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Lay Abstract

Soft condensed matter physics, a sub-field of condensed matter physics, primarily

concerns the investigation of physical properties of pliable, deformable materials

such as plastics, gels, and colloidal suspensions. One particularly intriguing feature

of these soft materials is their ability to self-assembly, leading to the spontaneous

formation of ordered structures, including but not limited to body-centered cubic

and face-centered cubic phases. In particular, a group of complex spherical phases,

known as the Frank-Kasper phases, has been identified in various soft matter sys-

tems, encompassing polymeric blends, colloidal suspensions, and more. Notably, in

colloidal systems, when nanoparticles are grafted with polymer chains, the Frank-

Kasper phases could become stable. However, the emergence of these complex

phases from the diverse soft matter systems have not been fully understood. In

this thesis, we employ the classical density functional theory based on three dif-

ferent hard-sphere models to probe the formation of the Frank-Kasper phases in

colloidal systems. Our results provide insights into the formation mechanism of

the Frank-Kasper phases in a simple system and demonstrate the universality of

different hard-sphere models.



Abstract

Understanding the phase behaviour of colloidal systems is relevant to designing

new colloid-based nanostructured materials. One common platform for studying

the colloidal system is the model of hard spheres. Over the last few decades, dif-

ferent hard-sphere models have been developed. We study the phase behaviour of

three hard-sphere models: the lattice gas model, the local density approximation

model, and the white bear version of the fundamental measure theory, with short-

range attractive and long-range repulsive (SALR) interactions. The competition

between the attraction and repulsion results in the formation of clusters composed

of many particles, whereas the spatial arrangement of these clusters leads to the

formation of long-range ordered phases. Phase diagrams containing the commonly

observed body-center-cubic (BCC) and hexagonally close-packed (HCP) phases, as

well as the novel Frank-Kasper σ and A15 phases, have been constructed using the

density functional theory applied to hard spheres with SALR interactions. Similar

phase transition sequences have been predicted for the three hard-sphere models,

implying a universality of the observed phase behaviour for hard spheres interact-

ing with SALR potentials. However, the details of the phase diagrams could vary

significantly. The results obtained from our study shed light on understanding the

emergence of complex phases from simple systems.
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Chapter 1

Introduction

The term "soft matter" is used to describe a range of materials characterized by

their soft and deformable nature. This field encompasses both macroscopic enti-

ties, such as plastic product and non-Newtonian fluids like silly putty, as well as

macromolecules, including DNA and RNA. Soft condensed matter physics inves-

tigates the collective behaviors of nano particles, typically ranging in size from 1

nanometer to 1 micrometer. The typical soft matter systems include, but are not

limited to, polymeric systems, colloidal suspension, biological systems, and liquid

crystals [21]. Owing to the self-assembly properties intrinsic to soft matter systems,

they can spontaneously form ordered structures, and thereby display complicated

phase behaviors. The cornerstone to understanding this phenomenon is the con-

cept of frustration. In condensed matter physics, systems are "frustrated" when

they are unable to simultaneously optimize competing interactions [30, 47, 48]. For

instance, in block copolymer systems, hydrophobic and hydrophilic properties are

simultaneously present on the same copolymer chain. Especially in diblock poly-

mer systems, the copolymer chain typically contains A-type and B-type monomers,

which repel each other. To minimize the free energy and avoid unfavorable contact,

2
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the polymer systems tend to form A-rich and B-rich domains, exhibiting micro-

phase separation [26]. Even for star-like dendrimer systems, which are modeled as

ultra-soft spheres with a purely repulsive intermolecular potential, cluster crystal

structures can form [29]. In contrast to crystalline solids, where each lattice site is

occupied by a single atom, numerous nanoparticles can adhere together, forming

clusters that occupy these lattice sites, thereby creating what is known as cluster

crystals. Likos et al. showed that the formation of cluster crystals in ultra-soft

sphere systems is mainly determined by the Fourier transform of the intermolecular

interactions V pkq [20, 29]. Ultra-soft sphere can form cluster crystals at arbitrary

temperatures if V pkq oscillates around zero (known as Q˘ potential) and the den-

sity is high enough. This is because the negative Fourier components of V pkq

reduce the free energy when the system form crystal structures. Meanwhile, such

a system can remelt at high density if V pkq only has non-negative Fourier compo-

nents [1, 20]. Another important class of the soft matter is colloidal systems, which

include polymer-grafted metal particles, charged nanoparticles, etc. In theoretical

studies, colloidal systems are usually treated as hard-core spheres covered by soft

coronas [38]. Colloidal systems can form solid phases such as body-centered cubic

(BCC), face-centered cubic (FCC), and body-centered tetragonal (BCT) [28]. Be-

sides these classical structures, more exotic phases, such as the Laves C14 phase,

have also been observed in experiments [34].Their ability to cluster has been used

as a new method for synthesizing exotic structures, and therefore, it has attracted

significant attention in the soft matter community [33, 34, 38]. In cluster crystals,

the inter-particle interaction is described by a short-range attractive and long-

range repulsive potential (SALR), representing a combination of depletion force

and electrostatic interaction in colloid suspensions. A competition between the

3
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attractive and repulsive parts can suppress the gas-liquid transition, leading to

clustering. The basic idea of cluster crystal is illustrated in 1.1.The short-range

attractive part promotes the clustering process, while the repulsive tail limits the

size of clusters. These clusters can further form periodic structures. In theoreti-

cal studies, such hard-sphere systems have demonstrated abundant cluster phase

behaviors, including classical spherical structures, hexagonal structures, double

gyroid structure, lamellar structures, and inverted structures [38, 49]. Besides

these classical phases, a type of complex spherical phase, named the Frank-Kasper

phases, has been discovered in copolymer and colloidal systems in both experi-

mental and theoretical studies [22, 23, 34, 56, 58, 63].

Figure 1.1: The basic idea of forming hard-particle cluster crys-
tals is illustrated above. The SALR interaction promotes the for-
mation of finite-size clusters. The cluster can form cluster crystal
via self-assembly.

1.1 Origin of Frank-Kasper phases

The Frank-Kasper (FK) phases, also known as tetrahedrally close-packed phases,

are widely found in metallic alloys. In 1958, F.C. Frank and J.S. Kasper first

proposed a general geometric method to describe these complex phases found in

metallic alloys [9]. In recent years, it has been discovered that Frank-Kasper

4
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phases also exist in soft matter, such as block copolymers and colloid suspensions.

The length scale of Frank-Kasper phases is very broad, ranging from atomic size

(metallic alloys) to mesoscopic size (copolymers).

(a)

HCP
(b)

FCC

Figure 1.2: Illustration of two closed packing structures: Hexag-
onal closed packing (left) and Face centered cubic. They have the
same packing density: ρ “ π

3
?

2

In order to understand the formation of the Frank-Kasper phases, it is helpful to

revisit a classical mathematical question: In three dimensions, how can we arrange

identical hard spheres to achieve the maximum packing density? In the 17th cen-

tury, Johannes Kepler proposed his famous conjecture to answer this question: the

face-centered cubic (FCC) and hexagonal close packing (HCP) of identical hard

spheres yield the highest packing density. However, the formal proof of Kepler’s

conjecture took a long time. In 1953, Fejes Toth pointed out that finding the max-

imum packing density of all possible arrangements could be simplified to a finite

number of calculations. Following the method proposed by Fejes Toth, Thomas

Hales carried out a numerical calculation in 1998, which demonstrated that the

maximum packing density of randomly packed spheres is about 0.64 [4]. In 2014,

5
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Figure 1.3: Four identical atoms are placed on the vertices of
regular tetrahedron and give a simplest example of tetrahedrally
close packing.

a collaborative project conducted by Hales was completed and provided a formal

proof of Kepler’s conjecture. Now, it has been proven that FCC and HCP give the

maximum packing density: ρ “ π
3

?
2 , but with different way of stacking . Two ways

of stacking are shown in Figure 1.2. The spheres in both structures are closely

packed and have 12 nearest neighbors if all the spheres are identical.

A natural question arises: how does the packing pattern change if the spheres’ vol-

umes are not equal? An obvious fact is that the central atom and its 12 neighbors

closely contact each other in FCC or HCP structure, but this becomes impossible

if the thirteen atoms are not of the same size [9]. Frank and Kasper proposed an

alternative way to arrange the thirteen atoms, placing the 12 neighboring atoms

and the central atom on the vertices and center of an icosahedron, respectively

[9]. If we connect the three nearest atoms on the icosahedron to the central atom,

the four atoms are on the vertices of a nearly regular tetrahedron, and thus they

are tetrahedrally close-packed. The tetrahedron is slightly deformed because a

regular tetrahedron cannot fully fill up space. A simple example of a tetrahedrally

closely-packed group is shown in Figure 1.3. Two advantages of tetrahedrally

6
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closed packing are: (1) the central atom and neighboring atoms do not neces-

sarily have to be the same size; (2) The atoms in the icosahedral grouping are

equidistant from the central atom, and they do not necessarily touch their nearest

neighbors, allowing more freedom for deformation [9]. These packing features are

favored by systems containing multiple-sized atoms, such as metallic alloys and de-

formable micelle systems. However, due to the forbidden five-fold symmetry, the

12-fold icosahedral cannot fill the space and must be combined with other polyhe-

dra. As a consequence, Kasper proposed other types of polyhedra, namely Kasper

polyhedra, which are tetrahedrally close-packed and labeled by their coordination

number: Z14, Z15, and Z16. These polyhedra are shown in Figure 1.4. If we

connect the nearest neighboring atoms, the resulting coordination polyhedra only

contain triangular faces. We also can connect the neighboring atoms (not only the

nearest neighbors) to the central atom and construct planes bisecting these lines.

The smallest volume enclosed by those planes is the Wigner-Seitz cell or Voronoi

cells. Those cells can fill up the space without gaps and the periodic structures

they formed are the Frank-Kasper phases.

Since the Frank-Kasper phases are tetrahedrally close-packed, one would expect

them to be energetically favorable for systems containing multiple-sized atoms or

mesoatoms. Indeed, at least 28 Frank-Kasper phases have been found in inter-

metallic alloys, and they are characterized by their mean coordination number

[54]. However, there is no standard naming convention, and hence, we can find

several names for the same Frank-Kasper phase in the literature. For instance,

the C14 phase was first discovered in the MgZn2 compound and is also called the

MgZn2 phase. Some Frank-Kasper phases are classified as classical Frank-Kasper

7
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Figure 1.4: Four Frank-Kasper polyhedrons are plotted in the
first row. The central atoms are not drawn. And the corresponding
Voronoi cells of central atom are plotted in the second row. This
figure is reprinted from reference [46].

8
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phases, such as σ, A15, C14, C15, and others [54]. The letters are related to the

composition of alloys: A stands for pure metal, C represents AB2 compounds.

1.2 Frank Kasper phases in soft matter

The emergence of Frank-Kasper phases in soft matter systems, especially in diblock

copolymer systems, has been studied extensively [16, 18, 56]. Experimentally, re-

searchers have observed the σ and A15 phases in liquid crystalline dendrimers [3,

62], the C14 phase in polymer-grafted nanoparticles [10, 34], as well as the C14,

C15, A15, and σ phases in concentrated surfactants [2, 17]. In general, a universal

principle that describes the formation of Frank-Kasper phases in soft matter sys-

tems has not been developed. Fortunately, theorists have conducted some quanti-

tative and qualitative analyses on the emergence of Frank-Kasper phases in diblock

copolymer systems [17, 23, 40, 41, 51, 58]. Here, we consider the simplest diblock

copolymer system containing only one type of AB diblock copolymer chain and

assume A is the majority block. In the strong segregation regime, AB copolymer

chains tend to form spherical micelles with cores mostly containing B blocks and

shells containing A blocks to avoid unfavorable contact between A monomers and

B monomers. Spherical micelles cannot fully fill up space, so the micelles have

to deform, and their shapes become non-spherical. However, this deformation en-

counters resistance since it leads to an additional cost in interfacial energy between

the core and shell, and loss of entropy due to the overstretching of chains. This

conflict is called frustration, which originates from the competition between the

deformation requirement and additional free energy penalty. The appearance of

various Frank-Kasper phases in soft matter systems is the result of this frustration.

9
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Milner and Olmsted developed the diblock foam model (DFM), which provides a

quantitative measure of the interfacial energy and chain stretching of micelles [31,

32]. Later on, Reddy et al. used the DFM to study the formation of Frank-Kasper

phases in diblock copolymer systems [41]. Here, we follow the argument of Reddy

et al. and illustrate how Frank-Kasper phases become stable in copolymer systems.

The free energy of a chain F pXq can be expressed as a function of the packing

parameter X, which represents a set of Voronoi cells of certain phases [41]:

F pXq “ γ
ApXq

R0
`
κ

2 IpXqR2
0, (1.1)

where γ and κ are constant related with chain properties. R0 is the radius of a

sphere which has the same volume to the mean volume of Voronoi cells Vi, and it

is given by,

V “
4πR3

0
3 “

1
n

n
ÿ

i“0
Vi, (1.2)

where n is the number of Voronoi cells within one unit cell. And ApXq measures

the mean area of cell which is given by [32],

ApXq “
1
n

n
ÿ

i“0
Ai{p4πR2

0q.

Equation (1.1) has two contributions: the first term represents the interfacial

energy between core and shell and hence it is proportional to the surface area; the

second term represents the entropy due to stretching of the copolymer chain and

Ipxq is the stretching moment which is defined as,

Ipxq “
1
n

n
ÿ

i“0
Ii{p4πR5

0{5q, (1.3)

10
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where Ii is the second moment volume of Voronoi cells centered at r⃗i:

Ii “

ż

dr⃗|r⃗ ´ r⃗i|
2. (1.4)

Now we can calculate the free energy in equation (1.1) for different lattice structure

X. For a perfect spherical cell, the free energy is,

F0 “
3
2pγ2κq

1
3 . (1.5)

For a ordered phase, the optimized R0 gives the minimal free energy relative to

F0:

F pXq “ F pXqR0{F0 “
“

A2
pXqIpXq

‰
1
3 . (1.6)

Reddy et al. minimized the free energy over arbitrary volume and shape of cells

for 11 Frank-Kasper phases, as well as for the FCC and BCC structures. Their

study demonstrates that the optimal relaxation of Voronoi cells to unequal vol-

umes minimizes area and maximizes the compactness of cells, which leads to the

emergence of the Frank-Kasper phases [41]. As a consequence, their study con-

firms that the σ and A15 phases are stable in conformationally asymmetric diblock

copolymer systems, in agreement with the SCFT predictions [58]. These studies

emphasize that the space-filling requirement and free energy penalty of deforma-

tion are the key factors that promote the stabilization of Frank-Kasper phases in

diblock copolymer systems. These two factors are also likely to be important for

Frank-Kasper phases in other soft matter systems.

Colloidal particles are an important class of soft matter. In theoretical studies,

11
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colloidal systems are described by hard core particles plus an inter-particle interac-

tion. Combined with the mean field approximation of the inter-particle potential,

the classical density functional theory (cDFT) is well-suited to describe such sys-

tems. Pini et al. constructed a phase diagram of hard core systems with a SALR

potential by using cDFT [38, 39]. Their findings (Figure 1.5) suggest a generic

phase transition sequence: classical spherical phases (BCC/HCP) Ñ hexagonal

(HEX) Ñ double gyroid (DG) Ñ lamella, and eventually to inverted phases (DG,

HEX, BCC/HCP). The discovery of HCP and BCC phases indicates the likelihood

of stabilizing Frank-Kasper phases in the region of spherical phases. Meanwhile,

Dawson et al. studied the formation of A15 and σ phases by using Ginzburg-

Landau theories[7]. They concluded that the stabilization of Frank-Kasper phases

is more sensitive to the free energy cost related to the long wavelength mode than

that of classical spherical phases.

12
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Figure 1.5: Phase diagram calculated by D.Pini and A.Parola for
hard-sphere fluid with SALR interaction potential. The authors
used local density approximation cDFT theory and found HCP,
BCC and gyroid phases are stable. This phase diagram is reprinted
from reference [38].

Sooner after, Xie et al. studied the phase behaviour of interacting hard spheres

with inter-particle interaction potentials specially designed to favor the formation

of the Frank-Kasper phases [14]. Their results revealed that the Frank-Kasper

phases (A15 and σ) could be stable in hard-sphere systems with appropriate SALR

interactions. The details of their studies will be presented in later sections. These

previous studies have relied on density functional theory with local density approxi-

mation, which approximates the excess free energy of hard cores via the equation of

state for homogeneous hard-sphere fluids, namely, the Carnahan-Starling equation

13
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[12]. In this thesis, we provide further evidence to the universality of the emer-

gence of the Frank-Kasper phases in interacting hard spheres by applying classical

density functional theories based on the lattice gas model and the fundamental

measure theory (FMT).

1.3 The organization of this thesis

We have seen that Frank-Kasper phases emerge in various soft matter systems.

Here, we focus on the emergence of Frank-Kasper phases in colloidal systems,

which are modelled as hard sphere. In Chapter 2, three hard-sphere models –

lattice gas model, local density approximation, and fundamental measure theories

– are introduced. In Chapter 3, we present our main results: the phase diagrams

for different models and inter-particle potentials. We also discuss the differences

and similarities of the results obtained from the three models. In Chapter 4, we

provide a summary of our main results and suggest some improvements that can

be made in future work.
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Chapter 2

Theory and Method

2.1 Introduction

The density functional theory was first invented by Hohenberg and Kohn in 1964

to study the ground state of inhomogeneous electron gas in an external potential

V prq. They proved a simple yet powerful theorem: at zero temperature, the ex-

ternal potential is a unique functional of the one-body density distribution of the

system. Later in 1964, Mermin pointed out that this theorem can be extended to

finite temperature system, and now it is known as the Hohenberg-Kohn-Mermin

(HKM) theorem. Although the HKM theorem was originally discovered in quan-

tum systems, it is also applicable to classical systems. The classical density func-

tional theory, which closely follows the quantum density functional theory, was

established in the 1970s. The classical density functional theory quickly became

an important tool in the theory of liquids. In 1976, Percus studied the density

functional theory for one-dimensional hard rods [36]. He presented the exact free

energy functional form of 1D hard rods and also gave a hint on approximating the

free energy functional form of higher-dimensional cases, i.e., 2D hard disks and

15
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3D hard spheres. Later in the 1980s, inspired by Percus’s idea, Rosenfeld devel-

oped the fundamental measure theory (FMT) for 3D hard spheres based on the

weighted density approximation (WDA) [43]. Rosenfeld’s FMT was the most suc-

cessful theory in terms of describing the properties of hard-sphere fluids in different

situations, i.e., fluids adsorbed at the wall and confined fluids [11]. However, the

FMT completely failed in describing solid structures due to the divergence issue

that appears in the excess free energy. After that, Tarazona and Rosenfeld modi-

fied the divergent part in the free energy functional and fixed this issue empirically

[42]. Later on, they solved the problem systematically by introducing a rank-two

weighted density tensor [52]. Nowadays, the classical density functional theory has

become a powerful and versatile tool to study the structure and thermodynamic

quantities of fluids and crystals.

2.2 Classical density functional theory

All version of the density functional theories are based on the HKM theorem [59]:

The external potential Vextpr⃗q alone gives rise to a unique density distribution ρpr⃗q

regardless of the inter-particle interaction. In other words, the external potential

and one-body density distribution are in one-to-one correspondence, despite the

external potential being usually zero in most cases. For a specific system, if the

temperature T , chemical potential µ, and inter-particle interaction potential V prq

are specified, the Helmholtz free energy F rρpr⃗qs is a unique functional of the one-

body density distribution function ρprq, and this functional form is independent of

the external potential. The true equilibrium density profile ρeqpr⃗q minimizes the

free energy functional and gives the grand potential. Therefore, once the correct
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free energy functional is defined, we can obtain the equilibrium density profile via

the variational method. In the grand canonical ensemble, the free energy functional

is given by,

Ωrρpr⃗qs “ F rρpr⃗qs `

ż

dr⃗ρpr⃗qpVextpr⃗q ´ µq. (2.1)

The equilibrium density distribution is obtained by minimizing the grand potential:

δΩrρpr⃗qs

δρpr⃗q
“
δF rρpr⃗qs

δρpr⃗q
` Vextpr⃗q ´ µ “ 0. (2.2)

The Vextpr⃗q is normally set to be zero. And for a hard-sphere system, the Helmholtz

free energy is split into three parts: the contribution from ideal gas Fidrρs, the

excess part due to the volume excluded effect FHS
ex rρs and the part contributed by

non-local pairwise interaction ωpr⃗q:

F rρs “ Fidrρs ` FHS
ex rρs ` FMF

ex rρs. (2.3)

The ideal gas part Fid is simple and has an exact form. However, the form of excess

part FHS
ex depends on the specific approximation to the hard-sphere excluded vol-

ume effect. The last term FMF
ex represents the non-local pairwise interaction and is

treated approximately. It is usually written in terms of the Fourier transformation

to reduce the convolution to simple multiplication:

FMF
ex rρs “

1
2

ż

dr⃗1

ż

dr⃗ρpr⃗qρpr⃗1qωpr⃗ ´ r⃗1q “
1
2

ÿ

k⃗

|ρpk⃗q|
2ωpk⃗q. (2.4)
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2.3 The Density Functional Theory of an Ideal

Gas

The grand partition function of an ideal gas subject to a external potential Vexpr⃗q

can be expressed as [55]:

Zid “

8
ÿ

N“0

eβµN

N !Λ3N

ˆ
ż

dr⃗e´βVextpr⃗q

˙N

, (2.5)

where Λ is the thermal wavelength h{
?

2πmkBT and is usually set to be 1. The

above equation can be simplified via the mathematical relation: ex “
ř8

m“0 x
m{m!,

which gives,

Zid “ exp
„

eβµp
ş

dr⃗e´βVextpr⃗qq

Λ3

ȷ

. (2.6)

One can find the grand potential of the ideal gas from its partition function:

βΩid “ ´ lnpZidq “ ´
1

Λ3 e
βµ

ż

dr⃗e´βVextpr⃗q. (2.7)

Then the first order variation of grand potential with respect to Vextpr⃗q gives the

one-body density distribution:

ρpr⃗q “
δΩid

δVext

“
1

Λ3 e
βµe´βVextpr⃗q. (2.8)

Therefore, the grand potential and external potential are expressed in terms of

ρpr⃗q:

βΩid “ ´

ż

dr⃗ρpr⃗q. (2.9)
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leading to,

βV pr⃗qext “ ´ lnpΛ3ρpr⃗qq ` βµ. (2.10)

Substituting them back to equation (2.1), one can find the exact Helmholtz free

energy expression for an ideal gas:

βFidrρs “

ż

dr⃗ρpr⃗q
“

lnpρpr⃗qΛ3
q ´ 1

‰

. (2.11)

In contrast to the exact ideal gas free energy, the excess free energy, including

the entropy reduction due to the hard-sphere excluded effect, does not have an

exact expression. One goal of classical density functional theory is to find a better

approximation for the excess free energy part. In the past few decades, several

versions of hard-sphere model to approximate the excess free energy, such as lattice

gas model, Caranhan-Starling approximation and fundamental measure theory

have been developed. All three theories will be introduced in this chapter.

2.4 Inter-particle interaction potential

In this study, in addition to the hard-core interaction, we consider an inter-particle

potential that is pairwise additive, and spherically symmetric. The potential con-

sists of two Gaussian functions with opposite signs, resulting in a short-range

attractive and long-range repulsive (SALR) potential profile. The generic form is

given by,

Uprq “ ϵ

"

´ A expr
´pr ´ d1q2

σ2
1

s ` expr´
pr ´ d2q2

σ2
2

s

*

. (2.12)

The parameters are defined in the following way: ϵ is the unit of energy, A is the

relative strength between two Gaussian functions. d1 and d2 are the centers of the
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Gaussian functions in unit of diameter of hard-sphere σ. σ1 and σ2 are the width

of the Gaussian functions in the unit of σ as well. To determine these parameters,

we follow the convention in [13] by requiring that the integral of potential over

space is zero, i.e.:

ż

dr⃗Upr⃗q “

ĳ

4πr2 sinpθqUprqdrdθ “ 0. (2.13)

This is equivalent to set the Fourier transform of Uprq at k “ 0 is zero: limkÑ0 ωpkq “

0. In this case, we can eliminate A and expressed it in terms of the rest of pa-

rameters. The Fourier transform of a spherically symmetric potential is obtained

via:

wpkq “

ż

dr⃗Up|r⃗|qe´ik⃗¨r⃗

“

ż 8

0

ż π

0

ż 2π

0
r2 sin θdrdθdϕUprqe´ikr cos θ

“

ż 2π

0
dϕ

ż 8

0

„
ż π

0
e´ikr cos θ sin θdθ

ȷ

r2Uprqdr

“
4π
k

ż 8

0
sinpkrqrUprqdr.

(2.14)

The Gaussian functions’ centers are not situated at the origin, thus the Fourier

transform of the potential consist of complex error functions that is a highly intri-

cate expression. Owing to its complexity, the explicit expression is not provided

here; however, an analytical expression exists and can be computed using math-

ematical software, such as Mathematica or MATLAB. Here we list two set of
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parameters used in our calculaton:

$

’

’

&

’

’

%

set 1 : A “ 1.9993, d1 “ 1, d2 “ 2, σ1 “ 1, σ2 “ 1

set 2 : A “ 0.7617, d1 “ 1.5, d2 “ 2.3, σ1 “ 0.5, σ2 “ 1.2
(2.15)

The potentials produced by these two sets of parameter are called generic dou-

ble Gaussian 1 (GDG1) and generic double Gaussian 2 (GDG2), respectively. In

the figures below, we present the two potentials both in the real space and the

Fourier space. As shown in Figure 2.1 (a), the potential GDG1prq exhibits the

typical SALR shape, while the potential GDG2prq features a minor attractive well

subsequent to the repulsive bump. It is important to note that the k value corre-

sponding to the global minimum of ωpkq is related to the distance (L0) between

the nearest neighbor clusters. We can estimate the period of lamellar phase via the

relation: 2π
kmini

“ L0 [37]. Periods of other phases can be estimated by geometric

relation, e.g. LBCC “
?

2L0.

(a) (b)

Figure 2.1: The potentials in the real space and the Fourier space
are plotted in (a) and (b) respectively.
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2.5 Lattice Gas Model

The fundamental concept of the lattice gas model is straightforward: All particles

are situated on lattice sites, and the hard-core excluded volume effect is incor-

porated by allowing each lattice site to be either empty or occupied by a single

particle. The lattice gas model solely accounts for translational entropy, making it

quantitatively accurate when the temperature is low and the cluster size is signif-

icantly larger than the lattice constant [49]. We start the derivation from defining

the Hamiltonian of lattice gas model:

H “
1
2

ÿ

ij

niVijnj ´ µ
ÿ

i

ni, (2.16)

where ni label the occupied sites and Vij is the interaction potential between two

sites. The summation counts all the pairs of lattice sites. One can find the grand

partition function:

Z “
ÿ

ni

e´βHtniu
“

ÿ

ni

exp
«

´
β

2
ÿ

ij

niVijnj ` βµ
ÿ

i

ni

ff

. (2.17)

In order to transform the particle theory to a field theory, we apply the standard

Hubbard-Stratonovich transformation to the partition function:

exp
«

´
1
2

ÿ

ij

niVijnj

ff

“
1
N

ż

Dϕ exp
«

´
1
2

ÿ

ij

ϕiV
´1

ij ϕj ` i
ÿ

j

ϕjnj

ff

. (2.18)

Also, the value of ni can only be 1 or 0. Hence, we get,

Z “
1
N

ż

Dϕ exp
«

´
1

2β
ÿ

ij

ϕiV
´1

ij ϕj `
ÿ

j

lnp1 ` expriϕj ` βµsq

ff

. (2.19)
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The partition function is expressed as a functional integral. Then we can apply

the saddle-point approximation and ignore the normalization constant:

Z “ exp
"

´
1

2β
ÿ

ij

ϕiV
´1

ij ϕj `
ÿ

j

lnp1 ` expriϕj ` βµsq

*

. (2.20)

The grand potential density per unit volume is written as,

βΩ “ ´
lnpZq

V
“ ´

1
2βV

ÿ

ij

ϕiV
´1

ij ϕj `
1
V

ÿ

j

ln p1 ` expriϕj ` βµsq . (2.21)

The summation can be converted to integral by taking the continuum limit:

ÿ

j

“
1
ad

ż

dxd, (2.22)

where a is the lattice constant and d is the dimension. We can define the maximum

packing density as ρm “ 1
a3 :

βΩ “
1

2βρmV

ż

dr⃗

ż

dr⃗1ϕpr⃗qV ´1
pr⃗ ´ r⃗1qϕpr⃗1q ´

1
ρmV

ż

dr⃗ lnp1 ` exppiϕpr⃗q ` βµqq.

(2.23)

In the above equation, the term iϕpr⃗q`βµ behave likes an external field. Therefore,

we can use the same method in equation (2.8) to find the density distribution:

ρpr⃗q “
δpβΩq

δpiϕpr⃗q ` βµq
“ ρm

eiϕpr⃗q`βµ

1 ` iϕpr⃗q ` βµ
. (2.24)
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Also we can minimize the grand potential with respect ϕpr⃗q and use equation

(2.24) to eliminate 1 ` exppiϕpr⃗q ` βµq:

ρ2
m

βV

ż

dr⃗1V ´1
pr⃗ ´ r⃗1qϕpr⃗1q ´

iρpr⃗q

V
“ 0. (2.25)

Applying the Fourier transform, we get,

ϕpk⃗q “
iβρpk⃗qV pk⃗q

ρ2
m

. (2.26)

From equation (2.26), we can find ϕpr⃗q is purely imaginary and hence iϕpr⃗q can be

replaced by ´ϕpr⃗q for convenience. And hence equation (2.24) and (2.26) become:

ρpr⃗q “ ρm
e´ϕpr⃗q`βµ

1 ` e´ϕpr⃗q`βµ
, (2.27)

ϕpk⃗q “
βρpk⃗qV pkq

ρ2
m

. (2.28)

In real space, equation (2.28) is rewritten as,

ϕpr⃗q “
β

ρ2
m

ż

dr⃗V pr⃗ ´ r⃗1qρpr⃗1q. (2.29)
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In order to get rid of ϕpr⃗q and V ´1pr⃗ ´ r⃗1q in the grand potential equation (2.23),

we substitute equation (2.24) and (2.29) into it, which leads to,

βΩ “
β2

2ρ2
mV

ż

dr⃗

ż

dr⃗1

ż

dr⃗1

ż

dr⃗2ρpr⃗1qV pr⃗ ´ r⃗1qV ´1
pr⃗ ´ r⃗1qρpr⃗2qV pr⃗1 ´ r⃗2q

`
ρm

V

ż

dr⃗ lnp1 ´
ρpr⃗q

ρm

q

“
β2

2ρ2
mV

ż

dr⃗1

ż

dr⃗1

ż

dr⃗2ρpr⃗1q

"
ż

dr⃗V pr⃗ ´ r⃗1qV ´1
pr⃗ ´ r⃗1q

*

ρpr⃗2qV pr⃗1 ´ r⃗2q

`
ρm

V

ż

dr⃗ lnp1 ´
ρpr⃗q

ρm

q

“
β2

2ρ2
mV

ż

dr⃗1

ż

dr⃗1

ż

dr⃗2ρpr⃗1qδpr⃗1 ´ r⃗1qρpr⃗2qV pr⃗1 ´ r⃗2q `
ρm

V

ż

dr⃗ lnp1 ´
ρpr⃗q

ρm

q

“
β2

2ρ2
mV

ż

dr⃗1

ż

dr⃗2ρpr⃗1qρpr⃗2qV pr⃗1 ´ r⃗2q `
ρm

V

ż

dr⃗ lnp1 ´
ρpr⃗q

ρm

q. (2.30)

In equation (2.30), the chemical potential µ is cancelled. We need to put it back

in order to construct the phase diagram. The first step is to split the last term in

equation (2.30):

ρm

V

ż

dr⃗ lnp1 ´
ρpr⃗q

ρm

q “
1
V

ż

dr⃗

"

ρpr⃗q lnp1 ´
ρpr⃗q

ρm

q

` rρm ´ ρpr⃗q lnp1 ´
ρpr⃗q

ρm

qs

*

. (2.31)

Also, from equation (2.24) we get

ρm ´ ρpr⃗q “
ρpr⃗q

e´ϕpr⃗q`βµ
. (2.32)
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We can insert it into equation (2.30). Then we combine the result with equation

(2.31) and get a simplified expression:

βΩ “
β2

2ρ2
mV

ż

dr⃗1

ż

dr⃗2ρpr⃗1qρpr⃗2qV pr⃗1 ´ r⃗2q

`
1
V

ż

dr⃗

"

ρpr⃗q lnp
ρpr⃗q

ρm

q ` rρm ´ ρpr⃗q lnp1 ´
ρpr⃗q

ρm

qs

*

`
1
V

ż

dr⃗ρpr⃗qrϕpr⃗q ´ βµs. (2.33)

Finally, we use the Legendre transformation to eliminate ϕpr⃗q and get the proper

grand potential for phase diagram construction:

βΩ̃ “ βΩ ´
1
V

ż

dr⃗ϕpr⃗qρpr⃗q

“
β

2ρ2
mV

ż

dr⃗1

ż

dr⃗2ρpr⃗1qρpr⃗2qV pr⃗1 ´ r⃗2q

`
1
V

ż

dr⃗

"

ρpr⃗q lnp
ρpr⃗q

ρm

q ` rρm ´ ρpr⃗q lnp1 ´
ρpr⃗q

ρm

qs

*

´
βµ

V

ż

dr⃗ρpr⃗q.

(2.34)

Equation (2.34) is the grand potential expression that we used to construct the

phase diagram. The iterative equation for density distribution can be obtained by

minimizing equation (2.34) with respect to ρpr⃗q:

δpβΩ̃q

δρpr⃗q
“

β

ρ2
mV

ż

dr⃗1V pr⃗ ´ r⃗1qρpr⃗q `
1
V

lnp
ρpr⃗q

ρm ´ ρpr⃗q
q ´

βµ

V
“ 0. (2.35)
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Using the convolution property of the Fourier transform, we can find the self-

consistent equation for ρpr⃗q:

ρpr⃗q “
e

µ´ 1
ρ2

m
F´1rV pk⃗qρpk⃗qs

1 ` e
µ´ 1

ρ2
m

F´1rV pk⃗qρpk⃗qs
, (2.36)

where F´1 donates the inverse Fourier transform. And β is absorbed into V pk⃗|q,

i.e. V pk⃗q “ βFrV pr⃗qs. The goal is to find the solution of equation (2.36), and

the numerical minimization details are presented later in this chapter. The above

derivation assumes Vij is invertible. However, if Vij oscillates around zero, it has

zeros that not invertible. We need to decompose the potential into two positive

pieces: Vij “ V` ´ V´, and then apply the Hubbard-Stratonovich transforma-

tion. An analysis of non-invertible case can be found in reference [49]. The final

expressions for the grand potential and density distribution function remain the

same.

2.6 Local density approximation method

The local density approximation (LDA) is a commonly used assumption if the

density profile does not change abruptly. In other words, the inhomogenous fluid

is under the slow-modulation limit [11]:

|∇ρpr⃗q|

ρ0
!

1
ξ0
, (2.37)

where ξ0 is the typical correlation length of the fluid and ρ0 is bulk density. In

this case, the excess free energy functional form is a functional of ρpr⃗q, and does

not depend on higher order gradient of ρpr⃗q, i.e. ∇ρpr⃗q. Therefore the local excess
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free energy density can be written as,

ΦLDA “ Φrρpr⃗qs. (2.38)

The expression of Φprρpr⃗qsq can be obtained from the equation of state of homo-

geneous hard-sphere fluid, such as Percus-Yevick (PY) equation and Caranhan-

Starling (CS) equation [5, 35]. Then the total excess free energy is given by,

Φtotalpρpr⃗qq “

ż

dr⃗ΦLDArρpr⃗qs. (2.39)

The local density approximation for hard-sphere systems is sufficiently accurate

when the density varies smoothly across space, or when the particle size is signifi-

cantly smaller than the cluster size for SALR fluids [38]. In the following, we will

demonstrate how to derive the Carnahan-Starling equation of state from the virial

expansion. The virial expansion serves as a fundamental basis in the theory of

simple liquids. It relates the pressure P , density ρ and temperature T in a series

expansion by [60]:
βP

ρ
“ 1 `

8
ÿ

n“1
Bnη

n, (2.40)

where η “
πρd3

6 and d is the diameter of hard sphere. Bn is the virial coefficient

which can be calculated from an expression involving the inter-particle potential:

Bn “
1 ´ n

n!

ż

....

ż

Vn

n
ź

j“1
dr⃗j. (2.41)

The first few coefficients can by evaluated numerically; however, the integrals

become increasingly complex for subsequent terms. You et al. calculated the first
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eight terms of virial expansion for hard-sphere and expressed it in terms of packing

density η [60, 11] :

βP

ρ
“ 1 ` 4η ` 10η2

` 18.365η3
` 22.225η4

` 39.74η5
` 53.5η6

` 70.8η7. (2.42)

Caranhan and Starling were guided by this expression and constructed a simple yet

quite accurate equation of state for homogeneous hard-sphere fluid. By observing

the first few coefficients, they rounded the numbers to the nearest integers, i.e.

18.365 Ñ 18, 22.225 Ñ 22. They concluded the integer virial coefficients can be

expressed as [5] :

Bn “ n2
` n ´ 2. (2.43)

Therefore equation (2.40) becomes,

βP

ρ
“ 1 `

8
ÿ

n“2
pn2

` n ´ 2qηn´1
“ 1 `

8
ÿ

n“0
pn2

` 3nqηn. (2.44)

Equation (2.44) can be evaluated analytically via geometric series tricks:

8
ÿ

n

nxn
“ x

d

dx

8
ÿ

n“1
xn´1

“
x

px ´ 1q2 , (2.45)

and
8
ÿ

n

n2xn
“ x2 d

2

dx2

8
ÿ

n“1
xn´2

`

8
ÿ

n“1
nxn

“
xp1 ` xq

p1 ´ xq3 , (2.46)

which leads to the Caranhan-Starling equation of state for homogeneous hard-

sphere fluid [5] :
βP

ρ
“

1 ` η ` η2 ´ η3

p1 ´ ηq3 . (2.47)
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The Caranhan-Starling equation of state can be used conveniently to approximate

the excess free energy of hard-sphere fluid in density functional theory. Using the

thermodynamic relations:

P “ p
BF

BV
qT,N “

BF

NBp1
ρ
q
, (2.48)

one can obtain an expression for the excess free energy in terms of packing density

η [11] :
βF ex

N
“

ż η1

0
p
βP

ρ
´ 1q

dη1

η1
“
ηp4 ´ 3ηq

p1 ´ η2q
. (2.49)

Therefore, we can find the grand potential of Caranhan-Starling approximation by

adding the ideal gas contribution and non-local inter-particle interaction:

βΩ “
1
V

ż

dr⃗ρpr⃗q

"

lnpρpr⃗q´µ´1`
ηp4 ´ 3ηq

p1 ´ η2q

*

`F´1
t

1
2V

ÿ

k⃗

|ρpk⃗q|
2ωpk⃗qu. (2.50)

The equilibrium density profile is obtained by minimizing the grand potential:

δpβΩq

δρpr⃗q
“

1
V

„

ln ρpr⃗q ´ µ `
ηp8 ´ 9η ` 3η2q

p1 ´ ηq3

ȷ

`
1
V

F´1
!

ρpk⃗qwpkq

)

“ 0. (2.51)

The density functional theory combined with the Carnahan-Starling approxima-

tion has been used to study cluster phases formed by hard-sphere fluid with SALR

inter-particle interaction [38, 37]. However, as mentioned earlier, the LDA method

is a suitable approximation only if the slow-modulation limit is satisfied. If we

would like to explore the internal structure of clusters or if the size of a cluster

is comparable to the size of a hard sphere, new approximation methods that go
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beyond the LDA, such as Rosenfeld’s fundamental measure theory are required. In-

stead of using the local-density approximation, Rosenfeld’s FMT treats the excess

free energy as a functional of a set of weighted densities nαrρs, i.e., ΦWDAtnαrρsu.

2.7 Fundamental measure theory

2.7.1 Rosenfeld’s fundamental measure theory

The motivation for Rosenfeld’s FMT comes from Percus’s DFT for one-dimensional

hard rods. In the 1-D hard rod model, the rods can only interact with their nearest

neighbors, as they cannot pass over each other. The 1-D hard rods may seem like an

oversimplified model, but it has an exact expression for the excess free energy and

provides some insights for higher-dimensional cases. The Helmholtz free energy of

1D hard rod without pairwise inter-particle interaction is given by [36]:

βF rρpxqs “ βFidrρpxqs´
1
2

ż
„

ρpx `
d

2q ` ρpx ´
d

2q

ȷ

ln
˜

1 ´

ż d
2

´ d
2

pρpx ` yqdyq

¸

dx,

(2.52)

where d is the diameter of hard rod. The excess free energy depends on two

quantities: the density integral over the surface of rod (ρpx˘d{2q) which is centered

at x; and the density integral over the volume of hard rod (ρpx`yq) [24]. Therefore,

the above expression can be expressed in terms of weighted densities which are

defined as follows:

βFexrnαs “ ´

ż 8

´8

nspρpr⃗qq ln r1 ´ nvρpr⃗qs dr⃗, (2.53)
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where nα is weighted densities, ns and nv label the density integral over the surface

and the volume respectively:

nspρq “

ż 8

´8

wspr ´ yqρpyqdy, (2.54)

nvpρq “

ż 8

´8

wvpr ´ yqρpyqdy, (2.55)

where wα are the weight functions which restrict the integrals on hard rod’s surface

and volume. They are defined as:

ws “ δp
d

2 ´ |x|q, (2.56)

wv “ Θp
d

2 ´ |x|q, (2.57)

where Θ is the Heaviside step function and δ is the Dirac-delta function. Rosenfeld

generalized this idea to higher dimensions. He started from the expression of

Helmholtz free energy for the low one-body density limit ρipr⃗q Ñ 0 [44]:

βFexrtρius “ ´
1
2

ÿ

i,j

ż

dr⃗1

ż

dr⃗2ρipr⃗1qfijpr⃗1 ´ r⃗2qρpr⃗2q, (2.58)

where i labels the species of particles and fij is the Mayer-f function:

fij “ exp r´βVijpr⃗1 ´ r⃗2qs ´ 1, (2.59)
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where Vij is pair interaction between two types of particle i and j. In the case of

hard-sphere interaction, it is given by,

Vij “

$

’

’

&

’

’

%

8 rij ă Ri ` Rj,

0 rij ě Ri ` Rj.

(2.60)

And the corresponded Mayer-f function is reduced to step function,

fij “

$

’

’

&

’

’

%

´1 rij ă Ri ` Rj,

0 rij ě Ri ` Rj.

(2.61)

Rosenfeld further noticed that the step function can be decomposed as combina-

tions of a set of weighted functions which include four scalar functions and two

vector functions:

´fijprq “ ωi
3 b ωj

0 ` ωi
0 b ωj

3 ` ωi
2 b ωj

1 ` ωi
1 b ÝÑω j

2 ´ ω⃗i
2 b ω⃗j

1 ´ ω⃗i
1 b ω⃗j

2. (2.62)

The symbol b represents the 3D convolution integral:

ωi b ωjpr⃗ “ r⃗i ´ r⃗jq “

ż

dr⃗1ωipr⃗1 ´ r⃗iqωjpr⃗1 ´ r⃗jq. (2.63)
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The weight functions are given by,

ωi
3prq “ ΘpRi ´ rq, (2.64)

ωi
2prq “ δpRi ´ rq, (2.65)

ωi
1prq “

ωi
2prq

4πRi

, (2.66)

ωi
0prq “

ωi
2prq

4πR2
i

, (2.67)

ω⃗i
2prq “

r

r
δ pRi ´ rq , (2.68)

ω⃗i
1prq “

ω⃗i
2prq

4πRi

. (2.69)

However, this decomposition is not unique; Kierlik and Rosinberg proposed an-

other set of weight functions [15]. Instead of using two vector weight functions, four

weight functions containing the first and second derivatives of the Dirac delta func-

tion can be used as well. For Rosenfeld’s decomposition, if we integrate the four

scalar weight functions over space, we obtain the geometric measures of a sphere.

For example, the integration of w3, w2, w1, and w0 yields the volume 4πR3
i {3,

surface area 4πR2
i , radius Ri, and unity 1, respectively. This is why Rosenfeld

named it the fundamental measure theory. Based on these weight functions, a set

of weighted densities is defined as follows:

nα “

ν
ÿ

i“1

ż

dr3ρipr ´ r1
qωi

αpr1
q. (2.70)

Each nα sums weighted densities of all species ν. In the bulk case, the density

profiles: ρi, are constant, the vector-like weighted densities vanish and the scalar

weighted densities have simple expressions: n3 “ 4π
ř

i ρiR
3
i {4, n2 “ 4π

ř

i ρiR
2
i ,
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n1 “ 4π
ř

i ρiR
2
i , n0 “

ř

i ρiRi. Those are the scaled-particle variables which play

a key role in the derivation of Rosenfeld’s FMT. Motivated by the form of equation

(2.53), Rosenfeld assumed the excess free energy functional can be expressed in

terms of weighted densities [44] :

βFex rtρius “

ż

dr⃗Φ ptnα pr⃗quq . (2.71)

The above equation is unitless, and hence Φtnαu has the unit of 1{length3. Nat-

urally, Φ can be written as a linear combination of weighted densities. Using

dimensional analysis, the possible terms are n0, n1n2, n3
2, n⃗1 ¨ n⃗2 and n⃗2 ¨ n⃗2 with

dimensionless coefficients fipn3q [11, 24]:

Φ “ f0 pn3qn0`f1 pn3qn1n2`f2 pn3q pÝÑn1¨ÝÑn2q`f3 pn3qn3
2`f4 pn3qn2pÝÑn2¨ÝÑn2q. (2.72)

To determine the exact expressions for coefficients fi, Rosenfeld input the scaled-

particle (SPT) equation:

lim
R´ą8

βµex

V
“ βP, (2.73)

where V “ 4πR3
i {3 is the volume of particle. The SPT equation simply relates the

excess chemical potential µex to the pressure P . The excess chemical potential of

inserting a big sphere into homogeneous fluid equal to the work which can create

a same size cavity in the system with pressure P . The excess chemical potential

can also be expressed in terms of excess grand potential:

βµex
i

V
“

1
V

BΦ
Bρi

“
1
V

ÿ

α

BΦ
Bnα

Bnα

Bρi

. (2.74)
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In the case of homogeneous fluid, only the term Bn3{Bρ is non-vanishing at the

limit of R Ñ 8, which leads to,

lim
R´ą8

βµex

V
“

BΦ
Bn3

“ βP. (2.75)

Another assumption made in FMT is that equation (2.75) holds for inhomogenous

fluids. The grand potential density can be expressed as,

Ωbulk “ Φ ` Ωid ´
ÿ

i

µiρi. (2.76)

Now, we combine equation (2.9), (2.75), (2.76) and the thermodynamic relation

Ωbulk “ ´PV together, to get a differential equation:

BΦ
Bn3

“ ´Φ `
1
V

ÿ

α

BΦ
Bnα

nα ` n0. (2.77)

Substituting equation (2.72) into the above expression, we get a set of differential

equations:

df0pn3q

dn3
“ 1 ` n3

df0pn3q

dn3
, (2.78)

df1pn3q

dn3
“ f1pn3q ` n3

df1pn3q

dn3
, (2.79)

df2pn3q

dn3
“ 2f2pn3q ` n3

df2pn3q

dn3
, (2.80)

df3pn3q

dn3
“ f3pn3q ` n3

df3pn3q

dn3
, (2.81)

df4pn3q

dn3
“ 2f4pn3q ` n3

df4pn3q

dn3
. (2.82)

36

http://www.mcmaster.ca/
https://physics.mcmaster.ca/
https://physics.mcmaster.ca/


Master of Science– Yu Li; McMaster University– Department of Physics and
Astronomy

These equations can be solved analytically and the integration constants are de-

termined by satisfying free energy and second order variational derivative at the

low-density limit [11, 44]. The detailed calculations can be found in reference [6].

The solutions of differential equations are given by [45] :

f0pn3q “ ´ lnp1 ´ n3q, (2.83)

f1pn3q “
1

1 ´ n3
, (2.84)

f2pn3q “ ´f1pn3q, (2.85)

f3pn3q “
1

24πp1 ´ n3q2 , (2.86)

f4pn3q “ ´3f3pn3q. (2.87)

Therefore, the excess free energy density is written in the following form:

Φ “ ´n0 lnp1 ´ n3q `
n1n2 ´ n⃗1 ¨ n⃗2

1 ´ n3
`
n3

2 ´ 3n2n⃗2 ¨ n⃗2

24πp1 ´ n3q2 . (2.88)

In the bulk limit, the FMT excess free energy can be expressed in terms of SPT

variables [11]:

Φ “ ´ξ0 lnp1 ´ ξ3q `
ξ1ξ2

1 ´ ξ3
`

ξ3
2

24πp1 ´ ξ3q2 . (2.89)

Interestingly, if we use the PY equation of state:

βρ

P
´ 1 “

1 ` η ` η2

p1 ´ ηq3 , (2.90)
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and perform the exact same integral in equation (2.49), we would get the excess

free energy from PY equation:

βF ex

N
“ ´ lnp1 ´ ηq `

3η
1 ´ η

`
3η2

2p1 ´ ηq2 . (2.91)

And it is identical to the equation (2.89), if we replace N by ρV and express it in

terms of SPT variables. Indeed, we can obtain the same equation of state (2.90)

and free energy density (2.91) from scaled-particle theory [11]. This shows the

thermodynamic consistency of Rosenfeld’s FMT: the theory starts from the SPT

equation which only provides the thermodynamic relation. By making a series of

reasonable assumptions and using dimensional analysis, we obtain an expression

of excess free energy. In the bulk limit, the excess free energy density is reduced

to that of PY equation of state (or SPT equation).

2.7.2 Fundamental measure theory white bear version

In principle, the Rosenfeld’s FMT can also be derived from the PY equation of

state, which implies we can further improve the accuracy of FMT by using a more

accurate equation of state. Indeed, Roth et al. [45] and Wu et al. [61] were able

to independently construct a new fundamental measure theory, which is named

FMT white bear version (FMT-WB) or modified FMT (MFMT), based on the

Marsoori-Carnahan-Starling-Leland equation of state (MCSL) [25]. The MCSL

equation is a generalization of Caranhan-Starling equation (2.47), which describes

the state of multiple components hard-sphere mixtures:

βP “
n0

1 ´ n3
`

n1n2

p1 ´ n3q2 `
n3

2
12πp1 ´ n3q3 ´

n3n
3
2

36πp1 ´ n3q3 . (2.92)
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The FMT-WB preserves Rosenfeld original weight functions and coefficient condi-

tions: equation (2.85), equation (2.87). Hence the new grand potential functional

is given by,

Φ “ f0pn3qn0 ` f1pn3qpn1n2q ` f3pn3qpn3
2 ´ 3n2n⃗2 ¨ n⃗2q. (2.93)

Using the same approach in Rosenfeld’s derivation, we have the differential equa-

tion:

βP “ ´Φ `
1
V

ÿ

α

BΦ
Bnα

nα ` n0. (2.94)

Similarly, we combine equation (2.92), (2.93), (2.94) together and find the solu-

tions:

f0pn3q “ ´ lnp1 ´ n3q, (2.95)

f1pn3q “
1

1 ´ n3
, (2.96)

f3pn3q “
n3 ` p1 ´ n3q2 lnp1 ´ n3q

36πn2
3p1 ´ n3q2 . (2.97)

Finally, we obtain the excess free energy due to the hard core for FMT-WB:

ΩHS
ex “

ż

dr⃗Φrtnlpr⃗qus “

ż

dr⃗

"

´ n0 lnp1 ´ n3q `
n1n2 ´ n⃗V 1 ¨ n⃗V 2

1 ´ n3

`
n3

2 ´ 3n2n⃗V 2 ¨ n⃗V 2

36π

„

lnp1 ´ n3q

n2
3

`
1

n3p1 ´ n3q2

ȷ *

.

(2.98)

The new FMT-WB is very similar to Rosenfeld’s FMT but uses a more accurate

equation of state for hard-sphere mixture. Wu et al. compared the results obtained

by Monte Carlo simulation to the results of MFMT. They demonstrated that

MFMT produces more accurate contact density in inhomogeneous case and pair

39

http://www.mcmaster.ca/
https://physics.mcmaster.ca/
https://physics.mcmaster.ca/


Master of Science– Yu Li; McMaster University– Department of Physics and
Astronomy

correlation functions in homogeneous case [61]. Roth et al. used FMT-WB to

study the hard-sphere absorbed at hard wall, which shown the FMT-WB produced

a better results than Rosenfeld’s FMT [45]. However, the new FMT still has some

problems. Similar to Rosenfeld’s FMT, it is unable to predict the solid freezing

transition due to the divergence issue. This can be fixed by using the idea of

dimensional crossover [42] or tensor-like weighted density [52]. Another problem

appears in FMT-WB or MFMT is the thermodynamic inconsistency. The excess

chemical potential is obtained by differentiating the excess Helmholtz free energy

with respect to density ρ, and in the bulk limit we have:

βµex

V
“

BΦ
Bn3

`
BΦ
Bn2

4πR2

V
`

BΦ
Bn1

R

V
`

BΦ
Bn0

1
V
. (2.99)

In the limit of R Ñ 8, the leading term is BΦ
Bn3

which is identified as βP in SPT

theory. Recall that Rosenfeld’s FMT uses SPT equation (2.73), and the result of
BΦ
Bn3

fully recovered the PY compressibility equation (or SPT equation of state )

(2.89). However, if we calculate BΦ
Bn3

for the current version of FMT, we get,

BΦ
Bn3

“
n0

1 ´ n3
`

n1n2

p1 ´ n3q
´
n3

2p2 ` n2
3 ´ 5n3q

36πn2
3p1 ´ n3q3 ´

n3
2 lnp1 ´ n3q

18πn3
3

, (2.100)

which is clearly not the equation (2.92). We assume it is one-component system

when we examine the consistency of theory, but it is derived from the equation

of state for multi-component. It has been argued that this inconsistency is im-

material in the one-component case since it only slightly differs from Caranhan-

Starling equation of state and it is still more accurate than Rosenfeld’s FMT [44,

45]. Later on, Roth et al. proposed a new FMT for one-component hard-sphere

fluid, marked by FMT white bear II [12]. The FMT-WBII used one component
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Caranhan-Starling equation as input and it eliminates the inconsistency.

The grand potential density of FMT-WB without external potential is given by,

βΩ “
1
V

ż

dr⃗ρpr⃗q rln ρpr⃗q ´ µ ´ 1s `
1
V

ż

dr⃗

"

´n0 lnp1 ´ n3q `
n1n2 ´ n⃗1 ¨ n⃗2

1 ´ n3

`
n3

2 ´ 3n2n⃗2 ¨ n⃗2

36π

„

lnp1 ´ n3q

n2
3

`
1

n3p1 ´ n3q2

ȷ*

`
1
2

ÿ

k⃗

ˇ

ˇ

ˇ
ρpk⃗q

ˇ

ˇ

ˇ

2
wpkq. (2.101)

Similar to the previous two hard-sphere models, the equilibrium density is solve

numerically via:

δβΩ
δρpr⃗q

“
δβΩid

δρpr⃗q
`
δβΩHS

ex
δρpr⃗q

`
δβΩMF

ex
δρpr⃗q

“ 0

Ñρpr⃗q “ exp
"

µ ´ V

„

δβΩHS
ex

δρpr⃗q
`
δβΩMF

ex
δρpr⃗q

ȷ*

,

(2.102)

where ΩHS
ex is expressed by equation (2.98) and ΩMF

ex is the last term in equation

(2.101). Both Rosenfeld’s FMT and FMT-WB uses four scalar weighted densi-

ties and two vector-like weighted densities to describe the excess free energy. To

numerically solve the equation, many of convolution calculations are needed to

perform via the fast Fourier transform (FFTs). For one-component hard-sphere

fluid, the minimization process at least requires 22 FFTs.

2.8 The homogeneous solution

If the system is homogeneous, ρpr⃗q reduces to a constant ρ0. We can easily find the

homogeneous solutions for three models via equation (2.36), (2.51) and (2.102).
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The homogeneous solution of lattice gas model is,

ρLGM
0 “ ρm

e´ϕ`βµ

1 ` e´ϕ`βµ
, (2.103)

with

ϕ “
βρωpk “ 0q

ρ2
m

. (2.104)

The homogeneous solution of Caranhan-Starling approximation becomes,

ρCS
0 “ exp

"

µ ´
ηp8 ´ 9η ` 3η2q

p1 ´ η3q
´ F´1

tρpk⃗qωpk⃗qu

*

. (2.105)

For the FMT-WB, the four scalar weighted densities is reduced to the SPT vari-

ables and the two vector-like weighted densities vanish in the one-component bulk

limit. Recall the FMT-WB is derived from the MCSL equation of state, and the

MCSL equation is reduced to Caranhan-Starling equation in the one-component

case. Therefore, it is not surprising that the homogeneous solution of the FMT-WB

is identical to equation (2.105),

ρFMT-WB
0 “ exp

"

µ ´
ηp8 ´ 9η ` 3η2q

p1 ´ η3q
´ F´1

tρpk⃗qωpk⃗qu

*

. (2.106)

The homogeneous solutions look trivial, but they can be used to test the validity of

codes. It is noteworthy that the term F´1tρpk⃗qωpk⃗qu is zero, because ρ is constant

and the last term is a integral of V pr⃗q over the space. The inter-particle V pr⃗q is

designed such that
ş

V pr⃗qdr⃗ vanishes.
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2.9 Numerical implementation of DFTs

The grand potential functional Ωpρq needs to be minimized with respect to the

density distribution function ρpr⃗q through the variational method: δΩ{δρ “ 0.

This process is numerically demanding, especially in the three-dimensional case.

In the case of studying crystalline phases, one way to reduce the complexity of the

problem is to assume the density distribution is isotropic at each lattice point. A

standard method is the Gaussian density ansatz. The density distribution at each

lattice point is Gaussian and the total density profile is given by,

ρpr⃗q “ ncp
α

π
q

3{2
ÿ

R⃗i

e´αpr⃗´R⃗iq, (2.107)

where nc is the number of particles on each lattice site and R⃗i are the lattice

vectors, which are generated by the basis vectors. The number of lattice vectors

used with calculation should be as many as possible until the free energy is nearly

unchanged when α is fixed. Then we can minimize the free energy by optimizing

nc and α. This method is widely used in the study of ultra-soft particles and solid

crystals [1, 29, 59]. It usually works well if the particles are highly localized on

lattice points and the symmetry of the lattice structure is simple, i.e., BCC and

FCC phases. However, if we want to explore more exotic structures which have

less symmetry, such as double gyroid phase and complex Frank-Kasper phases,

this method becomes impractical. Therefore, an efficient minimization method is

required in those situations. In this study, we employ three different numerical

methods, which are the Picard iteration, the preconditioned conjugate gradient

method, and the Anderson mixing method, to minimize the grand potential Ωpρq.
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The preconditioned conjugate gradient method is used in the lattice gas model

and Carnahan-Starling approximation. The combination of the Picard method

and Anderson mixing method is used in the FMT-WB model.

2.9.1 Preconditioned conjugate gradient

The idea of preconditioned conjugate gradient method is based on the steepest

decent method. This method has been used in the study of LDA model by Pini et

al. [39]. The density iteration scheme of steepest decent is expressed as,

ρi`1
pr⃗q “ ρi

pr⃗q ´ ϵ
δΩ
δρpr⃗q

ˇ

ˇ

ˇ

ˇ

i

. (2.108)

Since we are interested in periodic structure, we also need to optimize the periods

of phases as well:

hi`1
l “ hi

l ´ θ
BΩ
Bhl

ˇ

ˇ

ˇ

ˇ

i

(2.109)

where ϵ and θ are the parameters controlling the step sizes. hl is the lattice

parameter. For the lattice gas model and Caranhan-starling approximation model,

δΩ{δρ are calculated analytically in equations (2.35) and (2.51). And BB{δh is

expressed as
BΩ
Bhl

“
1
2

ÿ

k⃗

ˇ

ˇ

ˇ
ρpk⃗q

ˇ

ˇ

ˇ

2 dwpkq

dk

dk

dhl

. (2.110)

The efficiency of equation (2.108) can be improved by using the Jacobi precondi-

tioner. We can combine the preconditioner with the steepest decent method, and

hence equation (2.108) is replaced by,

ρi`1
pr⃗q “ ρi

pr⃗q ´ ηξi
pr⃗q, (2.111)
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where,

ξi
pr⃗q “

δΩ
δρpr⃗q

ˇ

ˇ

ˇ

ˇ

i

ˆ

δ2Ω
δρ2pr⃗q

ˇ

ˇ

ˇ

ˇ

i

˙´1

. (2.112)

The second order derivative of lattice gas model is given by,

δ2βΩ
δρ2pr⃗q

“
1
V

ˆ

1
ρ

`
1

ρm ´ ρ

˙

`
1

ρ2
mV

ωpk “ 0q (2.113)

And the second order derivative of LDA model is given by,

δ2βΩ
δρ2pr⃗q

“
1
V

η4 ´ 4η3 ` 4η2 ` 4η ` 1
ρpr⃗qp1 ´ ηq4 `

1
V
wpk “ 0q. (2.114)

We can further improve the efficiency of preconditioned steepest decent method

by a Newton-like approach, namely the preconditioned conjugate gradient. The

density iteration equation is given by

ρi`1
pr⃗q “ ρi

pr⃗q ´ ϵψi
pr⃗q, (2.115)

where ψipr⃗q is determined by the history of ξipr⃗q in the previous step and it is

given by the following recurrence relations:

ψi
pr⃗q “ ξi

pr⃗q ` ζ iψi´1
pr⃗q, (2.116)

ζ i
“

1
V

ş

ξipr⃗q rξipr⃗q ´ ξi´1pr⃗qs dr⃗
1
V

ş

rξi´1pr⃗qs
2 dr⃗

. (2.117)
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Equation (2.115) is generally more efficient, but it is less robust than equation

(2.108). Therefore we can perform the preconditioned steepest decent method ev-

ery 50 steps after use the preconditioned conjugate gradient method. The adaptive

step sizes: ϵ and θ are determined by minimizing gipϵ, θq. gipϵ, θq is defined as,

gi
pϵ, θq “

1
V

Ω
„

ρi
pr⃗q ´ ϵψi

pr⃗q, hi
l ´ θ

BΩ
Bhl

ˇ

ˇ

ˇ

ˇ

i

ȷ

. (2.118)

The minimization of gipϵ, θq is numerically evaluated by solving the equations,

Bgi

Bϵ
“ 0,

Bgi

Bθ
“ 0.

(2.119)

Using the Raphson-Newton method, one can find the approximated expression for

ϵ and θ [39]:

ϵi
“ ´

Bgi

Bϵ

ˆ

B2gi

Bϵ2

˙´1
ˇ

ˇ

ˇ

ˇ

ˇ

ϵ,θ“0

, (2.120)

θi
“ ´

Bgi

Bθ

ˆ

B2gi

Bθ2

˙´1
ˇ

ˇ

ˇ

ˇ

ˇ

ϵ,θ“0

. (2.121)
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The derivatives of gi are given by,

Bgi

Bϵ
“ ´

ż

dr⃗
δΩ
δρpr⃗q

ψpr⃗q, (2.122)

B2gi

Bϵ2 “

ż

dr⃗

ż

dr⃗1 δ2Ω
δρpr⃗qδρpr⃗1q

ψpr⃗qψpr⃗1
q, (2.123)

Bgi

Bθ
“ ´

ÿ

l

BΩ
Bhl

BΩ
Bhl

, (2.124)

B2gi

Bθ2 “
ÿ

l

ÿ

l1

B2Ω
BhlBhl1

BΩ
Bhl

BΩ
Bhl1

. (2.125)

Evaluation of these equations requires the first and the second order derivatives of

grand potential with respect to ρ and hl, and they are listed in the Appendix A.

2.9.2 Picard iteration

The general solution of equilibrium density profile can be written in the form:

ρ “ exprβµ ` cp1q
pr⃗qs, (2.126)

where cp1q is the one-body direct correlation function, which is given by,

cp1q
“ ´β

δF expρq

δρ
. (2.127)

The numerical minimization process starts from an initial guess of the density

profile. When the input density profile is still far from the true equilibrium density,

directly using equation (2.126) can cause divergence issues. Therefore, we employ

the Picard iteration, which is also known as simple mixing. At each iteration step,

we mix ρnew, which is calculated by equation (2.126), with the solution in the
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previous step:

ρi`1
pr⃗q “ p1 ´ αqρi

pr⃗q ` αρnewpr⃗q, (2.128)

where α is the mixing parameter and the value is usually between 0.03 and 0.1. The

value of α should be chosen such that the iteration is stable and the convergence

speed is fast. The robustness is main advantage of Picard iteration, however, it

becomes less efficient and even does not converge when the solution is close to

the equilibrium density. Therefore new algorithms are needed to accelerate the

convergence rate.

2.9.3 Anderson mixing

Several sophisticated and efficient minimization algorithms are available for solving

large non-linear systems. For example, Roth et al. applied the limited memory

inverse Broyden algorithm to the free-minimization of FMT-WB [8]. The limited

memory inverse Broyden algorithm is a quasi-Newton method which has super-

linear convergence speed, and it only needs a small amount of memory. However,

due to the structure of the algorithm, it is hard to combine this method with

modern parallel programming technology, such as Open MP. Here we introduce

the Anderson mixing (AM) algorithm, which is simpler, more efficient, and parallel

computing-friendly. AM is a type of fixed-point iteration method used to solve

non-linear systems such as fpxiq “ xi. It is widely used in self-consistent field

theory [50, 53]. Unlike the simple mixing, which only uses the information from

the previous step, AM combines the information from several previous steps and
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predicts the next step, for example:

ρi`1
“ p1 ´λ1 ´λ2......λjqfpρi

q `λ1fpρi´1
q `λ2fpρi´2

q ` ......λjfpρi´j`1
q (2.129)

Then the problem is how to determine suitable value for each λj. Here we define

the residual function at each iteration step i:

di
pr⃗q “ fpρi

pr⃗qq ´ ρi
pr⃗q, (2.130)

and the inner product of functions:

xfpr⃗q, gpr⃗qy “

ż

dr⃗fpr⃗qgpr⃗q. (2.131)

Then, the total deviation of density at step i is given by,

dtotal
i “

ˇ

ˇ

ˇ

ˇ

xdipr⃗q, dipr⃗qy

xρipr⃗q, ρipr⃗qy

ˇ

ˇ

ˇ

ˇ

2

. (2.132)

Then we define a n ˆ n matrix U , and its elements are given by,

Unm “ xdir⃗ ´ di´n
pr⃗q, dir⃗ ´ di´m

pr⃗qy, (2.133)

where n is the number of history steps we used. And we define a vector:

Vn “ xdi
pr⃗q ´ di´n

pr⃗q, di
pr⃗qy, (2.134)
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The mixing coefficients λi are given by the solution of system:

Umnλn “ Vn. (2.135)

And hence we have the expression for Anderson mixing:

ρi`1
pr⃗q “ fpρi

q `
ÿ

n

λnpfpρi´n
q ´ fpρi

qq, (2.136)

In practice, we use the simple mixing method at the beginning when the solution

is far away from equilibrium density. When dtotal ă 10´4 is satisfied, we switch to

the Anderson Mixing until certain convergence condition is reached. To balance

the efficiency and accuracy of algorithm, we normally store 30 history steps. The

method can be used to optimize the periods of phases as well.

2.9.4 Space discretization and phase initialization

Since we are interested in periodic structures, we take advantage of the fast Fourier

transform instead of using the real space method. The computation is performed

within a simulation box with dimensions: Lx ˆ Ly ˆ Lz which match the periods

of each phase. The first step is to discrete the box space with a number of point:

N “ NxNyNz, and the unit volume v “ ∆Lx

Nx

∆Ly

Ny

∆Lz

Nz
“ LxLyLz{N . Then the value

of density function within each unit volume labeled by vector rabc is represented

by the ρprijkq. The vector rabc is given by rabc “ a∆Lxî ` b∆Ly ĵ ` c∆Lzk̂, and

a “ 0...Nx ´ 1, b “ 0...Ny ´ 1, c “ 0...Nz ´ 1. The discretization numbers are

different for different phases, and they are listed in the Appendix B table 5.1.
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The discretization in real space also defines the frequencies of discrete Fourier

transform. The maximum frequency is determined by grid spacing: fα
max “ 2Nαπ

Lx
,

here α is the x,y,z-direction. Which means that we use dozens of low frequency

modes and ignore very high frequency modes. In this case, the density distribution

should not vary too abruptly. The resulting discrete Fourier transform is given by,

ρ̂nml “
1
N

ÿ

n,l,m

ρpr⃗abcq exppi⃗knml ¨ r⃗abcq, (2.137)

where n,m, l are integers: p´Nx

2 q`1 ď n ď Nx

2 , p´
Ny

2 q`1 ď m ď
Ny

2 , p´Nz

2 q`1 ď

l ď Nz

2 .

We need to initialize the interested phases. For the lamella phase, we use a sim-

ple cosine function as the initial guess. For the double gyroid and the hexagonal

phases, we use two-shell approximation. For the rest of phases: BCC, FCC, HCP,

σ, A15 as well as inverted phases, we firstly specify the coordination and radius

of micelles in terms of box size. Then, the density of micelles is assumed to be

isotropic and follow the Gaussian distribution along radial direction. Therefore we

can generate the initial density profiles for different phases. The exact coordina-

tion of micelles and radius can be found in Appendix B. Here, we plot the density

distribution of the initial phases in Figure 2.2.
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(a)

Lam

(b)

HEX

(c)

BCC

(d)

HCP

(e)

FCC

(f)

DG

(g)

A15

(h)

σ

Figure 2.2: The density distribution functions of eight order
phases that are used as initial inputs for lattice gas model and
LDA model.
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2.9.5 Phase diagram Construction

In this section, we present the methodology for constructing phase diagrams uti-

lizing density functional theory. The construction of the phase diagram is achieved

through the calculation of the grand potential in the grand canonical ensemble.

The grand potential depends on two variables: chemical potential µ and scaled

temperature kT {ϵ. We are interested in the minimum grand potential at the

fixed µ and the scaled temperature. First of all, we compute the grand potentials

for different phases as a function of chemical potential and average density at a

given temperature. Then we interpolate those grand potentials as a function of

chemical potential via the spline algorithm and find the phase with the minimum

grand potential within a certain range of µ. For example, in Figure (2.3), we plot

the grand potential differences of candidate phases and find that HCP has the

minimum grand potential when µ ă ´1.66865, whereas σ becomes stable when

µ ą ´1.66865. The intersection gives the critical chemical potential µc of two-

phase coexistence. Since the phase diagrams are presented on the T ´ ρ plane,

the next step is to find the average densities of HCP (ρa) and σ (ρb) phases at

µc. Here we interpolate the average density ρpµq for two phases as a function of

µ, and hence we can find (ρapµcq) and (ρbpµcq). The two average densities give

the coexistence boundary of the two phases. By repeating this process at different

temperatures, we obtained a set of discrete points for phase boundaries. Finally,

we interpolate those points as a function of temperature via the cubic algorithm

and generate the phase diagrams. Also, we ignore the two-phase coexistence region

if it is too small, i.e., |ρapµcq ´ ρbpµcq| ď 0.005.
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Figure 2.3: The plot of grand potential differences: GHCP ´ Gσ

(red), Gσ ´ GBCC(green) and G “ 0 (blue). The horizontal axis is
chemical potential µ and the vertical axis is the grand potential G.
The red curve intersect with the horizontal line G “ 0 at critical
chemical potential µ “ ´1.66865, indicating the boundary of HCP
and σ phases coexistence region.
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Chapter 3

Results and Discussion

3.1 Overview of phase diagrams

In this section, we present the phase diagrams obtained for the three different

hard-sphere models with two generic double Gaussian potentials. In order to

make direct comparison, the phase diagrams are presented in the T {T ˚ ´ ρ̄ plane

with the temperature T rescaled by the critical temperature T ˚. The unit of tem-

perature is kT ˚

ϵ
and ρ̄ “ ρσ3 is the reduced density. The red horizontal lines in

each phase diagrams are the computation boundaries.

The calculated phase diagrams are shown in Figure 3.1, for the three different

models interacting via generic Double Gaussian 1 (GDG1) and generic Double

Gaussian 2 (GDG2) potentials. In the six phase diagrams, we can see a universal

phase transition sequence: spherical phase Ñ cylindrical phase Ñ double gyroid Ñ

lamellar Ñ inverse phases as the average density increases. For the GDG1 poten-

tial, when ρ̄ ă 0.2 and T {T ˚ ă 0.83, the HCP phase is predicted to be stable for

all three models. In the high temperature region, the BCC phase becomes stable.

As the average density increases, the stable phase changes from hexagonal phase
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to double gyroid phase and then to lamella phase, where the double gyroid phase is

missing if the temperature is high enough (i.e. T {T ˚ ě 0.85). The phase diagrams

with the GDG2 potential demonstrate similar behavior. However, the details of

phases diagrams generated by different models differ considerably. For the lattice

gas model, the phase diagram is symmetric about ρ “ 0.5 which comes form the

fact that each lattice site can only be occupied by one particle or remain empty.

Whereas the phase diagrams predicted by the LDA and the FMT-WB models are

all asymmetric. More interestingly, there are stability widows of the FK phases

in all these phase diagrams. Specifically, in all six phase diagrams, the σ and the

inverse σ phases have stability windows on the low and high density regions, re-

spectively, despite that the location and area of these windows are sightly different

in different diagrams. Moreover, the (inverse) σ phase always appears between the

(inverse) BCC and the (inverse) HCP phases. For the GDG2 potential, in addition

to the σ phase, the A15 phase emerges in the region between the HCP and the σ

phases in the LDA model and the FMT-WB model, but the inverse A15 phase is

absent, In contrast, both the A15 and the inverse A15 are only meta-stable in the

lattice gas model.

3.2 The stabilization of sigma and A15 phases in

hard-sphere models

We have seen that the phase behaviour of the systems, especially the formation of

the FK phases, is sensitively dependent on the inter-particle interaction potentials.

In this section, we focus on understanding the effect of the form of the interaction

potential on the stability of the FK phases in more details. In order to understand
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Figure 3.1: The phase diagrams generated by three hard-sphere
models with two SALR potentials. The overall phase diagrams are
normalized by its critical temperature. The red horizontal lines
indicate the temperature boundaries.
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how the inter-particle potentials affect the formation of the Frank-Kasper phases

in different theoretical models of hard spheres, we make connection between the

current density functional theories to the Ginzburg-Landau (GL) theories. The GL

theories assumes that the free energy functional is a functional of order parameter

ϕpr⃗q. The order parameter ϕpr⃗q “ 0 in the disorder phase, and its magnitude

should not become too large in the ordered phases. Thus we can perform Taylor

expansion for the free energy functional [7]:

F rϕpr⃗qs “

8
ÿ

n“2

1
n!

ż

dr⃗1...dr⃗nGnpr⃗1...r⃗nqϕpr⃗1q...ϕpr⃗nq, (3.1)

where Gn are the undetermined constants. Then we use the translation invari-

ance property of the system and Fourier transform, the second order term can be

simplified to,

F2rϕpr⃗qs “
1
2

ż

dq⃗

p2πq3G2pq⃗qϕpq⃗qϕp´q⃗q, (3.2)

where G2pq⃗q and ϕpq⃗q are the Fourier transformation of G2prq and ϕprq. We

truncate the expansion up to the fourth order, and hence we have the following

expression:

F rϕpr⃗qs “
1
2

ż

dq⃗

p2πq3G2pq⃗qϕpq⃗qϕp´q⃗q `

ż

dr⃗

"

G3

3! ϕpr⃗q3
`
G4

4! ϕpr⃗q4
*

. (3.3)

The GL theory is a simple yet powerful tool to study the phase transition be-

haviour. Different types of models have been developed by tuning the coefficients

Gi, such as Landau-Brazovskii (LB) model and Ohta-Kawaski (OK) model. Dun-

can McClenegan and Sarah Dawson have studied the formation of the Frank-kasper

phases in those models [7, 27]. Specifically, it has been revealed that the formation
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of Frank-Kasper phases is promoted by the low free energy cost associated with

the long wavelength modes and suppressed by the low free energy cost associated

with the short wavelength modes. Although we cannot completely separate the

free energy contribution of long and short wavelength modes in the current DFT

models, because of the non-linear entropic term in the free energy functional, we

could compare the free energy cost of different modes due to the inter-particle

potentials. In the current DFT models, the mean-field free energy cost is given by,

fMF “
1
2

ÿ

k

|ρpkq|
2Upkq, (3.4)

where ρpkq and Upkq are the Fourier transform of density distribution ρprq and

inter-particle potential Uprq, respectively. In order to make a direct comparison

between potentials, we introduce a rescaled potential UN pkq via the expression [7]:

UN pkq “
2

k2
0U

2pk0q
rUpkk0q ´ Upk0qs , (3.5)

where k0 is the k value when Upkq reaches its global minimum. Equation (3.5)

shifts the global minimums of different potentials on k{k0 “ 1, and the second

order derivative is normalized at this point.

In order to have a more systematic comparison, we compare our results with

the phase diagrams computed by Mr.Xie and Mr.Burns [14]. The inter-particle

potentials they used are the double Gaussian and the generic step which we are

going to discuss here. Unlike the generic double Gaussian potentials, the centers

of double Gaussian potential (DG) are located at the origin, which is given by the
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expression:

Uprq “ ´Ae´r2{σ2
1 ` Be´r2{σ2

2 , (3.6)

where the parameters are defined as: σ1 “ 1, σ2 “ 1.4, A “ 2.744, B “ 1. The

generic step potential (GS) has a slightly complex expression:

Uprq “ A1ΘprqΘp1´rq´A2Θpr´1qΘp1´pr´1qq`p´
r

3 `
7
6qΘpr´

4
3qΘp1´

r ´ 2
3{2 q,

(3.7)

where Θ is the Heaviside step function and A1 “ 5, A2 “ 4.265. It is noted that

these two forms of potentials also have SALR characteristic.
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(a)

(b)

Figure 3.2: Four SALR potentials in the real space and the cor-
responding rescaled potentials in the Fourier space are plotted in
(A) and (B) respectively.

In Figure 3.2, we plot all four potentials Uprq in the real space and the corre-

sponding rescaled potentials UN pkq in the Fourier space. In Figure 3.2 (B), we

observe that the magnitude of potentials follow the order: UGDG2pkq ă UGSpkq ă

UGDG1pkq ă UDGpkq when k is less then one, which is correlated to the order of

the free energy cost due to long wavelength modes. Therefore, the formation of

61

http://www.mcmaster.ca/
https://physics.mcmaster.ca/
https://physics.mcmaster.ca/


Master of Science– Yu Li; McMaster University– Department of Physics and
Astronomy

Frank-Kasper phases should be favored by the GDG2 potential most. If we fo-

cus on the short wavelength modes, i.e. 1 ă k ă 1.7, the order of free energy

cost is UGSpkq ą UGDG2pkq ą UGDG1pkq ą UDGpkq. Thus in terms of short wave-

length modes, the formation of Frank-Kasper phases should be favored by the

GS potential most. When k ą 1.7, three potentials (GDG2, GDG1 and DG) have

intersections, which makes it hard to compare their contributions. However, we an-

ticipate that the free energy contribution of those high-frequency modes (k ą 1.7q

is less significant than other high-frequency modes.

Now we can examine how those different potentials affect the stabilization of Frank-

Kasper phases in different models. In Figure 3.3, we plot the phase diagrams of lat-

tice gas model for four different potentials. We compare the areas of stable region

of the σ phase, and find the areas follow the order: AGDG2 ą AGS ą AGDG1 ą ADG,

which is the same as the order of free energy cost associated with long wavelength

modes. However, the A15 phase is only stable in the generic step potential. This

observation implies that the stabilization of the σ phase is more sensitive to the

free energy cost of long wavelength modes (0 ă k ă 1), whereas the stabilization

of A15 phase is more sensitive to the free energy cost of short wavelength modes

(1.7 ą k ą 1) in the lattice gas model.
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(a) Double Gaussian (b) Generic Step

(c) Generic DG1 (d) Generic DG2

Figure 3.3: The phase diagrams of lattic gas model generated by
four different potentials:(A) Double Gaussian (DG), (B) Generic
Step (GS), (C) Generic DG1 (GDG1), (D) Generic DG2 (GDG2).
The first two figures (A) and (B) are reproduced from the reference
[14].

We turn to the phase diagrams of the LDA model for different potentials. Obvi-

ously, the areas of stable region of the σ phase still follow the same order as in the

lattice gas model,i.e. AGDG2 ą AGS ą AGDG1 ą ADG. Interestingly, we find that

the A15 phase is stable in the phase diagrams of the GS and GDG2 potentials.
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Moreover, the areas of its stable regions are nearly the same in the GDG2 and GS

potentials. From these observations, we conclude that the σ phase and A15 phase

are more sensitive to the free energy cost of long wavelength modes in the LDA

model. In other words, the A15 phase in the LDA model is less sensitive to the

free energy cost of short wavelength modes than the A15 phase in the lattice gas

model.
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(a) Double Gaussian (b) Generic Step

(c) Generic DG1 (d) Generic DG2

Figure 3.4: The phase diagrams of LDA model generated by four
different potentials: (A) Double Gaussian (DG), (B) Generic Step
(GS), (C) Generic DG1 (GDG1), (D) Generic DG2 (GDG2). The
first two figures (A) and (B) are reproduced from the reference [14].

In the case of the FMT-WB model, it is observed that the phase diagram topol-

ogy exhibits a high degree of similarity to those of the LDA model with the same

inter-particle potentials. For the GDG1 potential, the relative stable region of

the σ phase in the FMT-WB model is significantly smaller than that of the σ
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phase in the LDA model. With the GDG2 potential, both models predict sta-

ble σ and A15 phases windows at similar regions in the phase diagrams. Upon

comparing the phase diagrams of the FMT-WB and LDA models, it can be con-

cluded that, despite of minor shifts in the phase boundaries, the DFT theories

based on local-density approximation and weighted-density approximation pro-

duce strikingly similar phase diagrams. As previously mentioned, the FMT-WB

model allows us to access the internal structure of clusters, namely the local pack-

ing effect. We demonstrate this effect by plotting the density profile of the BCC

phase along a spatial line in the FMT-WB model. The spatial line is chosen to

be parallel to the x-axis and pass the center of the central cluster of BCC phase.

We plot the density distributions on this line at different scaled temperatures in

Figure (3.5). It could be seen that when the temperature is low, the interface of

the FMT-WB model (dashed line) becomes sharper and the local packing effect is

more pronounced. In contrast, the cut-through density profile of the BCC struc-

ture for the LDA model (solid line) demonstrates a smoother interface. This local

packing effect is also evident in all other phases, which is shown in Appendix C.
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Figure 3.5: The BCC phase density profiles for the FMT-WB
model (Dashed line) and the LDA model (Solid line) at different
temperatures. L is the period of BCC phase. The local packing
effect is visible at lower temperature in the FMT-WB model.

In polymeric blending systems, i.e., asymmetric AB/AB diblock copolymer mix-

tures [56] and AB/A copolymer mixtures [57], different Frank-Kasper phases, in-

cluding σ, A15, C14, and C15 phases, have been found to be stable. In these

systems, polymeric domains created by minority blocks inevitably deviate from

perfect sphericity as they increase in size, owing to their deformation toward the

shape of the corresponding Wigner-Seitz cell (WSC). This deformation results ad-

ditional free energy plenty and hence the WSCs which have more spherical shapes

are enthalpically favoured. It is believed that the formation of Frank-Kasper phases

are favored when the domains are enlarged and the phase transition to the HEX

phase is prevented. This is attribute to the fact that their Wigner-Seitz cells, on

average, retain a more spherical shape in comparison to those of the BCC and

the HCP structures [41, 19]. Therefore, we compute the volume ratio (V {VWSC)

between clusters and Wigner-Seitz cells for BCC, HCP, σ, and A15 phases in the
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LDA model and the Lattice gas model. The boundary of a cluster is defined as

where the density ρpr⃗q equals the average density ρ̄. In Figure 3.6, we plot the

ratios computed with the four different potentials for the lattice gas model Figure

3.6 (A) and those for the LDA model in Figure 3.6 (B). On the x-axis, the poten-

tials from left to right are in an ascending order of the area of the stability window

of the Frank-Kasper phases. We can clearly see a positive correlation for all the

nonequivalent cluster except for one cluster of the A15 phase. This trend of the

particle size observed in the current hard-sphere system is similar to that observed

polymeric systems, which may suggest similarities in the mechanisms stabilizing

the FK phase in these two different soft matter systems.
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Figure 3.6: The volume ratios between the clusters and their
Wigner-Seitz cells for four types of phases: BCC, HCP, σ and A15
in LG model (a) and LDA model (b). The potentials on x-axis
are arranged in ascending order of areas of Frank-Kasper phases
stability windows: ADG ă AGDG1 ă AGDG2 « AGS.
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Chapter 4

Conclusion

4.1 Conclusion

In this study, phase diagrams for three hard-sphere models, namely the lattice

gas model, LDA model, and FMT-WB model, were constructed using two SALR

potentials. It was demonstrated that the generic phase transition sequences are

consistent across the different models and potentials. A comparison was made

between our phase diagrams and previous work conducted by Xie, Dawson, and

Burns. The stability of the Frank-Kasper phases, namely the σ and A15 phases,

was confirmed in all three models. The emergence of Frank-Kasper phases in hard-

sphere models was found to be strongly correlated with the mean-field free energy

contributions of long and short wavelength modes. This research marks the first

instance in which complete phase diagrams of fundamental measure theory have

been computed, revealing the presence of the σ and A15 phases. A comparative

analysis illustrated that the phase topology of the FMT-WB model and LDA

model is similar, with slight shift in phase boundaries. The results obtained from

the current study clearly demonstrate the universality of the phase behaviour of

self-assembly colloidal systems, and shed light on understanding the formation of
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complex phases in soft matter. Desipte these progress, a fundamental physical

interpretation of the stabilization of Frank-Kasper phases in hard-sphere systems

remains unclear, providing a potential direction for future investigation.

71

http://www.mcmaster.ca/
https://physics.mcmaster.ca/
https://physics.mcmaster.ca/


Chapter 5

Appendices

5.1 Appendix A

Numerical Minimization Methods

Since we are interested in periodic structure, we minimize the grand potential with

respect to density ρpr⃗q and period hl simultaneously via δβΩ{δρ and δβΩ{δhl. The

exact expressions could be different, but δβΩMF
ex {δhl are the same for three models

and it is given below:
BβΩMF

ex
Bhl

“
1
2

ÿ

k⃗

dωpkq

dk

dk

dhl

, (5.1)

where ωpkq is spherically symmetric and k “
a

k2
x ` k2

y ` k2
z .

dk

dhl

“
dk

dkl

dkl

dhl

“ ´
1
hl

k2
l

k
. (5.2)

The preconditioned conjugated gradient method also requires the second order

derivative:

B2βΩMF
ex

BhlBhl1

“
1
2

ÿ

k⃗

ˇ

ˇ

ˇ
ρpk⃗q

ˇ

ˇ

ˇ

2
„

d2wpkq

dk2
dk

dhl

dk

dhl1

`
dwpkq

dk

d2k

dhldhl1

ȷ

, (5.3)
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where,

B2k

Bhl
2 “

1
hl

2
3k2

l k
2 ´ k4

l

k3 , (5.4)

B2k

BhlBhl1

“ ´
1

hlhl1

k2
l k

2
l1

k3 . (5.5)

The period can be optimized by the methods introduced in the algorithm section.

Lattice gas model

The minimization process requires the quantity δ2pβΩq{δρ2:

δ2βΩ
δρ2pr⃗q

“
1
V

ˆ

1
ρpr⃗q

`
1

ρm ´ ρpr⃗q

˙

`
β

ρ2
mV

ωpkqmini. (5.6)

And hence one can find B2gi{Bϵ2:

B2gi

Bϵ2 “
1
V

ż

dr⃗

„

1
ρpr⃗q

`
1

ρm ´ ρpr⃗q

ȷ

`
ÿ

k⃗

wpkq

ˇ

ˇ

ˇ
ψpk⃗q

ˇ

ˇ

ˇ

2
. (5.7)

Local density approximation model

δ2βΩ
δρ2pr⃗q

“
1
V

η4 ´ 4η3 ` 4η2 ` 4η ` 1
ρpr⃗qp1 ´ ηq4 `

1
V
wpk “ 0q (5.8)

B2gi

Bϵ2 “
1
V

ż

dr⃗

„

pη4 ´ 4η3 ` 4η2 ` 4η ` 1q

ρpr⃗qp1 ´ ηq4 ψ2
pr⃗q

ȷ

`
ÿ

k⃗

wpkq

ˇ

ˇ

ˇ
ψpk⃗q

ˇ

ˇ

ˇ

2
(5.9)
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FMT-WB

From equation (2.102), we need to calculate the quantities δβΩHS
ex {δρ and δβΩMF

ex {δρ

respectively. The derivation is given here.

δΩHS
ex {δρ

The expression can be expanded as

δβΩHS
ex rnlpr⃗1qs

δρpr⃗q
“

ÿ

l

ż

dr⃗2
δΩHS

ex rnlpr⃗1qs

δnlpr⃗2q

δnlpr⃗2q

δρpr⃗q

“
1
V

ÿ

l

ż

dr⃗2Tlpr⃗2q
δnlpr⃗2q

δρpr⃗q
,

(5.10)

where l labels the six weight functions in FMT-WB. And Tlpr⃗2q “ V δβΩHS
ex rnlpr⃗1qs

δnlpr⃗2q
,

are given by,

T3 “
δΩHS

ex
δn3

“

"

n0

1 ´ n3
`
n1n2 ´ n⃗V 1 ¨ n⃗V 2

p1 ´ n3q2

`
n3

2 ´ 3n2n⃗V 2 ¨ n⃗V 2

36πn2
3

„

´
1

1 ´ n3
´

2 lnp1 ´ n3q

n3
`

3n3 ´ 1
p1 ´ n3q3

ȷ*

,

(5.11)

T2 “
δΩHS

ex
δn2

“

"

n1

1 ´ n3
`

3n2
2 ´ 3n⃗V 2 ¨ n⃗V 2

36π

„

lnp1 ´ n3q

n2
3

`
1

n3p1 ´ n3q2

ȷ*

, (5.12)

T1 “
δΩHS

ex
δn1

“

"

n2

1 ´ n3

*

, (5.13)
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T0 “
δΩHS

ex
δn0

“ t´ lnp1 ´ n3qu , (5.14)

T⃗V 2 “
δΩHS

ex
δn⃗V 2

“

"

´
n⃗V 1

1 ´ n3
`

´6n2n⃗V 2

36π

„

lnp1 ´ n3q

n2
3

`
1

n3p1 ´ n3q2

ȷ*

, (5.15)

T⃗V 1 “
δΩHS

ex
δn⃗V 1

“

"

´
n⃗V 2

1 ´ n3

*

, (5.16)

and δnlpr⃗2q

δρpr⃗q
is given by,

δnlpr⃗2q

δρpr⃗q
“

ż

dr⃗1 δρpr⃗1q

δρpr⃗q
ωlpr⃗2 ´ r⃗1

q

“

ż

dr⃗1δpr⃗1
´ r⃗qωlpr⃗2 ´ r⃗1

q

“ωlpr⃗2 ´ r⃗q.

(5.17)

Combining all the terms, we have,

δβΩHS
ex rnlpr⃗1qs

δρpr⃗q
“

1
V

ÿ

l

ż

dr⃗2Tlpr⃗2qωlpr⃗2 ´ r⃗q

“
1
V

ÿ

l

F´1
!

Tlpk⃗qωlpkq

)

.

(5.18)
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Since the Fourier transform is a linear operation, the above expression can be

further simplified to,

δβΩHS
ex rnlpr⃗1qs

δρpr⃗q
“

1
V

F´1

#

ÿ

l

Tlpk⃗qωlpkq

+

. (5.19)

Here we need to calculate the Fourier transform of weight functions. They can be

find via equation (2.14):

ω3pk⃗, Rq “ “
4π
k3 psin pkRiq ´ kRi cos pkRiqq ,

ω2pk⃗, Rq “
4πRi

k
sin pkRiq ,

ω1pk⃗, Rq “
1
k

psin pkRiqq ,

ω0pk⃗, Rq “
1

4πR2
i k

sin pkRiq ,

ω⃗V 2pk⃗, Rq “i⃗kω3pk⃗, Rq,

ω⃗V 2pk⃗, Rq “
ω⃗pk⃗, Rq

4πR .

(5.20)

At the limit kÑ0 we have the following expression:

ω3pk⃗, Rq

ˇ

ˇ

ˇ

kÑ0
“

4πR3

3 ,

ω2pk⃗, Rq

ˇ

ˇ

ˇ

kÑ0
“4πR2,

ω1pk⃗, Rq

ˇ

ˇ

ˇ

kÑ0
“R,

ω0pk⃗, Rq

ˇ

ˇ

ˇ

kÑ0
“1,

ω⃗V 2pk⃗, Rq

ˇ

ˇ

ˇ

kÑ0
“0⃗,

ω⃗V 1pk⃗, Rq

ˇ

ˇ

ˇ

kÑ0
“0⃗.

(5.21)
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δβΩMF
ex {δρ

δβΩMF
ex

δρ
“

1
V

F´1
!

ρpk⃗qwpkq

)

(5.22)

BΩHS
ex {Bhm

In this section, we need to optimize the period of phases. The optimization of box

size is associated to the calculation of δΩ
δhm

. Similar to Eq. (5.10), BΩHS
ex {Bhm can

be written as,

BΩHS
ex rnlpr⃗1qs

Bhm

“
ÿ

l

ż

dr⃗2
δΩHS

ex rnlpr⃗1qs

δnlpr⃗2q

Bnlpr⃗2q

Bhm

“
1
V

ÿ

l

ż

dr⃗2Tlpr⃗2q
Bnlpr⃗2q

Bhm

.

(5.23)

where Tlpr⃗2q are the same as before and Bnlpr⃗2q

Bhm
are computed via,

Bnlpr⃗2q

Bhm

“ F´1
"

ρpk⃗q
Bωlpkq

Bhm

*

. (5.24)

Bωlpkq

Bhm
are given by,
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Bω3pk⃗, Rq

Bhm

“
Bω3pk⃗, Rq

Bk

ˆ

´
1
hm

k2
m

k

˙

,

Bω2pk⃗, Rq

Bhm

“
Bω2pk⃗, Rq

Bk

ˆ

´
1
hm

k2
m

k

˙

,

Bω1pk⃗, Rq

Bhm

“
Bω1pk⃗, Rq

Bk

ˆ

´
1
hm

k2
m

k

˙

,

Bω0pk⃗, Rq

Bhm

“
Bω0pk⃗, Rq

Bk

ˆ

´
1
hm

k2
m

k

˙

.

(5.25)

B

”

ωV 2pk⃗, Rq

ı

n

Bhm

“

$

’

’

’

’

&

’

’

’

’

%

i
km

hm

«

ω3pk⃗, Rq `
k2

m

k

Bω3pk⃗, Rq

Bk

ff

, m “ n

ikn
1
hm

k2
m

k

Bω3pk⃗, Rq

Bk
, m ‰ n

(5.26)

Bω⃗V 1pk⃗, Rq

Bhm

“
Bω⃗V 2pk⃗, Rq

Bhm

O

4πR, (5.27)

where
”

ωV 2pk⃗, Rq

ı

n
denotes the nth component of ω⃗V 2pk⃗, Rq. And the explicit

expressions are listed below:

Bω3pk⃗, Rq

Bk
“

4π r3kR cospkRq ` p´3 ` k2R2q sinpkRqs

k4 ,

Bω2pk⃗, Rq

Bk
“

4πR rkR cospkRq ´ sinpkRqs

k2 ,

Bω1pk⃗, Rq

Bk
“

rkR cospkRq ´ sinpkRqs

k2 ,

Bω0pk⃗, Rq

Bk
“

rkR cospkRq ´ sinpkRqs

k2R
,

(5.28)
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with,

Bω3pk⃗, Rq

Bk

ˇ

ˇ

ˇ

ˇ

ˇ

kÑ0

“
Bω2pk⃗, Rq

Bk

ˇ

ˇ

ˇ

ˇ

ˇ

kÑ0

“
Bω1pk⃗, Rq

Bk

ˇ

ˇ

ˇ

ˇ

ˇ

kÑ0

“
Bω0pk⃗, Rq

Bk

ˇ

ˇ

ˇ

ˇ

ˇ

kÑ0

“ 0. (5.29)

Summary of minimization process

For the lattice gas model and LDA model, the minimization procedure of precon-

ditioned conjugated gradient method is summarized below.

1. Initialization. Input the initial guess of ρ and obtain ρpkq and ηprq. At the

first step, there is no history of ψprq and ξprq, so ζ1 “ 0.

2. Computing preconditioner. In order to obtain ξipr⃗q, we need to calcualte

quantities: δβΩ
δρ

and δ2βΩ{δρ2

3. CGD Preparation. Update ψipr⃗q and perform the Fourier transform to get

ψipk⃗q.

4. Store History. Store ξipr⃗q and ψipr⃗q for the next step.

5. Adapt Step Size. Compute ϵi and θi. Required quantities: δΩ
δρpr⃗q

(computed

already), B2gi

Bϵ2 , dwpkq

dk
, dk

dhl
Ñ BΩ

Bhl
(3 for 3D), d2wpkq

dk2 , d2k
dhldhl1

, Ñ B2Ω
BhlBhl1

(9 for 3D).

In practice, we have found that ϵ and θ sometimes become negative. In that

case, we flip their sign to maintain positive values. We have also found that the

magnitude of ϵmay sometimes be quite large leading to divergence. To solve this

problem, we use a manual line search where we store the value of max
´ˇ

ˇ

ˇ

δF
δρ

ˇ

ˇ

ˇ

¯

for step i and iteratively decrease ϵ via ϵ “ 0.9 ˚ ϵ until max
ˆ

ˇ

ˇ

ˇ

δF
δρ

ˇ

ˇ

ˇ

i`1

˙

ă

max
´

ˇ

ˇ

ˇ

δF
δρ

ˇ

ˇ

ˇ

i

¯

or ϵ is lower than some threshold (a small value such as 0.01 times

the original ϵ). The spirit is that we only take a large step if it leads to a point
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with smaller absolute gradient, otherwise we just take a smaller step instead

unless the step becomes too small. The line search procedure can help us to

determine a step size that has a reasonable trade off between faster convergence

and better stability.

6. Execute GD or CGD. Update the fields and periods. If ρpr⃗q becomes neg-

ative, assign it to a small positive value, e.g. 10´8. If the periods become

negative, we flip their sign.

7. Update all quantities. Update ρpk⃗q, ηpr⃗q as well as all quantities that depend

on the periods.

8. Calculate the Grand Potential. Compute the grand potential.

9. Judge Convergence. Judge if the converging criteria are satisfied: Yes Ñ

output the results; No Ñ come back to step 2 and repeat steps 2 to 9 until

convergence.

For the FMT-WB, we perform the simple mixing and Anderson mixing algorithm:

1. Initialization. Input the initial guess of ρ and obtain ρpkq

2. Weight functions and weighted densities. At this step, we compute

ωαpkq and nαpkq. nαpkq Ñ nαprq. Then we compute Tlprq, Tlpkq and obtain

δβΩHS
ex {δρ.

3. Grand potential. We also need to calculate ωpkq and use the quantities

obtained previously to calculate the grand potential. Calculate the potential

energy difference ∆Ω: Ωnew ´ Ωold.
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4. Compute new ρ. Compute δΩHS
ex {δρ, δΩMF

ex {δρ to obtain ρnew. Compute

ρdiff “ ρnew ´ ρ. Find the maximum value of ρdiff and set it to be the error.

5. Compute hnew. Calculate quantities δpβΩq{δhm and new periods: hnew
m “

hm ´δβΩ{δhm. Find the maximum value of dβΩ{dhm and set it to be dhmax.

6. Store history Store the history of ρdiff and ρnew.

7. Update ρ and periods If |error| ą 10´5, we perform the simple mixing

method: ρi`1 “ ρi ` αρnew and hi`1
m “ hi

m ´ αdpβΩq{dhm. Otherwise, we

perform the Anderson mixing method.

8. Judge Convergence Using three conditions to judge the convergence: |∆Ω| ă

10´10, |error| ă 10´7, dhmax ă 10´7. If three conditions are satisfied, we ter-

minate the iteration and output the results. Otherwise, repeat step (2) to

step (7).

5.2 Appendix B

Phase initialization

We list our initial phases configurations in the table below. Those initial phases are

used as initial input in lattice gas model and local density approximation. Then we

use 1 to subtract the density function of phases. For example we can get the initial

density profile of inverse BCC phase via: ρINV BCCpx, y, zq “ 1 ´ ρBCCpx, y, zq. In

the table, L0 is the distance between nearest neighbour cluster. The period of each

phase is calculated from the geometric relationship. For FMT-WB, directly using

those initial complex phases (i.e. A15 and σ ) as initial conditions complex might
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cause instability issue during the iteration process. One proper way to solve this

problem is to use convergent solutions obtained from local density approximation

as initial input.

Initial phase configurations

phase discretization

size

Unit cell di-

mensions

initial functions or configurations

BCC

Nx “ 64 Lx “
?

2L0 (0,0,1),(0,1,0)

Ny “ 64 Ly “
?

2L0 (1,0,0),(1,1,0)

Nz “ 64 Lz “
?

2L0 (1,0,1),(1,1,1)

(0,1,1),(0,0,0)

p1
2 ,

1
2 ,

1
2q

FCC

Nx “ 64 Lx “
?

3L0 (0,0,1),(0,1,0)

Ny “ 64 Ly “
?

3L0 (1,0,0),(1,1,0)

Nz “ 64 Lz “
?

3L0 (1,0,1),(1,1,1)

(0,1,1),(0,0,0)

p1
2 ,

1
2 , 0q,p1

2 ,
1
2 , 1q

p0, 1
2 ,

1
2q,p1

2 , 0,
1
2q

p1
2 , 1,

1
2q,p1, 1

2 ,
1
2q

HCP

Nx “ 64 Lx “ 1.31L0 (0.5,0.1667,0.5),(0,0.6667,0.5)

Ny “ 64 Ly “ 2.27L0 (1,0.6667,0.5),(1,0.6667,0.5)

Nz “ 64 Lz “ 2.09L0 (0,0,0),(1,0,1)

(0,1,0),(0,0,1)

p1, 1, 0q,p1, 0, 0q

p0, 1, 1q,p1, 1, 1q
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p0.5, 0.5, 0q,p0.5, 0.5, 1q

A15

Nx “ 96 Lx “ 2.31L0 (0,0,0),(1,0,0)

Ny “ 96 Ly “ 2.31L0 (0,1,0),(0,0,1)

Nz “ 96 Lz “ 2.31L0 (1,1,0),(1,0,1)

(0,1,1),(1,1,1)

p0.5, 0.5, 0.5q,p0.75, 1, 0.5q

p0.25, 1, 0.5q,p0.5, 0.75, 0q

p0.5, 0.25, 0q,p1, 0.5, 0.25q

p0, 0.5, 0.25q,p1, 0.5, 0.75q

p0, 0.5, 0.75q,p0.5, 0.75, 1q

p0.5, 0.25, 1q,p0.75, 0, 0.5q

p0.25, 0, 0.5q

σ

Nx “ 96 Lx “ 2.31L0 (0,0,0),(0.3177, 0.6823, 0.2476)

Ny “ 96 Ly “ 2.31L0 (0,1,0),(0.8177, 0.8177, 0.7476)

Nz “ 96 Lz “ 2.31L0 (1,1,0),(0.6823, 0.3177, 0.2476)

(0,1,1),(0.1823, 0.1823, 0.2524)

p0.5, 0.5, 0.5q,p0.3684, 0.9632, 0.5q

p0.5368, 0.8684, 0q,p0.5368, 0.8684, 1q

p0.8684, 0.5368, 0q,p0.9632, 0.3684, 0.5q

p0.8684, 0.5368, 1q,p0.0368, 0.6316, 0.5q

p0.1316, 0.4632, 1q,p0.1316, 0.4632, 0q

p0.4632, 0.1316, 0q,p0.6316, 0.0368, 0.5q

p0.4632, 0.1316, 1q

p0.3177, 0.6823, 0.7524q, p1, 0, 0q

p0.8177, 0.8177, 0.2524q, p0, 0, 1q
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p0.6823, 0.3177, 0.7524q, p1, 0, 1q

p0.1823, 0.1823, 0.7476q, p1, 1, 1q

p0.1019, 0.8981, 0.5q, p0.6019, 0.6019, 1q

p0.6019, 0.6019, 0q, p0.3981, 0.3981, 1q

p0.3981, 0.3981, 0q, p0.8981, 0.1019, 0.5q

p0.0653, 0.7376, 0q, p0.0653, 0.7376, 1q

p0.2624, 0.9347, 0q, p0.2624, 0.9347, 1q

p0.5653, 0.7624, 0.5q, p0.2376, 0.4347, 0.5q

p0.7624, 0.5653, 0.5q, p0.4347, 0.2376, 0.5q

p0.7376, 0.0653, 0q, p0.7376, 0.0653, 1q

p0.9347, 0.2624, 0q, p0.9347, 0.2624, 1q

HEX

Nx “ 128 Lx “ 1.17L0 ρpx, y, zq “ cosp4πy{Lyq `

2 cosp2πx{Lxq cosp2πy{Lyq

Ny “ 128 Ly “
?

3L0

Nz “ 16 Lz “ L0

Lam

Nx “ 128 Lx “ L0

ρpx, y, zq “ 1.0 ` 0.5 cosp2πx{LxqNy “ 16 Ly “ L0

Nz “ 16 Lz “ L0

DG

Nx “ 64 Lx “ 2.5L0 ρpx, y, zq “

a

8.0{3.0pcospxq sinp2yq sinpzq `

cospyq sinpzq sinp2xq `

cospzq sinpxq sinp2yqq `

1.0{
?

3ppcosp2px ` yqq ` cosp2px ´

yqq ` cosp2pz ` yqq ` cosp2py ´ zqq `

cosp2 ˚ px ` zqq ` cosp2 ˚ px ´ zqqqq
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Ny “ 64 Ly “ 2.5L0

Nz “ 64 Lz “ 2.5L0

Table 5.1: The phase initialization parameters used in our works.

5.3 Appendix C

The density profiles of FMT-WB model

We plot the converged density profiles for following phases: HCP, Double Gy-

roid, Lamella, σ and A15 in Figure (5.1).
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Figure 5.1: Three-dimensional density profiles of different phases
are generated by FMT-WB model. The local packing effect is
clearly visible within clusters of spherical phases.
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