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Abstract

The silhouette score is a widely used technique to evaluate the quality of a clus-

tering result. One of the current issues with the silhouette score is its sensitivity

to outliers, which can lead to misleading interpretations. This problem is caused

by the silhouette score using the arithmetic mean to calculate the average intra and

inter-cluster distances.

To address this issue, three modified silhouette scores are presented: GenSil, Trim-

Sil, and extended TrimSil, which replace the arithmetic mean with the generalized

mean, the trimmed mean and a modified trimmed mean, respectively. Experiments

on both simulated and real-world datasets show that GenSil is the most effective

method, significantly reducing the impact of outliers and achieving high silhouette

scores with negative parameter values. TrimSil also improves silhouette scores but

performs worse than GenSil, while the extended TrimSil outperforms TrimSil but is

still less effective than GenSil. To further aid in selecting the optimal number of

clusters with these modified silhouette scores, a more straightforward visualization

technique, the silhouette-parameter plot, is also introduced.
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Chapter 1

Introduction

Clustering analysis is an unsupervised learning technique that assigns data points

into groups based on their underlying patterns (Everitt et al., 2011). Assessing the

accuracy of the clustering result is challenging because of the absence of prior knowl-

edge of the true labels. Various validation indices have been proposed to evaluate

the quality of clustering results. Some commonly used methods are discussed in Liu

et al. (2010).

This thesis focuses on the silhouette score. Rousseeuw (1987) introduced silhou-

ette score as a clustering evaluation method that measures the goodness of fit of

individual data points to their assigned clusters. The silhouette score can be dis-

played graphically, providing a more direct interpretation of the results. However,

Kaufman and Rousseeuw (1990) state that the silhouette scores lack robustness when

encountering outliers, and they imply that this issue is caused by the use of mean dur-

ing calculation. The presence of outliers affects the inter and intra-cluster distances,

resulting in a misleading silhouette score. To tackle this problem, we introduce three

modified silhouette scores, which reduce the impact of outliers by implementing the
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generalized mean, the trimmed mean, and an extended trimmed mean. A graphical

method associated with these three modified silhouette scores is also proposed to

simplify the selection process of the number of clusters.

Chapter 2 provides an introduction to the background related to these modified

silhouette scores. The detailed modification and visualization technique is explained

in Chapter 3. Chapter 4 demonstrates an extensive simulation study, and the perfor-

mance of all methods on real datasets is shown in Chapter 5. Lastly, a summary of

the work described in this thesis is presented in Chapter 6.
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Chapter 2

Background

2.1 Clustering

Clustering is a study of partitioning data points into distinct groups based on

their similarities without any knowledge of the true labels (McNicholas, 2016a). The

primary goal of clustering is to group objects with high similarity into the same

cluster, while keeping dissimilar objects in separate clusters. Similarities are typically

measured by the distances between observations. The Euclidean distance is the most

commonly used distance metric, some alternatives are discussed in Pandit and Gupta

(2011).

The majority of clustering algorithms can be categorized into three main groups:

hierarchical clustering, partitioning clustering, and model-based clustering (Rokach

and Maimon, 2005). Hierarchical clustering groups data through either successive

merges or successive divisions. In agglomerative hierarchical clustering, each data

point is initially considered as its own cluster, and then the most similar clusters are

progressively merged until they eventually form a single cluster. In contrast, divisive

3
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hierarchical clustering starts with a single cluster, and then recursively separates the

most dissimilar objects until each object is in its own cluster. Partitioning clustering

begins with an initial assignment of the data points, and then iteratively adjusts the

membership of each point until reaches an optimization. K-means is an example

of such clustering that minimizes the variance within each cluster. Model-based

clustering relies more on statistical methods compared to the other two types. It is

built on the assumption that the data points are generated by a finite number of

mixture models, and the parameters of these models need to be estimated. While the

mixture models can be based on any distribution, the Gaussian distribution is often

preferred in model-based clustering.

Since clustering is an unsupervised learning technique that operates on datasets

without any explicit labeling, computing a prediction accuracy is not applicable.

Instead, internal validation methods are used to evaluate the cohesion and separation

of clusters (Tan et al., 2019). The silhouette score is a typical example of such internal

validation, which measures the goodness of fit using the distances within each cluster

and between clusters.

2.2 Silhouette Score

The silhouette score is a visualization-based evaluation technique. Suppose for an

observation i, the cluster that i is assigned to is labeled as a, and its nearest neighbour

cluster is b, then its individual silhouette score s(i) is defined as:

s(i) =
b(i)− a(i)

max(a(i), b(i))
, (2.1)

4
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where a(i) denotes the average intra-cluster distance of observation i, and its average

inter-cluster distance is represented by b(i).

Silhouette scores take a minimum value of −1 and a maximum of 1. A silhou-

ette score of 1 indicates a perfect clustering, 0 shows that the observation is at the

boundary of two clusters, and −1 means a complete misclassification. The overall sil-

houette score, which is the average of all individual silhouette scores, can be used to

assess the quality of a clustering result. Kaufman and Rousseeuw (1990) recommend

an interpretation for the silhouette scores: a score above 0.70 is considered strong,

between 0.51 and 0.70 is reasonable, between 0.26 and 0.50 is relatively weak, and

anything below 0.25 is viewed as incorrect.

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette Plot with 4 clusters

Average silhouette width :  0.48

n = 255 4  clusters  Cj

j :  nj | avei∈Cj  si

1 :   52  |  0.86

2 :   152  |  0.39

3 :   40  |  0.44

4 :   11  |  0.05

Figure 2.1: An example of silhouette plot for a clustering result with 4 clusters.
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One of the most important features of the silhouette scores is their graphical rep-

resentation. Figure 2.1 provides an example of a silhouette plot for a clustering result

with 4 clusters. The silhouette plot consists of several groups of horizontal bars, where

the width of each bar represents the silhouette score of the corresponding observation.

Bars with negative silhouette scores are positioned in the opposite direction of the

positive ones, as shown in the lower part of Figure 2.1, indicating potential misclas-

sifications. The height of each group reflects the number of observations assigned to

that particular cluster, and the labels on the right-hand side show the average silhou-

ette score for each cluster. Additionally, the overall silhouette score is displayed at

the bottom.

Silhouettes can be helpful in determining the optimal number of clusters. The

number of clusters that achieves the highest overall silhouette score and produces

the most visually natural silhouette plot is the optimal choice. Some examples are

provided in Rousseeuw (1987), Shahapure and Nicholas (2020), and Dudek (2020).

In addition to its direct applications, the silhouette score has been explored for

integration into clustering algorithms to enhance their performance. Van der Laan

et al. (2003) propose two clustering algorithms, PAMSIL and PAMMEDSIL, which

replace the loss function in partition around medoids clustering with silhouette score

and simplified silhouette score, to identify small clusters effectively. Shutaywi and

Kachouie (2021) use silhouette scores as a weighting function to aggregate multiple

kernel k-means clustering results, aiming to achieve a less biased output. Batool

and Hennig (2021) introduce two clustering techniques, OSil and FOSil, that identify

clusters by maximizing the average silhouette score.

Despite the utility of the silhouette score in many aspects, it is affected by outliers.

6
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The calculation of the silhouette score relies on the average intra and inter-cluster

distances, a(i) and b(i). The existence of an outlier can increase the average distances

and impact the silhouette score.

For simplicity, assume that max(a(i), b(i)) = b(i) in the silhouette score. Suppose

that an outlier is in the same cluster as observation i, then the value of a(i) rises to

a′(i), resulting in a lower silhouette score as shown below:

a(i) < a′(i) → b(i)− a(i) > b(i)− a′(i) → b(i)− a(i)

b(i)
>

b(i)− a′(i)

b(i)
.

If the outlier exists in the nearest cluster of observation i, its impact on the sil-

houette score may differ depending on its specific location. Regardless of its position,

the overall effect remains undesired.

Therefore, the presence of outliers deviates the silhouette score from its natural

value, which can bring a negative impact on the clustering results.

2.3 K-Means Clustering

K-means (MacQueen, 1967; Lloyd, 1982) is a widely used clustering method. For

a predefined number of clusters k, the k-means algorithm chooses k centroids ran-

domly, calculates the distance between each data point and each centroid, and assigns

them to the cluster associated with their nearest centroid. After the initial cluster-

ing, k-means updates the centroids to the new within-cluster mean, recalculates the

distances, and reassigns the data points iteratively, until no further changes in the

cluster assignments occur. In other words, k-means finds the clustering by minimizing

the within-cluster variation.

7
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K-means clustering is often chosen due to its computational efficiency and in-

terpretability (Namratha and Prajwala, 2012). It has demonstrated successful ap-

plications across various fields (Govender and Sivakumar, 2020; Wang et al., 2017).

Nevertheless, it has been found that k-means tend to find spherical clusters with equal

size (de Craen et al., 2006).

In fact, k-means is equivalent to the classification expectation-maximization al-

gorithm on a particular Gaussian mixture model, where the mixing proportion πg

is equal for all components, and the covariance matrix takes the form of Σg = λI,

with λ being a positive constant and I being an identity matrix (Celeux and Govaert,

1992). More details on the Gaussian mixture model are discussed in the next section.

Several studies have explored the extensions of k-means clustering to adapt various

types of datasets. One example is partition around medoids or k-medoids clustering

(Kaufman and Rousseeuw, 1987), which replaces the centroids with medoids to en-

hance robustness. Another example is the k-modes algorithm introduced by Huang

(1997) as an extension of k-means for the categorical data. More modified k-means

algorithms are discussed in Shukla and Naganna (2014).

2.4 Gaussian Mixture Models

The finite Gaussian mixture model is another powerful clustering technique that

relies on the assumption of Gaussian distributions, and each cluster is considered as

a component. Its density is defined as:

f(x | ϑ) =
G∑

g=1

πgϕ(x | µg,Σg), (2.2)

8
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where G is the total number of components and ϑ is a vector of all parameters. πg is

the mixing proportion, representing the probability of the observation coming from

component g, therefore it follows that πg > 0 and
∑G

g=1 πg = 1. The ϕ(x|µg,Σg)

is the density function of component g, with a mean vector of µg and a covariance

matrix of Σg under a Gaussian distribution assumption.

Compared with k-means clustering, the Gaussian mixture model is more capable

of identifying clusters of various shapes and sizes (Grün, 2019), therefore it captures

more complex patterns in the data. An example of how Gaussian mixture models

outperforms k-means in real datasets is Amruthnath and Gupta (2018).

The family of 14 Gaussian parsimonious clustering models (GPCMs; Banfield and

Raftery, 1993; Celeux and Govaert, 1995) is introduced which puts constraints on the

volume, shape, and orientation of the component covariance matrix, to fit different

clustering situations. The component covariance matrix is expressed in the form of

eigenvalue decomposition

Σg = λgDgAgD
′
g, (2.3)

where λg is a constant, Dg is a matrix of the eigenvectors of Σg, and Ag is a diagonal

matrix with entries proportional to the eigenvalues of Σg. Table 2.1 is the list of 14

models from the GPCM family.

9
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Table 2.1: Models of the GPCM family.

Model Volume Shape Orientation Σg

EII Equal Spherical / λI

VII Variable Spherical / λgI

EEI Equal Equal Axis-Aligned λA

VEI Variable Equal Axis-Aligned λgA

EVI Equal Variable Axis-Aligned λAg

VVI Variable Variable Axis-Aligned λgAg

EEE Equal Equal Equal λDAD′

VEE Variable Equal Equal λgDAD′

EVE Equal Variable Equal λDAgD
′

EEV Equal Equal Variable λDgAD′
g

VVE Variable Variable Equal λgDAgD
′

VEV Variable Equal Variable λgDgAD′
g

EVV Equal Variable Variable λDgAgD
′
g

VVV Variable Variable Variable λgDgAgD
′
g

When choosing the most appropriate model from GPCMs, each model from the

family is run with multiple values of G. The best model is selected via the Bayesian

information criterion, also known as the BIC (Schwarz, 1978), calculated by

BIC = 2l(ϑ̂)− ρlogn, (2.4)

where ϑ̂ is the maximum likelihood estimate of ϑ, l(ϑ̂) is the maximized log-likelihood,

ρ is the number of free parameters, and n is the number of observations. The model

10
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with the largest BIC is selected as the best model. The parameters of the model are

usually estimated through the EM algorithm (Dempster et al., 1977).

The GPCMs are found to be an effective technique for clustering, examples are

the parsimonious generalized linear Gaussian cluster-weighted models proposed by

Punzo and Ingrassia (2015) and the clustMD method for clustering mixed-type data

presented by McParland and Gormley (2016). A detailed review of the GPCMs is

included in McNicholas (2016b) and Gormley et al. (2023).

The GPCM family of models is implemented in many packages in R (R Core Team,

2023), this thesis will use the mixture package (Pocuca et al., 2022).

2.5 Some Verification Indices

The accuracy and the adjusted Rand index (ARI) are used as references to verify

the performance of the three modified silhouette scores in Chapter 5.

2.5.1 Misclassification Rate and Accuracy

The misclassification rate is often seen in classification problems where the true

labels are given. For a dataset with n observations, the misclassification rate is

calculated by

1

n

n∑
i=1

I(yi ̸= ŷi), (2.5)

where the yi and ŷi are the true and predicted label for each observation, and I(yi ̸= ŷi)

is an indicator function that equals to 1 if yi ̸= ŷi, 0 otherwise (James et al., 2013).

1−misclassification rate represents the accuracy. Alternatively, the accuracy can

be calculated through a confusion matrix, where the diagonal elements represent the

11
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number of observations correctly classified, and the off-diagonal elements represent

the misclassified observations. Dividing the sum of diagonals by the total number of

observations gives the accuracy. It is typically a percentage between 0 and 1, with

higher values indicating higher accuracy.

2.5.2 Adjusted Rand Index

The Rand index (RI), introduced by Rand (1971), measures the similarity between

two partitions by the proportion of pairwise agreements over the total amount of pairs.

It can be expressed as:

RI =
True Positive + True Negative

Total number of pairs
. (2.6)

Here the True Positive represents the number of pairs that are assigned to the same

cluster in both partitions, while the True Negative indicates the number of pairs that

are assigned to different clusters in both partitions. The RI value ranges between 0

and 1, with a value of 1 implying perfect agreement between the two partitions.

The adjusted Rand index (ARI) is a modification of the Rand index that accounts

for agreements by chance (Hubert and Arabie, 1985). Its general formula is given by:

ARI =
RI− Expected RI

Maximum RI− Expected RI
. (2.7)

The ARI does not have a lower bound, but it is more desirable to have a positive

value. The upper bound of the ARI is 1, indicating a perfect agreement between two

partitions. The closer the ARI value is to 1, the more similar the two partitions are.

The expected value of ARI equals 0 under random classification.

12
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2.6 Generalized Mean

There are various methods of calculating the mean, such as the arithmetic mean

and the quadratic mean. These means can be generalized into one formula, known

as the generalized mean (Hardy et al., 1952). For a set of non-negative numbers

x = {x1, x2, . . . , xn} and a parameter p, the generalized mean of this set is defined as

µp (x) =

(
1

n

n∑
j=1

xp
j

) 1
p

. (2.8)

It is a comprehensive measure of the mean, as other definitions of the mean can

be achieved by adjusting the parameter p from −∞ to ∞. Some special values for p

include:

1. p = −∞, then µ−∞(x) = min (x1, . . . , xn), the minimum of x.

2. p = −1, then µ−1(x) =
1
n

∑n
j=1

1
xj
, the harmonic mean.

3. p = 0, then µ0(x) is defined as the geometric mean
(∏n

j=1 xj

) 1
n
.

4. p = 1, then µ1(x) is equivalent to the arithmetic mean 1
n

∑n
j=1 xj.

5. p = ∞, then µ∞(x) = max (x1, . . . , xn), the maximum of x.

Some important properties of the generalized mean are listed in Hardy et al.

(1952). Among these properties, the following is the most useful for this thesis, and

its proof is included in Appendix A.

Property 1. For non-negative x and any real valued p and q, if p > q, then µp(x) ≥

µq(x), with the equality holds only when the x are equal.

13
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This property directly implies that the generalized mean value decreases as the

parameter p decreases.

The generalized mean is often considered as the alternative for the arithmetic

mean to increase robustness against outliers. For example, Luukka and Leppälampi

(2006) modify a fuzzy similarity-based classification technique with the generalized

mean and successfully boost the prediction accuracy in some medical examples. Oh

and Kwak (2016) implement the generalized mean in the principal component analysis

and achieve a higher classification accuracy in image processing. Gou et al. (2019)

replace the arithmetic mean with the generalized mean in the distance-weighted k-

nearest neighbors, to avoid outliers dominating the classification result.

2.7 Trimmed Mean

The trimmed mean is a commonly used method that reduces the influence of

extreme values when calculating the average. It removes a certain percentage of

the highest and the lowest values from a set of numbers and computes the standard

arithmetic mean of the remaining observations. The trimmed mean focuses more on

the central observations, therefore is more robust to outliers (Fraiman and Muniz,

2001).

The trimming percentage, denoted as t, is the only parameter of the trimmed

mean, which ranges from 0 to 0.5. When t = 0, no observation is removed, and hence

the trimmed mean is equivalent to the original arithmetic mean. The trimmed mean

is the median of the number set if t = 0.5. The floor value is taken if the number of

objects to trim is not an integer.

A mathematical representation of the trimmed mean is as follows: for a set of

14
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ordered real numbers x = {x1, x2, . . . , xn}, the trimmed mean is

µt(x) =
1

n− 2⌊tn⌋

n−⌊tn⌋∑
j=⌊tn⌋

xj. (2.9)
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Chapter 3

Methodology

3.1 Silhouette Score with Generalized Mean

The implementation of the generalized mean in the silhouette score is initially

introduced by Lengyel and Botta-Dukát (2019), where they adopt the generalized

mean to assist non-spherical clusters in achieving higher silhouette scores. In our

study, the generalized mean is used to reduce the impact of outliers. There are no

restrictions on which clustering algorithm should be associated with the silhouette

score, this thesis focuses on k-means and GPCM clustering. Euclidean distance is

used for all the distance metrics.

Algorithm 1 describes the calculation process of the modified silhouette score with

generalized mean (GenSil). GenSil follows the same steps as the original silhouette

score, with the difference that the arithmetic mean is substituted by the general-

ized mean when computing the average within-cluster distance a(i) and the average

between-cluster distance b(i).
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Algorithm 1 GenSil

Obtain a clustering result from k-means or GPCM.

for each observation i do

1. Calculate a(i):

Compute the distance between i and each observation within its same cluster,

and store these distances in a vector x.

Calculate a(i) = µp(x) =
(

1
n

∑n
j=1 x

p
j

) 1
p

2. Calculate b(i):

Compute the distance between i and each observation in the nearest cluster to

i, and store these distances in a vector y.

Calculate b(i) = µp(y) =
(

1
m

∑m
j=1 y

p
j

) 1
p

3. Return the individual GenSil score s(i) = b(i)−a(i)
max(b(i),a(i))

end for

Calculate the overall GenSil score s̄ = 1
n

∑n
i=1 s(i).

According to Lengyel and Botta-Dukát (2019), the generalized mean with a low

parameter value places greater emphasis on neighboring objects and reduces the im-

pact from objects further away. Therefore, by choosing a small parameter value p,

GenSil minimizes the influence of outliers and highlights the importance of nearby

observations.

It is worth noting that as the parameter p approaches negative infinity, the gen-

eralized mean converges to the minimum value, which results in considering only the

closest neighbor and disregarding information from other observations. Thus, there

exists a trade-off between eliminating the impact of outlying values and considering

the overall dataset when choosing an appropriate value for the parameter p.
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3.2 Silhouette Score with Trimmed Mean

The silhouette score with trimmed mean (TrimSil) is another approach to enhance

the robustness of the silhouette score. The implementation of the trimmed mean in

the silhouette score follows a similar procedure described in Algorithm 1, but the

mean functions in step 1 and step 2 are the trimmed mean, i.e., for each observation

i,

a(i) = µt(x) =
1

n− 2⌊tn⌋

n−⌊tn⌋∑
j=⌊tn⌋

xj,

b(i) = µt(y) =
1

m− 2⌊tm⌋

n−⌊tm⌋∑
j=⌊tm⌋

yj.

As trimming percentage t gradually increases from 0 towards 0.5, the influence of

large distances, which are primarily caused by outliers, is diminished. By emphasizing

the central distance and disregarding the extreme values, the TrimSil score improves

the original silhouette score. The reduction in the impact of outliers makes the TrimSil

score a more stable approach compared to the original silhouette score.

A concern regarding the concept behind TrimSil is that, while it trims off the

largest distances, it also removes an equal amount of the smallest distances due to

the nature of a trimmed mean. As a result, the TrimSil score is computed based on

observations within a moderate range of distances, which may not fully capture the

importance of close-distance observations in the context of clustering. Since obser-

vations in close proximity often hold more relevance for identifying distinct clusters,

TrimSil may only result in minor improvements in the silhouette score, or in some

cases, even lead to an inferior score.
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To address this issue, an extended version of TrimSil is introduced.

3.2.1 Extension of TrimSil

The extended version of TrimSil introduces a modified trimmed mean. Instead

of trimming off both the highest and lowest values, the modified trimmed mean only

removes the largest values and retains the small values. A mathematical notation of

this modified trimmed mean is

µt(x) =
1

n− ⌊tn⌋

n−⌊tn⌋∑
j=1

xj, (3.1)

where x is a set of real numbers in ascending order, n is the total number of obser-

vations and t is the proportion of the largest values to be removed. The extended

TrimSil effectively integrates the modified trimmed mean in the computation of a(i)

and b(i). With this modified trimmed mean, the extended TrimSil is expected to

achieve a better balance between reducing the impact of outliers and retaining im-

portant information from closely located observations.

Upon this modification in the trimmed mean, the lower bound of the parameter t

remains 0, but the upper bound is extended from 0.5 to 1. When t = 0, the modified

trimmed mean is the same as the arithmetic mean. When t = 1, the modified trimmed

mean equals the smallest value in the number set.

The level of improvement obtained by the extended TrimSil is anticipated to be

greater compared to TrimSil. The inclusion of small distances in the calculation

takes the information from closely located observations into account, leading to a

more accurate evaluation of the clustering result. Therefore, the extended TrimSil is
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considered more reasonable than TrimSil for clustering assessment.

3.3 Parameter Selection

All of GenSil, TrimSil, and extended TrimSil require a pre-defined parameter.

GenSil requires a value for p within the range of −∞ to ∞. Similarly, TrimSil

requires a trimming percentage t, which is a non-negative number that is less than

or equal to 0.5, or 1 if using extended TrimSil.

Based on the definition of the generalized mean in the GenSil context, as p ap-

proaches negative infinity, the GenSil score continues increasing. Looking for the p

that returns the highest GenSil score is not reasonable, because it will always be the

negative infinity. The technique being used to determine the parameter value for Gen-

Sil in this thesis is that, run GenSil over a range of candidate values for p, plot the p

against its corresponding GenSil score, and select the most appropriate one according

to the graph. In practice, it is observed that this plot demonstrates a curved shape

that looks like a logarithmic growth, or a reversed elbow shape, shown as an example

in Figure 3.1. Initially, the GenSil score increases rapidly for the first few values of

p, then tends to level out as p continues decreasing. This pattern indicates that the

modified silhouette score rises significantly for the first few p, but the changes become

negligible after p reaches a certain value. The p at the point where the line begins

to level out, in other words, the elbow point, is selected as the parameter value for

GenSil.
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Figure 3.1: Example of the pattern of GenSil scores against different parameter values.

Selecting the trimming percentage for TrimSil and extended TrimSil is slightly

more challenging. In theory, the parameters of TrimSil and extended TrimSil can be

chosen following the same process as GenSil: plot the parameter values against the

silhouette score and select the value at the elbow point. However, in practice, the

reversed elbow shape is not always observed in the plot.

In some cases, the graph exhibits a linear trend, and hence the elbow point is no

longer applicable. If this is the case, some external techniques need to be used to

estimate the proportion of outliers in the dataset. For instance, the findGrossOuts

function from the oclust package (Clark and McNicholas, 2022) finds the number of

outliers in the dataset through DBSCAN, a scatter plot can visually identify potential

outliers, and a boxplot can find data points beyond the whiskers. The proportion of

outliers obtained from the data exploratory analysis is then chosen as the parameters
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for TrimSil and extended TrimSil.

3.4 Silhouette-Parameter Plot

The traditional silhouette plot appears wider for the most appropriate number of

clusters, k. The traditional visual approach to select optimal k involves generating

multiple clustering results with different k, drawing each of their silhouette plots,

and then choosing the one that appears the widest. This process is not complicated,

however, it is inconvenient as it requires running the algorithms multiple times and

comparing multiple plots, and the decision on the widest plot can also be subjective.

To overcome this issue, a new visualization technique, the silhouette-parameter

plot, is introduced to facilitate selecting the optimal k. This plot needs to work

with GenSil, TrimSil or extended TrimSil. The resulting graph is a collection of

line graphs, where the modified silhouette scores are on the vertical axis, and the

corresponding parameter values are on the horizontal axis, therefore it is called the

silhouette-parameter plot. This graphical approach offers insights into how the modi-

fied silhouette scores vary in response to changes in the parameter values with different

k.

Algorithm 2 explains the process of this visualization. The concept is to plot

multiple line graphs over a large range of parameters for each k and display them on

a single graph. The k value that corresponds to the highest line is then selected as the

optimal choice. This approach provides a more efficient visualization for determining

the optimal k.
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Algorithm 2 Finding the optimal number of clusters

1. List a range of the number of clusters, k.

2. List a range of parameters: p if using GenSil, t if using TrimSil or extended

TrimSil.

for k in the list from step 1 do

Calculate the overall modified silhouette score using each parameter in the list

from step 2.

end for

Plot the overall modified silhouette score against the parameter.

Choose the k that returns the top line in the plot.

Figure 3.2 demonstrates an example of the output graph using GenSil. The hori-

zontal axis is the p values ranging from 1 to −20, and the vertical axis is the average

overall silhouette score achieved by GenSil using each p. In this graph, different col-

ored lines represent different numbers of clusters. The line representing k = 4 locates

at the top, indicating that grouping the data into 4 clusters returns the highest overall

silhouette score. Similarly, the line for 6 clusters is the lowest in the plot, meaning a

low overall silhouette score. Lines that are higher in the graph are preferred, there-

fore in this example, 4 is suggested as the optimal number of clusters. Additionally,

observe that the line illustrates the reversed elbow shape as mentioned in Section

3.3. The silhouette score increases dramatically for the first few p values, then the

following growth becomes relatively negligible. In this particular example, the value

of p = −5, indicated by the vertical red line, is chosen to compute the GenSil score

as it is at the elbow point where the growth rate levels out.
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Figure 3.2: Example of selecting the optimal number of clusters and optimal param-
eter value using GenSil.

The silhouette-parameter plot effectively converts the silhouette plot into a line

graph, allowing for the representation of multiple line graphs in a single plot. In

contrast to the traditional silhouette plots, this new visualization is more straight-

forward and convenient because line graphs are easier to interpret and provide more

objective insights. Furthermore, the silhouette-parameter plot can suggest a suitable

parameter value, making the process of calculating the modified silhouette score more

efficient.
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Chapter 4

Simulation

4.1 Data Setting

To explore the factors influencing the performance of GenSil, TrimSil, and ex-

tended TrimSil, extensive clustering scenarios are simulated. For simplicity, two clus-

ters are generated from two separate Gaussian distributions, consisting of a total of

100 observations. The mean, variance, and number of observations are manipulated

to control the separation, compactness, and size of each Gaussian cluster. Further-

more, 5 extreme outliers are artificially added to each simulated dataset to evaluate

the performance of each method with and without outliers. Figures 4.1, 4.2, and 4.3

provide visual representations of the simulated datasets. The red and green points

form two clusters, and the grey points are the outliers.

25



M.Sc. Thesis - Yiran Zhang McMaster - Mathematics and Statistics

−4

−2

0

2

4

−4 −2 0 2 4

(a) High separation, high compactness, same size, no outliers

−4

−2

0

2

4

−4 −2 0 2 4

(b) High separation, high compactness, same size, 5% outliers

−4

−2

0

2

4

−4 −2 0 2 4

(c) High separation, high compactness, different size, no outliers

−4

−2

0

2

4

−4 −2 0 2 4

(d) High separation, high compactness, different size, 5% outliers

−4

−2

0

2

4

−4 −2 0 2 4

(e) High separation, low compactness, same size, no outliers

−4

−2

0

2

4

−4 −2 0 2 4

(f) High separation, low compactness, same size, 5% outliers

Figure 4.1: Simulation data settings (part 1).
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(l) Low separation, high compactness, different size, 5% outliers

Figure 4.2: Simulation data settings (part 2).
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(p) Low separation, low compactness, different size, 5% outliers

Figure 4.3: Simulation data settings (part 3).

For each simulated dataset, the performance of GenSil, TrimSil, and extended

TrimSil is evaluated. The parameter for GenSil uses the elbow point value described

in Section 3.3. For TrimSil and extended TrimSil, the trimming percentages are fixed

at 5%, which is the proportion of outliers in the data. For consistency, 500 iterations

are executed for each method, using both GPCM from the mixture package and k-

means clustering from stats package in R, with a fixed number of clusters set to 2.

The performance of each method is evaluated by their relative improvement, which

is calculated as follows:
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new silhouette score− original silhouette score

original silhouette score
× 100%. (4.1)

A positive relative improvement implies that the approach produces a higher sil-

houette score than the original, whereas a negative number suggests that the modified

silhouette score is lower than the original silhouette score.

4.2 Results

4.2.1 Results of GenSil

Tables 4.1 and 4.2 present the results of GenSil in each cluster scenario under

k-means and GPCM, respectively. The clustering scenarios, recorded in the first

column, are described in the order of ”Separation - Compactness - Cluster Size -

Outliers”.

GenSil demonstrates a higher relative improvement on clusters with low separa-

tion, low compactness, and a greater number of outliers. The cluster size, on the

other hand, does not appear to have a significant impact on its performance.

In scenarios without outliers or with highly compact and well-separated clusters,

GenSil performs similarly under both k-means and GPCM. However, when the ob-

servations within each cluster are dispersed and the clusters are close to each other,

GenSil outperforms k-means more than GPCM.

Most of the relative improvements are positive, indicating that the GenSil score

is higher than the original silhouette score. Only a single case returns a lower silhou-

ette score when using k-means. This phenomenon is particularly observed when the
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clusters are closely located, highly compact, of different sizes, and contain more out-

liers. Such a phenomenon is not observed when using GPCM. The current possible

explanation for this is that the clustering algorithm wrongly assigns the outliers to

their own cluster.

Nevertheless, GenSil proves to be a better alternative than the original silhouette

score due to its ability to produce higher scores when having outliers in the dataset.

Table 4.1: Relative improvement of GenSil using k-means from 500 iterations.

Scenario +ve output -ve output Relative Improvement

High - High - Same - No 500 0 4.37%

High - High - Same - Yes 500 0 7.17%

High - High - Different - No 500 0 4.51%

High - High - Different - Yes 500 0 6.02%

High - Low - same - No 500 0 24.3%

High - Low - Same - Yes 500 0 27.7%

High - Low - Different - No 500 0 25.3%

High - Low - Different - Yes 500 0 28.7%

Low - High - Same - No 500 0 32.1%

Low - High - Same - Yes 500 0 53.1%

Low - High - Different - No 500 0 33.7%

Low - High - Different - Yes 499 1 21.6%

Low - Low - Same - No 500 0 48.2%

Low - Low - Same - Yes 500 0 56.4%

Low - Low - Different - No 500 0 57.2%

Low - Low - Different - Yes 500 0 64.3%

30



M.Sc. Thesis - Yiran Zhang McMaster - Mathematics and Statistics

Table 4.2: Relative improvement of GenSil using GPCM from 500 iterations.

Scenario +ve output -ve output Relative Improvement

High - High - Same - No 500 0 4.39%

High - High - Same - Yes 500 0 7.62%

High - High - Different - No 500 0 4.52%

High - High - Different - Yes 500 0 8.87%

High - Low - same - No 500 0 24.3%

High - Low - Same - Yes 500 0 28.3%

High - Low - Different - No 500 0 25.3%

High - Low - Different - Yes 500 0 31.1%

Low - High - Same - No 500 0 32.4%

Low - High - Same - Yes 500 0 28.9%

Low - High - Different - No 500 0 34.5%

Low - High - Different - Yes 500 0 30.7%

Low - Low - Same - No 500 0 48.6%

Low - Low - Same - Yes 500 0 70.0%

Low - Low - Different - No 500 0 54.8%

Low - Low - Different - Yes 500 0 62.6%

4.2.2 Results of TrimSil

Tables 4.3 and 4.4 exhibit the relative improvements using TrimSil under k-means

and GPCM, respectively.
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Table 4.3: Relative improvement of TrimSil using k-means from 500 iterations.

Scenario +ve output -ve output Relative Improvement

High - High - Same - No 500 0 0.0695%

High - High - Same - Yes 500 0 1.60%

High - High - Different - No 500 0 0.0681%

High - High - Different - Yes 500 0 1.42%

High - Low - same - No 500 0 0.396%

High - Low - Same - Yes 500 0 1.16%

High - Low - Different - No 500 0 0.390%

High - Low - Different - Yes 500 0 0.971%

Low - High - Same - No 500 0 0.494%

Low - High - Same - Yes 497 3 6.52%

Low - High - Different - No 500 0 0.516%

Low - High - Different - Yes 401 99 3.37%

Low - Low - Same - No 494 6 0.526%

Low - Low - Same - Yes 500 0 3.28%

Low - Low - Different - No 414 86 0.447%

Low - Low - Different - Yes 498 2 2.67%
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Table 4.4: Relative improvement of TrimSil using GPCM from 500 iterations.

Scenario +ve output -ve output Relative Improvement

High - High - Same - No 500 0 0.0685%

High - High - Same - Yes 500 0 1.12%

High - High - Different - No 500 0 0.0662%

High - High - Different - Yes 500 0 0.209%

High - Low - same - No 499 1 0.388%

High - Low - Same - Yes 500 0 1.13%

High - Low - Different - No 500 0 0.387%

High - Low - Different - Yes 498 2 0.778%

Low - High - Same - No 500 0 0.485%

Low - High - Same - Yes 442 58 1.18%

Low - High - Different - No 500 0 0.533%

Low - High - Different - Yes 266 234 -0.311%

Low - Low - Same - No 491 9 0.525%

Low - Low - Same - Yes 495 5 2.97%

Low - Low - Different - No 492 8 0.793%

Low - Low - Different - Yes 477 23 0.578%

The relative improvement of TrimSil is higher when the clusters have low sepa-

ration and more outliers. When the clusters are well separated, TrimSil is found to

have better performance on those with low compactness; but when the clusters have

low separation, it performs better in those with high compactness. Similar to GenSil,

the size of the clusters has little impact on TrimSil’s performance.
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TrimSil has the same level of performance in both k-means and GPCM when

there are no outliers, or the clusters are highly compact and well separated. However,

when the observations in each cluster are dispersed and the clusters are close, TrimSil’s

performance in GPCM is much worse than in k-means.

The amount of improvement achieved by TrimSil is relatively small compared to

the ones from GenSil. Furthermore, TrimSil does not guarantee an improvement

when the clusters have low separation. When using k-means, 5 cluster scenarios show

negative relative improvements. Among these 5 scenarios, 2 of them (Low-High-

Different-Yes and Low-Low-Different-No) have a great number of negative values (99

and 86 out of 500 respectively). The results obtained from GPCM are even worse.

Negative outputs are observed in 8 scenarios. Particularly in the scenario with low

separation, high compactness, different cluster sizes, and more outliers, half of the

iterations produce a worse silhouette score than the original.

A plausible explanation for this phenomenon, as discussed in Section 3.2, is that

the trimmed mean removes both the large and small distances, leading to a more

significant impact, particularly in clusters with low separation and low compactness.

Another potential cause is that the clustering algorithm being used does not accu-

rately identify the optimal cluster assignments.

Therefore, it can be concluded that TrimSil is not an effective approach to raise

the silhouette score, because it either results in a minor improvement or a lower score.

In addition to the tests above, the function findGrossOuts from the oclust

package is used to assess the number of outliers within each simulated dataset. The

trimming percentage is then chosen as the estimated proportion of outliers, and the

34



M.Sc. Thesis - Yiran Zhang McMaster - Mathematics and Statistics

resulting relative improvement is computed. Table 4.5 illustrates the amount of rel-

ative improvement achieved using the t recommended by oclust for both k-means

and GPCM. We observe that the percentages of outliers estimated by oclust align

closely with the actual values, therefore it proves to be a reliable method to choose

the trimming percentage.

Table 4.5: Relative improvement obtained by TrimSil using k-means and GPCM
where t is estimated using oclust.

Scenario % outliers estimated k-means GPCM

High - High - Same - No 0% 0% 0%

High - High - Same - Yes 3% 0.929% 0.562%

High - High - Different - No 0% 0% 0%

High - High - Different - Yes 3% 1.06% 0.0506%

High - Low - same - No 0% 0% 0%

High - Low - Same - Yes 3% 0.670% 0.670%

High - Low - Different - No 0% 0% 0%

High - Low - Different - Yes 4% 0.773% 0.773%

Low - High - Same - No 1% 0% 0%

Low - High - Same - Yes 5% 5.95% 1.13%

Low - High - Different - No 0% 0% 0%

Low - High - Different - Yes 5% 1.84% 0.780%

Low - Low - Same - No 0% 0% 0%

Low - Low - Same - Yes 5% 3.08% 3.22%

Low - Low - Different - No 3% 0.409% 0.390%

Low - Low - Different - Yes 4% 2.93% 0.384%
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4.2.3 Results of Extended TrimSil

The relative improvement created by the extended TrimSil using k-means and

GPCM is shown in Table 4.6 and 4.7.

Table 4.6: Relative improvement of extended TrimSil using k-means from 500 itera-
tions.

Scenario +ve output -ve output Relative Improvement

High - High - Same - No 500 0 0.269%

High - High - Same - Yes 500 0 2.25%

High - High - Different - No 500 0 0.323%

High - High - Different - Yes 500 0 2.22%

High - Low - same - No 500 0 1.15%

High - Low - Same - Yes 500 0 2.59%

High - Low - Different - No 500 0 1.30%

High - Low - Different - Yes 500 0 2.18%

Low - High - Same - No 500 0 1.35%

Low - High - Same - Yes 497 3 10.8%

Low - High - Different - No 500 0 1.52%

Low - High - Different - Yes 407 93 4.07%

Low - Low - Same - No 500 0 1.79%

Low - Low - Same - Yes 500 0 5.18%

Low - Low - Different - No 488 12 2.04%

Low - Low - Different - Yes 499 1 4.58%

36



M.Sc. Thesis - Yiran Zhang McMaster - Mathematics and Statistics

Table 4.7: Relative improvement of extended TrimSil using GPCM from 500 itera-
tions.

Scenario +ve output -ve output Relative Improvement

High - High - Same - No 500 0 0.268%

High - High - Same - Yes 500 0 1.94%

High - High - Different - No 500 0 0.322%

High - High - Different - Yes 500 0 0.916%

High - Low - same - No 500 0 1.14%

High - Low - Same - Yes 500 0 2.54%

High - Low - Different - No 500 0 1.29%

High - Low - Different - Yes 500 0 1.93%

Low - High - Same - No 500 0 1.34%

Low - High - Same - Yes 460 40 2.62%

Low - High - Different - No 500 0 1.51%

Low - High - Different - Yes 481 19 1.53%

Low - Low - Same - No 500 0 1.88%

Low - Low - Same - Yes 497 3 5.32%

Low - Low - Different - No 486 14 1.74%

Low - Low - Different - Yes 499 1 2.35%

As an alternative for TrimSil, the extended TrimSil achieves higher improvement

than TrimSil in all simulated scenarios. The specific scenarios and clustering algo-

rithms that the extended TrimSil performs better in are the same as TrimSil.

Negative relative improvement still exists in a few cases for the extended TrimSil,

but it is observed less frequently than TrimSil. The number of scenarios containing

37



M.Sc. Thesis - Yiran Zhang McMaster - Mathematics and Statistics

negative output reduces to 4 when using k-means, and 5 when using GPCM. Moreover,

the amount of negative outputs observed from extended TrimSil is significantly less

than the ones from TrimSil.

The extended TrimSil is accepted as a better version of TrimSil, as it returns a

greater amount of improvement. However, its relative improvement remains little,

therefore it is still not as competitive as GenSil.

4.3 Silhouette-Parameter Plot

In this section, two simulations are carried out to demonstrate the performance of

the silhouette-parameter plot. The aim is to assess the alignment of the silhouette-

parameter plot with the traditional silhouette plot. The first simulation has clearly

separated clusters, while the second has fuzzy clusters.

4.3.1 Well-Separated Clusters Simulation

The first simulated dataset comprises 5 well-separated clusters. It consists of 250

observations sampled from a Gaussian distribution and divided into 5 distinct clusters

of equal sizes by adjusting their location. An additional 5 outliers are artificially added

to the dataset. Figure 4.4 is the graph of this simulated dataset.
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Figure 4.4: Simulated dataset with 5 well-separated clusters, 50 observations in each
cluster, and 5 artificial outliers. Points with the same color belong to the same group,
and the gray points are outliers.

Assuming no prior knowledge about the dataset, the k-means clustering is run

multiple times with 2 to 7 centers, and their respective silhouette plots are generated.

Figure 4.5 shows the silhouette plots of the clustering results obtained from k-means

with 2 to 7 clusters. Based on the visual interpretation, we determine that 6 clusters

represent the optimal number of clusters as its silhouette plot appears the darkest

among all. Although the optimal k does not align with the true k, this result is

reasonable considering the presence of outliers.
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Figure 4.5: The traditional silhouette plots of the dataset with well-separated clusters,
generated by k-means clustering with 2 to 7 clusters.

The silhouette-parameter plot is then generated from the same dataset, using k-

means with the same number of clusters. The outcomes using GenSil, TrimSil, and

the extended TrimSil are shown in Figure 4.6, 4.7, and 4.8, respectively.
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Figure 4.6: The silhouette-parameter plot of the dataset with well-separated clusters
generated by GenSil, using 2 to 7 clusters.

Observe from Figure 4.6 that the lines corresponding to 2 to 5 clusters overlap each

other as p decreases, and all of them appear to be relatively smooth, while the lines for

6 and 7 clusters fluctuate irregularly. Based on the description in Section 3.4, 2 to 5

clusters are all acceptable choices. This result does not follow our initial expectations

and the result from the traditional method. The graph fails to distinguish the correct

k from other k values that are smaller than it. But from another perspective, it

effectively indicates the maximum reasonable value for k. The k whose line graph is

not smooth is considered too large for the dataset. In this simulation, 5 is the largest

acceptable k value, because once it exceeds 5, the line graph fluctuates. Additionally,

this graph indicates that p = −2 is the optimal parameter because it is at the elbow
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point for all lines.

Figure 4.7 presents a more desirable result obtained by TrimSil. Although the

lines for 2 to 5 clusters are equally smooth, the line representing 5 clusters appears at

the top. Therefore, a conclusion can be drawn easily from this graph that 5 clusters

are the most ideal choice. However, the expected reversed elbow shape is not observed

from this graph, providing no useful information on the choice of parameter t.
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Figure 4.7: The silhouette-parameter plot of the dataset with well-separated clusters
generated by TrimSil, using 2 to 7 clusters.

The resulting graph generated using extended TrimSil is also straightforward, as

shown in Figure 4.8. The line corresponding to 5 clusters is the smoothest and highest

among all the lines, indicating that this dataset is better partitioned into 5 clusters,

which agrees with the result from TrimSil and the true labels. However, similar to
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TrimSil, there is no clear indication of the optimal choice of the parameter from this

graph.
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Figure 4.8: The silhouette-parameter plot of the dataset with well-separated clusters
generated by extended TrimSil, using 2 to 7 clusters.

4.3.2 Fuzzy Clusters Simulation

The second simulated dataset also contains 250 observations divided into 5 clus-

ters, and 5 outliers, as shown in Figure 4.9. Instead of having 5 well-separated clusters,

this dataset is designed to have 2 clusters closely located to the other 2 clusters, and

only 1 cluster far away. If the true labels are unknown, this dataset may give the

impression of having three clusters of unequal sizes.
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Figure 4.9: Simulated dataset with 5 fuzzy clusters, 50 observations in each cluster,
and 5 artificial outliers. Points with the same color belong to the same group, and
the gray points are outliers.

The silhouette plots of k-means with 2 to 7 centers are drawn in Figure 4.10. The

graph for 4 clusters seems to have the widest silhouette width, and the graph for 5

clusters is also competitive. This suggests that partitioning this dataset into either 4

or 5 clusters is considered reasonable.
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Figure 4.10: The traditional silhouette plots of the dataset with fuzzy clusters, gen-
erated by k-means clustering with 2 to 7 clusters.

Figure 4.11, 4.12, and 4.13 are the silhouette-parameter plots of this dataset using

GenSil, TrimSil, and extended TrimSil.

When using with GenSil, the lines for 2 to 5 clusters appear to be smooth, and

lines for 6 and 7 clusters fluctuate as shown in Figure 4.11. The lines for 2 and 3

clusters are closely located at the top, meanwhile, the lines for 4 and 5 clusters are

lower. This silhouette-parameter plot suggests that either 2 or 3 clusters are the best

k, 4 or 5 clusters are less desirable, and more than 5 clusters are not acceptable. This

result does not align with the result from silhouette plots. Although this plot does not

precisely identify closely located clusters, it effectively indicates that the maximum
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acceptable value for k is 5 through the smoothness of the lines. Moreover, the elbow

point for all lines occurs at p = −3, hence p = −3 is selected as the parameter for

GenSil. Therefore, the silhouette-parameter plot when used with GenSil, is better

to find the maximum acceptable value for k instead of the optimal k, and aid in

determining the parameter p.
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Figure 4.11: The silhouette-parameter plot of the dataset with fuzzy clusters gener-
ated by GenSil, using 2 to 7 clusters.

The graph generated by TrimSil is shown in Figure 4.12. The lines for 2 to 5

clusters are smooth, but the lines for 6 and 7 clusters are inconsistent and therefore

not considered. The line for 3 clusters is located at the top among all lines, indicating

that this dataset should be grouped into 3 clusters. Clustering into 4 or 5 clusters

is also acceptable because their lines are just slightly below the line for 3 clusters.
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This result aligns with the traditional silhouette plots for the most part. The lines

are relatively flat rather than curved, and thus no conclusions about the parameter

values can be drawn from this graph.
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Figure 4.12: The silhouette-parameter plot of the dataset with fuzzy clusters gener-
ated by TrimSil, using 2 to 7 clusters.

Figure 4.13 shows the silhouette-parameter plot drawn using extended TrimSil.

Similarly, only the lines corresponding to 2 to 5 clusters are smooth. Clustering

into 3 groups is strongly supported, while 4 and 5 groups are equally good options.

Clustering into 2 groups is not competitive until t reaches 0.5, meaning half of the

observations are trimmed off. This result partly aligns with the traditional silhouette

plots. Once again, the graph is inconclusive on the selection of the parameter t due

to the location of the elbow point being unclear.
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Figure 4.13: The silhouette-parameter plot of the dataset with fuzzy clusters gener-
ated by extended TrimSil, using 2 to 7 clusters.

In summary, based on the results from the two simulations above, the silhouette-

parameter plot proves to be more effective and stable in identifying the maximum

acceptable value for k, rather than the optimal value. Once the value of k exceeds

this maximum, the line graph in the plot becomes non-smooth and easily distinguish-

able. TrimSil and extended TrimSil perform better with the silhouette-parameter

plot compared to GenSil, as their suggested optimal k is closer to the true value,

especially when the clusters are well-separated. However, it is worth noting that the

silhouette-parameter plot only provides a suggested value for the parameter of Gen-

Sil, while the parameters for TrimSil and extended TrimSil need to be determined

through other techniques.
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Application

Figure 5.1: Pairs plot of the iris dataset.

49



M.Sc. Thesis - Yiran Zhang McMaster - Mathematics and Statistics

The iris dataset, collected by Fisher (1936), consists of numeric measurements of

sepal length, sepal width, petal length and petal width for 150 iris flowers. These

samples are evenly distributed over three species: Setosa, Versicolor and Virginica.

A small number of outliers are observed from Setosa and Virginica according to the

pairs plot in Figure 5.1.

The true labels of the iris dataset are removed to create the condition for cluster-

ing. Note that the patterns from Versicolor and Virginica are overlapping, therefore

a fuzzy partition between these two groups is expected. The silhouette-parameter

plots using all three methods are drawn to determine the most ideal or the maximum

number of clusters for the iris dataset. The resulting graphs are shown in Figures 5.2,

5.3, 5.4. The line corresponding to 2 is at the top in all three plots, followed by the

line of 3 clusters. The results suggest that 2 clusters are a better choice for the iris

dataset. However, considering the prior knowledge that the true number of clusters

is 3 and the conclusion from Section 4.3, the performance of all three methods will

be evaluated using both 3 and 2 clusters. p = −8 is selected as the parameter for

GenSil as it is located at the elbow point. Due to the absence of the curve shape in the

plots associated with TrimSil and extended TrimSil, both an exploratory analysis and

oclust is run to estimate the proportion of outliers in the iris dataset. Both results

agree that approximately 4 out of 150 observations are considered as outlying values,

which takes about 3% of the entire dataset. Therefore t = 0.03 for both TrimSil and

extended TrimSil.
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Figure 5.2: Silhouette-parameter plot associated with GenSil.
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Figure 5.3: Silhouette-parameter plot associated with TrimSil.
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Figure 5.4: Silhouette-parameter plot associated with extended TrimSil.

Firstly, the iris dataset is clustered into 3 groups using both k-means and GPCM.

The clustering result from k-means has a silhouette score of 0.5528, which indicates

a fair quality. However, when comparing the predicted labels from k-means with

the true labels, it is found that 89.3% of the observations are classified correctly,

with an ARI of 0.73. These verification indices suggest that the clustering performs

satisfactorily, and hence this clustering result deserves a higher silhouette score. The

results obtained from GPCM are similar: an intermediate silhouette score of 0.5012,

but a high accuracy of 96.7% and a high ARI of 0.90. To further enhance the silhouette

score, GenSil, TrimSil, and extended TrimSil are applied.

Table 5.1 provides a comparison among the original silhouette score, GenSil score,

TrimSil score, and extended TrimSil score for the iris dataset using 3 clusters. All
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methods return a higher silhouette score than the original. However, GenSil demon-

strates a more significant improvement while TrimSil and extended TrimSil make

little changes. The extended TrimSil score is slightly higher than the TrimSil score.

Overall, GenSil yields more favorable silhouette scores for the iris dataset, whether

applying k-means or GPCM clustering.

Table 5.1: Four silhouette scores of the iris dataset using k-means and GPCM (3
clusters)

Original Silhouette Score GenSil TrimSil extended TrimSil

K-Means 0.5528 0.7312 0.5534 0.5573

GPCM 0.5012 0.7048 0.5030 0.5078

The performance of partitioning the iris dataset into 2 groups is also assessed.

However, the accuracy and the ARI are not applicable in this case as the number

of clusters does not align with the true labels. Therefore, only the silhouette scores

are considered. The silhouette scores obtained by k-means and GPCM are 0.6810

and 0.6867, respectively. Although these scores are higher compared to the 3 clusters

scenario, they have not yet reached satisfactory. The GenSil, TrimSil and extended

TrimSil scores are presented in Table 5.2.

Table 5.2: Four silhouette scores of the iris dataset using k-means and GPCM (2
clusters)

Original Silhouette Score GenSil TrimSil extended TrimSil

K-Means 0.6810 0.8534 0.6860 0.6925

GPCM 0.6867 0.8901 0.6898 0.6958

All methods produce a higher silhouette score than the original score, and the
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scores obtained from k-means are almost identical to the ones from GPCM. Among

the three modified silhouette scores, GenSil stands out by achieving the highest score

and demonstrating the most improvement over TrimSil and extended TrimSil. As

expected, extended TrimSil obtains a slightly higher score than TrimSil.

To summarize, the ranking of these three modified silhouette scores based on their

performance is as follows: GenSil, extended TrimSil, and TrimSil. As a result, GenSil

is recommended over the original or the other modified silhouette scores for the iris

dataset. In addition to that, the silhouette-parameter plot suggests that partitioning

the iris dataset into 2 clusters is better.
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Conclusion

GenSil, TrimSil, and extended TrimSil were introduced to reduce the impact of

outliers on the calculation of the silhouette score. These methods replaced the arith-

metic mean in the original silhouette score with the generalized mean, the trimmed

mean and a modified trimmed mean, respectively. GenSil minimized the impact of

outliers by adopting a negative p value, whereas TrimSil reduced the influence of out-

liers by discarding the extreme distances, and the extended TrimSil improved TrimSil

by retaining the small distances while trimming.

A visualization technique, the silhouette-parameter plot, was proposed to help

with the selection of the optimal number of clusters and parameter values for GenSil,

TrimSil, and extended TrimSil. It improved the existing method by simplifying the

process and demonstrating the relationship between the silhouette scores and the

parameters from various cluster numbers in a single graph.

The performance of all methods was investigated through an extensive simulation

study on 16 different cluster settings. The findings indicated that all three methods

exhibited improved performance when the clusters were closely located and contained
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a higher number of outliers. GenSil demonstrated better results in scenarios where the

clusters were dispersed, whereas the effect of compactness on TrimSil and extended

TrimSil was dependent on the level of separation between clusters. The size of the

clusters did not significantly influence the performance of either GenSil or (extended)

TrimSil. Additionally, the choice between k-means and GPCM did not affect the

performance of all methods when the clusters were clearly separated or contained no

outliers. However, all methods tended to perform better with k-means when the sep-

aration and compactness decreased. Furthermore, GenSil consistently generated an

improved silhouette score, while TrimSil and extended TrimSil occasionally returned

a lower score, particularly in closely located clusters.

Finally, the effectiveness of these modified silhouette scores was demonstrated on

the iris dataset. The iris dataset was considered to have high classification accuracy

and ARI, but a low silhouette score due to the presence of outliers. GenSil, TrimSil,

and extended TrimSil had been proven to be effective in enhancing the silhouette

scores, while GenSil increased the silhouette score more significantly than TrimSil and

extended TrimSil. The silhouette-parameter plot suggested that its optimal number

of clusters was 2.

In conclusion, when evaluating the quality of clustering results for datasets con-

taining outliers or clusters with low separation, all of these three modified silhouette

scores can be considered as a substitution for the original silhouette score. While Gen-

Sil demonstrates the greatest amount of improvement, TrimSil and extended TrimSil

are found to be more useful in practice. These two methods align better with the

silhouette-parameter plot to assist in the identification of the optimal number of clus-

ters.
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Appendix A

Proof of Property 1

Proof. The proof of Property 1 is built on Jensen’s Inequality (Jensen, 1906):

If ϕ(x) is a convex function, then ϕ
(

1
n

∑n
j=1 xj

)
≤ 1

n

∑n
j=1 ϕ(xj).

If ϕ(x) is a concave function, then ϕ
(

1
n

∑n
j=1 xj

)
≥ 1

n

∑n
j=1 ϕ(xj).

To prove Property 1, the following three cases are considered:

Case 1: p > 0 > q

To prove µp ≥ µ0, i.e.,

(
1

n

n∑
j=1

xp
j

) 1
p

≥

(
n∏

j=1

xj

) 1
n

(A.1)

Take the natural log on both sides and get

1

p
log

(
1

n

n∑
j=1

xp
j

)
≥ 1

n
log

(
n∏

j=1

xj

)
=

1

n

n∑
j=1

log (xj) (A.2)
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Given p > 0, multiply p on both sides and get

log

(
1
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n∑
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A.3 must hold to prove A.1. Knowing that log is a concave function, from Jensen’s

Inequality, log
(

1
n

∑n
j=1 x

p
j

)
≥ 1

n

∑n
j=1 log

(
xp
j

)
is true. Therefore µp(x) ≥ µ0(x) for

p > 0.

Given 0 > q, µ0(x) ≥ µq(x) can be proved following the same procedure as

above. Combining the two results above, we conclude that µp(x) ≥ µ0(x) ≥ µq(x)

for p > 0 > q.

Case 2: p > q > 0

To prove µp(x) ≥ µq(x), i.e.,

(
1
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(A.4)

Take both sides to the power of p
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xq
j

) p
q

(A.5)

Note that p > q > 0, therefore p
q
> 1, and hence x

p
q is a convex function (for

non-negative x). By Jensen’s inequality, the following holds

(
1

n

n∑
j=1

xq
j

) p
q

≤ 1

n

n∑
j=1

(
xq
j

) p
q =

1

n

n∑
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xp
j (A.6)

A.5 holds, therefore proves that µp(x) ≥ µq(x) for p > q > 0.
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Case 3: 0 > p > q

Similar to case 2, but the inequality sign flips as we take the power of p on both

sides due to the fact that p is negative.

1

n

n∑
j=1

xp
j ≤

(
1

n

n∑
j=1

xq
j

) p
q

(A.7)

Given 0 > p > q, we know that 0 < p
q
< 1, and x

p
q is a concave function for

non-negative x. Then based on Jensen’s inequality, the inequality below is true:

(
1

n

n∑
j=1

xq
j

) p
q

≥ 1

n

n∑
j=1

(
xq
j

) p
q =

1

n

n∑
j=1

xp
j (A.8)

A.7 is true, therefore µp(x) ≥ µq(x) for 0 > p > q.

This property can also be proved alternatively by taking the first derivative with

respect to p and showing that it is non-negative.

Case 1: p < 0

µ(p) =

(
1

n

n∑
j=1

xp
j

) 1
p

= e
1
p
(log

∑n
j=1 x

p
j−log(n))

∂

∂p
µp = e

1
p
(log

∑n
j=1 x

p
j−log(n))[− 1

p2
log

n∑
j=1

xp
j +

1

p

∑n
j=1 x

p
j log(xj)∑n

j=1 x
p
j

+
1

p2
log(n)]

= e
1
p
(log

∑n
j=1 x

p
j−log(n))[− 1

p2
log

n∑
j=1

xp
j +

1

p

∑n
j=1 x

p
j log(xj)∑n

j=1 x
p
j

] + e
1
p
(log

∑n
j=1 x

p
j−log(n)) 1

p2
log(n)

The term e
1
p
(log

∑n
j=1 x

p
j−log(n)) is an exponential function, therefore it is positive for

all values of p. Given that n ≥ 1, it is known that log(n) ≥ 0. Therefore, it is left to
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show that − 1
p2
log
∑n

j=1 x
p
j +

1
p

∑n
j=1 x

p
j log(xj)∑n

j=1 x
p
j

≥ 0.

− 1

p2
log

n∑
j=1

xp
j +

1

p

∑n
j=1 x

p
j log(xj)∑n

j=1 x
p
j

≥ 0

− 1

p2
[log

n∑
j=1

xp
j − p

∑n
j=1 x

p
j log(xj)∑n

j=1 x
p
j

] ≥ 0

log
n∑

j=1

xp
j − p

∑n
j=1 x

p
j log(xj)∑n

j=1 x
p
j

≤ 0

Given that log(x) is a concave function, therefore by Jensen’s Inequality, log
∑n

j=1 x
p
j ≥∑n

j=1 log(x
p
j) = p

∑n
j=1 log(xj). Substitute this inequality into the previous formula

and get:

p
n∑

j=1

log(xj)− p

∑n
j=1 x

p
j log(xj)∑n

j=1 x
p
j

≤ 0

n∑
j=1

log(xj)−
∑n

j=1 x
p
j log(xj)∑n

j=1 x
p
j

≥ 0

n∑
j=1

log(xj)
n∑

j=1

xp
j −

n∑
j=1

xp
j log(xj) ≥ 0

n∑
j=1

log(xj)
n∑

j=1

xp
j ≥

n∑
j=1

xp
j log(xj)

The above inequality is true by the Cauchy–Schwarz inequality. Therefore the

first derivative of µ(p) is greater or equal to 0.
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Case 2: p = 0

µ(p) = (
n∏

j=1

xj)
1
n

∂

∂p
µp =

∂

∂p
(

n∏
j=1

xj)
1
n = 0

Therefore ∂
∂p
µp ≥ 0 holds.

Case 3: p > 0

This case can be proved followed by a similar approach as in case 1, where we

want to show that − 1
p2
log
∑n

j=1 x
p
j +

1
p

∑n
j=1 x

p
j log(xj)∑n

j=1 x
p
j

≥ 0.

− 1

p2
log

n∑
j=1

xp
j +

1

p

∑n
j=1 x

p
j log(xj)∑n

j=1 x
p
j

≥ 0

1

p2
[log

n∑
j=1

xp
j − p

∑n
j=1 x

p
j log(xj)∑n

j=1 x
p
j

] ≥ 0

log
n∑

j=1

xp
j − p

∑n
j=1 x

p
j log(xj)∑n

j=1 x
p
j

≥ p
n∑

j=1

log(xj)− p

∑n
j=1 x

p
j log(xj)∑n

j=1 x
p
j

≥ 0

n∑
j=1

log(xj)−
∑n

j=1 x
p
j log(xj)∑n

j=1 x
p
j

≥ 0

n∑
j=1

log(xj)
n∑

j=1

xp
j −

n∑
j=1

xp
j log(xj) ≥ 0

n∑
j=1

log(xj)
n∑

j=1

xp
j ≥

n∑
j=1

xp
j log(xj)

Hence, the first derivative of µ(p) is non-negative with respect to p, which implies

that the generalized mean is monotonic increasing.
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