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Chapter 1

Introduction

Over the last several decades, quantum spin systems have been a playground for vari-

ous topics in physics. Whether they emerge from interactions between electrons in the

Hubbard model or model magnetic properties in materials, spin systems can provide

very exciting physics. Magnetic phenomena has a long and storied history in condensed

matter and continues to do so to this day. Spin interactions play important roles in

other systems like superconductivity, where electrons of opposite spin can pair up to

form a bound state called a cooper pair. Moreover, spin-orbit coupling was also used

to propose a topological insulator, a field which has since received massive attention.

With topological phenomena in physics attracting a lot of interest due to its potential

application to quantum computing, it is natural to wonder what kind of materials we

could use to build such a device. It was proposed by Kitaev, that a spin system, called

the Honeycomb model, could host a phase that can be used for quantum computation

due to its topological nature. This kind of phase has since been named a quantum spin

liquid as the spins within the system show no long range order and show large entan-

glement. Since then, several attempts have been made to realize this phase in materials.

Theoretical studies try to discover what the necessary interactions are to host the

spin liquid phase and how they effect its stability. This is typically done numerically

as spin systems are quite difficult to deal with analytically, where the goal is study the

phases admitted by the models. Of the possible set of interactions hypothesised to be

important in materials that can host spin liquids, one particular interaction called the

Gamma interaction is not well understood. The goal of this work is to understand the

role the gamma interaction plays in these systems. In particular, we want to study

the Heisenberg and Gamma interaction on a ladder of sites and determine the phases

1
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of this model with the help of the density matrix renormalization group (DMRG), a

numerical technique.

The structure of the thesis is as follows: In chapter 2 we present the necessary the-

oretical background relating to 1D spin chains, numerical techniques and symmetry

protected topological phases. Then in chapter 3 the Kitaev honeycomb model is intro-

duced and the origin of the Kitaev spin liquid is explained. Candidate materials are

discussed, relevant spin models are presented and the Heisenberg Gama ladder is intro-

duced. In chapter 4 we present the results of the analysis on the Heisenberg Gamma

ladder and discuss the phase diagram. We then conclude the work in chapter 5 and

have a brief outlook on other research avenues.
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Chapter 2

Theory

In this section we introduce the theoretical background related to spin chains relevant

to the study of the Heisenberg Gamma ladder. We begin by introducing Lieb-Mathis-

Shultz type theorems that allow information of the ground state to be obtained if there

exists an energy gap in the system. By using the singular value decomposition’s, we

derive the Schmidt decomposition of an arbitrary state and use it to probe the bipar-

tite entanglement of the system. Then, by using the area law exhibited by gapped

ground states of local Hamiltonians, we show that bounded entanglement entropy in

one dimension allows for an approximation of the ground state by the Schmidt decom-

position. Matrix product states are then introduced, along with their calculus, with a

brief explanation about why they are an efficient representation of 1D spin states. A

variational technique known as the density matrix renormalization group is introduced

algorithmically and related to the process of renormalization and iterative growth in

the finite and infinite context. Lastly, symmetry protected topological states are dis-

cussed as the appearance of projective symmetries acting on the matrix product state

representation of the 1D spin state.

2.1 1D Spin Chains and Entanglement

2.1.1 Spin Chains And Their Large Hilbert Spaces

One dimensional spin chains are examples of prototypical quantum systems. At low

temperatures, such systems provide models for magnetism mediated by the most quintessen-

tial quantum property, spin. Examples of such systems are the transverse ising model

and its closely related, more general, model the Heisenberg (anti)ferromagnet. Spin

3
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chain systems in general are comprised of many individual spins, and their interactions

can severely hinder attempts to study them. We typically represent the spin many

body state as a combination as

|ψ⟩ =
∑

σ1,σ2,...,σN

cσ1,σ2,...,σN
|σ1, σ2, ..., σN⟩. (2.1)

where σi is the spin at site i and |σ1, σ2, ..., σN⟩ = |σ1⟩⊗|σ2⟩...⊗|σN⟩, i.e. the general spin
state is some linear combination of states made from products of single particle states.

This means that for N spins, we have a Hilbert space of size 2N which very quickly

becomes problematic when performing calculations analytically or numerically. The

former fails to be useful in general as the tools available to probe such systems typically

fail in the presence of strong interactions and the latter is typically limited to studying

smaller systems sizes (N ≈ 10 − 20). It is possible to still access the spectrum of such

systems through an appropriate unitary transformation by exploiting symmetries and

when the interactions are fairly weak, either by perturbation theory or through some

sparse numerical solvers. However, this does limit the kinds of systems one can analyze

as strongly correlated systems present non zero off diagonal interactions which cannot

be ignored and increase the computational complexity of numerical techniques.

Fortunately, condensed matter systems of interest typically involve the first few

lowest energy eigenstates, making their analysis tractable. This normally means that

the analysis can be restricted to a single state (or set of states) who’s nature can be

inferred via the symmetries present and some approximation scheme. Some examples

include BCS theory [1] and Band Theory both of which have had major success in

describing superconductors and low dimensional fermionic systems, respectively, in the

thermodynamic limit.

2.1.2 The Heisenberg Antiferromagnetic and the Lieb-Schultz-

Mattis Type Theorems

In the case of spin systems, there exists theorems on classes of models that make claims

on the nature of the ground state and its energy gap. For example, take the 1D quantum

antiferromagnetic Heisenberg Model with periodic boundary conditions:

H = J
L∑
i=1

Si · Si+1 + JSL · S1.

where S = (Sx, Sy, Sz), L is the number of sites in the chain and J > 0. If the spins

on the chain are of half integer spin, i.e. S = 1/2, 3/2... for L even, then there is

4
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an excitation with energy E1 such that E1 = E0 as L → ∞ [2]. In other words, the

ground state is degenerate in the thermodynamic limit or said to be gapless. This is

primarily due to the fact that half integer spins differ from their original wavefunction

when rotated by 2π by a factor of −1. Therefore, due to the SU(2) invariance of the

Hamiltonian, one can slightly rotate all of the spins in the x-y plane with

U = exp

(
i
2π

L

L∑
j=1

jSz
j

)
.

However in 1983 Haldane conjectured that if the spins in the chain have spin 1 the

system has a gapped unique ground state which is disordered [3]. Such a contrast

in the behaviour of integer vs half integer is surprising and shows that there is an

important difference in the behaviour of the ground state based on the kinds of spins

in the chain. In general, it is not a trivial task to obtain the ground state of the

quantum antiferromagnetic Heisenberg model, but such theorems do offer a place to

begin searching for an approximate state that one can begin to analyze in similar spin

systems.

2.1.3 The Schmidt Decomposition

One approach in characterizing systems in order to gain information about their low

lying states is to study the bipartite entanglement. It is of interest to first rewrite the

many body state into a more useful form that naturally allows for the bi-partitioning

of the entire system. A pure state |ψ⟩ that is separable by some partition into two

subsystems A and B, can be written as

|ψ⟩ =
∑
i,j

Cij|ai⟩|bj⟩.

where |ai⟩ ∈ HA and |bi⟩ ∈ HB are both bases of their Hilbert spaces of dimension dA

and dB respectively. If we treat Cij as the entries of a matrix, of dimension dA × dB we

can apply the singular value decomposition (SVD) so that C = USV †. The matrices

U and V † are such that

U †U = I, V †V = I.

U and V † are semi-unitary matrices, the hermitian conjugate of the above equations

do not in general equal the identity. As this decomposition holds for any n×m matrix,

the dimensions of these matrices may not in general be the same. The last matrix S is

5
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a diagonal matrix with non-negative entries, Sii = si, called the singular values and are

typically ordered in a decreasing fashion. Using the SVD, we can rewrite our state as

|ψ⟩ =
∑
i,j

d∑
k=1

UikSkkV
∗
jk|ai⟩|bj⟩.

where d = min(dA, dB) is the smaller of the dimensions of the original matrix. Expand-

ing
∑

ij as
∑

i

∑
j, we have

|ψ⟩ =
d∑

k=1

sk

(∑
i

Uik|ai⟩

)(∑
j

V ∗
jk|bj⟩

)
=

d∑
k=1

sk|kA⟩|kB⟩. (2.2)

By the properties of U and V †, the bases {|kA⟩} and {|kB⟩} are orthonormal bases

of HA and HB. Finally, restricting the sum to some r < d so that only the non-zero

values are included yields the Schmidt Decomposition. The number r is referred to as

the Schmidt rank of the state and is quick indicator of the nature of the state while

the singular values si are called the Schmidt values. If r = 1 then the system is just

a product state while if r > 1 the state is a superposition of several states and is

entangled. The main benefit of writing the state in this form is the ease in accessing

the entanglement of the state. We can form the density matrix

ρ = |ψ⟩⟨ψ| =
r∑

i=1

r∑
j=1

sisj|iA⟩|iB⟩⟨jA|⟨jB|.

Tracing out either subsystem, by exploiting the orthonormality of the states on their

subsystem, yields the reduced density matrix on the other

ρA = TrB (ρ) =
r∑

i=1

s2i |iA⟩⟨iA|.

ρB = TrA (ρ) =
r∑

j=1

s2j |jB⟩⟨jB|.

This means that both operators have the same eigenvalues even though they are sup-

ported on different Hilbert spaces. Crucially, we have that the eigenvalues of the reduced

density matrices λi are related to the Schmidt values si by λi = s2i . In this work, we

will refer to the eigenspectrum {λi} of ρA/B, the Schmidt values {s2i }, and the singular

values {si} interchangeably as they are all related and contain the same information.

Due to the probabilistic interpretation of the density matrix eigenvalues, we must then

6
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have that
∑r

i=1 s
2
i = 1. Therefore, the von Neumann entropy across the subsystems is

simply

SAB = −Tr (ρA ln(ρA)) = −
dA∑
i=1

λi ln(λi) = −
r∑

i=1

s2i ln(s
2
i ). (2.3)

In the case where λ1 = 1 and the remaining eigenvalues are zero, the bipartite entan-

glement is zero. This makes sense as the whole state is just a product state, essentially

independent from one another. On the other hand, as long as the first eigenvalue is not

1, the sum is non zero and the subsystems exhibit some entanglement between each

other. This is also seen through the Schmidt decomposition of a state, shown above,

with Schmidt rank r = 1. Therefore, if the bipartite entanglement can be accessed,

whether through analytical or numerical means, information about the structure of the

state can be inferred. It is also important to note that the Schmidt decomposition is

possible for any kind of partition or geometry of the system. No specific reference has

been made to the spatial dimension of the system hosting the pure quantum state. The

reason for this is due to the SVD being applicable to matrices of any size. Typically

the SVD is only done numerically as the states used to form the Schmidt basis may in

general be unwieldy.

2.1.4 The Area Law of Entanglement

Fortunately, SAB is a well studied and known quantity that appears in many different

contexts. A quantum state on N sites with local Hilbert space dimension d selected at

random has entropy SAB ≈ N
2
ln(d)− 1

2
when the partition cuts the system in half [4].

That is, for an arbitrary quantum state, the entanglement is extensive and therefore

scales with the system size. For such a state in D physical dimensions, the bipartite

entropy should scale with the volume of the partitioned region SAB ∝ LD, where L is

the length of the system. However, it is possible for ground states of quantum systems

that have a gap between the ground state and the excited states and who’s interactions

are purely local, to follow an area law [5]

SAB ∝ LD−1.

In other words, SAB scales with the size of the boundary of the system. Importantly, in

one dimension, it means that the entropy is bounded from above by a constant for these

gapped state [6,7]. This has been proven rigorously proven in [6], which was improved

upon later in [7], and applies to all 1D gapped systems, not just spin systems. In the

case of area law states, The physical picture is that these ground states of gapped local

7
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Hamiltonians in 1D can only contain so much entanglement between partitions. That

is, if a 1D chain is partitioned in two, only at the point between the two sections of

the chain is there entanglement. The upshot here is that now through (2.3) we have a

bound on the eigenvalues of ρA/B and the Schmidt values in (2.2). In many cases, these

gapped ground states also have that the first few Schmidt values are significantly larger

than the rest which can be discarded in 1D and 2D [8–11]. This allows such states to

be approximated by a finite sum of product states up to some desired precision and

provides a very accurate approximation to the true ground state. It is possible that

the Schmidt values are all close in value and so there might not be an optimal cutoff

as in general there is no way to know what spectrum of ρA/B will look like. A diagram

of these two cases is shown in Fig 2.1. Essentially, the quality of the approximation is

determined by

Figure 2.1: Two generic profiles of the spectrum {λn} of the reduced density matrix

ρA/B across a partition. The orange line shows the eigenvalues when the state is gapped

while the blue line shows the eigenvalues in the gapped case. For sufficient n, there is

an appropriate cutoff n′ such the all the λk for k > n′ can be discarded for the gapped

profile. The gapless profile however has no such cutoff.∣∣∣∣∣
∣∣∣∣∣|ψ⟩ −

r′∑
k=1

sk|kA⟩|kB⟩

∣∣∣∣∣
∣∣∣∣∣. (2.4)

where r′ < r and r is the Schmidt rank of the state |ψ⟩. That is, if there exists an r′ such
that (2.4) is bounded above by any delta δ > 0, the state can be well approximated

8
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by the Schmidt Decomposition. For these gapped area law ground states, such an

approximation is typically possibly and is intimately related with matrix product state

representation of ground states.

2.2 Matrix Product States

2.2.1 From a Many Body State To A Matrix Product State

As mentioned in the previous section, the complete many body state in (2.1) is in-

tractable to deal with in general. Moreover, this general form does not lend itself well

to analytical or numerical treatment due the coefficient cσ1,σ2,...,σN
which contains 2N

complex numbers. In general, one can view cσ1,σ2,...,σN
as a tensor of rank N in the

sense that cσ1,σ2,...,σN
is a multidimensional ”matrix”. The rank of the tensor is the

number of indices it contains, therefore a vector is a rank 1 tensor while a matrix is a

rank 2 tensor. When referring to a tensor, its indices are explicitly listed unless there

are too many to write down. The indices are said to have a dimension d representing

a maximum value that the index can run over. For example, Tijk is the notation of a

rank 3 tensor with indices i, j, and k of some arbitrary dimensions while the many body

coefficient cσ1,σ2,...,σN
has N indices of dimension 2s+ 1 in the case of a spin-s system.

The main use in writing out such indices is that tensors are contracted often in different

orders depending on the context. In this work, in order to clarify this order, the sums

will be explicitly put in, otherwise the Einstein summation is used: when an index is

repeated across more than one tensor, it is implicitly summed over (or contracted).

Typically, indices will be primed instead of being outright different to maintain consis-

tency of the notation unless otherwise mentioned.

The main property that will be used to manipulate tensors is the ability to reshape

a rank r tensor. Just like a matrix can be reshaped into a vector, a rank r tensor T ,

can be reshaped into a tensor T̃ of rank s < r as long as the entries of T are appropri-

ately tracked. In other words, there is a bijection between the indices of T and T̃ . For

example, a rank 3 tensor Aijk can be reshaped into a matrixMij′ where j
′ = (j, k) = jk

is the new index with dimension equal to the product of the dimensions of j and k.

When dealing with a wavefunction analytically, whether the many body coefficient in

(2.1) is treated as a rank N tensor or a vector of size 2N is not important, whereas

numerically the choice may depend on the task at hand.

9
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Just like a matrix, arbitrary tensors can be decomposed into other smaller rank tensors

with an appropriate reshape. Guided by the Schmidt decomposition and the SVD, one

can ”break” the coefficient of the many body state into N different matrices, similar

to what was done to derive equation (2.2). To do this we start with the many body

coefficient, treated as a rank N tensor, and isolate the left most index, σ1 and combine

the remaining indices, σ2, ..., σN , as

Ψσ1,(σ2,...,σN ) = Ψσ1,σ′ = cσ1,σ2,...,σN
.

This reshaped tensor Ψσ1,σ′ is a matrix of size (d× dN−1) where d = 2s+ 1 for spin s.

The combined index σ′ is a dummy index that we will reuse as a shorthand to group

the remaining rightmost indices. We can now use the SVD to write the reshaped tensor

as a product

Ψσ1,σ′ =

r1∑
a1

Uσ1,a1Sa1,a1V
†
a1,σ′ =

r1∑
a1

Uσ1,a1c(a1,σ2,...,σN ).

The index that appeared above, a1, comes from the SVD and will be referred to as

a bond index of dimension r1. In the last equality, we multiplied the Sa1,a1 and V †
a1,σ′

matrices together to recover part of the many body coefficient with a new single index

(a1, σ2, ..., σN) = a1σ2...σN . We will rename Uσ1,a1 to Aσ1
a1

which changes the original

tensor to

cσ1,σ2,...,σN
=

r1∑
a1

Aσ1
a1
c(a1,σ2,...,σN ).

Reshaping c(a1,σ2,...,σN ) into Ψ(a1,σ2),σ′ once more, we apply the SVD and simplify simi-

larly as before

cσ1,σ2,...,σN
=

r1∑
a1

r2∑
a2

Aσ1
a1
U(a1,σ2),a2Sa2,a2V

†
a2,σ′ =

r1∑
a1

r2∑
a2

Aσ1
a1
Aσ2

a1,a2
ca2,σ3,...σN

.

The second A tensor that appears, that comes from a reshaped U(a1,σ2),a2 , can be viewed

as a set of d matrices of size (r1 × r2) and once more the singular values were absorbed

into reshaped V tensor. Repeating this N times, we arrive at the final decomposition

of the many body coefficient

cσ1,σ2,...,σN
=

∑
a1,a2,...,aN

Aσ1
a1
Aσ2

a1,a2
. . . AσN−1

aN−2,aN−1
AσN

aN

10
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where for a given σi, A
σ1 is a matrix of size (ri−1 × ri) with the exception of first and

last tensors which are just vectors. If we suppress the bond indices and assume that the

summation over them is implicit, our many body state in (2.1) is in a matrix product

state (MPS) form

|ψ⟩ =
∑

σ1,σ2,...,σN

Aσ1Aσ2 . . . AσN−1AσN |σ1, σ2, ..., σN⟩. (2.5)

The σi indices are called the physical or site indices since they are directly related to a

physical quantity while the bond indices are, in some sense, virtual degrees of freedom.

In this work we will stick to the convention that upper indices are physical, while lower

indices are bond indices. This decomposition is possible for any many body state on

a lattice of N with a local Hilbert space of some dimension d. However, the matrices

will grow exponentially in size, the largest being (d
N
2 × d

N
2 ) because the upper bound

for the bond dimension is the lesser of the dimensions of the original matrix (assuming

all singular values are retained) [12]. Therefore, this exact decomposition can be done

for any state in theory, but not numerically, as the exponential growth would consume

too much memory in practice for even modest spin size (N = 28− 32).

2.2.2 Gauge Conventions

The Aσi matrices inherit some properties from the way we applied the SVD, in partic-

ular:

δai,aj =
∑

(ai−1,σi)

(U †)ai,(ai−1,σi)U(ai−1,σi)
,aj

=
∑

(ai−1,σi)

(Aσi†)ai,ai−1
Aσi

ai−1,aj

=
∑
σi

(Aσ1†Aσ1)

which implies that ∑
σi

(Aσi†Aσi) = 1. (2.6)

Matrices satisfying this condition are called left normalized and is manifest only because

we started from the 1st site in the lattice. We could have started from the right, at site

N , and instead obtained ∑
σi

(BσiBσi†) = 1

11
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where the Bσ matrices are reshaped V † matrices. The new matrix product state is

essentially the same as (2.5), but now the matrices are right orthogonal. It is important

to keep these normalization properties in mind when doing calculations analytically or

numerically as in general it is not the case that the hermitian conjugate of each term

in (2.6) sums to the identity. The literature refers to states containing only left or

right normalized sets of matrices as left or right canonical states respectively. It is

also possible to have a mixed canonical state where we decompose from the left up to

some site n and decompose from the right, from site N , to site n + 1 which yields a

decomposition of cσ1,σ2,...,σN
into

cσ1,σ2,...,σN
= Aσ1Aσ2 . . . AσnΛBσn+1 . . . BσN−1BσN .

The Aσ matrices are left normalized while the Bσ are right normalized and the Λ

matrix contains the singular values across bond (n, n + 1). This form is particularly

useful when concerned with only two sites in the whole chain connected by a bond

index and is closely related to the Schmidt decomposition of an MPS. One can quickly

read off that [12]

|aLn⟩ =
∑

σ1,...,σn

Aσ1Aσ2 . . . Aσn|σ1, σ2, . . . , σn⟩,

|aRn ⟩ =
∑

σn+1,...,σN

Bσn+1Bσn+2 . . . BσN |σn+1, σn+2, . . . , σN⟩.

These can be used to write with Λ to write the whole state as

|ψ⟩ =
rn∑

an=1

Λan,an|aLn⟩|aRn ⟩

which is nothing but the Schmidt decomposition. The sum runs over an as the matrix

products for the left (|aLn⟩) and right (|aLn⟩) states are vectors of size (1 × rn) and

(rn× 1) respectively which ensures that they respect the normalization conditions. For

this reason, the bond at which the S matrix sits is called the center of orthogonality.

In general, there are many ways to establish normalization conditions, such as Vi-

dal’s ΓΛ canonization [13], and their choice of application depends on what one would

like to do with the state. This decomposition as we have just seen is not unique, we

have already 3 different ways to arrive at an MPS form. One can transform each matrix

with an invertible matrix U so that Aσi 7→ AσiU and Aσi+1 7→ U−1Aσi+1 which leaves

the matrix product invariant. The left, right and mixed canonical forms are ways to

choose a ”gauge” for our state.

12
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2.2.3 Periodic Boundary Conditions

A subtle fact was implied when applying the MPS decomposition to the many body

state in (2.1). It was assumed that the first site chosen and last site chosen were not

connected, or in other words, that we had open boundary conditions. If instead we

had some state with periodic boundary conditions such that there was a unit cell of

N sites, the MPS form in (2.5) would need to be modified. In essence, all we have to

change are the edge matrices as Aσ1
1,a1

7→ Aσ1
aN ,a1

and AσN
aN−1,1

7→ Aσ1
aN−1,aN

. Since the left

and right indices are all that remain after performing the matrix product, the trace

naturally appears

|ψ⟩ =
∑

σ1,...,σN

Tr(Aσ1Aσ2 . . . AσN )|σ1, σ2, . . . , σN⟩. (2.7)

The intuition is that since the bond indices introduce ”local interactions” between the

sites, all we need to do is connect the first and last site the same way. Sometimes for

numerical simplicity, the matrices throughout the chain can be taken to be uniform

in size, even though in our derivation of the MPS form we allowed the matrices to

take different sizes [12]. The reason is discussed below where we differentiate between

an approximate MPS and an exact one. The state in (2.7) can also represent an

translationally invariant system, where all the N Aσi matrices must be of the same size

and comprise the unit cell.

2.2.4 Overlaps with MPS’s

Once our state is in matrix product form, we can perform two key operations: overlaps

of states and obtaining matrix elements (or expectation values as well) of operators.

The former operation will inform us on how to perform the latter. Starting with two

different MPS states with OBC, |ψ⟩ and |ϕ⟩ with matrices Cσ and Dσ respectively, we

can see that the overlap is simply

⟨ϕ|ψ⟩ =
∑

σ1,...,σN

DσN † . . . Dσ2†Dσ1†Cσ1Cσ2 . . . CσN . (2.8)

The order in which this is carried out is important as performing the matrix product

first and then the contraction over the site indices scales exponentially. One should

first instead multiply the column vector Dσ† and row vector Cσ1 to form a matrix, and

then sum over σ1. At this point, we multiply the matrices either into Dσ2† or Cσ2 and

then contract over the site indices. The general idea is to keep multiplying matrices,

13
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assumed to be of the same size (n× n) for the moment, which has a manageable com-

putational complexity of O(n3). If not contracted correctly, the memory requirements

would quickly render any calculation using an MPS numerically unwieldy. One can

also quickly see that if our MPS |ψ⟩ is in any of the three gauges shown, the state is

naturally normalized, i.e. ⟨ψ|ψ⟩ = 1.

By inserting an operator between the MPS’s in (2.8) we can obtain matrix elements.

It is important to note that in our standard form of our state, operators act on sites,

which in the MPS language are the site indices of the matrices. Therefore, a single site

operator O on site i must be of the form

Oi =
∑
σi,σ′

i

Oσi,σ
′
i |σi⟩⟨σ′

i|.

Effectively, this will at most mix the the matrices in the MPS belonging to the same

physical index. This results in the same computational complexity as the overlap of

two states, as all that is different in (2.8) is the appearance of additional sums over σi

over sites that support the operator.

2.2.5 Approximation of Ground States by MPS

It would seem that, in writing our many body state in an MPS form, we have sim-

ply introduced new degrees of freedom through the bond indices. A priori, there is

no reason to assume that we are not drastically modifying our sate when we perform

the decomposition and begin to mix the bond and site indices. We are by no means

removing degrees of freedom, the typical approach in many body problems, but rather

introducing artificial ones which does not solve our problem with the dimension of the

many body Hilbert space. Namely, we are still faced with the issue of exponential

growth of the matrices near the center of the matrix product. Moreover, we glossed

over the difficulty in choosing an ordering of the lattice sites when performing this de-

composition. On the surface it seems like this shouldn’t matter too much, but already

in two dimensions, one can see that there are many ways to separate out one site in a

lattice. This choice of ordering can become very important as the scaling with N will

suffer greatly numerically. Later on, we will discuss one particular method two try to

circumvent this in two dimensional systems.

The concerns above are remedied by the following fact: The SVD is the best rank
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deficient approximation of a matrix in the Frobenius norm [14]. That is, for a ma-

trix M , there exists a matrix M̃ of smaller rank given by the SVD, where rank(M) =

dim(img(M)), such that ∣∣∣∣∣∣M − M̃
∣∣∣∣∣∣
F

is minimized with ||M ||F=
∑

i,j M
2
ij. The Frobenius norm is related to the L2 norm of

bipartite states |ψ⟩ =
∑

i,j Cij|ai⟩|bi⟩ by∣∣∣∣∣∣|ψ⟩∣∣∣∣∣∣
2
=
∑
i,j

|Cij| =
∣∣∣∣∣∣C∣∣∣∣∣∣

F

Therefore, the decomposition into a matrix product state can be seen as a rigorously

justified compression of the many body tensor, cσ1,σ2,...,σN
, into N rank 3 tensors, Aσi .

One does not need to construct the MPS exactly for a given many body state |ψ⟩,
instead a cutoff χ can be chosen such that at each SVD, only at most χ singular values

(or Schmidt states) are kept to some given tolerance ϵ(χ). With these two parameters,

we circumvent the issue of exponential growth of the matrices in the center of the MPS

while keeping the most relevant states.

While it is possible to perform this decomposition in general for any many body state

in any physical dimensions, the power of the MPS form is revealed only in low dimen-

sional systems. In 1D, matrix product states can be easily formed by starting from the

ends of the chain, and decomposing the many body tensor until one reaches the other

side, since a linear chain provides a very simple ordering. More importantly however,

it is possible to have very good approximations of the ground states of gapped systems.

Such gapped states typically have rapidly decaying eigenvalues of ρA/B. As mentioned

before, the Schmidt decomposition can be used to approximate any bipartite state and

the mixed canonical form of the MPS is directly related to the Schmidt decomposi-

tion. Therefore, while performing this decomposition on a ground state of a gapped

Hamiltonian, one can truncate the singular values retained during the SVD in order to

reduce the sizes of the MPS matrices. One does this by specifying a maximum bond

dimension χ, an upper bound on the size of the matrices within the MPS. The quality

of the approximation for a gapped ground state |ψ⟩ is given by [15]∣∣∣∣∣∣|ψ⟩ − |ψMPS⟩
∣∣∣∣∣∣2 ≤ N∑

i=1

ϵi(χ) (2.9)

where ϵi(χ) is the sum of the squares of the singular values at bond i for χ retained

singular values. In other words, it is the sum of the truncation error in discarding the
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unwanted singular values across each bond. If the singular values decay fast enough,

χ can be small (10 to 50) but otherwise may be fairly large (200 - 1000). Since we

only have a proxy of how the singular values behave in one dimension through (3), χ

cannot be determined in advance. However, for large enough bond dimension, a suitable

tolerance (10−8 to 10−10) is typically possible. A poor convergence in this case would

be when the discarded singular values are comparable in magnitude to those retained,

which is often the case for gapless states.

2.2.6 The Transfer Matrix and Correlations

Matrix product states approximate gapped 1D states well due to entanglement reasons,

but the behaviour of their correlations are also the same as gapped 1D states. A famous

theorem from Hastings states that gapped ground states have exponentially decaying

correlation, with some finite correlation length ξ, while gapless and critical states have

power law correlations [16]. It is also the case that MPS’s also have exponentially de-

caying correlations which is due strictly to their structure.

The key object that shows these decaying correlations is the transfer matrix. When

performing the overlap ⟨ψ|ψ⟩ of an MPS, the following tensor appears often

Ti =
∑
σi

(Aσi)∗a′1,a′i−1
Aσi

ai−1,ai
. (2.10)

This tensor is a rank 4 tensor that is typically reshaped into a matrix with new indices

(ai−1a
′
i−1, aia

′
i), and called the transfer matrix. In the case of an translationally invariant

MPS with an N unit cell, ⟨ψ|ψ⟩ yields

⟨ψ|ψ⟩ = (AσN )∗a′N ,a′N−1
. . . (Aσ2)∗a′2,a′1(A

σ1)∗a′1,aN′A
σ1
aN ,a1

Aσ2
a1,a2

. . . AσN
aN−1,aN

.

By grouping the tensors by their physical indices, we can factor the overlap as

⟨ψ|ψ⟩ = (AσN )∗a′N ,a′N−1
. . . (Aσ2)∗a′2,a′1(A

σ1)∗a′1,aN′A
σ1
aN ,a1

Aσ2
a1,a2

. . . AσN
aN−1,aN

= ((Aσ1)∗a′1,aN′A
σ1
aN ,a1

)((Aσ2)∗a′2,a1′A
σ2
a1,a2

) . . . ((AσN )∗a′N ,aN−1′
AσN

aN−1,aN
)

= Tr(T1T2 . . . TN).

The trace appears in the last line since, under an appropriate re-shape of the indices

indicated above, the first and last matrices share an index. For simplicity, lets assume

that all the Aσi matrices are similar (the general case for bigger unit cells is identical),
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and suppose we decompose the single T matrix with the eigenvalue decomposition.

Then, in its eigenbasis, the overlap is

⟨ψ|ψ⟩ = Tr(TN) =
∑
k

(λk)
N .

Regardless of the normalization condition of the A matrix, for the state to be physical

it must be normalized and therefore the overlap must be 1. In the thermodynamic

limit, N → ∞ and so it must be the case that λ1 = 1 and |λk| < 1, ∀k > 1 otherwise

the sum would not converge. The entries of Aσ1 may be complex, and hence so can the

eigenvalues of T . The precise speed at which these eigenvalues must decay at determines

how long range the correlations can be. To see this, we slightly modify the transfer

matrix Ti in (2.10) by allowing an operator Oi to act on site i

TOi
i =

∑
σi,σ′

i

O
σi,σ

′
i

i (Aσi)∗a′1,a′i−1
Aσi

ai−1,ai
. (2.11)

If we then want to calculate a two site correlation function

C(r) = ⟨OiOj⟩ − ⟨Oi⟩⟨Oj⟩, (2.12)

with r = |i− j|, we need to use (2.11) in a similar way to how we did with the overlap

of |ψ⟩. If again we choose our MPS to have PBC and with all identical matrices for

simplicity, the first term in (2.12) evaluates to

⟨OiOj⟩ = Tr(T i−1TOiT j−i−2TOjTN−j−1) = Tr(TOiT j−i−2TOjTN+i−j−2)

Inserting the resolution of the identity in terms of the eigenstates of T we have

⟨OiOj⟩ =
∑
n,m

⟨n|TOiT j−i−2|m⟩⟨m|TOjTN+i−j−2|n⟩

=
∑
n,m

λ(N+i−j−2)
n λ(j−i−2)

m ⟨n|TOi |m⟩⟨m|TOj |n⟩

=
∑
m

λ(j−i−2)
m ⟨1|TOi |m⟩⟨m|TOj |1⟩

where in passing from the 2nd to the 3rd line, we used the fact that in the thermody-

namic limit we expect the transfer matrix eigenvalues to be such that λ1 = 1 while all

others are λi < 1, which tend to zero. Letting r = |i − j − 2|, ξm = −1/ln(λm), and

cm = ⟨1|TOi |m⟩⟨m|TOj |1⟩, we have the final asymptotic form

⟨OiOj⟩ = c1 +
∑
k=2

cke
−r/ξk . (2.13)
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The constant term in the front is canceled out from the second part of (2.12), as

⟨TOi⟩⟨TOj⟩ contribute only ⟨1|TOi |1⟩⟨1|TOj |1⟩ in the thermodynamic limit. The cor-

relations can be long range provided the exponentials decay slowly enough and the

matrix elements ck are non zero. Therefore, MPS’s turn out to be finitely correlated

states, just like gapped 1D states of local Hamiltonian’s. They can still approximate

long range power law correlations well in critical systems as (2.13) can be made to sum

over more exponentials by increasing the bond dimension which approximate the power

law better [17, 18]. It is possible to construct a similar tensor network, the multi-scale

entanglement renormalization ansatz, that naturally encodes longer range correlations

capable of accurately approximating critical systems [18, 19]. These networks are be-

yond the scope of this work.

2.2.7 Matrix Product Operators

The last tool that we need to introduce is that of the matrix product operator (MPO)

[20, 21]. Since we have now broken down our state into MPS form, we need to find a

way to calculate the action of the Hamiltonian, and hence general operators, on our

state. The MPS is written such that each matrix in (2.5) encodes information about a

single site and how it interacts with neighboring sites. The MPO therefore, must also

act on the single site and can only do so via the physical index of the matrix. A form

that would satisfy these conditions for an operator O is

O =
∑
σ,σ′

W σ1,σ′
1W σ2,σ′

2 . . .W σN ,σ′
N |σ⟩⟨σ′| (2.14)

where σ = σ1, σ2, . . . σN . The W σi,σ
′
i matrices have two hidden bond indices that are

implicitly summed over, making them rank 4 tensors. Every operator can be written

in MPO form but not uniquely, just like an MPS. This is typically done with some

convention, but the overall goal is take one and two body operators and place them

correctly in matrices, ensuring that their product correctly accumulates the operators.

Acting only on the physical indices, an MPO - MPS multiplication returns another

MPS as seen by looking at only one contraction:∑
σi

W
σi,σ

′
i

bi−1,bi
Aσi

ai−1,ai
= (WA)

σ′
i

ai−1,ai,bi−1,bi
= (WA)

σ′
i

(ai−1,bi−1),(ai,bi)
≡ C

σ′
i

ci−1,ci .

While the matrix dimension has gone up, precisely by the product of the dimensions of

the bonds of W σi,σ
′
i and Aσi , the new Cσi form can be applied to all matrices in the

MPS. In practice, one does not just apply one operator on a state, instead expectation

18
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values are obtained. One can see that this looks very similar to how single site operators

were introduced in the sections above. The difference here is that we are inherently

dealing with sums and product of operators. Each W σi,σ
′
i is a matrix containing op-

erators on site i, while before the Oi operators were single site operators. The MPO

is a very clean way to sum over the spin indices in one object that overall acts like a

quantum mechanical operator. The power of the MPO formalism will be more evident

when discussing variational ground state searches with an MPS.

It must noted that this entire time we have only discussed our ability to approximate

gapped ground states provided that we actually have the state. As mentioned before,

it is not a simple task to obtain ground states of spin systems and this remains our

primary goal. All we have shown so far is that provided our Hamiltonian is gapped

and local, its ground state can be approximated by a matrix product state. To obtain

said approximate state, one needs a method to variationally optimize a trial wave func-

tion in matrix product state form. However, in light of the mixed Canonical form, we

have the ability to single out two sites, across some bond n, out of our whole lattice.

The bonds could then be optimized before moving the center of orthogonality over and

repeating the process. This is goal of the next section, were we introduce the density

matrix renormalization group and how it can be used to optimize our MPS’s.

2.3 The Density Matrix Renormalization Group

In 1992, White proposed the original formulation of the density matrix renormalization

group as a way to solve for the ground state of quantum chain [22]. The main idea was

to iteratively add in two sites and solve for the ground state of the chain in a particular

product form. The was made possible by using the reduced density matrix at each step

to retain the most ”important” states while enlarging the system. As the process of

changing the scale of the system and integrating out marginal degrees of freedom is

commonly referred to as renormalization, the whole procedure was named the density

matrix renormalization group (DMRG).

2.3.1 MPS formulation of DMRG

As DMRG grew in popularity due to its power and accuracy, it has since been reformu-

lated as a variational method on MPS’s due to their intimate link to 1D systems. The

modern version of DMRG is a method to find the ground state |ψ⟩ in MPS form of some
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1D Hamiltonian H by minimizing the energy [12]. Specifically, we seek to extremize

⟨ψ|H|ψ⟩ − λ⟨ψ|ψ⟩

where λ is a Lagrange multiplier. If |ψ⟩ is in MPS form (in open boundary conditions)

with matrices Aσ, for some site i, the matrix Aσi can be optimized via

∂

∂(Aσi)†
(⟨ψ|H|ψ⟩ − λ⟨ψ|ψ⟩).

When performing the calculation efficiently, by keeping the optimal order of contractions

when applying H (assumed to be in MPO form), the optimization of matrix Aσi is

equivalent to the eigenvalue problem [12]∑
a

Ma,a′(A
σi)a = λ(Aσi)a′

where a = ai−1aiσi is a reshaped index so that Aσi
ai−1,ai

is reshaped into a vector. The

Ma,a′ is the contraction of the network of tensors:

M
σi,σ

′
i

ai−1,a′i−1,ai,a
′
i
= (Aσ1

a1
. . . Aσi−1

ai−2,ai−1
Aσi+1

ai,ai+1
. . . AσN

aN−1
)†(H

σ1,σ′
1

h1
. . . H

σi,σ
′
i

hi−1,hi
. . . H

σN ,σ′
N

hN−1 )

(Aσ1
a1
. . . Aσi

ai−1,ai
. . . AσN

aN−1
).

Effectively, the (Aσi)† tensor is removed, so the reshaped Ma,a′ acts on a vectorized

version of Aσi . It must be emphasized that this contraction must be done efficiently

otherwise the memory usage when implemented numerically would make this method

intractable. This eigenvalue problem is solved by some ground state eigensolver, typi-

cally a Lanczos method, and the matrix is then updated. The process occurs in sweeps :

starting from n = 1, the optimization is done to each next site in the chain until reach-

ing n = N and then performing it once more on the way back to site n = 1. At each

eigenvalue step, the SVD is employed to impose the desired orthogonality conditions on

the matrices and truncate the singular values to some desired maximum bond dimen-

sion χ. While seeming quite different than the original formulation, the density matrix

is still the deciding factor as the singular values are directly related to the eigenvalues

of the reduced density matrix. It is also possible to also calculate some excited states

of H by adding in penalty term to the Hamiltonian [23]

H → H + P |ψ0⟩⟨ψ0|

where |ψ0⟩ is the ground state obtained through DMRG. In the basis of the eigenstates

of the H, this shifts the spectrum so E0 → E0 + P . If P is large enough, at least the

size of the gap, then we must have that E1 < E0 + P . By running DMRG once more

on this new Hamiltonian, yields the first excited state as we have ”pushed” the ground

state up so as to not be the lowest state anymore.
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2.3.2 Infinite DMRG

The procedure discussed above is related to, but not directly similar to the original

formulation by White. Now referred to as finite DMRG, the method focuses on a vari-

ational method in the space of matrix product states on N sites. The original proposal

by white consisted of growing a system until it reach a fixed point in a renormalization

sense which seems lost in the modern finite scheme. While finite DMRG can probe

easily several hundred sites to great accuracy, it ultimately cannot obtain results in the

thermodynamic limit without extrapolating finite sized results. Luckily there exists an

infinite sized version that can obtain a translationally invariant MPS in the form of

(2.7), for a given unit cell size, which can access the thermodynamic limit.

Staying closer to White’s first proposal, infinite sized DMRG (iDMRG) looks to in-

sert a unit cell in the center of the chain iteratively until the MPS is unchanged [24].

Starting with only 2 unit cells of size Nu each, the ground state is obtained using finite

DMRG and then a unit cell is inserted between the two unit cells. This new enlarged

wavefunction is the initial guess for the ground state of the 3Nu chain. Since the goal

is to create a translationally invariant state, only the inserted tensors get optimized,

while the previous tensors from the two unit cell calculation, called the left and right

environment block, are untouched. The inserted tensors will be optimized via finite

DMRG under a suitable choice of Hamiltonian of the entire 3Nu chain, referred to as

the super block Hamiltonian. By projecting onto the inserted unit cell Hilbert space,

the environment blocks help form an effective Hamiltonian on the Nu sites that can be

used to optimize their matrices. The process is repeated until the density matrix across

the center site becomes a fixed point.

The main difficulty in implementing an efficient version of the algorithm stems from

the choice of the tensors to insert into the state at each step. A careful choice should be

taken as it can provide a large performance gain during the Lanczos step of the finite

DMRG. The main idea, as proposed in [24] is to insert, taking a two site unit cell, the

following unit cell in mixed canonical form at step n

Aσ1

[n]Λ[n]B
σ2

[n]Λ
−1
[n−1], (2.15)

where the subscript refers to the nth step, A and B are in the left and right gauges, and

Λ is the center of orthogonality that holds the singular values. An equivalent version to

this [25] is to insert one unit cell into each environment block after each step, keeping the
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Msc. Thesis - Sébastien Avakian; McMaster University - Physics and Astronomy

previously obtained Nu matrices in the center. Then, the super-block Hamiltonian is

reconstructed and finite DMRG is ran once more, the goal being to optimize the bonds

between the ends of the center unit cells and the new parts of the environment blocks.

In either case, the subtlety lies in how exactly one choose to optimize the matrices best

so as to mimic translationally invariant conditions without making the sizes too large.

The output in both cases, should be an translationally invariant approximation to the

ground state of the Hamiltonian in the thermodynamic limit.

2.3.3 Why DMRG Works So Well

In one dimensional systems, DMRG excels at finding ground states of interacting sys-

tems. As mentioned before, due to the efficient compression of matrix product states,

gapped states are particularly well approximated and obtained by DMRG. In both finite

and infinite methods, the ability to truncate the singular values (or equivalently the

eigenvalues of the reduced density matrix) during the sweeps makes the method com-

putationally efficient and accurate. While in general one cannot know the spectrum,

even for several hundreds of retained singular values, the approximations can become

very good.

A less rigorous argument can also be made via the area law. Suppose we have to

d dimensional subsystems A and B that are maximally entangled. Then, the eigenval-

ues of the reduced density matrix λi must all be equal with value 1/d, giving an overall

bipartite entanglement entropy of

SAB = −
∑
i=1

1

d
ln(

1

d
) = ln(d).

In 1D for gapped states, S is bounded by some constant S̃ so that ln(d) ≤ S̃, or in

other words d ≤ eS̃. That is, there is a constant upper bound, in principle, on the bond

dimension that would be optimal in retaining all important singular values given some

maximal entropy S̃. This argument fails in 2D and 3D as the bound changes to eN and

eN
2
respectively, leading to exponential increases in the memory required to store the

MPS. One can still probe quasi -2D systems, several chains glued together for example,

with decent success [23]. The primary hurdle faced is the increasing number of longer

ranged interactions between sites which decrease the sparsity of the MPS matrices.
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2.4 Symmetry protected topological phases

A large part of condensed matter physics is concerned with understanding and classify-

ing phases of solid state materials. In the context of quantum theory, it is also possible

for quantum systems to undergo a quantum phase transition (QPT) by varying the

strength of the interactions between the particles. The primary way phase transitions

were understood in general, was the concept of symmetry breaking, initially proposed

by Landau [26]. The idea is that when undergoing a transition at some value of a par-

ticular parameter, the two phases ultimately differ in what symmetries they support

and must be broken across the transition point. Based on the symmetries, an order

parameter is chosen that tracks a quantity that should change sufficiently across the

transition point. For example, in the Ising model, one can use the magnetization m

of the state as a measure of ”order” in the state. In the high temperature regime,

the model is disordered due to the spins being randomly oriented yielding m = 0

called the disordered state. When lowering the temperature, the spins begin to align

past some critical temperature Tc with magnetization m = ±1 and become ordered.

Whether the magnetization is positive or negative is completely random and can be

understood through symmetry breaking. In the disordered phase, the order parameter

has Z2, or spin-flip, symmetry and hence the energy of the state should not change

under such an operation. However, in the ordered state, if m = 1 then all the spins are

aligned pointing up, meaning that a global spin flip would change the magnetization

to m = −1. Therefore, we say that the Z2 symmetry is broken in the ordered phase as

it is does not respect the symmetry of the system below a certain a critical temperature.

The symmetry breaking paradigm is very powerful and explains a large amount of

phase transitions, including quantum ones. In general, the breaking of symmetries

mean that the ground state is invariant under a subset of the symmetry group GH of

the Hamiltonian. In the Ising model example GH{1,∈} and so the broken symmetry in

the ordered phase is simply GO = {1} ⊂ GH . However, it turns out that it is possible

to undergo a phase transition without breaking any symmetries. An example of this is

manifest in the Spin-1 Haldane chain [27],

H = J
∑
i

Si · Si+1 +D
∑
i

(Sz
i )

2 (2.16)

With D ≥ 0 and J > 0. For D = 0, the Hamiltonian is just the spin-1 Heisenberg

antiferromagnet, who’s ground state is gapped but does not break any symmetries of

the Hamiltonian [3,28] . As D is increased, the ground state undergoes a transition to
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another gapped phase at D ≈ 1 which also does not break any symmetries called the

large D phase [29, 30]. In order to understand such transitions, we need to employ a

new formalism that can differentiate the two phases.

2.4.1 Classifying Quantum Phases of Matter

Before proceeding we need to briefly explain how phase transitions are understood

for gapped ground states of quantum systems. The most intuitive definition is that

two gapped ground states are said to be in the same phase if they can be adiabatically

connected by varying a parameter in their Hamiltonian without the gap closing [31–33].

The fastest way to determine if a gapped state undergoes a phase transition is to see

if its gap closes, if the gap remains non zero through the adiabatic evolution, no phase

transition has occurred. The more formal definition is that two gapped ground states

are in the same phase if and only if they are can be mapped into one another under

a finite number of local unitary operations [32]. Effectively, this would mean in both

cases that states are in the same phase if the are essentially the same except they

may contain slightly more or less entanglement locally than one another. This also

means that product states, which have no entanglement and states with some local

entanglement are effectively the same and belong to the same phase. If the states

cannot be connected adiabatically, then the states are said to be in different phases.

2.4.2 Defining Features of SPT Phases

The local unitary prescription for understanding quantum phase transitions is diffi-

cult to use in practice but useful in concept. One must construct a path in the space

of Hamiltonians from local unitary operators in order to show that the ground states

belong to the same phase. In principle, allowing any such path makes this task straight-

forward, but when further imposing the path to respect the symmetries of the initial

Hamiltonian, some further structure emerges. In this restricted set of paths, it will be

possible to have two ground states that respect the same symmetries, but along some

path connecting them undergo a transition, i.e. the gap closes. The phases that host

these states are called symmetry protected topological (SPT) phases primarily because

they are only possible when these symmetries are present, hence ”protecting” the phase.

They are also called topological because depending on the boundary conditions, or in

other words the geometry, they may host edge modes, localized gapless states at the

edges of the system. We will look at exactly how such a phenomenon occurs in spin
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chains in the next sections. SPT phases are also present in non interacting fermionic

systems, a notable example being the topological insulator which is protected by time

reversal symmetry [34].

2.4.3 Projective Representations

In 1D, SPT phases can be understood through the matrix product state formalism as

they approximate gapped ground states naturally and efficiently. To understand how

the invariance under the symmetry group GH of the Hamiltonian H effects our ground

state, we must first understand the action of the symmetry group on an MPS. For

g ∈ GH , the action of g on a state |ψ⟩ is

|ϕ⟩ =
∏
m

um(g)|ψ⟩, (2.17)

where um(g) is the linear representation of the element g acting on site n. If |⟨ϕ|ψ⟩| =
1 for all g ∈ GH , then the state |ψ⟩ is invariant under the group GH and shares

the same symmetries as H. It important to stress here that the um(g) form a linear

representation of the group GH . If the state is in MPS form then the um(g) act solely

on the physical indices of the matrix as, in general, they know nothing about the bond

indices. Crucially, under a symmetry operation the Aσi matrices transform as [35]∑
σi

umσiσj
(g)Aσi = eiθgU †(g)AσjU(g) (2.18)

where eiθg is a phase and U(g) is a unitary matrix that acts on the bond indices. The

U(g) are said to form a projective representation of the symmetry group GH . That is,

for two group elements g1, g2 ∈ GH we have that

U(g1)U(g2) = ω(g1, g2)U(g1g2)

where the ω(g1, g2) ∈ U(1) are phases that form the so called factor set of GH . The

phases can be changed upon some re scaling Ũ(g) = β(g)U(g), yielding

ω̃(g1, g2) =
β(g1g2)

β(g1)β(g2)
ω(g1, g2). (2.19)

The two projective representations are said to be equivalent if the factor sets are in

the same equivalence class if (2.19) is the equivalence relation. These different classes

distinguish the possible kinds of projective representations one can get from a given

group G. In more precise terms, the equivalence class of factor sets are the second
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cohomology group H2(G,U(1)) of G [36]. The upshot from this is that the phase fac-

tors, the ω, cannot be gauged away trivially and can be used to index which projective

representation is present.

The linear representation acting on the physical indices of an MPS yields a projec-

tive representation that acts on the Aσ matrices. Coupled with the fact that the MPS

should be invariant under the symmetry group, we have enough information to classify

the SPT phases. The key tool will be the transfer matrix, which will be able to actually

obtain the U(g) matrices provided we know the symmetry group GH .

2.4.4 The Mixed Transfer Matrix

If our MPS is to be invariant under the symmetry group, the overlap with the un-

transformed version should be equal to 1. As is common with overlaps of matrix

product states, one must examine the transfer matrix in the infinite limit. However,

the standard expression in (2.10) must be suitably modified to

Ti(g) =
∑
σi

∑
σk

(Aσi)∗a′1,a′i−1
(umσiσk

(g)Aσk
ai−1,ai

), (2.20)

which is called the mixed transfer matrix. While not mentioned before, the normal-

ization conditions of the matrices used in the formation of the transfer matrix impose

conditions on their eigenvectors. It must still remain true in the thermodynamic limit

the dominant eigenvector must have as its dominant eigenvalue |λ1| = 1 (the norm is

included as the transfer matrix is not hermitian.). If the matrices comprising Ti are left

normalized, then the left eigenvector V is such that V Ti = V , while if they are right

normalized then TiV = V [37]. The V eigenvector must also be the identity in both

gauges as otherwise the overlap would not in general be = 1.

One can show using (2.20) and (2.18) that the transfer matrices constructed from

left (right) normalized matrices are such that the dominant left (right) eigenvector of

Ti(g) is precisely U(g) [38]. The idea is that in the thermodynamic limit, the transfer

matrices are connected such that the U(g) and U †(g) matrices will cancel out across

the bond indices. The transfer matrices are then contracted infinitely yielding only a

single U(g) matrix on the right (left) bond from where the contraction was started.

Comparing with the product of transfer matrices from just (2.20) we must conclude

that the dominant eigenvector (typically normalized) is the U(g) itself.

26
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Once the U(g) are all obtained, one can extract the factor set of the group and deter-

mine which projective representation the phase is in. Depending on the group structure,

certain elements may or may not commute and products can be formed of the group

elements such that the ω(g1, g2) phase can be isolated. Typically, phases can be gauged

away under a suitable re-scaling but as we will see in the next section it is possible to

make extract a gauge invariant phase.

Under this formalism, all 1D SPT phases can be classified based on the possible symme-

try groups that the systems can have in 1D [32,36,39]. One first looks at the symmetry

group G of the system and then can either calculate or consult the literature on how

many projective representations G admits. The number of projective representations of

G is the maximum possible number of SPT phases allowed in the model. To determine

which phase the ground state is in, one needs to extract the projective representations

U(g) for g ∈ G and form gauge invariant combinations. This will be done for the

Haldane chain in the next section.

2.4.5 Spin-1 Haldane Chain and SPT Classification

To demonstrate how the SPT formalism works, we will use the Spin-1 Haldane Chain

(2.16) and classify the two gapped non symmetry breaking states.

Firstly, in the D = 0 the ground state is in the Haldane phase, gapped, and dis-

ordered. While this ground state is hard to obtain analytically, it has been shown

numerically to be adiabatically connected to ground state of the AKLT model [37].

The AKLT Hamiltonian is another spin-1 system similar to the Haldane chain, it is

given by [40]

H =
∑
i

Si · Si+1 +
1

3
(Si · Si+1)

2. (2.21)

The ground state can be written down exactly as an MPS (REF) in the form of (2.5)

with matrices Mσ [12]

M+ =

(
0 0
−1√
2

0

)
,M0 =

(
1
2

0

0 −1
2

)
,M− =

(
1√
2

0

0 0

)
. (2.22)

The intuition is that the spin-1 at each site can be projected to 2 spin-1/2 that form

singlets with the neighboring sites (See Fig. ??). Because of this fractionalization of

the spins, it is possible in open boundary conditions to cut a singlet in half, leaving 2

free spin-1/2 at the ends of the open chain leading to a 4-fold degeneracy of the ground
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state. The MPS form in (2.22) is just an exact and cleaner way to codify this into a

wavefunction, which can also be done by taking the tensor product of various spin-1/2

singlets and then projecting back to the total spin-1 sector [40]. When D ≥ 1, the

ground state of (2.16) can be connected to a trivial product state |ψGS⟩ =
∏

i |0⟩i called
the large D phase [37]. This makes sense as in the limit where D → ∞, this is the state

with the lowest energy.

Figure 2.2: Schematic of the Haldane chain where the blue circles indicate a spin 1

site, the red circles are spin 1/s particles and the green line connecting them are singlet

nearest neighbor bonds. One can see that the spin 1/2 particles at the edges are left

uncoupled at the edges of the chain, while the bulk spin 1/2’s are paired up as singlets.

Using the AKLT ground state and the product state to represent the Haldane phase

and the large D phase respectively, we can classify these phases using the SPT formal-

ism. A symmetry respected by (2.16) is the dihedral group D2 = {1, Rx, Rz, RxRz},
where Rx is a π rotation about the x axis and Rz is rotations about the z axis. Other

symmetries can be used to form an index like time reversal and inversion, but we will

chose to work with rotations. Once can show that a gauge invariant product can be

formed via [37,38]

U(Rx)U(Rz)U
†(Rx)U

†(Rz) = ±1. (2.23)

The +1 corresponds to the large D phase and −1 is the Haldane phase. The Haldane

phase therefore shows non trivial commutation relations and has non trivial U(g) ma-

trices which form a projective representation. This can be seen due to the edge modes

being spin-1/2 which have non trivial behaviour under rotations: RzRx|+⟩ = −|−⟩
while RxRz|+⟩ = |−⟩. Since the large D phase is a product state of spin-0 it trans-

forms trivially under D2 and therefore has a trivial abelian representation. Unless the

symmetry group is broken during the transition from D = 0 to D ≥ 1, the Z2 index in

(2.23) is robust and identifies the phases clearly.

The main idea when trying to extract the U(g) matrices is that when when acting

with a symmetry operation on a site the U(g) matrices appear as a similarity transfor-

28
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mation of the Aσ matrices, like in eqt. 2.18. To extract the U(g) matrices, one needs

to look near an edge of a chain of some kind as chaining two neighboring matrices, that

have undergone the same symmetry operation, will cancel the U(g) matrices between

them as they always contract with their inverse. Therefore, only matrices left at the

edges remain.

2.4.6 Presence of Degeneracy in the Entanglement Spectrum

The spectrum of the reduced density matrices, sometimes also referred to as the en-

tanglement spectrum, provide a useful indicator of the presence of SPT phases. If a

state is to be protected by a symmetry group G, meaning it cannot be then it has

a projective representation of its elements U(g). Because of the complex phase that

appears in the group multiplication, we can find elements that do not commute, like

in (2.23). The reduced density matrices ρA/B across any bipartition will commute with

each of the group elements trivially because the group elements leave the wavefunction

invariant. From Shur’s lemma in representation theory, we know that an operator O

that commutes with a group representation that is non abelian means that the irre-

ducible representations must have dimensions larger than 1, yielding degeneracies in

the eigenvalues of O. This means that the entanglement spectrum must be degenerate,

precisely how depends on the symmetry group. In the Haldane chain for example, there

is an exact doubling of the eigenvalue of ρA/B [37].

It is important to note that the degeneracies in the entanglement spectrum are a signa-

ture of an SPT. They do not in general inform us of which projective representation is

present in a given phase. However, once the phase has been classified according to an

index, they tracking the degeneracy of the entanglement spectrum can be very useful

when studying the phase in question. For example, when studying the stability of an

SPT phase by slowly breaking the symmetry that protects the SPT phase with a per-

turbation, one can track the difference in the entanglement spectrum |λ1 − λ2| in the

case that λ1, λ2 are degenerate. As the symmetry breaking perturbation gets larger,

the difference between the eigenvalues can become non zero, indicating that a phase

transition.
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Chapter 3

Kitaev Spin Systems

In this section we introduce the Heisenberg Gamma (J−Γ) ladder and discuss its origin.

We begin by discussing the Kitaev Honeycomb model, an exactly solvable model that

hosts anyonic excitations forming a so called Kitaev spin liquid. From there, we discuss

the experimental feasibility and known materials that are candidates to host the exotic

phase. Then, we explain that several interactions are present in real materials, such

as the Heisenberg and Gamma interactions that are present in candidate materials

at low temperature. To study the possible phases admitted by these interactions, we

attempt to section off parts of the complete Kitaev-Heisenberg-Gamma phase diagrams

in an effort to understand the role of individual interactions. We then introduce the

Heisenberg-Gamma ladder and discuss its important features.

3.1 The Kitaev Honeycomb Model

In 2006, Kitaev brought forth an anisotropic interacting spin-1/2 model on a honeycomb

lattice. The remarkable fact about the model is that its exactly solvable and hosts non-

abeliananyonic excitations, particles that have non trivial exchange statistics. The

model is given by [41]

H = −Kx

∑
x−links

σx
j σ

x
k −Ky

∑
y−links

σy
jσ

y
k −Kz

∑
z−links

σz
jσ

z
k (3.1)

where σα
j are the Pauli matrices and the x, y, andz links are depicted in (Insert figure).

The spin interactions are anisotropic and have competing Ising like interactions, making

(3.1) difficult to diagonalize. One can notice that an operator Wp can be defined for a

given plaquette p of the honeycomb lattice

Wp = σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6. (3.2)
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These so called plaquette operators come from looking at the remaining link dangling

from the ith site situated in plaquette p. Miraculously, it turns out that [H,Wp] = 0

for all p, which we will exploit heavily since it simplifies our problem greatly. Moreover,

plaquettes operators commute as long as the plaquettes are not the same [Wp,W
′
p] = 0

and when applied twice yields the identity W 2
p = 1. This means that the total Hilbert

space splits into different sectors of different Wp eigenvalues who that can only take on

values of wp = ±1. The unit cell of the Honeycomb lattice contains 2 spins, so for N

unit cells, the Hilbert space is of size 22N . There are N plaquettes so the original Hilbert

space dimension gets reduced to 22N/2N = 2N , which is still exponentially large. One

can then express our on site spin-1/2 fermions as majorana’s

c2j−1 = aj + a†j, c2j =
aj − a†j

i
(3.3)

where aj, a
†
j destroy and create a fermion at site j and cj are the majorana fermion

operators. A single fermion creates two majorana fermions, which are their own anni-

hilating particle cj = c†j and c2j = 1. For each spin at the vertex of the lattice, which

has local Hilbert space dimension 2, we represent it by 4 majorana fermions (two for

each spin choice) defined by

σ̃j
x = ibxj cj, σ̃j

y = ibyj cj, σ̃j
z = ibzjcj. (3.4)

The tildes denote that the σ̃α
j act on a 4 dimensional space, rather than the original one

of size 2 which is now a subspace. The bxj , b
x
j , b

x
j , cj majorana operators can be inter-

preted physically when they are projected back into the 2 dimensional subspace. This is

done by enforcing two conditions on the augmented space. Firstly, the σ̃α
j need to obey

the correct commutation relations of the pauli matrices within the physical subspace.

Secondly, the state has eigenvalue 1 of the operator Dj = bxj b
y
j b

z
jc. the reason for this

is that σxσyσz = i in the spin-1/2 algebra, hence we should also expect σ̃xσ̃yσ̃z = i

as well in the physical subspace. In some sense, this fixes the gauge of the spin rep-

resentation of the operators and can be used a way to project into the physical subspace.

Under this transformation, the plaquette operators and the Hamiltonian can be written

as a quartic sum of the majorana operators. In principle, we would have to calculate

the ground state in each Wp sector and then choose the lowest one. However, accord-

ing to a theorem by Lieb [42], the ground state must be such that Wp = 1 for all p.

Kitaev showed that there are two possible phases, named A (gapped) and B (gapless),

depending on the values of the coupling constants Kx, Ky, Kz. The gapped phase can
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be related to and understood via the toric code model, which host non-local anyonic

excitations that create topological order [43]. These anyonic excitations are particles

that are neither bosonic, or fermionic, they instead accrue a phase factor eiθ upon

exchange. The gapless phase, when made gapped under a time reversal breaking per-

turbation, can host so called non-abelian anyonic excitations and displays robust chiral

edge modes [41]. Note that the symmetry broken version of the B phase cannot be

done exactly and must be done perturbatively or numerically.

Phase B, when made gapped, will have decaying spin correlations functions and hence

shows no particular magnetic ordering (Need a ref). A quantum state that show no

magnetic ordering while being strongly correlated is referred to as a quantum spin liq-

uid (QSL). This definition is slightly contentious as it states what a QSL isn’t, namely

a magnetically ordered strongly interacting phase. A more apt definition would also

involve the fact that these QSL are highly entangled states and potentially show topo-

logical (non local) order [44,45]. Hence, the broken time reversal B phase is sometimes

referred to as a Kitaev spin liquid. In general, the strongly correlated spin systems

are very difficult to solve exactly, the Honeycomb model being an exception. This

is where the strength of DMRG and similar Tensor Network methods really shine as

they efficiently approximate the ground states for 1D and quasi 2D strongly correlated

systems.

It was shown that non abelian anyons can be used for fault tolerant quantum com-

putation [43]. As the primary property of anyons is related to the phase gained when

exchanging them, the main tool used to understand anyons is their braid group. This

is the set of equivalence classes of trajectories of particles equipped with a ”braiding”

operation where two trajectories are intertwined [46]. A non abelian anyon has a non

abelian braid group and an abelian anyon has an abelian braid group. The benefit of

using anyons as qubits for quantum computation is that the anyons only change when

braided, making them robust to perturbations and are an attempt to mitigate issues

caused by decoherence [47].

3.2 The Kitaev Interaction in Materials

The non-abelian anyons present in the Honeycomb ladder make it an exciting and

worthwhile system to study and try to realize experimentally. In 2008, it was shown

that Mott-Hubbard systems with electron-electron interactions and strong spin orbit

coupling could host Kitaev like interactions [48]. The transition metals are known to
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have strong spin orbit coupling that effectively localises the electrons, and those that

have octahedra like the iridates can give rise to bond dependent spin exchanges. The

octahedra can share a corner through a mediating O atom which leads to a single

spin super exchange between two Ir atoms, effectively forming a Heisenberg interac-

tion [49]. However, if the octahedra share an edge instead, two super exchange paths

can be formed which interfere with one another, canceling out the Heisenberg inter-

action. Due to the multiplet structure of the excited levels, an anisotropic interaction

appears [50] that can be bond dependent due to the various ways the octahedra can

share an edge [48,49]. It was then shown a year later that when considering the honey-

comb iridates A2IrO3, one can also include the overlap of the d-orbitals, a Heisenberg

interaction also appears [51]. Therefore, the most general Hamiltonian that represents

these systems is one that includes both the Kitaev and Heisenberg interaction. A spin

liquid phase has been shown to exist near the Kitaev point (K = 1) for J < 1 and sev-

eral magnetically ordered phases are possible as well [52, 53]. However, at sufficiently

low temperatures, some unexpected magnetic order not expected by the Heisenberg

Kitaev (HK) model appears in Na2IrO3, a strong candidate that could host the Ki-

taev spin liquid as a ground state [49]. Efforts were made to explain that this phase

could be part of the HK model if in the original derivation of the model one included

next nearest neighbor interactions between various atoms in the honeycomb planes [54].

Some efforts were then focused on determining if the HK model was actually suffi-

ciently general in describing honeycomb iridates that could host a Kitaev spin liquid.

General symmetry constraints on edge shared octahedra show that another additional

interaction is allowed, an anisotropic symmetric off-diagonal exchange of different spin

components, SαSβ + SβSα [55]. The coupling is parameterized by Γ and is sometimes

referred to as the Gamma interaction. Due to its coupling of different spin components,

transformations on models containing the Gamma interactions are far and few between

lending it naturally to numerical studies. It was then shown that a minimal model

describing the honeycomb iridates would be given by [56]

J
∑
⟨ij⟩

Si ·Sj+K
∑
⟨ij⟩γ

Sγ
i S

γ
j +Γ

∑
⟨ij⟩γ

(Sα
i S

β
j +S

β
i S

α
j )+Γ′

∑
⟨ij⟩γ

(Sα
i S

γ
j +S

γ
i S

α
j +S

β
i S

γ
j +S

γ
i S

β
j ).

(3.5)

The sums with the γ subscript take values of γ = x, y, z leaving α ̸= β to be the

remaining spin components. The last interaction, the Gamma prime interaction (some-

times referred to as Γ2 in which case Γ = Γ1) stems from trigonal distortion, but is

not always considered due to its lowering of the overall symmetry making it hard to
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analyze. Understanding the phase diagram of 3.5 is extremely non-trivial and therefore

only sections of the total J-K-Γ-Γ′ parameter space are studied eventhough all inter-

actions are possibly present by symmetry. On a 24 site cluster, a model containing the

Heisenberg, Kitaev, and Gamma (HKG) interaction showed via exact diagonalization

4 magnetically ordered phases and the two exactly solvable Kitaev points (K = 1,−1)

even when Γ ̸= 0 which rendered more credence to the minimal model [55].

Other candidate materials outside of the honeycomb iridates are possible, with α-RuCl3

being the main one. It was first shown that it has strong enough spin orbit coupling

and weakly coupled honeycomb planes that make it amenable to 2D studies [57–59].

Crucially, it has Kitaev interactions and the Gamma interaction which are both com-

parable in magnitude [60]. There also appears to strong frustration above the magnetic

ordering temperature believed to be due to the anisotropic nature of the Kitaev and

Gamma interactions [59,61]. A study found that α-RuCl3 in a magnetic field show a 2D

thermal Hall conductance [62] in a field induced spin liquid phase. This is remarkably

a fact predicted by Kitaev himself in his original study, namely that that the ground

state of the gapped phase under a magnetic field can acquire edge modes due to having

a non zero Chern number [41].

Understanding the phases that appear in models involving all three interactions are

not only computationally demanding but also highly non trivial. The phase diagrams

involve many different phases and the choices of order parameter become very impor-

tant as well. Therefore, studying simplified systems involving at most two interactions

at a time has been the common strategy when seeking to understand the phases.

3.3 Ladder Systems

A large portion of the studies conducted on honeycomb systems are done via exact

diagonalization on small clusters with open boundary conditions. While yielding good

results, the method is inherently limited to studying a handful of sites and cannot truly

reproduce the thermodynamic limit. As the Kitaev spin liquid is to be hosted in 2D,

the numerical techniques used must be able to appropriately probe larger system sizes.

One idea is to use a quasi 2D strip of the honeycomb lattice and form a ladder of

some length L with a number of sites N = 2L. While not entirely 2D, the ladder is

amenable to use by DMRG as the system can easily be mapped to a chain with next

nearest neighbor interactions (a figure is shown in the next section). Moreover, one
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could either add more legs to the ladder, making it closer to a truly 2D system at the

cost of longer range interactions in 1D. It is also possible to study a single leg of these

ladders, which are just chains, as they are often easy to access numerically.

3.4 Kitaev-Gamma Chain and Ladder

While initially the HK model was studied, swapping in the Gamma interaction in-

stead of a Heisenberg one yields the Kitaev-Gamma (KG) model. This was first

done on a chain of of sites with alternating Kitaev bonds K(Sγ
i S

γ
i+1) and Gamma

bonds Γ(Sα
i S

β
i+1 + Sβ

i S
α
i+1) where γ = x, y and α ̸= β are the remaining spin com-

ponents [63, 64]. It can be shown that under a rotation about z of the spins by π,

we must have that (K,Γ) ≡ (K,−Γ), and hence part of the phase diagram must be

symmetric (Namely about K = 0). It was also shown that there is a 6 site sub-lattice

transformation that changes the Hamiltonian

H =
∑
⟨ij⟩γ

K(Sγ
i S

γ
j )+Γ(Sα

i S
β
j +S

β
i S

α
j ) → H ′ =

∑
⟨ij⟩γ

−K(Sγ
i S

γ
j )−Γ(Sα

i S
α
j +S

β
i S

β
j ) (3.6)

where ⟨ij⟩γ means that sites i, j lie on a γ = x, y bond. Under this transformation, the

Hamiltonian H ′ is much simpler and shows SU(2) symmetry when K = Γ. Note that

this transformation is only possible when both the Kitaev and Heisenberg terms are

present. Among the phases admitted, there is a ”Kitaev” phase, near the K ≈ 1,Γ ̸= 0,

which was not fully understood initially and the role of the Γ term was not understood.

The same system was studied on a ladder geometry, where two KG chains were coupled

by a z bond across each rung in the presence of a magnetic field [65]. A phase of

interest is near the K = 0,Γ = 1 point, called the AF-Γ phase, has previously been

studied and is believed to be a gapped spin liquid phase in the zero field limit [66]. The

point Γ = −1, referred to as the FM-Γ point is understood via the 6 site sub-lattice

transformation that is still valid in the ladder. When K = Γ, the KG ladder becomes

the Heisenberg (anti)ferromagnetic ladder with a hidden SU(2) symmetry. In [65], it

was shown that the Γ = −1 point is within the same phase as the point at which the

KG ladder is equivalent to the antiferromagnetic Heisenberg ladder (HAFL). As the

ground state of the HAFL is gapped, disordered and composed of singlets across the

rung [67,68], it was shown that the FM-Γ phase is therefore a rung singlet with hidden

SU(2) symmetry. Several other phases are hosted in the KG ladder, with some spin

liquid candidates among them. Overall, the importance of the Gamma interaction is

still unknown, but when it is present the number of phases is substantial.
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3.5 Heisenberg Gamma Ladder

The models previously mentioned all contain the Kitaev interaction since the overarch-

ing goal is to find a suitable theoretical model that includes interactions present in real

materials that could host a Kitaev spin liquid. With some new found importance on

α-RuCl3 and the presence of the Γ term, it is possible to study these minimal models

in the absence of the Kitaev term. In particular as mentioned above, the Heisenberg

interaction is an important interaction in the relevant materials, particularly in the

case of α-RuCl3, and its behaviour when paired with the Gamma interaction warrants

a study of its own.

A study has been conducted on a N = 24 site cluster in the honeycomb geometry

with varied anisotropy of the Heisenberg and Gamma interactions [69]. Up to 10 mag-

netically ordered phases were found, with various ferromagnetic and antiferromagnetic,

spiral, stripy, and dimerized states. The study points out that the AF-Γ spin liquid

is unstable to anisotropy and unrelated to the Kitaev spin liquid in direct opposition

to other studies that propose [70, 71]. These studies suggested that anisotropy could

adiabatically connect the Kitaev spin liquid to the AF-Γ phase, however [69] claimed

that no transition from an initial dimer phase is observed when passing through the

Γ = 1 point. However, the study could not scale the cluster size and therefore not infer

more about the phases in the thermodynamic limit.

There is no consensus just yet on the exact nature of the AF-Γ phase, but there is

strong evidence to suggest that is may well be an SPT phase [72]. It remains unclear

what exactly the nature of the Gamma interaction is (other than introducing frus-

tration) and its behaviour in the presence of the Kitaev and Heisenberg interactions.

Moreover, the 6 site sub-lattice transformation used in the KG model is spoiled by the

Heisenberg term. To this end, this remainder of this work will numerically examine

the Heisenberg Gamma model in the ladder geometry in order to access larger systems

sizes using DMRG.
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Chapter 4

Results

In this section we outline the main results in the analysis of the Heisenberg-Gamma

ladder. We first introduce the model and the main methods used to classify phases

and study the phase diagram. Then we give an overview of the phase diagram, its key

features and a summary of all the phases. We separate the magnetically ordered phases

into ferromagnetically and antiferromagnetically ordered states and and discuss their

key features. We then discuss 3 potential SPT phases that show high entanglement and

no obvious magnetic ordering.

4.1 The Heisenberg Gamma Ladder

Studying systems on honeycombs lattices can be difficult as the full 2D Hamiltonians

are quite difficult to solve in the presence of anisotropy. To this end, we section a small

strip of the honeycomb material and create a two leg ladder, ensuring that the bonds

that are cut perpendicular to the length of the ladder are paired together in order to

emulate periodic boundary conditions in the perpendicular direction (Fig. 4.1). The

first interaction involved in this ladder geometry is the nearest neighbor Heisenberg

interaction, which has been extensively studied in this geometry before. The second

interaction is the Γ interaction, an anisotropic symmetric exchange interaction. The

corresponding Hamiltonian is

H =
∑
⟨i,j⟩

JSi · Sj +
∑
⟨i,j⟩γ

Γ(Sα
i S

β
j + Sβ

i S
α
j ), (4.1)

where ⟨i, j⟩γ denotes the nearest neighbor bond of type γ. The possible kinds of bonds

are γ = x, y, z labeling the possible values of (α, β) as (y, z), (x, z), and (x, y) respec-
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Figure 4.1: The two clusters of two leg J-Γ ladder with alternating x and y bonds

across the legs which are connected by the z bonds along the rungs. The dashed lines

indicate that the z bonds are paired together. (a) Cluster A formed from a regular

ladder comprised of 3 unit cells where the red line indicates the bond cut and the blue

line indicates the rung cut. (b) Cluster B formed from cutting the rungs from cluster.

tively. In other words, γ labels the missing spin component exchange present in Sα
i S

β
j .

The J-Γ ladder comprises alternating x and y bonds along the both legs, connected by

z bonds along the rungs. The unit cell of the ladder is comprised of 6 sites, in Fig. 4.1

a three unit cell ladder is shown as a strip of a honeycomb lattice. We will also use a

second cluster of sites referred to as the rung cut cluster, named after the fact that it is

made from the ladder with diagonal cuts along the ladder. In this study we will refer

to the first cluster as A and the second rung cut cluster as B. The Heisenberg and Γ

couplings are parameterized by

J = sin(ϕ), Γ = cos(ϕ), (4.2)
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Table 4.1: Summary of the main features of all of phases of the J-Γ ladder. The phase

symbol and the critical values of ϕ/π for which the phase exists are listed as well as

the magnetic ordering. The last column indicates the presence of a energy gap in the

spectrum in the thermodynamic limit

Phase ϕc / π Magnetic Ordering Energy Gap

AF-Γ -0.017 - 0.025 None Yes

δ 0.025 - 0.077693 None Possibly Gapless

AF 0.077693 - 0.380 AFM Yes

RS 0.380 - 0.790 RS Yes

AF-Z 0.790 - 0.840 AFM-Z Yes

FM-Γ 0.840 - 1.108 None Yes

FM 1.108 - 1.500 FM Yes

FM-Z 1.500 - 1.775 FM-Z Yes

Υ 1.775 - 1.820 None Yes

Ω 1.820 - 1.840 None Yes

FM-XY 1.840 - 1.983 FM-XY Yes

which adiabatically connects the Heisenberg and Γ ladder in both antiferromagnetic

and ferromagnetic regimes. Several values of phi are well known: ϕ = 0, π are the

antiferromagnetic and ferromagnetic Γ ladder which have been studied numerically pre-

viously [67,68]. For ϕ = π/2, 3π/2, the antiferromagnetic Heisenberg ladder, known to

be a in a gapped rung singlet phase, and the ferromagnetic Heisenberg ladder have and

continue to be studied analytically and numerically. Spin ladders can also host symme-

try protected topological (SPT) phases for which symmetries forbid the wavefunction

of the system to be adiabatically related to a product state unless the symmetries are

broken. Moreover, the degeneracy of the ground state in an SPT phase is dependent

upon the boundary conditions. In open boundary conditions, states in the ground

state manifold can exhibit edge modes while in periodic boundary conditions the state

is gapped with a unique ground state. In the case of a ladder geometry, there are only

two unique open clusters possible due to its one dimensional nature: the normal ladder

(cluster A) and the rung cut (cluster B). We will specify the choice of OBC conditions

used as different SPT phases may show edge modes for only one kind of open geometry

and not the other.
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Figure 4.2: Phase diagram of the J-Γ ladder as function of ϕ/π from iDMRG with a unit

cell of N=24 and a resolution ∆ϕ/π = 1.0 × 10−3. Top Panel is the second derivative

of the ground state energy per site with respect to ϕ with the identified critical values

of ϕ identified with the red vertical lines. Bottom panel is the logarithm of the 1st

eigenvalue of the reduced density matrix across bond N/2− 1.
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4.2 Methods

The main tool used in this analysis is the finite density matrix renormalization group

(DMRG) and its infinite sized version, the infinite density matrix renormalization group

(iDMRG). The finite sized version will be used to obtain the ground state and the next 4

excited states with open boundary conditions (OBC) and periodic boundary conditions

(PBC). In the OBC scheme, we have a maximal bond dimension χ = 1000 and a

precision of ϵ = 10−13, while in the PBC scheme we have χ = 1200 and ϵ = 10−11. To

obtain the ground state in the thermodynamic limit, produce the phase diagram, and

calculate the bulk correlation functions, we use iDMRG with χ = 1000 and ϵ = 10−11.

In order to ensure that we detect all possible phases, we use a small resolution of

∆ϕ/π = 0.001. To detect the phases and their transitions, we use two measures of the

ground state wavefunction, the first being the susceptibility of the ground state energy

per spin with respect to ϕ

χe
ϕ = −∂

2e0
∂ϕ2

. (4.3)

While χe
ϕ is straightforward to calculate, it is not always easy to notice a quantum

phase transition using χe
ϕ as it depends strongly on the resolution ∆ϕ chosen and on the

convergence of the wavefunction. Instead of probing the energy, it is possible to probe

the structure of the many body state itself via its bipartite entanglement properties.

We can cut the ladder across a bond n in the ladder and form the reduced density

matrix ρn. The eigenvalues λi of ρn provide the bipartite von Neumann entropy Sn

across bond n, which is sometimes referred to as the entanglement entropy (EE). The

eigenvalues change slowly away from a quantum critical point but rapidly near one [73].

We therefore choose to track part of the first term in the EE

SCE = − ln(λ1), (4.4)

in our system which is referred to as the single copy entanglement in the context of

quantum information [74]. When the ground state is in a product state, we must have

that λ1 = 1 and λn = 0, ∀n > 1 implying that SCE = 0. On the other hand, if

our system is not in a product state, λ1 < 1, and hence SCE > 0. In the ladder

geometry, the only two unique bipartitions are made either cutting through two leg

bonds or through two leg bonds and a rung shown in Fig. 4.1. We will refer to the

odd numbered bond cut as rung cut, and the even numbered bond cut as a bond cut

as the former cuts through a rung and two leg bonds while the latter cuts only through
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two leg bonds. While either partition can be used for our purposes, we have found that

SCE is larger across rungs cuts making it clearer to see the phase transitions compared

to the bond cuts. We therefore adopt the convention that SCE refer to the single copy

entanglement formed across such rung cuts if not direct denote it with a subscript r . In

order to characterize the magnetic ordering of the phases, the spin correlation functions

⟨Sα
i S

α
i+n⟩ as well as the on-site magnetization ⟨Sα

i ⟩. To detect magnetic ordering that

is not seen through the correlation functions, we use the scalar chirality. For a spin at

site i we denote Si = σi/2 and define the scalar chirality as

κ = ⟨σi · (σi+1 × σi+2)⟩. (4.5)

This indicates the presence of chiral ordering and incommensurability with the lattice.

Furthermore, when referring to a phase we take a single point in the phase diagram

as a representative member. These points are chosen such that they have the largest

gap within their phase to ensure that DMRG can efficiently calculate the ground state.

Since the entanglement is inversely related to the gap [6], the representative members

were taken to be in the center of each phase in Fig. 4.2 where SCE is constant and the

smallest. Due to a large portion of the phases of interest being centered around ϕ = 0,

in Fig. 4.2 ϕ is in the interval (−π, π) rather than the values of (0, 2π) present in Table

4.1.

4.3 Magnetically Ordered Phase

Here we present and discuss the magnetically ordered phase as classified through their

spin spin correlation functions. The two main categories are phase that show ferromag-

netic and antiferromagnetic ordering. The rung singlet, AF-Γ, and FM-Γ phases are

not exactly magnetically ordered and will be discussed in more detail.

4.3.1 AF Phases

There are four phases identified as antiferromagnetic (AF), either by being adiabatically

connected to known points or have clear magnetic ordering. In Fig. 4.4 the spin

correlations can be seen for each phase.

AF-Γ

Starting from the smallest values of ϕ, the AF-Γ phase is shown in figure 2 panel (a).

At ϕ = 0, J = 0 and Γ = 1, i.e. only the Γ interaction is present and positive, hence
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the name antiferromagnetic Γ (AF-Γ) phase. It has already been studied in the context

of the Kitaev Gamma ladder in the presence of a field and is already known (REF).

AF

For ϕ ∈ (0.075, 0.38), we have the AF phase, named after the fact that all of its

spin correlation functions show clear long range antiferromagnetic ordering of equal

magnitude for each spin component.

Rung Singlet

Figure 4.3: Susceptibility of the ground state energy χe0
ϕ as the ration of J along the

rungs of the ladder Jrung and the legs Jleg is tuned. This was done in iDMRG by

increasing the ratio ∆(Jrung

Jleg
) by 0.01 for ϕ = 0.6π.

Directly after, for ϕ ∈ (0.38, 0.79), there is the rung singlet (RS) phase containing

the point where J = 1,Γ = 0, also known as the antiferromagnetic Heisenberg ladder.

Its ground state is known to be in a disordered ground rung singlet phase (insert

reference), where across each rung the sites are coupled into a spin singlet. While

the spin correlations shown in Fig 4.4 do not show disordered behavior, the ground

state that we obtained can be connected adiabatically to a pure rung singlet state.

The Heisenberg coupling, J , can be separated into two couplings, Jleg and Jrung, one
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coupling across the legs and one across the rungs. By increasing the ratio of Jrung/Jleg,

we approach the limit of rung singlets forming across the rungs. After obtaining the

ground state energies while increasing the coupling ratio, the susceptibility χe
ϕ shows

no divergences, hence the initial phase and the RS phase must be one in the same. The

results can be seen in Fig 4.3, where the red line indicates the state in the JΓ ladder

with a ratio of 1. As the ratio is increased and singlets become more favorable, no

divergence in χe0
ϕ is observed.

AF-Z

Lastly, for ϕ ∈ (0.79, 0.84), the spin correlations look similar to those of the AF phase,

except that the magnitudes are not all the same. Since the Sz
1S

z
n correlations are larger

than the Sx
1S

x
n and Sy

1S
y
n correlations, which are equal, we call this the AF-Z phase.

4.3.2 FM Phases

Similar to the AF phases, we have four phases identified via known points and their

correlations functions. Fig. 4.5 shows their spin correlation functions.

FM-Γ

Due to containing the point J = 0, G = −1, the phase for the points ϕ ∈ (0.84, 1.11)

are said to be in the ferromagnetic Γ (FM-Γ) phase. Just like its antiferromagnetic

counter part, it has already been studied before and will be discussed in section 4.4.

FM

For ϕ ∈ (1.11, 1.5), we have a long range ordered phase in which each spin correlation

function is of equal magnitude, which we name the ferromagnetic (FM) phase.

FM-Z

Neighboring it is the FM-Z phase for ϕ ∈ (1.5, 1.775), which looks slightly similar to the

FM phase but is such that the Sz
1S

z
n correlations are larger than the Sx

1S
x
n and Sy

1S
y
n,

which are equal.
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Figure 4.4: Spin correlation functions ⟨Sα
1 S

α
1+n⟩ of the rung singlet phase and the an-

tiferromagnetic ones obtained from iDMRG along the lower leg (odd numbered sites)

of the ladder starting at n = 3 and ending at n = 199. Each panel shows a rep-

resentative member of the antiferromagnetic and rung-singlet phases chosen to show

the clearest magnetic ordering. Panel (a), (b), (c) and (d) correspond to, respectively,

ϕ = 0.064π, 0.249π, 0.499π, 0.799π which are the AF-Γ, AF, RS, and AF-Z phases.

FM-XY

Lastly, there is the FM-XY phase for ϕ ∈ (1.84, 1.98). Depending on which leg of

the ladder is analyzed, the spin correlations have either the Sx
1S

x
n or Sy

1S
y
n correlation

marginally larger than the other at small n and then finally equalling each other at

larger n. Along both legs, the Sz
1S

z
n correlations are smaller than the other two and

non-zero. In figure 2, the FM-XY phase in panel (d) shows that Sy
1S

y
n is slightly larger

along leg 1, and hence across leg 2, Sx
1S

x
n is slightly larger, but along both legs Sz

1S
z
n is

still the smallest.
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Figure 4.5: Spin correlation functions ⟨Sα
1 S

α
1+n⟩ of the ferromagnetic phases obtained

from iDMRG along the lower leg (odd numbered sites) of the ladder starting at n = 3

and ending at n = 199. Each panel shows a representative member of the ferromagnetic

phases chosen to show the clearest magnetic ordering. Panel (a), (b), (c) and (d)

correspond to, respectively, ϕ = 0.899π, 1.299π, 1.649π, 1.849π which are the FM-Γ,

FM, FM-Z, and the FM-XY phases.

4.4 The AF-Γ and FM-Γ Phases

The points on the phase diagram in Fig 4.2 where ϕ = 0, π, the AF-Γ and FM-Γ phases

respectively, have previously been studied when paired with the Kitaev interaction in

the chain and ladder geometries. It was shown that the AF-Γ point is adiabatically

connected to an SPT phase and thus the phase from ϕ ∈ [0, 0.025π) in the J-Γ ladder

must be this SPT phase by universality. Similarly, in the Kitaev-Γ ladder, the FM-Γ

ladder was shown to be connected to a rung singlet phase (RS) with a hidden U6 local

order. This is due to the fact the Kitaev-Γ ladder can be transformed to Heisenberg-like

ladder of opposite sign. When the Kitaev and Γ interactions are of equal magnitude and

sign, the ferromagnetic and antiferromagnetic Heisenberg ladders appear. The antifer-

romagnetic ladder appears when both interactions are negative and this phase extends
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to the case where only the Γ is non zero and negative while the Kitaev interaction is

absent. Therefore, the phase from ϕ ∈ [0.84π,−0.89π], where Γ = −1, J = 0 must, by

universality, be the antiferromagnetic Heisenberg ladder, known to be in a gapped RS

phase, with a hidden U6 symmetry.

4.5 Potential SPT phases

Out of the 11 phases we have identified, 3 possibly new SPT phases, the δ,Υ, and Ω

phases which all show no magnetic ordering in the thermodynamic limit with large

entanglement across the rung cut of the ladder. All three phases show no scalar or

vector chirality as well, and therefore show no long range magnetic order. The spin

correlations are shown in figure 4.6. The first indication is that the reduced density

Figure 4.6: Spin correlation functions, ⟨Sα
1 S

α
1+n⟩ of the potential SPT phases versus n

at ϕ = 0.064π, 1.799π, 1.829π obtained from iDMRG. The calculations are performed

along the first leg of the ladder, starting at n = 3 and ending at n = 199.

matrices formed across the rung cuts ρr and the bond cuts ρb have an exact doubling

in the thermodynamic limit. The δ and Υ phases have a doubling of the eigenvalues
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across the rungs cuts while the Ω phase has a doubling across the bond cuts. Using finite

DMRG we have also determined that all three of the phases are gapped when periodic

boundary conditions are imposed. Fig 4.7 shows the spin gap ∆E = E1 − E0 between

the first excited state and the ground state as N is increased. As gapless states are

only truly gapless in the thermodynamic limit, ∆E ∝ 1/N , increasing N should either

yield a gap tending toward zero linearly in 1/N or approaching a constant value. Fig

4.7 shows that all three phases are indeed approaching some constant limit. Another

way to verify this is too examine the correlation length within each of the phases as

ξ ∝ 1/∆E [16]. Moreover, the entanglement S is proportional to the correlation length

in 1D spin systems [75] which means that S ∝ 1/∆E. Since we are tracking the

SCE across the transitions and that the SCE is part of the total entanglement S, we

must have that the gap is largest where the SCE is the smallest within each phase.

Therefore, picking a representative point for each phase where the SCE is the smallest

gives the largest gap and is the most stable. Upon constructing the transfer matrix

in iDMRG, the correlation lengths are extracted to be ξδ ≈ 46.66, ξΥ ≈ 26.06, and

ξΩ ≈ 42.66. These values agree with the relative ordering of the gaps of the phase,

namely ∆δ < ∆Ω < ∆Υ, from finite DMRG and so the phases are likely gapped. Under

appropriate boundary conditions, all three phases should show edge modes in the form

of non zero magnetization at the edges of the cluster. Due to this, the states also show

degeneracy of the ground state, namely there are 4 low lying states that are close in

energy in open boundary conditions, which is in contrast to the unique gapped ground

state in periodic conditions. The edge modes present are very similar to one another

and are thus difficult to distinguish. In order to differentiate between these degenerate

states, we follow [76] and examine the total magnetization of the states in the ground

state manifold. If the edge modes are to be truly localized at the edges of the clusters,

there should little contribution from the bulk to the overall magnetization. As the

clusters are made larger, the magnetization should become constant if the edge modes

are the only sections of the ladder that support non zero magnetization. Therefore

we construct the total magnetization S̃n =
∑

i S
n
i for axis n in the 4-fold degenerate

ground state manifold. As the ladder is a section of a honeycomb lattice, we analyze

axes a = (1, 1,−2), b = (1,−1, 0), and c = (1, 1, 1). Diagonalizing S̃n should yield an

eigenvalue structure of s,−s, 0, 0 where three of the states are spin polarized states and

one 0 state is singlet. This should detect what kind of pairing at the ends of the chain

is present and therefore should provide a way for the 4 states to be distinguished. In

Fig 4.5 the largest eigenvalue s of S̃n is shown for in plane axes a, b, and c as the system

size N is increased. We see that the δ phase shows decaying eigenvalues while phases Υ
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Msc. Thesis - Sébastien Avakian; McMaster University - Physics and Astronomy

Figure 4.7: Energy gaps ∆E = E1 − E0 of the δ,Υ, and Ω phases between the ground

state and the first excited state obtained through finite DMRG with a maximal bond

dimension χ = 1200. The length of the ladder starts at N = 12 sites, incremented by 4

sites each time to maintain periodic boundary conditions, until a max of N = 48. The

phases have small gaps with the magnitudes agreeing with the value of the correlation

length obtained from the transfer matrix.

and Ω show increasing eigenvalues. However, the system sizes that are probed do not

exceed one correlation length in the case of the δ and Υ phase.

4.5.1 The δ phase

While trying to perform the numerical analysis, the members of the δ phase show poor

convergence as seen in the scattering of χe0
ϕ in Fig 4.2 near the AF-Γ to δ transition

point. In the δ phase, the spin correlation functions all decay and show no scalar or

vector chirality in this phase like the other three SPT phases. However, the correlation

functions in Fig 4.6 show that it is possible to have an ordering that is incommensurate

with that of the lattice. Namely, the decaying correlations in the δ phase show no

pattern in the sign of the correlation functions. To this end, we examine the structure

factor Sαα(k) =
∑L

n=1 e
ikn⟨Sα

1 S
α
n ⟩ for L sites in the ladder. Since the transitions into
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Figure 4.8: Leading eigenvalue |s| of the total magnetization S̃n along axis n for the δ

(top),Υ (middle), and Ω (bottom) as a function of cluster size N . The first sizes until

N=28 are obtained with exact diagonalization (ED) while the remaining larger sizes

are obtained with DMRG.

and out of the δ phase have convergence issues, we will examine the behaviour of the

structure factor as we sweep through the AF-Γ phase to the AF phase. In Fig 4.9 the

zz structure factor is shown starting in the pure AF-Γ phase at ϕ = 0 in red. The

wavevector k is initially set at k ≈ 2π/3 with a small weight also surrounding k = 0.

As ϕ increases, the weight at k = 0 begins to decrease as the k ≈ 2π/3 peak begins

to increase, both staying fixed at their wave vectors. Eventually the k = 0 peak will

disappear entirely and only the larger k = 2π/3 one will remain. As the critical value

ϕ = 0.025π is crossed, we enter the δ phase, denoted by the blue color, and the peak

begins to move towards k = π just before the transition to the AF phase in green.
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Once we have crossed the critical value of ϕ = 0.077693π, the wavevector is now firmly

at k = π which agrees with the fact that the AF phase has Néel order in the z direc-

tion. As the AF phase is a product state with antiferromagnetic order, Szz(k) should

be centered around k = π immediately, providing the +/- alternating spin pattern. It

Figure 4.9: Structure factor Szz(k) from the ⟨Sz
i S

z
i+1⟩ correlation functions of the AF-Γ,

δ and AF phases obtained from iDMRG along the first leg of the ladder. The red color

indicates where Szz(k) is in the AF-Γ phase, transitioning to the δ phase in blue, and

ending in the AF phase in green. Szz(k) at ϕ = 0 is pointed out as having two peaks,

one at k = 0 and at k ≈ 2/3. The last point in the δ phase in this sweep is also pointed

out at ϕ = 0.077π before the transition to the AF phase occurs.

is difficult to see the gradual change of Szz(k) across the transition point due to the

precision in k space used initially in Fig 4.9. Once increased, one can see a smooth

transition to the k = π peak as shown in Fig 4.10. Near the transition point, the

structure factor in the δ phase (in blue) moves towards the k = π as the weight also

increases. Once in the AF phase (in green), the k value is the same but the weight is

significantly larger. It would seem that the peak is also broader in the AF phase, but

this is only due to Szz(k) being so small in the δ phase, in the AF phase it is much

larger in comparison with a maximal value of ≈ 0.8.

The δ phase shows continuous behaviour of the xx and yy structure factors when

moving through the AF-Γ, δ, and AF phases. In Fig 4.11, Sxx(k), Syy(k), Szz(k) are all

plotted together for the three phases in question. In the first panel, there are 3 peaks
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Figure 4.10: Structure factor Szz(k) from the ⟨Sz
i S

z
i+1⟩ correlation functions of the

δ and AF phases obtained from iDMRG along the first leg of the ladder. Starting at

ϕ = 0.077314π in the δ phase in blue, we sweep through to the AF phase at a maximum

value of ϕ = 0.077716π in green. The last value in the δ phase occurs at ϕ = 0.077675π

while the first value in the AF occurs at ϕ = 0.077695π which are both centered around

k = 1.

visible in the AF-Γ phase for α = x, y at k ≈ 0, π/3, 2π/3 while only two peaks are

seen for α = z at k = 0, 2π/3. Once in the δ phase, the first peak at k = 0 is gone for

all α and the remaining peaks initially situated at k = π/3, 2π/3 in the AF-Γ phase

begin to move. For α = z, the single peak begins to move towards k = π as mentioned

previously, while the two peaks for α = x, y begin to separate. The k = π/3 peak

moves, throughout the δ phase, towards k = 0 and decays in value while the k = 2π/3

peak moves towards k = π like in the α = z case. Finally, all of the structure factors

are peaked at k = π once in the AF phase. Therefore, Sαα(k) in the δ phase is some

continuous mixture of the AF-Γ structure factor and the AF structure factor.

The transition between the δ and the AF phase seen through the correlation length re-

veals a very sharp transition between the two phases. When crossing the ϕ = 0.077693π

point, a very sudden divergence in the correlation length ξ appears as ξ ∝ 1/∆ [16] and

the gap ∆ closes at a transition point [33]. In Figure 4.12 we see that there are two

transitions as expected. The first transition between the AF-Γ and δ phases agrees with

χe0
ϕ and ξ diverges at ϕ ≈ 0.025π. It must be noted that due to memory constraints,
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Figure 4.11: Structure factor Sαα(k) for α = x, y, z obtained from iDMRG along the

lower leg of the ladder. The representative points of the AF-Γ, δ, and AF phases are

at ϕ = 0.009π, 0.054π, 0.090π respectively.

the maximum bond dimension used in the calculation of the correlation length is much

smaller than that in the calculation of the phase diagram since the transfer matrix

scales as χ4. Within the δ phase, the correlation length is rather large until we begin

to approach the second transition point at ϕ = 0.077693. To the left of the transition

point, the value of ξ is constant til a sharp transition occurs to the AF phase, where the

correlation length is of order unity as expected. As χ is increased, ξ before the second

transition point remains more or less constant indicating that the phase is probably

gapped. If it were gapless, as χ is increased ξ would keep growing which is not the case

here. Its still of note though that the gap is smaller than the other two potential SPT

phase by a factor of 2. To right of the second transition point, ξ = O(1) and therefore

the AF must have a gap that is much larger than what is in the δ phase.

4.5.2 The Υ Phase

Due to the growing eigenvalues of the magnetization across the a and b axes in the Υ

phase as shown in 4.5, it is likely that there is some magnetic ordering in the plane of
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Figure 4.12: Correlation length ξ from the second eigenvalue of the transfer matrix

from iDMRG with a bond dimension of 120, 200 and 300 plotted in blue, red and green

respectively. The first black line denotes the transition from the AF-Γ inferred from

the phase diagram (4.2) at ϕ = 0.025π and the second black line denotes the transition

between the δ to AF transition at ϕ = 0.077693π which agrees with the Szz(k) data.

the ladder. If the phase were to truly be an SPT phase, edge modes would appear and

remain stable as N is increased, while the bulk remains non magnetic. Moreover, as

a magnetic field is introduced along the a or b axes, the magnetization should greatly

increase along those axes while remaining unchanged in the bulk. One can directly plot

the magnetization down the chain but not much information will be gained. Figure 4.13

shows the 4 states in the ground state manifold and their on-site magnetization along

the length of the ladder. All 4 panels show some magnetization that persists longer into

the ladder than what the correlation length (ξ ≈ 26.06) would imply if the there were

to edge modes. Moreover, as the states are assumed to be degenerate, is is difficult to

obtain all of the states in the ground state manifold as DMRG works best when gaps

between the energy levels are present. We can split the degeneracy by applying a small

magnetic field in order to isolate the lowest energy state out of the 4 and analyze its

properties. We apply the field along the b axis as we suspect that there is the possibility

of ordering in the plane of the ladder. As shown in Figure 4.14, we fix N = 30 and

turn on a negative magnetic field (its magnitude is plotted on the x-axis) and track the

center site magnetization along the b direction in the ladder at n = 15. The magnetic

field increases ⟨Sb
15⟩ linearly til B = −0.001 where the magnetization begins to level

54
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Figure 4.13: On site magnetization ⟨Sα
i ⟩ along the ladder in the Υ phase at ϕ = 1.799π

for the 4 degenerate states in the ground state manifold. Results were obtained with

DMRG on a cluster of size N = 154. The top panel is the ground state (as chosen by

DMRG), the rest are the 1st, 2nd, and 3rd (bottom panel) excited states just above

the ground state.

off. Importantly, the first 5 points when fitted to a line reveal a non zero intercept of

b = 0.013027, indicating the presence of some small magnetization for B = 0 in the

center of the chain. As B is increased, the magnetization in the center grows quite

dramatically which agrees with the conclusions from the scaling of the eigenvalues of

S̃b in the ground state manifold. A true SPT should have a non-magnetic bulk, even

in the presence of the magnetic field and hence this phase is probably not an SPT, but

rather a short ranged magnetically ordered phase in the plane of the ladder.
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Figure 4.14: Magnetization of the center site n = N/2 for N = 30 in the Υ phase for

ϕ = 1.799π and N = 30. The orange line is a linear fit for the first 5 points that has a

non zero intercept b.

4.5.3 The Ω phase

In contrast to the other two phases, the Ω phase does show non trivial edge modes

localized only at the edges. The 4 degenerate states in OBC also show some similarity

when plotting the on-site magnetization and are difficult to interpret, therefore we apply

a small magnetic field to isolate the lowest energy state in the ground state manifold.

As the Ω phase has rather large correlation length (ξ ≈ 42.33), we use N = 300 to

ensure that the edge modes can be fully separated and a magnetic field B = −0.0001.

According to Figure 4.5, the only direction which will have a nonzero response to the

field is the b axis. The edge modes are clear in Figure 4.15, they vary significantly over

one correlation length but then quickly decay into the cluster. Moreover, the response

as the edges is much large in magnitude compared to those in the bulk, having near

zero values.
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Figure 4.15: Magnetization ⟨Sb
n⟩ along the b direction along the length of the ladder

with N = 300 sites in the Ω phase for ϕ = 1.829π.
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Chapter 5

Conclusion

5.1 Summary

In this work we have introduced a minimal theoretical background in one dimensional

spin chains. We have introduced the matrix product state formalism of low entangle-

ment states, their efficiency in approximating spin chain ground states in low dimen-

sions, and how they arise as a variational ansatz used by the density matrix renor-

malization group technique. We also introduced the concept of spin liquids as highly

entangled spin states that show no long range magnetic order and that can host non-

abelian excitations called anyons. Such systems can be realized in real materials like

αRuCl3 where several interactions, like the Γ interaction are present and are argued to

be important in understanding these phases. Quasi 2D spin ladder studies simulating

these kinds of materials seek to understand their phases, in which particular importance

has been placed upon the Γ interaction as its behaviour is not well known.

We then discussed the results of analysing a Hamiltonian with DMRG that contains the

Heisenberg and Γ interactions by producing its phase diagram. It yielded 11 phases, 8

that are known or magnetically ordered and 3 potential symmetry protected topological

phases, the δ,Υ, and Ω phases. Out of the 3, only the Ω phase seems to be a true SPT

while the δ phase is possibly disordered and the Υ phase is magnetically ordered in the

honeycomb plane.
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5.2 Outlook

The true nature of the δ phase remains to be determined. We have shown that it is a

definite phase, with well defined transition points and show clear doubling of the eigen-

values of the reduced density matrix. It is still unclear at this moment if the δ phase is

truly gapped as the DMRG data would suggest that it is for finite N, but the gap could

decreases for larger values of N as shown by Fig 4.7. Entanglement, energy and corre-

lation length measures seem to indicate that it is a phase, but correlation functions and

on site magnetization provide no insight into the phases behaviour. Importantly, the

entanglement spectrum shows an exact doubling which is a highly non trivial property

to have for a phase related to a simple disordered antiferromagnetic phase to have.

The nature of the Υ and Ω phases are also remaining to be determined. Some more

evidence is needed to not only substantiate the claims made in the results section, but

to understand the in plane magnetization in the bulk of the Υ phase while explaining

the origin of the edge modes in the Ω.

Another avenue would be study the dependence of the ladder on the number of legs the

systems has. Here we have only used 2, but in principle this could be increased and can

shed some more insight into how the correlation can spread along the rungs where the Γ

interaction couple only x, y components of the spin. If the δ phase were to truly be dis-

ordered, correlations along the rung direction should also show a lack of magnetic order.

While adding legs is stop gap measure to truly exploring the 2D limit, one could also

use iPEPS (infinite projected entangled pair states), a 2d analog of DMRG and MPS

that also seek to extract information in the thermodynamic limit. While slower, iPEPS

would offer a closer attempt to studying the full honeycomb system, rather than the

strip in the ladder.

While previously worked on in other cases [63, 64], a complete projective symmetry

analysis of the J − Γ model would be useful. This would allow us to determine the

number of SPT phases that are allowed in the model, admitted by the full symmetry

group of the ladder and the interactions.
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[35] D. Pé rez-Garćıa, M. M. Wolf, M. Sanz, F. Verstraete, and J. I. Cirac. String order

and symmetries in quantum spin lattices. Physical Review Letters, 100(16), apr

2008.

[36] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen. Classification of gapped sym-

metric phases in one-dimensional spin systems. Physical Review B, 83(3), jan 2011.

[37] Frank Pollmann, Ari M. Turner, Erez Berg, and Masaki Oshikawa. Entanglement

spectrum of a topological phase in one dimension. Physical Review B, 81(6), feb

2010.

[38] Frank Pollmann and Ari M. Turner. Detection of symmetry-protected topological

phases in one dimension. Physical Review B, 86(12), sep 2012.

[39] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen. Complete classification of one-

dimensional gapped quantum phases in interacting spin systems. Physical Review

B, 84(23), dec 2011.

[40] Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki. Rigorous results on

valence-bond ground states in antiferromagnets. Phys. Rev. Lett., 59:799–802, Aug

1987.

[41] Alexei Kitaev. Anyons in an exactly solved model and beyond. Annals of Physics,

321(1):2–111, jan 2006.

[42] Elliott H. Lieb. Flux phase of the half-filled band. Physical Review Letters,

73(16):2158–2161, oct 1994.

[43] A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics,

303(1):2–30, jan 2003.

[44] Lucile Savary and Leon Balents. Quantum spin liquids: a review. Reports on

Progress in Physics, 80(1):016502, nov 2016.

[45] J. Knolle and R. Moessner. A field guide to spin liquids. Annual Review of

Condensed Matter Physics, 10(1):451–472, mar 2019.

63
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