib

21: end if
22: if ((Σposs ∪OccuB(b)) ∩ Σhib 6= ΣElig) then
23: return False
24: end if
25: if (¬NextState(b,Σposs,ΣGposs, Pq, nextLabel, Bmap, Bp, Bconc, PSF , ZSP ,

OccuB(b))) then
26: return False
27: end if
28: end while
29: CheckNerodeCells(Bconc,OccuB, pNerFail)
30: return True

B.3.2 Point ii.2
The following algorithms can be used to verify Point ii.2 of the SD controllability
with ||SD property.

Next State

Algorithm B.5 is called by Algorithm B.4 to determine all the next states that need
to be processed for checking Point ii.2 of SD controllability with ||SD. This algorithm

283

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm B.5 NextState(. . .)
1: if (Σposs = ∅) then
2: return True
3: end if
4: if (τ ∈ Σposs) then
5: Pq′ ← δ̂(Pq, tick)
6: Push(Bconc, (b, Pq′))
7: if (Pq′ ∧ PSF ≡ false) then
8: PSF ← PSF ∨ Pq′
9: Push(ZSP , Pq′)

10: end if
11: end if
12: for all (σ ∈ ΣGposs) do
13: if (OccuB(b) ∩ {σ} 6= ∅) then
14: return False
15: end if
16: end for
17: for all (σ ∈ Σposs − {τ}) do
18: Pq′ ← δ̂(Pq, σ)
19: b′ ← nextLabel
20: nextLabel← nextLabel + 1
21: Push(Bmap, (b′, Pq′))
22: Push(Bp, b

′)
23: Push(OccuB, (b′,OccuB(b) ∪ {σ}))
24: end for
25: return True

also checks the property of S-singular prohibitable behaviour with ||SD. This check is
performed at lines 12-16.

Check Nerode Cells

Algorithm B.6 is called by Algorithm B.4 to determine if there are possible violations
for Point ii.2 of SD controllability with ||SD. These potentially problematic states are
recorded in pNerFail to be analyzed later.

Recheck Nerode Cells

Algorithm B.7 is called by Algorithm 9.5 to recheck Point ii.2 with respect to the
potentially problematic states stored in pNerFail. It makes use of Algorithm B.8 to
conclude its result.

284

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm B.6 CheckNerodeCells(Bconc,OccuB, pNerFail)
1: while (Bconc 6= ∅) do
2: (b, Pq)← Pop(Bconc)
3: Zeqv ← ∅
4: Push(Zeqv, Pq)
5: sameCell← True
6: for all ((b′, Pq′) ∈ Bconc) do
7: if (OccuB(b) = OccuB(b′)) then
8: Push(Zeqv, Pq′)
9: Bconc ← Bconc − {(b′, Pq′)}

10: if (Pq 6≡ Pq′) then
11: sameCell← False
12: end if
13: end if
14: end for
15: if (¬ sameCell) then
16: Push(pNerFail, Zeqv)
17: end if
18: end while
19: return

Algorithm B.7 RecheckNerodeCells(pNerFail)
1: if (pNerFail = ∅) then
2: return True
3: end if
4: V isited← ∅
5: while (pNerFail 6= ∅) do
6: Zeqv ← Pop(pNerFail)
7: if (¬RecheckNerodeCell(Zeqv, V isited)) then
8: return False
9: end if

10: end while
11: return True

Recheck Nerode Cell

Algorithm B.8 is called by Algorithm B.7 to recheck Point ii.2 with respect to the
potentially problematic states stored in pNerFail. It determines if the set of states
that this algorithm is called with are λ-equivalent to each other. If they are not, the
algorithm returns False indicating the violation of Point ii.2 of the SD controllability
with ||SD property.

285

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm B.8 RecheckNerodeCell(Zeqv, V isited)
1: Pq1 ← Pop(Zeqv)
2: Pending ← ∅
3: while (Zeqv 6= ∅) do
4: Pq2 ← Pop(Zeqv)
5: Push(Pending, (Pq1 , Pq2))
6: end while
7: while (Pending 6= ∅) do
8: (Pq1 , Pq2)← Pop(Pending)
9: P ← Pq1 ∨ Pq2

10: if ((P ∧ Pm 6≡ false) & (P ∧ Pm 6≡ P)) then
11: return False
12: end if
13: for all (σ ∈ Σ) do
14: P ′ ← δ̂(P, σ)
15: P ′q1 ← δ̂(Pq1 , σ)
16: P ′q2 ← δ̂(Pq2 , σ)
17: if (P ′ 6≡ false) then
18: if ((P ′q1 ∧ P

′ 6≡ false) & (P ′q2 ∧ P
′ 6≡ false)) then

19: if ((P ′q1 6≡ P ′q2) & ((P ′q1 , P
′
q2) /∈ V isited)) then

20: Push(V isited, (P ′q1 , P
′
q2))

21: Push(V isited, (P ′q2 , P
′
q1))

22: Push(Pending, (P ′q1 , P
′
q2))

23: end if
24: else
25: return False
26: end if
27: end if
28: end for
29: end while
30: return True

B.3.3 Point iii
Algorithm B.9 verifies Point iii of SD controllability with ||SD. It determines if there
exists a marked state in Gcl = S ||SD G with an incoming non-tick transition from a
reachable state. If such a state exists, Point iii fails and the algorithm returns False.
Please note that in our ||SD setting, Preach = R(S ||SD G, true).

286

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm B.9 CheckSDCPointiii(Preach)

1: P ← ∨
σ∈Σ−{τ}

δ̂(Preach, σ)

2: if (P ∧ Pm 6≡ false) then
3: return False
4: end if
5: return True

287

Appendix C

TDES to Moore FSM Translation

While developing our FSM-TDES translation approach (described in Chapter 11), one
of our major goals is to make our approach consistent and compatible with the existing
TDES-FSM translation method, developed by Wang (2009); Wang and Leduc (2012),
and implemented by Hamid (2014) in DESpot (2023). This provides an additional
benefit by enabling the system designers to go back and forth between the two models
using the two translation approaches, i.e. easily translate one model into the other,
regardless of whether they started with a TDES supervisor or a Moore FSM.

It is obvious that Hamid’s (2014) TDES-FSM implementation method was not
developed taking into consideration the possibility of doing the reverse (FSM-TDES)
translation. For this reason, we needed to make some changes in the existing TDES-
FSM translation approach of DESpot in order to build compatibility between the two
translation approaches. We describe these changes in this appendix.

We begin this appendix by presenting the modified XML (Ray, 2003) file format
and structure for expressing the Moore FSM. Then, we describe the changes that we
have made in the existing TDES-FSM translation method of DESpot. Specifically,
we present our DESpot algorithms that are meant to replace Hamid’s algorithms
for doing the TDES-FSM translation and generating the output FSM files. Please
note that these updated FSM files serve as an input to our FSM-TDES translation
approach.

C.1 XML File Structure for Moore System
In this section, we describe the XML (Ray, 2003) file structure for our central and
individual input FSM, along with the modifications that we have made in Hamid’s
output FSM XML file format. In Chapter 13, we apply our Moore FSM-TDES
translation approach to an example of a 4-bit Combination Lock. We will use a small
portion of this example to explain the XML file format.

The 4-bit Combination Lock is a digital lock system that uses a 4-bit passcode

288

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

to provide secured access to authentic users, and has three user buttons: Enter,
Change and Reset. Users can unlock the Combination Lock, either to open the
door or change the currently saved passcode, by entering the existing passcode and
pressing the appropriate button (Enter or Change). However, if the user enters
an incorrect passcode, the alarm goes off. Alarm can only be cancelled by pressing
the Reset button, which will also reset the currently saved passcode to its default
value. Please refer to Section 13.1 for a thorough explanation of the complete system
specification and functionality.

C.1.1 Individual Moore FSM
Figure 11.1 (on page 181) shows the OpenLock Moore FSM from the Combination
Lock example. We will use this FSM to describe how it can be expressed in the
required XML file format. Our FSM-TDES translation method requires the designers
to specify one such XML file corresponding to each individual Moore FSM that needs
to be translated. Please refer to Section 13.2.1 to gain familiarity with the complete
graphical notation of a Moore FSM.

The OpenLock FSM, as the name suggests, controls the functionality of un-
locking the Combination Lock. In the lock state (state “1”, where output of signal
open = 0), if the user enters the correct passcode (indicated by the input signal,
equal) and presses the Enter button (represented by the input signal, enter), the
door opens (state “2”, where open = 1). The door stays open until the user presses
Enter again, after which the system returns back to its locked state.

Please note that in the boolean expressions of the Moore FSM, “·” symbol rep-
resents the AND operator, “+” represents the OR operator, and “!” represents the
NOT operator. However, in our figures and XML input files, we will write “ . ”
instead of “·”, as “ . ” is easier to produce.

The XML Input File C.1 represents the OpenLock FSM in the XML format. At
line 1, the XML file starts with a declaration that this is an XML document and
states its version number, encoding scheme and external dependencies. Line 2 defines
the root element <FSM> that specifies the name of the individual FSM, which in
our case is OpenLock. The reset/initial state of OpenLock is state “1”. This is
specified in the XML file at line 3, inside the <ResetState> element.

The OpenLock FSM has three signals: one input-output (IO) signal (open), and
two input signals (enter and equal). The <Signals> element is defined in the XML file
to contain a list of all the FSM signals (lines 4-8). Inside <Signals>, each <Signal>
element specifies the name, order and type of one FSM signal (lines 5-7). The input-
output signals of the FSM have type “IO” (line 5), whereas input signals are of type
“I” (lines 6-7).

At each state of the FSM, we specify the output information for the IO signals,
i.e. whether the output of the IO signal is True (1) or False (0) at this state. The
OpenLock FSM has two states, “1” and “2”. The output of the open signal is set to

289

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

XML Input File C.1: Moore FSM OpenLock

1 <?xml version="1.0" encoding ="UTF -8" standalone="yes"?>
2 <FSM Name=" OpenLock ">
3 <ResetState Name="1"> </ ResetState >
4 <Signals >
5 <Signal Name="open" order="0" type="IO"/>
6 <Signal Name="enter" order="1" type="I"/>
7 <Signal Name="equal" order="2" type="I"/>
8 </ Signals >
9 <States >

10 <State Name="1" outputvector =""/>
11 <State Name="2" outputvector ="open"/>
12 </States >
13 <Transitions >
14 <StartState Name="1">
15 <Transition inputvector ="enter.equal" endstate ="2"/>
16 <Transition inputvector ="!enter" endstate ="1"/>
17 <Transition inputvector ="!equal" endstate ="1"/>
18 </State >
19 <StartState Name="2">
20 <Transition inputvector ="enter" endstate ="1"/>
21 <Transition inputvector ="!enter" endstate ="2"/>
22 </State >
23 </ Transitions >
24 </FSM >

False at state “1”, and True at state “2”. This information about the FSM states
and their corresponding output information is enclosed in the <States> element in
the XML file (lines 9-12). We write one <State> element corresponding to each
state of the FSM (lines 10-11). Inside this element, the outputvector contains a
comma separated list of all the FSM IO signals whose outputs are set to True at the
state identified by Name. At any given state, if all outputs are set to False (e.g. at
state “1” of OpenLock), then outputvector will represent an empty string (line 10).

The <Transitions> element of the XML file contains all the next state logics
(NSL) specified in the FSM (lines 13-23). We write one <StartState> element

290

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

corresponding to each state of the FSM (lines 14-18, 19-22). This element encloses
all the NSL defined at the FSM state identified by Name (source state). In each
<Transition> element, the inputvector represents the next state conditions that take
the FSM from StartState to the endstate (destination state) (lines 15-17, 20-21).

Our FSM-TDES translation method requires that the next state conditions of the
inputvector must be specified either: 1) as boolean expressions, or 2) using one of
our three reserved keywords. As we have already discussed about boolean expressions
in Section 11.1.1, below we only discuss our reserved keywords with reference to the
XML file. We have introduced these keywords as shorthand notations in the XML
file in order to enable the designers to conveniently specify some generic next state
conditions in their individual FSM.
i) Tick: <TICK>

One of the possible next state conditions that needs to be specified at every state
of an FSM is that all FSM input signals have the value of ‘0’, i.e. none of the
FSM inputs occurred in the previous clock period. For example, if an FSM has
three inputs, open, enter and equal, the boolean expression to represent this next
state condition is “!open · !enter · !equal”. It is obvious that as the signals of an
FSM increase in number, this boolean expression becomes lengthier.

As this next state condition is generic for all individual FSM, i.e. ‘0’ for all FSM
inputs regardless of how many signals an FSM have, we introduce the keyword
of <TICK> to represent it. We are using TICK as our keyword because this
next state condition of the FSM corresponds to a concurrent string of the TDES
supervisor that does not contain any activity events, i.e. a concurrent string that
only contains a tick event.

As an example, consider a sample Moore FSM named TestFSM given in
XML Input File C.2. This FSM goes from state x1 to state x2, when all the
FSM signals are ‘0’. Instead of writing a lengthy boolean expression that ANDs
together all TestFSM signals in their complemented form, we have simply written
our <TICK> keyword to specify this next state condition (line 13).

As we are introducing this keyword in the input XML file for our FSM-TDES
translation approach, we need to modify DESpot’s existing TDES-FSM transla-
tion algorithm and add the support for this keyword to make the two translation
approaches compatible with each other. We will discuss our modified algorithm
later in Section C.2.

ii) Global Don’t Care: <GDC>
While defining the next state conditions of an FSM, the designers may wish to
specify an input combination at an FSM state where every signal of the FSM is
a DC. We refer to this next state condition as the “Global Don’t Care (GDC)”
condition. The reason is that the FSM does not care what the value of each signal
is. Rather, it always goes to the same next state, which could even be the current
state of the FSM, depending upon its design logic. This means that at a given

291

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

XML Input File C.2: Sample Moore FSM TestFSM

1 <?xml version="1.0" encoding ="UTF -8" standalone="yes"?>
2 <FSM Name=" TestFSM ">
3 ...
4 <Signals >
5 ...
6 </ Signals >
7 <States >
8 ...
9 </States >

10 <Transitions >
11 ...
12 <StartState Name="x1">
13 <Transition inputvector ="<TICK >" endstate ="x2"/>
14 ...
15 </State >
16 ...
17 <StartState Name="x3">
18 <Transition inputvector ="<GDC >" endstate ="x4"/>
19 </State >
20 ...
21 <StartState Name="x4">
22 <Transition inputvector ="<DEF >" endstate ="x4"/>
23 </State >
24 ...
25 </ Transitions >
26 </FSM >

FSM state, all the specified input combinations have the very same destination
state.

As discussed in Section 11.1.1, if we want to specify an FSM signal as a DC, we
can simply exclude this signal from our boolean expression to make it compact.
However, expressing GDC by following this strategy becomes complicated, as
every signal of the FSM is a DC.

One possible way to express a GDC condition is to specify it using non-minimal

292

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

boolean expressions. For example, if an FSM has two signals, alpha and beta,
then we can express our GDC by writing four boolean expressions, “alpha · beta”,
“alpha · !beta”, “!alpha · beta”, and “!alpha · !beta”. It is easy to see that as the
FSM signals increase in number, writing these non-minimal boolean expressions
to cover all possible input combinations becomes a laborious task. For instance,
for an FSM that has four signals, the designers may need to write 24 = 16 boolean
expressions to specify GDC.

In order to make it easier for the designers to manually specify a GDC con-
dition, we introduce the <GDC> keyword for the input XML files of our FSM-
TDES translation approach. In the TestFSM given in XML Input File C.2, we
specify a GDC condition at state x3 (lines 17-19). As per the given design logic,
if TestFSM is at state x3, then regardless of what input combination it gets, it
always goes to state x4.

It is noteworthy that GDC covers all possible next state conditions that could
be defined at an FSM state. This means that if we specify GDC at any given
state of the FSM, then it must be the only transition defined at this state and no
other next state conditions could be specified at this FSM state. Otherwise, our
FSM might become non-deterministic.

In our TDES-FSM translation algorithm developed for DESpot, discussed in
Section C.2, we also add support for the <GDC> keyword. This will allow
designers to use the DESpot’s output FSM file directly as an input to our FSM-
TDES translation method, without any modification.

iii) Default: <DEF>
In the TDES-FSM translation approach, Wang (2009) introduces the shorthand
notation of a default transition, abbreviated as DEF. This is because the transi-
tion function of a TDES supervisor is a partial function, whereas the next state
function of a Moore FSM must be a total function. Wang added a selfloop of DEF
transition at every state of the translated FSM in order to cover the next state
conditions (input combinations) that are not explicitly specified in the TDES su-
pervisor. In other words, Wang used a selfloop of DEF in the translated FSM to
represent invalid transitions of the TDES supervisor. By this, we mean transitions
that the supervisor asserts cannot occur.

At any given state of the FSM, DEF is equivalent to taking the logical OR of
all the next state conditions explicitly defined at this state, and then negating the
result. It is worth clarifying that at any FSM state, if the explicitly specified next
state conditions cover all possible input combinations, then DEF will be empty
at this state.

While implementing Wang’s TDES-FSM translation approach in DESpot (2023),
Hamid (2014) interpreted the DEF transition in a completely different and con-
tradictory way. In his translated FSM, Hamid uses DEF to represent all the input
combinations that do not cause a state change, i.e. DEF represents all the next
state conditions that are selflooped. Hamid did not take into account whether

293

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

these next state conditions were explicitly defined in the TDES supervisor or not,
and treated both valid and invalid selflooped next state conditions in the same
way.

In our FSM-TDES translation approach, we will use DEF transition with its
original and correct meaning, as defined by Wang (2009). This means that we need
to modify Hamid’s TDES-FSM translation algorithm so that DESpot generates
the output FSM XML file with the correct meaning of DEF transition. We will
discuss this further in Section C.2.

As mentioned earlier, DEF represents the invalid next state conditions that
cannot occur in the physical system. Keeping this in view, it seems reasonable and
logical that our FSM-TDES translation method does not generate any transitions
in the translated TDES supervisor corresponding to the DEF transition of the
FSM. Also, since the TDES transition function is a partial function, there is no
need to make our translated supervisor complicated and cluttered by generating
invalid transitions corresponding to DEF, when these transitions cannot even
happen in the closed-loop system.

In our input FSM format, we allow the inclusion of DEF, primarily to keep
our input structure consistent with the DESpot’s TDES-FSM translation out-
put. However, if designers are manually designing their FSM, then we strongly
discourage the use of DEF transition. Rather, we encourage the designers to
explicitly specify all the next state conditions of the FSM and to not rely on
DEF to make the FSM’s next state function a total function. This is exactly
what we have done while manually designing the FSM for our Combination Lock
example (Chapter 13) and writing their corresponding XML files. That is why,
there is no next state condition expressed as DEF in our OpenLock FSM and
its corresponding XML file.

We discourage the use of DEF while manually designing FSM because it is
really easy to misinterpret and misuse the DEF transition and introduce design
errors. For instance, since DEF is always defined as a selfloop, it looks very
tempting just to define one DEF transition at every state of the FSM to cover
all the next state conditions that do not cause an explicit state change (as Hamid
(2014) did for his translated FSM). However, by doing so, designers make the valid
selflooped next state conditions of their FSM invalid by merging them together
and using DEF to represent all of them.

In this case, since the manually designed FSM does not specify the correct next
state conditions that designers actually wanted to specify, it is obvious that the
corresponding TDES supervisor generated by our FSM-TDES translation method
will be incorrect. Precisely, valid transitions will be missing from the translated
supervisor because valid selflooped next state conditions were merged with DEF
in the input FSM, and our translation method does not generate anything cor-
responding to DEF. Since the translated supervisor is logically incorrect, this in
turn makes it more likely that it will fail the desired TDES and ||SD properties

294

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

(Chapter 4).
It is worth-mentioning here that the only situation when designers must write

a DEF transition in the input FSM is if no valid next state conditions exist at
an FSM state. In this case, designers must specify a selfloop of DEF transition
in order to fulfill the requirement of making the FSM’s next state function a
total function. For example, if no valid next state conditions exist at state x4 of
our TestFSM, then we can specify DEF at this state, as shown in XML Input
File C.2 (lines 21-23).

C.1.2 Central FSM
Our FSM-TDES translation approach requires the designers to specify one central
FSM file corresponding to the control system whose one or more individual FSM
need to be translated into TDES supervisor(s). We use the same XML file format
for specifying our central FSM that Hamid (2014) has defined while implementing
his TDES-FSM translation method in DESpot (2023). As a result, the corresponding
DESpot algorithm to generate the central FSM XML file remains unmodified. Please
refer to Hamid (2014) to see this algorithm.

XML Input File C.3 shows the central FSM XML file for our Combination Lock
example. After the XML declaration at line 1, line 2 specifies the root element
<FSMMain> that defines the name of our central FSM, CombinationLock. We
require that the name of the central FSM must be the same as the name of the
DESpot project, within which our FSM-TDES translation process is taking place. In
other words, this should be the DESpot project that contains the plant TDES for the
Combination Lock system. Please refer to Section 11.2 for further explanation.

At lines 3-11, the <Signals> element specifies a global list of input and output
signals of all the individual FSM. Inside <Signals>, each <Signal> element specifies
the name, type and order of one global signal (lines 4-10). The global output signals
have type “O” (lines 4-7), whereas global input signals are of type “I” (lines 8-10).

XML Input File C.3: Central FSM CombinationLock

1 <?xml version="1.0" encoding ="UTF -8" standalone="yes"?>
2 <FSMMain Name=" CombinationLock ">
3 <Signals >
4 <Signal Name ="alarm" type="O" order="0"/>
5 <Signal Name ="new" type="O" order="1"/>
6 <Signal Name ="open" type="O" order="2"/>
7 <Signal Name =" save_code " type="O" order="3"/>
8 <Signal Name= "change" type="I" order="4"/>
9 <Signal Name= "enter" type="I" order="5"/>

295

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

10 <Signal Name= "equal" type="I" order="6"/>
11 </ Signals >
12 <FSMS >
13 <FSM Name=" ActivateAlarm ">
14 <Signals >
15 <Signal Name="open" type="IO"/>
16 <Signal Name="new" type="IO"/>
17 <Signal Name="alarm" type="IO"/>
18 <Signal Name="enter" type="I"/>
19 <Signal Name="change" type="I"/>
20 <Signal Name="equal" type="I"/>
21 </ Signals >
22 </FSM >
23 <FSM Name=" ChangeCode ">
24 <Signals >
25 <Signal Name="new" type="IO"/>
26 <Signal Name=" save_code " type="IO"/>
27 <Signal Name="change" type="I"/>
28 <Signal Name="equal" type="I"/>
29 </ Signals >
30 </FSM >
31 <FSM Name=" OpenLock ">
32 <Signals >
33 <Signal Name="open" type="IO"/>
34 <Signal Name="enter" type="I"/>
35 <Signal Name="equal" type="I"/>
36 </ Signals >
37 </FSM >
38 </FSMS >
39 </ FSMMain >

Please note that while implementing the TDES-FSM translation method in DESpot,
Hamid (2014) allows an event to belong to the project that may or may not belong to
the event set of any TDES supervisor. This event is not under the control of any su-
pervisor and is assumed to be always allowed by the supervisor model. Consequently,

296

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

in the translated FSM, its corresponding signal appears in the global list of signals
in the central FSM, but does not belong to any individual FSM. If this is an output
signal, this means its value will always be set to True (1).

For our FSM-TDES translation approach, this assumption does not cause any
issues with respect to input signals (uncontrollable events). However, it is not suitable
for our translation approach with respect to output signals (prohibitable events).
The reason being, this allowance might cause our translated TDES supervisors to
fail the desired ||SD properties, especially the property of plant completeness with ||SD

(Definition 4.4.1) and S-singular prohibitable behaviour with ||SD (Definition 4.4.2).
In order to make it more likely that our translated supervisors satisfy the desired

||SD properties, we require that every output signal included in the global list of signals
in the central FSM must belong to at least one individual FSM. Section C.2 discusses
how we incorporate this constraint in our DESpot TDES-FSM translation algorithm.

The <FSMS> element contains a list of all the individual Moore FSM that de-
signers wish to translate into the TDES supervisor(s) (lines 12-38). Each <FSM>
element encloses the name and signal information about one individual FSM (lines
13-22, 23-30, 31-37). For each individual FSM, the <Signals> element contains
a list of all the FSM signals (lines 14-21, 24-29, 32-36). Each <Signal> element
specifies one IO or input signal of the FSM (lines 15-20, 25-28, 33-35). This in-
formation about each individual FSM stated in the central FSM must be the same
as specified in the individual FSM XML files.

C.2 Generating Individual Moore FSM with
DESpot

In order to implement Wang’s (2009) TDES-FSM translation approach in DESpot
(2023), Hamid (2014) developed several algorithms, including one translation algo-
rithm to generate output files for the individual Moore FSM. As our individual FSM
XML file structure (described in Section C.1.1) is different than Hamid’s output for-
mat, we develop two new algorithms to replace Hamid’s DESpot algorithm. Our
DESpot algorithms are designed to perform the TDES-FSM translation process and
write the output individual FSM of this translation in our XML file format.

Our algorithms should enable the designers to go back and forth between the two
translation approaches using DESpot, by allowing them to use the TDES-FSM trans-
lation output files directly as an input to our FSM-TDES translation approach, and
vice versa. Please note that the implementation of our two TDES-FSM translation
algorithms in DESpot has been left as future work due to time constraints.

Precisely, our algorithms add the following refinements to DESpot’s existing TDES-
FSM translation method:
1. Algorithm C.1 ensures that all prohibitable events of the DESpot project must

belong to at least one TDES supervisor. If TDES designers violate this constraint,

297

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

!e1
e2

ticktick
1 20

(a) TDES S1

tick

!e1

tick

!e1

e2

tick
1 20

3

(b) TDES S2

e2 tick

!e1

tick

tick

e2

tick

1

2

0

4

3

(c) TDES S3

tick

!e1

e2

tick

!e1

e2

tick

10 2

(d) TDES S4
Figure C.1: Some Examples for the Global Don’t Care Transition, “<GDC>”

DESpot gives an error message and halts the TDES-FSM translation process.
2. Algorithm C.2 enables DESpot to interpret and use the DEF transition with its

correct meaning, as defined by Wang (2009), while performing the TDES-FSM
translation process. In other words, we do not merge valid concurrent string
selfloops that are explicitly defined in the supervisor with the invalid next state
conditions that are represented by DEF in the translated FSM.

3. Algorithm C.2 also adds support for identifying the GDC and TICK transitions
that could be defined in the TDES supervisors. While doing the TDES-FSM trans-
lation, our algorithm specifies these transitions in the individual FSM XML files
using our reserved keywords instead of writing the lengthy non-minimal boolean
expressions currently generated by Hamid (2014).
In Figure C.1, we present some examples to illustrate what the modelling of a

GDC next state condition could look like in a TDES supervisor. For our supervisors
S1 − S4, let Σ = {e1, e2, tick}, where Σu = {e1} and Σhib = {e2}. Please note that
these are not complete supervisor models, and present only the relevant states just
to show the GDC concurrent string transition.

In all four supervisors S1−S4, the GDC condition is defined at sampled state “1”.
In S1−S3 (Figures C.1a-C.1c), GDC transition takes the TDES from sampled state
“1” to sampled state “2”. In other words, once the TDES is at state “1”, it always
goes to state “2”, regardless of which events have occurred in the concurrent string.

298

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

FSMCarrier

 - name: String
 - c_events: String[]
 - u_events: String[]
 - sampledstates: String[]
 - alltrans: Transition[]
 - elig: map<String, String[]>
 ...
 ...

 + WriteIndividualFSM ()
 ...
 ...

Figure C.2: UML Class:
FSMCarrier

Transition

 - exit: String
 - enter: String
 - occu: String[]

 ...

Figure C.3: UML Struct:
Transition

TDES S4 (Figure C.1d) shows the GDC transition as a concurrent string selfloop,
i.e. S4 stays at sampled state “1”, no matter which events the given concurrent string
is made up of.

In order to convert a TDES supervisor into a Moore FSM, Hamid (2014) defines an
FSMCarrier class and uses an array of FSMCarrier objects to store the required
information about each supervisor for translation. First, we introduce the member
variables and functions of the FSMCarrier class, shown in Figure C.2, that are
relevant to our TDES-FSM translation algorithms.
• name: A string variable that contains the name of the supervisor. This name will

be used as the name of the corresponding translated FSM.
• c events: An array of strings containing the prohibitable events of the supervisor.

They will become IO signals in the translated FSM.
• u events: An array of strings containing the uncontrollable events of the supervisor.

They will become input signals in the translated FSM.
• sampledstates: An array of strings containing the sampled states of the supervisor.

The first element of this array (sampledstates[0]) is always the initial state of the
supervisor. Sampled states will become the states of the translated FSM.

• alltrans: An array to store the concurrent string transitions (NSL) that are defined
in the supervisor. These transitions are stored as a Transition structure shown
in Figure C.3. Transition consists of the following three member variables:
– exit: The source sampled state of a concurrent string transition defined in the

supervisor.
– enter: The destination sampled state of a concurrent string transition defined in

the supervisor.

299

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

– occu: An array of strings containing the occurrence image of the concurrent
string that starts at the exit state and ends at the enter state in the supervisor.
Please note that tick event is not stored as part of the occurrence image, as it is
obvious that a concurrent string always ends with a tick.

• elig: It maps the sampled state of a supervisor to an array of strings which repre-
sents the prohibitable events that are enabled at this sampled state. This mapping
is used to determine the output information at each state of the translated FSM.

• WriteIndividualFSM(): This method corresponds to our Algorithm C.2 that
writes the translated FSM specifications to an output XML file as per our required
format.
Now we will discuss our Algorithms C.1 and C.2. We assume that the array of

FSMCarrier objects has been populated before calling our Algorithm C.1.

C.2.1 Algorithm C.1
In Algorithm C.1, we use the following variables:
• FSMCarrierObjs[]: This is an array of FSMCarrier objects that is populated

by Hamid’s (2014) TDES-FSM translation algorithms. This array will be accessed
like a set.

• Σfree: This is a set of prohibitable events of the DESpot project that do not belong
to the event set of any TDES supervisor. Hamid (2014) populates this set while
populating the FSMCarrier objects.

• print(): We use this implementation-independent method to indicate that we wish
to print a message to DESpot users in a dialog box. The message that we want
to display will be enclosed in quotation marks, i.e. print(“message”). If we pass
a variable to this method, we assume that the content of the variable will be
displayed to the users.
Algorithm C.1 starts by checking whether Σfree is empty or not (line 2). If

Σfree is not empty, this means there exists one or more prohibitable events in the
DESpot project that do not belong to the event set of any supervisor. In this case,
our algorithm prints an error message along with the list of these prohibitable events,
and terminates the TDES-FSM translation process (lines 3-7).

However, if Σfree is empty, then for every supervisor that needs to be translated,
Algorithm C.1 calls Algorithm C.2 to do the TDES-FSM translation and generate
the output XML file for each translated FSM (lines 9-11).

C.2.2 Algorithm C.2
Algorithm C.2 converts a TDES supervisor into a Moore FSM, and writes the trans-
lated individual FSM in our desired XML file format. Our algorithm is capable of

300

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm C.1 TranslateTDEStoFSM Main(Σfree)
1: /* After calling Hamid’s (2014) TDES-FSM algorithms for populating the

FSMCarrier objects */
2: if (Σfree 6= ∅) then
3: print(“Error! The following prohibitable event(s) of the DESpot project do

not belong to the event set of any TDES supervisor:”)
4: for all (e ∈ Σfree) do
5: print(e)
6: end for
7: return False
8: end if
9: for all (FC ∈ FSMCarrierObjs[]) do

10: FC.WriteIndividualFSM()
11: end for
12: return True

identifying the GDC and TICK transitions defined in the TDES supervisor, and
makes use of our three reserved keywords, <GDC>, <TICK> and <DEF>, while
writing the FSM’s NSL in the output XML file.

We use the following variables in Algorithm C.2:
• FC: An object of the FSMCarrier class.
• idx: This integer variable serves two purposes: 1) It is used to specify the order

of signals while writing the list of signals in the FSM file. 2) After listing all the
signals, idx contains the total number of signals that belong to the current FSM.
We then use this signal count to determine the existence of a GDC condition in
the supervisor, so that we can write this transition with <GDC> keyword in the
translated FSM.

• tickTrans: This boolean variable is set to True, if there exists a TICK transition
at the current sampled state of the supervisor, i.e. a concurrent string transition
whose occurrence image does not contain any activity events. In other words, it is
a “tick only” transition. Otherwise, it retains its default value of False.

• destState: If tickTrans boolean variable is set to True, then we use destState to
store the destination sampled state of the TICK transition.

• sameDest : This boolean variable is set to False, if there exists a non-TICK
concurrent string transition at the current sampled state that goes to a different
destination sampled state than the TICK transition. Otherwise, it retains its
default value of True.

• transCount: This integer variable keeps count of the total number of concurrent
string transitions that are defined at the current sampled state of the supervisor.

301

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

• ineligCount: This integer variable stores the number of prohibitable events that
are disabled at the current sampled state of the supervisor.

• |t.occu|: This size function returns the length of occu (the occurrence image of
a concurrent string). |t.occu| = 0 means the occurrence image is empty, i.e. the
corresponding concurrent string does not contain any activity events and represents
a TICK transition. If a concurrent string contains at least one activity event,
then |t.occu| > 0. Please recall that tick event is not stored in occu as part of the
occurrence image.

• inputV ector: A string variable for storing the content of one transition input vector
that needs to be written to the output XML file.

• TrimLast: This string processing function trims off the last character from a given
string.

• write(): We use this method to write to the output XML file. If we pass a variable
to this method, the content of the variable will be written to the file. Usually,
while calling this method, we assume that it creates a line in the output XML file
with a ‘new line character’ at the end. However, in some cases, we will be writing
a line in chunks, i.e. we will pass and write the first part of the line to the file,
generate the rest of the line algorithmically, and then write it to the file by calling
the write method again. To do so, we will write the first part of the line by passing
only the opening brackets “<” to this method and skip the closing brackets “>”,
to signal that it should not generate a ‘new line character’ at the end (e.g. at line
55). For writing the rest of the line, we call the write method again with “>” in
order to create a ‘new line character’ at the end of the line (e.g. at line 69).
Algorithm C.2 starts by writing the XML declaration at line 1 to the output

XML file. At line 2, we begin the <FSM> root element to write the FSM name,
which is same as the name of the supervisor that we are currently translating. At
line 3, we specify the initial state of the supervisor as the reset state of the translated
FSM.

At lines 4-14, we write the list of FSM signals, delimited by the <Signals>
element, to the XML file. At lines 6-9, we loop through all prohibitable events
of the supervisor (FC.c events) and specify them as IO signals of the FSM. Like-
wise, at lines 10-13, we loop through all uncontrollable events of the supervisor
(FC.u events) and specify them as input signals of the FSM. While writing the list
of FSM signals, we use the idx integer variable to specify the order of these signals
(lines 7, 11). After writing each IO and input signal, we increment the idx variable
by 1 (lines 8, 12). Once all the IO and input signals are written to the XML file,
idx now contains the total number of FSM signals.

At lines 15-19, we enclose the list of FSM states and their corresponding output
information within the <States> element and write it to the XML file. To do so, at
lines 16-18, we loop through all sampled states of the supervisor (FC.sampledstates)
and write them as the FSM states. At every sampled state q, we use the list of enabled

302

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm C.2 WriteIndividualFSM() Part I
1: write(<?xml version=1.0 encoding=UTF-8 standalone=yes?>)
2: write(<FSM Name=FC.name>)
3: write(<ResetState Name=FC.sampledstates[0]> </ResetState>)
4: write(<Signals>)
5: idx← 0
6: for all (e ∈ FC.c events) do
7: write(<Signal Name=e order=idx type=IO/>)
8: idx← idx+ 1
9: end for

10: for all (e ∈ FC.u events) do
11: write(<Signal Name=e order=idx type=I/>)
12: idx← idx+ 1
13: end for
14: write(</Signals>)
15: write(<States>)
16: for all (q ∈ FC.sampledstates) do
17: write(<State Name=q outputvector=FC.elig[q]/>)
18: end for
19: write(</States>)
20: write(<Transitions>)
21: for all (q ∈ FC.sampledstates) do
22: write(<StartState Name=q>)
23: tickTrans← False
24: sameDest← True
25: destState← ∅
26: transCount, ineligCount← 0
27: for all (t ∈ FC.alltrans) do
28: if (t.exit = q ∧ |t.occu| = 0) then
29: tickTrans← True
30: destState← t.enter
31: end if
32: end for
33: if (tickTrans) then
34: for all (t ∈ FC.alltrans) do
35: if (t.exit = q) then
36: transCount← transCount+ 1
37: if (|t.occu| > 0 ∧ t.enter 6= destState) then
38: sameDest← False
39: end if
40: end if
41: end for

303

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm C.2 WriteIndividualFSM() Part II
42: end if
43: if (tickTrans ∧ sameDest) then
44: for all (e ∈ FC.c events) do
45: if (e /∈ FC.elig[q]) then
46: ineligCount← ineligCount+ 1
47: end if
48: end for
49: end if
50: if (tickTrans ∧ sameDest ∧ transCount = 2 idx− ineligCount) then
51: write(<Transition inputvector=<GDC> endstate=destState/>)
52: else
53: for all (t ∈ FC.alltrans) do
54: if (t.exit = q) then
55: write(<Transition inputvector=)
56: inputV ector ←“”
57: if (|t.occu| = 0) then
58: inputV ector ← “<TICK>”
59: else
60: for all (e ∈ FC.c events ∪ FC.u events) do
61: if (e ∈ t.occu) then
62: inputV ector ← inputV ector + e + “.”
63: else
64: inputV ector ← inputV ector + “!” + e + “.”
65: end if
66: end for
67: TrimLast(inputV ector)
68: end if
69: write(inputV ector endstate=t.enter/>)
70: end if
71: end for
72: end if
73: write(<Transition inputvector=<DEF> endstate=q/>)
74: write(</State>)
75: end for
76: write(</Transitions>)
77: write(</FSM>)

prohibitable events (FC.elig[q]) to generate the output information, and write it as
an output vector at the corresponding FSM state (line 17).

304

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

At lines 20-76, we examine the concurrent string transitions defined in the super-
visor and use them to write the corresponding NSL for the translated FSM, delimited
by the <Transitions> element. For this purpose, lines 21-75 loop through all sam-
pled states of the supervisor and generate NSL at each FSM state.

At lines 21-22, we take one sampled state of the supervisor, say q, and specify it
as the start state for the subsequent NSL that we are about to write in the FSM XML
file. Please recall that we also need to identify the GDC and TICK transitions in
the supervisor in order to specify them with our reserved keywords in the XML file,
instead of the regular boolean expressions.

At lines 27-49, we specify the logic for determining whether the concurrent string
transitions defined at state q of the supervisor collectively represent a GDC transition
or not. In order to identify a GDC transition, we define three conditions that must
be satisfied at q. Below, we describe these conditions and discuss how Algorithm C.2
checks for them.
1) The first and foremost condition for the existence of a GDC condition is that a

TICK transition must be defined at q. This is because, by definition, a GDC
must cover all possible input combinations. The absence of a TICK transition
means that one input combination is missing at q, hence it cannot be a GDC.

We evaluate this condition at lines 27-32 of Algorithm C.2. Of all the con-
current string transitions defined in the supervisor (FC.alltrans at line 27), we
consider only those transitions that start at q (t.exit = q), and then check to see
if they include a “tick only” transition, i.e. |t.occu| = 0 (line 28). If so, we set
the tickTrans boolean variable to True, and store the destination sampled state
of this TICK transition in the destState variable (lines 29-30).

However, if TICK transition is not defined at q, then tickTrans will retain
its default value of False, and we will not evaluate the next two GDC conditions
discussed below.

2) The second condition for the existence of a GDC transition is that the concurrent
strings defined at q must go to the same destination sampled state. This is because
the GDC condition means that no matter which input combination occurs, we
always go to the same destination state. If any concurrent string defined at q goes
to a different sampled state than the rest of the concurrent string transitions, this
condition fails. Please note that the destination sampled state could be the same
as the current state (in case of selfloops) or could be a different one (an explicit
state change).

If the first GDC condition is satisfied, i.e. tickTrans = True (line 33),
then Algorithm C.2 evaluates the second GDC condition at lines 34-41. Of all
the concurrent string transitions defined at q (lines 34-35), we determine if the
destination sampled state of a non-TICK transition (a concurrent string that has
at least one activity event, hence |t.occu| > 0) is not same as the TICK transition
(line 37). If any such concurrent string transition exists, we set the sameDest
variable to False, indicating that the second condition has failed and GDC is

305

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

not defined at q (line 38).
While looping through all the transitions (lines 34-41), we also count the

number of concurrent string transitions defined at q and store this count in the
transCount variable (line 36). We will use this count in evaluating our next
GDC condition.

3) Our third and last condition for the existence of GDC in a supervisor is that the
number of all concurrent strings defined at q with a unique occurrence image must
be equal to 2n, where n is the total number of all the uncontrollable events of the
supervisor and those prohibitable events that are enabled at q. It is notable that
we are excluding the disabled prohibitable events from this count. Since these
prohibitable events are disabled, it is obvious that they will not occur as part of
any valid concurrent string defined at q.

Hypothetically, we could have taken n to be the total number of uncontrol-
lable and prohibitable events of the supervisor. However, this implies that all
prohibitable events must be enabled and their transitions must be defined at q, in
order to satisfy the existence of a GDC transition. This looks like a stringent re-
quirement that seems to limit the usage of our <GDC> keyword, as practically
it seems quite uncommon that all prohibitable events will be enabled at many
different states of the supervisor.

Therefore, in order to enhance the applicability of our GDC transition, we
have restricted our requirement to uncontrollable and enabled prohibitable events
only. This should also prove to be beneficial in our FSM-TDES translation, as it
will allow the designers to use our <GDC> keyword in the input FSM, even if
the outputs of some/all IO signals are set to False (0) at state q of the FSM.

If the previous two conditions for the existence of a GDC transition are satis-
fied (line 43), then lines 44-48 of Algorithm C.2 count the number of prohibitable
events that are disabled at q. We store this count in the ineligCount variable.
After evaluating the three required conditions for the existence of a GDC tran-

sition individually, we are now ready to actually write to the XML file all the NSL
corresponding to state q of the FSM. For this purpose, we first make a final check for
the existence of a GDC transition at q by ANDing the individual result of the three
required GDC conditions (discussed above) at line 50. By our algorithm logic, we
know that tickTrans and sameDest variables will be True, if GDC conditions 1 and
2 are satisfied respectively.

In order to evaluate the third GDC condition, we exclude the number of pro-
hibitable events that are disabled at q (ineligCount) from the total number of activity
events of the supervisor (idx). We then determine if all possible input combinations
for the uncontrollable and enabled prohibitable events are defined at q. If so, the last
condition specified at line 50 evaluates to True. If all the three GDC conditions
are satisfied, we write the GDC transition to the XML file by assigning <GDC>
keyword to the transition input vector and specifying its corresponding destination
state using our destState variable (line 51).

306

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

However, if any of the three GDC conditions evaluates to False and GDC tran-
sition does not exist at q, then we loop through all the concurrent string transitions
defined at q and generate their corresponding NSL one by one (lines 53-71). At line
55, we begin the <Transition> element and write it to the XML file. After that,
we algorithmically generate the input vector corresponding to the concurrent string
transition that we are currently processing and store it in the inputV ector string
variable.

At line 57, we check to determine if the currently processed concurrent string
transition is a “tick only” transition. If so, we assign the <TICK> keyword to
the inputV ector variable (line 58). Otherwise, we loop through all prohibitable
and uncontrollable events of the supervisor to generate a boolean expression that
represents the current concurrent string transition and store it in the inputV ector
(lines 60-66).

In order to generate a boolean expression, we use the occurrence image of the
concurrent string. If an event is present in the occurrence image, we write the event
in the uncomplemented form (without ‘!’) in the boolean expression (lines 61-62).
Otherwise, we write the event in the complemented form (with ‘!’) (lines 63-64).
Please note that we are generating boolean expressions in the non-minimal SOP form.

After generating the complete boolean expression, we trim off the extra AND
operator (‘ · ’) from the end (line 67). At line 69, we write the boolean expression
(stored in the inputV ector variable) and the destination state of this next state con-
dition to the XML file and close the <Transition> element. As stated earlier, this
process of generating the boolean expression and writing the NSL to the XML file
will be repeated for every concurrent string defined in the supervisor at state q, as
we are writing one <Transition> element for each defined concurrent string.

After writing all valid NSL at state q of the FSM to the XML file, line 73 writes
the DEF transition as a selfloop. Please recall that DEF transition is included to
make the translated FSM’s next state function a total function, and it covers all the
invalid transitions (NSL) that are not defined in the supervisor at q. At line 74,
we close the <State> element corresponding to the start state q in the XML file,
and then proceed to the remaining sampled states of the supervisor to process their
concurrent string transitions and write their NSL to the XML file.

Once this process is complete, we close the <Transitions> element at line 76.
Finally, we end the XML file at line 77 by writing the closing <FSM> element that
indicates the end of the translated FSM specification.

307

Appendix D

Supporting Algorithms for Moore
FSM to TDES Translation

This appendix contains three algorithms that support the main FSM-TDES trans-
lation algorithms presented in Chapter 12. These supporting algorithms perform
some consistency and design checks (listed in Section 11.2) and do the required setup
for the FSM-TDES translation process that begins with Algorithm 12.1. Please see
Section 12.2 for the definition of several shared variables that the algorithms in this
appendix make use of.

D.1 Verify Central FSM
Algorithm D.1 uses the information of the central FSM and the current DESpot
project to verify some consistency and design prerequisites of our FSM-TDES trans-
lation method. If any of these requirements is not satisfied, Algorithm D.1 displays an
appropriate error message to the users and immediately returns control to Algorithm
12.1 by returning False.

In addition to the variables introduced in Section 12.2, Algorithm D.1 defines the
following two local variables:
• ΣtmpIO: This temporary set is created to store the unique IO signals that are listed

in all the individual Moore FSM specified in the central FSM.
• ΣtmpIn: This temporary set is created to store the unique input signals that are

listed in all the individual Moore FSM specified in the central FSM.
We begin Algorithm D.1 by verifying the design requirement DR-1 at lines 1-8.

Specifically, we check that all individual Moore FSM listed in the central FSM must
have a unique name. We do this by comparing the names of two Moore FSM at a
time inside a nested for loop.

At lines 9-14, we check DR-2 which requires that all IO and input signals of the

308

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm D.1 VerifyCentralFSM(mainFSMS,Σgout,Σgin,Σhib,Σu) Part I
1: for (i← 0 to |mainFSMS| − 1) do
2: for (j ← i+ 1 to |mainFSMS| − 1) do
3: if (mainFSMSi.fsmName = mainFSMSj.fsmName) then
4: print(“Error! All FSM listed in the central FSM must have a unique

name.”)
5: return False
6: end if
7: end for
8: end for
9: for all (σ ∈ Σgout) do

10: if (σ ∈ Σgin) then
11: print(“Error! The names of the global input and output signals listed in

the central FSM must be unique.”)
12: return False
13: end if
14: end for
15: ΣtmpIO,ΣtmpIn ← ∅
16: for all (fsm ∈ mainFSMS) do
17: for all (σ ∈ fsm.ΣlocIO) do
18: if (σ /∈ ΣtmpIO) then
19: ΣtmpIO ← ΣtmpIO ∪ {σ}
20: end if
21: end for
22: for all (σ ∈ fsm.ΣlocIn) do
23: if (σ /∈ ΣtmpIn) then
24: ΣtmpIn ← ΣtmpIn ∪ {σ}
25: end if
26: end for
27: end for
28: if (|Σgout| 6= |Σhib| ∨ |Σgout| 6= |ΣtmpIO|) then
29: print(“Error! The number of global output signals must be equal to the number

of prohibitable events in the project. It must also be equal to the number of
unique local IO signals of all the FSM listed in the central FSM.”)

30: return False
31: end if
32: for all (σ ∈ Σgout) do
33: if (σ /∈ Σhib ∨ σ /∈ ΣtmpIO) then
34: print(“Error! Every global output signal must belong to the project and

at least one FSM listed in the central FSM, and vice versa.”)
35: return False
36: end if

309

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm D.1 VerifyCentralFSM(mainFSMS,Σgout,Σgin,Σhib,Σu) Part II
37: end for
38: if (|Σgin| 6= |Σu|) then
39: print(“Error! The number of global input signals must be equal to the number

of uncontrollable events in the project.”)
40: return False
41: end if
42: for all (σ ∈ Σgin) do
43: if (σ /∈ Σu) then
44: print(“Error! Every global input signal must belong to the project, and

vice versa.”)
45: return False
46: end if
47: end for
48: for all (σ ∈ ΣtmpIn) do
49: if (σ /∈ Σgin) then
50: print(“Error! In the central FSM, every input signal of an individual FSM

must belong to the list of global input signals.”)
51: return False
52: end if
53: end for
54: return True

individual Moore FSM must have a unique name. Please note that all IO and input
signals of the individual FSM must be included in the respective global list of output
and input signals specified in the central FSM (CR-4 and CR-5). Therefore, instead
of checking DR-2 for each individual FSM, we use our global list of output and input
signals to perform this check. Specifically, we verify that the two sets of Σgout and
Σgin are disjoint. Please note that we cannot have duplicate elements within one set
because of our assumption listed in Section 12.2. Therefore, we do not need to do a
uniqueness check on Σgout or Σgin individually.

Line 15 declares the two local variables, ΣtmpIO and ΣtmpIn. At lines 16-27, we
loop through all individual Moore FSM specified in the central FSM to populate these
two sets. At lines 17-21, we traverse the set of IO signals of each individual FSM
to create ΣtmpIO. Likewise, at lines 22-26, we loop through the set of input signals
of each individual FSM to populate ΣtmpIn. Now we will use ΣtmpIO and ΣtmpIn to
perform our next consistency checks.

We verify the consistency requirements CR-2 and CR-4 at lines 28-37. First,
at lines 28-31, we compare the number of global output signals listed in the central
FSM (Σgout) with the number of prohibitable events in the DESpot project (Σhib),
and the number of unique IO signals of all the individual FSM specified in the central

310

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

FSM (ΣtmpIO). If the number of signals/events in these three sets is not equal, this
means requirements CR-2 and/or CR-4 cannot be satisfied, and we return False to
the caller algorithm after displaying the error message.

However, if these three sets have the same number of signals/events, then we
determine whether or not the names of all the signals/events match at lines 32-
37. We evaluate this by making sure that every global output signal listed in the
central FSM must belong to the DESpot project as a prohibitable event. Also, a
global output signal must be present as an IO signal in at least one individual FSM
specified in the central FSM, i.e. it must be in ΣtmpIO.

At lines 38-47, we perform the consistency check CR-3. At lines 38-41, we
compare the number of global input signals listed in the central FSM (Σgin) with the
number of uncontrollable events of the DESpot project (Σu). If the size of the two
sets is the same, then at lines 42-47, we examine if the names of the global input
signals and the project’s uncontrollable events match. If not, the CR-3 check fails
and we return False to the caller algorithm after printing an error message.

At lines 48-53, we evaluate CR-5 by checking whether or not an input signal
of an individual Moore FSM (ΣtmpIn) belongs to the set of global input signals of
the central FSM (Σgin). If this is not the case, then we terminate the FSM-TDES
translation process by generating an error.

If all the above-mentioned consistency and design requirements are satisfied, then
we return True at line 54. This indicates to Algorithm 12.1 that all consistency and
design checks of Algorithm D.1 have been successful.

D.2 Verify Individual Moore FSM
In Algorithm D.2, we verify the consistency requirements CR-6−8 by examining the
information of all the individual Moore FSM specified in the central and individ-
ual FSM XML files. If we find any inconsistency, we generate an appropriate error
message and terminate the FSM-TDES translation process by returning control to
Algorithm 12.1.

Besides the variables defined in Section 12.2, Algorithm D.2 makes use of the
following two local variables:
• fsmFound: This flag is set to True if the individual Moore FSM, that we wish to

check for consistency, is found in the list of individual FSM specified in the central
FSM.

• mfsm: This variable temporarily stores the instance of the individual Moore FSM
specified in the central FSM that we are currently processing.
Algorithm D.2 begins by verifying part of the consistency requirement CR-6 at

lines 1-4. Specifically, we compare the number of individual Moore FSM that are
listed in the central FSM (mainFSMS) with the number of Moore FSM that are
specified individually (FSMS). If this number is the same, then at lines 5-38, we

311

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm D.2 VerifyIndividualFSM(mainFSMS,FSMS) Part I
1: if (|FSMS| 6= |mainFSMS|) then
2: print(“Error! The number of FSM listed in the central FSM must be equal

to the number of FSM specified individually.”)
3: return False
4: end if
5: for all (fsm ∈ FSMS) do
6: fsmFound← False
7: mfsm← ∅
8: for all (f ∈ mainFSMS) do
9: if (fsm.name = f.fsmName) then

10: mfsm← f
11: fsmFound← True
12: end if
13: end for
14: if (¬fsmFound) then
15: print(“Error! Every FSM specified individually must be listed in the

central FSM with the same name.”)
16: return False
17: end if
18: if (|fsm.ΣIO| 6= |mfsm.ΣlocIO|) then
19: print(“Error! For every FSM, the number of IO signals listed in the

central and individual FSM must be equal.”)
20: return False
21: end if
22: for all (σ ∈ fsm.ΣIO) do
23: if (σ /∈ mfsm.ΣlocIO) then
24: print(“Error! For every FSM, the list of IO signals specified in the

central and individual FSM must be same.”)
25: return False
26: end if
27: end for
28: if (|fsm.ΣIn| 6= |mfsm.ΣlocIn|) then
29: print(“Error! For every FSM, the number of input signals listed in the

central and individual FSM must be equal.”)
30: return False
31: end if
32: for all (σ ∈ fsm.ΣIn) do
33: if (σ /∈ mfsm.ΣlocIn) then
34: print(“Error! For every FSM, the list of input signals specified in the

central and individual FSM must be same.”)
35: return False

312

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm D.2 VerifyIndividualFSM(mainFSMS,FSMS) Part II
36: end if
37: end for
38: end for
39: return True

loop through all Moore FSM that are specified individually to perform the required
consistency checks.

At line 5, we take one individually specified Moore FSM (fsm), and look it up
in the list of individual FSM specified in the central FSM at lines 8-13. We use the
FSM name to perform the search (CR-6). If we find a Moore FSM in the central
FSM with the matching name, then we store the instance of this Moore FSM specified
in the central FSM in the mfsm variable, and set the fsmFound variable to True.
On the other hand, if the current Moore FSM specified individually is not present
in the list of individual FSM specified in the central FSM, then we display an error
message and return to the caller algorithm at lines 14-17.

At lines 18-27, we verify CR-7 by making sure that the list of IO signals of the
current Moore FSM is the same in the central FSM (mfsm.ΣlocIO) and individual
FSM specification (fsm.ΣIO). In order to do this, first we compare the number of
IO signals of the current Moore FSM at lines 18-21. If the number of IO signals
listed in the central and individual FSM specification is the same, then we evaluate
whether or not all IO signals have matching names at lines 22-27.

At lines 28-37, we repeat the above-mentioned process with respect to the input
signals of the Moore FSM that we are currently processing. In other words, we
check CR-8 to verify that the number and names of input signals of the current
Moore FSM are the same in the central FSM (mfsm.ΣlocIn) and individual FSM
specification (fsm.ΣIn).

If all Moore FSM satisfy CR-6−8, then Algorithm D.2 returns True at line
39 to indicate to Algorithm 12.1 that all consistency checks have been successfully
completed.

D.3 Generate Enablement Information
Algorithm D.3 uses the output information of an individual Moore FSM (fsm.QZ) to
populate QElig that represents enablement information for the corresponding TDES
supervisor. This algorithm also verifies design requirements DR-3−4 for the given
Moore FSM. If any of these requirements is not satisfied, we display an error message
and return False to Algorithm 12.1.

Algorithm D.3 defines the following two local variables:
• ΣElig: This set is used to store IO signals that are listed in the output vector of the

313

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Algorithm D.3 GenerateEnablementInfo(fsm,QElig)
1: if (fsm.QZ = ∅) then
2: print(“Error! In the FSM, the list of states along with the corresponding

output information of the IO signals must be specified.”)
3: return False
4: end if
5: for all (z ∈ fsm.QZ) do
6: ΣElig ← ∅
7: IOSignal← “”
8: if (z.outputV ector 6= “”) then
9: for (i← 0 to |z.outputV ector| − 1) do

10: if (z.outputV ector[i] = “, ”) then
11: ΣElig ← ΣElig ∪ {IOSignal}
12: IOSignal← “”
13: else
14: IOSignal← IOSignal + z.outputV ector[i]
15: end if
16: end for
17: ΣElig ← ΣElig ∪ {IOSignal}
18: end if
19: for all (σ ∈ ΣElig) do
20: if (σ /∈ fsm.ΣIO) then
21: print(“Error! The signals specified in the output vectors must be

listed as IO signals in the FSM’s list of signals.”)
22: return False
23: end if
24: end for
25: QElig ← QElig ∪ {(z.q,ΣElig)}
26: end for
27: return True

Moore FSM which is currently being processed. In terms of a TDES supervisor,
this set contains prohibitable events that are enabled at the given state of the
supervisor that we are currently generating.

• IOSignal: This string variable temporarily holds the characters, as we read the
name of an IO signal (one character at a time) from the output vector that we are
currently processing.
We begin Algorithm D.3 by verifying design requirement DR-3 at lines 1-4.

Specifically, we check QZ to make sure that there exists at least one state along with
its output information in the Moore FSM that we are currently translating.

At lines 5-26, we loop through the set QZ, process its elements (tuples) one by

314

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

one to generate the corresponding enablement information, and use this information
to populate QElig. We take one tuple (z) from QZ at line 5. Please recall from
Section 12.2 that the first element of this tuple is an FSM state (z.q), and the second
element is an output vector string (z.outputV ector).

At line 8, we examine the output vector of z’s tuple to make sure that it is not
empty. Please recall from our FSM-TDES translation method that, at any given state
of the FSM, the output vector will be empty if outputs for all the IO signals of the
FSM are set to False. In this case, we do not have any information in the output
vector to process, and ΣElig will be empty. Therefore, the algorithm jumps to line
25 and adds an empty set to QElig corresponding to the current FSM state. This
signifies that all prohibitable events are disabled at the corresponding sampled state
in the supervisor.

However, if the output vector string is not empty, then we start reading the
characters of the output vector one by one at lines 9-16. Every time we read a
character from the output vector that is not a comma (“,”), we append this character
to the end of the IOSignal string (line 14). If we come across a comma (line 10),
this means we have read one complete signal name from the output vector. Therefore,
we add this signal name to ΣElig, and empty out IOSignal to prepare it to store the
name of the next IO signal (lines 11-12). Once we reach the end of the output
vector, we add the last read signal name to ΣElig at line 17.

We verify design requirement DR-4 at lines 19-24. In simple words, we check to
make sure that every IO signal included in the output vector (ΣElig) must belong to
the list of IO signals of the current FSM (fsm.ΣIO). If DR-4 is satisfied, we add the
current FSM state (that corresponds to a sampled state in the translated supervisor)
and its corresponding enablement information to QElig at line 25.

315

Appendix E

Supplementary Material for
Combination Lock Example

This appendix contains supplementary material for the Moore FSM-TDES translation
example of a 4-bit Combination Lock system discussed in Chapter 13. Specifically,
we present XML files for the input Moore system and figures for the translated non-
minimal TDES supervisors for the Combination Lock example. We also demonstrate
the correctness of our FSM-TDES translation approach for the Combination Lock
system by performing the FSM-TDES-FSM translation cycle for this example.

E.1 XML Files for Input FSM
This section contains XML files for the 4-bit Combination Lock example expressed
as a Moore system.

E.1.1 Individual Moore FSM
In this section, we present three individual Moore FSM XML files for the Combi-
nation Lock system. In particular, XML Input File E.1 represents the Moore FSM
OpenLock (Figure 11.1 on page 181), XML Input File E.2 represents the FSM
ChangeCode (Figure 13.3 on page 255), and XML Input File E.3 represents the
FSM ActivateAlarm (Figure 13.4 on page 256). Please see Section C.1.1 for details
of our XML file format.

E.1.2 Central FSM
XML Input File E.4 expresses the central FSM for the 4-bit Combination Lock sys-
tem in our XML file format. Please see the details of our XML file structure in
Section C.1.2.

316

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

XML Input File E.1: Moore FSM OpenLock

1 <?xml version="1.0" encoding ="UTF -8" standalone="yes"?>
2 <FSM Name=" OpenLock ">
3 <ResetState Name="1"> </ ResetState >
4 <Signals >
5 <Signal Name="open" order="0" type="IO"/>
6 <Signal Name="enter" order="1" type="I"/>
7 <Signal Name="equal" order="2" type="I"/>
8 </ Signals >
9 <States >

10 <State Name="1" outputvector =""/>
11 <State Name="2" outputvector ="open"/>
12 </States >
13 <Transitions >
14 <StartState Name="1">
15 <Transition inputvector ="enter.equal" endstate ="2"/>
16 <Transition inputvector ="!enter" endstate ="1"/>
17 <Transition inputvector ="!equal" endstate ="1"/>
18 </State >
19 <StartState Name="2">
20 <Transition inputvector ="enter" endstate ="1"/>
21 <Transition inputvector ="!enter" endstate ="2"/>
22 </State >
23 </ Transitions >
24 </FSM >

XML Input File E.2: Moore FSM ChangeCode

1 <?xml version="1.0" encoding ="UTF -8" standalone="yes"?>
2 <FSM Name=" ChangeCode ">
3 <ResetState Name="1"> </ ResetState >
4 <Signals >
5 <Signal Name="new" order="0" type="IO"/>
6 <Signal Name=" save_code " order="1" type="IO"/>
7 <Signal Name="change" order="2" type="I"/>

317

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

8 <Signal Name="equal" order="3" type="I"/>
9 </ Signals >

10 <States >
11 <State Name="1" outputvector =""/>
12 <State Name="2" outputvector ="new"/>
13 <State Name="3" outputvector ="new , save_code "/>
14 </States >
15 <Transitions >
16 <StartState Name="1">
17 <Transition inputvector ="change.equal" endstate ="2"/

>
18 <Transition inputvector ="!change" endstate ="1"/>
19 <Transition inputvector ="!equal" endstate ="1"/>
20 </State >
21 <StartState Name="2">
22 <Transition inputvector ="change.new" endstate ="3"/>
23 <Transition inputvector ="!change" endstate ="2"/>
24 <Transition inputvector ="!new" endstate ="2"/>
25 </State >
26 <StartState Name="3">
27 <Transition inputvector =" save_code " endstate ="1"/>
28 <Transition inputvector ="! save_code " endstate ="3"/>
29 </State >
30 </ Transitions >
31 </FSM >

XML Input File E.3: Moore FSM ActivateAlarm

1 <?xml version="1.0" encoding ="UTF -8" standalone="yes"?>
2 <FSM Name=" ActivateAlarm ">
3 <ResetState Name="1"> </ ResetState >
4 <Signals >
5 <Signal Name="open" order="0" type="IO"/>
6 <Signal Name="new" order="1" type="IO"/>
7 <Signal Name="alarm" order="2" type="IO"/>

318

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

8 <Signal Name="enter" order="3" type="I"/>
9 <Signal Name="change" order="4" type="I"/>

10 <Signal Name="equal" order="5" type="I"/>
11 </ Signals >
12 <States >
13 <State Name="1" outputvector ="open ,new"/>
14 <State Name="2" outputvector ="alarm"/>
15 </States >
16 <Transitions >
17 <StartState Name="1">
18 <Transition inputvector ="enter .! equal .! open"

endstate ="2"/>
19 <Transition inputvector ="change .! equal .! new"

endstate ="2"/>
20 <Transition inputvector ="!enter .! change" endstate ="1

"/>
21 <Transition inputvector ="!enter.new" endstate ="1"/>
22 <Transition inputvector ="equal" endstate ="1"/>
23 <Transition inputvector ="open .! change" endstate ="1"/

>
24 <Transition inputvector ="open.new" endstate ="1"/>
25 </State >
26 <StartState Name="2">
27 <Transition inputvector ="<GDC >" endstate ="2"/>
28 </State >
29 </ Transitions >
30 </FSM >

XML Input File E.4: Central FSM CombinationLock

1 <?xml version="1.0" encoding ="UTF -8" standalone="yes"?>
2 <FSMMain Name=" CombinationLock ">
3 <Signals >
4 <Signal Name ="alarm" type="O" order="0"/>
5 <Signal Name ="new" type="O" order="1"/>

319

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

6 <Signal Name ="open" type="O" order="2"/>
7 <Signal Name =" save_code " type="O" order="3"/>
8 <Signal Name= "change" type="I" order="4"/>
9 <Signal Name= "enter" type="I" order="5"/>

10 <Signal Name= "equal" type="I" order="6"/>
11 </ Signals >
12 <FSMS >
13 <FSM Name=" ActivateAlarm ">
14 <Signals >
15 <Signal Name="open" type="IO"/>
16 <Signal Name="new" type="IO"/>
17 <Signal Name="alarm" type="IO"/>
18 <Signal Name="enter" type="I"/>
19 <Signal Name="change" type="I"/>
20 <Signal Name="equal" type="I"/>
21 </ Signals >
22 </FSM >
23 <FSM Name=" ChangeCode ">
24 <Signals >
25 <Signal Name="new" type="IO"/>
26 <Signal Name=" save_code " type="IO"/>
27 <Signal Name="change" type="I"/>
28 <Signal Name="equal" type="I"/>
29 </ Signals >
30 </FSM >
31 <FSM Name=" OpenLock ">
32 <Signals >
33 <Signal Name="open" type="IO"/>
34 <Signal Name="enter" type="I"/>
35 <Signal Name="equal" type="I"/>
36 </ Signals >
37 </FSM >
38 </FSMS >
39 </ FSMMain >

320

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

E.2 Deriving a Simplified Boolean Expression
Below, we present the step by step simplification process for the complemented
boolean expression specified in the ActivateAlarm Moore FSM (Figure 13.4 dis-
cussed in Section 13.2) at state 1. Please note that there exists a variety of online
tools and websites that automatically do these simplifications for us for free.

! ((enter · !equal · !open) + (change · !equal · !new))
= (!enter + !(!equal) + !(!open)) · (!change + !(!equal) + !(!new)) (DeMorgan’s

Theorem)
= (!enter + equal + open) · (!change + equal + new) (Involution Law)
= !enter · (!change + equal + new) + equal · (!change + equal + new) + open · (!change

+ equal + new) (Distributive Property)
= !enter · !change + !enter · equal + !enter · new + equal · !change + equal · equal +

equal · new + open · !change + open · equal + open · new (Distributive Property)
= !enter · !change + !enter · equal + !enter · new + equal · !change + equal + equal ·

new + open · !change + open · equal + open · new (Idempotent Law)
= !enter · !change + !enter · new + equal · !change + equal + equal · new + open ·

!change + open · equal + open · new (Absorption Law)
= !enter · !change + !enter · new + equal + equal · new + open · !change + open ·

equal + open · new (Absorption Law)
= !enter · !change + !enter · new + equal + open · !change + open · equal + open ·

new (Absorption Law)
= !enter · !change + !enter · new + equal + open · !change + open · new (Absorption

Law)

E.3 Translated Non-Minimal TDES Supervisors
This section contains the translated non-minimal TDES supervisors for the 4-bit
Combination Lock example discussed in Chapter 13. These supervisors are the direct
output of our FSM-TDES translation algorithms presented in Chapter 12, before
performing the state space minimization process.

For the ChangeCode FSM (Figure 13.3 on page 255), the translated non-minimal
TDES supervisor is shown in Figure E.1. For the ActivateAlarm FSM (Figure 13.4
on page 256), the translated non-minimal supervisor is shown in Figure E.2. Please
note that for the OpenLock FSM (Figure 11.1 on page 181), the translated non-
minimal supervisor is shown in Figure 11.2 (on page 192 in Chapter 11).

321

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

!change
tick

!equal

!change

tick

!equal

!change
!equal

save_code

tick

!change
!equal

new

tick

!change
!equal

tick

!change
!equal

tick

!change

new

tick

!equal

!change

tick

!equal
!change

new
tick

!equal
!change

tick

!equal

!change

tick

!equal

!change
new

save_code

!equal

!change

new

tick

!equal

!change
!equal

tick

!change

new

tick

!equal

!change
tick

!equal

!change
!equal

new

tick

!change

save_code

tick

!equal

!change

new

save_code

tick

!equal!change

tick

!equal
!change

new

save_code

tick

!equal

!change

new

tick

!equal

!change

save_code tick

!equal

!change

save_code

tick

!equal

!change

new

tick

!equal

!change

tick

!equal

!change
!equal

new

save_code

tick

!change

tick

!equal

1

x1

x3

x2

2

x4

x5

x6

x10

x8

3

x7
x9

x11

x12

x14
x18

x13

x15

x19

x16

x21

x17

x20 x22

x23

x25
x24

Figure E.1: Translated TDES Supervisor ChangeCode

322

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

E.4 Correctness of FSM-TDES Translation
Approach

As mentioned in Section 11.3.6, our primary goal while devising the FSM-TDES
translation approach is to formulate an automatic translation method that should
be capable of generating a “correct” TDES supervisor from the Moore FSM without
violating the given control specifications. By looking at the supervisors (discussed
in Section 13.3) that our FSM-TDES translation approach has generated for the 4-
bit Combination Lock, it is evident that the translated TDES supervisors fulfill the
desired system specifications and abide by all the given control laws.

However, in order to rigorously verify the correctness of our FSM-TDES transla-
tion approach for the Combination Lock system, we decided to complete the cycle of
FSM-TDES-FSM translation for this system. Specifically, we started our Combina-
tion Lock example by manually designing its controllers expressed as Moore FSM (Sec-
tion 13.2). Then, we converted these Moore FSM into TDES supervisors by applying
our FSM-TDES translation approach (Section 13.3). Now, in this section, we will
convert our translated TDES supervisors back to Moore FSM using the TDES-FSM
translation method defined by Wang (2009) and our modified TDES-FSM translation
algorithms (presented in Section C.2).

Once we have the translated Moore FSM for the Combination Lock system, we
will compare them with our manually designed Moore FSM that we started with.
We intend to do this comparison in order to determine the exact similarities and/or
differences between the two Moore FSM. In simple words, we will try to investigate if
the translated Moore FSM are isomorphic to our manually designed Moore FSM up
to relabelling of states. If not, we will explore how the two versions of the Moore FSM
differ, and what this difference signifies with respect to the correctness of our FSM-
TDES translation approach. This FSM-TDES-FSM translation cycle also helps us in
verifying consistency and compatibility between the the two translation approaches
that we aim to achieve.

It is worth-mentioning that for the same specifications of the 4-bit Combination
Lock, we can design TDES supervisors in a variety of different ways. Therefore, we
cannot really compare our translated TDES supervisors with manually designed su-
pervisors to verify the correctness of our FSM-TDES translation approach. However,
we hypothesize that the translated Moore FSM should be equivalent to our manually
designed Moore FSM with respect to valid input combinations (defined later), if they
model the same set of specifications.

For the Combination Lock system, we provided the three translated modular
TDES supervisors (given in Section 13.3) as an input to the TDES-FSM translation
method in DESpot (2023). As an output, we get four XML files: one file for the
central FSM and three files for individual Moore FSM.

323

tic
k

!c
ha
ng
e

ne
w

!e
nt
er

!e
qu
al

op
en

tic
k

!c
ha
ng
e

ne
w

!e
nt
er

!e
qu
al

op
en

tic
k

!c
ha
ng
e

!e
nt
er

!e
qu
al

op
en

tic
k

!c
ha
ng
e

ne
w

!e
nt
er

!e
qu
al

op
en

tic
k

!c
ha
ng
e

ne
w

!e
nt
er

!e
qu
al

op
en

tic
k

!c
ha
ng
e

ne
w

!e
nt
er

!e
qu
al

tic
k

!c
ha
ng
e

!e
nt
er

!e
qu
al

op
en

tic
k

!e
nt
er

!c
ha
ng
e

ne
w

!e
qu
al

op
en

tic
k

!c
ha
ng
e

ne
w

!e
nt
er

!e
qu
al

tic
k

!c
ha
ng
e

ne
w

!e
nt
er

!e
qu
al

tic
k

!c
ha
ng
e

!e
nt
er

!e
qu
al

op
en

tic
k

!c
ha
ng
e

!e
nt
er

!e
qu
al

op
en

tic
k

!c
ha
ng
e

!e
nt
er

!e
qu
al

tic
k

!c
ha
ng
e

!e
qu
al

ne
w

!e
nt
er

op
entic
k

!e
nt
er

!c
ha
ng
e

!e
qu
al

ne
w op
en

tic
k

!e
nt
er

!c
ha
ng
e

ne
w

!e
qu
al

tic
k

!e
nt
er

!c
ha
ng
e

!e
qu
al

op
en

tic
k

!c
ha
ng
e

!e
nt
er

!e
qu
al

op
en

tic
k

!c
ha
ng
e

!e
nt
er !e
qu
al

tic
k

!e
nt
er

!c
ha
ng
e

!e
qu
al

op
en

tic
k

!e
nt
er

!c
ha
ng
e

!e
qu
al

tic
k

!c
ha
ng
e

ne
w

!e
nt
er

!e
qu
al

tic
k

!c
ha
ng
e

!e
nt
er

!e
qu
al

tic
k

!e
nt
er

!c
ha
ng
e

!e
qu
al

ne
w

tic
k

!c
ha
ng
e

!e
nt
er

!e
qu
al

tic
k

!e
nt
er

!c
ha
ng
e

!e
qu
al

tic
k

!c
ha
ng
e

!e
qu
al

!e
nt
er

op
en

tic
k

!c
ha
ng
e

!e
qu
al ne
w

!e
nt
er

tic
k

!c
ha
ng
e

!e
nt
er

!e
qu
al

tic
k

!c
ha
ng
e

!e
qu
al

!e
nt
er

!e
nt
er

tic
k
!c
ha
ng
e

!e
qu
al

al
ar
m

tic
k

!e
nt
er

!c
ha
ng
e

!e
qu
al

tic
k

!c
ha
ng
e

ne
w

!e
nt
er

!e
qu
al

op
en

tic
k

!c
ha
ng
e

ne
w

!e
nt
er

!e
qu
al

1

x8

x4

x1

x2

x1
3

x1
8

x5

x3

x1
0

x9

x1
5

x1
2

x7

x1
4

x2
3

x2
7

x1
1

x6

x2
1

x1
7

x2
8

x2
9

x2
2

x1
9

x3
0

x1
6

x2
4

x3
1

x2
0

x2
5

x2
6

2

x3
2

Figure E.2: Translated TDES Supervisor ActivateAlarm

324

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

E.4.1 Central FSM
By comparing the translated central FSM XML file with our manually designed cen-
tral FSM file, we note that the two central FSM for the 4-bit Combination Lock are
identical, i.e. we get the exact same translated central FSM as the central FSM that
we started with while manually specifying our Moore system. Our central FSM for
the Combination Lock system is given in XML Input File E.4 (Section E.1.2).

E.4.2 Individual Moore FSM
Now we will compare our manually designed individual Moore FSM for the 4-bit
Combination Lock with the Moore FSM that we obtained by applying the TDES-
FSM translation algorithms (Section C.2) on our translated TDES supervisors. In
the following discussion, we will refer to our manually designed Moore FSM that we
started with (Section 13.2.1) as the “designed” FSM, and the output FSM of the
TDES-FSM translation method as the “translated” FSM.

Moore FSM-1: OpenLock

By applying the TDES-FSM translation method on our translated TDES supervisor
OpenLock (Figure 11.2), we get the translated Moore FSM shown in Figure E.3.
After comparing this translated FSM with our designed FSM (Figure 11.1), we note
that the two FSM have the same number of states and signals. Also, they produce
the same output information for the IO signal open at both states of the FSM.

The designed and translated FSM OpenLock express their next state conditions
(input combinations) as boolean expressions. Please note that currently, the TDES-
FSM translation method generates boolean expressions in a non-minimal form. We
have simplified these non-minimal boolean expressions by applying boolean algebra

Reset

ST: 1
open = 0

enter. equal. !openenter

ST: 2
open = 1

!enter. !open +
!equal. !open +

<DEF>

!enter + <DEF>

Figure E.3: Translated Moore FSM OpenLock

325

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

properties (Brown and Vranesic, 2013), so that they could fit the graphical represen-
tation of our translated FSM without making it cluttered, as shown in Figure E.3.

It is apparent that at state 1, the boolean expressions for the designed and trans-
lated OpenLock FSM are not identical. A closer examination reveals that the cor-
responding boolean expressions of the two FSM are not even equivalent. This implies
that the NSL of the two FSM at state 1 are different, hence confirming that the two
FSM are not isomorphic up to state relabelling. For example, in the designed FSM,
the input combination of enter · equal · open goes from state 1 to state 2. On the other
hand, this input combination does not appear explicitly at state 1 in the translated
FSM. This means that enter · equal · open is covered by the DEF transition that is
generated by DESpot at state 1 of the translated FSM. Not to mention, that DESpot
always specifies DEF as a selfloop transition.

However, it is notable that at state 1, the output of open is set to ‘0’ (False) by
the designed as well as the translated OpenLock FSM. As discussed at Step 4 of
Section 11.3.5, if the output of an IO signal is set to ‘0’ by a modular controller, this
guarantees that the global output of this IO signal will be ‘0’. Since the global output
is fed back as an input to all individual FSM, this means the input of this IO signal
cannot be ‘1’. This in turn implies that all the input combinations in which this IO
signal appears as ‘1’ cannot be True. In other words, these input combinations will
be considered as invalid, as they cannot occur in the physical system at this point in
time.

Please note that for the designed OpenLock FSM, since enter · equal · open is
invalid and cannot evaluate to True at state 1, it does not really matter what des-
tination state we specify for this invalid input combination in our theoretical model.
Keeping this in view, we combined the valid next state condition of enter · equal · !open
with the invalid input combination enter · equal · open in order to simplify the NSL
and obtain a compact boolean expression while designing the OpenLock FSM by
hand.

The above discussion makes it clear that although the designed and translated
FSM specify different destination states for the input combination of enter · equal · open,
it does not really represent a “conflict” that makes the two FSM dissimilar. Also,
since this input combination is invalid, it does not make any difference whether it is
explicitly defined at state 1 or is covered by DEF. In fact, it is not surprising that
an invalid next state condition that is explicitly specified in the manually designed
FSM becomes part of the DEF transition in the translated FSM, since this was the
primary purpose of introducing DEF in the TDES-FSM translation (Wang, 2009),
i.e. to represent all invalid transitions of the TDES supervisor. Consequently, this
difference between the NSL of the two FSM with respect to the invalid input combi-
nation of enter · equal · open looks negligible, as it does not seem to affect the system
specifications or violate any control laws.

Keeping this in view, instead of comparing NSL of the designed and translated
FSM for all input combinations, we will now restrict our comparison to valid input

326

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

combinations only, i.e. at any given state, whether or not the two FSM have the
same destination states for valid input combinations. Therefore, we will now focus
on determining equivalence of the designed and translated FSM with respect to valid
next state conditions that could occur in the system.

In order to clearly compare the NSL of the designed and translated OpenLock
FSM, it looks suitable to present this information in the form of a table. Table E.1
shows all NSL specified by the designed and translated FSM. After writing Row No.
in the first column of the table, the next three columns represent three signals of the
FSM, open, enter and equal. The column of Start State: 1 gives all NSL for state
1 of the designed and translated FSM. Specifically, its two subcolumns list down the
end (destination) states that are specified in the designed and translated FSM for all
input combinations. Likewise, the last column of Start State: 2 shows the complete
NSL for state 2 of the two FSM. Starting at an FSM state, if the end states of the
designed and translated FSM are different for the given input combination (valid or
invalid), we highlight this difference by using grey background for the respective end
state cells of the two FSM.

First, we compare the designed and translated FSM with respect to the NSL
specified at state 1. By looking at Table E.1, it is easy to see that the two FSM
specify same end states for the input combinations of !open · !enter · !equal (R-1),
!open · !enter · equal (R-2), !open · enter · !equal (R-3) and !open · enter · equal (R-4).
Since open = 0 at state 1, all these input combinations are valid and could occur in
the system. This means that the two FSM have the same NSL for these four valid
input combinations that are defined at state 1.

The row R-5 represents the input combination of open · !enter · !equal. The table
shows that the destination state for this input combination in the designed FSM is
1. However, this input combination is covered by the DEF transition in the trans-
lated FSM. Since open = 0 at state 1, this input combination of R-5 is invalid and
cannot occur in the system while OpenLock is at state 1. Hence, we will ignore this
difference between the NSL of the two FSM, as this row does not contribute towards
determining the equivalence of the two FSM.

We note that for rows R-6, R-7 and R-8, the cells for the end states of the designed
and translated FSM are highlighted with grey background. This indicates that for
the input combinations represented by these three rows, the end states of the two
FSM are different. However, we can ignore this difference between the NSL of the
two FSM, as these three rows represent invalid input combinations at state 1. In
summary, it is clear that there are four valid input combinations at state 1 (R-1−R-
4), and the designed and translated FSM have the same destination states for all
these valid input combinations.

Now we compare the NSL of the two FSM at state 2. By looking at the two
subcolumns of Start State: 2, we quickly notice that none of the end state cells
of these subcolumns is highlighted in grey. This indicates that the designed and
translated FSM specify same end states for all possible input combinations. Since

327

Ph.D
.T

hesis
–

H
ina

M
ahm

ood
M

cM
aster

U
niversity

–
Software

Engineering

Table E.1: Boolean Next State Logic for Designed vs. Translated Moore FSM OpenLock

Row No. open enter equal
Start State: 1 Start State: 2

End State
(Designed)

End State
(Translated)

End State
(Designed)

End State
(Translated)

R-1 0 0 0 1 1 2 2
R-2 0 0 1 1 1 2 2
R-3 0 1 0 1 1 1 1
R-4 0 1 1 2 2 1 1
R-5 1 0 0 1 DEF 2 2
R-6 1 0 1 1 DEF 2 2
R-7 1 1 0 1 DEF 1 1
R-8 1 1 1 2 DEF 1 1

328

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

open = 1 at state 2, all input combinations (R-1−R-8) will be considered as valid.
This implies that at state 2, the two FSM specify the same NSL for all valid input
combinations.

Based on the aforementioned analysis, it is evident that at any given state, the
designed and translated OpenLock FSM have the same NSL for all valid input
combinations. Hence, we conclude that the two FSM are equivalent with respect
to valid next state conditions that could occur in the physical system. This verifies
the correctness of our FSM-TDES translation approach for the OpenLock FSM and
shows that our devised translation method is capable of preserving the defined system
specifications and control laws for this FSM.

Finally, please recall that as mentioned in Chapter 11, one of our major goals while
developing the FSM-TDES translation approach was to establish compatibility and
consistency between our approach and the existing TDES-FSM translation method.
By performing this complete cycle of FSM-TDES-FSM translation for OpenLock
and going back and forth between the two models, we have also demonstrated the
desired compatibility and consistency between the two translation approaches. This
also verifies the correctness of the changes that we made in the TDES-FSM translation
method, specifically our TDES-FSM translation algorithms presented in Section C.2.

Moore FSM-2: ChangeCode

Figure E.4 shows the translated Moore FSM that is generated from our translated
TDES supervisor (Figure E.1) using the TDES-FSM translation method. By com-
paring the translated FSM ChangeCode with our designed FSM (Figure 13.3), it
is obvious that the two FSM have the same number of states and signals. Also, they
produce the same output information for the two IO signals, new and save code, at
all FSM states.

Table E.2 gives NSL at all states of the designed and translated FSM for all
input combinations. First, by looking at the graphical representation of the designed
(Figure 13.3) and translated (Figure E.4) FSM, we note that at state 1, the outputs
for both IO signals, new and save code, are set to ‘0’. This means that at state 1, we
are only interested in comparing the destination states of those input combinations
in which new and save code appear as ‘0’.

In Table E.2, the valid input combinations at state 1 are represented by rows
R-1−R-4. By comparing the end states of the designed and translated FSM for
R-1−R-4, it is evident that both FSM specify the same end states for these four
valid input combinations. Please note that for the rest of the input combinations at
state 1 (R-5−R-16), the end states cells of the two FSM are coloured in grey. This
indicates that the designed and translated FSM specify different end states for all
input combinations that are invalid at state 1. However, we will ignore this difference
because of the reasons discussed in the previous section.

At state 2, the designed and translated FSM set the output value of new to ‘1’

329

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Reset

ST: 1
new = 0

save_code = 0

change. equal. !new. !save_code

ST: 2
new = 1

save_code = 0

ST: 3
new = 1

save_code = 1

!change. !new. !save_code +
!equal. !new. !save_code +

<DEF>

save_code
!change. !save_code +

!new. !save_code +
<DEF>

!save_code + <DEF>

change. new. !save_code

Figure E.4: Translated Moore FSM ChangeCode

and save code to ‘0’. Hence, the set of input combinations that are valid at state 2 is
represented by rows R-1−R-4 and R-9−R-12. Since, for these rows, none of the end
state cells of the two FSM are coloured in grey, this shows that the two FSM specify
the same end states for all valid input combinations. Also, it is obvious that all the
coloured end state cells for Start State: 2 correspond to the input combinations that
have save code as ‘1’ (R-5−R-8, R-13−R-16), i.e. they represent invalid next state
conditions at state 2 of the FSM that cannot occur in the physical system.

At state 3, the outputs for both IO signals, new and save code are set to ‘1’ in the
designed and translated FSM. This implies that all input combinations represented
by rows R-1−R-16 could occur in the system and are considered as valid. By looking
at the column of Start State: 3, we note that the two FSM specify the same end
states for all input combinations, i.e. they have the same NSL for all valid input
combinations at state 3.

From the above-mentioned comparison, it is clear that the designed and translated
ChangeCode FSM specify the same NSL for all input combinations that are valid
at any given FSM state. Hence, we conclude that the two FSM are equivalent with
respect to valid next state conditions that could occur in the physical system.

330

Table E.2: Boolean Next State Logic for Designed vs. Translated Moore FSM ChangeCode

Row No. new save code change equal
Start State: 1 Start State: 2 Start State: 3

End State
(Designed)

End State
(Translated)

End State
(Designed)

End State
(Translated)

End State
(Designed)

End State
(Translated)

R-1 0 0 0 0 1 1 2 2 3 3
R-2 0 0 0 1 1 1 2 2 3 3
R-3 0 0 1 0 1 1 2 2 3 3
R-4 0 0 1 1 2 2 2 2 3 3
R-5 0 1 0 0 1 DEF 2 DEF 1 1
R-6 0 1 0 1 1 DEF 2 DEF 1 1
R-7 0 1 1 0 1 DEF 2 DEF 1 1
R-8 0 1 1 1 2 DEF 2 DEF 1 1
R-9 1 0 0 0 1 DEF 2 2 3 3

R-10 1 0 0 1 1 DEF 2 2 3 3
R-11 1 0 1 0 1 DEF 3 3 3 3
R-12 1 0 1 1 2 DEF 3 3 3 3
R-13 1 1 0 0 1 DEF 2 DEF 1 1
R-14 1 1 0 1 1 DEF 2 DEF 1 1
R-15 1 1 1 0 1 DEF 3 DEF 1 1
R-16 1 1 1 1 2 DEF 3 DEF 1 1

331

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

Reset

ST: 1
open = 1
new = 1

alarm = 0

enter. !equal. !open. !alarm
+

change. !equal. !new. !alarm

!enter. !change. !alarm + !enter. new. !alarm +
equal. !alarm + open. !change. !alarm +

open. new. !alarm + <DEF>

ST: 2
open = 0
new = 0

alarm = 1

<GDC> + <DEF>

Figure E.5: Translated Moore FSM ActivateAlarm

Moore FSM-3: ActivateAlarm

The Moore FSM that we obtain from our translated TDES supervisor Activate
Alarm (Figure E.2) using the TDES-FSM translation method is shown in Figure E.5.
By looking at our designed (Figure 13.4) and translated FSM of ActivateAlarm, it
is evident that the two FSM have the same number of states and signals. Also, they
specify the same output information for the IO signals, open, new and alarm, at both
states of the FSM.

Table E.3 shows NSL at both states of the designed and translated ActivateAlarm
FSM for all input combinations. The graphical representation of the designed (Fig-
ure 13.4) and translated (Figure E.5) FSM shows that at initial state 1, both FSM set
the output values of open and new to ‘1’, and alarm to ‘0’. Therefore, for both FSM,
the valid input combinations at state 1 are represented by rows R-1−R-8, R-17−R-24,
R-33−R-40 and R-49−R-56 of Table E.3.

By examining the end states of the input combinations that are valid at state 1
of the designed and translated FSM, we observe that the two FSM specify the same
NSL for all valid input combinations. Also, it is apparent that all the end state cells
that are coloured in grey for Start State: 1 correspond to the input combinations
in which alarm appears as ‘1’. In other words, they represent invalid next state
conditions that cannot be True in the physical system while ActivateAlarm FSM
is at state 1.

At state 2, the designed and translated FSM set the output values of alarm to ‘1’,
and open and new to ‘0’. Therefore, for both FSM, R-1−R-16 represent the set of

332

Ph.D. Thesis – Hina Mahmood McMaster University – Software Engineering

valid input combinations at state 2. Table E.3 shows that none of the end state cells
for Start State: 2 are coloured in grey for R-1−R-16. This indicates that the two
FSM specify the same NSL for all input combinations that are valid at state 2.

It is noteworthy that at state 2, both FSM have the same end states even for the
invalid input combinations. This is because of the GDC transition that is detected
and generated by our TDES-FSM translation Algorithm C.2 at state 2.

The above-stated comparison makes it obvious that at any given state, the de-
signed and translated ActivateAlarm FSM specify the same NSL for all valid input
combinations. Hence, we conclude that the two FSM are equivalent with respect to
valid next state conditions that could occur in the physical system.

333

Ph.D
.T

hesis
–

H
ina

M
ahm

ood
M

cM
aster

U
niversity

–
Software

Engineering

Table E.3: Boolean Next State Logic for Designed vs. Translated Moore FSM ActivateAlarm

Row No. open new alarm enter change equal
Start State: 1 Start State: 2

End State
(Designed)

End State
(Translated)

End State
(Designed)

End State
(Translated)

R-1 0 0 0 0 0 0 1 1 2 2
R-2 0 0 0 0 0 1 1 1 2 2
R-3 0 0 0 0 1 0 2 2 2 2
R-4 0 0 0 0 1 1 1 1 2 2
R-5 0 0 0 1 0 0 2 2 2 2
R-6 0 0 0 1 0 1 1 1 2 2
R-7 0 0 0 1 1 0 2 2 2 2
R-8 0 0 0 1 1 1 1 1 2 2
R-9 0 0 1 0 0 0 1 DEF 2 2

R-10 0 0 1 0 0 1 1 DEF 2 2
R-11 0 0 1 0 1 0 2 DEF 2 2
R-12 0 0 1 0 1 1 1 DEF 2 2
R-13 0 0 1 1 0 0 2 DEF 2 2
R-14 0 0 1 1 0 1 1 DEF 2 2
R-15 0 0 1 1 1 0 2 DEF 2 2
R-16 0 0 1 1 1 1 1 DEF 2 2
R-17 0 1 0 0 0 0 1 1 2 2
R-18 0 1 0 0 0 1 1 1 2 2
R-19 0 1 0 0 1 0 1 1 2 2
R-20 0 1 0 0 1 1 1 1 2 2

Continued on the next page

334

Ph.D
.T

hesis
–

H
ina

M
ahm

ood
M

cM
aster

U
niversity

–
Software

Engineering
Continued from previous page

Row No. open new alarm enter change equal
Start State: 1 Start State: 2

End State
(Designed)

End State
(Translated)

End State
(Designed)

End State
(Translated)

R-21 0 1 0 1 0 0 2 2 2 2
R-22 0 1 0 1 0 1 1 1 2 2
R-23 0 1 0 1 1 0 2 2 2 2
R-24 0 1 0 1 1 1 1 1 2 2
R-25 0 1 1 0 0 0 1 DEF 2 2
R-26 0 1 1 0 0 1 1 DEF 2 2
R-27 0 1 1 0 1 0 1 DEF 2 2
R-28 0 1 1 0 1 1 1 DEF 2 2
R-29 0 1 1 1 0 0 2 DEF 2 2
R-30 0 1 1 1 0 1 1 DEF 2 2
R-31 0 1 1 1 1 0 2 DEF 2 2
R-32 0 1 1 1 1 1 1 DEF 2 2
R-33 1 0 0 0 0 0 1 1 2 2
R-34 1 0 0 0 0 1 1 1 2 2
R-35 1 0 0 0 1 0 2 2 2 2
R-36 1 0 0 0 1 1 1 1 2 2
R-37 1 0 0 1 0 0 1 1 2 2
R-38 1 0 0 1 0 1 1 1 2 2
R-39 1 0 0 1 1 0 2 2 2 2
R-40 1 0 0 1 1 1 1 1 2 2
R-41 1 0 1 0 0 0 1 DEF 2 2
R-42 1 0 1 0 0 1 1 DEF 2 2

Continued on the next page

335

Ph.D
.T

hesis
–

H
ina

M
ahm

ood
M

cM
aster

U
niversity

–
Software

Engineering

Continued from previous page

Row No. open new alarm enter change equal
Start State: 1 Start State: 2

End State
(Designed)

End State
(Translated)

End State
(Designed)

End State
(Translated)

R-43 1 0 1 0 1 0 2 DEF 2 2
R-44 1 0 1 0 1 1 1 DEF 2 2
R-45 1 0 1 1 0 0 1 DEF 2 2
R-46 1 0 1 1 0 1 1 DEF 2 2
R-47 1 0 1 1 1 0 2 DEF 2 2
R-48 1 0 1 1 1 1 1 DEF 2 2
R-49 1 1 0 0 0 0 1 1 2 2
R-50 1 1 0 0 0 1 1 1 2 2
R-51 1 1 0 0 1 0 1 1 2 2
R-52 1 1 0 0 1 1 1 1 2 2
R-53 1 1 0 1 0 0 1 1 2 2
R-54 1 1 0 1 0 1 1 1 2 2
R-55 1 1 0 1 1 0 1 1 2 2
R-56 1 1 0 1 1 1 1 1 2 2
R-57 1 1 1 0 0 0 1 DEF 2 2
R-58 1 1 1 0 0 1 1 DEF 2 2
R-59 1 1 1 0 1 0 1 DEF 2 2
R-60 1 1 1 0 1 1 1 DEF 2 2
R-61 1 1 1 1 0 0 1 DEF 2 2
R-62 1 1 1 1 0 1 1 DEF 2 2
R-63 1 1 1 1 1 0 1 DEF 2 2
R-64 1 1 1 1 1 1 1 DEF 2 2

336

	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of XML Input Files
	Abbreviations and Notation
	Introduction
	Introduction to Discrete Event Systems
	Motivation
	Related Work
	Formal Implementation Approaches
	Real-World Applications of SCT
	Why Sampled-Data Supervisory Control?
	Formal Verification of Existing Systems

	Research Gap
	Our Proposal: FSM to TDES Translation
	Related Issue
	Proposed Solution

	Research Questions
	Thesis Contributions
	Thesis Outline

	Preliminaries
	Linguistic Preliminaries
	Strings
	Languages
	Nerode Equivalence Relation

	Discrete Event Systems
	Generator
	DES Synchronization
	Controllability

	Timed DES
	Controllability and Supervision
	Control Equivalent Supervisors
	TDES Properties

	Sampled-Data Supervisory Control
	SD Controllers
	Concurrency and Timing Issues
	SD Assumptions
	SD Preliminaries
	SD Controllability
	Formal Model of SD Controller
	TDES to FSM Translation
	Translation Functions
	Translation Method

	Supervisory Control
	Verification Results
	SD Controller as a Supervisory Control
	Controllability
	Event Generation
	Nonblocking

	Sampled-Data Synchronous Product
	SD Synchronous Product Operator
	Properties of SD Synchronous Product Operator
	SD Synchronous Product Defines a TDES
	Commutative Property
	Non-Associative Property

	SD Synchronous Product Setting
	SD Properties with SD Synchronous Product
	Plant Completeness with SD
	S-Singular Prohibitable Behaviour with SD
	Timed Controllability with SD

	SD Controllability with SD Synchronous Product
	ALF Modularity and SD Synchronous Product

	Equivalence of SD and SD Synchronous Product Setting
	Establishing Equivalence
	Why Equivalence is Needed?
	How to Establish Equivalence?

	Implicit Assumptions
	Equivalence of Languages
	Equivalence of SD Properties
	Plant Completeness
	S-Singular Prohibitable Behaviour
	Timed Controllability
	SD Controllability
	ALF

	Equivalence using Minimal Automaton
	Why Minimal Automaton is Needed?
	Obtaining a Minimal Automaton
	Identify Distinct -Equivalent States
	Construct a Minimal Automaton

	SD Properties with Minimal Automata
	CS Deterministic Supervisors
	ALF

	Equivalence of SD Controllers
	Preliminary Definitions
	Supporting Propositions
	Output Equivalent Controllers

	Controllability and Nonblocking Results for SD Synchronous Product Setting
	Supervisory Control V
	Construction of V
	Preliminary Definitions
	Map V is Well Defined
	Equivalence of V and V

	Controllability and Nonblocking Verification
	SD Controller as a Supervisory Control
	SD Controller and Controllability
	SD Controller and Event Generation
	SD Controller and Nonblocking

	Symbolic Verification in SD Synchronous Product Setting
	Predicates and Predicate Transformers
	State Predicates
	Predicate Transformers

	Symbolic Representation
	State Subsets
	Transitions

	Symbolic Computation
	Transitions and Inverse Transitions
	Predicate Transformers

	Construction of Closed-Loop System
	Symbolic Verification
	Plant Completeness with SD
	Untimed Controllability with SD
	SD Controllability with SD

	Flexible Manufacturing System
	System Structure
	Plant Components
	Modular Supervisors
	Buffer Supervisors
	Robot to B4 to Lathe Path
	Moving Parts from B4 to B6/B7
	B6/B7 to AM to Exit Path

	Results and Discussion
	Theoretical TDES
	Verification Results
	Miscellaneous Discussion

	Introduction to Moore FSM to TDES Translation
	Moore System as an Input
	Individual Moore FSM
	Central FSM

	FSM-TDES Translation Prerequisites
	Consistency Requirements
	Design Requirements

	FSM-TDES Translation Method
	Create State Set
	Populate Event Set
	Assign Initial State
	Generate Set of Marked States
	Construct Transition Function
	Make Translated Supervisor More Compact

	Moore FSM to TDES Translation Algorithms
	Algorithmic Notation
	Size Function
	Subscript Notation
	Dot Notation
	Bracket Notation

	Main Algorithm
	Generate Hybrid Next State Logic
	Generate Boolean Next State Logic
	Generate TDES Supervisor

	Complexity Analysis

	Combination Lock Example
	System Description
	Structure and Specifications
	System Components

	Design of Controllers
	Individual Moore FSM
	Central FSM

	Translated TDES Supervisors
	Open Lock
	Change Code
	Activate Alarm

	TDES Plant Models
	Verification Results
	Correctness of FSM-TDES Translation Approach

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Miscellaneous Definitions
	Equivalence Relation
	Product Operator
	Meet Operator
	Selfloop Operation
	Bijective Function

	Symbolic Verification
	Symbolic Representation of Transitions
	Symbolic Verification of SD Properties
	Nonblocking
	Activity Loop Free
	Proper Time Behaviour
	S-Singular Prohibitable Behaviour with SD

	Symbolic Verification of SD Controllability with SD
	Point ii.1
	Point ii.2
	Point iii

	TDES to Moore FSM Translation
	XML File Structure for Moore System
	Individual Moore FSM
	Central FSM

	Generating Individual Moore FSM with DESpot
	Algorithm C.1
	Algorithm C.2

	Supporting Algorithms for Moore FSM to TDES Translation
	Verify Central FSM
	Verify Individual Moore FSM
	Generate Enablement Information

	Supplementary Material for Combination Lock Example
	XML Files for Input FSM
	Individual Moore FSM
	Central FSM

	Deriving a Simplified Boolean Expression
	Translated Non-Minimal TDES Supervisors
	Correctness of FSM-TDES Translation Approach
	Central FSM
	Individual Moore FSM

