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Abstract

Wireless sensor networks (WSNs) typically consist of a significant number of inex-

pensive sensor nodes, each of which is powered by a battery or another finite energy

source that is difficult to replace because of the environment they are in or the cost of

doing so. The applications of WSNs include military surveillance, disaster manage-

ment, target tracking and monitoring environmental conditions. In order to increase

the lifespan of WSNs, energy-efficient sensing and communication approaches for

sensor nodes are essential. Recently, there has been an increase in interest in using

unmanned aerial vehicles (UAVs) as portable data collectors for ground sensor nodes

in WSN. Several approaches to solving effective communication between sensor nodes

and the fusion center have been investigated in this thesis. Because processing, sens-

ing range, transmission bandwidth, and energy consumption are always limited, it

is beneficial not to use all the information provided at each sensor node in order to

prolong its life span and reduce communication costs. In order to address this prob-

lem, first, efficient measurement quantization techniques are proposed using a single

fusion center and multiple sensors. The dynamic bit distribution is done among all

the sensors and within the measurement elements. The problem is then expanded to

include multiple fusion centers, and a novel algorithm is proposed to associate sensors

to fusion centers. The bandwidth distribution for targets which are being monitored
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by several sensors is addressed. Additionally, how to use the situation in which the

sensors are in the coverage radius of multiple fusion centers in order to share the

targets between them is discussed. Finally, performance bounded data collection al-

gorithms are proposed where the necessary accuracy for each target is specified. In

order to determine the minimum number of data collectors needed and their initial

placement, an algorithm is proposed. When there are fewer fixed data collectors

than there are regions to collect the data from, a coverage path planning method is

developed. Since the optimal solution requires an enormous computational require-

ment and not realistic for real-time online implementation, approximate algorithms

are proposed for multi-objective integer optimization problems. In order to assess

each suggested algorithm’s effectiveness, many simulated scenarios are used together

with baselines and simple existing methods.
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Chapter 1

Introduction

1.1 A Review of Measurement Quantization and

Data Collection

Multi-target tracking problems often require covering extremely large areas, and many

sensors are densely deployed to cover the region of interest (ROI). This results in new

challenges when resources like power, bandwidth, and energy are limited. Utilizing all

the sensors in the ROI, including the uninformative ones that rarely help the track-

ing of the target at hand but use limited available resources, is ineffective in these

circumstances[11]. Wireless sensor networks (WSN) provide diverse opportunities to

detect and interact with the physical world around us. They enable us to gather

data that was until now difficult, expensive, or even impossible to collect. A partic-

ularly challenging problem in wireless sensor network applications is developing an

energy-efficient tracking approach that balances the limited energy resources with the

tracking performance requirements. Despite the many promising benefits, there are

1
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Computer Engineering

many new challenges to address to have an efficient association of sensors to fusion

centers (FC) and the amount of data for each target to be communicated by the sen-

sors to the fusion centers. This calls for more effective resource management systems.

It is acknowledged that providing direct measurements rather than estimates makes

optimal data fusion possible. Recent research has demonstrated the competitiveness

of such an approach in terms of bandwidth. This thesis investigates the bandwidth

allocation in terms of the number of bits per measurement through intelligent quanti-

zation and the assignment of targets to fusion centers. Figure 1.1, depicts the scenario

where the sensor nodes have limited energy and the fusion center collects the measure-

ments from these sensor nodes to obtain an overall view of the tracking region with

multiple targets. As a result, communication required expensive sensor node energy

usage. Sensor data is transmitted through channels with a limited amount of band-

width in real systems. Therefore, it is crucial to think about problems with quantized

data transfer from the sensors to the fusion center and ultimately the fusion of such

quantized data. Redundancy is created when there is a dense deployment of sensor

nodes because numerous sensors are simultaneously producing information about the

target. The question of how much data should be gathered from each sensor node

to improve tracking accuracy then emerges. The motivation behind this thesis is to

improve and extend the existing data collection methods to handle different scenarios

that arise while collecting the data for multitarget tracking. This thesis is structured

as a sandwich thesis with three separate publications that address three interrelated

issues associated with data collection in WSNs. Applications such as surveillance,

traffic monitoring, and rescue operations are taken into consideration.

Due to the rapid increase in the number of sensors in the surveillance region, in

2
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Figure 1.1: Multi-Target Tracking with Quantized Measurements
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Multi-Sensor, Multi-Targets scenarios, raw sensor measurements are typically quan-

tized before being sent to the information processing center (fusion center) due to the

limited communication bandwidth. The amount of bandwidth required to commu-

nicate all the measurements from all the sensors is competitive. Selecting a smaller

number of quantized sensor measurements may nevertheless produce data of the nec-

essary quality in a surveillance system such as a combat scenario, where dense sensor

deployment may result in redundancy in coverage. In Chapter 2, we pose and solve

the topic of how to distribute the bits when a sensor has several targets and each

target’s measurement has more than one element, along with how to leverage data

from many sensors to initialize the tracks in the shared region more quickly. An intel-

ligent and effective quantization for multi-target tracking by dynamically allocating

the available bandwidth among all the targets is studied. The fusion center effectively

distributes the available bandwidth among the targets at each time step in order to

minimize the posterior Cramer-Rao lower bound on the mean squared error. To do

this, the fusion center also takes into account the bandwidth at the sensor nodes.

Energy-efficient data collection in wireless sensor networks utilizing unmanned

aerial vehicles as mobile data collectors is a key requirement in any network design

to prolong the network’s lifetime. Although UAVs, or drone cells, provide a quick

deployment opportunity as aerial base stations, efficient data collection from different

sensors becomes one of the key issues, especially in an energy and bandwidth-limited

environment. In Chapter 3, we first highlight the situation where a sensor can be

in the coverage region of more than one fusion center and the advantage of a sensor

communicating with multiple fusion centers where the energy at the fusion centers

and sensor nodes is limited. The issue of connecting the targets to fusion centers

4
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and the distribution of bandwidth to the targets are both addressed in our work. We

formulate the problem as a multi-objective integer problem to get the best tracking

performance as the main objective by efficiently using the available resources, which

is achieved by minimizing the posterior Cramer-Rao lower bound for tracking in

cluttered domains.

Wireless sensor networks have become an important solution for a wide range

of ever-growing tracking applications. Many of the conventional WSN architectures

consist of static sensor nodes that are densely deployed over a tracking region. The in-

formation from these stationary sensor nodes is gathered using data collectors (DC)

such as an unmanned aerial vehicle. These data collectors are generally used as a

central communication point for all wireless devices. The deployment of the data

collectors and their maintenance are expensive endeavours. It is a very crucial step

to decide the number of data collectors to deploy in a given tracking region. The

next question we ask and address is: given the number of targets and their accu-

racy requirements, how many data collectors with limited capabilities and bandwidth

restrictions are to be deployed, and how do we associate the sensor nodes with the

data collectors such that the Mean Square Error performance goal is achieved with a

minimal number of bit assignments? The first problem to handle is to compute the

bit requirement for each target based on the given accuracy requirement. The second

problem to address is to compute the number of data collectors required to cover all

the sensors and achieve the desired performance limits. In Chapter 4, we propose a

novel method to calculate the number of data collectors to deploy and to place them

in an adaptive way as the load changes at each sensor node. Based on the sensor load,

we model the initial placement strategy for data collectors. For the initial deployment

5
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of data collectors and their association with sensor nodes, we provide an approximate

but suboptimal approach.

The rest of this thesis is divided into the following sections. In Section 1.2, a list

of the publications upon which the subsequent chapters are based as well as a brief

synopsis of the thesis contributions are provided. Each of the issues mentioned above

is thoroughly covered in chapters 2 through 4. Every one of these chapters provides

a full overview of the relevant issue, as well as information on the shortcomings of

current approaches, suggested fixes, experiments to verify the suggested fixes, and

associated discussions. Chapter 5 provides a conclusion.

1.2 Thesis Contributions

The following are the contributions of this thesis:

• The bit allocation problem is formulated as a multi-objective integer optimiza-

tion problem that minimizes the PCRLB across all targets and complies with the

bandwidth restrictions. In the creation of the dynamic bit allocation, bandwidth

restrictions at the FC and each sensor node are taken into account (chapter 2).

• An approximate bit allocation algorithm is proposed that distributes bits across

the components of the measurement vector as well as to each of the targets at

the fusion center (chapter 2).

• A novel strategy is proposed for joint bandwidth allocation and assignment of

targets to fusion centers for multi-target tracking in multiple distributed radar

networks under cluttered background (chapter 3).

6
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• For joint bandwidth allocation and target assignment, two approximate distri-

bution algorithms are proposed. These algorithms deliver almost ideal outcomes

in a shorter amount of time (chapter 3).

• An algorithm is proposed for generating initial values for the multi-objective

integer optimization problem (chapter 3).

• The calculation of the minimum number of data collectors with restricted band-

width and coverage area needed to cover all the sensors and obtain the specified

accuracy results for each target (chapter 4).

• The formulation of a multi-objective optimization problem to describe the re-

lationship between data collectors and sensor nodes, where each sensor is asso-

ciated with just one data collector (chapter 4).

• The formulation of a coverage path planning problem for covering the regions

with a predetermined number of data collectors (chapter 4).

Chapters 2, 3, and 4 of this thesis were all originally intended to be research papers.

For convenience and to properly credit the co-authors, the full citation for each is

provided below.

[66]. Sarojini Vudumu, Dr. Ratnasingham Tharmarasa, Dr. Thiagalingam Kirubara-

jan, and Dr. Anne-Claire Boury-Brisset. “Efficient quantization for multi-target

tracking.” To be submitted to IEEE Transactions on Aerospace and Electronic Sys-

tems, July, 2023.

[64]. Sarojini Vudumu, Dr. Ratnasingham Tharmarasa, Dr. Thiagalingam Kirubara-

jan. “Joint bandwidth allocation and assignment of targets to multi- ple fusion cen-

ters for distributed multi-target tracking.” To be submitted to IEEE Transactions on

7
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Aerospace and Electronic Systems, July, 2023.

[65]. Sarojini Vudumu, Dr. Ratnasingham Tharmarasa, Dr. Thiagalingam Kirubara-

jan. “Efficient performance bounded data gathering for distributed multi- target

tracking.” To be submitted to IEEE Transactions on Aerospace and Electronic Sys-

tems, July, 2023.
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Chapter 2

Efficient Quantization for

Multi-Target Tracking

2.1 Introduction

A distributed sensor network consists of numerous spatially distributed sensors, which

are tiny, battery-powered devices with limited onboard energy. These networks can

perform a wide range of applications, both for military and civil applications, ranging

from battlefield surveillance environments, to disaster relief operations. The dense

deployment of sensors in the network introduces redundancy in coverage. It is de-

sirable not to use all the sensors to track a target at each time, since there always

exist constraints on computation, sensing range, communication bandwidth, and en-

ergy consumption[8, 26, 16, 17, 15, 61]. Thus, a critical task is to distribute the

resources among the sensors to optimize system performance under these constraints.

In many networks, in order to reduce both energy and bandwidth requirements, mea-

surement quantization is employed. When quantization is used, it plays a major role

9



Ph.D. Thesis – Sarojini Vudumu; McMaster University – Department of Electrical and

Computer Engineering

in determining the error performance of the network. Different from the difficulty of

quantizing a signal for later reconstruction is the problem of quantizing observations

to estimate a parameter, such as a target position or any other environmental field

such as temperature, humidity, etc. Our goal is to estimate the target trajectory

using quantized measurements rather than reassemble a signal. Several articles on

tracking in sensor networks based on quantized sensor measurements are available.

Using quantized data delivered across a noisy channel between sensors and a fusion

center, the authors of [55] create a new framework for target tracking. The authors

of [62] suggest an intelligent quantizer for measurement fusion that is based on delta-

modulation. Each sensor’s quantizer is created dynamically based on the most recent

target state estimate supplied by the fusion center. A two-step optimization process

was suggested for a single target in [56]. First, for every sensor, identify the optimal

time-independent quantizers that correspond to all potential bandwidth distributions

offline, and store them. As a next step, select the ideal bandwidth distribution using

the quantizers found in step one. Each sensor quantizes the measurements before

sending them to the Fusion Center (FC)[9, 58, 10, 60]. Quantization increases the

network’s lifetime and reduces the total bandwidth used. However, this causes a

degradation in estimation accuracy[41, 69]. When quantization is used, the error

becomes highly dependent on the total number of bits used as well as their alloca-

tion among the sensors and the targets. This is especially true when sensors are not

uniformly distributed and the number of bits allowed is relatively small[68, 2, 31].

In the sensor selection problem, either a sensor is selected for the transmission of

targets’ data or a sensor is not selected. The sensor selection problem’s constraint is

either the maximum number of active sensors we can choose from or the maximum
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amount of bits we can allot to those sensors. If a sensor is not selected, that means it

does not transmit any information about the targets to the FC. If a sensor is selected

because it has the most useful data about the targets, either it communicates all the

data about every target that is in its coverage area or it transmits a fixed number

of bits for all targets, irrespective of any sensor or target properties, to the FC. The

important difference between the sensor selection problem and the proposed dynamic

distribution of bits to the targets is that each target could be assigned a different

number of bits rather than communicating the entire measurement set or allocating

the same fixed number of bits without considering any sensor or target properties. So

each target at the sensor may be assigned a different number of bits by considering

target and sensor characteristics. For instance, targets with great manoeuvrability

may require more bits than targets without manoeuvrability. The proposed improved

dynamic allocation approach can also be applied following the sensor selection process

for better bit allocation to the targets and within the measurement elements.

There are several sensor selection algorithms in the literature, and a bit allocation

has been previously studied. We first briefly discuss the related work before outlining

the differences between our work presented herein and the work in the literature. In

[45], the dynamic bandwidth allocation problem for single target tracking based on

quantized sensor data in wireless sensor networks was studied. Under the sum rate

constraint, an approximate dynamic programming (DP) algorithm that maximizes

the Fisher information by maximizing its determinant was proposed. However, the

optimal solution is computationally intensive and cannot be applied to practical sys-

tems. Therefore, various suboptimal solutions have been proposed, including convex
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optimization and other heuristic algorithms such as greedy methods. Greedy algo-

rithms have also drawn much attention for other forms of sensor selection problems,

where the FC desires the maximum likelihood (ML) or maximum a posteriori (MAP)

estimate of the unknown vector. Only a subset of the sensors that acquire the mea-

surement is allowed to transmit its measurement to the FC[67]. In [19], under the as-

sumption that the components of the measurement noise vector are uncorrelated with

each other, the PCRLB for state estimation problems with quantized measurements is

proposed for certain application scenarios. The PCRLB is also a very important tool

because it provides a theoretical performance limit for a Bayesian estimator. In[91],

the one-step look-ahead posterior Cramer-Rao Lower Bound (CRLB) on the state es-

timation error is proposed as the sensor selection criterion. A sensor selection strategy

that reduces the PCRLB on the estimation error has been presented for single target

tracking and in a bearing-only sensor network, where the chosen sensors communi-

cate quantized data to the fusion center. In [1], two novel low complexity allocation

algorithms are proposed for a rate-constrained bit allocation problem in which mul-

tiple points of interest (PoIs) are assigned possibly non-uniform error requirements.

The important point behind these algorithms is to associate localization errors with

corresponding bit density requirements. The sensor selection problem is always for-

mulated as an optimization problem based on different optimization objectives, such

as estimation accuracy, energy efficiency, or other key performance indicators. The

sensor selection problem for target localization and target tracking has been con-

sidered in [91] among others, where the sensor sets are selected to get the desired

information gain or a decrease in the target state’s estimation error. For the sensor

selection problem based on quantized data, the authors in [44] compared the two
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sensor selection criteria, mutual information (MI) and PCRLB, and demonstrated

that the PCRLB-based sensor selection scheme achieves a similar mean square error

(MSE) with a sizably reduced computational effort. Optimal quantization schemes

at sensor nodes under strict energy constraints are derived in [39]. Optimality here

is in terms of minimizing a bound on the mean-absolute reconstruction error at the

FC Besides adaptive quantization and other interesting strategies, such as protecting

different bits with different bit error rates have been discussed. Fusion of quantized

measurement via particle filtering is discussed in[63]. Nevertheless, adaptive quanti-

zation thresholds are not taken into account in the paper, therefore, performance can

be improved by using quantization using dynamic bit allocation. Particle filtering is

an interesting way to allow for the non-Gaussian measurement noise accruing from

quantization. In a system that uses quantized measurements, estimating the system

state is a nonlinear and non-Gaussian estimation problem even if the system is linear

and Gaussian because of the nonlinearity of the quantizer. A numerical algorithm for

approximate minimum mean square error (MMSE) state estimation with quantized

measurement was proposed in [20]. Several quantization philosophies are explored in

[42], specifically, uniform quantization, uniform quantization with measurement ex-

changeability incorporated (the “type” method), and uniform quantization of sorted

measurements. The sensor selection problem for parameter estimation with corre-

lated measurement noise has been proposed in [37]. A multi-objective optimization

framework for the sensor selection problem in uncertain Wireless Sensor Networks

was proposed, and a novel mutual information upper bound (MIUB)-based sensor

selection scheme, which has low computational complexity, same as the Fisher in-

formation (FI)-based sensor selection scheme, and gives an estimation performance
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similar to the mutual information-based sensor selection scheme [11]. In [47], a two-

step optimization procedure is proposed for dynamic bit allocation for target tracking.

First, the best time-independent quantizers are obtained offline by maximizing the

average Fisher information about the signal amplitude, for a different number of bits.

Using the time-independent quantizers, the generalized Breiman, Friedman, Olshen,

and Stone (BFOS) algorithm is applied to dynamically assign bits to sensors.

The primary distinctions between the proposed dynamic approach of the bit dis-

tribution, which is presented herein, and the work listed in the literature are: 1)

Since different sensors have different properties, such as range accuracy and azimuth

accuracy, we choose the most meaningful information from most of the sensors rather

than choosing some sensors, especially when the sensors share the tracking zone. 2)

We take into account the bandwidth at the FC and the sensor node rather than just

the FC bandwidth. 3) We distribute the bits in an adaptive manner to all the targets

at the sensor node, instead of choosing the complete measurement or the fixed bits

for each measurement. 4) We consider multiple targets and more than one element in

a measurement as an alternative to a measurement vector of size one. For instance,

a measurement vector is of size two if it has range and azimuth. A measurement is of

size three if it has range, azimuth, and elevation as its elements. 5) As a substitute

for sending the entire measurement, we send the difference of measurement from the

previous scan to the current scan to reuse the information from previous scans in

addition to reducing the error due to quantization. This method is particularly use-

ful if the target is travelling at the same speed or in the same direction. 6) Sharing

of tentative track information from multiple sensors that are in a shared region with

more than one sensor for rapid initialization of tracks. The contributions of this paper
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are listed below.

• Formulation of the bit allocation problem as a multi-objective integer optimiza-

tion problem that minimizes the PCRLB over all the targets and meets the

given bandwidth constraints. This ensures that resource allocation is done to

targets instead of sensors, thereby optimizing limited bandwidth.

• Consideration of bandwidth constraints both at the FC as well as at each sensor

node in the formulation of dynamic bit allocation.

• An approximate bit allocation algorithm that allocates bits to each of the targets

at the fusion center as well as distributing bits between elements within the

measurement vector.

• Fast target initialization in the shared region of interest (SROI) by communi-

cating the tentative tracks from multiple sensors in the SROI.

• Demonstration of the effective use of non-uniform quantization over uniform

quantization for measurement quantization.

The remainder of the chapter is organized as follows. The problem formulation and

system model are given in Section 2.2 Details of uniform and non-uniform quanti-

zation methods are provided in Section 2.3. PCRLB derivation utilizing quantized

measurements is discussed in Section 2.4. The proposed approximation algorithm is

elaborated in Section 2.5. In Section 2.6, performance analysis is reported. Finally,

conclusions are reached in Section 2.7.
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2.2 Problem Formulation

The bits are assigned to each target in a manner that minimizes the PCRLB at the

fusion center instead of choosing the sensor or assigning the bits to each sensor. The

bits are efficiently allocated to each of the measurement elements if the measurement

consists of more than one element. The objectives of the resource allocation problem

are 1) to make effective use of available resources and 2) to obtain good tracking

performance by making the best use of resources. The allocated bits for each target

are efficiently allocated to each of the measurement elements if the measurement

consists of more than one element.

2.2.1 System Model

A two-dimensional region of interest (ROI) with dimensions a × a is considered.

The ROI includes a few SROIs. A total of N sensors are deployed in the ROI, and

their positions are {sn = [xn, yn]′, n = 1, 2, ..., N}. The sensor positions and their

characteristics are known at the FC. These sensors may be of different types, with

sensing radius Rs meters. Furthermore, we assume that due to bandwidth and energy

restrictions, each sensor can only communicate one measurement for each track. Each

sensor runs a local tracking algorithm to select the best measurement for each track

using a data association algorithm. Finally, it is evident that the estimation error

and the bit availability at the FC and at each sensor node are inversely proportional.

The fewer bits available, the larger the resulting estimation error, and vice-versa. We

consider an unknown number of targets moving in a 2-D cartesian coordinate plane
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according to a linear dynamic white noise acceleration model Equation 2.2.1

Xk+1 = FXk + vk (2.2.1)

where the constant parameter F is the state transition matrix. Xk = {X1
k , X

2
k , ..., X

M
k }

is the stacked state vector of all the targets at time k. X t
k is the target state of target

t at time k is defined as X t
k = [xtk, y

t
k, ẋ

t
k, ẏ

t
k]
>, xtk and ytk are the target positions, ẋtk

and ẏtk denote the velocities in horizontal and vertical directions. vk is white Gaussian

process noise with zero mean and covariance matrix Q. The measurements originate

from either targets or clutter. The target-originated measurement for the sensor s at

time k is given by

ysk =


hsk(xk) + wsk, with probability psk

wsk, with probability (1− psk)
(2.2.2)

where psk is the sensing probability of sensor s at time k, hk is a non-linear mapping

function from the state space to the measurement space that includes range, bearing,

and wk is the measurement noise at time k. Due to power and bandwidth limitations,

each activated sensor quantizes its measurements into a finite bit message as

zsk = Q(ysk), s = 1, 2, 3, ..., N (2.2.3)

where zsk is a quantized measurement vector and the quantizer Q is a nonlinear

mapping.

zsk = {zsk(i)}
msk
i=1 (2.2.4)
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F =



1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1


, Q = q



T 3

3
0 T 2

2
0

0 T 3

3
0 T 2

2

T 2

2
0 T 0

0 T 2

2
0 T


(2.2.5)

where T is the sampling interval and q is the process noise parameter. Given N

number of sensors, and each sensor has ms
k measurements. ms

k is a random quantity.

In order to reduce the cost of communication, each sensor measurement zsk is quantized

into bsk bits before transmission to the FC. bsk ∈ {0, 1, 2, 3, ..., Dmax} where Dmax is

the maximum number of bits any measurement can use. The quantized measurement

zsk of sensor s at time step k, is τ sk which is defined as:

τ sk =



0, η0 ≤ zsk ≤ η1

1, η1 ≤ zsk ≤ η2

.

.

.

(L− 1) η(L− 1) ≤ zsk ≤ ηL

(2.2.6)

where η = [η0, η1, ..., ηL]> is the set of quantization thresholds with η0 = −∞ and

ηL = ∞ and L = 2b
s
k is the number of quantization levels for each measurement. In

general, the only point we can infer from a quantized measurement Zk = i is about

the measurement before quantization yk is

ηi ≤ zk ≤ η(i+1)
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where ηi and η(i+1) are quantization thresholds. We have two optimization problems,

one at the FC and another at the sensor nodes. The optimization issue at FC is

solving for the bits for all the targets. The main purpose of the second optimization

challenge is to handle the mis-detections and redistribute the bits to other targets

instead of not sending any information.

2.2.2 Optimization Problem Formulation at the Fusion Cen-

ter

We consider a one-step ahead scenario, where at a given time step, the fusion center

only decides on the bit allocations for the next time step. The FC distributes the

bits optimally and dynamically among the activated sensors and all tracks. Dynamic

bit allocation provides better estimation performance as compared to sensor selec-

tion schemes or fixed bit allocation since it distributes the resources more efficiently

by considering sensor characteristics and track trajectory. As shown in Fig.2.1, the

fusion node calculates the optimum number of bits for each track by optimizing the

target tracking performance and sends the allocation information to each sensor node.

In this architecture, all the sensors are connected to a central FC that fuses all the

measurements and updates the tracks. Then each sensor uses uniform or non-uniform

quantization to encode the measurements of each target according to the bit alloca-

tion. We can effectively divide the problem formulation into two cases based on the

available information at the FC. The first case is where the FC has all the information

about the number of confirmed tracks, new tracks, and tentative tracks. The second

case is where FC does not have all the information about the number of new tracks

and tentative tracks in the shared region.
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Figure 2.1: Distributed fusion architecture for target tracking with quantized
measurements

case 1: In this case, FC has the required information about the number of con-

firmed tracks, new tracks, and tentative tracks. The main objective is to minimize

the estimation error and maximize the reward value of all the sensors. The reward

value is defined as the difference between the FC’s allocated bandwidth and the ac-

tual bandwidth used by the sensor for each target. Each sensor node communicates

the incremental change in the measurement for confirmed tracks, which improves

measurement error due to quantization. For instance, for already existing confirmed

tracks, instead of sending < r, θ > we send quantized < ∆r,∆θ >, where r is the

range and θ is the bearing angle, and ∆r is the incremental range in meters and

∆θ is the incremental heading angle in degrees. Overhead is the amount of band-

width required for the extraction or decoding of the measurements at the FC. Let

CT, NT, and TT be confirmed tracks, new tracks, and tentative tracks in the shared
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region(SROI) respectively. The constraint C1 in equation 2.2.9 is on total bandwidth

availability at the FC, and C2 in equation 2.2.10 is on the availability of bandwidth

at each sensor.

PCRLB, F1: min(
M∑
i=1

widet(E[x̂i − xi][x̂i − xi]>))

Reward, F2: max (Bmax −BM) +
N∑
s=1

ws(Bs −Bs
f )

(2.2.7)

Obj: min(W1 ∗ F1 +W2 ∗ (−F2))

where W1 +W2 = 1

(2.2.8)

• Bmax is total bandwidth available at FC.

• Bs is the bandwidth available at sensor s.

• Bs
f is allocated bandwidth by the FC to sensor s.

• N is a number of sensors, M is a number of tracks.

Subject to

C1: BM +
N∑
s=1

Overheads ≤ Bmax (2.2.9)

C2: Bs
f + Overheads ≤ Bs ∀s = 1, 2, 3, ..., N (2.2.10)

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Sarojini Vudumu; McMaster University – Department of Electrical and

Computer Engineering

Bs
f = Bs

ct +Bs
nt +Bs

tt Bs
tt =

tt∑
t=1

m∑
j=1

Ds
t (j)

BM = BCT +BNT +BTT BCT =
N∑
s=1

Bs
ct

Bs
ct =

ct∑
i=1

m∑
j=1

Ds
i (j) BNT =

N∑
s=1

Bs
nt

Bs
nt =

nt∑
n=1

C∑
j=1

m∑
q=1

Ds
n(jq) BTT =

N∑
s=1

Bs
tt

(2.2.11)

• BM Total bandwidth allocated to all tracks for all sensors.

• BCT ,BNT , and BTT are bandwidth allocated to confirmed tracks, new tracks, and

tentative tracks, respectively.

• m is the measurement vector size.

• C is the number of measurements required for track initiation at FC.

• BCT is bandwidth allocated to all confirmed tracks at FC.

• BNT is bandwidth allocated to all new tracks at FC.

• BTT is bandwidth allocated to all tentative tracks at FC.

• Bs
ct is bandwidth allocated to all confirmed tracks at the sensor s.

• Bs
nt is bandwidth allocated to all new tracks at the sensor s.

• Bs
tt is bandwidth allocated to all tentative tracks at the sensor s.

Constraint C1 includes the bit distribution within the measurement. For instance, if

a measurement consists of range and bearing, in some cases, we may need just range

or only bearing to compute the next target state. If a target is moving in the same

direction, then we can only send a change in the range value. Suppose some sensors

are more accurate in measuring bearing than range, the optimization problem helps

to assign more bits to bearing for those sensors than others, which in turn improves
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the PCRLB. Each sensor only can transmit limited data due to power or energy

restrictions, which are represented by C2. Here Bmax is the bandwidth limit per

frame in bits, for example, Bmax = 60 bits, and Ds
ct is the bandwidth allocated by

each FC to each track at each sensor s, Bs is the bandwidth limit for each sensor s

which in turn depends on the locally available energy. dsct is the actual used bandwidth

by each sensor. Each sensor is awarded reward points if it uses less bandwidth than

the bandwidth allocated by the FC. Let m be the measurement vector length. As an

illustration, m equals 3 if a measurement consists of range, elevation, and bearing.

PCRLB is to be derived for state estimation using quantized measurements.

case 2: Suppose sensor nodes won’t communicate to FC the number of new tracks

and tentative tracks in the shard region. The FC can allocate a portion of bandwidth

to newly confirmed tracks based on the birth rate and the death rate. Due to the

large number of deployed sensors, they frequently share a common Region Of Interest

(ROI). As shown in Fig.2.2 there are three sensors and seven targets, and target

4 (T4) is in the shared region of all three sensors. T2 is in the shared region of

sensor 1 and sensor 2. The FC can fast initiate a track in a shared region if each

sensor can report tentative tracks in the shared region by using information from

all the contributing sensors[4, 5]. We define confirmed track as 3/4 hits(3 track to

measurement associations out of 4 continuous scans) and tentative track as 2/2 hits

logic at each sensor node. To prioritize the tentative tracks in the SROI sensor nodes,

send the number of tentative tracks in the shared region. For new tracks, we send a

total C number of measurements, where C is a measurement count, which is defined

as the total number of measurements required by the FC to initiate a new track. In

typical scenarios, initializing the track may require at least two measurements. Each
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measurement vector is of length m. For example, if a measurement has range and

azimuth, the value of m is set to two.

Figure 2.2: Multi-Sensor Multi-Target tracking

F2: max (Bmax − (BCT +Bmin)) +
N∑
s=1

ws(Bs − (Bs
ct +Bs

min)) (2.2.12)

C1: BCT +Bmin ≤ Bmax

C2: Bs
ct +Bs

min + Overheads ≤ Bs ∀s = 1, 2, 3, ..., N

(2.2.13)
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Bmin =
N∑
s=1

Bs
min

(2.2.14)

Bs
min = λkb

C∑
q=1

M∑
m=1

Ds
n(qm)

(2.2.15)

λkb =
λb
λχ

(1− exp(−λχ ∗ (tk − tk−1)))

P k
χ = (1− exp(−λχ ∗ (tk − tk−1)))

(2.2.16)

• Bs
min is the minimum bandwidth reserved for new tracks at sensor s.

• Bmin is the minimum bandwidth reserved for new tracks for all sensors.

• λb is the continuous birth rate of a sensor.

• λkb defines the effective birth rate of a sensor at the time interval (tk, tk−1).

• λχ is the death rate under an exponentially-distributed target life.

• P k
χ defines the probability of death during (tk, tk−1).

2.2.3 Optimization Problem Formulation at the Sensor Node

A local optimization technique at the sensor node’s main objective is to effectively

assign the extra available bits to local tracks in the event of mis-detections. Each

sensor maintains its own track of all targets, and associated measurement reports

(AMR) are shared with FC to get a global estimate. In the event of mis-detections,

each sensor node employs a local optimization technique to effectively allocate the
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bits to local tracks. Due to the low bandwidth and frequent measurements, we assume

that the local sensor node sends just one measurement for each track. If there are mis-

detections then the local optimization problem is able to redistribute the bandwidth

allocation to improve estimation by maximizing the local fisher information at the

same time while maintaining the priority of each track given by the FC. The number

of bits allocated to each target at FC stays the same or increases due to the local

optimization problem at the sensor node. The additional bandwidth is reallocated

in a manner that maximizes the local Fisher information by utilizing the given bits

for the tracks at a given sensor node. Let LT be the number of local tracks, and

the fusion node assigns Ds
i bits for each track i ∈ {1, 2, ..., LT} for sensor s, and the

new assignment is dsi by the local sensor node. We can limit the number of tracks

to redistribute the extra available bits due to the overhead involved. Here, Ji is the

Fisher Information for the local track i, tr is a trace of a matrix, and LT is the

total number of local confirmed tracks. The objective function is the summation of

functions 1 and 2 with given weights W1 and W2.

F1: Max
LT∑
i=1

widet(Ji)

F2: Max (Bs −
LT∑
i=1

m∑
j=1

dsi (j)) where s ∈ 1, 2, 3, ..., N

(2.2.17)

Obj: min(W1 ∗ (−F1) +W2 ∗ (−F2))

wi =
Di∑LT
j=1Dj

where i ∈ {1, 2, ..., LT}

where W1 +W2 = 1

(2.2.18)
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Subject to

C1: dsi


≥ Ds

i , if there is a measurement for track i

= 0, in case of misdetection

C2:
LT∑
i=1

m∑
j=1

dsi (j) + Overheads ≤ Bs where s ∈ 1, 2, 3, ..., N

(2.2.19)

• Ds
i is the number of bits allocated by FC for target i at sensor s.

• LT total number of local tracks at a sensor.

• dsi is the number of bits communicated to the FC for each track i at the sensor s

after solving the optimization problem.

2.3 Uniform and Non-Uniform Quantization

Sharing measurements directly with the FC is preferred to sharing local estimates at

the sensor node since, in the former scenario, some type of ideal fusion is attainable[57].

The measurements of the tracks at each sensor node need to be communicated to FC

with high computational resources to get the global picture of the tracking region.

Due to limited energy and communication capability, each sensor node compresses

the data before sending it to FC. Even though quantization reduces the amount of

data to be communicated to FC, it gives poor tracking performance due to the loss

of information. Non-uniform quantization of information with the given allocated

bits is an effective way to reduce quantization error. A scalar quantizer partitions

the set IR of real numbers into M subsets R1, R2, ..., RM , called quantization regions,

and each quantization region is an interval. We first have to find out how to choose
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the quantization regions R1, R2, ..., RM , and the corresponding representation points.

Each region Rj is then represented by a representation point aj ∈ IR. When the

source produces a number u ∈ Rj, that number is quantized into the point aj as

shown in Fig.2.3. A scalar quantizer can be viewed as a function that maps analog

real values into discrete real values. After the allocation of bits using dynamic bit

allocation, we can either use uniform or non-uniform distribution. When a variable’s

range is wide, uniform quantization performs poorly. When the variable’s distribution

is known, non-uniform distributions perform better, even when the range is large[30].

A combination of dynamic allocation of bits and non-uniform quantization gives good

tracking performance. For instance, we can effectively quantize the data using nonuni-

form quantization and reduce quantization error if we are aware of a sensor’s range

or azimuth distribution. We can utilize either user-defined distributions or common

probability distributions, such as the Bernoulli, Uniform, Binomial, Normal, Poisson,

Chi-square, and Exponential Distributions.

Figure 2.3: Quantization regions and representation points.

Even though quantization reduces the amount of data to communicate to FC, it

causes an additional error due to quantization, which is called Mean-square quanti-

zation Error. The expected mean-square quantization error σ2
Q can be represented in
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terms of the quantization error in each interval σ2
Q,i.

σ2
Q =

L∑
t=1

σ2
Q,ipi, σ2

Q =
1

12

L∑
t=1

∆2
i pi (2.3.1)

∆i: ith step size of the given nonuniform quantizer.

pi : the probability that the input variable lies within the ith interval.

L is the number of quantization levels. L = 2n if n is the number of allocated bits.

2.4 PCRLB Derivation Using Quantized Measure-

ments

PCRLB provides the theoretical performance limit for a Bayesian estimator. The co-

variance of Xk is bounded below by the recursive PCRLB, which is defined to be the

inverse of the Fisher Information Matrix (FIM) Jk. Let X̂k be an unbiased estimator

of the state vector Xk.

E[X̂k −Xk][X̂k −Xk]
> ≥ J−1

k (2.4.1)

Fisher information matrix, J = Jprior + Jz which is the inverse of PCRLB, where

Jprior is prior information and Jz is measurement information about the target at a

given time.

J0 = P0
−1

Jprior = (Qk−1 + Fk−1J
−1
k−1F

>
k−1)−1

Jk
−1 = (Jprior +H>k R

−1
k Hk)

−1

(2.4.2)
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It has been shown that the FIM for Bayesian estimation is composed of two

parts: the FI obtained from the sensor measurements and the FI corresponding to a

priori information. Furthermore, under the assumption that the sensor measurements

are conditionally independent, given the target state Xk, the FI obtained from the

measurements of multiple sensors can be written as the summation of each sensor’s

FI plus the FI from the prior information.

Jk =∆
N∑
i=1

∫
Xk

JSi,k(Xk)p(Xk)dXk + JPk (2.4.3)

where JPk is the FI matrix of the a priori information, and JSi,k represents the standard

FI of each sensor as a function of the target state Xk,[47]

JSi,k(Xt) =

∫
zi,k

1

p(zi,k|Xk)

(
∂p(zi,k|Xk)

∂Xk

)(
∂p(zi,k|Xk)

∂Xk

)>
dzi,k

JSi,k =
1

2πRi
k[h

i
k(X

j
k)]

2
φik(X

j
k)×

(xi − xk)2 (xi − xk)(yi − yk) 0 0

(xi − xk)(yi − yk) (yi − yk)2 0 0

0 0 0 0

0 0 0 0



(2.4.4)

where φik(X
j
k) can be calculated as

φik(X
j
k) =

L−1∑
l=0

{
e
−

[ηl−h
i
k(X

j
k
)]2

2Ri
k − e

−
[ηl+1−h

i
k(X

j
k
)]2

2Ri
k

}2

p(Zi
k = l|Xj

k)

(2.4.5)
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The most common and perhaps the simplest approach is to approximate the effect of

quantization as an independent additive uniform noise εk as follows

zk = Hkxk + vk + εk︸ ︷︷ ︸
ṽk

εk ∼ U(ak, bk), E[ṽk] = 0

R̃k = cov[ṽk] = Rk + σ2
Q, where σ2

Q =
∆2

12

(2.4.6)

If the measurement range is [Rmin, Rmax] and the quantization scale(∆) is determined

by the number of bits allocated to it by using uniform quantization. If the number

of bits allocated is b, then

∆ =
(Rmax −Rmin)

2b
(2.4.7)

Measurement error due to quantization, ∆ depends on the number of bits allocated

and also the maximum and minimum values of the measurement. We can improve ∆

by sending incremental change in the measurement rather than the actual measure-

ment, as at each scan the maximum incremental change shall be comparatively much

less than the actual value of the measurement, which in turn reduces the quantiza-

tion scale value. For non-uniform quantization, the error is calculated using Equation

2.3.1.

2.5 Approximation Algorithm

An essential issue for information fusion is to allocate bandwidth to tracks, which

can maximally reduce the uncertainty about the events of interest with minimum
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costs. Dynamically determining the best allocation of bandwidth, given the uncer-

tainty about the state of the world, requires enumerating all the possible subsets of

bit allocation, which is computationally intractable and practically infeasible. The

computation of bandwidth allocation is exponential, and it is an NP-hard problem.

To address this computational difficulty, a common practice is to use an approximate

algorithm. So we propose a low-cost, suboptimal solution that can be implemented

and run in real time. Given the total bandwidth available, the bandwidth available

for each sensor, and the total number of confirmed tracks at the FC. The main in-

tuition behind the approximate algorithm is to prioritize the tracks based on their

contribution to fisher information using prior information and a fixed number of bit

allocations for all tracks. If the track is contributed by multiple sensors, the highest

contributing sensor’s Fisher information is used to calculate the priority of the track.

Once the bits are allocated to each track for each sensor, the distribution of bits

within the measurement is done using the incremental change in the measurement

vector. For instance, if a measurement consists of range and azimuth, the weighted

average is used to distribute the bits between range and azimuth. If the incremental

change in the azimuth is zero, then all the bits are allocated to the range, and vice

versa. The detailed algorithm is described in Algorithm 1.

2.6 Performance Analysis

To analyze the dynamic bit allocation method, we compare the results with those of

fixed bit allocation. The fixed bit allocation is where the FC and sensor nodes equally

distribute the available bandwidth between the targets and within the measurement.

For instance, if FC has 40 bits and two sensors are associated with it, then each
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Algorithm 1 Approximation Algorithm

Require: Let M be the number of tracks at the FC, and N contributing sensors,
each with prior fisher information Jp at scan time t.

Ensure: Bandwidth distribution for all tracks.
1: Compute Jz for each of the M tracks,Jz = H>k+1R̃k

−1
Hk+1 where R̃k can be

approximated to R̃k = Rk + ∆2

12
, ∆ is calculated using, static number of bits(µ).

2: Calculate FIM J = Jp + Jz(µ) for each track using static number bit(µ bits)
allocation to each of the contributing sensors. It means Ji is a reward in terms of
fisher information when track i quantizes using µ bits.

3: If a track is contributed by more than one sensor, the highest contributing sensor’s
reward is taken into consideration to calculate the weight of a track.

4: Let reward of track i is A(i) = det{Ji}.
5: Calculate the normalized weight wi of all tracks using wi = A(i)∑si

j=1 A(j)

6: Allocate the bandwidth to the highest priority track (i∗), using wi and available
bandwidth at the FC. Let m be the number of contributing sensors for track
i∗, the maximum available bandwidth for track i for all contributing sensors is∑m

j=1 Bm

i∗ = arg max
c∈M

A(c)

Bi∗ = wi∗ ×B
7: The allocated bandwidth is distributed to the contributing sensors of track i∗

according to the information contribution from each sensor. A(is) is the reward
of the sensor s, and bandwidth allocation to the sensor s is

Bi∗(s) = A(is)∑m
n=1 A(in)

×Bi∗ .

8: If Bs < Bi∗(s) then, (Bs−Bi∗(s)) bits will be allocated to the next priority sensor.
9: Distribute the bandwidth within the measurement. Let ν be the measurement

vector size, each with accuracy φk, k ∈ ν. We use the previous scan’s measurement
change to distribute the bits for the next scan. Let β be the recent change in the
measurement. Calculate the weight for each element in the measurement q ∈ ν
as wq = β

φ
.

10: Calculate the normalized weight wq of each element in the measurement. wq =
wq∑ν
j=1 wj

and allocate wq ×Bi∗(s) to the measurement element q.

11: Update the total available bandwidth at the FC and each of the sensors’ band-
widths. B = B −Bi∗ , Bs = Bs −Bi∗(s).

12: If there are any unallocated bits of the target, they will be assigned to the next
priority target.

13: Repeat from step 6 until the allocation of bandwidth for all tracks. Remove the
track i∗ from the list of tracks to allocate the bits. M = M − i∗.
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sensor is assigned a bandwidth of 20 bits, and if the sensor has two targets, each

target is assigned 10 bits. If the measurement consists of the range and azimuth, 5

bits are assigned to the range and 5 bits to the azimuth. To solve the optimization

problem, a Genetic Algorithm (GA), implemented in MATLAB, is used. For uniform

quantization, the quantization error is approximated to ∆2/12. We assume that

each sensor can only transmit one measurement for a confirmed track. We use the

Global Nearest Neighbour (GNN) data association to select one measurement for

each confirmed track. We used history-based confirmation logic (N out of M), if the

track has been assigned N(2) detections out of M(4) it will be confirmed. For the

first two scans after the track confirmation, we assigned fixed bits for both fixed and

dynamic methods. Once the track is established, we send only the incremental change

in the measurement. For each mis-detection at each sensor node, the extra bits are

assigned to the highest priority target based on information contribution using the

approximate algorithm. FC has full information about the sensor nodes, like their

position and their characteristics. Intelligent quantization requires that both the

sensor and the FC share an understanding of the quantization rule. If there are no

mis-detections, there won’t be extra overhead apart from the bits required to send

the track number and sensor number, as the FC has information on the number of

bits for the range and azimuth of each track. If there are mis-detections, the header

part of the mis-detected track bits is used to indicate the change in the number of

bits in range and the azimuth of the new allocation at the sensor node to the FC.

We made the assumption in simulations that the header portion of the mis-detected

track bits would be adequate to indicate the modification in the new bit allocation.

34

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Sarojini Vudumu; McMaster University – Department of Electrical and

Computer Engineering

2.6.1 Case 1:

The purpose of this experiment is to demonstrate the effective bit distribution inside

the measurement using the dynamic bit distribution between azimuth and range. In

this experiment, we have one sensor and one target. As shown in Fig.2.4, the track

is moving away from the sensor. In Fig.2.5, we show the RMSE comparison between

dynamic bit allocation and fixed bit allocation. The improvement in RMSE comes

from the effective distribution of bits between range and azimuth. In Fig.2.6, we

demonstrate the bit allocation for range and azimuth. In order to achieve superior

RMSE performance depending on a trajectory for the given track, the dynamic bit

allocation technique allotted more bits to range than azimuth. In Fig.2.7, we have

compared uniform and non-uniform quantization errors for a Gaussian variable and a

Rayleigh distributed variable using a fixed number of bits and observed that we can

get a significant gain by using non-uniform quantization if the range of the variable

is large. In Fig.2.8, we have compared the RMSE using uniform and non-uniform

quantization by assigning the same number of bits for both. For non-uniform dis-

tribution, we take advantage of the sensor’s known range and azimuth distributions.

For instance, if we are measuring the temperature of a specific area, and we know the

temperature will likely range between 0 and 20 in Celsius with some known distribu-

tion, we can use this information for the non-uniform quantization. Measuring the

height or altitude of flying objects like airplanes is another example, where typically

the value lies between 20,000 and 40,000 feet. The results show that non-uniform

quantization yields good performance. For this experiment, 500 Monte Carlo simula-

tions were used. Therefore, even with minimal bandwidth utilization, the proposed

dynamic bit allocations in combination with non-uniform distribution provide the
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highest potential performance. Simulation parameters and simulation setup:

• Number of Sensors: 1

• Number of Targets: 1

• Bandwidth available at FC (in bits): 10

• Bandwidth available at the sensor: 6

• Sensor range error: 10

• Sensor azimuth error: 0.01

• Probability of Detection: 0.9

• False Alarm Density: 1e-4

• Sensor Maximum Range: 2000

• Sampling Time: 1

• Initial Fisher Information Matrix J0 = P0
−1

2.6.2 Case 2:

In this experiment, we show that using more than one sensor to share information

is advantageous compared to using just one. We have two sensors and one target,

and the target is in the shared region of the two sensors. In terms of range accuracy,

sensor 1 was superior to sensor 2, whereas sensor 2 was superior in terms of azimuth

accuracy. The results show the effective distribution and sharing of bits among the
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Figure 2.4: Target Trajectory with one sensor and one Target

Figure 2.5: Comparison of RMSE using Dynamic bit allocation, Fixed bit
Allocation, Without Quantization (Using GNN Data Association)
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Figure 2.6: Bit allocation between Range and Azimuth

Figure 2.7: Comparison of Uniform and Non-Uniform Quantization for a Gaussian
and Rayleigh distributed variable

38

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Sarojini Vudumu; McMaster University – Department of Electrical and

Computer Engineering

Figure 2.8: Comparison of RMSE using fixed bit uniform and Non-uniform
Distribution

two sensors for the given target using the dynamic distribution of available bits.

Fig.2.9, shows the trajectory of a track that is moving away from the sensors. In

fixed allocation, six bits are allocated to each sensor. In dynamic allocation, two

sensors share a maximum of ten bits at the FC in an adaptable manner. The target

using the proposed allocation has a much lower RMSE when compared to the fixed

bit allocation, as shown in Fig.2.10. In Fig.2.11, we show the distribution of bits

between range and azimuth for the target, and the dynamic algorithm allocated more

bits to azimuth than range based on its trajectory. Range and azimuth bits are the

contributions of both sensors. In Fig.2.12, we show the distribution of the bits for

range and azimuth for sensor1 and sensor2. As sensor1 performs better in terms

of range than sensor2, a greater number of bits are assigned to it. The azimuth

measurement is being increased by sensor2’s improved azimuth performance.
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• Number of Sensors: 2

• Number of Targets: 1

• Bandwidth available at FC (in bits): 10

• Bandwidth available at each sensor: 6

• Sensor1 range error: 5

• Sensor2 range error: 10

• Sensor1 azimuth error: 0.01

• Sensor2 azimuth error: 0.007

Figure 2.9: Target Trajectory with two sensors and one Target
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Figure 2.10: Comparison of RMSE using Dynamic bit allocation, Fixed bit
Allocation(each sensor 6 bits), Without Quantization

Figure 2.11: Distribution of bits between range and azimuth for Target1
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Figure 2.12: Distribution of bits between S1 and S2 for range and azimuth

2.6.3 Case 3:

In this experiment, we have four sensors and four targets. The results show the

effective distribution of bits among the sensors and the targets using the dynamic

distribution of available bits. Fig.2.13 shows the trajectories of four tracks that are in

the tracking region of all four sensors. In Fig.2.14, we examined the RMSE with fixed,

dynamic, and without quantization and found that adopting dynamic bit allocation

significantly reduces RMSE for all four targets when compared to fixed allocation. In

Fig.2.15, we compared the bits allocated to range and azimuth for target1 from all

contributing sensors, and the dynamic bit allocation algorithm allocated an almost

equal number of bits for range and azimuth. The four sensors each contribute a

different number of bits at each scan period, which we compared in Fig.2.16 for the

range for Target1. We demonstrate the reallocation of bits as a result of a mis-

detection at the sensor node in Fig.2.17, using a local optimization problem. On

the X-axis, we displayed the re-allocation of one target at a given time at any sensor.

Following re-allocation, FC’s bit allotment for a certain target either stays the same or

grows. For instance, FC assigned 8 and 12 bits, respectively, for range and azimuth for

a specific target at time 2. The sensor node redistributed the range and azimuth bits,
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allocating them to 12 and 16 bits, respectively. Additionally, the local bit distribution

can be turned on or off. Through the use of a local optimization problem at each

sensor node that optimizes the local fisher information, extra available bits resulting

from mis-detections are distributed to existing tracks at the sensor node.

• Number of Sensors: 4

• Number of Targets: 4

• Bandwidth available at FC (in bits):100

• Bandwidth available at each Sensor:24

Figure 2.13: Trajectory-4 sensors and 4 targets
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Figure 2.14: Comparison of RMSE

Figure 2.15: Range and azimuth bit
allocation for Target1

Figure 2.16: Target1 bit allocation for
range from all sensors
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Figure 2.17: Re-allocation of bits due to mis-detections

2.6.4 Case 4 :

The fundamental idea behind bit allocation problems is to strike a balance between

performance and the number of allocated bits. In essence, the more bits allocated,

the higher the performance that will be attained, but the bandwidth consumption

will also increase, and vice versa. The performance metric is the estimation error, the

mean square error (MSE). This scenario is being used to demonstrate how the RMSE

varies with bit allotment. As we give the targets more bits, the RMSE goes down. In

this experiment, we compare the RMSE, as shown in Fig.2.18 using different available

bits at the sensor node for a single target. As the number of available bits at the

sensor node increases, RMSE decreases. Using this experiment, we analyzed the effect

of available bits at the sensor node or at the FC on RMSE. We can also determine

the number of bits required to achieve particular RMSE values for the given scenario.
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Specifically, if we use the available bits effectively, fairly good performance can be

achieved with a minimal number of bits.

Figure 2.18: RMSE Comparison with different available bits at the sensor node

2.6.5 Case 5 :

In this case, we evaluated the effectiveness of the suggested approximate approach

and contrasted the outcomes with the solution of the multi-objective integer problem

obtained using the Genetic Algorithm(GA) that is implemented in MATLAB. The

results demonstrate that the approximate algorithm’s RMSE performance is highly

comparable to GA and that its computing time is notably small. Table 4.2 shows the

time required for the bit allocation using GA, as well as the proposed approximate

algorithm for four sensors and four targets for each scan. The time is measured using

timeit function in MATLAB over 100 trials. We compared the RMSE using GA and
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the proposed approximate approach using 4 sensors and 4 targets in Fig.2.19, and

the performance of the suggested approximate technique is closer to GA. The default

parameters in MATLAB are used for GA.

Table 2.1: Time Comparison of Genetic Algorithm(GA) Algorithm and Proposed
Approximate Algorithm in seconds

Targets GA Approximate
2 3.8330 0.0027
4 4.6516 0.0058
8 6.0458 0.0083
16 6.9938 0.0104

Figure 2.19: GA and Approximate Algorithm RMSE Comparison
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2.7 Conclusion

In this chapter, the dynamic bit allocation problem for multi-target tracking is con-

sidered. Under bandwidth and energy constraints, the problem is formulated as a

multi-objective integer optimization problem that minimizes the PCRLB and max-

imizes resource usage. Our approach distributes the bits for each target and also

within the measurement vector by considering the target trajectory and sensor char-

acteristics. We prioritized the tracks in SROI for fast initialization by considering

tentative tracks. The issue was split into two optimization problems. By taking into

account the available bits at the FC and each sensor node, the initial optimization

problem is at the FC to distribute the bits to all tracks based on PCRLB. We also ad-

dressed the situation in which FC lacked knowledge about the number of new tracks

and tentative tracks. The second optimization problem is at the local sensor node to

handle mis-detections and re-allocate the extra available bits to tracks that optimize

the fisher information. The simulation results demonstrate that even with a limited

number of bits available, a combination of dynamic bit allocation and non-uniform

quantization provides good tracking performance. We proposed an approximate algo-

rithm that computes the priority and weight of each track based on the contribution

of FI using static bit allocation. Simulation results show the effectiveness of the pro-

posed algorithms versus fixed or static bit allocation. Experimental results show that

the performance of the proposed approximate algorithm is close to GA implemented

in MATLAB, and computation time is significantly low.
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Chapter 3

Joint Bandwidth Allocation and

Assignment of targets to Fusion

Centers for Distributed

Multi-Target Tracking

3.1 Introduction

Ground data gathering is quite challenging to do in particular types of situations,

such as distant areas, deep forests, and severely cold locations. To collect the data,

UAVs can be used as a mobile data collector, and the ground-based data can be

collected through air traffic. Data collection is the basic function of a wireless sensor

network (WSN) and is also an important research topic. There are several ways to

collect the data from the deployed sensor networks; however, aerial data collection
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based on controllable Unmanned Aerial Vehicles (UAVs) have more advantages. It is

free from mobility limitations and can be used where humans can not approach the

location.

Nowadays, the use of unmanned aerial vehicles (UAVs) that can be used as flying

base stations is seen as a promising approach to improve the coverage and performance

of wireless networks in different scenarios, such as temporary hotspots and emergency

situations. For example, mobile UAVs can establish efficient communication links to

deliver messages to ground users, such as sensors. In fact, using UAVs as aerial

base stations has many advantages. Importantly, due to their higher altitude, aerial

base stations have a higher chance of providing line-of-sight (LOS) links to ground

users. Also, UAVs can be easily moved around, which provides complete flexibility

in how and where they can be deployed. They can provide high-speed, on-demand

communications. Flying base stations can be deployed quickly on demand[77]. This is

especially appealing for application scenarios, such as sudden or unpredicted events,

emergency response, and search and rescue. Because of their high altitude above the

ground, flying base stations are more likely to have a LoS connection with their ground

users compared to their terrestrial counterparts, thus providing more reliable links

for communication as well as multiuser scheduling and resource allocation[7]. As a

consequence of the controllable high mobility of UAVs, flying base stations provides an

additional degree of freedom (DoF) for communication performance enhancement, by

dynamically adjusting their locations in 3-D to cater to the terrestrial communication

demands. The above-listed uses make UAV-assisted communication an emerging new

technology to support the ever-increasing and highly dynamic wireless data traffic in

the future. In many Internet of Things (IoT) applications, a network of sensors that
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are wirelessly connected is vital because it provides a better picture of remotely sensed

environments[84, 86].

However, conventional network data collection takes a high amount of energy

because of the large number of data packets that need to be communicated on a

hop-by-hop basis to the base station. To alleviate this problem, UAVs have been

used to travel over the sensed environment to collect data. The flight time duration

of a UAV depends on many factors, such as energy sources like the battery or the

fuel type, weight, speed, and trajectory of the UAV. Optimal usage of UAVs and the

distribution of resources are important components for the collection of data from

wireless sensors. The performance and operational duration of the UAV system is

fundamentally constrained by the limited onboard energy[3]. Although technologies

have advanced dramatically over the past few decades, limited energy availability still

severely hampers UAV endurance[12]. To address this problem, energy-efficient oper-

ations through smart energy management is required, that is, accomplishing missions

with minimum energy consumption[80].

In this paper, we address the problem of energy-aware association and bandwidth

distribution to the given targets in the area of interest (AOI) to maximize the tracking

performance as well as utilize the limited available energy effectively. We propose

a novel method of associating targets to fusion centers and efficiently assigning the

available bandwidth to targets to improve tracking performance and prolong the usage

time of each of the fusion centers as well as sensor nodes through optimal energy usage.

Our important objective is to find an energy-efficient and energy-aware solution to

the problem of pairing the targets with the fusion centers. The main applications

of this work include the military field and environmental monitoring. The aim is to

51

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Sarojini Vudumu; McMaster University – Department of Electrical and

Computer Engineering

minimize the maximum energy consumption of all sensor nodes and fusion centers

while ensuring that the required amount of data is collected reliably from each sensor

node to get good tracking performance. The design is formulated as a multi-objective

integer optimization problem[35].

This paper is organized as follows. In Section 3.2, we present an overview of

related works and listed our main contributions. In Section 3.3, we present the

system model, problem formulation, and model assumptions, as well as the relocation

of fusion centers. We discuss and present the algorithm to initialize values for the

genetic algorithm in Section 3.4. Details of two approximate algorithms are discussed

in Section 3.5. We present the simulation results in Section 3.6, validating our model

and analytical derivations. We finally conclude this paper in Section 3.7.

3.2 State of the art

In [54, 50, 52], the authors proposed a novel framework for efficiently deploying and

moving UAVs to collect data in the uplink from ground-based IoT devices. In partic-

ular, they have determined the jointly optimal UAVs’ locations, device associations,

and uplink power control of the IoT devices, so that the total amount of transmit

power of the devices is minimized under their SINR constraints. In addition, they

have investigated the effective movement of the UAVs to collect the IoT data in

a time-varying IoT network. In [21], the path planning problem for a single UAV

is studied with the proposal of novel evolutionary operators: pull-to-desired-region

(PTDR), push-from-forbidden-region (PFFR), and pull-to-final-point (PTFP). In ad-

dition to these newly proposed operators, standard mutation and crossover operators
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are used. In [85], the authors addressed the trajectory design problem for a UAV-

enabled multicasting system. The UAV mission’s completion time is minimized while

ensuring that each GT is able to successfully recover the file with a given probabil-

ity. A novel design for energy-efficient data collection in UAV-enabled WSNs was

proposed in [87]. The sensor nodes (SN) wake-up schedule and UAV’s trajectory are

jointly optimized to minimize the maximum energy consumption of all SNs while

making sure of reliable data collection in fading communication channels. With the

successive convex optimization technique, an efficient iterative algorithm is proposed

to find a suboptimal solution.

In [28], two power allocation schemes have been developed to support resource-

aware design for target localization in distributed multiple-radar systems. One of

these schemes minimize the total radiating power to accomplish a predetermined

localization MSE threshold, while the other minimizes the achievable localization

MSE for a given total energy budget. A closed-form expression for the CRB has

been used to represent the localization MSE. The resulting power allocation non-

convex optimization problem has been solved through both relaxation and domain

decomposition methods, using Lagrange multipliers and the Karush-Kuhn-Tucker

(KKT) conditions. In [73], the problems of joint path planning and sensor subset

selection for multi-target tracking with multi-static sensor networks were considered.

The problem was to select an optimal subset of the receivers and find the optimal

path of the mobile transmitters so as to maximize the tracking performance of the

time-varying number of targets. The problem is formulated based on the multi-target

PCRLB by considering all the physical constraints.

In[38], the authors studied the UAVs assisted data collection in WSN. The working
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time of the UAV and the per-node capacity of WSN are derived for the scenarios of

multiple UAVs and a single UAV. UAVs-supported data collection for WSN was

studied. Firstly, the entire region is divided into multiple cells. Secondly, the flight

paths for a single UAV and multiple UAVs are designed to cover all cells. The capacity

of each of the sensors is derived, which is a the function of the number of sensors, the

energy capacity of the UAV, the number of cells, and the height of the UAV. It was

found that the per-node capacity using multiple UAVs is much greater than that with

a single UAV. Then the optimal number of cells is derived to maximize the per-node

capacity of WSN.

In [74], an optimization-based sensor management algorithm was considered for

multi-target tracking under distributed architecture. The problem was to select sub-

sets of sensors, assign them to LFCs, and assign the transmission power and frequency

to each of the active sensors for the purpose of maximizing the tracking performance

of multiple targets. The optimal formulation for the sensor management for the

aforementioned problem was derived based on the PCRLB[72]. In [81], the authors

investigated the problem of energy efficient computation and transmission resource

allocation of federated learning over wireless communication networks and derived

the energy and time consumption models for federated learning (FL) based on the

rate of convergence. With these models, they have formulated a joint communication

and learning problem to minimize the total transmission and computation energy of

the network.

The paper, [82], considers a UAV-enabled WSN where a UAV is dispatched to col-

lect data from multiple SNs with the objective of maximizing the minimum average
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data collection rate of all SNs under the possible UAV trajectory, reliability con-

straints, and communication scheduling. The notion of operating radars in groups,

or clustering, has been introduced to multiple radar systems in [29]. Tools have been

developed for the identification of optimal sets that minimize the number of radars

that are active while guaranteeing the required estimation performance or minimize

the estimation error, which is MSE for a predetermined set of sizes. Cost parameters

have been introduced to integrate decision factors in the selection process. The selec-

tion problem has been defined as a KP and heuristic algorithms, based on a greedy

strategy with multi-start local search, have been proposed. Three approximate so-

lutions for the allocation of power or/and bandwidth are provided in [23] given that

transmitters access the medium using disjoint bandwidths of the spectrum. Substan-

tial simulations are run on the resource allocation performance for different SNR’s in

terms of the theoretical CRLB and verified by a multilateration algorithm. The best

accuracy is achieved by jointly optimizing bandwidth allocation and power among the

MIMO radar elements, the actual bandwidth is much more valuable resource than

power.

In [51], the deployment of an unmanned aerial vehicle (UAV) as a flying base

station used to provide wireless communications to a given region is analyzed. Specif-

ically, the coexistence between the UAV, that is transmitting data in the downlink,

and an under-laid device-to-device (D2D) in the communication network is consid-

ered. For this model, a tractable analytical framework for rate analysis and coverage

is derived. Two scenarios are considered: a mobile UAV and a static UAV. In [88],

a TAPA strategy has been put forward for multi-target tracking in multiple dis-

tributed MIMO radar networks in a cluttered environment. The optimization model
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has been established as minimizing the overall tracking performance subject to the

power budget and the radar direction capability. Consequently, an efficient two-step-

based technique has been developed for problem-solving. In [78], two important and

limited system resources are considered for optimization: the transmitted power and

the number of radar nodes. A joint node selection and power allocation (JSPA)

strategy is developed with the goal of tracking multiple targets. The proposed mech-

anism implements the optimal resource allocation using the feedback information in

the tracking recursion cycle for the purpose of improving the worst-case tracking

accuracy with multiple targets.

In conclusion, the following are the key differences between the research done in

the literature and the proposed work. To improve the robustness of the given system,

a number of fusion centers are deployed to collect the data. We take into account

the possibility that a sensor could be in a location that is shared by several fusion

centers. Hence, the sensor is able to send some targets to one fusion center and other

targets to different fusion centers using different frequency channels. Additionally,

we also consider the case in which a target is being tracked by many sensors, and

the information to be gathered from each sensor depends on the connectivity of the

sensors with the fusion centers. Achieving the best targets to FCs assignment and

bandwidth allocation to each target is a crucial goal of this work. We formulate the

problem as a multi-objective integer optimization problem. Our algorithm consists of

three steps. The first step is bandwidth allocation to targets at each of the sensors. In

the second step, we relocate the fusion centers to the centroid location to optimize the

communication cost. The judicious selection of FCs to move them closer to overloaded

sensor nodes helps to lessen energy consumption and reduce communication costs.

56

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Sarojini Vudumu; McMaster University – Department of Electrical and

Computer Engineering

This step is performed just before the targets to FCs assignment process based on

the current bandwidth allocation. The main contributions are summarized as follows.

• In this work, we propose a novel strategy for joint bandwidth allocation and

assignment of targets to fusion centers for multi-target tracking in multiple

distributed radar networks against a cluttered background.

• We propose an algorithm for generating initial values for the multi-objective

integer optimization problem.

• Two approximate bandwidth distribution algorithms for joint bandwidth allo-

cation and target assignment are proposed, which provide nearly optimal results

at less computational time.

3.3 System Model and problem formulation

Consider a set of sensor nodes distributed over a geographical area. Fusion centers

are deployed to collect the data from these sensor nodes and communicate the tracks

back to a single base station or a control center. Initially, we assume that we know the

placement of fusion centers. At the beginning of each slot, we compute the association

of the targets to FC and the bandwidth distribution to all the targets based on the

locations of currently active devices that are assumed to be known to the control

center. Hereinafter, the time instance at which the FCs’ locations and associations

are jointly updated, is referred to as the update time.

The update times are denoted by tn. At each update time tn, based on the location

of active devices, the optimal FCs’ locations, and the corresponding association must

be determined for effectively serving the ground devices. In our model, we consider
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some specific time instances (update times) at which the FCs locations and target

associations are optimized. In particular, considering the fact that the set of active

devices and their load may continuously change, continuously updating the FCs’ lo-

cations, the devices’ transmit powers, and the targets to FCs associations may not

be feasible as they can lead to low reliability, high FCs energy consumption, and a

need to solve complex real-time optimization processes. Therefore, update intervals

are determined by the tracking scenario, target characteristics like speed and ma-

noeuvrability, and the availability of processing resources. In our representation, the

update time is a design parameter that depends on the activation of the devices, the

energy of FCs, and the target properties in the given scenario. For highly manoeu-

vrable targets, we may need to have a small tn to get good performance. Given this

model, our goal is to determine the best joint association of the targets to FCs and

bandwidth allocation at each update time tn in order to reduce the overall PCRLB

while satisfying the bandwidth limits of each device.

In fact, the services that the sensor devices provide determine whether they are

activated. For instance, in some applications such as weather monitoring, smart

grids, and home automation, the sensor devices need to report their data periodically.

However, the devices can have random activations in health monitoring or smart

traffic control applications. Therefore, the FCs must be properly deployed to collect

the sensor device data while dynamically adapting to the activation patterns of sensor

devices. Naturally, the optimal locations of the FCs and their update times depend

on the activation process of the sensor devices.

In our work, we considered mainly four constraints into account. The first is the

bandwidth of the sensors, the second is the bandwidth of the fusion centers, and the
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third is the cost of communication, which depends on the distance between source

and destination. Sensors are often powered by tiny batteries, which are typically non-

rechargeable and are used in tracking applications. Due to bandwidth restrictions,

we assume that each sensor only chooses one measurement for a target and quantizes

the data before transmitting it to the fusion center. A fusion center can be a drone

cell or UAV that has limited energy and wants to optimize the available energy. The

fourth constraint is the number of frequency channels available for communication.

For instance, if the number of frequency channels accessible is small, the sharing of

targets among the FCs is constrained. Further, the following assumptions are made

to simplify the problem.

Assumption 1: The number of fusion centers is fixed, and their initial placement lo-

cations are known.

Assumption 2: The fusion centers can move whenever required with maximum speed

within a given time to the designated location.

Assumption 3: All the sensors are active at all times and can track the targets if they

are within their tracking region.

Assumption 4: The number of targets may vary from time to time. Each sensor node

selects only one measurement per target to send to the fusion center.

Assumption 5: Multiple sensors can track a single target.

Assumption 6: Each sensor can communicate with one or more fusion centers, how-

ever, information about each target is communicated to only one fusion center. If

a sensor has multiple targets to communicate with, it can send different targets to

different fusion centers so that the allocation gives better tracking performance.
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3.3.1 Problem Formulation

Consider a system consisting of a set L = {1, 2, ...L} of L sensor devices. Examples of

such devices include various types of sensors used for environmental monitoring, smart

traffic control, and smart parking devices. In this system, a set K = {1, 2, ...., K} of

K FCs’ must be deployed to collect data from ground sensor devices. These FCs’

can dynamically move when needed, to effectively serve the sensor devices using

communication links. There is a total T number of targets at the control center

consisting of a set T = {1, 2, ...T}. There is a maximum available F number of

frequency channels consisting of set F = {1, 2, ...F}. The locations of device i ∈ L

and FC j ∈ K are, respectively, given by (xi, yi) and (xj, yj, hj). In our model, we

consider a centralized network in which the locations of the devices and FCs are

known to a control center located at a central cloud server. The control center will

determine the FCs locations, the targets to FCs association, and the bit allocation

to each target. At the beginning of each slot, the positions of the FCs, as well as the

targets to FCs association, are updated based on the active devices and the number

of targets that are assumed to be known to the control center. The sample scenario

with three clusters with overlapping sensors is shown in Fig.3.1. Once the targets

and FCs have been associated, each FC can assign bits to each target of each sensor

using uniform or non-uniform quantization.

3.3.2 Objectives

The objective is to maximize the tracking performance of the system by optimally

using the available resources. The tracking performance is measured by the accuracy

of the existing targets’ estimates. The problem is to allocate the targets to FCs and
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Figure 3.1: Sample Scenario representation

assign the transmitting frequency and bandwidth to each target in order to maximize

the tracking performance. Each FC reports to the control center to get a global picture

of the tracking region. Each sensor in this design is permitted to be associated with

one or more FCs, but each target at the sensor node is sent to only one FC in order

to prevent information duplication.

Let Aijtf be the indicator function that takes the value 1 if target t of sensor device

i is assigned to FC j through frequency channel f and 0 otherwise. Then, the first

objective is given by Eq.3.3.6.

E[x̂t − xt][x̂t − xt]> ≥ J−1
t

(3.3.1)

J0 = P0
−1 (3.3.2)
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Jprior = (Qk−1 + Fk−1J(k − 1)−1F>k−1)−1 (3.3.3)

J(k)−1 = (Jprior +
L∑
i=1

αH>i,kR
−1
i Hi,k)

−1
(3.3.4)

α =
K∑
j=1

F∑
f=1

Aijtf (3.3.5)

min
T∑
t=1

W1 ∗ det(E[x̂t − xt][x̂t − xt]>) (3.3.6)

• J0 is the initial Fisher Information (FI).

• P0 is the initial error covariance matrix.

• Jprior Prior FI.

• J(k) is FI of a target at time k.

• Jt is FI of target t.

The second objective is to maximize the reward for each fusion center that uses less

bandwidth. The total allocated bandwidth of all fusion centers should be minimized.

Bt
ijf is the bandwidth allocated by FC j to target t at the sensor node i using frequency

channel f . In other words, to maximize the energy available at each FC, it is given

by

min

{
L∑
i=1

T∑
t=1

F∑
f=1

W2 ∗ Aijtf ∗Bt
ijf

}
∀j ∈ K (3.3.7)
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The third objective is to maximize the reward for each sensor device that uses less

bandwidth. The total allocated bandwidth of all sensor nodes should be minimized.

In other words, to maximize the energy available at each sensor node Bi, it is given

by

• i is the index for sensor devices, and L is the total number of sensors.

• j is the index for FCs, and K is the total number of FCs.

• t is the index for targets, and T is the total number of targets.

• f is the index for frequency channels, and F is the total frequency channels.

min

{
K∑
j=1

T∑
t=1

F∑
f=1

W3 ∗ Aijtf ∗Bt
ijf

}
∀i ∈ L (3.3.8)

Reducing the number of frequency channels that sensors employ to communicate with

FCs is the fourth goal. If a sensor is connected to more than one FC, it can be given

more than one frequency channel. For instance, we require two frequency channels

to transmit the data to the FCs if a sensor node has two targets, each of which is

assigned to a different fusion center.

min

{
F∑
f=1

W4 ∗ Aijtf

}
∀i ∈ L ∀j ∈ K ∀t ∈ T (3.3.9)

The fifth objective is to minimize the cost of communication between the sensor nodes

and FC.

min
L∑
i=1

K∑
j=1

T∑
t=1

F∑
f=1

W5 ∗ Aijtf ∗Bt
ijf ∗ Eij (3.3.10)
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The energy consumed in transmitting a one-bit size over a transmission distance dij,

Eij is defined as

Eij = (Eelec + εAmpd
λ
ij) (3.3.11)

where

• Eelec is electronic energy.

• εAmp transmitter amplifier.

• λ path-loss component (2 ≤ λ ≤ 4).

• dij is the distance between sensor device i and FC j.

• Eij is the energy consumed for transmitting a single bit from the sensor device

i to FC j.

The sixth objective is to reduce the time it takes to communicate the data from

the fusion centers to the control center. The control center should receive the data

that the FCs have collected. The network of FCs should always be connected to

the control center in a multi-hop fashion, since the distance between the FCs and the

control center may be greater than the communication range of an FC. It is dependent

on two elements. The first one is each fusion center’s data transmission rate and data

capacity. Let λi be the data rate of the fusion center i and Di is the data it has to

communicate to the control center.

min
K∑
j=1

W6 ∗
Dj

λj
(3.3.12)

Depending on the problem, we can give weight to each of these objectives[71]. The

final single objective function is a summation of all five objectives, with some weight
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assigned to W1, W2, W3, W4, W5, and W6. The sum of all the weights should be

equal to 1.

Eq3.3.6 + Eq3.3.7 + Eq3.3.8 + Eq3.3.9 + Eq3.3.10 + Eq3.3.12 (3.3.13)

W1 +W2 +W3 +W4 +W5 +W6 = 1 (3.3.14)

3.3.3 Constraints

Bandwidth at FC

The first constraint is to make sure that each FC does not utilize more bandwidth

than is actually available. Bj is bandwidth available at FC j.

L∑
i=1

T∑
t=1

F∑
f=1

Aijtf ∗Bt
ijf ≤ Bj ∀j ∈ K (3.3.15)

Bandwidth at sensor device

The second is to make sure that no sensor device’s maximum bandwidth usage exceeds

the bandwidth that is really available. Bi is the bandwidth available at sensor node

i.
K∑
j=1

T∑
t=1

F∑
f=1

Aijtf ∗Bt
ijf ≤ Bi ∀i ∈ L (3.3.16)
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Target Assignment

The third one is to make sure one target is assigned to only one FC.

L∑
i=1

K∑
j=1

F∑
f=1

Aijtf ≤ 1 ∀t ∈ T (3.3.17)

Frequency channel Assignment

The fourth one is to restrict each target to being associated with only one of the

frequency channels. A sensor can have one or more frequency channels associated

with it.
F∑
f=1

Aijtf ≤ 1 ∀i ∈ L ∀j ∈ K ∀t ∈ T (3.3.18)

When a target is being monitored by two separate sensors, it is possible to assign it

two frequencies.

Sharing of Frequency Channel

The fifth is to ensure that a frequency channel can be shared by all of a sensor’s

targets that are allocated to a single FC. For example, s1 is associated with FC2, and

3 targets are assigned to FC2, using frequency channel number 10. For i = 1, j =

2, f = 10, then
∑T

t=1Aijtf = 3. If ni is the total number of targets at si then

0 ≤
T∑
t=1

Aijtf ≤ ni ∀i ∈ L ∀j ∈ K ∀f ∈ F (3.3.19)
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Number of sensor devices each FC can associate

The sixth constraint is to limit the number of sensors that can be assigned to one

FC. Due to physical limitations, each FC can not handle more than ni sensor devices

for a given FC j
L∑
i=1

T∑
t=1

F∑
f=1

Aijtf ≤ ni ∀j ∈ K (20) (3.3.20)

Distance

The seventh constraint is the distance between sensor device i and FC j, dij cannot

be more than γj.

• The maximum radius of an FC j is rj.

• γj can be derived using height and the maximum radius of FC j.

• θB is the beam width of the antenna of FC.

• h is the height of FC from the ground, as shown in Fig.3.2.

Aijtf ∗ dij ≤ γj ∀i ∈ L ∀j ∈ K ∀f ∈ F ∀t ∈ T (3.3.21)

where

γj =
√
h2 + r2

j
(3.3.22)

rj = h ∗ tan(θB/2) (3.3.23)
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Figure 3.2: Placement of fusion center
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Sensor Coverage

Each sensor must be within at least one FC’s coverage area.

K∑
j=1

T∑
t=1

F∑
f=1

Aijtf ≥ 1 ∀i ∈ L (3.3.24)

3.3.4 Relocation of fusion centers

To communicate efficiently with the assigned sensor nodes, FC is relocated to the

optimum location based on the locations of the assigned sensors and the amount of

data they send. Since the energy consumed is directly proportional to the distance

between the data source and destination, it is more energy-efficient if the fusion center

is closer to the sensor node, which sends a large amount of data. The new positions for

fusion centers shall be computed based on the bandwidth allocation at the previous

update time, the location of sensor nodes, and the fusion centers. By taking into

account the bits allotted to each of the sensor nodes within its coverage, a fusion

center is moved to the centroid of the location of the sensors. Each sensor location

(xi, yi) is assigned a weight, which is calculated using the bandwidth allocated to it.

If (xj, yj, hj) optimal location of FC j by keeping the same height as in the previous

update time is given as

xj =

∑L
i=1

∑T
t=1

∑F
f=1Aijtf ∗Bt

ijf ∗ xi∑L
i=1

∑T
t=1

∑F
f=1Aijtf ∗Bt

ijf

∀j ∈ K (3.3.25)

yj =

∑L
i=1

∑T
t=1

∑F
f=1Aijtf ∗Bt

ijf ∗ yi∑L
i=1

∑T
t=1

∑F
f=1Aijtf ∗Bt

ijf

∀j ∈ K (3.3.26)
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3.4 Create the initial population

Due to the probabilistic nature of several steps in the genetic algorithm, the initial

population plays an important role in finding the optimal solution. If initial values are

in proximity to the optimal solution, even with fewer iterations, the algorithm quickly

converges to the optimal solution. It takes several runs to get the best fitness value.

It is important to choose the most suitable initial values for solving the optimization

problem. As the CRLB of each target decreases by assigning more bits, each target

tries to get the maximum number of bits. This simple concept is used to initialize

the values that can be solved in linear time. For the initialization algorithm, we do

not need complete data about each target at the control center. It is sufficient to

have the number of targets that can be associated with each fusion center and the

available bandwidth at each of the fusion center and sensor nodes. First, we form an

assignment matrix with rows as targets and fusion centers as columns. We compute

the total number of targets that can be assigned to each fusion center. Initially, the

available bandwidth is equally divided among the eligible targets. The value at the i

row and j column is the equally divided bandwidth of j FC. The detailed initialization

algorithm is given in Algorithm 2.
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Algorithm 2 Create Initial Population

Require: Let T be the number of tracks at all sensors, and K is the number of fusion
centers with the given available bandwidth.

Ensure: Bandwidth distribution for all tracks, returns the matrix of size T ×K.
1: Compute the initial assignment matrix, A, by dividing the available bandwidth

equally among the eligible targets. Each row i represents a target, and a column
j represents each FC. If Bj is bandwidth available at the FC j and eligible targets
to be assigned to the FC are n then...

2: Find the maximum element in the assignment matrix arg maxA. Let
[I row, J col] be the index of the maximum element. It means target at I row is
associated to fusion center J col.

3: Make all the other elements of I row as zero by distributing the bandwidth to
other non-zero elements in the same column. This is to ensure that the target is
assigned to only one fusion center.

4: Repeat steps 2 and 3 for T times.
5: Identify the largest non-zero element in each row, if any; this entry will serve as

the bandwidth designated for the specified target.

3.4.1 Example

For the given Fig.3.3, where we have three FCs, three sensors, and six targets. The

bandwidths at FC1, FC2, and FC3 are 32, 6, and 6, respectively. The initial assign-

ment matrix A is as follows according to Step1 from Algorithm 2.

A =

FC1 FC2 FC3



t1 8 2 0

t2 8 1 0

t3 8 1 0

t4 0 1 2

t5 0 1 2

t6 8 0 2
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After the first two iterations the matrix, A looks as follows.

A =

FC1 FC2 FC3



t1 8 0 0

t2 8 0 0

t3 8 2 0

t4 0 2 2

t5 0 2 2

t6 8 0 2

The final matrix after the completion of the algorithm is as follows.

A =

FC1 FC2 FC3



t1 8 0 0

t2 8 0 0

t3 8 0 0

t4 0 6 0

t5 0 0 6

t6 8 0 0

The final assignment is t1, t2, t3, and t4 to FC1, each 8 bits, t4 to FC2, and t5 to

FC3 each 6 bits.
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3.5 Solution Techniques

This section introduces two suboptimal approximate algorithms for allocating the

targets to the fusion centers. The first one is the approximate greedy bandwidth al-

location algorithm, which will be proven to yield nearly optimal results while taking

substantially less time to compute than solving a multi-objective optimization prob-

lem. The T targets at L numbers of sensors in the network must be allocated across

the available K number of fusion centers that have a specific amount of bandwidth at

each time step of tracking for the following time step. Keep in mind that the Fisher

information matrix J(k) of a target as given in Eq.3.3.4 is from all the contributing

sensors. If more than one sensor contributes to a target’s information, we calculate

each sensor’s individual contribution to determine the bits that should be assigned to

each contributing sensor. The Fisher information can be maximized by maximizing

its determinant while taking the bandwidth constraint into consideration in the for-

mulation of an approximate greedy bandwidth allocation for tracking applications.

We examine the computational complexity of the greedy approximate algorithm, in

terms of the number of matrix summations. Algorithm 3 provides a comprehensive

algorithm. For a single FC, with bandwidth, B, and with T targets, we need at most

T (2B − 1) matrix summations, and the details are given in [46]. So for K number

of FCs, we require KT (2B − 1) number of matrix additions. If FCs have different

bandwidths, then B is the maximum of all the bandwidths. wi is the weight given

to each target. Based on each target’s importance, we can assign a different weight

in a number of different ways. To give the targets that are near to FC priority, the

weight may also be computed based on how far the target is from FC. The second

approximate algorithm starts with the initial assignment of the matrix derived from
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Algorithm 3 Approximate Greedy Bandwidth Distribution Algorithm

Require: Let T be the number of tracks at all sensors, and K is the number of fusion
centers with the given available bandwidth.

Ensure: Bandwidth distribution for all tracks using the greedy algorithm.
1: Compute assignment matrix using Algorithm 2.
2: for i=1:K do
3: Let n be the number of tracks with non-zero entries in the matrix from step 1,

and Bi is the bandwidth for FCi.
4: Set b0 = [b1 = 0, b2 = 0, ..., bn = 0]
5: for k=1:Bi do
6: for j=1:n do
7: To the target, j add one bit and compute FI of the target, wjdet(J(bj+1)).
8: end for
9: Find the target t∗ for which FI is maximum.
10: t∗ = arg max

j
wjdet(J(bj + 1))

11: Update b∗t = b∗t + 1
12: Update bk = [b1, ..., b

∗
t , ..., bn]

13: end for
14: end for

Algorithm 2, where it assigns an equal number of bits to all possible targets. In light

of bandwidth constraints, our goal is to identify the optimal bit assignment vector,

which is a bit assignment for all the targets. After equally dividing the bits among the

targets, the algorithm’s aim is to change the bits so that the total Fisher information

matrix is maximized. The fixed minimum increment in the FI that we anticipate is

called threshold, denoted by ε. First, select the target that provides the least FI using

one fewer bit than the original bits, and take one bit away from that target’s bits.

The next step is to identify a target that contributes the most FI by adding one bit

to it. As long as the increase in the FI is more than the specified threshold, ε from

the previous stage, repeat the reallocation. The comprehensive algorithm is provided

under Algorithm 4.
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Algorithm 4 Approximate Bandwidth Distribution Algorithm-2

Require: Let T be the number of tracks at all sensors, and K be the number of
fusion centers with the given available bandwidth.

Ensure: Bandwidth distribution for all tracks using an approximate algorithm.
1: Compute the assignment matrix using Algorithm 2.
2: for i=1:K do
3: Let n be the number of tracks with non-zero entries in the matrix from step 1,

and Bi is the bandwidth for FCi.
4: Set b = [b1, b2, ..., bn] from the matrix from step 1.
5: repeat
6: for j=1:n do
7: compute FI1 of the target j, wjdet(J(bj)).
8: end for
9: for j=1:n do
10: compute FI2 of the target j, wjdet(J(bj − 1)).
11: end for
12: Find the target t∗ for which (FI1-FI2) is minimum.
13: diff(t∗) = arg min

j
wj[det(J(bj))− det(J(bj − 1))]

14: for k=1:n do
15: if k 6= t∗ then
16: compute FI3 of the target, wjdet(J(bk + 1)).
17: end if
18: end for
19: Find the target t′ for which (FI3-FI1) is maximum.
20: diff(t′) = arg max

k
wk[det(J(bk + 1))− det(J(bk))]

21: Compute ∆ = diff(t′)− diff(t∗)
22: if ∆ ≥ ε and t∗ 6= t′ then
23: Update bt∗ = bt∗ − 1
24: Update bt′ = bt′ + 1
25: Update b = [b1, .., bt∗ , ..., bt′ , ..., bn]
26: else
27: return b vector.
28: end if
29: until ∆ ≥ ε
30: end for
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3.6 Performance Analysis

Consider a simple example where three sensors, let’s say S1, S2, and S3, are deployed

in a triangle fashion. The sensors have different sensor characteristics with different

bandwidths and energy availability. We have three fusion centers, FC1, FC2, and

FC3, to collect the data from these three sensors. S1 has three targets; t1, t2, and

t3. S2 has two targets, t4 and t5, and S6 has one target, t6. S1 is in the coverage of

FC1, and FC2. S2 is in the coverage of FC2 and FC3. S3 is in the coverage of FC1

and FC2. The details are shown in Fig.3.3. In fixed allocation, S1 is allocated to

the closest fusion center FC2, S2, and S3 are allocated to FC3 and FC1, respectively.

All the targets at the given sensor are allocated to the given fusion center. The

total available bits at FC1, FC2, and FC3 are 32, 6, and 6, respectively. Using the

adaptive approach, we allocate the targets to fusion centers which minimizes the

CRLB. We give equal weight to all the objective functions in all our simulations.

Create the initial population. For t1 to t5, the RMSE of the adaptive approach is

much better than that of fixed allocation. All the bandwidth at FC1 is assigned to t6

in a fixed allocation. However, in adaptive allocation, it is shared by the other three

targets. So only t6 has a little better RMSE performance using fixed allocation than

adaptive allocation. In Fig.3.4, and Fig.3.5, we compared the RMSE results of all 6

targets using fixed allocation and adaptive allocation of targets to fusion centers.

In Fig.3.6, we compared the CRLB fitness function value using randomly generated

initial values and the calculated initial values using the proposed algorithm. With the

given number of iterations, the genetic algorithm with calculated initial values always

gives better fitness values than the one with randomly generated initial values. In

the next scenario, we have three targets. Each target is tracked by two sensor nodes,
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Figure 3.3: Simulation Scenario-I
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Figure 3.4: Comparison of RMSE for targets T1, T2, and T3 using fixed allocation
and proposed adaptive allocation

Figure 3.5: Comparison of RMSE for targets T4, T5, and T6 using fixed allocation
and proposed adaptive allocation
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Figure 3.6: CRLB Fitness Value Comparison

as shown in Fig.3.7. In fixed allocation, each sensor is assigned to the closest FC.

Using the adaptive method, each target at a given sensor node is assigned to an

FC, which is chosen by solving the designed optimization problem. Each sensor has

different error characteristics, like range error and azimuth error. The RMSE results

are compared in the Fig.3.8, using fixed allocation and adaptive methods. In the

third simulation, we demonstrate how the allocation of targets to FCs changes with

a change in bandwidth availability for Simulation Scenario-II. In this scenario, for

every 10 seconds, the bandwidth changes at FC1 and FC2. At time 1, the available

bandwidths at FC1, FC2, and FC3 are 32, 6, and 6, respectively. At 10th second,

the available bandwidths are 17, 21, and 6 at FC1, FC2, and FC3, respectively. At

the 20th second, the available bandwidths are 6, 36, and 6 at FC1, FC2, and FC3,

respectively. Table.3.1, shows how the assignment of each target at each sensor node
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Figure 3.7: Simulation Scenario-II
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Figure 3.8: Comparison of RMSE for fused targets t1, t2, and t3 using fixed
allocation and proposed adaptive allocation for Scenario-II

changes with the change in bandwidth. In the bracket at each FC, it shows how many

bits are allocated to the particular target for a given sensor node. For example, at

time interval 11, the target T1 at S1 was assigned to FC2 and allocated 7 bits for it.

At the time instance, 4, T1 at S1 was assigned to FC1 with 7 bits, and the assignment

was changed to FC2 at time interval 11. The assignment of T3 at S3 also changed

from FC1 to FC2 from the time interval 4 to 11. The details of allocation are shown

in Fig.3.9

Table 3.1: Targets to FCs Allocation

Time T1-S1 T1-S2 T2-S3 T2-S2 T3-S1 T3-S3
4 FC1(7) FC2(6) FC1(7) FC3(6) FC1(8) FC1(10)
11 FC2(7) FC2(8) FC1(9) FC2(6) FC1(8) FC3(6)
21 FC2(10) FC2(11) FC1(6) FC2(9) FC2(9) FC3(6)
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Figure 3.9: Targets to FCs Allocation For Scenario-II

In the fourth simulation, we show how the FCs are relocated and moved to a

weighted centroid location according to the load assigned to each of the assigned

sensors for the simulation scenario-I. The positions of S1, S2, and S3 are S1={10, 10,

0}, S2={1000, 1000, 0} and S3={2000, 100, 0}. The locations of FC1, FC2, and FC3

are FC1= {1000, 10, 1000}, FC2= {500, 500, 1000} and FC3= {1500, 500, 1000}.

The new positions of FCs are calculated using Eq.3.3.25 and Eq.3.3.26. The new

relocated positions are shown in Fig.3.10. At update time 29, the assignments are as

follows. The targets t1, t2, t3, and t6 are assigned to FC1, and t4 and t5 are assigned

to FC2 and FC3, respectively. The amount of data assigned to S1 is 24, and 8 bits

are assigned to S3. The calculated locations of FC1, FC2, and FC3 are FC1= {507.5,

10, 1000}, FC2= {500, 500, 1000} and FC3= {500, 500, 1000}. The FC1 is moved

closer to S1 as it is assigned more data to FC1. FC2 and FC3 are moved toward S2

as it communicates more data to FC2 and FC3. These newly calculated locations of

FCs will be used at the next update time of 30.

In the fifth simulation, we demonstrated the assignment of targets to fusion centers
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Figure 3.10: Relocation of Fusion Centers for Scenario-I
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with 20 targets. In this scenario, we have 3 fusion centers, 10 sensors, and 20 targets,

as shown in Fig.3.11. For the first case, the bandwidth availability at fusion centers

Figure 3.11: Simulation Scenario-III

FC1, FC2, and FC3 is {30, 30, 75}. Each target is tracked by only one sensor. That

means one target is assigned to only one fusion center. The simulation is run for 100

Monte Carlo runs to get the assignment results. Five targets are assigned to FC1

and FC2 each. 10 targets are assigned to FC3. The assignment of targets to fusion

centers and the bit allocation are shown in Table 3.2. The information given in the

table is the target ID, and the fusion center it is assigned to, and the bits allocated

to it.
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Table 3.2: Targets to FCs Allocation

T1 - FC1(6) T6 - FC2(6) T11 - FC3(6) T16 - FC3(9)

T2 - FC1(6) T7 - FC2(6) T12 - FC3(6) T17 - FC2(6)

T3 - FC1(6) T8 - FC2(6) T13 - FC3(6) T18 - FC1(6)

T4 - FC1(6) T9 - FC3(9) T14 - FC3(9) T19 - FC3(9)

T5 - FC2(6) T10 - FC3(6) T15 - FC3(6) T20 - FC3(9)

In the second case, we assume all the sensors are within the range of all three fusion

centers’ coverage. In this experiment, we want to demonstrate how the assignment

changes if we do not optimize the distance. So we did not consider the optimization

of the distance in this case. The bandwidth availability is {30, 30, 100} at FC1, FC2,

and FC3 respectively. All the targets try to get more bandwidth if we do not have

the distance objective and are assigned to the fusion center, where they can get more

bandwidth. The bit allocation and the target assignment are shown in Table 3.3. On

average, 14 targets are assigned to FC3, and 3 targets are assigned to FC1 and FC2

each.

Table 3.3: Targets to FCs Allocation

T1 - FC3(7) T6 - FC2(6) T11 - FC3(6) T16 - FC3(8)

T2 - FC3(9) T7 - FC1(7) T12 - FC3(9) T17 - FC3(7)

T3 - FC3(7) T8 - FC3(6) T13 - FC2(7) T18 - FC3(6)

T4 - FC1(9) T9 - FC3(6) T14 - FC1(11) T19 - FC2(8)

T5 - FC3(7) T10 - FC3(8) T15 - FC3(7) T20 - FC3(7)
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In our sixth simulation, we contrast the approximate algorithms with the Genetic

Algorithm (GA)-based solution to the multi-objective integer optimization problem

implemented in MATLAB. In Fig.3.12, we compare the RMSE of one target from the

simulation scenario-I. Both approximate algorithms that produce suboptimal solu-

tions and adaptive allocation using the GA algorithm operate quite similarly. When

compared to the approximation greedy algorithm, the approximate algorithm-2 per-

forms somewhat better but takes a little longer to execute. We have contrasted the

execution times of three algorithms in Table 3.4.

Table 3.4: Time Comparison of Genetic Algorithm (GA) Algorithm and Proposed
Approximate Algorithms in seconds

Targets GA Approximate Greedy Algo-1 Approximate Algo-2

6 0.6462 6.3304e-04 0.0011

3.7 Conclusion

In this paper, we have proposed a novel strategy for joint bandwidth allocation and

assignment of targets to fusion centers for multi-target tracking in multiple distributed

radar networks under cluttered background. The aim is to collect the best possible

data from sensors for each target in resource-constrained situations to improve track-

ing performance and use the energy of sensor nodes and fusion centers optimally. We

addressed the problem of associating targets to fusion centers and efficiently assign-

ing the available bandwidth to the targets to improve the tracking performance and

prolong the usage time of each of the fusion centers as well as sensor nodes by optimal
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Figure 3.12: RMSE Comparison for GA and Approximate Algorithms for Target1 in
Scenario-I

energy usage. We formulated the problem as a multi-objective integer optimization

problem. The algorithm consists of three steps. In the first step, we associate the

targets with fusion centers. The second step is the bandwidth allocation to targets at

each of the sensors. In the third step, we relocate the fusion centers to the weighted

centroid location to optimize the communication cost. We proposed an algorithm

for creating initial values for the multi-objective integer optimization problem. Two

approximate bandwidth distribution algorithms are proposed, which provide nearly

ideal results at less computational time. We verified our analytical derivations with

simulations. The simulation results demonstrate the efficiency and effectiveness of

the proposed techniques.
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Chapter 4

Efficient Performance Bounded

Data Gathering for Distributed

Multi-Target Tracking

4.1 Introduction

Wireless sensor networks are proving useful in a variety of settings. These wireless

sensors are of low-cost, low-power, and small-size. They are spatially distributed for

monitoring and recording ambient environmental conditions and are widely deployed

in diverse applications ranging from military scenarios to civil scenarios, such as intru-

sion detection, homeland security surveillance, volcano supervision, soil monitoring

for smart agriculture, and forest fire inspection. WSN nodes often employ an inde-

pendent power supply to facilitate deployment in numerous challenging situations.

However, this also means that WSN nodes have very scarce energy, memory, and

other computing resources. The environment where these sensor nodes are deployed
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can be harsh, dangerous, and sometimes hostile. In these kinds of situations, it is

generally hard to replace or change energy sources. Replenishment of these critical

resources, like energy supply, is possible, but it can be very expansive due to the

environment they are in. Sonobuoys are examples of wireless sensors that are de-

ployed for underwater surveillance, usually for anti-submarine warfare or any other

military operation. Data is collected from all these sensors to get a global picture

of the tracking region. Data collection can be done by using either an aerial vehi-

cle like a drone or a ship[18]. To ensure improved data collection and effective use

of scarce resources, these data collectors should be relocated along the data load as

the targets travel from the tracking region of one sensor to another. A data col-

lector can be a slow moving or fast moving vehicle. For fast moving targets, the

data collectors should also be able to move along at the same pace. The amount

of data that needs to be communicated from the sensor node to the data collector

determines the energy consumption at both locations. A sensor node uses energy

for communication, processing, and sensing, which together make up its three main

energy sources. According to experimental observations, calculation energy is often

insignificant in comparison to communication energy in many applications. Since the

efficiency of the data collection is significantly impacted by the restricted on-board

energy supply. Data collection that uses less energy is therefore crucial. It is crucial

to reduce the energy consumption of installed sensor nodes and data collectors for

network longevity, notably in situations when sensor nodes are required to keep an

eye out for odd events like earthquakes, floods, and other natural calamities. The

communication’s energy consumption can be reduced by picking the relevant data

for just interested targets. So choosing the relevant data collector is an important
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decision to make for efficient data collection. The work that has been presented here

can be used and put into practice for a look-ahead scenario in which we forecast the

state of affairs for the upcoming few time intervals to ascertain whether we need more

data collectors because of an increase in load or fewer data collectors because of a

decrease in load, in the designated tracking area. For instance, instead of predicting

the state for the next time interval, we predict the state for the next 10 time inter-

vals, which provides extra time to deploy more data collectors or remove extra data

collectors. Since mobility requires a lot of energy and time, it is preferable to limit

the movement of these data collectors as much as possible. So we divide the tracking

region into clusters and deploy the data collectors. A lot of work is done to place the

data collectors according to the coverage radius using various algorithms. We assume

the data collector stays in the same location to collect the data at a specific point

in time, and for subsequent data collection iterations, the data collector may be in

a different location. The maximum speed and update interval, however, affect how

far it can travel. There are times when cost or availability prevent the deployment

of enough data collectors for every region. In such cases, a certain number of data

collectors must be made available to cover every region in order to collect data. We

must choose which data collector will cover each region when it comes to coverage

path design, which is the crux of the issue. In many applications, not all the targets’

information is important to the end-user. Many times, if there are more targets in

the tracking region, there will be certain significant targets for which we have higher

expectations for tracking accuracy. So we can prioritize the targets using the accuracy

requirement to make efficient use of the resources. In this paper, we considered two

important resources, energy availability at the sensor node and at the data collector,
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in terms of the amount of data they can communicate.

The rest of the paper is organized as follows. In Section 4.2, we present the related

work and the contributions. Section 4.3 provides the system model and problem

formulation. Details of the initial placement algorithm are described in Section 4.4.

Next, we describe the association of sensors to data collectors in the overloaded region

in Section 4.5. In Section 4.6, we deal with the coverage path planning issue when

there are a fixed number of data collectors available to cover all the regions. In Section

4.7, we provide the simulation results, and finally Section 4.8 concludes the paper and

discusses some future research directions.

4.2 Related Work and Contributions

An efficient deployment approach was proposed in [49] based on the circle packing

theory that leads to a maximum coverage while each UAV uses a minimum transmit

power given a desired geographical area that needs to be covered by multiple UAVs. A

three-layer framework is proposed in [89] for mobile data collection in wireless sensor

networks, which includes the sensor layer, cluster head layer, and mobile collector

layer. The framework employs distributed load balanced clustering and dual data

uploading. A two-step solution was proposed in [24] for the multi-UAV data collection

problem in clustered IoT networks, where sensed data have time deadlines. In the first

step, the number and locations of cluster heads, which gather data from associated

IoT sensors, are optimized using a customized K-means approach. Subsequently, an

energy-efficient data collection framework that uses the minimal number of UAVs

is presented. In [43], a market based dynamic bit allocation scheme was studied

for target tracking in energy-constrained wireless sensor networks using quantized
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data where the fusion center acts as a customer, and sensors act as producers and

the prices of purchasing bits from sensors and the price of unit, energy balances the

market. In [70], the UAV location and user association problem from a load-balancing

perspective was investigated. First, a clustering method was introduced to initially

place UAVs using the area of maximal local density. strategy, which tried to minimize

the maximum traffic demand among UAVs, so that the traffic capacity among UAVs

can be balanced as much as possible, was studied. Third, a UAV location algorithm

with the method of the backtracking line search algorithm to refine the load balance

among the systems was proposed. Finally, after determining the horizontal locations

of UAVs, the altitude of each UAV is adjusted to save power consumption. Instead

of sending the entire sensor data to the fusion center, a subset of sensors is activated

using sensor management policies to satisfy the application requirements using the

minimal resources that are available. In the sensor selection problem, a subset of

sensors is selected at every update time while tracking a target that gives optimal

performance while using minimal resources. Using sensor collaboration, dynamically

select a subset of sensors over time to optimize tracking performance in terms of mean

square error. As an example, in the sensor selection problems, a decision is made on

whether a sensor transmits its measurement or not based on the constraint of the total

number of selected sensors[90]. Power allocation and selecting the number of sensor

nodes to optimize the critical resources of the system are addressed in many papers[79,

83, 27]. The goal of the dynamic case deployment in [34] is to minimize time-averaged

UAVs power consumption within predefined limitations, whereas the goal of the static

case deployment is to discover an ideal number of static UAVs deployment to minimize

ground terminal transmission power. Through a Lagrangian approach, the authors
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investigated the appropriate placement and movement of several UAVs to provide the

best time-averaged performance. By choosing an ideal stop location near deployed

sensors to collect data and then taking an ideal path to finish the data collection

trip, the authors of [25] proposed an energy-efficient trajectory optimization proposal.

The difficulties of UAV deployment and relocation have been approached from several

angles. For static deployment, [6] consider where UAVs should be placed to maximize

coverage and offer several algorithms. These studies presuppose that a UAV can cover

a ground terminal as long as their separation is no greater than a specific amount.

The goal of the work in [40] is to ensure that each distributed ground terminal (GT)

is within the communication range of at least one MBS, thereby reducing the number

of MBSs required to provide wireless coverage for a group of GTs. In [32], the

authors use space-division multiple access to improve the trajectory of a single UAV

serving numerous mobile GTs. Future GT locations are forecasted by a Kalman filter,

which then determines the UAV trajectory. In [53], the authors presented a unique

system for quickly deploying and relocating UAVs to gather data from ground IoT

devices during the uplink. To minimize the total transmit power of the IoT devices

within their SINR limitations, we have specifically identified the jointly optimal UAV

positions, device association, and uplink power control. In [33], a heterogeneous

two-tier network that transmits data to heterogeneous fusion centres from large-scale

wireless sensors via heterogeneous access points was discussed. The overall network

power consumption is used as the cost function for the optimization problem of the

deployment of heterogeneous nodes.

The load variation at the sensor nodes and how it impacts the necessary num-

ber of data collectors are not taken into account by the currently available studies.

93

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Sarojini Vudumu; McMaster University – Department of Electrical and

Computer Engineering

Given that transmitters contact the medium using separate spectrum bandwidths,

[22] provides three approximations for the power or/and bandwidth distribution. [36]

investigates the problem of UAV-enabled data collection for high information fresh-

ness in wireless sensor networks, where one UAV is sent out to gather data from

ground Sensor Nodes (SNs). The Age of Information (AoI) of each SN, which is cal-

culated as the time the UAV spent in flight after leaving the SN plus the time it took

to upload its data, serves as a gauge of how recent the information is. The authors

of [75] examine multi-UAV collaborative data collection systems, in which numerous

UAVs fly or hover while collecting data from two-dimensional dispersed devices. The

goal is to reduce the total flight time of UAVs while enabling each device to effectively

upload data while using a minimum amount of energy. The effectiveness of coopera-

tive UAV clustering on terrestrial cellular networks with caching EH-powered UAVs

was investigated in [76]. The successful transmission probability for a random GMT

was computed using Gamma approximations for the aggregated signal strength, and

a user-centric cooperative UAV clustering technique was suggested. The study in [13]

looked at how autonomous UAVs plan their flight paths in order to establish a flight

path that would be effective enough to visit all the regions of interest. First, a precise

formulation was suggested based on mixed integer linear programming to find the

best flight paths for UAVs. After that, a clustering-based approach was introduced

with the aim of reducing the time required for UAVs to complete tasks by group-

ing regions into clusters and determining workable flight paths. For the purpose of

addressing the computational difficulties brought on by the heterogeneity of UAVs,

the authors in [14] presented a novel capability rank to evaluate the performance of

UAVs used in the search tasks. Then, in a way inspired by density-based clustering
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analysis, divide regions into groups based on their densities, which are computed via

relative distances and scan areas. A search-based method based on symbiotic organ-

isms is then successfully used to modify the visiting order of each region aggregated

into the same groups. As far as we are aware, no prior attempts have included cal-

culating bandwidth based on the targets’ stated accuracy and deploying a minimal

number of data collectors to cover all sensors with the specified load. The significant

contributions of this paper are listed below.

• We calculate the minimum number of data collectors with limited bandwidth

and coverage area required to cover all the sensors and get the given accuracy

results for each target.

• We propose an iterative approach to placing the data collectors such that as the

targets move from one sensor region to another, the data collectors are relocated

to get better performance and optimal usage of the data collectors.

• We formulate an algorithm for the initial placement of data collectors using

information on the number of targets at each sensor node and their accuracy

requirements. We model the problem using the modified bin packing problem.

As load changes, we also cover the procedure for adding and removing new data

collectors.

• We model the association of data collectors to the sensor nodes using a Multi-

Objective Optimization problem, where a single sensor is assigned to only a

single data collector.

• We use the lexicographic approach to solve the Multi-Objective Optimization
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problem, which effectively generates the optimal solution by defining the se-

quential optimization stages.

• We propose an approximate algorithm for the initial placement of data collectors

and their association with sensors.

• For the purpose of covering the regions with a specific number of fixed data

collectors, we define a coverage path planning problem.

• To address the coverage path planning issue, we propose the approximation

approach known as Minimum Total Time (MTT).

4.3 System Model and problem formulation

In this section, the description of the problem and a formulation based on the BCRLB,

which gives a measure of the tracking accuracy, are presented. Consider a total of N

Figure 4.1: Sample Scenario Representation

sensors deployed in the ROI, and their positions are {sn = [xn, yn]′, n = 1, 2, ..., N}.
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They can simultaneously track M targets labelled as 1,2,. . . , M, in the surveillance

region. The observation interval between two contiguous tracking frames is denoted

by T . Then, at the discrete time k (equivalent to continuous time kT ). X t
k is the

target state of target t at time k is defined as X t
k = [xtk, y

t
k, ẋ

t
k, ẏ

t
k]
>, in which [.]> is

the transpose operation, xtk and ytk are the target positions, and ẋtk and ẏtk denote

the velocities in horizontal and vertical directions. vk is white Gaussian process noise

with zero mean and covariance matrix Q. How many data collectors with limited

bandwidth capabilities must be placed in order to achieve the specified accuracy for

each target? is a crucial topic that we address in this work. Let ηik be the desired

accuracy of the target i at the time instance k. The sample scenario with three data

collectors and the sensor nodes inside their coverage area is shown in Fig.4.1. The

placement of data collectors based solely on coverage area is insufficient in many

applications to obtain the required performance in terms of tracking precision. If, for

instance, every sensor node is within the range of a single data collector, then just

one data collector needs to be set up. A single data collector may not be sufficient

to achieve the required performance, though. If we want to achieve the specified

precision, we might need to deploy more data collectors. The accuracy criterion is

subject to alteration over time, and the performance requirements for various targets

may vary. The Bayesian CRLB determines the lower bound of the error covariance

of target state estimation. The accuracy requirement of a given target indirectly

reflects the importance of the target. Thus, the predicted BCRLB is usually used as

the optimization criterion for radar resource allocation. The BCRLB shows that the

mean squared error (MSE) of any estimator can not go below a bound, which is given
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by [83, 48, 90]

E
{[

xik − x̂ik
(
Bi
k

)] [
xik − x̂ik

(
Bi
k

)]>} ≥ [Jxik

(
Bi
k

)]−1
(4.3.1)

where E is the error matrix of the estimator and J is a Bayesian information

matrix. The Bayesian information matrix (BIM), i.e., the inverse of the BCRLB

matrix, can be denoted by the sum of two terms. JP denotes the prior information,

and JZ denotes the information from the measurements or data. BIM can be written

as

Jxik

(
Bi
k

)
, JP,k + JZ

(
Bi
k,x

i
k

)
(4.3.2)

where JP,k corresponds to the prior information regarding the target state:

JP,k =
[
QT + FJ−1

xik−1

(
Bi
k−1

)
F>
]−1

(4.3.3)

and the information from measurements is given as:

JZ
(
Bi
k,x

i
k

)
= E

{
∇>xikh

(
xik
) [

Ri
k

(
Bi
k

)]−1∇xik
h
(
xik
)}

(4.3.4)

Eq.4.3.4 is simplified and replaced by the predicted value. So the total information

is given by:

Jx̂i
k|k−1

(
Bi
k

)
= JP,k + (Hi

k)
>[Ri

k(B
i
k)]
−1Hi

k
(4.3.5)

In this paper, the DET of the BCRLB matrix is used as the metric to measure the
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tracking performance.

Cx̂i
k|k−1

(
Bi
k

)
= det

{
J−1
x̂i
k|k−1

(
Bi
k

)}
(4.3.6)

Further, the following assumptions are made to simplify the problem.

Assumption 1: We know the number of sensors and their locations.

Assumption 2: There are a known number of targets at each sensor.

Assumption 3: We are able to relocate the data collector whenever required based on

its maximum speed and update time.

Assumption 4: We know the maximum coverage region of each data collector and

bandwidth limitations.

Assumption 5: For each of the confirmed targets, we are given the desired accuracy

requirement.

Assumption 6: Each sensor node is associated with only one data collector.

4.3.1 Minimum number of Data Collectors with Fixed cov-

erage Radius

As the first part of the problem, we want to determine the minimum number of data

collectors with a fixed coverage radius, CR required to cover all the given sensors.

The grouping of sensors is called ’clustering’. In this section, we form clusters of

sensors based on the coverage radius. We adopt a recursive approach to determine

the minimum number of data collectors based on the coverage radius. Let f(N,CR)

be the required number of data collectors needed to cover N sensors with a coverage
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region with Radius CR. Define pi to be the average point of i points taken all at

once, where 1 ≤ i ≤ N . So the coordinates of pi, will be

(
1

i

i∑
k=1

xk,
1

i

i∑
k=1

yk

)
(4.3.7)

where xk, yk are the coordinates of the kth given sensor. Calculate pi for every i

ranging from 1 to N . Note that there may be multiple possibilities for pi depending

on which i sensors we choose, particularly,
(
N
i

)
possibilities. Now, construct a circle

of radius CR centered at pi in each case, and note the number of sensors it encloses.

The case where the maximum sensors, say, H are enclosed is what we are interested

in, if there is more than one case, include that in the further calculations too. Then

we have,

f(N,CR) = 1 + f(N −H,CR) (4.3.8)

And then we can work with this recursion to get the answer. It means at the start

of the recursion we can form a group of a maximum of H sensors out of N sensors

and deploy one data collector to cover H sensors. Then we continue to find the

number of minimum data collectors required for the rest of (N − H) sensors with

coverage range CR. If we have different coverage range data collectors, we need

to arrange the data collectors in some order, either based on the coverage range or

bandwidth capability. Then form clusters with the set of ordered data collectors.

For example, CR1, CR2, CR3, and CR4 are coverage ranges for the data collectors

DC1, DC2, DC3, and DC4. Then we first form the cluster for DC1, then DC2, and

so on until all the sensor nodes are covered. This step is optional if the given ROI is

small, and we can treat the whole ROI as one cluster. If the entire ROI is one cluster,
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it gives better performance in terms of the usage of the data collectors. If an ROI is

very large, dividing it into small clusters is beneficial in terms of computational time.

So, the formation of clusters of sensors using the coverage radius of data collectors is

optional. The rest of the problem formulation works even without forming clusters

based on radius. In the next subsection, we describe how we can calculate the bits

required to get a given accuracy for a target.

4.3.2 Minimize Total Bit Allocation to Get a Given Accuracy

The question we ask in this section is: for each cluster of sensors, how many data

collectors are required to get the given accuracy performance? For some clusters,

one data collector may be sufficient if the targets are fewer. For other clusters, one

data collector may not be enough to meet the MSE requirement. In this section,

we compute the total bandwidth or bit requirement from each target to meet the

desired performance. Due to bandwidth limitations, each sensor can communicate

one measurement for a target, and it quantizes the measurement before sending it to

the data collector. Quantization helps reduce the amount of data to communicate.

However, it introduces quantization errors due to the loss of information. As we are

given the MSE requirement for each target, how much to quantize depends on the

given accuracy. For instance, if we need good accuracy, then we have to send more

data. So there is a trade-off between the amount of data to send, and its accuracy.

We formulate the problem of calculating the number of bits required to get the given

accuracy as an optimization problem. The optimization problem in Eq.4.3.9 is a non-

convex optimization problem with the given constraints from Eq.4.3.10 to Eq.4.3.11.

In general, solving constrained, nonlinear, non-convex optimization problems is a very
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challenging task and commonly requires extensive computational load. We use the

Genetic Algorithm(GA) to solve Eq.4.3.9.

arg min
Bk

1>Bk (4.3.9)

s.t. Cx̂t
k|k−1

(
Bt
k

)
≤ ηtk, t = 1, 2, . . . ,M

(4.3.10)

Bmin ≤ Bt
k ≤ Bmax

(4.3.11)

By solving the above optimization problem, we can get the bandwidth requirement for

the given cluster of sensors. Based on the computed bandwidth values, we can com-

pute the number of data collectors with given bandwidth availability to be deployed

using the following initial placement algorithm.

4.4 Initial Placement of data collectors

Even though one data collector can cover all the sensor nodes, due to the greater

number of targets and desired accuracy requirements in the region, we may need to

deploy more data collectors in order to meet the MSE demand. The question we

ask in this section is, if we know the bandwidth requirements at each sensor node,

then how many data collectors are to be deployed, and where should we place them

initially? In this section, we describe how to initially place the data collectors if you

know the number of targets at each sensor node and their accuracies. The maximum
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number of data collectors and their bandwidth capacities have been provided. Let

B = [B1, B2, ..., Bn] be the set of data collectors to be deployed with the given band-

width availability. The sensor node weights are W = [w1, w2, ..., ws], representing the

bandwidth requirement at each sensor node, which equals the sum of all targets bit

requirement. The problem is similar to the bin packing problem, which is an NP-hard

problem. The bins in this case are the data collectors, with a weight of Bj for each

data collector j. The objects to place in the bins are the sensor nodes, with weight

equal to the bandwidth requirement at each sensor node. The weight of each sensor

node is wi at sensor i. Assign each sensor node to one data collector so that the total

weight of the items in each bin does not exceed Bj, and the number of bins used

and the distance between the data collector and the sensor nodes should be kept to

a minimum. The mathematical formulation of the problem is as follows.

min
n∑
j=1

yj (4.4.1)

min
n∑
j=1

s∑
i=1

xij ∗ yj ∗ dij (4.4.2)

Subject to 

C1:
s∑
i=1

wixij ≤ Bjyj ∀j ∈ n

C2: xij ∗ yj ∗ dij ≤ CRj

C3:
n∑
j=1

xij = 1 ∀i ∈ s

(4.4.3)
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xij =


1, if sensor i is assigned to DC j

0, otherwise

yj =


1, if data collector j is used

0, otherwise

(4.4.4)

The first objective in Eq.4.4.1 is to minimize the number of data collectors to deploy.

The second objective in Eq.4.4.2 is to minimize the sum of the weighted Euclidean

distances between the data collector and the assigned sensor nodes. The amount of

bandwidth allotted to a single data collector is shown C1 in Eq.4.4.3, and it shouldn’t

be greater than the bandwidth that is really available. C2 in Eq.4.4.3 ensures the

distance between the sensor node and the data collector is not greater than the

coverage radius of the data collector. According to C3 in Eq.4.4.3, only one data

collector is assigned to each sensor node. We can assume that the weight of each

sensor is not more than any bin’s capacity.

wi ≤ Bj, ∀i ∈ s ∀j ∈ n (4.4.5)

We can know the minimum number of data collectors (DCmin) required, which is

calculated as

DCmin >= Ceil[Total bandwidth / max(Bin Capacity)] (4.4.6)

We will get the list of data collectors and their associated sensors once we solve the

bin packing problem. And the data collectors are initially placed at the weighted
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centroid location, which is given in Eq.4.4.7 and Eq.4.4.8. The weighted centroid is

calculated using the bandwidth requirement at each sensor node as a weight. Let Sj

be the set of sensors associated to the data collector, j. For instance, if the set Sj, has

m the number of sensors, then the weighted centroid (xc, yc) is calculated as follows.

xc =

m∑
k=1

wk ∗ xk
m∑
k=1

wk

(4.4.7)

yc =

m∑
k=1

wk ∗ yk
m∑
k=1

wk

(4.4.8)

We propose an approximate algorithm, Algorithm 5, for calculating the number of

data collectors, which is similar to the bin packing problem, which is NP-hard and

finding an exact minimum number of bins takes exponential time. The approximation

algorithms are not guaranteed to find the optimal solution, but their running time is

short. In Algorithm 5, we try to minimize the distance between the data collector and

the sensor nodes by selecting the closest sensor node while calculating the minimum

number of data collectors. The main idea of this algorithm is to first choose the next

sensor with maximum bandwidth requirement and associate it to the next available

data collector. We keep including the sensors that are nearest to the computed

centroid location so far until the data collector bandwidth limit is reached, or no

other sensor can fit in the group. In Algorithm 5, Bj at the step.6 is the bandwidth

availability at the data collector j. A sensor node is not VISITED if it is not yet

associated with any data collector. wi is the bandwidth requirement at the sensor

node, i which depends on the number of targets and their accuracy requirements. A
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sensor node is CHECKED if we have already checked if it can be associated with the

given data collector. If a node is marked as checked but not visited, it means the

bandwidth of the sensor node is greater than the available bandwidth of the given

data collector. In step. 15, i is assigned to the next nearest sensor node to the current

centroid location, which is not visited.
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Algorithm 5 An Approximate Algorithm to compute the number of Data Collectors
and their Initial Placement

Require: Given sensors, and bandwidth requirements at each sensor node.

Ensure: Compute the minimum number of data collectors required and the initial

placement of data collectors.

1: Mark all the sensor nodes as not VISITED. not all sensors are visited

2: Choose the next available data collector j. Sj is set to null, which is the set of

sensors to be associated with the data collector j.

3: Choose a not visited sensor node si, with maximum weight.

4: Mark all not visited nodes as not checked. Bj > 0 and not all sensors are checked

wi ≤ Bj

5: Bj ← Bj − wi.

6: Insert si in Sj.

7: Mark si as visited and checked.

8: Compute the weighted centroid location.

9: Mark the sensor si as checked.

10: i← the next nearest not visited sensor node

11: The data collector j is placed at the weighted centroid of all the sensors in the

set Sj.

12: Sensors without targets are assigned to the nearest DC to make sure all the sensors

are covered by at least one data collector.

In the following section, we discuss how to associate sensors to data collectors

once they are deployed.
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4.5 Association of the sensor nodes to the data

collector in overloaded Region

First, we place the data collectors according to the initial placement algorithm. The

association of sensors with the data collector depends on the location of the data

collector. So, the problem of finding the best locations for data collectors and asso-

ciating sensors with data collectors is interconnected. The main idea here is to move

the data collectors adaptively as the targets move. As the targets move from one

sensor region to another with time, the number of targets at each sensor changes.

We iteratively optimize the location of data collectors and their associations. So, the

data collectors are adaptively placed according to the load at each sensor node which

is computed using the number of targets and their accuracies for efficient use of data

collectors as well as better coverage of targets. Suppose one sensor can be associated

with only one data collector, then we need to find the association between sensors and

data collectors. We have discussed in our other work how to assign sensor nodes to

multiple data collectors so that different targets at each sensor node can be assigned

to different data collectors. Eq.4.5.1 is the first objective to minimize the bandwidth

allocation to the targets. Once a sensor is assigned to a data collector, all the targets

that belong to the sensor are assigned to the corresponding data collector. W1 is the

weight given to the objective.

min

{
N∑
i=1

K∑
j=1

W1 ∗ Aij ∗
M∑
t=1

Bt
ij

}
(23) (4.5.1)

The second objective in Eq.4.5.3 is to minimize the distance between the sensor node

and the data collector. The communication energy depends on the distance between
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the source and the destination. Then, in order to transmit m bits successfully to the

data collector, each sensor should transmit its measurement with energy.

ei(m) ∝ d2
ij

(4.5.2)

W2 is the weight assigned to this objective.

min

{
N∑
i=1

K∑
j=1

W2 ∗ Aij ∗ dij

}
(4.5.3)

• i is the index of sensor devices, and N is the total number of sensors.

• j is the index of DCs, and K is the total number of DCs.

• t is the index of targets, and M is the total number of targets.

The first constraint is to make sure all the targets achieve their accuracy requirements.

Cx̂t
k|k−1

(
Bt
k

)
≤ ηtk, ∀t ∈M (4.5.4)

The second constraint is to make sure one sensor is assigned to no more than one

data collector.
K∑
j=1

Aij ≤ 1 ∀i ∈ N (4.5.5)

The third constraint is to make sure the total allocated bandwidth to the sensor nodes

does not exceed the data collector’s bandwidth.

N∑
i=1

Aij ∗
M∑
t=1

Bt
ij ≤ Bj ∀j ∈ K (4.5.6)
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The fourth constraint is that the distance between the sensor node and the data

collector should not exceed the maximum coverage radius of the data collector. Let

dij be the distance between the sensor node i and the data collector j. CRj is the

coverage radius of the data collector j.

W3 ∗ Aij ∗ dij ≤ CRj ∀i ∈ N ∀j ∈ K (4.5.7)

The fifth constraint is that each sensor node should be covered by at least one DC,

even if there are no targets at the sensor node.

K∑
j=1

Aij ≥ 1 ∀i ∈ N (4.5.8)

We can combine the second and fifth constraints into a single constraint.

K∑
j=1

Aij = 1 ∀i ∈ N (4.5.9)

The last important constraint is given in Eq.4.3.10 and Eq.4.3.11. It means each

target should achieve its given accuracy results, and each target should be assigned

the bandwidth which lies between Bmin and Bmax.

4.5.1 An Approach to Solve Multi-Objective Optimization

Problem

There are many ways to solve the Multi-Objective Optimization(MOO) problem. It’s

not a trivial task to solve the MOO problem. Given a sequence of cost functions, an

optimization criterion is said to be lexicographic whenever there is a preference in
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the order in which the cost functions are optimized[59]. The sequential optimization

of the lexicographic approach for solving multi-criteria problems is implemented by

finding the generalized solutions of a system of inequalities defining the sequential

optimization stages. The algorithm effectively generates an optimal solution at every

sequential optimization stage. Not only does it establish a priority in your preferences,

but also each optimization criterion, is defined in such a way that the set of potential

solutions is subsequently reduced. The highest priority objective is to find a feasible

basis, then it is refined, improving its optimality step by step. However, it can be

simplified by making it a sequential optimization problem where the optimization

criterion is lexicographic. A lexicographic objective function f is a combination of

multiple objective functions f1, f2, and f3, where an objective function f1 is more

important than f2 which in turn is more important than f3. The MOO problem in

Section E can be solved sequentially using two single optimization problems. Our

important and first objective is to minimize the bandwidth. So first we solve for

Eq.4.5.1 as a single objective with only one constraint, i.e., Eq.4.5.4. The second

optimization problem is solving Eq.4.5.3, using the bandwidth obtained from the

first optimization problem. The constraints for the second optimization problem are

Eq.4.5.5 to Eq.4.5.9.

4.5.2 Approximate Algorithm for Association of sensors to

data collectors

We are given the number of data collectors and their locations. Let’s assume the given

number of data collectors can handle the load of all the sensors. In the next section,

we describe how to handle the load change. If we already have some data collectors,
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we want to minimize their movement. So the main idea behind the algorithm is to

first associate the sensors with more weight with the closest data collector, which in

turn reduces the overall distance between the sensors and the data collectors. The

first simple approach is, for the given data collector, to keep adding the closest sensor

untill its bandwidth limit is reached. The second approach is to use the First-Fit

decreasing approach, which gives better results in terms of distance optimization.

We have all the information about the items to pack into the bins to design a better

approximate algorithm for them. The most successful approximate algorithms are

the First-Fit Decreasing and Best-Fit Decreasing methods. First Fit Decreasing uses

at most (4M + 1)/3 bins if the optimal number is M . So we adopt the First-Fit

decreasing method to develop an approximate algorithm. Once we have a sufficient

number of data collectors placed in the tracking region, we assign the sensors to the

data collectors in decreasing order of their bandwidth. We first order the sensors from

largest to smallest weights. For example, suppose the sensor bandwidths are: 56, 45,

37, 25, 16. We first associate the sensor with a bandwidth of 56 with its closest data

collector, then the sensor with a bandwidth of 45, and so on. In Algorithm 6, we

have described the approximate algorithm for the association of sensors with data

collectors.
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Algorithm 6 Approximate Algorithm for Association of Sensors to the Data Collec-
tors

Require: Given the number of sensors along with their load, the number of data

collectors, and their locations.

Ensure: The Association of sensors to data collectors.

1: Sort the sensors in decreasing order of their load.

2: Mark all sensors as NOT VISITED. i=1:N

3: Choose the closest data collector with Bj >= wi

4: Mark si as VISITED

5: Bj ←Bj - wi.

4.5.3 Handling the load change and the new targets

In practical situations, we may have to deal with the new targets at each data collector

and its associated sensors. As the new targets are usually not associated with any

accuracy requirement until at least a few update times before they are confirmed.

We have to compute the bandwidth assignment for these new targets based on the

available bandwidth at the data collector and the number of new targets at a given

time instance. The number of new targets can change with time in the given tracking

region. In general tracking scenarios, most of the new targets enter ROI through

the perimeter. So data collectors that are deployed near the perimeter need to have

a predefined amount of bandwidth that can be used for the new targets. So the

solution can be obtained by solving Eq.4.5.10 . If the load changes, the number of

data collectors may also change. For instance, if the load increases due to the addition

of new targets or targets from other clusters entered into the given cluster, then the

already deployed data collectors may not be enough to collect sufficient data. The
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question we have to address is how many and where to deploy the extra new data

collectors while keeping the already existing ones intact or with little movement. The

other possible case is where the load decreases due to probably the targets moving

from the given cluster to different clusters, or some targets dying off. The question we

have to deal with is how to remove the data collectors that are not required anymore.

In case we need fewer data collectors than existing ones, which ones should we keep

and which ones should be removed? Algorithm 7, describes the association of sensors

to data collectors in the event of a load change.

arg min
Bik

M∑
i=1

wi(Cx̂i
k|k−1

(
Bi
k

)
)

(4.5.10)

s.t.
M∑
i=1

(
Bi
k

)
≤ BNew and

(4.5.11)

Here, M is the number of new targets, and BNew is the total bandwidth availabil-

ity at the data collector for new targets. Eq.4.5.10 is to minimize the estimation error

of the given new targets. The constraint in Eq.4.5.11 is to make sure the total band-

width, won’t exceed the available. The complete end-to-end algorithm is described

in Algorithm 8.
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Algorithm 7 Algorithm for the association of sensors to data collectors with load
change

Require: Given the number of sensors with weights and the existing number of data

collectors(k) and their locations.

Ensure: Optimal placement of data collectors and the association of sensors to data

collectors.

1: For each cluster, evaluate the bandwidth requirement to achieve the MSE require-

ment using Eq 4.3.9 to Eq 4.3.11.

2: Compute the number of data collectors(k′) required and the initial placement of

data collectors using the Algorithm 5.

3: Case1: Where the current data collectors stay at the same place.

Choose the closest existing data collector to each of the newly calculated data

collector locations.

4: Case2: Where the current data collectors can move the maximum distance of

(vmax ∗ time) to nearest, best possible location, where vmax is the maximum

velocity of the given data collector and time is the update time.

For each of the newly calculated data collector positions, select the closest data

collector, move it to the new location. k < k′

5: Case1: First, associate all possible sensors to existing k data collectors. The

remaining (k′ − k) data collectors are placed according to Algorithm 5 using not

associated sensors.

6: Case2: The remaining (k′ − k) number of new data collectors are initially placed

at their calculated locations, as in Step 2. k > k′

7: The remaining (k − k′) data collectors are marked as DELETED.

8: Associate sensors to data collectors using Algorithm 6.

9: All the data collectors are relocated to a weighted centroid location based on all

the associated sensors. 115
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Algorithm 8 Algorithm for End-to-End placement of data collectors

Require: Given the number of sensors and accuracy requirements for the targets.

Ensure: Optimal placement of data collectors and the association of sensors to data

collectors.

1: Compute the minimum number of data collectors based on the coverage region

of data collectors using Eq.4.3.8 .

2: For each cluster, evaluate the bandwidth required to achieve the MSE requirement

using Eq 4.3.9 to Eq 4.3.11.

3: Determine the number of data collectors and their locations to deploy by solving

Eq 4.4.1 to Eq 4.4.4 or using the approximate Algorithm 5.

4: Add or remove the number of data collectors according to Algorithm 7.

5: Go to step 2, to iteratively relocate the DC to achieve better accuracy and optimal

usage of data collectors.

4.6 Coverage Path Planning in case of Fixed Num-

ber of data collectors

This section addresses the issue of data gathering that arises when there are fewer

data collectors available than needed. Each data collector has to collect the data from

more than one group of sensors if the number of groups is greater than the number

of data collectors. We can group the sensors based on the load or the coverage

radius. We have n data collectors, DC = {DC1, DC2, .., DCn} and m groups or

regions, R = {R1, R2, ..., Rm} to cover and m ≥ n. The m regions are partitioned

into n sets, and each set is allocated to a unique data collector. Each region has
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some data to be collected by any one of n data collectors, D = {D1, D2, ..., Dm}.

Let’s say the data rate of the data collector i is λi and its maximum velocity is vi.

The approach is NP-hard and is comparable to coverage path planning with several

data collectors. The goal is to obtain the coverage path with the least amount of

coverage time. Different data rates and flying speeds make up the heterogeneous

data collectors. The description of the problem is provided after the mathematical

formulation, which is given below.

argmin
1≤i≤n

[
max

m∑
j=0

m∑
k=1

(
Aij,k ∗ TTi,j,k + Aik ∗DTi,k

)]

where

(4.6.1)

TTi,j,k =
dj,k
vi
, travel time from j to k by DC i (4.6.2)

DTi,k =
Dk

λi
, data collection time from k by DC i (4.6.3)

Aij,k =


1, if DC i travels from region j to k

0, otherwise

(4.6.4)

Aik =


1, if DC i collects the data from region k0,

otherwise

(4.6.5)
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Subject to

C1:
m∑
j=1

Ai0,j = 1 ∀i ∈ n (4.6.6)

C2:
m∑
j=1

Aij,f = 1 ∀i ∈ n (4.6.7)

C3:
m∑
j=1

n∑
i=1

Aik,j = 1 ∀k ∈ m (4.6.8)

C4:
m∑
k=1

n∑
i=1

Aik,j = 1 ∀j ∈ m (4.6.9)

C5:
n∑
i=1

Aij = 1 ∀j ∈ m (4.6.10)

The meaning of each constraint is given below.

C1: All the data collectors can start from the same point or from different points.

If all the data collectors start from the same location, the maximum number of data

collectors leaving from the start point is n. If the start point is different, then only

one data collector can leave from each start point.

C2: Either the same point or a different point can be reached by all data collectors.

The greatest number of data collectors that can travel to the completion point is n if

all data collectors finish in one place. There can only be one data collector per finish

point if the finish points are different.

C3, C4: Any point should only have one edge connecting it to it. This implies that

just one data collector will arrive at each point, and that only one data collector will

depart from each point.
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C5: Each region’s data is collected by a single data collector.

Aij,k is a boolean variable to indicate whether the data collector i travelled from

group j to k. Another boolean variable, Aki, is used to indicate if the data collector

i collects data from the region k. Ai0,j denotes the start point, for the data collector,

i, and reaching to region j. If the regions are dispersed over the tracking region, it is

more advantageous if the start points are different. As data collection is a continuous

process, we can have separate finish points for each data collector, or the finish points

can be near the last coverage region. Aij,f indicates the finish point for data collector

i from region j. The start and finish points can coincide in some circumstances. dj,k

is the Euclidean distance between the regions j, k The total time consumed by each

data collector is divided into two parts. The first part is travel time (TT) by the data

collector to a given region in a set, which is derived by Eq.4.6.2. The second part

is the data collection time (DT) for a given region, which is given in Eq.4.6.3. The

time it took for all data collectors to finish the coverage mission was the longest total

data collector’s time in this path planning challenge. The total time of each data

collector should be as close to equal as feasible when regions are assigned to the data

collectors, which gives the best possible minimum coverage time.

4.6.1 Methodology

When attempting to solve the coverage path planning issue, we use the parameter

known as minimum total time (MTT) to solve the coverage path planning optimiza-

tion problem. MTT is a summation of travel time and data collection time. The

data collectors can start at the same location or at different locations. The details

of the algorithm are given in Algorithm 9. Our first goal is to group the m regions
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into n sets. As an initial step, select the closest region for each data collector. Set Sj

represents the set of all regions that are going to be covered by the data collector j.

It is a crucial step in how we compute the next region for the given set. We compute

all possible total times for the set of regions in Sj to all the unassigned regions. Select

the path from q to k (Rq −→ Rk) which gives the MTT, and add the region k into

the set Sj. The next step is to find the short path for the data collector to travel

using any method similar to the travel salesman problem (TSP) using a single data

collector. For simplicity, we use the nearest neighbour solution to find the minimal

travel path in each set.
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Algorithm 9 Pseudocode for Minimum Total Time Algorithm

Require: Given the number of regions, each with a unique centroid location, and

the number and location of data collectors.

Ensure: Set of regions is assigned to each data collector.

1: Set time[n]← 0, for all n data collectors.

2: Set Sn ← null for all n data collectors.

3: Select the closest region for each data collector.

4: Mark all regions, Rm, as unassigned.

5: Put the closest region to each data collector, in the set Sn and mark them as

assigned. There exists an unassigned region

6: Sort times in ascending order.

7: Choose the data collector, j with the minimum total time.

8: Find a region k that is unassigned and gives the minimum increase in total time

from the region q which is in the set Sj. min{(time(j) + ttRq−→Rk)} where

ttRq−→Rk is the total time for the data collector j to travel from Rq to and Rk and

data collection from Rk

9: Update time(j) = time(j) + ttRq−→Rk

10: Mark region k as assigned

11: Update Sj ← Sj +Rk j=1:n

12: Find the travel path for the data collector j using the nearest neighbour algorithm

for the regions in the set Sj.
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4.7 Performance Analysis

Given the tracking region with the given number of sensors, as shown in Fig.4.2.

These sensors are associated with a certain number of targets with a given required

performance. Our aim is to determine the number of required data collectors to be

deployed to meet the given accuracy requirement. The first problem to solve is to

Figure 4.2: Sensors in the Tracking Region

form the clusters based on the available data collectors’ coverage radii. Then compute

the centroid location. In Fig.4.3, we showed the clusters with associated sensors. At

least one data collector is placed in each cluster to cover all the sensors in the region.

The sensors in Fig.4.2 are formed into 5 clusters using a coverage radius of 1300. The

sensor of the same colour represents the cluster of sensors. We assumed all the data

collectors were within the same coverage radius. The centroid locations are shown in

Fig.4.4. For each sensor, calculate the bandwidth requirement based on the number of

targets and their accuracy requirements. Initially, to get information on the number

of targets and their accuracy, one data collector is placed at the centroid location.
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Figure 4.3: Clusters Formation

Figure 4.4: Centroid Location
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Fig.4.5, shows the relationship between accuracy and the bit requirement. If we need

Figure 4.5: Relationship between accuracy and bit requirement

good accuracy in terms of MSE, we need to allocate more bits. The number of bits

depends on several factors, which include sensor characteristics, the location, and

the direction of the target. As a result, accuracy and bit requirements are inversely

proportional. In Fig.4.6, we have 40 sensors, and the bandwidth requirement is shown

at each sensor node. We assume each data collector can handle 200 bandwidth. Using

the initial placement algorithm, we needed seven data collectors, and their initial

associations are shown in different colour codes. We can apply the initial placement

algorithm over the region of interest or within one cluster if there are more sensors. We

can get better performance in terms of the number of data collectors to be deployed

at the cost of time to compute the initial placement locations.

In the next scenario in Fig.4.7, we have 5 sensors, and each has one or more tar-

gets. In this case, we’ve demonstrated how data collectors are relocated following the

assignment process and how sensors are connected to them. For this given scenario,

S1, S2, and S3 are associated with DC1 and relocated in the direction of the arrow.
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Figure 4.6: Initial Placement of Data Collectors

Figure 4.7: Sensors assignment to Data Collectors
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S4 and S5 are associated with DC2. Targets T1, T2, T5, and T6 are being tracked

by S1, S2, S4, and S5, respectively. T3 and T4 are tracked by S3. Each target has

a target accuracy of [150, 200, 200, 250, 350, 150]. In Fig.4.8, we have shown how

Figure 4.8: Data collector Movement along with the load

the data collectors move along with the load. Each time, the load is moving in the

direction of the arrow. In this scenario, we have two data collectors and a total of

40 sensors. As the targets are moving in one direction, the data collectors are being

relocated toward the load shift. We assume the bandwidth availability at each data

collector is 500. Tables 1 and 2 show the load change at the sensors. The bandwidth

requirement for the other sensors, which are not listed in the tables, is zero. The time

interval depends on the tracking scenario and how fast the targets can move from

one sensor to the next. For fast-moving targets, the time interval is small, and for

slow-moving targets, the time interval can be large.

In the next experiment, we will illustrate how the number of data collectors re-

quired can change with load. In Fig.4.9, we have 40 sensors, each associated with

126

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Sarojini Vudumu; McMaster University – Department of Electrical and

Computer Engineering

Table 4.1: Load change at data collector 1

time1 time2 time3 time4 time5 time6 time7
S23: 100 S23: 50 S36: 50 S29: 50 S29: 100 S5: 100 S5: 50
S36: 100 S36: 100 S11: 100 S11: 100 S11: 50 S29: 100 S29: 100
S11: 50 S11: 50 S38: 100 S38: 50 S3: 100 S3: 50 S22: 100
S14: 100 S14: 50 S3: 100 S3: 100 S5: 100 S17: 100 S17: 100
S38: 100 S38: 100 S5: 100 S5: 100 S17:100 S6: 50 S6: 100
S17: 0 S3: 50 S23: 0 S23: 0 S38: 0 S22: 50 S11: 0
S5: 0 S5: 50 S17: 0 S17: 50 S36: 0 S22: 0 S3: 0

Table 4.2: Load change at data collector 2

time1 time2 time3 time4 time5 time6 time7
S9: 100 S9: 50 S9: 0 S19: 50 S19: 0 S8: 50 S2: 0
S19: 100 S19: 100 S19: 100 S2: 100 S2: 100 S2: 50 S35: 100

S2: 0 S2: 50 S2: 100 S35: 50 S35: 100 S35: 100 S8: 100
S13: 100 S13: 50 S13: 0 S13: 0 S25: 0 S25: 0 S26: 0
S25: 100 S25: 100 S25: 100 S25: 50 S26: 100 S26: 50 S1: 100
S26: 50 S26: 100 S26: 100 S26: 100 S1: 100 S1: 100 S27: 100
S1: 0 S1: 0 S1 : 50 S1: 100 S27: 50 S27: 100 S18: 50

calculated bandwidth requirements similar to Fig.4.6. Each data collector’s band-

width capacity is 200. We compute the number of data collectors required and do

the initial placement. Then we associate the sensors to the data collectors using the

approximate association Algorithm 6. The sensors are associated with the seven data

collectors that we have deployed, and they are represented by various colour codes.

The load at 20 sensors was increased in Fig.4.10. The number of data collectors and

their locations were subsequently recalculated. To fulfill the need, two more data

collectors are needed. We can set up the additional data collectors in one of two

ways. In the first case, we keep the data collectors as they are and then compute

the locations for the new data collectors. The additional deployed data collectors are

shown in the green circles in Fig.4.10 and do the association. In the second case, the
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Figure 4.9: Association of sensors to the Data Collectors

Figure 4.10: Case1: Additional Deployment of the Data Collectors without
changing the original Data Collectors
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data collectors are moved to the best possible locations nearby, and then the location

is computed for the new data collectors. The new placement is shown in Fig.4.11 for

case2. The main advantage of this case is that sometimes we may need fewer data

collectors than in case 1. In Fig.4.12, we decreased the load at all sensors. Then

Figure 4.11: Case2: Additional Deployment of the data collectors, by moving the
original data collectors

we recomputed the number of sensors and their locations. To handle the load, just

five data collectors were required. Hence, one data collector that is to be removed is

indicated in the red circle, and do the association.

We compare the approximate initial placement algorithm with the optimal solution

to two simple scenarios using a Genetic Algorithm implemented in MATLAB. We

have two scenarios, each of which has a different load at each sensor. In case1, we

have 7 sensors with the load {20, 50, 40, 70, 10, 30, 80} respectively, for the first

case, as shown in Fig4.13. The capacity of each available data collector is 100. We

required three data collectors in order to acquire the optimal distribution, and we
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Figure 4.12: Data collector removal due to load decrement

Figure 4.13: Case1: Comparison with an Optimal Scenario
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obtained them using the MATLAB-implemented GA algorithm. However, the ap-

proximate initial placement algorithm gives one more extra-data collector than the

optimal number of data collectors.

Figure 4.14: Case2: Comparison with Optimal Scenario

In the second case, the sensors have loads {20, 50, 40, 70, 30, 10, and 80} as

shown in Fig.4.14. The approximate algorithm exactly gives the optimal number of

data collectors, which is three. The main difference between cases 1 and 2 is the

load swap at S5 and S6. So, in scenario 1, S5 has a load of 10, while S6 has a load

of 30. S5 and S6 in case 2 each have 30 and 10, respectively. So in summary, the

number of data collectors that are computed based on the approximate algorithms

depends on the location of the data collectors as well as their load distribution. The

detailed comparison between the Genetic Algorithm (GA) implemented in MATLAB

and the approximate algorithm is provided in Table.4.3 The distance parameter in the

Table-III is the total distance between the centroid and the associated sensors for all

regions. The time of computation is very large for GA compared to the approximate

algorithm. So there is a trade-off between the number of data collectors and the total
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distance between the centroid and the associated sensors. As it is more expensive to

install a new data collector, having the fewest possible data collectors in a real-time

environment is more important than minimizing the distance.

Table 4.3: Comparison of Genetic Algorithm(GA) Algorithm and Proposed
Approximate Algorithm

Genetic Algorithm Approximate Algorithm

Parameter Case1 Case2 Case1 Case2

Time(s) 5.3725 5.1704 0.033320 0.020650
Distance(m) 4.3971e+03 3.6717e+03 2.2871e+03 3.6717e+03
No.of DCs 3 3 4 3

The performance of the MTT coverage path planning algorithm is examined in the

following experiment. We have only three data collectors and 13 regions to collect the

data. Initially, three data collectors are stationed in different locations. The details

are shown in Fig.4.15. Each region has a set of sensors with some data to communicate

to the data collector. The data collectors gather data from each region’s centroid

location, which is indicated by a star. The maximum flight speeds for data collectors

DC1, DC2, and DC3 are 40, 50, and 46 m/s, respectively. The data rate is 500

bits/sec for all the data collectors. The data in each region varies from [1000, 1200].

The region allocation using the MTT is shown in Fig.4.15. The total travel time for

each data collector using MTT approximation is [174.4627, 174.7184, 177.1049] for

DC1, DC2, and DC3, respectively. Each data collector’s set coverage is displayed

using a separate colour scheme. We contrast the outcomes of the suggested MTT

algorithm with those of two different approximations. Based on distance, is the first

one. We select the region that is the next closest to the current region. The second

132

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Sarojini Vudumu; McMaster University – Department of Electrical and

Computer Engineering

Figure 4.15: Coverage Path Planning using Minimum Total Time

one is determined by the minimum travel time to data transfer time ratio (MTD).

The logical choice is to move on to the next region that requires less travel time

than data transfer time. The region allocations to data collectors using the shortest

distance and MTD are shown in Fig.4.16 and Fig.4.17. For the first data collector in

red colour, the region allocation is the same for all three algorithms. However, there

are differences in the allocation for the second data collector, which is orange, and the

third data collector, which is in colour black. When compared to the approximation

of the shortest distance, MTT and MTD performed well in terms of time.

We compare the total time for all three data collectors using three algorithms in

Fig.4.18.

4.8 Conclusion

In this paper, we addressed the important question of the number of data collectors

to deploy in the given tracking region of interest and how to associate them with the
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Figure 4.16: Coverage Path Planning using the Shortest Distance

Figure 4.17: Coverage Path Planning using MTD
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Figure 4.18: Total Time Comparison for three Data Collectors

sensors. We first compute the load requirement at each sensor node using the number

of targets and their accuracies. Then, based on the bit requirement at each sensor

node, we calculate the number of data collectors required. We modelled the initial

placement of data collectors using the given load at each sensor node, which is similar

to the bin packing algorithm. We proposed a novel method to adaptively relocate the

data collectors as the load changes at each sensor node. We formulated the problem of

associating sensors to a data collector as a Multi-objective problem, where one sensor

is assigned to only one data collector. We proposed an approximate, suboptimal

algorithm for the initial location and number of data collectors. The Multi-Objective

Optimization problem was solved using the lexicographic approach, which successfully

generates the best solution by outlining the sequential optimization stages. In the

event of a fixed number of available data collectors, we tackled the coverage path

planning problem. To solve the coverage path planning problem, we presented a

suboptimal approximation algorithm, and compared the outcomes with those of two

other techniques. The simulation results illustrate the effectiveness and performance
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benefits of the proposed approaches. When we contrast the approximation method

with the ideal outcomes, the findings are fairly close to the ideal solution. In further

work, we will incorporate additional data collection capabilities, such as acceleration,

turn rate, and minimum speed, as well as other pertinent features, into the formulas.

While moving the data collector, we will also take into account the ideal time to

estimate the targets’ states.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

This thesis studied the design of algorithms to associate sensor nodes to fusion centers

using quantized measurements. For multi-target tracking, the dynamic bit allocation

problem was taken into account. The task was described as a multi-objective integer

optimization problem that minimizes the PCRLB and maximizes resource usage un-

der bandwidth and energy restrictions. By taking into account the target trajectory

and sensor properties, our method distributes the bits for each target as well as inside

the measurement vector. We took tentative tracks into account when prioritizing the

tracks in SROI for quick initialization. Two optimization issues were separated from

the original one. The initial optimization task at the FC was to distribute the bits to

all tracks based on PCRLB while taking into account the available bits at the FC and

each sensor node. The second optimization challenge was to manage mis-detections

and redistribute the additional available bits to tracks that maximize the Fisher in-

formation at the local sensor node. With the use of static bit allocation, we provided
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an approximation of an algorithm that determines each track’s priority and weight

based on the contribution of FI. The simulation results showed that the suggested

techniques were more successful than fixed or static bit allocation.

We proposed a novel approach for assigning targets to fusion centers and allocat-

ing bandwidth jointly for multi-target tracking in various distributed radar networks

against a cluttered background. In resource-constrained scenarios, the goal was to

gather the best sensor data for each target to increase tracking performance and make

the greatest use of the energy available at sensor nodes and fusion centers. We tack-

led the issue of associating the targets to fusion centers and effectively allocating the

bandwidth to the targets in order to enhance tracking performance and extend the

lifespan of each fusion center as well as sensor nodes through efficient energy use. In

the first stage, we associated the targets with the fusion centers. The next step was

to assign the bandwidth to targets at each of the sensors. To reduce communication

costs, we moved the fusion centers to the centroid location in the third stage. For the

multi-objective integer optimization issue, we suggested a technique for generating ini-

tial values. Two approximate bandwidth distribution techniques that deliver nearly

perfect results more quickly were proposed. We tackled the crucial issue of how many

data collectors should be placed in the specified tracking region of interest, as well

as how to connect them to the sensors. We initially used the number of targets and

their accuracy to calculate the load needed at each sensor node. Then, we determined

the necessary number of data collectors based on the bit requirements at each sensor

node. Using the available load at each sensor node, we modelled the initial placement

of data collectors in a manner similar to the bin packing problem. We suggested a

novel technique to move the data collectors when the load varies at each sensor node.
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One sensor is assigned to just one data collector in our multi-objective formulation

of the issue of connecting sensors to data collectors. For the initial placement and

quantity of data collectors, we suggested a roughly suboptimal algorithm. The lex-

icographic approach, which successfully develops the optimal solution by sketching

the sequential optimization steps, was used to solve the multi-objective optimization

issue. We took on the challenge of coverage path planning when there were only a

fixed number of data collectors available. We introduced a suboptimal approxima-

tion algorithm to address the coverage path planning problem, and we contrasted the

results with two other approaches.

5.2 Future Works

First and foremost, the communication between sensor nodes is not taken into ac-

count in this work. However, it is likely that when the additional communication

component is taken into consideration, all the developed algorithms will perform bet-

ter. Next, only standard sensor characteristics are considered in this work. Modern

sensor capabilities could be incorporated into the framework. For instance, proper-

ties of image and optical sensors. In addition to the data collectors’ already-existing

capabilities, there is a chance to include in the formulation other data-gathering capa-

bilities like acceleration, turn rate, and minimum speed. Better bit allocation results

from including additional target properties in the formulation, such as maneuverable

behaviours. The relationship between the update time and the bare minimum num-

ber of data collectors needed is not discussed in this study. The assumption is made

that the update time is greater than the data collection time using the given number
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of data collectors. This assumption might not hold true in some situations, espe-

cially if the update time is either short or extremely long. Additionally, we assumed

that all the sensors’ update times would be the same. In order to accept sensors

with various update rates, more research is needed. We considered only single-hop

communication between the sensor node and the fusion center. The problem can be

extended to include multi-hop communication where a fusion center can not reach

some sensor nodes. We assumed the measurement noise was uncorrelated among sen-

sors. However, the measurement noises are probably associated with two sensors that

are close to one another. To overcome these difficulties, additional research on this

issue is required. The proposed approximate algorithms are suboptimal. To further

increase algorithm efficiency, more effective solutions must be investigated to fill the

optimality gap and create substitute optimization strategies.
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