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Lay Abstract

The quality of images and videos is crucial for a satisfying visual experience. How-

ever, during compression and transmission, images often undergo degradation. This

research focuses on predicting image distortion and bit rates without actually com-

pressing the video. Rate control (RC) is essential in compression algorithms to min-

imize distortion while adhering to bit rate constraints. However, conventional RC

models struggle with assigning appropriate bit rates to frames with fast motion and

scene changes. To overcome this limitation, we propose a novel convolutional neural

network (CNN)-based method for bit rate prediction. Our approach includes patch-

level and frame-level predictions, utilizing spatial and temporal features extracted

by the CNN network. Furthermore, we explore the impact of reducing spatial and

temporal redundancy before encoding to improve compression efficiency. We pro-

pose two adaptive encoding methods: a machine learning approach and a CNN-based

spatio-temporally adaptive encoder. These methods predict the optimal encoding pa-

rameters, such as the minimum quantization parameter (QP), for downscaled video

frames. Our research introduces innovative CNN-based methods for predicting dis-

tortion, bit rates, and optimizing compression efficiency. These methods contribute

to improving the quality of video communication and have the potential to enhance

the viewing experience for users.
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Abstract

The prediction of perceived quality of images by the human visual system (HVS)

has gained considerable interest. The HVS serves as the ultimate destination for

most videos. However, prior to reaching its destination, an image undergoes degrada-

tion through compression and transmission. Given the bitrate limitations associated

with video transmission and storage, video compression plays a crucial role in image

communication. In this thesis, we present a novel convolution neural network (CNN)-

based method for predicting the distortion of encoded video without performing com-

pression. We have employed strategies to overcome the limitation of the dataset size.

First, instead of employing scored samples based on mean opinion scores (MOS),

we utilize a closely related index, Video Multimethod Assessment Fusion (VMAF),

which aligns with HVS perceived quality scores and is easier to generate compared to

MOS. Second, we train our CNN at patch (square area in a frame) level to increase

the number of training samples and enhance the prediction accuracy.

The patch-level quality predictor comprises a deep neural network (DNN) net-

work consisting of a series of CNN and pooling layers, followed by a regressor with

fully connected layers. This CNN network accepts patches of uncompressed video
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frames and patches from motion estimation (ME) maps as input and generates qual-

ity scores (VMAF) for the patches. We have introduced and compared three patch-

wise to frame-wise transformations for frame-level quality prediction. We proposed a

method for predicting perceived quality, both for intra-frames and inter-frames. The

results demonstrate the excellent performance of our innovative frame-level compres-

sion quality prediction method.

Rate control (RC) plays a crucial role in compression algorithms by minimizing

distortion while adhering to bit rate constraints. RC operates by bit allocation at

two levels: block or frame. Despite advancements in compression algorithms, conven-

tional RC models still struggle with assigning bit rates to frames with fast motions

and scene changes. To address this issue, we propose a novel CNN-based method for

bit rate prediction, which overcomes the limitations of traditional RC models. Our

approach consists of two phases: patch-level and frame-level bit rate prediction. The

proposed CNN network includes CNN layers for extracting spatial and temporal fea-

tures from video frames, and pooling layers to prevent overfitting. These CNN and

pooling layers are followed by a regressor that predicts the bit rate of patches based

on their extracted features. We utilize the trained patch-wise CNN bit rate predictor

for frame-level bit rate prediction by feeding the extracted features of patches into

the regressor. For intra-frame bit rate prediction, we employ frame patches to extract

spatial features. For inter-frame bit rate prediction, in addition to spatial features,

we incorporate motion estimation (ME) maps and extract temporal patch features.

Notably, our proposed method is the first end-to-end CNN-based RC method that

operates without relying on hand-crafted features. By not considering the previ-

ous frames’ encoding information, such as their bit rates, our approach successfully
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predicts the bit rate even during scene changes.

Previous research has demonstrated that reducing spatial and temporal redun-

dancy before encoding can improve compression performance. Essentially, if a video

frame is downscaled before encoding and upscaled after decoding, the resulting frame

exhibits higher quality compared to a conventionally encoded frame at the same bit

rate. In a temporally adaptive encoder, the video’s frame rate is down-converted

before encoding and up-converted after decoding. However, the impact of redun-

dancy reduction on compression efficiency varies depending on the video content.

Downscaling or down-converting can positively or negatively affect compression per-

formance, contingent upon the characteristics of the video. Additionally, the bit rate

used for video encoding is a critical factor in adaptive encoding. Empirical results

indicate that downscaling or down-converting at a low bit rate enhances the quality

of the compressed video while maintaining the same overall bit rate. Consequently,

we propose two spatial/temporal adaptive encoding methods: a machine learning ap-

proach and a CNN-based spatio-temporally adaptive encoder. Our machine learning

method predicts the minimum quantization parameter (QP) at the bit rate intersec-

tion where encoding with downscaled video outperforms conventional encoding, lever-

aging hand-crafted features of frames. Meanwhile, the CNN-based adaptive encoding

method predicts the QP at the intersection based on spatial and temporal features

extracted by the CNN network. Both of our proposed methods surpass the perfor-

mance of state-of-the-art adaptive encoding techniques. The CNN-based adaptive

encoder particularly excels in intra-frame encoding compared to using hand-crafted

features and machine learning.
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Notation and Abbreviations

AVC Advanced Video Encoding

CNN Convolutional Neural Network

DNN Deep Neural Network

GLCM Gray Level Co-occurrence Matrices
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HVS Human Visual System
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MAE Mean Absolute Error
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ML Machine Learning

MSE Mean Square Error

NCC Normalized Cross-Correlation

ix



PSNR Peak Signal-to-Noise Ratio
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Chapter 1

Introduction

With the increasing popularity of digital videos, there has been a significant emphasis

on processing videos with high resolution, frame rate, and dynamic color range, all

while considering the constraints of bandwidth and storage. To address these chal-

lenges, compression algorithms have emerged as a means to optimize the trade-off

between bit rate and distortion in the resulting videos. The primary objective of this

thesis is to tackle a fascinating problem within compression algorithms: optimizing

the encoder’s performance based on the characteristics of the video content. One

crucial aspect in improving the performance of a compression algorithm is the ability

to accurately predict the bit rate and quality of the compressed video. Such predic-

tions serve as valuable tools in enhancing the overall performance and efficiency of

the compression process.
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1.1 Quality prediction

Digital videos have become an integral part of modern life, finding applications in

communication, entertainment, and video streaming. However, during the transmis-

sion and compression, videos can suffer from various types of degradation such as

noise and blockiness. These degraded images can lead to annoyance and dissatisfac-

tion when viewed by humans, who are the ultimate destination for most transmitted

or stored videos. Therefore, it is essential to assess the quality of the compressed video

and provide feedback in order to fine-tune video pre/post-processing and compression

algorithms.

Assessing video quality by relying on human evaluation alone is often expensive

and impractical. Consequently, different approaches have been developed to assess

video quality. Image quality assessment (IQA) aims to predict the quality of im-

ages or videos. Depending on the available reference information, IQA methods can

be categorized as full-reference, reduced-reference, or no-reference assessments. Full-

reference methods compare the received image with the original reference image,

while reduced-reference methods utilize both the degraded image and some features

extracted from the reference image. No-reference methods play a crucial role in pre-

dicting video quality as they do not rely on any reference information. In contrast,

predicting video quality before video compression requires only reference video infor-

mation, without accessing the degraded video at the destination.
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1.2 Rate Control

Advanced video coding (AVC) and high efficiency video coding (HEVC) are widely

adopted video compression standards. Rate control, which aims to maintain the bit

rate within a predefined range to prevent overflow and underflow, is a critical aspect

of all compression algorithms. Rate control is implemented at various levels, including

the group of pictures (GOP) level, frame level, and block level. Encoders utilize the

empirical bit rates of blocks and frames already encoded to perform subsequent rate

control. While this technique proves beneficial for smooth videos with slow movement

and gradual changes, encoders face challenges when confronted with abrupt changes

in frame sequences or scene transitions.

The primary objective of an encoder is to optimize rate-distortion, ensuring that

the bit rate remains at an accessible level with minimal distortion. It is crucial

for the encoder to maintain consistent frame distortion to minimize perceived video

distortion. However, the encoder typically struggles to track fast motions, occlusions,

or scene changes, leading to inadequate rate control. Unequal allocation of bit rates,

such as assigning a higher bit rate to specific frames, reduces the bit rate available

for subsequent frames. This inconsistency in perceived distortion across the frame

sequence ultimately degrades video quality.

To address these limitations, some research endeavors have focused on model-

ing bit rates by leveraging extracted frame features [32]. Additionally, some studies

have employed rate-quantization models instead of rate-distortion models [31]. How-

ever, these RC methods still rely on the correlation between blocks/frames, facing

challenges with unrelated successive frames. Moreover, utilizing engineering-crafted

features poses the risk of inaccuracies when dealing with more complex frames.

3
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1.3 Spatially and temporally adaptive encoding

The ever-growing demand for a more realistic visual experience has led to the emer-

gence of immersive images, high-resolution frames, extended color dynamic range,

and videos with higher frame rates. While these advancements contribute to higher

perceived video quality, the limitations of bandwidth and storage impose restrictions.

Video encoding algorithms, such as HEVC and AVC, employ lossy compression tech-

niques to minimize the video bit rate while attempting to minimize video degradation.

To adhere to bit rate constraints, encoders often perform low bit rate compressions,

which can result in severely distorted images. Previous research has demonstrated

that encoding videos at low bit rates can result in highly degraded videos [6]. Resam-

pling videos before encoding can help reduce redundancy and improve rate-distortion

performance. However, spatial or temporal downscaling introduces scaling distor-

tions to the restored video [22], making it crucial to select an optimized scaling ratio

that minimizes overall degradation. Another important factor in adaptive encoding is

determining the bit rate at which scaling distortion exceeds the encoding distortion.

Additionally, downscaling images and then upscaling them after decoding can

introduce blockiness, which can be influenced by the type of upscaling filter used.

In videos with smooth changes, downsampling the frame rate before encoding and

performing frame interpolation afterwards can enhance perceived quality at low bit

rates. Hence, to decide whether spatial or temporal resampling is necessary, it is

essential to extract features related to the textural content and motion of frames and

utilize them to develop a resolution and frame rate parameter optimization model.
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1.4 Contributions

This thesis showcases the outcome of our investigation into optimizing compression

parameters. In Chapter 3, we propose a machine learning-based spatially adap-

tive encoding technique to enhance the encoding performance of H.264/AVC and

H.265/HEVC. We presented the results of our spatially adaptive encoding method

for AVC in a published paper at ICME [36]. In Chapter 4, our focus shifts to patch-

based perceived quality prediction of compression algorithms using deep CNN. The

results of Chapter 4 are also included in an accepted paper [35]. Chapter 5 intro-

duces an innovative patch-based pre-encoded bit rate predictor and control method

utilizing deep CNN. The findings from Chapter 4 and 5 will be submitted as a jour-

nal paper. Finally, in Chapter 6, we propose a CNN-based end-to-end temporally

and spatially adaptive encoding method that surpasses previous adaptive encoding

approaches relying on hand-crafted features.

1.5 Thesis Outline

This dissertation is structured as follows. In the Introduction, we have provided an

overview of video distortion assessment, bit rate control for compression algorithms,

and the importance of video compression parameter optimization and adaptive en-

coding. Chapter 2 offers a comprehensive review of previous research on distortion

assessment, bit rate prediction, rate control, and spatially/temporally adaptive en-

coding. Chapter 3 is dedicated to our proposed machine learning-based spatially

adaptive encoding method for H.264/AVC and H.265/HEVC encoders. Chapters 4
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and 5 focus on presenting an end-to-end deep CNN-based approach for encoding dis-

tortion and bit rate prediction, eliminating the need for engineering-crafted features.

In Chapter 6, we delve into the details of our CNN-based spatially and temporally

adaptive encoding method specifically designed for high-definition frames using the

HEVC compression algorithm.

6



Chapter 2

Literature Review

The literature review in this thesis is structured into four parts: the overall view of

video encoding, distortion prediction/assessment, rate prediction/control, and adap-

tive video encoding. The first part provides an overview of the fundamentals of video

encoding. The second part focuses on the metrics developed for measuring the dis-

tortion caused by encoding. Various types of distortion assessment and prediction

techniques are surveyed, with an emphasis on those that take into account human vi-

sual perception. The review encompasses the theoretical foundations of human visual

perception-based distortion metrics. In the third part, a review is presented on op-

timizing rate-distortion and controlling the rate within the encoder. This includes a

discussion of rate control methods developed across different generations of encoders,

highlighting their evolution and advancements. Finally, the studies related to the

effects of spatial and temporal resampling of videos before and after encoding and

decoding are reviewed. Prior research has shown that resampling frame sequences spa-

tially or temporally can improve encoder performance at low bit rates. The last part

of this chapter is dedicated to reviewing adaptive spatiotemporal encoding methods

7
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and their impact on distortion and rate control. By organizing the literature review

into these four parts, a comprehensive understanding of the research landscape in

video encoding, distortion prediction/assessment, rate prediction/control, and adap-

tive video encoding is provided.

2.1 An Introduction to Video Encoding

The emergence of internet-based communications and mobile technology has made

compression standards indispensable for storing, transmitting, and receiving visual

data. These standards have been developed by two bodies, namely ITU-T and

ISO/IEC. ITU-T has introduced compression standards such as H.261 [1] and H.263

[72] encoders. On the other hand, ISO/IEC has contributed to the development of

MPEG-1 [2] and MPEG-4 Visual [3]. Additionally, ITU-T and ISO/IEC collabora-

tion has led to the creation of H.262/MPEG-2 Video [59], H.264/MPEG-4 Advanced

Video Coding (AVC) [57], and H.265/HEVC [80] encoding standards. Among these

standards, AVC and HEVC are the most recent and have significantly improved

encoding performance. They have pushed the boundaries of encoding capabilities.

Encoder users have access to several parameters for controlling the encoding process,

which will be further explained in the subsequent sections.

A video consists of a sequence of two-dimensional images/frames in the time do-

main. To achieve compression, the video is divided into groups of pictures (GOP).

Each GOP begins with a key frame. The key frame is encoded independently, uti-

lizing intra-frame coding (I-frame). Following the key frame, a series of frames are

encoded using inter-frame prediction. These frames include predicted frames (P-

frames) and bidirectional frames (B-frames). A P-frame is predicted based on the

8



Ph.D. Thesis - Maryam Jenab McMaster - Electrical & Computer Engineering

spatial information of the preceding I-frame or P-frame, along with motion estima-

tion (ME) between the P-frame and the reference frame. The ME estimates the

motion vectors to account for the movement between frames, allowing for more effi-

cient encoding. Similarly, a B-frame is encoded using information from the current

GOP’s I-frame, the next GOP’s I-frame, and motion estimation in both forward and

backward directions. This enables the B-frame to take advantage of temporal and

spatial correlations between frames. In summary, the coding process involves en-

coding the I-frame based on spatial information, predicting P-frames using motion

estimation and spatial information, and encoding B-frames by considering spatial and

temporal information from neighboring frames. This hierarchical structure of frame

types and their interdependencies contributes to efficient video compression.

The human visual system perceives images based on their brightness and color,

with a higher sensitivity to brightness. To exploit this characteristic, conventional

coding standards such as H.264/AVC and HEVC use the YCbCr image format. It

includes a luminance component (Y) representing brightness and two color difference

components (Cb and Cr) representing color information. The chroma components

have a quarter size compared to the luma component. In the H.264/AVC coding

standard, frames are divided into macroblocks of size 16 × 16 pixels. These mac-

roblocks can further be divided into smaller blocks if they contain significant details.

For smooth areas, the 16×16 block size may be maintained. The HEVC coding stan-

dard introduces a more advanced block structure. In HEVC, the I-frame is divided

into coding tree units (CTUs), each containing three types of blocks: coding blocks

(CUs), predicted blocks (PUs), and transform blocks (TUs). A coding block (CU)

represents a portion of the image and carries spatial information. The maximum size

9
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of a CU in HEVC is 64× 64 pixels. A predicted block (PU) contains motion estima-

tion/motion compensation (ME/MC) information for a CTU, which enables efficient

prediction of motion between frames. The transform block (TU) carries quantized co-

efficient information after transformation. Overall, the use of macroblocks and coding

tree blocks allows for efficient representation and compression of video frames. The

hierarchical structure of these blocks enables adaptive coding and prediction based

on the complexity of different regions within the frame.

The key parameter for controlling AVC and HEVC encoders is the average quan-

tization parameter (QP) applied to macroblocks or coding tree units (CTUs), also

known as the frame QP. The frame QP is selected from a range of values between

1 and 51. QPs play a crucial role in balancing the trade-off between encoded frame

quality and bit rate. A higher QP value leads to lower bit rate and lower quality of

the encoded frame. The QP value is closely related to another important encoder

parameter called the quantization step (Qs). When the encoder predicts a block or

frame, it computes the difference between the original data and the predicted data,

which is known as the residue block or residue frame. The Qs value is used for quan-

tizing the discrete cosine transform (DCT) coefficients during the encoding process.

In a study by Søgaard et al. [78], a mapping function between QP and Qs was esti-

mated using the Cauchy distribution, Qs = 0.6249 exp(0.1156(QP)). This mapping

function allows for the determination of appropriate Qs values based on the selected

QP, enabling effective control of the quantization process and optimizing the trade-off

between bit rate and quality in the encoded video.

10
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2.2 Image Distortion Prediction

The human visual system (HVS) plays a crucial role in perceiving visual content,

including videos. When watching videos on home TVs, various distortions can occur

throughout the transmission and display process, such as compression distortion,

transmission artifacts, decoding artifacts, and display imperfections. Therefore, it is

essential to measure the quality of videos to provide feedback on visual perception

at the destination. Quality assessment helps predict the perceived quality of videos

before they are deployed, enabling optimization of encoding parameters for improved

visual experience.

In the context described above, video quality measurement can be classified into

two main groups: video quality assessment at the receiver and prediction of processed

video quality before applying any specific procedure. Video quality assessment can be

further categorized into three types based on the amount of available information: full

reference (FR), reduced reference (RR), and no reference (NR) quality assessment.

Full reference (FR) image quality assessment requires both the distorted images

and the corresponding original images for comparison. Reduced reference (RR) image

quality assessment utilizes the distorted image along with selected features from the

original image for quality evaluation. On the other hand, no reference (NR) image

quality assessment solely relies on the distorted image itself to assess its quality with-

out any reference information. By employing these different types of image quality

assessment methods, researchers can effectively measure and evaluate the quality of

videos, taking into account the specific requirements and constraints of the application

scenario.
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2.2.1 Full-Reference IQA

The field of full reference image quality assessment (FR IQA) encompasses three main

types of methods: bottom-up, top-down, and machine learning approaches. Bottom-

up methods aim to mimic the different layers of the human visual system (HVS) in

order to analyze and score perceived images. These methods simulate the processing

stages of the HVS and examine various image characteristics to assess quality. On

the other hand, top-down techniques are more commonly used and practical. They

treat the HVS as a black box and extract statistical information from the distorted

image to determine the type and level of impairments. By analyzing the statistical

properties of the distorted image, these methods can estimate the extent of distor-

tion without explicitly modeling the underlying mechanisms of the HVS. In recent

years, machine learning methods have experienced significant advancements in FR

IQA. These approaches leverage the power of machine learning networks, which can

automatically extract relevant features from images without relying on handcrafted

engineering methods. The layers of these networks establish connections similar to

the hierarchical structure found in the HVS, enabling them to learn complex relation-

ships and patterns. By employing classifiers or regressors, machine learning methods

can infer the quality score of an image based on its extracted features. The emer-

gence of machine learning techniques in FR IQA has led to significant progress in

accurately predicting image quality, driven by their ability to leverage large datasets

and learn intricate representations from the data. These methods have demonstrated

promising results and opened new possibilities for advancing the field of image quality

assessment.
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The simplest top-down method for measuring image and encoded video qual-

ity is by calculating the mean square error (MSE) between the distorted and original

images. MSE is commonly used in encoders due to its computational efficiency. How-

ever, it has been observed that MSE does not always correlate well with perceived

video quality [24]. This observation has driven the development of various methods

that aim to capture the correlation between image artifacts and the characteristics

of the human visual system (HVS). One of the most well-known approaches in this

regard is the Structural Similarity Index (SSIM) [90]. SSIM takes into account the

distortion of luminance and considers similarity between images. Many other qual-

ity metrics have been derived from SSIM, including MS-SSIM [89], FSIM [97], and

SR-SIM [96]. While these metrics exhibit a meaningful correlation with perceived

visual quality, they do not perfectly align with Mean Opinion Scores (MOS) that

reflect human judgments. Furthermore, experimental results [24] have shown that

video quality assessment approaches may not provide consistent quality scores for

videos with similar MOS. To address these limitations, the authors in [24] intro-

duced a quality assessment approach called Video Multi-method Assessment Fusion

(VMAF). VMAF combines three quality metrics: Visual Information Fidelity (VIF)

[76], Detail Loss Metric (DLM) [51], and motion. The output of these metrics is fused

using a Support Vector Machine (SVM) [70]. Experimental results have demonstrated

a strong correlation between VMAF and MOS, as well as consistent behavior across

various Netflix videos. VMAF has emerged as a promising alternative to MOS for

predicting video quality based on the HVS. Considering the effectiveness and robust-

ness of VMAF, we have chosen it as our preferred metric for predicting video quality

based on the characteristics of the human visual system.

13



Ph.D. Thesis - Maryam Jenab McMaster - Electrical & Computer Engineering

2.2.2 No-Reference IQA

The NR IQA is the most practical distortion assessment among the other IQA types

since the original image information usually is not accessible at the destination. The

NR IQA methods typically model the natural images and find a distorted deviation

from the natural image model. DIVINE method, presented in [63], classifies the type

of image distortion and employs a specific regressor to score distortion with every

artifact. BLINDS [73], NIQE [60] and BRISQUE [61] employ Gaussian distribution

to model spatial features of images and measure distortion. FRIQUE proposed in

[25] employs hand-crafted features as input of a deep belief network and a support

vector machine as the regressor to predict the quality. CORNIA [94] method employ a

constructed codebook developed by performing k-means clustering of natural images’

patches illumination and contrast. Then SVR takes the distance between codewords

and distorted patches as input to regress and concludes the perceived quality. SOM

employs the CORNIA method but detects objects and takes object patches as its

input.

Since the CNN methods solved machine vision recognition problems with high

accuracy, they found their way to IQA as a reliable solution. Reference [41] proposed

a shallow CNN network with one convolutional layer and two fully connected layers

to regress and predict normalized input patch quality. Reference [41] used averaging

as its pooling method to find image quality. Reference [44] employed a two-layer CNN

network and simulated FR IQA scores of normalized patches to augment database

size. It regressed the extracted features of patches with one layer perceptron to predict

image-wise IQA. References [10], [11], [12],[45], and [81] used deeper CNN networks

for IQA proposes.
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2.3 Rate Prediction

Optimizing the performance of an encoder requires careful consideration of the trade-

offs between distortion and bit rate. Reducing the bit rate generally leads to an

increase in distortion, so it is important to establish models that characterize the

relationship between bit rate and distortion for effective rate control. Several rate-

distortion models have been developed to capture this relationship. These models

include the quadratic model [18], linear model [21], exponential model [50], ρ model

[87], and lambda model which is a general formulation that can adapt to various

rate-distortion characteristics. Each of these models offers a different mathematical

formulation to describe the rate-distortion trade-off. These models provide valuable

insights and guidelines for rate control algorithms, allowing encoders to make informed

decisions and optimize the compression process based on specific requirements and

constraints.

Rate control techniques in video coding often rely on rate-quantization models that

establish a relationship between the encoding rate and the quantization parameter.

These models, such as those presented in [18][47], take into account the complexity

of frames or blocks. Chiang et al. [18] proposed a quadratic rate-quantization model

for H.264 rate control, utilizing the mean absolute difference (MAD) of the residual

signal to estimate the quantization step. The quadratic model introduced in [18]

has served as a basis for the development of several other models, as evidenced by

works such as [54], [53], [55], and [17], which were inspired by and derived from it. In

the pursuit of more efficient rate control, Liu et al. [53] proposed a simplified linear

rate-quantization model as a verification of the quadratic model. This linear model

exhibited a high-speed response to changes in frame complexity and demonstrated
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accurate rate estimation. The quadratic rate-quantization model, based on MAD

estimation mentioned in [19], was initially adopted in early versions of the HEVC

encoder. Nevertheless, this model had limited accuracy and applicability in certain

scenarios.

In the realm of rate control, various approaches have been proposed to estimate

the encoding rate in video coding. He et al. and Milani [29] et al. [58] introduced the

ρ-model, which utilizes the number of zero coefficients to estimate the rate. Similarly,

Wang et al. [87] employed the ρ-domain model for HEVC rate control by estimat-

ing the number of zero DCT coefficients. While these models provide accurate rate

estimation, they do not directly determine the quantization parameter. Dong et al.

[21] presented a context-based adaptive linear rate control model that utilizes the

estimated mean absolute difference (MAD). In contrast, Kwon et al. [47] used the

sum of absolute transformed difference (SATD) as a measure of frame complexity in

their rate control model. Content-dependent rate control methods were proposed by

Karczewicz et al. [42] and Wang et al. [82]. The adaptive rate control model in [42]

measures the intra-frame complexity using SATD as an index, while [82] incorporates

the gradient index to measure frame complexity in its rate control model. Although

these methods aim to enhance HEVC rate control, they operate at the GOP or frame

level. Overall, these studies have contributed to advancing rate control techniques in

video coding, but further improvements are still sought, especially in achieving more

fine-grained control at the block level.

Jiang et al. [37, 38] introduced their rate control model, which utilizes the peak

signal-to-noise ratio (PSNR) as the index of context complexity. Jing et al. [39]

employed a gradient-based approach for frame complexity measurement and proposed
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content-dependent rate control. Zhou et al. [102] utilized a histogram of differences

(HOD) as a frame complexity index. Kamaci et al. [40] and Sanz et al. [74] proposed

residual signal estimation methods using Cauchy probability density function (PDF)

at the frame and block levels, respectively. The R-λ model, investigated in [50],

has demonstrated high performance and low complexity for HEVC rate control. In

fact, the R-λ model was adopted in the HEVC reference software version 10.0 to

provide more accurate rate control. Additionally, an adaptive intra-frame rate control

method was proposed in [50] to enhance the R-λ model. Lee et al. [48] employed the

Laplacian probability distribution function (PDF) to model the residual signal, and

they investigated textural and non-textural bits to develop their rate quantization

model.

Li et al. [52] and Wang et al. [83] introduced a CTU-level rate control scheme.

Wang et al. utilized a Lagrangian multiplier in their approach, but the overall per-

formance was found to be unsatisfactory. To address this, Zhou et al. [100] presented

a context complexity-based rate control model at the CTU level. They optimized

their model based on the measured mean squared error (MSE), which exhibits a low

correlation with perceptual quality. In coding optimization, peak signal-to-noise ratio

(PSNR) and MSE are commonly used metrics; however, they do not necessarily align

with human-perceived quality. To better assess visual quality as perceived by hu-

mans, the structural similarity index (SSIM) is a more suitable metric as it compares

image structures to evaluate image distortion. Wang and Lit et al. in [85, 86, 88]

developed an SSIM-based quantization and rate-distortion optimization technique

with a two-pass encoding procedure. Aswathappa et al. [7] presented an inter-frame
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SSIM-based rate control method. Furthermore, Zhou et al. [101] proposed a CTU-

level SSIM-based rate control model specifically designed for HEVC. These studies

have contributed to the advancement of HEVC rate control by exploring alternative

metrics such as SSIM that better capture perceptual quality, ultimately leading to

improved video coding performance.

2.3.1 Adaptive Spatio-Temporal Encoding

Previous research has extensively investigated the benefits of downsampling videos

or images before encoding and upsampling them after decoding, which has been

shown to improve encoding rate-distortion performance [6, 15, 22, 31, 32, 36, 66, 92].

Bruckstein et al. [15] examined the resampling of compressed images with JPEG and

demonstrated that at low bit rates, resampling enhances JPEG encoding performance.

Wu et al. [92] studied oversampled images and highlighted the negative impact of

encoding such images at low bit rates. In the context of H.264/AVC encoding, Dong

et al. [22] analyzed encoding and downsampling distortion separately. They aimed

to minimize overall distortion by determining the optimal scaling ratio. Nguyen et

al. [66] investigated the quantization parameter at a scaled resolution based on im-

age content, exploring the potential benefits of adaptive quantization. Hosking et al.

[31] focused on the resampling of intra-frames before encoding with HEVC, assuming

that inter-frames already underwent efficient compression. They demonstrated that

at low bit rates, resampling intra-frames reduces distortion. Furthermore, Hosking et

al. [32] extended their adaptive encoder by introducing an adaptive algorithm that

modifies coefficients based on the bit rates of previously encoded frames. Afonso et al.
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[6] presented a linear content-based model for the adaptive spatiotemporal HEVC en-

coder, further enhancing the adaptiveness of the encoding process. Collectively, these

studies highlight the potential benefits of downsampling and upsampling in improv-

ing encoding rate-distortion performance, particularly at low bit rates, and provide

insights into adaptive encoding techniques for different video coding standards.

A low frame rate in videos can lead to various visual artifacts such as aliasing,

blurring, and flickering. Increasing the frame rate can help reduce these artifacts and

improve the overall visual quality. However, limited bandwidth at low bit rates can

introduce additional artifacts and distortion. To mitigate these issues, it is important

to consider the content of a video sequence and adjust the frame rate accordingly,

aiming to minimize encoding distortion. One approach to achieve content-dependent

temporal adaptation is by using a temporal index that predicts the perceived quality

of frames at different frame rates. This enables the development of an encoder that

dynamically adjusts the frame rate based on the content of the video. Researchers,

such as Bull et al. [16] and Series et al. [75], have investigated the effects of increasing

video parameter dimensions, such as wider color range, higher resolution, and frame

rate. The impact of spatiotemporal features of videos on the human visual system

has also been studied by Daly et al. [20], Noland et al. [67], and Mackin et al. [56].

Zhang et al. [95] proposed a quality assessment model based on temporal content

to predict the perceived quality of videos at various frame rates, utilizing temporal

wavelet transform in their assessment model. Several studies, including Sugawara et

al. [79], Emoto et al. [23], Ou et al. [68, 69], Nasiri et al. [65], and Zhang et al. [95],

have investigated the relationship between frame rate and perceived quality, shedding

light on the perceptual impact of different frame rates on video viewing experience.
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Chapter 3

ML based Spatially Adaptive

Video Compression

With the growing interest in immersive visual experiences, the limitation of band-

width becomes a crucial consideration. However, encoding videos at low bit rates of-

ten results in compression artifacts such as blockiness, and flickering. Prior research

has demonstrated that applying spatial adaptive encoding (SAE), which involves

downscaling the video before encoding and upscaling after decoding, can significantly

enhance compression quality. By reducing spatial redundancy through downscaling,

frame quality can be improved while maintaining the same bit rate. Prior studies such

as [5] and [6] have explored the benefits of downscaling before encoding to improve

rate-distortion performance. In these studies, a linear model was proposed to predict

the quantization parameter (QP) for encoding downscaled videos.

The effectiveness of spatial scaling before encoding is heavily dependent on the

content of the frames. Figure 3.1 illustrates two rate-distortion curves for a sample

video at full resolution and downscaled resolution. As depicted in Figure 3.1, the
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Figure 3.1: Performance comparison of a two samples rate-distortion curves at two
resolutions.

Figure 3.2: The top level pipeline of pre-encoding SAE module.

downscaled video exhibits higher quality at the same bit rate compared to the full

resolution video, especially at low bit rates.

Figure 3.2 provides an overview of the proposed SAE method, showcasing a use-

case scenario. The diagram presents the key components of the spatially adaptive

encoder, including a pre-analyzer to find optimized resoluiton and QP with which to

encode video, a downscaling process before encoding, and an upscaling process after

decoding.

In the subsequent sections, two spatial adaptive encoding methods are introduced
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for encoding I-frames and P-frames. Extensive research has been conducted on frame

features to devise optimized and low-complexity SAE techniques. Various commonly

employed frame and sequence features have been leveraged for machine learning-based

training of the SAE approach, specifically targeting I-frames and P-frames.

3.1 Proposed Approach for I-frame Spatially Adap-

tive Compression

Traditionally, achieving optimal video quality necessitates an exhaustive search for

quantization parameters and resolutions. However, our proposed method offers a

more efficient approach by predicting video quality across different resolutions at the

current bit rate, based on the complexity of I-frames. To accomplish this, we train

three two-layer feed-forward neural networks (NNs). Each NN’s hidden layer consists

of 40 nodes, while the output layer contains a single node. The sigmoid function

serves as the activation function.

Through experimentation, we found that employing 40 nodes in each NN yielded

accurate predictions. The first NN is responsible for predicting the PSNR of the full-

resolution video, while the second NN predicts the PSNR of the downscaled video.

The third NN is trained to predict the quantization parameter (QP) for the down-

scaled video.

Fourteen video game sequences were employed to train and evaluate the perfor-

mance of the NN models. To facilitate the training process, the sequences were divided

into two subsets: 8 sequences for training and 6 sequences for testing. Within the

training set, 80% of the frames were allocated as training data, while the remaining
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frames were utilized as validation data.

3.1.1 Feature Extraction

Experimental findings indicate a significant correlation between I-frame complexity

and the resulting bit rate, given a fixed quantization parameter. To quantify the

complexity of an I-frame, we employed gradient. Previous experiments conducted

in [46] have demonstrated that the average gradient of a frame serves as a reliable

indicator of its complexity and, consequently, its bit rate. The gradient is defined in

Equation 3.1:

Grad =
L∑
i=0

W∑
j=0

|Y (i, j)− Y (i, j + 1)|+ |Y (i, j)− Y (i+ 1, j)|
W × L

(3.1)

where Grad is the gradient of the frame; Y (x, y) are the luminance values of pixel

(x, y) in the related frame respectively; whileW×L is the number of luminance pixels

per frame.

3.1.2 NN Training Procedure

The training process involves training all three NN models using the designated train-

ing set. These models take the gradient and quantization parameter (QP) of I-frames

as inputs and predict the peak signal-to-noise ratio (PSNR) at the native resolution,

as well as the PSNR and QP at the scaled resolution.

To train the NN model for the native resolution, the I-frame’s gradient and a set

of QPs are provided as inputs. The NN model then outputs the PSNR of the encoded

I-frames at those corresponding QPs.
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For training the scaled resolution NN model, both the native and scaled I-frames

from the training dataset are encoded using different QP values, and their respective

sizes are recorded. For each reconstructed I-frame’s size at the scaled resolution, a

matching QP at the native resolution, which yields the same bit rate, is identified

and stored. These stored QPs serve as the equivalent QPs at the native resolution.

During the training of the scaled resolution NN model, the inputs consist of the

native I-frame’s gradient and the QP at the native resolution, while the outputs are

the PSNR and QP at the scaled resolution. This training setup enables the model to

learn the relationship between the gradient, QP, and the resulting PSNR and QP at

the scaled resolution.

3.1.3 NN Testing Procedure

Figure 3.3 illustrates the three trained NN models. For all models, the inputs consist

of the I-frames’ gradient and the corresponding QP values. The full resolution NN

model is designed to predict the PSNR at the native resolution, while the scaled-

resolution NN models are responsible for predicting the PSNR and QP at the scaled

resolution.

To determine the optimal resolution, the predicted scaled resolution PSNR is

compared with the native resolution PSNR. The resolution that yields the highest

PSNR is adaptively selected. This approach allows for adaptive resolution selection

based on the comparison of predicted PSNR values between the scaled resolution and

the native resolution.
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Figure 3.3: Overview of proposed adaptive compression method.

3.2 ML Based P-frame Spatially Adaptive Com-

pression

Empirical findings indicate that video compression performance is heavily influenced

by the content of the frames. Frames with significant texture require a higher bit

rate for encoding compared to frames with more uniform areas. Besides the spatial

characteristics that impact compression efficiency, fast motion within a video sequence

can lead to higher bit rates for the encoded frames.

In this section, we investigate various spatial and temporal features of video

datasets. These features are utilized to identify the QP of intersection (QP that

native and scaled resolution R-D curve intersection) and equivalent QP (the QP to

encode scaled resolution to address the assigned bit rate) values for P-frames and

group of pictures (GOPs). To optimize the proposed spatially adaptive encoding

(SAE) method, we train and test a K-nearest neighbors (KNN) network using differ-

ent subsets of spatial and temporal features. The accuracy of QP prediction at the

intersection is compared using these feature subsets, and the subset that yields the

best prediction performance is selected. The P-frame SAE (PF-SAE) module predicts
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o)

Figure 3.4: Frame samples from [43] dataset, denoted as (a)heavyshower,
(b)movingfeild,(c)sunnybush, (d)thinbranches, (e)treeflower, (f)treetrunk,
(g)veryheavyshower, (h)waterfall, (i)waterfall-homo2, (j)wavyshinnysea,

(k)CalmSea, (l)bluecarpet(m)ceiling, (n)flowing-river, (o)grassfield

the optimal resolution for encoding, the QP value at the intersection of rate-distortion

curves, and the equivalent QP for the scaled encoded videos at different resolutions.

3.2.1 Rate-distortion performance comparison

To investigate the impact of spatial and temporal features on adaptive resolution

encoding, we utilized a dataset [4, 43] consisting of various videos. This dataset

encompasses continuous dynamic videos, characterized by deformed surfaces like wa-

ter or a flag; discrete dynamic videos, showcasing objects such as leaves in motion;

and static videos featuring global movement. Figure 3.4 displays example frames

extracted from a selection of videos within the dataset.

The expansion of video parameters, such as resolution, color dynamic range, and
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frame rate, necessitates an increase in bandwidth or storage capacity. To mitigate

the need for higher bandwidth, there are two potential approaches: employing more

complex compression techniques and using coarser quantization steps, or downsizing

the video resolution before encoding to reduce the bit rate.

However, it is important to note that both encoding and downscaling can introduce

distortion and degrade video quality. The optimal trade-off between using a coarse

quantization step during encoding and downsizing the video is highly dependent on

the spatial and temporal features present in the video sequences. These features

play a crucial role in determining the most suitable approach for achieving a balance

between compression efficiency and preserving video quality.

Figure 3.5 compares the rate-distortion curves of selected sequences from the

dataset at three different resolutions: full resolution, 85% of the original resolution,

and 75% of the original resolution.

As depicted in Figure 3.5, downsizing the videos scaled to 85% of native resolution

enhances the rate-distortion performance for certain videos, particularly at lower bit

rates. However, downsizing the videos further to 75% of native resolution does not

yield any noticeable improvement in the rate-distortion curve performance.

The filters are utilized during the downscaling and upscaling processes can effec-

tively reduce aliasing effects and blurriness. We explored and compared three different

filters: Nearest neighbor, Lanczos, and Bicubic.

The Nearest neighbor filter may result in stairway artifacts, while the Bicubic

filter can introduce blurriness in the upscaled images. In contrast, the Lanczos filter

exhibits superior performance compared to the other two filters. Figure 3.6 visually
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Figure 3.5: R-D performance of 6 tested sequences for P-frames encoded at three
resolution. Each data point represents the average value of all frames for a given QP.

demonstrates the better performance of the Lanczos filter. Consequently, the Lanc-

zos filter is employed for the training and testing phases of the proposed P-frame

SAE (PF-SAE) method. By leveraging the Lanczos filter, we aim to enhance the

rate-distortion performance while minimizing the negative visual artifacts caused by

downscaling and upscaling operations.

3.2.2 Frame Features

In this section, we present a diverse range of spatial and temporal features that play a

crucial role in the development of an efficient P-frame SAE (PF-SAE) method. These

features encompass both spatial and temporal aspects, enabling the measurement

of frame textural characteristics as well as the extraction of motion and dynamics

between frames. By combining these spatial and temporal features, we create a
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Figure 3.6: R-D performance of 6 downscaled tested sequences for P-frames
upscaled with three filters: Bicubic, Nearest neighbour, Lanczos. Each data point

represents the average value of all frames for a given QP.

comprehensive feature set that serves as the foundation for training and testing the

ML-based PF-SAE model. The integration of these features empowers the PF-SAE

to effectively adapt to the varying characteristics of different video sequences and

optimize the encoding process accordingly.

Sobel Filter

The experimental results reveal a strong correlation between image encoding prop-

erties, such as quality and bit rate, and the texture characteristics of the image,

specifically flatness and coarseness. The coarseness level of an image can be quan-

tified by measuring its edge energy. To extract the horizontal and vertical edges of

a grayscale image, the Sobel kernels are applied [26]. The resulting frames capture
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either the horizontal edges or the vertical edges present in the image. Let sv and

sh represent the pixels of the vertical and horizontal edge images, respectively. The

pixel magnitude of the edges’ image, denoted as st = sh + sv, represents the overall

edge intensity. This edge intensity serves as a measure of the image’s coarseness and

is defined as follows:

Sob =
L∑
i=1

W∑
j=1

st(ij)
L×W

(3.2)

where L and W represent the length and width of the image, respectively. The ag-

gregation of the edges’ magnitude is divided by the product of the image’s resolution.

This normalization step, as shown in Equation 3.2, ensures that the Sobel indicator

is independent of the frame resolution.

Gray Scale Co-Occurrence Matrix

The grayscale co-occurrence matrix (GLCM)[28] is a matrix that captures the co-

occurrence of pixel intensities at a specified offset and direction within an image

[28]. It serves as a powerful tool for texture analysis, providing insights into image

directionality and texture coarseness [9] [43]. The GLCM matrix has dimensions of

N ×N , where N corresponds to the intensity levels present in the image. The matrix

element pij represents the normalized count of co-occurrences of intensities i and j

within the chosen offset neighborhood and direction.

Several commonly used indicators can be derived from the GLCM matrix, in-

cluding contrast, correlation, energy, homogeneity, entropy, and dissimilarity. These

indicators offer valuable information about different aspects of the image’s texture.

Equations 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8 demonstrate the formulas for calculating
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these GLCM descriptors. By leveraging these descriptors, we can effectively analyze

and quantify the texture properties of an image.

GLCMcontrast =
N∑
i=1

N∑
j=1

(i− j)2pij (3.3)

GLCMcorrelation =
N∑
i=1

N∑
j=1

(i−mr)(j −mc)pij
σrσc

(3.4)

GLCMenergy =
N∑
i=1

N∑
j=1

p2ij (3.5)

GLCMhomogeneity =
pij

1 + |i− j|
(3.6)

GLCMentropy =
N∑
i=1

N∑
j=1

pijlog2pij (3.7)

GLCMdissimilarity =
N∑
i=1

N∑
j=1

pij|i− j| (3.8)

where i and j represent pixel intensities, mr and mc denote the mean values of the

GLCM matrix in the row and column directions, and σr and σc correspond to the

standard deviation values of the GLCM matrix in the row and column directions,
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respectively. These parameters are used in the calculations of various GLCM indica-

tors.

Once the GLCM indicators are computed for each frame, the mean value indicator

for the entire sequence is determined. This mean value serves as a representative

measure of the GLCM properties across the sequence, capturing the overall texture

characteristics present.

3.2.3 Temporal Characteristic Measures

Accurately capturing movement within a sequence of frames is crucial, as the dis-

placement between consecutive frames significantly impacts encoding performance,

bit rate, and the quality of encoded P-frames. In order to predict encoding properties

such as QP, bit rate, and quality, it is important to assess the temporal characteris-

tics of a Group of Pictures (GOP). Consequently, several widely recognized temporal

indicators are presented in the subsequent sections to facilitate this analysis.

Normalized Cross Correlation

Cross-correlation is a valuable metric for assessing the similarity or displacement

between two matrices or vectors [49]. In this section, we employ cross-correlation

to capture the temporal features of a frame sequence. Normalized cross-correlation

(NCC) is a variant of cross-correlation that is bounded between -1 and 1. Equation

3.9 represents the calculation of NCC:

NCC =

∑W
i=1

∑L
j=1(It(i, j)− µIt)(It+1(i− u, j − v)− µIt+1)

σIt × σIt+1

(3.9)
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where It and It+1 are successive frames, µ is their mean and σ is their standard

deviation value. In Equation 3.9 the sliding window is defined by u and v and NCC

is calculated at the frame level. Mean, skewness, deviation, kurtosis, and entropy of

NCC are calculated for a sequence.

Motion Vector And Dense Motion Estimation

In frame sequences, a sparse motion vector is often employed as a temporal feature

[91]. However, dense motion estimation, which considers motion vectors for all pix-

els rather than a subset, can offer higher accuracy [71]. We utilized dense motion

estimation to extract motion vectors and dense motion estimation maps. These are

obtained by comparing the P-frame with the I-frame within each GOP, as P-frames

are constructed based on their differences from the I-frame.

Downsclaing Quantization And QP Prediction

To predict the intersection of rate-distortion curves for full and scaled resolutions (as

depicted in Figure 3.5), determine the QP at the intersection point, and identify the

equivalent set of QPS values required to encode the scaled resolution while maintain-

ing the same bit rate as the encoded frames at a set of QPF values for full resolution,

three KNN networks shown in Figure 3.7 were trained.

The PF-SAE module utilizes spatial and temporal features extracted from frames,

which are to be encoded as P-frames. It determines, at each encoding QP for full

resolution (QPF ), whether encoding at full resolution or downscaled resolution would

yield higher quality while maintaining the same bit rate. For a given set of QPF at

full resolution, the PF-SAE must predict a corresponding set of equivalent QPs at
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Figure 3.7: Overview of proposed P-frame adaptive compression method.

downscaled resolution (QPS) to achieve the same bit rate. The proposed PF-SAE

module consists of three ML models (KNN) [27] [99], trained to predict the optimized

resolution, the QP value at the intersection of rate-distortion curves, and the set of

equivalent QPS values. Figure 3.7 illustrates the architecture of the PF-SAE module.

It takes the features of frames as input and outputs the optimized encoding resolution,

the QP at the intersection, and the set of QPS values. To optimize the performance of

the PF-SAE module, different combinations of features have been experimented with

during training and evaluation, resulting in various feature sets denoted as F1, F2, ...,

F17. Each feature set includes a selection of spatial and temporal features described

in Sections 3.2.2 and 3.2.3. In Table 3.1, G denotes GLCM, skew, and kurt, frst,

mean, are skewness of the sequence, kurtosis of the GOP sequence, the mean value

of the sequence, and feature value of the first frame, respectively.

3.3 Experiments

In this section, we present the results of the proposed ML-based adaptive scaled

encodings. The method explores two aspects: I-frame low complexity adaptive scaling
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Table 3.1: PLL and SROCC of predicted frames’ bit rate from predicted bit rate of
patches.

set/ F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17

Features
Sobel ✓
PSNR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ghomfrst

✓ ✓ ✓ ✓ ✓ ✓ ✓
Ghomskew

✓ ✓ ✓
Ghomkurt

✓
Gcorrfrst ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gcorrskew ✓ ✓ ✓
Gcorrkurt ✓
GCntrfrst ✓ ✓ ✓ ✓ ✓ ✓
Gengfrst ✓ ✓ ✓ ✓ ✓ ✓
Gentfrst ✓ ✓ ✓ ✓ ✓ ✓
Gdissfrst ✓ ✓ ✓ ✓ ✓ ✓
NCCmean ✓
MVdensemean ✓
MVdenseskew ✓
MVarrowmean ✓
MVarrowskew

✓

encoding and P-frame adaptive scaled encoding.

3.3.1 Dataset

Dataset of Proposed IF-SAE

For this study, the native resolution is set to 1920×1080, and the scaled resolution is

chosen as 1280×720. To ensure efficient training and testing, a hardware-accelerated

H.264 encoder is employed. This choice leverages the prevalence of H.264 accelerators

in commercial systems. It is important to note that the proposed ideas are not

limited to a specific codec or scaling scheme and can be applied to other codecs and

scaling methods as well. In our experiments, Bicubic interpolation is used for video

rescaling. The dataset used in this study [34] encompasses a diverse range of gaming

content, including videos with intricate details and pronounced edges (such as Rocket,
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Bioshock, Border, and Skyrim) as well as those with simpler and smoother graphics

(such as Shantae and Hollow).

Dataset Of Proposed PF-SAE

The dataset used to develop the proposed GOP level adaptive scaling encoding scheme

consists of 120 videos with a resolution of 256×256. Each video contains 250 frames.

For encoding, a GOP size of 16 is chosen, and the IPPPP... picture structure is em-

ployed. The H.265 encoder is utilized for the encoding process. Each GOP is encoded

at five different quantization parameters (QPs) selected from the set 28, 32, 36, 40, 44.

The scaled GOPs are resized to a resolution of 216× 216 using the Lanczos filter for

both downscaling and upscaling interpolation.

3.3.2 Proposed Adaptive Resolution Compression Method

For I-frames Encoding

To evaluate the accuracy of the neural networks (NNs), the prediction error is cal-

culated as the average absolute error across all the tested data points. The average

absolute error of low-resolution QP prediction is given by Equation 3.10, where QPpred

represents the predicted low-resolution QP that matches the high-resolution bit rate,

QPs denotes the experimentally-found low-resolution QP, and n is the number of

I-frames selected for downscaling.

QPError =
n∑

i=1

|QPs(i)−QPpred(i)|
n

(3.10)

Table 3.2 presents the QPError values of I-frames for all six tested sequences. It
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can be observed that the average absolute error remains below 1, which is relatively

low considering the QP values ranging from 0 to 51. This indicates that our method

accurately predicts the low-resolution QP while maintaining the bit rate unchanged.

Table 3.2: QPError for 6 tested sequences

Skyrim Border Hollow Shantae Bioshock Rocket
0.39 0.36 0.4 0.45 0.39 0.87

Figure 3.8 illustrates the improved rate-distortion (R-D) performance of the pro-

posed adaptive method compared to fixed native and downscaled resolution encoding

for 6 tested sequences. To quantify the performance gain, the Bjontegaard delta

PSNR (BD-PSNR) metric [8] is employed. Table 3.3 presents the average BD-PSNR

gain achieved by the proposed adaptive resolution approach compared to the fixed

resolution methods.

Table 3.3: BD-PSNR gain of the proposed method (dB)
(top) w.r.t. 1080p fixed (low bit rate data-points)

(bottom) w.r.t. 720p fixed (high bit rate data-points)

Skyrim Border Hollow Shantae Bioshock Rocket
0.21 0.33 0.48 0.58 0.64 0.41
0.94 2.84 1.50 2.93 1.69 2.72

Proposed P-frame Resolution Decision Model

To select the optimized encoding resolution, K-nearest neighbors (KNN) classifier

has been trained. The objective of the classifier is to predict whether scaling a video

improves its rate-distortion curve or not. The KNN classifier takes F1, F2, ..., F17

as input features and produces a binary output (0 or 1) for each GOP, indicating

whether scaling improves the rate-distortion performance (1) or not (0). The KNN
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Figure 3.8: R-D performance of 6 tested sequences for I-frames. Each data point
represents the average value of all frames for a given QP. The small figures expand

the curves at low bit rates
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classifiers were trained and then evaluated by comparing the predicted outputs with

the target outputs.

Table 3.4 presents the prediction accuracy of the KNN classifiers. The accuracy

is measured using the Pearson correlation coefficient, which indicates the correlation

between the predicted outputs and the actual targets. The monotony of the predicted

outputs is measured using the Spearman metric, and the mean absolute error (MAE)

is calculated for the predicted binary outputs. According to Table 3.4, the feature set

F14, which includes features such as PSNR, Ghomfrst
, Gcorrfrst , Ghomskew

, and Gcorrskew ,

achieves the highest prediction accuracy for scaling decisions.

Table 3.4: PLCC and SROCC of encoding resolution quantization of test sequence.

PLCC SROCC MAE
F1 0.573 0.573 0.16
F2 0.619 0.619 0.14
F3 0.465 0.465 0.19
F4 0.428 0.428 0.21
F5 0.638 0.638 0.13
F6 0.607 0.607 0.15
F7 0.258 0.258 0.24
F8 0.457 0.457 0.19
F9 0.223 0.223 0.24
F10 0.258 0.258 0.24
F11 0.258 0.258 0.24
F12 0.258 0.258 0.24
F13 0.258 0.258 0.24
F14 0.684 0.684 0.12
F15 0.67 0.67 0.13
F16 0.706 0.706 0.11
F17 0.473 0.473 0.18

Proposed QP of Intersection And Low Resolution Model for P-frames

To predict the QP of rate-distortion curve intersection, a K-nearest neighbors (KNN)

regressor, as shown in Figure 3.7, has been trained. Similar to the training and feature

set selection process for the scaling decision predictor, the KNN regressor is trained
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with input features F1, F2, ..., F17 and the intersection QP as the output. Table

3.5 presents the prediction accuracy of the intersection QP, measured using Pearson

correlation coefficient, Spearman metric, and mean absolute error (MAE).

According to Table 3.5, the feature set F4, which includes features such as PSNR

and MVarrowmean , achieves the highest accuracy in predicting the QP of the rate-

distortion curve intersection. It is worth noting that the proposed PF-SAE’s in-

tersection prediction accuracy surpasses the linear model QP prediction based on

hand-crafted features, as shown in Table 3.5.

Table 3.5: PLL and SROCC of predicted intersection QP of test sequence

PLCC SROCC MAE
F1 0.804 0.722 1.44
F2 0.81 0.736 1.38
F3 0.759 0.702 1.62
F4 0.818 0.756 1.42
F5 0.774 0.675 1.58
F6 0.775 0.715 1.56
F7 0.718 0.638 1.66
F8 0.734 0.653 1.68
F9 0.718 0.638 1.66
F10 0.718 0.638 1.66
F11 0.718 0.638 1.66
F12 0.718 0.638 1.66
F13 0.718 0.638 1.66
F14 0.784 0.705 1.48
F15 0.798 0.746 1.47
F16 0.787 0.709 1.5
F17 0.775 0.709 1.49
Linear 0.708 0.642 1.71
model[6]

A K-nearest neighbors (KNN) regressor has been trained to predict the equivalent

QPs (QPS) for the scaled resolution. The input features for the KNN regressor are

F1, F2, ..., F17 feature sets, while the target output is the set of QPS values obtained

for each GOP, ensuring that the encoded downscaled GOP maintains the same bit

rate as the encoded full resolution GOP at QPs ranging from 48 to 32. The array of

equivalent QPs serves as the target output for the KNN regressor.
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Tables 3.6, 3.7, and 3.8 present the accuracy of QPS prediction, measured using

Pearson correlation coefficient, Spearman metric, and mean absolute error (MAE),

respectively. These tables show the prediction accuracy for equivalent QPs at QPs

36, 40, 44, and 48.

Based on the results shown in Tables 3.6, 3.7, and 3.8, the feature set F14 contain-

ing features such as PSNR, Ghomfrst
, Gcorrfrst , Ghomskew

, and Gcorrskew achieves the

highest accuracy in predicting the QPS values. Notably, the downscaled QPS predic-

tion accuracy of the proposed PF-SAE outperforms the linear model QP prediction

based on hand-crafted features, as indicated in Tables 3.6, 3.7, and 3.8. Figure 3.9

compares the R-D performance of our proposed adaptive resolution with full resolu-

tion and scaled resolution. As can be seen our method outperform coding at full or

scaled resolution.

Table 3.6: PLCC of equivalent QP prediction of test sequence.

36 40 44 48
F1 0.48 0.661 0.714 0.681
F2 0.525 0.667 0.713 0.687
F3 0.466 0.628 0.745 0.737
F4 0.421 0.654 0.733 0.694
F5 0.435 0.667 0.717 0.671
F6 0.427 0.651 0.735 0.701
F7 0.475 0.612 0.677 0.658
F8 0.507 0.659 0.771 0.764
F9 0.479 0.611 0.672 0.652
F10 0.475 0.612 0.677 0.658
F11 0.475 0.612 0.677 0.658
F12 0.475 0.612 0.677 0.658
F13 0.475 0.612 0.677 0.658
F14 0.596 0.723 0.804 0.791
F15 0.578 0.665 0.709 0.689
F16 0.597 0.716 0.79 0.775
F17 0.495 0.626 0.682 0.66
Linear 0.174 0.585 0.693 0.642
model[6]

Table 3.9 shows BD-PSNR gain of the proposed PF-SAE adaptive resolution com-

pression approach with respect to fixed resolution ones.
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Figure 3.9: R-D performance of 15 tested sequences for P-frames. Each data point
represents the average value of all frames for a given QP.
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Table 3.7: SROCC of equivalent QP prediction of test sequence.

36 40 44 48
F1 0.493 0.682 0.777 0.849
F2 0.533 0.681 0.782 0.86
F3 0.4 0.622 0.794 0.852
F4 0.422 0.652 0.795 0.85
F5 0.433 0.645 0.774 0.842
F6 0.445 0.666 0.782 0.859
F7 0.426 0.48 0.644 0.695
F8 0.458 0.628 0.774 0.837
F9 0.427 0.478 0.644 0.695
F10 0.426 0.48 0.644 0.695
F11 0.426 0.48 0.644 0.695
F12 0.426 0.48 0.644 0.695
F13 0.426 0.48 0.644 0.695
F14 0.583 0.663 0.801 0.862
F15 0.547 0.645 0.785 0.861
F16 0.564 0.664 0.779 0.849
F17 0.521 0.591 0.691 0.734
Linear 0.251 0.572 0.748 0.832
model[6]

Table 3.8: MAE of equivalent QP prediction of test sequence.

36 40 44 48
F1 0.97 0.69 0.81 1.04
F2 0.94 0.69 0.8 1.02
F3 1.02 0.77 0.81 0.96
F4 0.99 0.68 0.74 1.0
F5 1.01 0.72 0.8 1.04
F6 0.99 0.72 0.76 0.93
F7 0.98 0.77 0.91 1.17
F8 0.97 0.7 0.73 0.91
F9 0.98 0.78 0.91 1.18
F10 0.98 0.77 0.91 1.17
F11 0.98 0.77 0.91 1.17
F12 0.98 0.77 0.91 1.17
F13 0.98 0.77 0.91 1.17
F14 0.88 0.63 0.66 0.87
F15 0.92 0.68 0.73 0.95
F16 0.87 0.64 0.7 0.91
F17 0.92 0.7 0.83 1.13
Linear 1.32 1.26 1.64 2.2
model[6]
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Table 3.9: BD-PSNR gain of the proposed PF-SAE method (dB) for 15 test
sequences

(top) w.r.t. full resolution (low bit rate data-points)
(bottom) w.r.t. scaled resolution (high bit rate data-points)

Heavy Moving Sunny thin Tree Tree Very Water water Wavy Calm Blue Ceiling Flowing Grass
Shower Field Bushes Branches Flower Trunk2 Heavy Fall Fall Shiny Sea Carpet River Field

Shower -Homo sea
0.07 0.20 0.37 0.30 0.40 0.37 0.45 0.40 0.36 0.43 0.00 0 0 0.07 0
0.07 0.8 0.45 0.81 0.33 0.00 0.05 0.35 0.62 0.34 0.00 0 0 1.12 0
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Chapter 4

Deep-learning based VMAF

prediction of I-frames

The increasing prevalence of ultra HD TVs, video chat, video streaming, and surveil-

lance cameras in our daily lives, work, and entertainment has made the use of lossy

compression methods essential to meet bandwidth and storage requirements. Ad-

vanced compression techniques aim to introduce minimal distortion while encoding

videos at specific bit rates. Perceptual quality assessment methods are employed

to measure video quality after decoding. Additionally, predicting video perceptual

quality prior to compression can aid in optimizing compression parameters to achieve

the desired encoding quality and prevent flickering caused by unbalanced perceptual

quality among frames in a video.

Recently, there has been growing interest in deep convolutional neural network

(CNN)-based video quality assessment. In [81], M. Utke et al. assessed the quality

of random patches1 and computed their average to estimate the quality of frames.

1A patch is a square region of a video frame.
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S. Boss et al. presented a CNN-based weighted average method for frames quality

assessment in [12]. Y. Zhang et al. proposed a full-reference assessment method using

deep CNN in [98]. However, none of these methods specifically address the task of

predicting perceptual quality to optimize encoding parameter QP. In [93], B. Xu et

al. predicted the structural similarity index (SSIM) of patches. They trained a deep

CNN to predict the SSIM, but their method is limited to predicting the SSIM metric

for patches of size 128× 128.

This chapter introduces deep CNN-based methods for predicting the quality of

encoded video frames. Given that the quality of the I-frame in a GOP with an IPP...P

structure has a significant impact on the quality of subsequent P-frames, encoding the

I-frame optimally plays a crucial role in determining overall video quality. Therefore,

the proposed methods focus on achieving accurate quality prediction for I-frames.

Additionally, considering that each I-frame or keyframe is followed by a substan-

tial number of P-frames, we have explored the characteristics of GOPs to develop

innovative methods for predicting the perceptual quality of P-frames. The proposed

methods are trained in two stages: patch-level and frame-level, which not only aug-

ment the training dataset but also enhance prediction accuracy. The patch-based

approach reduces computational complexity by processing only selected patches of a

frame instead of the entire image, making the method applicable to videos of various

resolutions.

As a quality metric and target for the proposed methods, we employ the multi-

method assessment fusion (VMAF) [24]. VMAF serves as a reliable indicator of

perceptual video quality, guiding the training and evaluation of our prediction meth-

ods.
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Figure 4.1: Patches’ perceptual quality predictor architecture.

This chapter is organized as follows: Section 2 presents deep CNN patch percep-

tual quality prediction; Section 3 introduces frame-level quality prediction for I-frame.

Finally, Section 4 the experimental results, and Section 5 is the conclusion.

4.1 Deep Learning CNN network architecture of

patch-wise pre-encoding quality predictor

VGGNet [77] has demonstrated exceptional performance in various computer vision

tasks, including classification, regression, and assessment [12]. Drawing inspiration

from the success of VGGNet and previous work such as [12], we design the I-frame’s

patches distortion predictor network (IF-P-D-NET) shown in Figure 4.1. IF-P-D-

NET adopts a similar architecture to VGGNet, consisting of CNN layers, max pool

layers, and fully connected regression layers. The network architecture of IF-P-D-

NET is straightforward, employing small kernel sizes of 3 × 3. To provide a visual

representation, Figure 4.2 displays the CNN and pooling layers of IF-P-D-NET, which

are denoted as S-D-CNN.
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Figure 4.2: Deep CNN layers.

The S-D-CNN serves as the spatial feature extractor network for distortion predic-

tion in our proposed method. It consists of the following layers: conv3-32, conv3-32,

maxpool-2, conv3-32, conv32-32, maxpool-2, conv3-64, conv3-64, maxpool-2, conv3-

64, conv3-64, maxpool-2, conv3-128, conv3-128, maxpool-2. In this notation, conv3-

32 represents a convolutional layer with a 3 × 3 kernel size and 32 filters, while

maxpool-2 denotes a max-pooling layer with a 2× 2 kernel size. The regressor com-

ponent comprises two fully connected layers: FC-240 and FC-5. For example, FC-240

indicates a fully connected layer with 240 output nodes. Following each convolutional

layer, there is an activation layer, specifically a rectified linear layer (ReLU) [64], to

introduce non-linearity into the network.

To train the IF-P-D-CNN, patches extracted from frames are used as input, while

the output consists of an array representing the perceptual quality of each patch at

five different QPs (QPs ∈ 28, 32, 36, 40, 44). The accuracy of frame quality prediction

is influenced by two factors: the accuracy of patch quality prediction and the accuracy

of transforming patch qualities into frame qualities. The size of patches can impact

the transformation from patches to frame quality. Hence, we investigated frame

quality prediction using three different patch sizes: 64×64, 128×128, and 256×256.

Figure 4.3 illustrates the mean absolute error (MAE) of the patch-wise to frame-wise
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Table 4.1: Layers of deep learning CNN network of pre-encoded I-frame’s bit-rate
predictor

# Type Kernel Stride Activation Outputs
01 Conv. 3×3 1×1 ReLU 32
02
03 Pool. - 2×2 - 32
04 Conv. 3×3 1×1 ReLU 32
05
06 Pool. - 2×2 - 32
07 Conv. 3×3 1×1 ReLU 64
08
09 Pool. - 2×2 - 64
10 Conv. 3×3 1×1 ReLU 64
11
12 Pool. - 2×2 - 64
13 Conv. 3×3 1×1 ReLU 128
14
15 Pool. - 2×2 - 128
16 120
17 FC ReLU 5
18 120
19 FC ReLU 5

quality transformation for each patch size. To calculate the MAE, video samples were

encoded at the five QPs, the actual VMAF values of the patches were computed and

averaged to predict the frame quality. Subsequently, the predicted frame quality was

compared to the actual encoded frame VMAF, and the MAE was calculated. As

depicted in Figure 4.3, the transformation error is lowest for the 64 × 64 patch size

compared to the other two patch sizes. Therefore, we utilized the 64× 64 patch size

for training and testing the proposed perceptual quality prediction methods.

For training IF-P-D-CNN, the patch-wise perceptual quality predictor, the cost

function is stated in equation 4.1. ψI is the networks mapping function, Pi and ωI in

ψI(Pi, ωI) are i’th patch and weights of ψI respectively. ψI(·) maps patch features to
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Figure 4.3: Average MAE of transforming patches’ quality to a frame quality for
different patch-sizes

the quality of each patch. QI−Pi is the VMAF of the i’th patch of an I-frame.

J = |QI−Pi − ψI(Pi, ωI)| (4.1)

4.2 Patch-wise to Frame-wise Perceptual Quality

Prediction Transformation

4.2.1 Homogeneous Average I-frame Quality Prediction Method

The Homogeneous Average I-frame’s Distortion Predictor network (HA-IF-D-NET)

leverages the S-D-CNN network to predict the quality of randomly selected patches
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Table 4.2: MAE of Predicting frame quality (VMAF) by transforming patch-wise to
frames-wise quality with different percent of randomly selected patches.

QP 28 32 36 40 44
100% 4.97 6.56 7.65 8.22 7.86
40% 4.92 6.52 7.61 8.23 7.92
30% 4.97 6.57 7.65 8.21 7.92
20% 4.98 6.57 7.68 8.25 7.98
15% 4.98 6.58 7.64 8.18 7.83
10% 4.97 6.57 7.59 8.15 7.9

and computes the average predicted quality for each I-frame. The structure of HA-

IF-D-NET is depicted in Figure 4.4. In this network, I-frame patches are fed into

the CNN for feature extraction, and a subset of these patches is randomly chosen.

The feature vectors of these patches are then passed through a regressor, resulting

in the VMAF score for each patch. To reduce computational costs in frame quality

prediction, it is essential to determine the minimum number of randomly selected

patches that can maintain prediction accuracy. To investigate this, the transformation

error (MAE) was measured when using different percentages of frame patches to

predict frame quality, and the results are presented in Table 4.2. As shown in Table

4.2, utilizing only 10% of the patches yields nearly the same frame quality prediction

accuracy as using all patches.

4.2.2 Sorted Average I-frame Quality Prediction Method

The proposed Sorted Average I-frame Distortion Predictor network (SA-IF-D-NET)

is based on an important observation: the average quality of patches is consistently

lower than or equal to the quality of the entire frame. This observation is in line with

the masking effect of the human visual system (HVS), which incorporates the HVS’s

51



Ph.D. Thesis - Maryam Jenab McMaster - Electrical & Computer Engineering

Figure 4.4: Architecture of homogeneous average method for I-frames’ perceptual
quality prediction.

sensitivity limitations in perceiving luminance, spatial frequency, and orientation.

Consequently, the HVS perceives the overall picture and does not process an image

based on the quality of individual patches. For example, the luminance masking effect

reduces the sensitivity of the HVS to distortion in darker and brighter areas. The

structure of SA-IF-D-NET is illustrated in Figure 4.5. As depicted in Figure 4.5, SA-

IF-D-NET sorts the quality of patches within a frame and computes the average of a

subset of predicted qualities with higher magnitudes. Different percentages of sorted

patch qualities (Sptch%) are used to calculate the predicted frame quality. Table 4.5

displays the mean absolute error (MAE) of the sorted average transformation method

for various Sptch% values corresponding to five QPs. The table is based on the training

dataset. In Table 4.5, the minimum MAE achieved for each QP is highlighted, and

the corresponding Sptch% value is utilized for predicting frame-wise quality at that

QP.

4.2.3 Weighted Average I-frame Quality Prediction Method

The Weighted Average I-frame Distortion Predictor network (WA-IF-D-NET) is de-

picted in Figure 4.6. Unlike the sorted method (SA-IF-D-NET) where high-quality
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Table 4.3: MAE of Predicting frame quality (VMAF) by using sorted averaging
method with different percent of sorted patches’ VMAF at different QPs.

QP 28 32 36 40 44
10% 0.85 1.6 3.21 7.15 14.88
20% 0.69 1.06 1.96 4.81 11.02
40% 1.26 1.55 1.69 2.66 6.29
60% 2.23 2.85 2.97 2.93 4.31
80% 3.36 4.47 4.98 4.83 5.23
100% 4.9 6.61 7.93 8.68 8.6

Figure 4.5: Architecture of sorted average method for I-frames’ perceptual quality
prediction.

patches are used for frame quality prediction, the WA-IF-D-NET method employs a

fully connected network trained to predict the weight assigned to each patch in the

frame quality prediction process, as illustrated in Equation 4.2. This weight assign-

ment mechanism enables the network to dynamically adapt the contribution of each

patch to the overall frame quality estimation.

QW =

∑NP

i=0QPi ×Wi

NP

(4.2)

Where QW is the frame quality predicted by the weighted average method, NP is the

number of random patches extracted from each frame, QPi is the predicted quality of

the ith patch, and Wi is the weight of the ith patch quality. For predicting Wi, two
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Figure 4.6: weighted average method for I-frames’ perceptual quality prediction.

fully connected layers (FC-3 and FC-4) shown in figure 4.6 take CNN-based extracted

spatial features as input, FC-3 and FC-4 are trained to minimize the cost function

shown in equation 4.3.

J = |QIF −
NP∑
i=0

τI(ψFeature(Pi, ω
∗
I ), θI)× ψI(Pi, ω

∗
I )| (4.3)

Where τI maps a batch of patches’ features to I-frame quality. QIF is the actual

I-frame’s VMAF, ψFeature is part of ψI mapping function and maps patches to their

extracted features, ω∗
I is optimized weights of ψI mapping function, θ is the weight of

τI mapping function, and NP is the number of random patches utilized for predicting

I-frame perceptual quality.

4.3 Deep CNN Architecture for P-Frame Patch-

wise Pre-Encoding Quality Predictor

P-frames are generated based on the residual information between an I-frame and

the P-frame, and various factors such as the content complexity of the I-frame and
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the temporal distance between each P-frame and the I-frame can affect the quality

of decoded P-frames. To capture the motion displacement between frames, we uti-

lize the dense motion estimation (ME) approach presented in [14] to generate a ME

map between the I-frame and P-frames. By extracting CNN-based features from the

I-frame and the ME map, we aim to model the impact of both spatial content fea-

tures and temporal motion features on the quality of P-frames. The spatio-temporal

feature-based P-frame patch distortion predictor network (ST-D-NET) is depicted in

Figure 4.7, consisting of two CNN pipelines: S-D-CNN for spatial feature extraction

and T-D-CNN for temporal feature extraction. The S-D-CNN, as discussed in Section

4.1, has already been trained using I-frame patches for content and quality. Figure

4.8 illustrates the CNN layers of the T-D-CNN network, which closely resembles the

S-D-CNN pipeline but consists of six CNN layers. We conducted experiments to de-

termine the optimal number of layers for T-D-CNN and observed that reducing the

number of CNN layers from ten to six did not compromise the accuracy of P-frame

quality prediction. Therefore, the T-D-CNN comprises six CNN layers followed by

two fully connected layers, FC3 and FC4, as shown in Figure 4.7. Table 4.4 provides

an overview of the CNN layer parameters, where layers 1 to 9 denote CNN layers fol-

lowed by pooling layers, and layers 12 to 13 represent FC3 and FC4 (fully connected

layers) depicted in Figure 4.7.

To train the ST-D-NET, it is only necessary to train the T-D-CNN, as the S-D-

CNN has already been trained. Hence, the T-D-CNN is designed to take patches of the

ME map extracted from each P-frame as input and predict the temporal component

of perceptual quality of a P-frame’s patch at five QPs: {QPs ∈ 28, 32, 36, 40, 44}. On

the other hand, the trained S-D-CNN takes patches of the primary I-frame as input
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Figure 4.7: Frames’ perceptual quality predictors architecture.

Figure 4.8: Deep CNN layers of ME map feature extractor.
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and predicts an array comprising the perceptual quality of an I-frame’s patch at the

same five QPs: {QPs ∈ 28, 32, 36, 40, 44}, as its output. The output of the ST-D-

NET, as shown in Equation 4.4, represents the predicted quality of the P-frame’s

patch.

QPi = WT i ×WSi (4.4)

Where WT i is the predicted temporal weight of the i’th patch for P-frame quality

prediction and WSi is the predicted I-frame patch quality. QPi is the quality of the

P-frame i’th patch.

The cost function used for training T-D-CNN is stated in Equation 4.5, in which

ψI(·) and ψP (·) are mapping functions that map I-frame and ME map patches to

I-frames’ patches’ quality and ME map weights, respectively; PMEi is the i’th ME

patch and ωP is the vector of weights of the mapping function ψP ; ω
∗
I is the vector

of trained weights of the mapping function ψI and QPi is the VMAF of a P-frame’s

i’th patch.

J = |QPi − ψI(Pi, ω
∗
I )× ψP (PMEi, ωP )| (4.5)
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Table 4.4: Layers of deep CNN network for P-frame’s bit rate predictor

# Type Kernel Stride Activation Outputs
01 Conv. 3×3 1×1 ReLU 32
02
03 Pool. - 2×2 - 32
04 Conv. 3×3 1×1 ReLU 32
05
06 Pool. - 2×2 - 32
07 Conv. 3×3 1×1 ReLU 64
08
09 Pool. - 2×2 - 64
10 120
11 FC ReLU 5
12 120
13 FC ReLU 5

4.4 Patch-wise to Frame-wise Perceptual P-Frame

Quality Prediction Transformation

In this section, we present three approaches aimed at predicting the P-frame quality

with the utmost accuracy, leveraging the quality predictions of the patches.

4.4.1 Homogeneous Average Method for P-Frame Quality

Prediction

The Homogeneous Average Spatio-Temporal Feature-based Distortion Prediction Pre-

dictor Network (HA-ST-D-NET) utilizes the S-D-NET network to predict the quality

of randomly selected patches and calculates the average of the predicted patch qual-

ities for each frame. The architecture of HA-ST-D-NET is illustrated in Figure 4.9.

Similar to the prediction of I-frame quality, we aimed to determine the minimum

number of patches required to reduce computational costs. The experimental results
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Figure 4.9: Architecture of homogeneous average method for P-frames’ perceptual
quality prediction.

demonstrate that using either 10% or 100% of the patches yields comparable frame

quality prediction accuracy.

4.4.2 Sorted Average Method for P-Frame Quality Predic-

tion

The proposed Sorted Average Quality Prediction method (SA-ST-D-NET) is based on

our observation that the average quality of patches is consistently lower than or equal

to the quality of the entire frame. This observation aligns with the visual masking

phenomenon of the human visual system (HVS), where the brain tends to mask image

artifacts. The structure of the Sorted Average P-Frame Quality Predictor (SA-ST-D-

NET) is depicted in Figure 4.10. SA-ST-D-NET sorts the qualities of patches within a

frame and calculates the average of a subset of predicted qualities with higher values.

Different percentages of sorted patch qualities (Sptch%) are utilized to predict frame

quality, while minimizing the prediction error of SA-ST-D-NET. Table 4.5 presents
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Figure 4.10: Architecture of sorted average method for P-frames’ perceptual quality
prediction.

the Mean Absolute Error (MAE) of the sorted average transformation method for

various Sptch% values at five Quantization Parameters (QPs). The training dataset is

employed to generate Table 4.5. The minimum MAE values are highlighted in bold

font, indicating the corresponding Sptch% values to be used for predicting frame-wise

quality at the designated QPs.

Table 4.5: Average MAE of Predicting P-frame quality (VMAF) by using sorted
averaging method with different percent of sorted patches’ VMAF at different QPs.

QP 28 32 36 40 44
10% 2.97 5.53 7.54 14.9 21.63
20% 2.99 4.75 6.54 12.25 17.51
40% 3.38 4.65 6.23 9.99 13.5
60% 4.12 4.87 6.47 9.68 12.15
80% 5.31 5.97 7.07 10.2 12.37
100% 6.86 8.1 8.74 11.68 13.08
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4.4.3 Weighted Average P-Frame Quality Prediction Method

The Weighted Average Spatio-Temporal Feature-based P-Frame’s Distortion Predic-

tor Network (WA-ST-D-NET), illustrated in Figure 4.11, is introduced as an alterna-

tive approach to the sorted method (SA-ST-D-NET). While SA-ST-D-NET considers

only high-quality patches in the average calculation for frame-wise quality prediction,

WA-ST-D-NET employs a fully connected network to estimate the weight of each

patch in the quality calculation, as indicated in Equation 4.6.

QPF =

∑NP

i=0 |Qi ×WSi ×WPi|
NP

, (4.6)

where Qi is the predicted quality of the i’th patch of an I-frame, WPi is the weight

to predict a P-frame’s i’th patch quality, and WSi is the i’th patch weight to provide

weighted average that calculates a P-frame quality. NP is the number of random

patches extracted from each P-frame. For optimizing WSi, two fully connected layers

(FC-3 and FC-4) shown in Figure 4.11 take CNN-based extracted spatial features of

S-D-CNN network as input, VMAF of a P-frame as the target and train FC-3 and

FC-4 optimize the cost function defined in Equation 4.7.

J = |QPF −
NP∑
i=0

(τP (ψFeature(Pi, ω
∗
I ), θP )× ψI(Pi, ω

∗
I )× ψP (PMEi, ω

∗
P ))| (4.7)

where τP is a mapping function that maps a batch of patches’ features to a patch’s

weight for predicting P-frame quality. QPF is the P-frame’s VMAF, ψFeature is part

of ψI mapping function and maps patches to their extracted feature map, ω∗
P is

optimized weights of trained ψP mapping function, θP is the weight of τP mapping

function and NP is the number of random patches utilized for predicting P-frame
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Figure 4.11: Architecture of weighted average method for P-Frames’ perceptual
quality prediction.

perceptual quality.

4.5 Experiments

The proposed perceptual quality prediction methods were trained and tested using

a well-known public video dataset introduced in [33]. Q. Huang et al. [33] exten-

sively studied the spatial and temporal features of this dataset and demonstrated its

suitability for training and testing image processing systems due to its wide range of

spatial and temporal characteristics. In this chapter, a subset of 300 tracks from [33]

was selected for training and testing. The videos in the dataset were in HD resolu-

tion (1920 × 1080), and any videos with higher resolutions were downscaled to HD.

The sample videos were split at key frames to form dataset tracks, each consisting

of 16 frames in the IPP... GOP format. Thus, a total of 300 tracks were utilized for

training and testing the proposed deep CNN networks.
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Since the proposed methods operate at the patch level, each frame was divided

into blocks of size 64× 64. Consequently, a dataset of 100, 000 patch samples was ex-

tracted from the tracks dataset. As discussed in Section 4.4.1, it was found that using

only 10% of the patches yielded sufficient accuracy for frame-level quality prediction.

Therefore, for each frame in a track, 10% of the patches were randomly selected multi-

ple times (100 times). This resulted in a total of 30, 000 sample patches. To establish

the training, testing, and validation sets, 75% of this data was randomly assigned for

training, 15% for testing, and 10% for validation purposes. The tracks were encoded

using H.265 at quantization parameters QP ∈ 28, 32, 36, 40, 44, and the VMAF [24]

metric was employed to evaluate the perceptual quality of the frames.

4.5.1 Patch-Wise I-frame Quality Prediction Accuracy

To evaluate the accuracy of predicting quality for I-frame patches, the encoded I-

frames were divided into patch sizes, and their corresponding VMAF scores were

calculated. These VMAF scores were then compared to the predicted quality obtained

using our proposed method. The perceptual quality predictor network for patches, as

depicted in Figure 4.1, takes the patches from the frames as input and predicts their

VMAF scores.

The prediction accuracy of the patch-wise quality was assessed using the Pearson

metric (PLCC) [62], which measures the correlation between the predicted and actual

VMAF scores. Additionally, the monotonicity of the predicted patch quality was

evaluated using the Spearman metric (SROCC) [30]. Table 4.6 presents the results,

demonstrating the high accuracy achieved in the prediction of patch-wise quality.

The PLCC values indicate a strong correlation between the predicted and actual
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VMAF scores, while the SROCC values indicate a monotonic relationship between

the predicted and actual patch qualities.

Table 4.6: PLCC and SROCC of predicted I-frames’ patches quality prediction.

QP 28 32 36 40 44
PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

0.85 0.79 0.86 0.83 0.88 0.87 0.91 0.9 0.91 0.89

4.5.2 I-frame Perceptual Quality Prediction Accuracy

Table 4.7 provides the average absolute error of the predicted VMAF scores for the

I-frames of 17 sample videos using the three proposed methods. The mean absolute

errors (MAE) of the sorted, homogeneous, and weighted average quality prediction

methods are denoted as Savg, Havg, and Wavg in the table, respectively.

As observed in Table 4.7, the sorted and weighted average methods outperform the

homogeneous average quality prediction method significantly. At lower quantization

parameters (QPs) such as 28, 32, and 36, the performance of the sorted and weighted

average methods is comparable. However, at higher QPs such as 40 and 44, where the

compression distortion becomes more prominent, the sorted average method exhibits

lower MAE compared to the weighted average method.

This difference can be explained by considering that at higher QPs, the quality

experiences substantial distortion, leading to a wider range of frame distortion and

quality values. Consequently, training fully connected networks with such a broad

range of outputs may require a larger number of image samples to prevent overfitting

and ensure accurate prediction. Therefore, at higher QPs, the sorted average quality

predictor demonstrates better performance than the weighted average method.
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Table 4.7: Mean Absolute Error of predicting I-frames’ VMAF with three presented
pre-encoding perceptual quality prediction methods.

QP 28 32 36 40 44

Savg Havg Wavg Savg Havg Wavg Savg Havg Wavg Savg Havg Wavg Savg Havg Wavg

1.aspen 0.55 2.91 0.9 0.69 4.12 1.14 0.49 4.84 3.07 2.27 5.48 7.41 3.54 5.68 3.88

2.blue sky 0.59 3.01 1.98 0.71 3.42 1.18 0.86 2.87 5.9 4.13 1.48 7.72 8.81 3.88 6.34

3.controlled burn 1.3 5.94 0.76 1.74 8.25 1.21 3.35 10.1 1.66 2.42 11.95 5.83 4.07 12.89 5.76

4.ducks take off 1.01 3.19 0.3 1.39 4.71 1.26 2.12 5.67 0.66 1.83 6.79 2.18 4.17 8.87 3.25

5.in to the tree 0.15 6.11 1.09 0.4 9.66 3.14 4.32 12.72 2.64 2.81 15.71 13.2 7.58 16.96 9.54

6.old town cross 2.49 7.36 2.43 4.09 9.74 2.71 5.99 9.7 0.46 2.28 7.63 10.97 5.04 3.32 0.94

7.park joy 0.25 5.39 1.85 0.16 7.54 1.88 0.62 8.98 0.37 0.24 10.03 4.59 1.76 10.09 6.63

8.pedestrian area 0.79 5.25 0.21 0.27 6.53 0.63 0.94 7.21 3.16 2.95 7.26 2.28 3.27 6.52 3.69

9.red kayak 1.0 4.87 1.98 1.06 6.66 1.15 1.34 7.54 2.2 1.24 8.15 6.66 1.22 8.06 2.47

10.rush field cuts 0.08 3.69 1.42 0.08 5.77 0.79 0.74 7.47 2.32 0.28 9.15 5.67 2.83 10.48 7.22

11.tractor 0.99 4.32 1.06 1.68 6.45 1.81 4.16 8.34 3.4 6.87 10.62 11.57 9.9 12.98 6.32

12.ritual dance 0.13 5.44 0.36 0.17 7.34 0.88 0.59 8.5 2.7 3.54 9.01 3.39 5.25 8.7 3.93

13.touchdown-pass 1.35 6.8 0.43 2.27 9.6 2.67 5.18 11.18 1.8 2.47 11.46 10.38 5.91 9.91 8.66

14.Driving-POV 0.78 5.2 0.28 0.12 6.61 0.9 0.91 7.83 2.71 1.28 8.77 4.92 0.63 9.32 2.24

15.Pier Seaside 1.0 5.3 0.25 0.07 6.06 1.04 1.08 6.12 1.85 1.79 5.09 3.45 1.97 3.19 3.39

16.Cross Walk 1.04 6.74 1.81 3.16 9.12 0.3 4.04 9.92 0.47 2.35 10.93 12.81 4.2 11.14 4.97

17.Square and Timelapse 3.53 8.33 0.39 4.77 10.23 1.25 6.55 11.31 2.36 3.39 10.93 5.84 1.65 9.54 3.6

AV ERAGE 1.0 5.2 1.0 1.34 7.16 1.41 2.54 8.25 2.22 2.48 8.85 6.99 4.22 8.91 4.87

4.5.3 Patch-Wise P-frame Quality Prediction Accuracy

To evaluate the accuracy of P-frame patch quality prediction, the encoded P-frames

were segmented into patch sizes, and their corresponding VMAF scores were calcu-

lated. These VMAF scores were then compared with the predictions generated by

our proposed method.

Table 4.8 presents the prediction accuracy at different quantization parameters
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Table 4.8: PLCC and SROCC of predicted P-frames’ patches quality prediction.

QP 28 32 36 40 44
PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

0.72 0.69 0.71 0.68 0.71 0.68 0.70 0.67 0.70 0.66

(QP ), specifically {QP ∈ 28, 32, 36, 40, 44}, as measured by the Pearson metric

(PLCC) and the monotonicity of predicted patch quality assessed by the Spearman

metric (SROCC).

When comparing the prediction results of I-frame patch quality (Table 4.6) with

those of P-frame patch quality (Table 4.8), it is evident that I-frame patch quality

prediction achieves higher accuracy and monotonicity compared to P-frame patch

quality prediction. This difference can be attributed to the greater complexity in-

volved in preparing P-frames and the addition of temporal features in the prediction

process. The utilization of temporal features increases the complexity of the net-

work, thereby affecting the prediction accuracy. Hence, it is reasonable to observe

superior prediction performance for I-frame patch quality due to the absence of these

additional complexities.

4.5.4 P-frame Perceptual Quality Prediction Accuracy

Table 4.9 presents the mean absolute error (MAE) of the predicted VMAF scores

for P-frames in 17 sample videos using three proposed P-frame quality prediction

methods. The MAE values for the sorted, homogeneous, and weighted average quality

prediction methods are denoted as Savg, Havg, and Wavg in the table, respectively.

As observed in Table 4.9, the sorted method outperforms both the weighted and

homogeneous average quality prediction methods significantly. The sorted average

method consistently demonstrates superior performance compared to the other two
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methods.

It is important to note that as the QP increases, indicating higher compression

distortion, the prediction of frame quality becomes more challenging. However, even

at higher QPs like 40 and 44, the sorted average method exhibits lower MAE values

than the weighted and homogeneous average methods.

This suggests that the sorted average quality prediction method is effective in cap-

turing and predicting the perceptual quality of P-frames, even under high compression

distortion conditions.

Table 4.9: new: Absolute error of predicting P-frames’ VMAF by three different
method

QP 28 32 36 40 44

Savg Havg Wavg Savg Havg Wavg Savg Havg Wavg Savg Havg Wavg Savg Havg Wavg

1.Aspen 2.49 3.04 6.66 4.34 3.94 7.5 3.5 4.07 5.87 6.85 4.97 9.18 5.26 4.63 7.01

2.Blue Sky 1.3 4.89 27.93 0.49 2.83 39.64 2.95 2.38 28.2 6.83 5.71 25.26 11.42 9.94 21.84

3.Controlled Burn 4.45 9.73 10.85 6.53 11.01 14.19 5.58 10.29 13.18 5.26 10.56 10.25 3.7 7.52 9.62

4.Ducks Take off 0.41 3.9 3.35 0.87 5.25 3.71 3.93 8.53 3.33 6.97 11.55 5.19 11.39 15.35 4.28

5.In to The Tree 1.88 11.47 19.92 1.41 18.22 24.43 10.41 22.37 17.93 18.72 30.28 18.14 16.73 26.36 14.8

6.Old Town Cross 1.17 8.62 7.47 3.81 10.6 1.05 7.58 13.05 0.64 7.47 15.86 1.68 6.3 18.26 10.09

7.Park Joy 2.01 6.96 9.06 1.39 10.17 21.51 4.84 15.37 25.68 12.25 22.25 21.83 19.59 26.92 13.04

8.Pedestrian area 2.75 8.05 8.85 5.21 7.91 11.68 8.14 6.74 14.45 10.91 9.86 12.94 13.75 11.97 6.66

9.Red Kayak 5.9 10.1 11.39 6.66 12.18 7.46 5.35 11.42 5.48 3.91 11.48 5.57 5.93 7.43 8.52

10.Rush Field Cuts 1.33 5.27 2.08 3.72 5.39 5.13 3.85 5.92 7.4 3.3 5.93 3.95 1.43 5.72 2.91

11.Tractor 5.09 10.71 10.96 7.3 13.97 17.41 6.68 14.91 18.32 10.05 17.79 14.19 7.55 14.17 6.73

12.Ritual Dance 1.57 9.34 4.73 3.79 13.23 10.55 6.22 16.83 15.17 10.32 21.98 18.82 12.37 23.26 22.25

13.Touchdown-pass 5.18 14.79 8.02 8.61 19.74 4.29 8.17 19.81 9.66 14.91 23.75 8.92 10.28 16.16 8.22

14.Driving-POV 3.34 2.21 12.95 4.14 2.1 8.66 4.0 2.68 8.04 3.91 3.2 11.86 4.07 3.34 19.96

15.Pier Seaside 1.17 5.46 18.42 1.47 4.2 16.52 6.07 1.67 16.46 7.46 2.01 18.74 15.39 8.07 26.45

16.Cross Walk 0.99 5.66 10.76 1.43 5.57 14.14 4.1 3.45 13.65 2.04 2.68 9.61 5.95 1.18 1.25

17.Square and Timelapse 1.78 4.2 1.93 1.33 6.52 3.65 2.47 10.2 4.24 6.72 14.88 3.8 11.48 18.98 6.89

AV ERAGE 2.52 7.32 10.31 3.68 8.99 12.44 5.52 9.98 12.22 8.11 12.63 11.76 9.56 12.9 11.21
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Chapter 5

Deep-learning based bit-rate

prediction of I-frames

The high-efficiency video coding (HEVC) is known for its improved rate-distortion

performance compared to earlier encoding algorithms. Within the encoding architec-

ture, the rate control (RC) module plays a crucial role. The RC module allocates

bit rate to blocks, frames, and GOPs, to meet the target bit rate. While there have

been numerous studies on video rate control, there is a need for further research on

bit rate prediction prior to compression.

In this chapter, we introduce two novel CNN networks that predict bit rates for

both I-frames and P-frames without the need for actual compression. Our approach

enables the prediction of frame bit rates at various quantization parameters (QPs) be-

fore the encoding process. Consequently, the encoder can choose the optimal QP value

to maintain the desired bit rate level. Unlike previous methods that rely on multi-

pass encoding or exploit rate-distortion information from prior frames, our method

provides accurate bit rate prediction without the need for actual compression.
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5.1 Bit Rate Allocation

Rate control methods play a crucial role in minimizing distortion while adhering to

bit rate constraints. To achieve this, rate control involves the characterization of the

relationship between rate and distortion through the introduction of rate-distortion

models and the definition of rate-distortion cost functions aimed at minimizing distor-

tion. Several well-known rate control and rate-distortion models have been proposed,

including the Q-R model [32], [39], exponential [50], linear [21], logarithmic [84][101],

and ρ [87] models. An example of such a model is the Q-R model, as shown in

Equation 5.1.

R = αQR ×Q
(βQR)
step , (5.1)

where R is the bit rate, αQR and βQR are Q-R model content-dependent parameters,

and Qstep is the quantization step size. Equation 5.2 shows the relation between Qstep

and the quantization parameter (QP).

Qstep = 2
QP−4

6 (5.2)

which results in equation 5.3.

R = αQR × 2(βQR×QP ) (5.3)

The rate-distortion linear model is shown in Equation 5.4.

D =
β

Rα
(5.4)
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where D and R are distortion and bit rate, respectively. α and β are model parame-

ters and are content-dependent. The cost function for R-D performance optimization

is formulated as the constrained optimization problem in Equation 5.5 and is refor-

mulated as the unconstrained problem in Equation 5.6.

min
Ri

N∑
i=1

Di(Ri)

s.t.
N∑
i=1

Ri ≤ RFr

(5.5)

J =
N∑
i=1

Di(Ri) + λ(RFr −
N∑
i=1

Ri) (5.6)

where Di, and Ri are the i’th patch distortion and bit rate, respectively. By consid-

ering Karush-Kuhn-Tucker (KKT) [13] conditions, the patch’s optimal target bit rate

allocation is achieved and shown in Equation 5.7.

Rj =
νj∑N
i=1 νi

R (5.7)

where Rj is the j’th patch’s allocated bit rate, R is the total frame bit rate, and ν

is the model parameter. Zhou in [101] proved that the local optimum of Equation

5.7 is the global optimum bit rate. Considering Equation 5.7, frames’ bit rate can be

predicted at the local patch level, then expanded to the frame level.

Predicting the bit rate of a frame poses several challenges due to the diverse

content and texture present in different blocks of the frame. Training CNN networks

to accurately predict frame bit rates requires a vast number of samples to capture

70



Ph.D. Thesis - Maryam Jenab McMaster - Electrical & Computer Engineering

the wide range of texture and content combinations. Additionally, the computational

complexity involved in achieving accurate predictions, particularly for high-resolution

videos, can be substantial. The inherent dynamic range of frame bit rates, resulting

from variations in texture, further exacerbates the difficulty of accurate prediction.

This chapter introduces an innovative patch-wise bit rate prediction method based

on CNNs, which addresses the aforementioned challenges and provides a practical ap-

proach for frame bit rate prediction. The proposed method is applicable to frames of

different resolutions and various encoders, making it versatile in its application. Fur-

thermore, it significantly reduces computational costs by processing only ten percent

of a frame’s patches to predict its bit rate.

5.2 Deep CNN Network Architecture of I-frames’

Patches Bit Rate Predictor

Figure 5.1 depicts the structure of the bit rate predictor for I-frame patches. The

proposed CNN-based predictor, known as S-BR-NET, takes frames’ patches as input

and predicts the corresponding patches’ bit rates. To prepare the bit rate values

for training S-BR-NET, the frames of the video dataset were divided into patches

prior to encoding. These patches were then encoded in I-frame mode at five different

quantization parameters (QPs), specifically QP ∈ 28, 32, 36, 40, 44. The resulting bit

rates of the encoded patches at each QP were stored for training purposes. The trained

S-BR-NET consists of a CNN-based spatial feature extractor network (S-BR-CNN),

which is also trained concurrently during this training procedure.

As described in Chapter 4, the VGG network is a suitable choice for designing a
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Figure 5.1: Patches’ bit rate predictor architecture.

CNN architecture for bit rate prediction in encoding. Table 5.1 outlines the layers

of the patch-wise bit rate predictor, ranging from Layer 1 to Layer 18. To prevent

overfitting and excessive computational complexity, a pooling layer follows every two

CNN layers. The max-pool layers have a kernel size of 2×2 and a stride size of 2×2.

Each layer utilizes a 3×3 kernel size to reduce computational complexity and leverage

the non-linear characteristics of the network. Zero-padding is applied to the input of

each layer to maintain a constant size after convolving with the kernel. The stride of

each CNN layer is set to 1×1 to preserve the output size. The Rectified Linear Unit

(ReLU) activation function [64] is used in all the CNN layers. Following the pooling

layer (Layer 15), two fully connected layers are employed to map the extracted spatial

features to the bit rate array. The output size of Layer 15 consists of 64 feature maps

with dimensions SP/2
5×SP/2

5, where SP represents the patch size. The output sizes

of FC1 and FC2 are 120 and 5, respectively.

The cost function, is defined in Equation 5.8, comprises the mapping function

ψIBR(·), where Pi and ω in ψIBR(Pi, ωIBR) are i’th patch and weights of ψ respectively.

ψIBR(·) maps patch features to the bit rate of each patch. Equation (5.8) shows the

cost function of the patch-wise bit rate predictor. BRIi is the bit rate of the i’th
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patch of an I-frame.

J = |BRIi − ψ(Pi, ωIBR)| (5.8)

Table 5.1: Layers of deep learning CNN network of pre-encoded I-frame’s bit-rate
predictor

# Type Kernel Stride Activation Outputs
01 Conv. 3×3 1×1 ReLU 32
02
03 Pool. - 2×2 - 32
04 Conv. 3×3 1×1 ReLU 32
05
06 Pool. - 2×2 - 32
07 Conv. 3×3 1×1 ReLU 64
08
09 Pool. - 2×2 - 64
10 Conv. 3×3 1×1 ReLU 64
11
12 Pool. - 2×2 - 64
13 Conv. 3×3 1×1 ReLU 128
14
15 Pool. - 2×2 - 128
16 120
17 FC ReLU 5
18 120
19 FC ReLU 5

5.3 Deep CNN I-frame Bit Rate Predictor

The relationship between a frame’s optimized bit rate and its block-level predicted

bit rates is depicted in Equation 5.7. Therefore, predicting the bit rates of patches

can lead to predicting the bit rate of a frame. However, it is important to note that
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Figure 5.2: Frames’ bit rate predictors architecture.

the encoded bit rate of chopped patches is higher than the allocated bit rate when the

patch is encoded as part of a frame. In our approach, we utilized the high-efficiency

video coding (HEVC) standard [80] for frame and patch encoding. When HEVC

encodes a frame, it divides the frame into blocks at four different depth levels or

coding units (CUs), namely CU0, CU1, CU2, and CU3, which correspond to sizes of

64×64, 32×32, 16×16, and 8×8, respectively. The selection of CU block sizes is based

on the complexity of the I-frame texture, where smaller CUs are allocated to high-

texture areas and larger CUs to low-texture areas. In regions with low complexity

texture, lower level CUs (CU0 and CU1) are encoded with a smaller number of DCT

coefficients. Consequently, the sum of the bit rates of a frame’s encoded patches is

always higher than the bit rate of the frame itself.

Taking into account the observations mentioned above, we have developed an

innovative I-frame bit rate predictor called IF-BR-NET, as illustrated in Figure 5.2.

This method predicts both the bit rates of individual patches and the total bit rate

of the I-frame. The calculation of the predictor’s output is formulated in Equation

5.9. By considering the characteristics of the encoding process and the block-level

predictions, IF-BR-NET is able to estimate the bit rates accurately and provide
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valuable insights into the overall bit rate of the I-frame.

RIF =
∑
NP

BRBi(QP ) (5.9)

In the proposed IF-BR-NET, where RIF represents the bit rate of the I-frame, NP

denotes the number of randomly extracted patches used for predicting the I-frame’s

bit rate, and BRBi corresponds to the bit rate of the i’th random patch an assigned

QP. To train IF-BR-NET, a batch containing all the random patches extracted from

a frame is fed as input, while the target output is the bit rate of that specific I-frame.

The training process involves two main steps. First, the S-BR-CNN network, which

has been trained to extract spatial features from the patches, processes the input

batch. Subsequently, the S-IF-FC network, comprising two fully connected layers

(FC3 and FC4), shown as layers 18 and 19 in Table 5.1, takes the batch of spatial

feature vectors as input. The training of FC3 and FC4 is accomplished by comparing

the summation of the patches’ bit rates, as depicted in Equation 5.9, with the actual

bit rate of the I-frame. The cost function for training FC3 and FC4 is defined in

Equation 5.10.

J = |BRIF −
NP∑
i=0

τIBR(ψIBRfeature
(Pi, ω∗), θIBR)| (5.10)

where τIBR maps a batch of patches’ feature vectors to the I-frame’s bit rate. BRIF is

the actual I-frame bit rate, ψIBRfeature
maps patches to their feature vectors, ω∗

IBR is

optimized weights of ψIBR mapping function calculated with loss function of Equation

5.8, θIBR is the weight of τIBR mapping function, and NP is the number of random
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patches utilized for prediction I-frame bit-rate. To address the limited number of I-

frames available for training, an augmentation technique was employed. Specifically,

10% of the patches from an I-frame were randomly selected and combined into a

batch, serving as a training sample. This process was repeated a hundred times, each

time randomly selecting a different set of patches. As a result, the number of training

samples for I-frames was augmented by a factor of a hundred, providing a larger and

more diverse dataset for training the model.

5.4 Deep CNN based P-frame’s Patches’ Bit Rate

Predictor

P-frames, being based on the residue between frames and previous I-frames, are influ-

enced by both textural and non-textural characteristics of the frame sequence, which

in turn affect their bit rate and quality. To extract textural features, patches from raw

I-frames are fed through the S-BR-CNN network, which maps them to spatial feature

vectors. On the other hand, for capturing the temporal or non-textural features of

P-frames, a dense motion estimation (ME) technique is employed. This dense ME

map captures the disparities between P-frames and the corresponding I-frame. Sub-

sequently, as depicted in Figure 5.3, a CNN structure named T-BR-CNN is utilized

to map the dense average ME maps to temporal feature vectors.

To predict P-frame bit rates at the patch level, the GOPs (Group of Pictures)

are partitioned into patch sizes. Each partition is then encoded separately using

five different Quantization Parameters (QPs), specifically chosen to encompass the

practical dynamic range of each video bit rate. Since the P-frame bit rate is influenced
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Figure 5.3: Frames’ bit rate predictors architecture.

by the residue and can vary significantly even between successive P-frames within a

GOP, the proposed method addresses this issue by labeling the patches of P-frames

with their average bit rate. This approach helps mitigate the problem of P-frame bit

rate fluctuations. Additionally, an average Motion Estimation (ME) map is prepared

for each GOP. This average ME map is generated by taking the average of the ME

maps of the P-frames within the GOP.

Figure 5.3 illustrates the CNN pipeline T-BR-CNN, which takes the average Mo-

tion Estimation (ME) map of patches and extracts temporal features specific to the

GOP. T-BR-CNN and S-BR-CNN can operate in parallel, and their output vectors

can be concatenated or passed through regressors and multiplied to generate predic-

tions for the bit rates of P-frame patches. Figure 5.3 (ST-P-BR-NET) presents an

overview of the P-frame patch-wise bit rate predictor. ST-P-BR-NET takes I-frame

patches and the average ME map of P-frames as input. It predicts the bit rates of
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Table 5.2: Layers of deep learning CNN network of pre-encoded I-frame’s bit rate
predictor

# Type Kernel Stride Activation Outputs
01 Conv. 3×3 1×1 ReLU 32
02
03 Pool. - 2×2 - 32
04 Conv. 3×3 1×1 ReLU 32
05
06 Pool. - 2×2 - 32
07 Conv. 3×3 1×1 ReLU 64
08
09 Pool. - 2×2 - 64
10 128
11 FC ReLU 5
12 128
13 FC ReLU 5

the I-frame patches using S-BR-CNN and multiplies the result by the output of T-

BR-CNN. The multiplication result is then compared to the actual average bit rates

of the P-frame patches to determine the prediction error, which is utilized to train

T-BR-CNN.

Table 5.2 provides an overview of the layers in T-BR-CNN, which consists of six

CNN layers. Following every two CNN layers, there is a max-pool layer (layers 1 to

9). A regressor is employed after the CNN layers, comprising two fully connected

layers (layers 10 to 11). The cost function used to train the CNN layers and fully

connected layers in T-BR-CNN is specified in Equation 5.11.

J = |BRPi − ψIBR(Pi, ω
∗
IBR)× ψPBR(MEi, ωPBR)| (5.11)

where MEi and ωPBR in ψPBR(Pi, ωPBR) are i’th patch of average ME map and

weights of ψPBR, respectively. ψPBR() maps ME feature vectors to the bit rate of
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each patch. BRPi is the bit-rate of i’th patch of a frame.

5.5 Deep CNN Network Architecture for GOP-

Level P-frame Bit Rate Predictor

The GOP-level P-frame bit rate predictor (PF-BR-NET) is depicted in Figure 5.4.

PF-BR-NET consists of S-BR-CNN and T-BR-CNN networks responsible for extract-

ing spatial and temporal features from P-frames. To facilitate the patch-to-frame

transformation module of PF-BR-NET, two regressors are utilized. The first re-

gressor includes FC3 and FC4, while the second regressor is a pipeline of two fully

connected layers, FC7 and FC8. The training process for FC3 and FC4 is explained

in Section 5.3. The layer parameters for FC7 and FC8 can be found in Table 5.2

(layers 12 to 13). The purpose of FC7 and FC8 is to predict the temporal weights

of local bit rates (WT i) in Equation 5.12, which represents the mapping of patch

bit rates to P-frame bit rates considering the influence of both the I-frame’s texture

(BRi) and the temporal features of the P-frames. Since P-frames’ bit rates exhibit a

strong correlation with their residue, features extracted from ME maps are employed

to determine the weights in Equation 5.12. Thus, the regressor consisting of FC7

and FC8 takes the temporal feature vectors as input and is trained to estimate the

temporal weights required in Equation 5.12.

RPF =
∑
NP

BRi ×WT i(QP ) (5.12)
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Figure 5.4: Frames’ bit rate predictor architecture.

where BRi is the bit rate of I-frame patches predicted by I-frame’s regressor (FC3

and FC4 layers explained in Sections 5.3). WT is are the temporal weights.

The loss function for training FC7 and FC8 is characterized in Equation 5.13.

J = |BRPF −
∑
NP

τIBR(ψIBRfeature
(Pi, ωIBR∗), θ∗IBR)×

τPBR(ψPBRfeature
(MEi, ωPBR∗), θPBR)|

(5.13)

where τPBR maps a batch of textural feature vectors to an I-frame bit rate. BRPF

is the actual P-frame’s bit rate, ψPBRfeature
maps ME maps to their feature vectors,

ω∗
PBR is optimized weights of ψPBR mapping function calculated with loss function of

Equation (5.11), θPBR is the weight of τPBR mapping function, and NP is the number

of random patches utilized for prediction of P-frame’s bit rate.
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5.6 Experimental Result

5.6.1 Bit Rate Dataset

The proposed method for predicting I-frame and GOP bit rates has been tested and

trained using the dataset introduced and investigated in [33]. The dataset comprises

videos with a resolution of 1920 × 1080 and higher, which have been divided into

GOPs at key frames. In total, 200 different GOPs have been utilized for the training,

validation, and test datasets. For training purposes, 75% of the GOPs were randomly

selected. From the remaining GOPs in the dataset, 15% and 10% were allocated

for testing and validation, respectively. Each GOP consists of one I-frame and 15

subsequent P-frames. The bit rates of the encoded frames were provided using HEVC

(H.265). The GOPs were encoded at five different quantization parameters (QPs),

specifically QP ∈ 28, 32, 36, 40, 44, ensuring the inclusion of a practical dynamic range

of bit rates.

5.6.2 Patch-wise I-frame bit-rate prediction accuracy

To train the S-BR-NET network shown in Figure 5.1, the patches of I-frames were

labeled with their corresponding bit rates. To obtain these bit rate values, the GOPs

were divided into patches of size 128 × 128, and these patches were encoded using

HEVC at the five QPs mentioned in Section 5.6.1. During the encoding process,

HEVC was set to the I-frame encoding mode, and the bit rates of the patches were

recorded for each QP.

For the validation and testing of S-BR-NET, as illustrated in Figure 5.1, the

trained patch-wise I-frame bit rate predictor takes the patches of I-frames as input
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and predicts their respective bit rates. The predicted bit rates of the patches are then

compared with their actual bit rates. The accuracy of the predicted bit rates was

evaluated using the Pearson Linear Correlation Coefficient (PLCC) and the Spear-

man Coefficient (SROCC). The PLCC measures the linear correlation between the

predicted and actual bit rates, while the SROCC evaluates the monotonic relationship

between them.

The PLCC and SROCC scores for the patch-wise bit rate prediction of I-frames at

different QPs are presented in Table 5.3. The results demonstrate the high accuracy

of the patch-wise I-frame bit rate prediction.

Table 5.3: PLCC and SROCC of predicted I-frames’ patches’ bit rates.

QP 28 32 36 40 44
PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.97 0.97 0.96

5.6.3 Patch-wise P-frame Bit Rate Prediction Accuracy

To train and test the ST-BR-NET network shown in Figure 5.3, the patches of P-

frames are labeled with the average bit rate of the corresponding patches within the

GOP. To obtain these bit rate labels, the GOPs are partitioned into patches of a

specified size, and these patches are encoded using HEVC at the five QPs mentioned

in Section 5.6.1. During the encoding process, HEVC is set to the mode that encodes

the first frame as an I-frame and the subsequent frames as P-frames (IPPP...). The

bit rates of the patches within the P-frames are then recorded for each QP.

Since the bit rates of P-frames can exhibit significant fluctuations, even among

successive frames, the average bit rate of patches within each P-frame is calculated

to provide a more stable bit rate label.
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To test the ST-BR-NET network, as illustrated in Figure 5.3, the network takes

pre-encoded patches of the I-frame and the average patches of the motion estimation

(ME) map as inputs, and predicts the average bit rate of the patches. The predicted

average bit rates are compared with the actual average bit rates of the patches, and the

Pearson Linear Correlation Coefficient (PLCC) and Spearman Coefficient (SROCC)

are calculated to evaluate the accuracy of the predictions for the test samples at

different QPs.

Table 5.4 presents the PLCC and SROCC scores for the patch-wise GOP bit

rate prediction. It can be observed that the accuracy of patch-level P-frame bit rate

prediction is lower compared to I-frame bit rate prediction. This is reasonable since

P-frame production is more complex, involving both spatial and temporal features.

Table 5.4: PLCC and SROCC of predicted P-frames’ patches bit rate.

QP 28 32 36 40 44
PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

0.77 0.67 0.71 0.64 0.64 0.6 0.63 0.62 0.6 0.61

5.6.4 Frame-wise I-frame Bit Rate Prediction Accuracy

To predict the bit rates of I-frames and train the IF-BR-NET network, as depicted

in Figure 5.2, we randomly selected 10% of the patches extracted from each I-frame.

These selected patches were then used as input for the trained IF-BR-NET. The

mean absolute error (MAE) of the I-frame bit rate prediction at different QPs for the

test video samples is presented in Table 5.5. The results in Table 5.5 demonstrate

an average relative error of under 0.2 for most of the I-frame bit rates. This high

accuracy in bit rate prediction contributes to precise QP control.

By considering the Q-R model expressed in Equation 5.3 and utilizing the actual
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bit rates of I-frames at the assigned QPs, we are able to determine the optimized

model parameters for Equation 5.3. The optimization problem of the Q-R model,

which establishes the relationship between QP and I-frames’ bit rate, is defined in

Equation 5.14.

[α∗
IF , β

∗
IF ] = arg min

αIF ,βIF

NQP∑
i=0

|BRIF i − αIF × 2(βIF×QPi)| (5.14)

where α∗
IF and β∗

IF are optimized Q-R parameters for I-frame bit rate prediction,

NQP is the number of assigned QPs, and BRIF i is the bit rate of an I-frame sample

at the i’th QP. The predicted QP is computed by substituting the predicted bit rate

of the I-frames into the optimized Q-R model, as defined in Equation 5.15.

QPpred =
log(

BRpred

α∗
IF

)

β∗
IF

, (5.15)

where QPpred and BRpred represent the predicted QP and bit rate, respectively. Sub-

sequently, the predicted QP is compared to the assigned actual QP, and their mean

absolute error (MAE) is calculated. The MAE is determined at each QP, where

QP ∈ 28, 32, 36, 40, 44, for the test videos. The resulting MAE values are presented

in Table 5.6. Based on the MAE observations, it can be concluded that the I-frame’s

bit rate predictor exhibits reliable bit rate prediction, and the selected QP effectively

achieves the assigned bit rate.

5.6.5 Frame-wise P-frame Bit Rate Prediction Accuracy

As mentioned in the preceding sections of this chapter, the prediction of P-frame bit

rates is conducted at the GOP level. Thus, the proposed P-frame bit rate predictor,
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PF-BR-NET, takes a batch of I-frame patches and a batch of average ME map patches

as input and generates the predicted average bit rate for the P-frames within a GOP

as output. To reduce computational costs, only 10% of the patches from each frame

are randomly selected for training and testing the network. Following the prediction

of the average P-frame bit rate by the PF-BR-NET network, the results are compared

against the actual average values, and the mean absolute error (MAE) is calculated.

The relative error of the average P-frame bit rate prediction is presented in Table

5.7. Notably, the accuracy of average bit rate prediction for P-frames (GOP) in

videos with dynamic textures (such as river, sea, and forest) and faster motion is

relatively lower. Enhancing the prediction accuracy of GOP bit rates for videos with

dynamic textures and fast motions can be achieved by employing a larger number

of training samples specifically targeting such scenarios. By utilizing the Q-R model

described in equation 5.3 and incorporating the actual bit rates of P-frames at their

respective assigned QPs, the model parameters for equation 5.3 are determined. The

optimization problem for the Q-R model can be formulated as follows:

[α∗
PF , β

∗
PF ] = arg min

αPF ,βPF

NQP∑
i=0

|BRPFi − αPF × 2(βPF×QPi)| (5.16)

where α∗
PF and β∗

PF are optimized Q-R parameters for P-frame bit rate prediction,

NQP is the number of assigned QPs, and BRPFi is the average bit rate of a GOP’s P-

frames at the i’th QP. By substituting the predicted average bit rates of P-frames into

the optimized Q-R model, as expressed in equation 5.17, the corresponding predicted
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QPs can be estimated.

QPpred =
log(

BRpred

α∗
PF

)

β∗
PF

(5.17)

where QPpred and BRpred represent the predicted QP and bit rate, respectively. The

predicted QP is then compared with the actual assigned QP, and the mean absolute

error (MAE) between them is calculated. Table 5.8 presents the MAE of P-frame

QP prediction. The table demonstrates that the P-frame bit rate predictor exhibits

reliable performance for the majority of test sample tracks. However, for videos with

continuous dynamic textures and movements, such as “water,” the QP prediction

displays a higher MAE and lower accuracy. This outcome is expected due to the

more complex spatial and temporal features present in these videos.
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Table 5.5: Relative error of I-frames’ bit rate prediction and curve fitting.

QP 28 32 36 40 44

1. Aspen 0.18 0.14 0.11 0.13 0.15

2. Blue sky 0.01 0.07 0.11 0.11 0.08

3. Controlled burn 0.08 0.03 0.09 0.09 0.12

4. Ducks take off 0.29 0.24 0.24 0.3 0.35

5. In to the tree 0.19 0.3 0.35 0.39 0.47

6. Old town cross 0.28 0.1 0.07 0.12 0.12

7. Park joy 0.1 0.05 0.08 0.04 0.03

8. Pedestrian area 0.05 0.08 0.05 0.04 0.03

9. Red kayak 0.09 0.13 0.17 0.13 0.1

10. Rush field cuts 0.31 0.05 0.07 0.08 0.12

11. Tractor 0.19 0.14 0.14 0.08 0.1

12. Ritual dance 0.16 0.17 0.2 0.23 0.23

13. Touchdown-pass 0.16 0.04 0.08 0.06 0.08

14. Driving-POV 0.0 0.06 0.08 0.03 0.04

15. Pier Seaside 0.23 0.16 0.23 0.17 0.08

16. Cross Walk 0.39 0.51 0.57 0.39 0.2

17. Square and Timelapse 0.51 0.66 0.63 0.44 0.21
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Table 5.6: Average absolute error of I-frame QP prediction.

QP 28 32 36 40 44

1. Aspen 0.5 0.9 1.0 1.3 1.4

2. Blue sky 0.0 0.5 1.0 1.5 1.5

3. Controlled burn 0.0 0.0 0.33 1.0 1.33

4. Ducks take off 1.5 3.5 3.5 4.0 3.5

5. In to the tree 2.0 3.0 4.0 4.0 3.0

6. Old town cross 1.0 1.0 1.0 1.0 1.0

7. Park joy 0.0 1.75 2.0 1.75 1.5

8. Pedestrian area 0.0 1.0 0.0 0.0 0.0

9. Red kayak 0.0 1.33 1.33 1.33 1.33

10. Rush field cuts 1.0 1.0 0.0 1.0 1.0

11. Tractor 0.33 1.0 1.33 1.33 0.67

12. Ritual dance 1.5 1.5 2.0 2.0 2.0

13. Touchdown-pass 1.0 0.5 0.0 0.5 0.5

14. Driving-POV 0.0 0.0 0.0 0.0 0.0

15. Pier Seaside 2.0 2.0 1.0 1.0 1.0

16. Cross Walk 4.0 3.0 3.0 3.0 2.0

17. Square and Timelapse 5.0 4.5 4.0 3.0 2.5
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Table 5.7: Relative error of GOPs’ bitrate prediction.

QP 28 32 36 40 44

1. Aspen 0.26 0.3 0.27 0.32 0.51

2. Blue sky 0.38 0.46 0.46 0.24 0.07

3. Controlled burn 0.46 0.59 0.6 0.43 0.37

4. ducks take off 0.71 0.73 0.76 0.78 0.78

5. In to the tree 0.23 0.17 0.39 0.74 1.16

6. Old town cross 0.27 0.21 0.47 0.31 0.04

7. park joy 0.73 0.71 0.68 0.61 0.45

8. Pedestrian area 0.4 0.47 0.52 0.55 0.58

9. Red kayak 0.64 0.75 0.82 0.86 0.87

10. Rush field cuts 0.19 0.31 0.45 0.58 0.66

11. Tractor 0.34 0.38 0.33 0.32 0.46

12. Ritual dance 0.53 0.67 0.78 0.85 0.89

13. Touchdown-pass 0.28 0.28 0.38 0.48 0.55

14. Driving-POV 0.03 0.15 0.27 0.43 0.54

15. Pier Seaside 0.14 0.7 0.83 0.54 0.07

16. Cross Walk 0.4 0.65 0.81 0.9 0.95

17. Square and Timelapse 0.22 0.28 0.37 0.47 0.53
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Table 5.8: Average absolute error of GOPs’ QP prediction.

QP 28 32 36 40 44

1. Aspen 0.2 1.6 1.4 1.6 1.8

2. Blue sky 2.0 3.5 1.5 0.5 2.0

3. Controlled burn 0.67 1.67 2.33 3.33 4.0

4. Ducks take off 0.0 4.0 7.5 8.5 9.5

5. In to the tree 0.0 0.0 1.0 2.0 3.0

6. Old town cross 0.0 0.0 1.0 1.0 2.0

7. Park joy 0.0 4.0 8.0 9.5 3.5

8. Pedestrian area 11.0 8.0 6.0 5.0 4.0

9. Red kayak 0.0 4.0 7.67 10.67 12.67

10. Rush field cuts 0.0 2.0 3.0 4.0 5.0

11. Tractor 1.33 1.67 1.67 2.67 4.0

12 Ritual dance 0.0 4.0 7.0 9.0 11.0

13. Touchdown-pass 0.0 1.5 2.5 4.5 5.5

14. Driving-POV 0.0 1.0 2.0 2.0 3.0

15. Pier Seaside 2.0 2.0 2.0 2.0 2.0

16. Cross Walk 0.0 3.0 5.0 8.0 11.0

17. Square and Timelapse 0.0 3.0 5.0 7.5 2.5
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Chapter 6

Deep CNN-Based Method for

Spatially and Temporally Scaled

Encoding

With the growing demand for high-resolution and high frame-rate content, efficient

compression techniques are necessary to meet bitrate constraints during video storage

and delivery. Predicting the bitrate and distortion of video frames prior to encoding

is crucial to avoid frame skipping or exceeding available bandwidth. High-resolution

and high frame-rate videos often exhibit a significant amount of spatial and temporal

redundancy. To address this, spatial downscaling or temporal down-conversion can

be employed to reduce redundancy before encoding. Subsequently, upscaling can be

performed after decoding return the video to its native resolution and/or frame rate.

In Chapter 3, we proposed an I-frame adaptive scaled encoding method that

utilizes hand-crafted features. This chapter introduces a deep learning approach based

on the framework presented in Chapters 4 and 5. The goal is to predict the optimized

91



Ph.D. Thesis - Maryam Jenab McMaster - Electrical & Computer Engineering

Figure 6.1: Overview of proposed spatially adaptive encoder.

resolution for video encoding and determine the intersection QP between the original

and scaled resolution I-frames and P-frames. We present a CNN-based method to

predict the intersection QP by considering the rate-distortion characteristics of the

original and down-converted videos. To ensure comprehensive analysis, we compare

the accuracy of both hand-crafted and deep learning methods.

6.1 Deep CNN QP prediction of spatially scaled

video

Figure 6.1 illustrates the framework of the spatially adaptive encoder (SA-ENC),

which aims to optimize the parameters of spatial resampling prior to video encoding in

order to enhance rate-distortion performance. The SA-ENC predicts the quantization

parameter (QP) of the intersection point between the rate-distortion curves of the

original and scaled videos. If the predicted QP of the intersection is lower than the

QP of the native resolution video, the encoder proceeds to encode the scaled video at

the scaled resolution. The method for selecting the QP to encode the videos within

the allocated bit rate was detailed in Chapter 4.
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Figure 6.2: CNN-based QP of intersection predictor network for spatially adaptive
encoding.

In a video GOP (Group of Pictures), an I-frame is followed by a series of P-frames,

which may exhibit significant variations in bit rates and quality. Consequently, the

QP of the intersection point for the I-frame and P-frames within a GOP could dif-

fer. Therefore, we conducted a comprehensive study and developed separate training

methods for the proposed SA-ENC technique applied to I-frames and P-frames. The

proposed method employs an innovative patch-based deep CNN-based approach for

encoding resolution determination. The subsequent sections provide a detailed de-

scription of the proposed method for predicting the QP of the intersection points for

both I-frames and P-frames.

6.1.1 Deep CNN QP prediction of spatially scaled I-frame

Figure 6.2 illustrates the deep CNN network designed to predict the QP of the in-

tersection point for scaled I-frame encoding. The adaptive spatially scaled encoding

network, denoted as S-QPs-NET, consists of the trained feature extractor CNN net-

work (S-Q-CNN) introduced in Chapter 3, followed by two regressors and two pooling

layers. The S-Q-CNN serves as the CNN-based feature extractor, trained specifically
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for patch-based perceptual quality prediction.

In the S-QPs-NET network depicted in Figure 6.2, I-frame patches are inputted,

and the trained S-Q-CNN network extracts the corresponding feature vectors. These

feature vectors are then mapped to the QP of the intersection by the S-IS-FC regressor

and the subsequent pooling layer, as shown in Figure 6.2.

The weights of S-IS-FC are optimized to align with the target QP of the intersec-

tion. The parameters of the frame QP prediction network, or S-QPs-NET network,

are detailed in Table 6.1, where Layers 1 to 15 represent the layers of S-Q-CNN, and

Layers 16 to 17 correspond to the parameters of the S-IS-FC fully connected layers.

The cost function utilized to train the fully connected layers, S-IS-FC, is presented

in Equation 6.1.

JSIS = |ISS −
∑
NP

τSIS(ψIQfeature
(Pi, ωIQ∗), θSIS)| (6.1)

where the loss function is denoted as JSIS, and the mapping function of the S-IS-FC

regressor is represented by τSIS. Specifically, τSIS maps a batch of textural feature

vectors to spatial IS-QP weights WS–ISi as depicted in Figure 6.2. Here, ISS refers

to the actual spatial IS-QP.

To extract the feature vectors from I-frame patches, we employ the mapping func-

tion ψIQfeature
, which was introduced and trained in Chapter 4. The optimized weights

of the ψIQ mapping function are denoted as ω∗
IQ. Furthermore, θSIS represents the

weight of the τSIS mapping function. It is important to note that NP corresponds to

the number of random patches used for predicting the GOP’s spatial IS-QP.
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Table 6.1: Layers of deep learning CNN network of pre-encoded adaptive spatial
scaling encoder predictor.

# Type Kernel Stride Activation Outputs
01 Conv. 3×3 1×1 ReLU 32
02
03 Pool. - 2×2 - 32
04 Conv. 3×3 1×1 ReLU 32
05
06 Pool. - 2×2 - 32
07 Conv. 3×3 1×1 ReLU 64
08
09 Pool. - 2×2 - 64
10 Conv. 3×3 1×1 ReLU 64
11
12 Pool. - 2×2 - 64
13 Conv. 3×3 1×1 ReLU 128
14
15 Pool. - 2×2 - 128
16 120
17 FC ReLU 5

6.1.2 Deep CNN QP prediction of spatially scaled P-frame

A GOP may comprise hundreds of P-frames; therefore, predicting and optimizing

P-frames parameters is important for an optimized adaptive encoding. P-frames are

built based on their disparities with the keyframes; thus, the encoding parameters can

be correlated by spatial or temporal features of P-frames. But as in spatially adaptive

encoding, we are scaling frames resolution and decreasing spatial redundancy, which

may cause loss of sharpness and cause blurriness artifacts at the decoded P-frames,

so textural features of frames effects scaled resolution P-frames and consequently the

QP of intersection. Consequently, we utilized S-QPs-NET network shown in figure

6.2 for predicting IS-QP. We have used S-Q-CNN network shown in Figure 6.2 for

extracting spatial features of I-frames. For predicting IS-QP, we trained the S-IS-FC

95



Ph.D. Thesis - Maryam Jenab McMaster - Electrical & Computer Engineering

regressor to predict IS-QP. The loss function for used for training S-IS-FC is stated

in Equation 6.1, and the training procedure is the same as training of the network

for prediction IS-QP of I-frames.

Table 6.2: Layers of deep learning CNN network of temporal feature extractor and
temporal weight predictor.

# Type Kernel Stride Activation Outputs
01 Conv. 3×3 1×1 ReLU 32
02
03 Pool. - 2×2 - 32
04 Conv. 3×3 1×1 ReLU 32
05
06 Pool. - 2×2 - 32
07 Conv. 3×3 1×1 ReLU 64
08
09 Pool. - 2×2 - 64
10 128
11 FC ReLU 5

6.2 Deep CNNQP prediction of Temporally scaled

P-frame

In the preceding section, we introduced a CNN-based method to reduce spatial res-

olution before encoding. However, as the demand for a more realistic visual expe-

rience grows, there is a simultaneous increase in frame rate, resulting in an escala-

tion of temporal redundancy. To address this, down-converting the video frame rate

prior to encoding and subsequently up-converting it after decoding can enhance the

rate-distortion curve, reducing the encoding bit rate while maintaining video quality.

Nonetheless, the temporal redundancy of a video is heavily dependent on its content.

A video featuring a sports scene, for instance, may exhibit high-speed motions and
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Figure 6.3: Overview of proposed temporally adaptive encoder.

fewer redundant frames compared to a weather forecast video. Hence, we delve into

the study of temporally adaptive video encoding in this section, where we propose a

patch-based deep CNN method to optimize the video frame rate for encoding based

on its temporal features.

Figure 6.3 illustrates the comprehensive pipeline of temporally scaled adaptive

encoding (TSA-ENC). It demonstrates how TSA-ENC takes I-frames and motion

estimation (ME) maps to extract both spatial and temporal features of a GOP. Sub-

sequently, TSA-ENC predicts the temporal IS-QP. To determine the appropriate QP

for the allocated bit rate, we leverage the method proposed in Chapter 5.

In adaptive temporal encoding, considering that a GOP commences with an I-

frame and is followed by P-frames, only the P-frames are subject to temporal sam-

pling. To achieve this, we remove every other P-frame from the videos, encode the

down-sampled video, decode it, and finally temporally upscale it to its original frame

rate. Similar to spatial scaling adaptive encoding, the rate-distortion curves of the

temporally scaled video and the original video may intersect at a specific QP value,

which we denote as the temporal QP of intersection (T-IS-QP). This implies that

at a bit rate lower than the intersection bit rate, the temporally downscaled video
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Figure 6.4: Overview of proposed temporally adaptive encoder.

exhibits higher quality than the original video at the same bit rate. Consequently,

accurate prediction of the T-IS-QP is crucial for maximizing encoding performance.

Figure 6.4 illustrates the proposed patch-based deep CNN networks used to predict

IS-QP-T for the adaptive temporal encoding. The ST-IS-NET, depicted in figure 6.4,

consists of two streams: the spatial network (top stream) and the temporal network

(bottom stream). These networks comprise the trained S-Q-CNN and T-Q-CNN,

respectively, which perform patch-based spatial and temporal feature extraction. The

training procedure for S-Q-CNN and T-Q-CNN was explained in Chapter 4, and we

utilize the extracted spatial and temporal feature vectors.

The IS-QP-T represents the QP at which the original and temporally downscaled

GOP exhibit the same bit rate and quality. Consequently, the IS-QP-T is correlated

with the quality of the original and temporally scaled GOP. The temporally scaled

GOP consists of two types of frames in terms of distortion: the P-frames with en-

coding distortion and the reconstructed P-frames with interpolation distortion. The
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distortion of the reconstructed frames is influenced by the similarity between adjacent

frames. If the disparity between adjacent frames increases, the interpolation distor-

tion may also increase. Hence, the proposed method leverages the textural features

of the I-frame and the average ME maps, generated by comparing removed frames

and their adjacent P-frame, to predict the temporal QP of intersection, IS-QP-T.

The layers of the spatial and temporal streams are presented in Table 6.1 and

6.2, respectively. In Table 6.1, Layers 1 to 15 belong to the S-Q-CNN network, while

Layers 16 to 17 represent the S-IS-FC regressor layers. In Table 6.2, Layers 1 to 9

correspond to the T-Q-CNN network layers, and Layers 10 to 11 denote the parame-

ters of the S-IS-FC regressor layer. The regressors shown in Figure 6.4 consist of two

fully connected layers. The S-IS-FC and T-IS-FC regressors are trained iteratively.

The predicted IS-QP-pred in Equation 6.2 corresponds to the actual temporal IS-

QP. WS−ISi and WT−ISi represent the spatial and temporal weights of the i-th patch,

respectively, used to generate the predicted QP of intersection.

T–IS–QP–pred =
∑
NP

WS−ISi ×WT−ISi (6.2)

The outputs WS−ISi and WT−ISi correspond to the outputs of the S-IS-FC and T-IS-

FC regressors, respectively. T-IS-QP-pred represents the predicted temporal QP of

intersection. The value of NP indicates the number of randomly selected patches used

to predict the P-frame T-IS-QP. The S-IS-FC and T-IS-FC regressors take CNN-based

extracted features as input to predict the spatial and temporal weights of T-IS-QP-

pred. These regressors are trained alternately. The training procedure for the S-IS-FC

and T-IS-FC regressors is outlined in Algorithm 1. The cost functions for training the

S-IS-FC and T-IS-FC regressors are presented in Equations 6.3 and 6.4, respectively.
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Algorithm 1 Algorithm for training CNN-based temporally adaptive encoder.

1: Initialization : Epoch number (Epch-num)
2: number of samples (Smpl-num)
3: number of patches, NP

4: k1← 0
5: k2← 0
6: Data : I-frame patch extraction.
7: Average ME map patch extraction.
8: while k1 ≤ Epch–num do
9: while k2 ≤ Smpl–num do
10: Extract I-frame patches, spatial features, by S-Q-CNN
11: Extract ME map patches, temporal features, by T-Q-CNN
12: WS ← Pass spatial features through S-IS-FC
13: WT ← Pass temporal features through T-IS-FC
14: Predicted IS–QP ←

∑
NP

(WS ∗WT )
15: if k2 is odd then
16: Minimize JSIS cost function.
17: else
18: Minimize JTIS cost function.
19: end if
20: k2 ← k2 + 1
21: end while
22: k1 ← k1 + 1
23: end while
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JTIS = argmin
θTIS

|IST −
∑
NP

τSIS(ψIQfeature
(Pi, ωIQ∗), θ∗SIS)×

τTIS(ψPQfeature
(MEi, ωPQ∗), θTIS)|

(6.3)

JSIS = argmin
θTIS

|IST −
∑
NP

τSIS(ψIQfeature
(Pi, ωIQ∗), θSIS)×

τTIS(ψPQfeature
(MEi, ωPQ∗), θ∗TIS)|

(6.4)

where τSIS represents the mapping function of the S-IS-FC regressor, which maps

a batch of textural feature vectors to spatial IS-QP weights, WS−−ISi. Similarly,

τTIS denotes the mapping function of the T-IS-FC regressor, which maps a batch

of motion estimation (ME) map feature vectors to temporal IS-QP weights, WT–ISi.

The variable IST represents the actual temporal IS-QP. Additionally, ψPQfeature
is the

mapping function that maps ME maps to their corresponding feature vectors, and

ψIQfeature
maps I-frame patches to their feature vectors. These mapping functions,

ψPQfeature
and ψIQfeature

, were introduced and trained in Chapter 4. The optimized

weights of the ψPQ and ψIQ mapping functions are denoted by ω∗
PQ and ω∗

IQ, re-

spectively. Furthermore, θSIS and θTIS represent the weights of the τSIS and τTIS

mapping functions, respectively. The variable NP signifies the number of random

patches utilized for the prediction of the GOP’s temporal IS-QP.
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6.3 Experimental Results

The video dataset used for training and testing was introduced in Chapters 4 and 5.

It consisted of GOPs divided into three subsets: training, validation, and testing. A

total of 300 GOPs were available for these subsets, with the training set comprising

75 percent, the validation set comprising 10 percent, and the testing set comprising

15 percent of the GOPs. Each GOP followed a structure of one keyframe followed by

15 P-frames (IPP...P). To facilitate training, each frame was partitioned into patches

of size 64 × 64. Randomly selecting 10 percent of the patches 100 times resulted

in a training video set containing 30,000 GOP-level samples. The accuracy of the

prediction methods was evaluated by comparing two schemes: the proposed CNN-

based methods presented in this chapter and an ML-based method that utilized hand-

crafted spatial or spatio-temporal features.

6.3.1 QP of Intersection Prediction For Spatial scaling

I-frame’s QP of Intersection Prediction

To predict IF-IS-QP, we utilize the trained network shown in Figure 6.4. The S-

QPs-NET network takes the I-frames of the videos, randomly selects 10 percent of

the patches from the I-frames, and predicts the IF-IS-QP. We then compare the

predicted IF-IS-QP to the actual extracted IF-IS-QP of the test videos and calculate

their mean absolute error (MAE) to measure the accuracy of the CNN method in

predicting IF-IS-QP.

In order to evaluate the performance of the CNN method, we compare the accu-

racy of the predicted IF-IS-QPs using the deep CNN S-QPs-NET with an ML-based
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method that utilizes hand-crafted features. The machine learning method was intro-

duced in Chapter 3, where we demonstrated that the Sobel filter of the I-frame and

the PSNR of the scaled-resolution I-frame are the most effective hand-crafted spatial

features for predicting QP of intersection.

Table 6.3 presents the accuracy of IF-IS-QP prediction using these hand-crafted

features and the machine learning method (ML-M), as well as the proposed CNN

method (Prop-M). The magnitude of IS-QP is correlated with both the quality and

bit rate of the original and scaled-resolution videos, as it represents the bit rate at

which both videos have the same quality. The table demonstrates the superior or

comparable performance of the proposed CNN network compared to the ML-based

method using hand-crafted features.

P-frame’s QP of Intersection Prediction

To predict the QP of intersection for P-frames (PF-IS-QP), we trained the S-QPs-

NET scheme, which takes I-frames as input and predicts the IS-QPs for P-frames.

Table 6.4 presents the mean absolute error of IS-QP prediction using the CNN method

(Prop-M) and the hand-crafted ML-based method (ML-M) introduced in Chapter 3.

The table indicates that Prop-M and ML-M exhibit similar prediction accuracy for

P-frame prediction.

Figure 6.5 showcases some of the test sample results for spatial scaling of I-frames.

The figure displays the original and scaled resolution rate-distortion curves of the

encoded I-frame. The red circle represents the predicted QP of intersection by the ML-

based method, while the blue square represents the prediction made by the proposed

method.
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6.3.2 Temporally scaling QP of Intersection Prediction

To predict the temporal QP of intersection, we utilized the ST-IS-NET network pro-

posed in Figure 6.4. ST-IS-NET takes the I-frame and the average of ME maps, which

are generated by comparing the removed frame and its adjacent frame, as input to

predict the temporal QP of intersection. Additionally, we employed an ML-based

prediction method that utilizes hand-crafted features. Zhang et al. [95] utilized the

Haar wavelet for video quality assessment prediction with different frame rates, and

Afonso et al. [6] employed this feature for temporal adaptive encoding.

Table 6.5 presents the accuracy of temporal intersection prediction measured by

the mean absolute error (MAE) for both the ST-IS-NET network (Prop-M) and the

ML-based method (ML-M). The table demonstrates the superior performance of the

CNN-based method in predicting the QP of temporal intersection.

Figure 6.6 showcases some of the test sample results for temporal scaling of P-

frames. The figure displays the rate-distortion curves of the original GOPs and the

down-converted GOPs. The red circle represents the predicted QP of intersection by

the ML-based method, while the blue square represents the prediction made by the

proposed method.
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Figure 6.5: IS-QP prediction performance of 8 tested sequences for I-frames encoded
at two resolution. Each data point represents the average value of all frames for a

given QP.
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Table 6.3: Mean absolute error of spatial IS-QP prediction for I-frames.

QP ML-M Prop-M

1. Aspen 1.4 0.8

2. Blue sky 1.3 0.5

3. Controlled burn 1.13 1.33

4. ducks take off 1.3 1.0

5. In to the tree 0.6 1.0

6. Old town cross 0.8 1.0

7. park joy 1.1 0.5

8. Pedestrian area 1.2 1.5

9. Red kayak 1.53 1.0

10. Rush field cuts 0.2 1.0

11. Tractor 0.67 0.0

12. Ritual dance 1.3 0.5

13. Touchdown-pass 1.4 1.0

14. Driving-POV 0.8 1.0

15. Pier Seaside 1.4 2.0

16. Cross Walk 3.0 4.0

17. Square and Timelapse 1.6 2.5
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Table 6.4: Mean absolute error of spatial IS-QP prediction for P-frames.

QP ML-M Prep-M

1. Aspen 1.2 0.51

2. Blue sky 0.1 0.61

3. Controlled burn 0.6 1.44

4. ducks take off 0.5 1.44

5. In to the tree 0.6 0.79

6. Old town cross 2.0 0.54

7. park joy 0.7 0.26

8. Pedestrian area 0.8 0.42

9. Red kayak 2.07 0.84

10. Rush field cuts 0.2 0.0

11. Tractor 0.8 0.76

12. Ritual dance 1.5 0.62

13. Touchdown-pass 0.1 1.06

14. Driving-POV 1.2 0.74

15. Pier Seaside 5.6 2.64

16. Cross Walk 1.0 2.27

17. Square and Timelapse 4.3 3.42
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Table 6.5: Mean absolute error of temporally IS-QP prediction.

QP ML-M Prep-M

1. Aspen 6.9 4.0

2. Blue sky 0.9 4.9

3. Controlled burn 16.49 8.23

4. ducks take off 0.52 1.04

5. In to the tree 21.53 15.56

6. Old town cross 0.15 6.51

7. park joy 0.84 1.3

8. Pedestrian area 5.3 2.68

9. Red kayak 4.81 2.09

10. Rush field cuts 10.87 4.98

11. Tractor 6.98 3.03

12. Ritual dance 3.24 1.12

13. Touchdown-pass 10.54 4.01

14. Driving-POV 3.34 6.65

15. Pier Seaside 8.37 2.31

16. Cross Walk 11.27 3.32

17. Square and Timelapse 8.11 1.01
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Figure 6.6: IS-QP prediction performance of 8 tested sequences for GOPs encoded
at two frame-rate. Each data point represents the average value of all frames for a

given QP.
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Chapter 7

Conclusions and Future Work

This thesis focuses on the optimization of video encoder parameters to predict and

maximize the rate-distortion performance. Distortion and bit rate serve as efficiency

indicators for compression algorithms, and their control is achieved through the quan-

tization parameter (QP). Additionally, frame resolution and video frame rate are video

characteristics that significantly influence encoding performance. To provide a com-

prehensive understanding of the research problem, the thesis begins with a review of

previous studies on distortion assessment, rate control, and adaptive resolution and

frame rate encoding. Image quality assessment (IQA) plays a crucial role in mea-

suring and predicting the perceived quality of processed images; hence, a thorough

examination of previous methods in IQA was conducted. Rate control (RC) is closely

associated with rate-distortion models employed within the compression algorithm.

RC models allocate appropriate bit rates to CTUs/macroblocks, frames, and Group

of Pictures (GOPs) to minimize distortion while maintaining consistent perceived

visual quality across frames to avoid flickering.
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The contributions of this thesis are presented in Chapters 3, 4, 5, and 6. In Chap-

ter 3, we conducted a comprehensive study on the impact of spatially downscaling

frames before encoding and subsequently upscaling them after decoding. To validate

the benefits of frame rescaling we compared the rate-distortion curves of the original

resolution frames with those of the rescaled frames. Furthermore, we extracted care-

fully engineered textural features from the frames and employed a machine learning

model to characterize the bit rate intersection. In addition to textural features, we

also examined features related to motion estimation statistics and inter-frame statis-

tics. We conducted separate investigations on the rate-distortion curve intersections

for Intra-frame and inter-frame scenarios. The selection of the best textural and non-

textural features was based on the PCC and SRCC indexes, ensuring robust feature

representation.

In Chapter 4, we introduced a novel deep CNN-based perceived quality predictor

for HEVC. Predicting compression quality before encoding poses challenges similar

to those encountered in No-reference Image Quality Assessment (IQA), as it involves

evaluating degradation without access to both raw and distorted images. Another

hurdle in developing the proposed encoder quality predictor is the requirement of

a diverse dataset to train the deep CNN and mitigate overfitting. To address this

issue, we utilized Video Multimethod Assessment Fusion (VMAF) as the perceived

quality index. In contrast to previous IQA methods that labeled patches based on

frame scores, we took into consideration the content differences between patches and

labeled them based on their extracted VMAF scores. Since quality prediction prior

to encoding primarily focuses on the patch level, we presented and employed three

methods to transform patch-level predictions into frame-level predictions. A novel
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patch-to-frame transformation method called “percent averaging” was introduced to

predict the VMAF quality of frames. To enhance the accuracy of perceived quality

prediction, we also considered the type of encoded frame. For inter-frame predictions,

our proposed CNN network extracts both textural and temporal features from the

frames. We captured the motion estimation map between the I-frame and inter-frame

to enable temporal feature extraction. Additionally, for textural feature extraction

using CNN, we utilized the gray-scaled raw frame.

Chapter 5 introduced a novel deep CNN-based bit rate control and predictor. Rate

control plays a crucial role in encoding as it directly impacts the quality of encoded

frames by preventing overflow and underflow as explained in Section 1.2. Overflow in

the receiver buffer leads to frame skipping and reduces the available bit rate budget

for subsequent frames, while underflow results in unnecessary degradation of frame

quality. Compression algorithms incorporate internal rate control models that have

evolved with different encoder generations. HEVC, for instance, employs a rate-

distortion optimization model to minimize distortion while maintaining an acceptable

bit rate. Despite advancements in encoder rate control, there have been numerous

research efforts to further improve its performance. However, these prior studies

heavily rely on information from previous frames. While utilizing the bit rate and

feature information from previous frames can lead to accurate rate control for frames

with smooth motion, it often fails to provide reliable control for fast motions and

frames with occluded areas, such as dynamic video frames. Recent advancements

in machine learning techniques have aided in rate control for dynamic videos by

utilizing engineering-crafted features to characterize rate control models. However,

when dealing with high-resolution frames, the accuracy of feature extraction becomes
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limited. To address these challenges, we propose a novel patch-based deep CNN-based

rate control method. Our CNN-based rate control model operates based on rate-

quantization functions, independent of previous frame information, while extracting

frame and video features using an end-to-end CNN approach.

Our training approach involves two levels: first, we train the CNN bit rate predic-

tor at the patch level and then at the frame level. For patch-wise bit rate prediction,

we encode a series of patches individually and label them with the corresponding bit

rates obtained from the encoding process. The CNN network is trained to map these

patches to their respective bit rates, enabling it to learn to extract patch features.

We utilize the extracted patch features to train a regressor that takes into account

the effects of different areas within a frame on the frame’s bit rate, thereby predicting

the frame-wise bit rate. In the case of inter-frame predictions, we incorporate an

additional stream of deep CNN networks that extract features from the motion esti-

mation (ME) map of both inter-frame and Intra-frame frames. Our proposed method

eliminates the dependency on previous frames and avoids the need for manual fea-

ture selection in the rate control process, providing more accurate and efficient rate

control.

Chapter 6 focuses on our innovative CNN-based spatially and temporally adaptive

encoding method. We present an end-to-end CNN-based intersection quantization

parameter (QP) predictor that eliminates the need for hand-crafted features. The re-

sults of our proposed method demonstrate its superior accuracy compared to previous

approaches that rely on manually designed spatial and temporal features.

The results obtained from the chapters highlight the improved performance of the

proposed methods on the test dataset. However, there are certain factors that need to

113



Ph.D. Thesis - Maryam Jenab McMaster - Electrical & Computer Engineering

be addressed in order to improve the distortion prediction, rate control, and adaptive

encoding, making them suitable for implementation as integral components of HEVC

compression algorithms.

We introduced a machine learning-based spatially adaptive encoding method that

leverages hand-crafted features. Conventionally, hand-crafted features are extracted

at the frame level, but in high-resolution frames, the variations between frame blocks

can be substantial. To address this, we proposed extracting spatio-temporal features

at the patch level and training the machine learning network accordingly. This ap-

proach allows for more precise analysis and adaptation within individual patches. For

frame-level quality, rate, or QP prediction, we can employ another machine learn-

ing model to perform a weighted aggregation, considering the importance of each

patch within the frame. This multi-level approach enhances the overall encoding

performance and enables effective adaptation to the characteristics of high-resolution

frames.

We focused on optimizing encoding parameters specifically for Intra-frame and

inter-frame scenarios. Intra-frames are encoded independently and can serve as key

frames for scene changes, while inter-frames often exhibit similarities to the preced-

ing frames. By combining the spatio-temporal features extracted by our CNN-based

approach with additional information from adjacent frames, we can enhance the op-

timization of inter-frame encoding. This integration allows for a more comprehensive

analysis of the inter-frame content, taking into account both the CNN-based features

and the contextual information from neighboring frames. As a result, the overall

encoding optimization for inter-frames is improved, leading to enhanced compression

performance.
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The choice of dataset plays a crucial role in training deep CNN networks. To

address the challenge of overfitting, it is essential to have a large diverse set of videos,

as this significantly enhance the accuracy of the network’s predictions. In our study,

we utilized a publicly accessible high-definition (HD) video dataset due to limitations

in obtaining HD video resources. However, with access to a larger and more diverse

dataset, we could explore more complex structures while reducing the risk of encoun-

tering overfitting issues. By having a greater number of training samples, we could

explore feature fusion techniques that may lead to even more precise predictions.

Therefore, expanding the dataset resources would provide the opportunity to further

enhance the accuracy and capabilities of the network.
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