## FUNCTIONAL ANALYSIS OF THE SEX RELATED GENE DMRT1 IN XENOPUS

By LINDSEY KUKOLY, HONOURS B.Sc.

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of Master of Science

McMaster University MASTERS OF SCIENCE (2023) Hamilton, Ontario (Biology)

TITLE: Mechanistic investigation of the sex related gene $d m r t 1$ in African clawed frogs
(Xenopus) evidences both neofunctionalization and subfunctionalization
AUTHOR: Lindsey Kukoly (McMaster University)
SUPERVISOR: Dr. Ben Evans NUMBER OF PAGES: ix, 99

## Lay abstract

In many species sexual differentiation is a crucial developmental event. Surprisingly, however, the systems orchestrating sexual differentiation are highly variable among species. The doublesex and mab-3 related transcription factor $1(d m r t 1)$ gene plays a role in sexual differentiation in many groups, but its specific roles in this process are incompletely characterized and potentially diverse. We used genetic engineering in two species of African clawed frog (Xenopus) to disable function of $d m r t l$ in order to explore effects on gonadal development and the development of secondary sex characteristics. We found that $d m r t 1$ is required for normal ovary or testis development in both Xenopus species, and that functional divergence occurred following duplication of $d m r t l$ by whole genome duplication. Taken together, these findings identify previously uncharacterized roles of dmrtl in Xenopus and provide evidence of dynamic functional evolution of this important gene.

## Abstract

Sex determination is a key developmental process in several species regulated by sexrelated transcription factors. In many species a gene called doublesex and mab-3 related transcription factor 1 ( $d m r t 1$ ), plays an important role in sexual differentiation. I used African clawed frogs (Xenopus) to examine function of $d m r t 1$ in two species: a diploid species, $X$. tropicalis, and an allotetraploid species, $X$. laevis. In both species, $d m r t l$ is an autosomal gene; Xenopus tropicalis has one copy of $d m r t 1$ and $X$. laevis has two homeologous copies that by definition are derived from whole genome duplication: dmrtl.L and dmrtl.S in $X$. laevis. We generated knockouts of each of these genes to further examine their function in sexual differentiation. Histological examination showed testicular dysgenesis in X. tropicalis dmrtl and $X$. laevis dmrt1.L null males whereas $d m r t 1 . S$ null males presented no obvious difference in sperm density compared to wildtype males. $X$. tropicalis dmrtl and $X$. laevis dmrt1.L null females were found to completely lack reproductive organs and are infertile whereas dmrt1.S null females appeared unaffected. The contrasting results between dmrt1.L and dmrt1.S in $X$. laevis provides evidence of both neofunctionalization and subfunctionalization following gene duplication and suggest that gene duplication is a major contributor to evolutionary change.

Additional investigation of the transcriptome of these frogs and the role of $d m r t l$ in the secondary sex characteristic vocalization provides further evidence of the role of $d m r t l$ in development. Comprehensively, this investigation provides further knowledge of the role of $d m r t l$ and homeologs of this gene in sexual differentiation and introduces a novel aspect of this gene in female development. Future efforts are focused on generating double knockouts for $d m r t 1 . L$ and $d m r t 1 . S$, further examining the role of $d m r t 1 . S$ in somatic cell function and developing additional mutant lines in other Xenopus for comparative analysis.

## Acknowledgements

I would like to start by thanking my friends and family for their continuous support, not only throughout my Master's degree, but along the entire journey that has led me to where I am today. I would like to thank my parents for their support and assistance through the countless reports my mom would proofread, and by listening to me give the same presentation over and over again. Even if they did not always understand what I was talking about, I know they were paying attention as when my dad's crossword puzzle clue read "African clawed frog", he immediately knew the answer was Xenopus.

I would also like to thank my lab mates Tharindu Premachandra, Jianlong Zhu, Emmanuela Anele and Martin Knytl for all the help and learning opportunities they gave me as well as all the laughs we shared together in lab. Thank you to Tharindu for teaching me various lab techniques at the start of my program and for always being there to help me troubleshoot when things go wrong. Thank you to Jianlong for helping me out when I would become frustrated because I could not get R to do what I wanted it to. Thank you to Emmanuela for giving me the opportunity to learn new things about frog parasites that I never expected would be a topic with so many interesting components. I will always remember the excitement we shared every time we got a new frog to dissect, hoping something cool would crawl out of it.

Next, I would like to thank my committee members Dr. Ian Dworkin and Dr. Joanna Wilson for always providing new insights and ideas of how to improve my research. Thank you to Dr. Dworkin for helping my take my histological analysis to the next level, first by training me to use your microscope to take high resolution images of my tissues and by teaching me how to complete computational analysis for these images.

I would also like to give a tremendous thanks to my supervisor, Dr. Ben Evans for giving me this educational opportunity and allowing me to achieve the next step towards the career goals I have been dreaming of since I first started to learn about Biology. Thank you, Dr. Evans, for the continuous support you gave me throughout this program. For teaching me so many different skills and techniques that I know will stick with me throughout my career. Thank you for being the first to teach be the importance of bioinformatics and for taking so much time to walk me through the steps of these analyses. Bioinformatics and coding are not things that come very easily to me, and I am incredibly grateful for your help and patience as I started to learn them. In addition, thank you for always encouraging me to take part in opportunities outside of the lab. As someone who was always a little nervous about standing in front of a room full of people and sharing my work, your encouragement has allowed me to take part in amazing experiences such as travelling to give a talk at one of the largest evolution conferences in the world, an experience that I will never forget. Overall, this program has been such an amazing opportunity that has allowed me to grow in so many ways, and the two years I have spent here will always remain close to my heart.

Finally, I would like to acknowledge everyone who made this research possible. Marko Horb, Sarah Burton, Danielle Jordan, Nikko-Ideen Shaidani, William Thomas and the staff at the National Xenopus Resource (NXR), Carl Anderson, Leanna Herrick and Jacek Kwiecien have each been essential in the completion of this research and I am incredibly thankful of their assistance and contributions.

## Contents

Lay Abstract ..... iii
Abstract ..... iv
Acknowledgments ..... V
List of Abbreviations ..... viii
Declaration of Academic Achievement ..... ix
1 Chapter 1 ..... 1
1 Introduction ..... 1
1.1 Sex determining systems ..... 1
1.2 Triggers for sex determination ..... 1
1.3 Other conserved components of sex-determining pathways .....  2
1.4 Sex determination in Xenopus ..... 2
1.5 Gene duplication ..... 3
1.6 Testes anatomy and histology ..... 4
1.7 Secondary sex characteristics ..... 4
2 Materials and Methods ..... 5
2.1 Xenopus laevis and Xenopus tropicalis knockout lines ..... 5
2.2 Phenotypic analysis ..... 5
i) Internal anatomy and histology ..... 5
ii) Fertility ..... 7
iii) Gene expression in the developing gonad ..... 8
iv) Vocalizations ..... 9
3 Results ..... 10
3.1 Sex and genotypes ..... 10
3.2 Gonadal histology ..... 11
3.3 Fertility ..... 12
3.4 RNAseq analysis ..... 12
3.5 Impact on laryngeal morphology and function ..... 13
4 Discussion ..... 14
4.1 Sex reversal ..... 14
4.2 Gonadal development and fertility ..... 15
4.3 Transcriptome analysis ..... 16
4.4 Subfunctionalization and neofunctionalization ..... 17
4.5 Secondary sexual differentiation ..... 18
5 Conclusion ..... 18
6 Figures ..... 20
7 Supplementary Information ..... 31

## List of Figures and Tables

1 Testis histology imaged at 10X and 40X. ..... 20
2 Key stages of development from oocyte to tadpole. ..... 20
3 Sanger sequences of $X$. laevis dmrtl. $S$ from individuals with the following genotypes: wildtype, homozygous null, and heterozygous. ..... 21
4 Sanger sequences of $X$. laevis dmrtl.L from individuals with the following genotypes: wildtype, homozygous null, and heterozygous. ..... 21
5 Sanger sequences of $X$. tropicalis dmrtl from individuals with the following genotypes: wildtype, homozygous null, and heterozygous. ..... 22
6 Example female-specific amplifications of individuals from the dmrt1.L line. ..... 22
7 Testis histology of $X$. laevis wildtype and dmrt1. $L$ heterozygous individuals. ..... 23
8 Testis histology from a wildtype male and a stage-matched dmrtl.S knockout male. ..... 23
9 Testis histology from a wildtype male and a stage-matched dmrtl.L knockout male. ..... 24
10 Microscopy of sperm cells taken at 40X with phase contrast for $X$. laevis wildtype and dmrt1.L null individuals. ..... 24
11 Testis histology from X. tropicalis wildtype and dmrtl null individuals. ..... 25
12 Proportions of whitespace in testis histological cross sections. ..... 25
13 Body cavity of $X$. tropicalis females that are wildtype or $d m r t l$ knockout. ..... 26
14 Venn diagrams illustrating the results of the EdgeR analysis using STAR counts data. ..... 27
15 Results of the transcriptome masculinization analysis using EdgeR with STAR counts data. ..... 28
16 Larynx histology of a wildtype male, a dmrt1.S null male, and a dmrtl. $L$ null male. ..... 29
17 Larynx histology of a wildtype female, a dmrt1.S null female, and a $d m r t 1 . L$ null female. ..... 29
18 Inter-click intervals (ICI) coloured by each individual. ..... 30
S1 Summary of histological findings for $d m r t 1 . S$ and $d m r t 1 . L$ null males. ..... 31
S2 Testis histology from each null male tested compared to a wildtype male. ..... 31
S3 Results of the thresholding checks comparing three different threshold values. ..... 32
S4 Significantly differentially expressed transcripts in the mesonephros/gonad. ..... 33
S5 Gene ontology analysis of differentially expressed genes in the developing gonads. ..... 65
S6 "Functional dissection and assembly of a small, newly evolved, female-specific genomic region of the W chromosome of the African clawed frog Xenopus laevis" Cauret et al. submitted to PLOS Genetics July $19^{\text {th }}, 2023$. ..... 68
S7 Additional research on androgen-receptor null frogs. ..... 92

## List of Abbreviations

DGE differential gene expression
Dmrt1 doublesex and mab-3-related transcription factor 1
DNA deoxyribonucleic acid
GO gene ontology
hCG human chorionic gonadotropin
NA numerical aperture
PCR polymerase chain reaction
PMSG pregnant mare serum gonadotropin
RNAseq ribonucleic acid sequencing
X. Laevis Xenopus laevis
X. tropicalis Xenopus tropicalis

## Declaration of Academic Achievement

I, Lindsey Kukoly, declare this thesis and the work presented within it as my own. This thesis is an original report of the research I have completed during my Master of Science degree unless otherwise indicated by citations. The work in this document entitled "Mechanistic investigation of the sex related gene $d m r t l$ in African clawed frogs (Xenopus) evidences both neofunctionalization and subfunctionalization" has not been submitted for publication or to any other academic institution.

Additional work that I have completed is detailed in supplementary sections 5\&6. This includes the paper "Functional dissection and assembly of a small, newly evolved, femalespecific genomic region of the W chromosome of the African clawed frog Xenopus laevis" by Cauret et al. submitted for publication in PLOS Genetics on July 19 ${ }^{\text {th }}, 2023$.

My work includes original research I completed under Dr. Ben Evans' supervision with assistance from my committee members Dr. Ian Dworkin and Dr. Joanna Wilson, as well as the staff at the National Xenopus Resource (NXR) in Woodshole, Massachusetts. Additionally, the results and figures pertaining to the transcriptome analysis portion of this thesis were generated by Dr. Ben Evans.

The research presented in this thesis will be developed into a manuscript for submission to be published in a peer-reviewed journal in the future.

## Chapter 1

## 1 Introduction

### 1.1 Sex determining systems

Sexual differentiation is a key aspect of development of anisogamous species, i.e., species with two differently sized gametes. In these species, sexual differentiation results in the formation of (usually) two sexes, with the sex with the larger gamete generally considered to be female. The development of different sex phenotypes is generally achieved even though most of the genome (the autosomes) are shared between the sexes, which highlights the pivotal roles of sex-specific triggers for sex determination and sex-specific regulation of autosomal loci. Despite the shared outcome of this process, the systems that trigger sex are often quite variable, including between closely related species. Sexual differentiation can be divided into gonadal, or primary sexual differentiation, and non-gonadal, or secondary sexual differentiation. Examples of secondary sex characteristics include facial hair in human males, differences in male and female plumage in birds, and the presence or absence of horns or antlers in other species (Owens \& Short, 1995).

### 1.2 Triggers for sex determination

In mammals, including humans, the $\mathrm{XX} / \mathrm{XY}$ system of sex determination occurs where the males are the heterogametic sex (XY). However, this is not the only sex determining system that exists in nature. In order to fully understand these sex determining systems and how they evolved, it is important to investigate the mechanisms that regulate this process. In placental and marsupial mammals, there is a male-specific gene on the Y chromosome called sex-determining region Y protein (SRY) that triggers male development (Koopman et al., 1991; Sinclair et al., 1990). Studies conducted in mice have attributed this role of $S R Y$ to interactions with the autosomal Sox9 gene, which is known to play a vital role in testis development as it drives the production of the Sertoli cells (Koopman et al., 1991; Sekido \& Lovell-Badge, 2009). This role of $S R Y$ in the development of the testes suggests that $S R Y$ is crucial in the differentiation of a male individual and without this transcription factor, female primary sexual differentiation is triggered. But this gene is absent in monotremes and sex-differences in dosage of an X-linked gene called doublesex and mab-3-related transcription factor 1 ( $d m r t 1$ ) likely triggers sexual differentiation (Alam et al., 2018; El-Mogharbel et al., 2007; Maier et al., 2021; Veyrunes et al., 2008) and this may also be the way sex is determined in birds (Ioannidis et al., 2021; C.

Raymond, 1999; Smith et al., 2003). Only a handful of triggers for sex determination have been identified in other vertebrate species (Kubiak et al., 2020; Nagahama et al., 2021). In medaka fish (Oryzias latipes), a male-specific duplicate of dmrtl called DMY is the trigger for sex determination (Masuyama et al., 2012; Matsuda et al., 2002). However, in rainbow trout, a gene called $s d Y$ is required for testis differentiation and is the probable trigger for sex determination (Yano et al. 2012). Unlike many other triggers for sex determination that tend to be derived from
M.Sc. Thesis - L. Kukoly; McMaster University - Biology
sex-related autosomal genes, $s d Y$ shares similarities with interferon 9 (Irf9) proteins which are involved in the immune response, and it is hypothesized that this gene evolved from a specific irf9 paralog (Yano et al. 2012). Examples of such genes demonstrate the complexity of sex determining systems which makes this an important area of study for investigating the evolution of a species.

### 1.3 Other conserved components of sex-determining pathways

Along with the among species variation in triggers for sex determination, there is also variation in the genetic components and interactions that form the downstream pathways that orchestrate sexual determination. Usually, these pathways are driven by specific genes or transcription factors and many sex determining genes have conserved function, meaning they influence the same features or have similar genetic roles in a diversity of species (Reaume \& Sokolowski, 2011). In vertebrates, Sox9 has a broadly conserved involvement with development of specialized cells associated with sperm maturation called Sertoli cells (Da Silva et al., 1996). Likewise, anti-mullerian hormone ( amh ) and forkhead box protein L2 (foxl2) are typically involved with testis and ovarian development and function, respectively. The Amh gene has been identified as playing a major role in testis development as it is responsible for the regression of the Müllerian ducts which marks the start of male differentiation in vertebrates (Josso et al., 2001; Zhou et al., 2019). In comparison, mutations in Wht4 resulted in masculinization of females (Vainio et al., 1999) and knockouts of foxl2 in mice were found to impact the maturation of the ovaries (Ottolenghi et al., 2007; Pisarska et al., 2011)

Another sex-related gene with broadly conserved functions that is studied here is the doublesex and mab-3-related transcription factor $1(d m r t 1)$ which exists in the DM binding domain and has been found to play a role in male differentiation across metazoans including humans and other mammals, birds, reptiles, nematodes, and insects (C. S. Raymond et al., 2000). Biological roles of $d m r t l$ have been revealed in several species. In humans, $d m r t l$ is located within the 9 p chromosomes where deletions of this region resulted in 46,XY gonadal dysgenesis that can lead to partial sex reversal (Inui et al., 2017; C. Raymond, 1999; Veitia et al., 1997). In mice, $d m r t 1$ is considered necessary for the differentiation of the testis at later stages of development as a knockout of $d m r t l$ resulted in improper differentiation of Sertoli and germ cells (Herpin \& Schartl, 2011; Kim et al., 2007). In Drosophila fruit flies, sex-specific splicing of the doublesex gene triggers sexual differentiation based on the presence or absence of expression of a protein called transformer which also undergoes sex specific splicing (Rideout et al., 2010). In Caenorhabditis nematodes, the dmrtl ortholog of the male abnormal gene (mab-3) plays a major role in male differentiation through the prevention of expressing yolk proteins and regulating the morphology of tails in males (Shen \& Hodgkin, 1988). The current knowledge of various sex determining genes and the species they are present in serves as a strong basis for further investigation of the sex determining systems working in other species.

### 1.4 Sex determination in Xenopus

The African Clawed Frog (Xenopus laevis) and other amphibian species use an entirely different sex determining system compared to mammals where females are the heterogametic sex (WZ) and males are homogametic (ZZ) (Chang \& Witschi, 1956) and there is a female-specific gene/allele called $d m-w$ (Yoshimoto et al., 2008). In these frogs, substantial variation in triggers
M.Sc. Thesis - L. Kukoly; McMaster University - Biology
for sex-determination is evidenced by among species variation in (i) the presence or absence of $d m$-w, (ii) female-specificity of $d m-w$, and (iii) the genomic locations of the sex chromosomes which suggests that $d m-w$ evolved from a duplication $d m r t 1 . S$ but resides in the L subgenome. PCR-assays, capture sequencing, and whole genome sequencing indicate that $d m-w$ evolved recently in an ancestor of $2 \mathrm{n}=4 \mathrm{~s}=36$ allotetraploid African clawed frogs in the subgenus Xenopus after divergence of subgenus Silurana, which includes the diploid species X. tropicalis (Bewick et al., 2011; Cauret et al., 2020). In $X$. laevis a DM-domain gene called $d m-w$ is sex specific and resides on Chromosome 2L (Cauret et al., 2020; Yoshimoto et al., 2008). But this gene was then lost several times (Cauret et al., 2020), including in the allotetraploid $X$. borealis where Chromosome 8L are the sex chromosomes, at least in the population in east Kenya (Evans et al., 2022; Furman et al., 2018; Furman \& Evans, 2016).The closely related species X. tropicalis lacks $d m-w$ and instead determines sex using a combination of pairs of three different sex chromosomes - W, Y, and Z - where females have either WZ or WW chromosomes and males can have ZZ, ZY or WY chromosomes (Roco et al., 2015; Furman et al., 2020). The sex determining gene has not yet been identified in $X$. tropicalis. Divergence of $X$. laevis and $X$. tropicalis occurred approximately 48 million years ago (Session et al., 2016).

Current research has identified a few key factors that may play a role in the sex determining systems of Xenopus species. One transcription factor that is of particular interest is the doublesex and mab-3-related transcription factor 1 (dmrtl) which exists in all Xenopus species including $X$. tropicalis (Yoshimoto et al., 2006). This transcription factor exists in two copies in $X$. laevis, dmrt1.L and dmrt1.S. These two gene copies originally diverged as a result of a gene duplication event occurring approximately 34 million years ago (Session et al., 2016). Each of these homeologs have been identified as having a male biased expression due to their role in testis development (Yoshimoto et al., 2010).

### 1.5 Gene duplication

How might sex determination pathways evolve rapidly? One possibility is that gene or genome duplication are major catalysts for evolutionary change, because these processes are frequently associated with rapid functional evolution. In many cases, one of the gene copies will be lost (nonfunctionalization). However, both of the duplicated genes may also persist, and function of each individual copy may or may not acquire functional differences. One possible outcome is neofunctionalization where one of the gene copies holds the original gene function while the other develops an entirely different function after the occurrence of specific mutations (Birchler \& Yang, 2022; Teshima \& Innan, 2008; Voordeckers \& Verstrepen, 2015). Another possible outcome is when the original function is divided between the two gene copies through the process of subfunctionalization (Birchler \& Yang, 2022; Lynch \& Conery, 2000; Voordeckers \& Verstrepen, 2015). In each of these cases, both of the gene copies obtain functions that are essential to the development or survival of the organism and thus, both copies are likely to persist in the population.

With the current knowledge of the gene duplication event leading to the production of $d m r t 1 . L$ and dmrt1.S in $X$. laevis which have become fixed in this species, this investigation hopes to develop a complete understanding of the independent functions of each gene copy and the overall importance to the evolution of the species. In addition, by studying the functions of each of these copies in $X$. laevis compared to the single dmrtl gene present in X . tropicalis,
further insights to the importance of this gene can be developed to provide a comprehensive overview of how such genes regulate sexual differentiation in these species.

### 1.6 Testes anatomy and histology

The testis is a complex organ consisting of multiple cell types and structures. To complete the histological analysis for this investigation, a thorough understanding of testis anatomy and function was crucial. Apparent in the histology images were spermatocytes which lead to the production of spermatids through the process of meiosis as well as the maturing spermatids that ultimately give rise to sperm (Figure 1B). In addition to these cell types, Sertoli cells can also be seen in the histology images (Figure 1B). These are very large cells that can be classified as eosinophiles to which the spermatids remain attached until they become fully matured (Wiechmann \& Wirsig-Wiechmann, 2003). The testes also consist of other structures called tubules which can be categorized into two types. First, are the seminiferous tubules (Figure 1A) in which the spermatids are produced. The seminiferous tubules merge with the straight tubules (Figure 1A) which then carry the spermatids towards the mediastinum where they exit the testis (Wiechmann \& Wirsig-Wiechmann, 2003). Lastly, one additional cell type that can be viewed through histology are the Leydig cells (Figure 1B) which are responsible for producing the male androgens (Wiechmann \& Wirsig-Wiechmann, 2003).

### 1.7 Secondary Sex Characteristics

As a complement to understanding the role of $d m r t l$ on primary sex characteristics such as gonadal development and function, this research also aims to identify any impact this transcription factor has on secondary sex characteristics. In Xenopus species, the most obvious secondary sex characteristic involves vocalization. During a vocalization, an initial stimulus of the vocal nerve initiates the call by causing the muscles of the larynx to contract which forces the AD disks to separate, thus creating an opening for air to pass through towards the glottis which remains closed during a vocalization but then opens again for normal respiration (Kelley et al., 2017; Wiechmann \& Wirsig-Wiechmann, 2003). Variations in the size of the larynx and its morphology can lead to differences in the pitch of a call which is one of the factors believed to cause diversity in calls between sexes and species (Tobias et al., 2011). There are clear structural differences within the laryngeal tissue based on the sex of the frog. Males generally have a larger and wider shaped larynx with thicker areas of cartilage in the bottom region of the organ whereas females typically have much thinner segments of cartilage resulting in a thin, triangular shaped larynx (Sassoon \& Kelley, 1986). Based on this understanding, questions arise on what factors may be controlling such characteristics and if these factors overlap with those regulating primary sex characteristics. As a result, this investigation will also study the impact of dmrtl on vocalization with the hopes of further understanding the role of this gene in development of these frogs.

## 2 Materials and Methods

### 2.1 Xenopus laevis and X. tropicalis knockout lines

We used CRISPR-Cas9 to introduce deletions and frameshift mutations in the 5' portion of the coding regions of $d m r t 1 . S$ and $d m r t 1 . L$ in $X$. laevis and dmrtl in $X$. tropicalis (Figure 3, 4 \& 5). F0 mosaic individuals were crossed with wildtypes to generate non-mosaic F1 individuals with germline transmission; F1s were then intercrossed to generate homozygous null and heterozygous F2 individuals for each locus. Genotypes were determined by Sanger sequencing using DNA extracted from samples of foot webbing from each individual using the DNeasy kit (Qiagen, Hilden, Germany) following the manufacturer's protocol. For the X. laevis knockout lines, four pairs of primers specific to $d m-w$ and the upstream untranslated region of this gene were used for PCR amplification including dmw_5pr_for_71 \& dmw_5pr_rev_810, dmw_5pr_for_2762 \& dmw_5pr_rev_3122, dmw_5pr_for_1300 \& dmw_5pr_rev_2131(SI, Bewick et al., 2011), and dmw_intron1_forl \& dmw_intron2_rev1 (Table S7 of Cauret et al. submitted July 19 to PLOS Genetics). These amplifications were used to determine the genetic sex of each individual by comparing the amplifications between each primer set to increase the accuracy of the results. The $d m r t 1 . L$ and $d m r t 1 . S$ genes were amplified and Sanger sequenced to genotype individuals. In total, 24 F2 individuals from the $d m r t 1 . L$ line were sampled and 51 F2 individuals from the $d m r t l . S$ line were sampled. Because individuals from each line were parented by two heterozygous F1 parents, there were three possible F2 genotypes: homozygous knockout, homozygous wildtype, and heterozygous individuals. The sequences were analyzed using the Geneious Prime software version 2023.0.1 (Biomatters Ltd., Auckland, New Zealand) to identify which individuals contained the deletions.

For the $X$. tropicalis line, $d m r t l$ knockout individuals were generated at the National Xenopus Resource (NXR), Woods Hole, Massachusetts (Figure 5). The sex of each frog was determined based on external morphology and was later confirmed through dissections. In total, five $d m r t l$ knockout individuals (one male and four females) and two wildtype individuals were compared. The two wildtype individuals consisted of one male and one female taken from a cross between two X. tropicalis individuals collected from Ankasa West, Ghana.

### 2.2 Phenotypic analysis

The phenotypes of wildtype and knockout individuals from each line were determined through a series of analyses. These phenotypes were then compared based on the investigation of internal anatomy and histology (i), fertility testing (ii), investigating gene expression within the developing gonads (iii) and studying the vocalizations of males (iv).

## i) Internal anatomy and histology

A sample of wildtype and mutant frogs were euthanized for anatomical and histological analysis from each of the knockout lines. In total, 19 X. laevis frogs were dissected including three $d m r t 1 . L$ homozygous null males, two $d m r t 1 . L$ heterozygous null males, six $d m r t 1 . S$ null males, four $d m r t 1 . S$ heterozygous null males and four wildtype males, which included F2 siblings from each mutant line that were raised in the same tank as the other individuals from
each line. In addition, one $X$. tropicalis dmrtl knockout male was also prepared for histological examination. Each individual was euthanized by transdermal overdose of MS-222 (SigmaAldrich, St. Louis, MO, USA). Following euthanasia, internal anatomy of each animal was inspected, and any missing or abnormal organs (especially gonads) were noted. To prepare tissues for histology, cardiac perfusion was performed using a 50 ml syringe that was filled with phosphate-buffered saline (PBS) with pH of 7.4 , followed by fixation by perfusion with $10 \%$ formalin. The PBS was injected into the bottom of the heart after clipping of the veinous vessels of the heart, until the fluid exiting these vessels was clear, usually around 25 ml . Next, approximately 25 ml of the formalin was injected into the bottom of the heart as a first step towards fixation of tissues.

Following the perfusion, tissues were dissected and placed into plastic histology containers. The testes or oviduct were removed first and were kept separate from other tissues. For each individual, a sample of liver, heart, kidney, stomach, intestine, spleen, skin, muscle, lung, eyes and brain were removed. The brain was extracted by removing the entire top half of the skull and placing the skull in decalcification solution for a minimum of two weeks before completing histology. The decalcification solution was prepared consisting of 200 gm of EDTA disodium salt, 950 ml of distilled water and 50 ml of 10 N NaOH adjusted to a pH of 7.4. The rest of the tissues were first fixed in $10 \%$ formalin for minimum of 48 hours, then were transferred to $70 \%$ ethanol for a minimum of 48 hours before submitting for histology. Once tissues had been properly fixed, they were embedded in paraffin, sectioned, and stained at the core histology facility at the McMaster Immunology Research Centre (Hamilton, Ontario). Four $\mu \mathrm{m}$ sections were stained with hematoxylin and eosin stain following the protocol recommended by Leica Biosystems for use with Leica's SelecTech stains Hematoxylin 260MX, Eosin 515LT on the Leica Autostainer XL.

As a complement to this histological analysis, live sperm samples were collected in order to view sperm cells and determine sperm count under the microscope. Testes were taken from a $d m r t 1 . L$ null male and a wildtype male which were both masticated in $100 \mu \mathrm{l}$ of 1.2 x Marc's Modified Ringer solution (MMR). This solution consisted of sodium chloride, potassium chloride, magnesium sulfate heptahydrate, HEPES free acid and calcium chloride dihydrate diluted to the appropriate concentration (Shaidani et al., 2021). Samples were then diluted by 10 $\mu \mathrm{l}$ of the $d m \mathrm{rt}$. $L$ null solution to $20 \mu \mathrm{l}$ of 1.2 x MMR and $1 \mu \mathrm{l}$ of the wildtype samples to $99 \mu \mathrm{l}$ of 1.2 x MMR. A total of four dilutions were completed for each sample and sperm cells were counted using the full grid of the hemacytometer. From the sperm cell count, the total concentration of sperm was calculated for each sample.

To further analyze the histological results collected, slides were imaged using the ZIESS Axioscan 7 slide scanner (10X; 0.45 NA). Images were taken by scanning across the testis using specified regions of interest to produce a collection of 10X images that could be stitched together to form a comprehensive image of the entire testis. Each image file was opened in FIJI version 2.9.0 (Schindelin et al., 2012) using the Bio-formats plugin. Images were then converted to RGB image format then finally 8 -bit image format to display the image in grey scale for thresholding.

We then quantified and compared the amount of white space in the slides from each genotype for each line in FIJI. Because the images contained the entire testis on a white background, we next needed to remove the background so only white space within the tissue was quantified. To accomplish this, a Gaussian Blur filter was applied to the image where sigma was set to 75 . A threshold function was used to identify the area occupied by tissue; the "analyze particles feature" was then used to create an outline of the testis. This outline was applied to the
original 8-bit image, allowing us to section out the testis from the background. From here, the Otsu built-in threshold feature (Otsu, 1979) was applied and using the measure function provided the percentage of area that was occupied by tissue. From here, this value was subtracted from 100 to get the final percentage of the image that was covered by white space. To determine if the threshold value had a large effect on the results, we then tested this procedure by manually adjusting threshold values five higher and five lower than the Otsu threshold value. The percentage of area covered by white space for each analysis was organized in a table and the means and standard deviations were compared in RStudio (RStudio Team, 2022, Boston, MA). Once the area containing white space had been determined for each image, the results were input to RStudio (RStudio Team, 2022) which was used to compare wildtype to knockout individuals by first fitting a linear model using the function area of whitespace $\sim$ genotype of the frog, random $=\sim 1$ Individual, where the differences in area occupied by whitespace was determined between genotypes while differences between individuals were included as a random factor. From here, the emmeans function was used to obtain confidence intervals, and to test whether there was a statistically significant difference between the genotypes within each line (Lenth 2023).

## ii) Fertility

Fertility was assessed for $X$. laevis $d m r t 1 . L$ and $d m r t 1 . S$ knockout males and females using in vitro fertilization (IVF). For each mutant line, we attempted to generate embryos in vitro using a wildtype male with a homozygous null female, or a wildtype female with a homozygous null male. For each fertility assay, we concurrently performed a cross between a wildtype pair using the same solutions and wildtype gametes (eggs or sperm depending on the assay) as a control. Briefly, the protocol for IVF followed that outlined by Shaidani et al., 2021, which began by priming females with 300 international units (IU) of pregnant mare serum gonadotropin (PMSG; BioVendor, Asheville, NC, USA). A minimum of 24 hours later, females were injected with 500 IU of human chorionic gonadotropin (HCG; BioVendor R\&D, Asheville, NC, USA) and left overnight. The next morning, attempts were made to extrude eggs from the female into a petri dish by holding the frog with the index finger between the legs of the frog, pulling back on one leg with the other hand, and carefully applying pressure to the abdomen of the frog with the thumbs. Once the eggs had been collected in the petri dish, any excess water was removed with a pipette. Next, the selected male was euthanized with transdermal overdose of MS-222 and the testis were removed and masticated in 1x MMR. The sperm mixture was then pipetted over the eggs and was left for 5 minutes. The plate was then flooded with 0.1 x MMR for 15 minutes. From here, eggs were kept in 0.1 x MMR and were monitored to determine if fertilization took place. Fertilization was first perceived by the appearance of the oocytes rotating so the dark coloured animal pole was facing upward in the petri dish. When viewed under the dissection microscope, cell division was observed through the formation of blastulas that had undergone multiple cleavage events (Figure 2A). Figure $2 \mathrm{~B} \& \mathrm{C}$ shows the further development from embryos to tadpoles as additional confirmation that this cross achieved successful fertilization.

In total, the fertility assay was performed on three $d m r t 1 . L$ knockout females, one $d m r t 1 . S$ knockout female, two $d m r t 1 . L$ knockout males and three $d m r t 1 . S$ knockout males. In the event that no eggs were released by the female, this was noted, and the remaining steps of this protocol were halted for that individual. Additionally, six $d m r t 1 . L$ females were dissected to
further investigate the lack of fertility achieved. Four of the $X$. tropicalis dmrtl knockout females were also dissected for analysis of reproductive organs.

## iii) Gene expression in the developing gonad

Complete transcriptome sequencing (RNAseq) data were collected from mesonephros/gonad tissue at tadpole at stage 50, which is when the gonads begin sexual differentiation (Yoshimoto et al., 2008). In total, this analysis consisted of a sample size of 42 tadpoles (five wildtype males, three wildtype females, six null males and six null females from the dmrtl. L line and three wildtype males, seven wildtype females, three null males and six null females from the $d m r t l . S$ line). For the $d m r t 1 . L$ mutant line, we compared expression among siblings that were raised in the same tank. This included six knockout females, six knockout males, three wildtype females, and five wildtype males. For the dmrtl.S mutant line, we compared expression among siblings reared in the same tank that were sequenced in two separate runs. The first run included four knockout females, one knockout male, three wildtype females, and three wildtype males. The second run included three knockout females, two knockout males, three wildtype females, and three wildtype males. Normalized counts were obtained through STAR 2.7.9a (Dobin et al., 2013) by mapping to the $X$. laevis version 10.1 genome assembly which was obtained from Xenbase (Fisher et al., 2023). Counts were analyzed in RStudio using EdgeR version 3.40.0 (Chen et al. 2016, McCarthy et al. 2012, Robinson et al. 2010), and for $d m r t 1 . S$, the lane effects were controlled for by including this variable in the design. For each mutant line, separate analyses were performed that compared wildtype to mutant individuals within each sex. Significantly differentially expressed genes were classified as those with a false detection rate (FDR) less than 0.10.

To further characterize the function of differentially expressed genes, a gene ontology (GO) analysis was completed. Because many transcripts of $X$. laevis are not annotated, we relied on putative orthologous annotations from the human transcriptome GRCh38.p13 release 42 (Frankish et al. 2021). This was completed by using the discontiguous blast algorithm to obtain annotations for each differentially expressed gene using the original gene sequences and estimating putative orthologs based on the best bit score within BLAST (Cauret et al. submitted July 19 to PLOS Genetics; Altschul et al. 1997). From here, the GO analysis was completed using a false discovery rate of 0.05 through Fisher's exact test by listing the corresponding gene acronyms in an online tool provided at http://geneontology.org/.

As a complement to the gene ontology analysis of differentially expressed genes, an additional analysis that focuses on a set of 74 previously identified sex-related genes was also performed (Piprek et al. 2018). For these 74 genes, expression ratios were determined for wildtype males:wildtype females and knockout females:wildtype females or knockout males:wildtype males within three different clutches (one each from the $d m r t 1 . L$ and $d m r t 1 . S$ lines and a third from a separate line). For these 74 genes, the correlation between the female:male expression ratios and the null:wildtype expression ratio for each sex and each mutant line was assessed. A permutation test with 1000 replications was used to assess whether the observed correlation departed from our expectation based on correlations between 74 randomly selected genes.
M.Sc. Thesis - L. Kukoly; McMaster University - Biology

## iv) Vocalizations

Similar to most frogs, the vocal organ (larynx) of Xenopus species is sexually dimorphic (Kelley et al., 2020). We therefore explored whether knockouts of $d m r t 1 . L$ or $d m r t 1 . S$ had any effect on secondary sexual differentiation of this organ in terms of morphology (histology) and function (sound production in males). For histological analysis of $X$. laevis, four wildtype males, four wildtype females, three $d m r t 1 . S$ knockout males, two $d m r t 1 . S$ knockout females, one $d m r t 1 . L$ knockout males and three $d m r t 1 . L$ knockout females were analyzed. Each frog was euthanized by transdermal overdose of MS-222 prior to dissection, which followed the procedure outlined above. For histological analysis, excess tissue was left attached to the larynx to ensure the entire organ was removed. The extracted tissues were fixed in formalin for a minimum of 48 hours, and then transferred to $70 \%$ ethanol for a minimum of 48 hours prior to paraffin embedding, four $\mu \mathrm{m}$ sectioning, and hematoxylin and eosin staining as detailed above. Slides were then imaged using the Zeiss slide scanner at 10X magnification for analysis.

We analyzed vocalizations from two $d m r t 1 . L$ knockout males, three $d m r t 1 . S$ knockout males, and four wildtype males that were reared separately from the knockout individuals. Recordings were completed for one frog at a time. First, the male was isolated into a container of approximately 16 L of tank water. The male was then injected with HCG, where $250 \mu \mathrm{l}$ was injected for smaller juvenile frogs and $400 \mu \mathrm{l}$ was used for adult frogs. The container was covered with cloth to minimize visual disturbances, and the injected male was left isolated for $6-8$ hours. Then a non-injected, wildtype female was added into the container and the recording was started. The recording was completed by submerging a hydrophone (High Tech, Gulfport, MI, USA) into a container of water and recording using a laptop connected to the PreSonus AudioBox 22VSL (Baton Rouge, LA, USA). The microphone sensitivity was set by adjusting the input gain dial slightly past the midpoint. The recording was completed through the computer program Audacity. Sound activated recording was achieved by setting the program parameters to -34 dB and leaving the system to record overnight. The next morning, the water temperature was recorded, and the recording was stopped

Recordings were then analyzed using Audacity software version 3.2.1 (Muse Group, Limassol, Limassol, Cyprus) and RStudio version 4.2.2 (RStudio Team, 2022). The inter-click interval (ICI) (Tobias et al. 2014) was measured from the start of one click to the start of the subsequent click by carefully placing time markers directly onto the recording file. Markers were added for each click within a call for a total of 20 calls per individual. The start of a click was identified by the presence of the first peak with amplitude above background. Due to variations between clicks and the potential for background noise, there were some cases where the start of the click differed in structure. In the case that there were above background sounds immediately preceding the first peak, these were included as part of the click only if there was a clear gap of a minimum of 0.003 seconds from the end of the previous click. If it was not possible to clearly differentiate between the end of one click and start of the next, ICI was set to begin at the start of the first peak. ICI durations were exported to RStudio where we tested for a difference between the ICI of wildtype and knockout individuals using the emmeans function (Lenth 2023). To achieve this, we fit a linear model using the function ICI $\sim$ genotype, random $=\sim 1$ |Individual, in order to analyze the ICI by taking into account the difference between genotypes while keeping the difference between individuals as a random factor.

## 3 Results

### 3.1 Sex and genotypes

We generated knockout lines for $d m r t 1 . S$ and dmrt1.L in $X$. laevis and dmrtl in $X$. tropicalis using CRISPR/Cas9. Figure 3 shows Sanger sequences of $X$. laevis dmrt1. $S$ for a homozygous wildtype, homozygous knockout, and heterozygous individual. Homozygous knockouts were generated by a seven bp frameshift deletion in the coding region located within the $11^{\text {th }}$ codon that changed this codon from an arginine to a proline in this codon and introduced a premature stop codon downstream of this. Heterozygous individuals from this line were identified by the presence of double peaks in Sanger sequences of the start of the region where the deletion was located (Figure 3C). Figure 4 shows Sanger sequences of $X$. laevis dmrtl.L for a homozygous wildtype, homozygous knockout, and heterozygous individual. Similar to the $d m r t 1 . S$ line, knockouts were identified by a (different) seven bp frameshift deletion in the coding region that occurred after the tenth codon and changed the subsequent codon from a proline to an arginine and introduced a premature stop codon downstream of this. As expected, heterozygous individuals from this line had double peaks near the start of the deletion (Figure 4C). For $X$. tropicalis, a knockout mutation was achieved by introducing a one bp frameshift deletion in the coding region within the $26^{\text {th }}$ codon that changed this codon from a leucine to a tyrosine and introduced a premature stop codon downstream of this. The normal length of this protein is around 300 amino acids in length, so provided that the mutations occur early in the sequence, these are considered null mutations. Figure 5 shows Sanger sequences of $X$. tropicalis $d m r t 1$ for a knockout, a wildtype, and heterozygous individual.

To determine the genetic sex of each individual in our two mutant lines for $X$. laevis, we used four independent PCR amplifications, each with a different pair of primers that targeted portions of the coding region of exon 2 of $d m-w$ and three different portions of the 5' upstream untranslated region of this gene. Independent successful amplification of each of these four regions identified genetic females and unsuccessful amplifications of each of these four regions identified genetic males; wildtype females were amplified in tandem as a positive control.

The genetic sex was then compared to the phenotypic sex of each frog as determined based on external morphology ( $\mathrm{n}=$ eight, four, five, 13 for female and male $d m r t 1 . L$ and $d m r t 1 . S$ knockouts, respectively) and internal morphology ( $\mathrm{n}=$ six, three, two, and six for female and male $d m r t 1 . L$ and $d m r t 1 . S$ knockouts, respectively). Sex was also determined for 11, 13, five and three heterozygous null males and females from the $d m r t 1 . S$ and $d m r t 1 . L$ lines, respectively. These assays demonstrated that all phenotypic females were genetically female and that all phenotypic males were genetically male. Figure 6 shows an example of female-specific amplifications for eight females and eight males taken from the dmrtl.L line. Multiple amplifications were completed for each of the individuals from the $d m r t 1 . L$ and $d m r t 1 . S$ lines in order to accurately determine genetic sex. In the $X$. tropicalis dmrtl line, we analyzed a total of two wildtype individuals (one male and one female), three $d m r t l$ null females and one $d m r t l$ null male for comparison between external and internal anatomy. As discussed below, there is not a reliable sex-specific genetic marker for sex in X. tropicalis, so we were unable to assess this for this line.
M.Sc. Thesis - L. Kukoly; McMaster University - Biology

### 3.2 Gonadal histology

We performed histological analysis on adult testes of heterozygous males from the $d m r t 1 . S$ and $d m r t 1 . L$ lines. A total of four $d m r t 1 . S$ heterozygotes and two $d m r t 1 . L$ heterozygotes were considered. No pronounced differences were detected between the dmrtl.S heterozygous males and the wildtype males. However, qualitative differences were detected between the $d m r t 1 . L$ heterozygotes and the wildtype individuals in that spermatocytes appear to be more dispersed in the heterozygote compared to the wildtype (Figure 7). In addition, sperm in the $d m r t 1 . L$ heterozygote appear in general to be more immature compared to the wildtype; this is evidenced by an increased abundance of small, darkly stained dots, which represent earlier stages of spermatogenesis. However, it is important to note that some of the sperm present in the $d m r t 1 . L$ heterozygous null have developed past the immature stage described above.

We also performed histology on adult testes from four wildtypes, six $X$. laevis dmrt1.S knockouts, three $X$. laevis dmrtl.L knockouts, and one $X$. tropicalis knockout. Figure 8 shows an example of adult testis histology from a dmrtl. $S$ knockout and a wildtype. Qualitative inspection suggests these individuals have similar densities of mature spermatids and this observation was consistent across all six dmrt1.S knockout males we inspected (Figure S1\&S2). In contrast, in the adult dmrt1.L knockout individuals no mature spermatids were observed; instead, we observe darkly stained dots towards to center of the seminiferous tubules that may be late spermatocytes that failed to mature into spermatids (Figure 9). In addition, one of the three $d m r t 1 . L$ knockout males sampled had only one testis (Figure S1\&S2).

To further investigate the presence of mature sperm in dmrtl.L null males, live sperm samples were tested. Through this analysis, very few mature sperm were seen; however, a small number of sperm were detected that appeared to be mature (Figure 10). The final concentration of sperm detected in the $d m r t 1 . L$ null sample was approximately $230,700 \mathrm{sperm} / \mathrm{ml}$, which was a much lower concentration compared to the wildtype male with approximately $183,500,000$ sperm $/ \mathrm{ml}$. Taking into account the weight difference between the two testes, the wildtype male was found to have approximately 842 times more sperm than the $d m r t 1 . L$ null male.

Histological analysis of testis from the $X$. tropicalis dmrtl knockout male identified mature spermatids, albeit in lower densities compared to the wildtype male (Figure 11).

We used a computational approach to quantify the area of each testis occupied by white space within FIJI version 2.9.0 (Schindelin et al., 2012). We tested whether results were substantially affected by three different threshold values that define whitespace in our histological images. The first threshold value was assigned by the Otsu threshold feature, and two other analyses were performed using values that were five values higher or five values lower than the Otsu threshold values. Using these different threshold values, positive correlations were observed for the proportions of white space from images of $d m r t 1 . S$ and also $d m r t 1 . L$ histological sections of testis tissue (Figure S3). These results suggest that while the proportion of white space changes with different threshold values, the correlations indicate that these changes are consistent between comparisons of each image. Based on this result, we selected the Otsu threshold feature for subsequent analysis.

Each testis image was analyzed individually to quantify the percentage of area occupied by white space for each image. For the $X$. laevis dmrt1.S knockout males a total of nine dmrt1.S and eight wildtype testes were analyzed. Figure 12A shows a box plot comparing the means of these two groups with error bars showing the $95 \%$ confidence interval of the mean computed using the R package emmeans (Lenth 2023). The mean proportion of whitespace for the $d m r t 1 . S$

M.Sc. Thesis - L. Kukoly; McMaster University - Biology

knockout individuals had a $95 \%$ confidence interval of $44.2-49.1 \%$ whereas that for the wildtype individuals was 37.9-43.1\%. These confidence intervals do not overlap and are significantly different $(\mathrm{P}=0.0042)$.

For the $X$. laevis $d m r t 1 . L$ knockout males a total of four $d m r t 1 . L$ images were compared to the same eight wildtype testes. Figure 12B shows a box plot of the compared means for these two groups with error bars showing the confidence intervals. The dmrtl.L knockout group had a $95 \%$ confidence interval of $29.2-48.0 \%$, whereas that for the wildtype was $32.8-48.1 \%$. These confidence intervals overlap and are not significantly different $(P=0.71)$.

### 3.3 Fertility

Male and female heterozygotes for either the $d m r t 1 . L$ or the $d m r t 1 . S$ null allele were fertile; these individuals were successfully crossed to generate the homozygous nulls we studied. In vitro fertilization with an opposite sex (test) wildtype individual was used to test fertility of homozygous null individuals; crosses between the tested wildtype individual and another opposite sex wildtype individual was used as a positive control. When a wildtype female and a $d m r t 1 . S$ knockout male were crossed, fertilization was not detected in the positive control cross; but it was detected in the experimental pairing. Failure of the positive control could reflect poor sperm quality of the wildtype male. When a dmrtl.S knockout female was crossed with a wildtype male, fertilization was also successful (no positive control was performed for this cross). Together these crosses demonstrate fertility of $d m r t 1 . S$ null males and null females.

When a wildtype female was crossed with a dmrt1.L knockout male, fertilization did not occur. Unfortunately, however, fertilization also was not observed in the positive control cross. Thus, while we suspect that males of this genotype are sterile based on the analysis of testis histology and sperm concentration, we were not able to confirm this in our fertility assay. We also tested fertility of $d m r t 1 . L$ knockout females. A total of three $d m r t 1 . L$ knockout females were injected but no eggs were released from any of these individuals. Thus, the remaining steps for determining fertility could not be completed; however, information presented next conclusively demonstrates that $X$. laevis dmrtlL null females are sterile.

To further examine the fertility of the $X$. laevis dmrt1. $L$ knockout females, six adult individuals were dissected. In adult wildtype females, oviducts full of eggs are readily observed upon dissection and ovulation is elicited by injection of human chorionic gonadotropin. However, in all six dmrtlL null females, no reproductive organs, male or female, or eggs were observed. These null females were normal in size and healthy based on large fat pads. Three $X$. tropicalis females containing the $d m r t l$ knockout were also examined for the presence of reproductive organs through dissection. Consistent with the results from $X$. laevis, there was no ovulation induced by injection of human chorionic gonadotropin in any of these three individuals, and dissection demonstrated the complete absence of reproductive organs. Figure 13 shows an image of a dissected $X$. tropicalis dmrtl knockout and wildtype females.

### 3.4 RNAseq analysis

We performed an analysis of differential expression in transcriptomes from gonad/mesonephros tissue at tadpole stage 50 , which is the developmental stage where sexual differentiation is triggered by transient expression of $d m-w$ (Yoshimoto et al., 2008). Dmrt1.S males had the highest number $(\mathrm{n}=1251)$ of differentially expressed genes compared to wildtype
males. The remaining groups listed from highest to lowest number of differentially expressed genes includes $d m r t 1 . L$ female ( $\mathrm{n}=337$ ), $d m r t 1 . S$ females $(\mathrm{n}=20)$ and $d m r t 1 . L$ males $(\mathrm{n}=5)$. Figure S 4 includes a complete list of the significantly differentially expressed genes discovered from this analysis.

A summary of shared differentially expressed genes between sex-biased transcripts from each of three wildtype batches (MF1, MF2 and MF3) and same-sex mutant to wildtype comparisons for $d m r t 1 . L$ females or males, and $d m r t 1 . S$ females or males is provided in Figure 14. For $d m r t 1 . L$ knockout female analysis, three differentially expressed genes were also differentially expressed in the wildtype analyses, and for the $d m r t 1 . S$ knockout male analysis, four differentially expressed genes were also differentially expressed with the wildtype analyses. There were no differentially expressed transcripts in the $d m r t 1 . L$ male analysis or the $d m r t 1 . S$ female analysis that were also differentially expressed in the wildtype analysis. For comparisons between mutant analyses (Figure 14E), there were 40 differentially expressed genes in common between $d m r t 1 . L$ knockout females and $d m r t 1 . S$ knockout males; none of these were differentially expressed in the comparison between male and female wildtype individuals. This highlights a shared but not sex-specific effect of these knockout lines.

A gene ontology analysis was performed for the differentially expressed genes identified in each of these four analyses (Figure S5). Enrichment of differentially expressed genes from both the $d m r t 1 . S$ males and $d m r t 1 . L$ females identified specific gene functions falling into each of the three gene ontology categories (biological process, molecular function, and cellular component functions) included phenomena associated with methylation and mitochondria function. Differentially expressed genes for the $d m r t 1 . S$ females and $d m r t 1 . L$ males were not found to have significant ontology enrichments. Additionally, the small number of differentially expressed genes from the three wildtype batches were enriched for functions that did not have obvious links to sexual differentiation in the molecular function and cellular component categories but not in the biological process category.

As a complement to this analysis, 74 previously identified genes with sex related functions were used to determine the expression ratios, as detailed in the methods section 2.2 (iii), and correlations between the groups were analyzed through permutation tests. Figure 15 shows the results of these permutation tests. In total, each of the four knockout groups were compared with the three M-F batches for a total of 12 tests. None of these tests was significant as indicated by the $r$ and $p$-values in Figure 15.

### 3.5 Impact on laryngeal morphology and function

We investigated secondary sexual differentiation of the larynx in terms of morphology and function (vocalization in males). Through comparisons of histological samples, we did not detect a substantial difference in structure of the larynx resulting from the gene knockouts. Figure 16 shows the larynx histology of wildtype, null $d m r t 1 . S$, null $d m r t 1 . L$ males and Figure 17 shows histology of wildtype, null dmrt1.S, null dmrt1.L females. For females, the larynx is small relative to the males, where the purple stained cartilage can be seen to make up the main structure of the organ. Since this tissue was smaller in females, excess tissue was left during dissection to ensure the organ stayed intact, which can be seen in the pink stained regions surrounding the cartilage. For males, the general structure of the larynx is larger and takes on a more rounded shape where the cartilage is thicker. The five wildtype, three $d m r t 1 . S$ knockout and one dmrt1.L knockout males all have similar morphology as outlined in Figure 16. Each of the
females examined - two wildtype, two dmrtl. $S$ knockouts and four $d m r t 1 . L$ knockouts - had similarly thinner morphology depicted in Figure 17.

Recordings were collected for $d m r t 1 . L$ knockout, $d m r t 1 . S$ knockout and wildtype males. These recordings were analyzed to identify any differences in inter-click intervals (ICI) between the wildtype and knockout frogs. Figure 18A includes a boxplot to compare the ICI of three $d m r t 1 . S$ knockout males to four wildtype males used in the previous analysis. The $95 \%$ confidence interval for the wildtype males was $0.0259-0.0306$. In comparison, the $d m r t 1 . S$ knockout males had a $95 \%$ confidence interval from $0.0267-0.0324$. These intervals overlap and are not significantly different $(\mathrm{P}=0.4186)$. In addition, this analysis was performed for the dmrtl.L knockout males. Figure 18B shows a box plot illustrating the ICI of 20 calls for the same four wildtype males and two $d m r t l . L$ knockout males. The mean ICI of the wildtype group had a $95 \%$ confidence interval from $0.0247-0.0319$ and that of the $d m r t 1 . L$ knockout calls was $0.0298-0.0407$. Though these confidence intervals overlap, there is a significant difference between them ( $\mathrm{P}=0.0448$ ).

## 4 Discussion

### 4.1 Sex reversal

One possible consequence of a loss of function mutation at a sex related gene is sex reversal - when the genetic sex of an individual does not correspond to the phenotypic sex. In our $X$. laevis (F2) homozygous knockout lines the genetic sex was determined based on the presence or absence of $d m-w$ based on three PCR amplifications that each targeted different portions of this female-specific gene. The sex phenotype of each individual was then determined based on external and internal morphology. We found no evidence of sex reversal: $d m-w$ successfully amplified in each phenotypic female and never amplified in a phenotypic male. As a result, we can conclude that sex reversal is not occurring as a result of either $d m r t 1 . S$ or $d m r t 1 . L$ knockouts. Because a sex-specific marker is not yet known for $X$. tropicalis we were unable to assess the genetic sex of our knockout line from this species. The external morphology of the $X$. tropicalis knockout individuals matched their gonads (an adult male had a smaller body size than adult females and had testes and a proportionately larger larynx than females; females had a larger body, no testes and proportionately smaller larynx than males). Because sex reversal was not observed in the $X$. laevis frogs, and we observed two differentiated sexes for the $X$. tropicalis $d m r t 1$ knockout line, we suspect sex reversal was also elicited by the $d m r t 1$ knockout in $X$. tropicalis.

A lack of sex reversal in these knockout lines contrasts to some degree with findings from dmrtl knockout in other species. In Nile tilapia (Oreochromis niloticus), for example, knockout of $d m r t l$ causes male-to-female sex reversal, whereas females remain unaffected (Dai et al., 2021). Similarly, male chickens (ZZ) that carry only one allele of $d m r t l$ develop ovaries rather than testes (Ioannidis et al., 2021). These results are inconsistent with our findings were neither $X$. tropicalis nor $X$. laevis experienced sex reversal when $d m r t l$ knockouts were introduced.

Variation among species in the consequences of $d m r t l$ knockout points to differences in the genetic networks within which $d m r t l$ is embedded. In Nile tilapia disruption of foxl3 function leads to masculinization of genetic females; and knockout of $d m r t l$ had the opposite effect resulting in male-to-female sex reversal (Dai et al., 2021). Interestingly, the double knockout of
$d m r t 1$ and foxl3 resulted in the recovery of normal sex determination (Dai et al., 2021). This highlights an influential sex-related interaction between these two genes; whether this interaction also exists in Xenopus is unclear.

In chickens, dmrtl transcription is inhibited by epigenetic factors including long-coding RNAs and hypermethylated regions (Roeszler et al., 2012; Zhang et al., 2023). Interestingly and potentially related to this, the gene ontology analysis identified differentially expressed genes in the developing gonad/menonephros of the $X$. laevis dmrt1.L null females that were involved with methylation. This opens the possibility that $d m r t 1 L$ in some what may regulate its own transcription via methylation.

In $X$. laevis, female differentiation is triggered by a partial duplicate of $d m r t 1 S$ called $d m-w$ (Yoshimoto et al., 2008). Knockouts of $d m-w$ results in complete female-to-male sex reversal (Cauret et al., submitted July 23 to PLOS Genetics). Dm-w shares the same DM binding domain as $d m r t l$ and thus, interactions between these two genes are also likely regulating sex determination for $X$. laevis.

### 4.2 Gonadal development and fertility

Histological analysis of the dmrtlL dmrt1S knockouts in $X$. laevis and dmrtl knockout in $X$. tropicalis provided insights into the role of this gene in gonadal development. In the one $X$. tropicalis dmrtl null male exampled, two testes developed but the quantity of mature sperm was far lower than in a wildtype male. In three $X$. laevis dmrtl.L knockout males a more drastic phenotype was observed where no mature spermatids were observed in the histology cross sections. Inspection of mascerated testis tissue from a dmrt1.L null male showed very few sperm that had developed from spermatocytes. However, in six $X$. laevis dmrt1.S knockout males no substantial difference in the densities of mature sperm compared to wildtype was observed, although there was a significantly lower tissue density in histological preparations of testis from this line. Overall, these results demonstrate that $X$. tropicalis dmrtl knockout and the X. laevis $d m r t l . L$ knockout both play important roles in male germ cell development and that $d m r t l L$ and $d m r t 1 S$ have at least partially non-overlapping roles in $X$. laevis.

This is not the only case where mutating dmrtl did not result in sex reversal but still impacted testis development. When somatic mutations are introduced in $d m r t l$ in tilapia, low expression of dmrtl does not result in sex reversal but most of the germ cells do not develop past the stage of secondary spermatocytes (Li et al., 2013). In Japanese eel (Anguilla japonica) dmrtl is highly expressed in spermatogonia B cells, spermatocytes, and spermatids but not in the earlier spermatogonia or Sertoli cells. This suggests that $d m r t l$ may be involved in the developmental progression from spermatogonia B cells to mature spermatids (Jeng et al., 2019). These results are consistent with findings from our investigation wherein the main consequence of the $d m r t 1$ knockout in $X$. tropicalis and dmrt1.L knockout in $X$. laevis concerned production of mature spermatids.

Insights into partially non-overlapping roles in $X$. laevis can be gleaned from focused analyses of gene expression. Moreover, dmrtl.L has higher expression in germ cells whereas $d m r t 1 . S$ has higher expression in somatic cell types (Mawaribuchi et al., 2017). This is consistent with our results that dmrt1.L knockouts impact germ cell development, and that the tissue density in $d m r t 1 . S$ knockout testes is lower. No significant difference was seen in the quantity of white space between $d m r t 1 . L$ null males and wildtype males. While white space in hematoxylin and eosin stained tissues could be an artefact of how the samples were sectioned and stained, this
result could possibly be indicative of the role of $d m r t 1 . S$ in the testis. If $d m r t 1 . S$ is more highly expressed in somatic cells such as the Sertoli cells, variation in Sertoli cell number or development could explain the increased white space seen. In order to identify the cause of increased white space for testis histology of these males, further research into the functionality of the Sertoli cells is required.

In many species, known phenotypic effects of $d m r t 1$ are restricted testis or sperm production. Interestingly, we found that knockouts of $X$. tropicalis dmrtl and X. laevis dmrt1.L failed to develop ovaries or oviducts. In Atlantic cod (Gadus morhua), dmrtl is expressed in the gonads of both sexes (albeit more highly in males) opening the possibility that this gene may influence female development in this species as well (Johnsen et al., 2010). In zebrafish, $d m r t l$ is required for the down-regulation of foxl2, a gene involved in ovarian development (Webster et al., 2017). However, dmrtl is not directly influencing ovarian development in zebrafish which contrasts our results as $d m r t l$ knockout females did not develop ovaries. Additionally, $d m r t l$ is associated with the development of ovarian follicles in the ovaries of juvenile mice and is believed to have a similar effect in the Japanese eel (Jeng et al., 2019; Krentz et al., 2011). Although these and other studies implicate $d m r t l$ in ovarian development in some species, to our knowledge, our investigation of $X$. laevis is the first to show that $d m r t l$ knockout completely prevents development of oviduct and ovaries.

### 4.3 Transcriptome analysis

The results of the transcriptome analysis based on RNAseq data collected from tadpoles at stages 50 investigated the number of differentially expressed genes in both $d m r t 1 . S$ and $d m r t l . L$ knockout lines compared to wildtype individuals. The most differentially expressed genes were detected in the comparison between $d m r t 1 . S$ null males and wildtype males ( $\mathrm{n}=$ 1251), followed by the comparison between $d m r t l . L$ null females and wildtype females ( $\mathrm{n}=$ 337). Interestingly, $d m r t 1 . S$ null males and $d m r t 1$. $L$ null females were found to share 40 significantly differentially expressed genes. Consistent with this, at tadpole stage $50 \mathrm{dmrt} 1 . \mathrm{S}$ has a higher expression in males than females whereas $d m r t 1 . L$ has a higher expression in females than males (Mawaribuchi et al., 2017).

Gene ontology analysis identified enrichment of differentially expressed genes in the biological function, molecular function and cellular component categories for both $\mathrm{dmrtl} . S$ males and $d m r t 1 . L$ females. Notable enrichments play roles in epigenetic phenomena and the regulation of cholesterol and testosterone. Methylation and related functions in particular were enriched all three gene ontology categories for the dmrt1.L knockout females. As previously discussed, epigenetics factors including hypermethylation have been found to inhibit the transcription of $d m r t l$ in chickens (Roeszler et al., 2012; Zhang et al., 2023). Also consistent with the enrichment of the cholestoerol biosynthetic prosess in the biological function category that Sertoli cells within the testis regulate cholesterol metabolism, which is crutial for sperm maturation (Shi et al., 2017; Titi-Lartey \& Khan, 2023).

The gene ontology analysis also detected differentially expressed genes with functions related to mitochondria in the cellular component category for the dmrtl.S males. Mitochondria have been found to take on a variety of roles in the testis including the production and survival of sperm as mitochondrial respiration defects have been associated with abnormal sperm structures leading to infertility (Nakada et al., 2006; Park \& Pang, 2021). In addition, the ability of the Leydig cells to produce testosterone is is dependent on the function of mitochondria which
identifies a role of mitochondria in hormone production (Park \& Pang, 2021; Ramalho-Santos et al., 2009). Provided that the RNAseq data collected for this investigation was taken from both the gonads and mesonephros tissues, it important to note that some of the genes from this analysis may not be directly related to gonadal function. As a result, further investigation into the genes identified in the GO analysis would be crucial to develop a complete understanding of the role of $d m r t l$ in development.

We also compared expression ratios from $d m r t 1 . S$ or $d m r t 1 . L$ mutant to same sex wildtype individuals to wildtype male:female ratios for 74 previously identified sex-related genes. Permutation tests indicate that none of the correlations was more positive or more negative than expected by chance. This finding suggests that we found no evidence of sex reversal in the transcriptome of the developing gonad/mesonephros even though we did observe severe mutant phenotypes in the adult gonad of both sexes for $d m r t l L$ null individuals and detectable differences in tissue density in testis of $d m r t 1 . S$ null individuals.

### 4.4 Subfunctionalization and neofunctionalization

As discussed above, analysis of morphology, histology, fertility and transcriptomics of $X$. laevis knockout mutations for $d m r t 1 . L$ and $d m r t 1 . S$ demonstrate variation in function between these homeologous loci. These differences demonstrate that either subfunctionalization (degradation of ancestral function) or neofunctionalization (the origin of novel function) (Birchler \& Yang, 2022; Lynch \& Conery, 2000; Teshima \& Innan, 2008; Voordeckers \& Verstrepen, 2015) occurred following their origin by allotetraploidization in Xenopus about 30 million years ago (Evans et al., 2015; Session et al., 2016). Analysis of the mutant phenotype of an outgroup ( $X$. tropicalis) provides insights into these changes and evidences both subfunctionalization and neofunctionalization. Moreover, the $X$. tropicalis dmrtl knockout male has a higher density of mature spermatids as compared to the $X$. laevis dmrtl.L knockout male, but lower than a wildtype individual. This suggests that $X$. laevis $d m r t 1 . L$ was neofunctionalized to take on a more important role in germ cell production compared to the ancestral gene. In contrast, $d m r t 1 . S$ knockout males produce spermatids in amounts comparable to the wildtype males. This suggests that subfunctionalization may have occurred following the gene duplication event where $d m r t 1 . S$ has a less significant role in germ cell production as compared to the outgroup. Clearly an interesting direction for future work would involve analysis of individuals that are homozygous for null alleles for $d m r t 1 . S$ and $d m r t 1 . L$.

Apart from differences in testis tissue density, we did not detect a pronounced functional phenotype associated with the $X$. laevis knockout mutations for $d m r t 1 . S$ in either sex. However, as previously discussed, $d m r t 1 . S$ has been shown to have higher expression levels in somatic cells compared to germ cells thus suggesting a role in Sertoli or Leydig cell functions (Mawaribuchi et al., 2017). Each of these cell types take on specific roles in male development which may not be apparent through normal hematoxylin and eosin stained histology. Sertoli cells have been identified to have multiple different functions. Sertoli cells are known to help regulate numerous aspects of spermatogenesis by supplying nutrients to developing germ cells, regulating cell cholesterol levels and assisting with the removal of foreign bodies and phagocytosis of abnormal sperm (Arandjelovic \& Ravichandran, 2015; Ni et al., 2019; Titi-Lartey \& Khan, 2023). However, there are other aspects of development that Sertoli cells play a role in including the secretion of androgen-binding protein which assists with the uptake of testosterone produced by the Leydig cells (Shi et al., 2017; Titi-Lartey \& Khan, 2023). Provided the roles of both

M.Sc. Thesis - L. Kukoly; McMaster University - Biology

Sertoli and Leydig cells in production and usage of androgens, closer investigation of hormone levels in dmrt $1 . S$ null males could provide further indication of how this gene impacts the functionality of somatic cells within the testis.

### 4.5 Secondary sexual differentiation

Secondary sexual differentiation refers to sex-specific development of non-gonadal phenotypes. In Xenopus the vocal organ (larynx) is sexually dimorphic and develops into a much larger organ in males, even though they are smaller than females in body size (Sassoon \& Kelley, 1986). Here we did not recover evidence that $d m r t 1 . S$ or $d m r t 1 . L$ play a substantial role in the development of laryngeal tissue in terms of gross morphology or histology. This is consistent with findings in other species. For example, in chickens $d m r t 1$ knockout males which developed ovaries instead of testis, but were found to develop normal male secondary sex characteristics such as the large red coloured combs that fan out across their head in adulthood (Ioannidis et al., 2021; Zhang et al., 2023). Similarly, while dmrtl knockouts lead to sterility in male zebrafish, secondary sex characteristics developed normally for these males (Webster et al., 2017). However, we did detect a significant difference in laryngeal function of the $d m r t 1 . L$ knockouts, albeit with a small number of biological replicates and overlapping confidence intervals. From the recording analysis, we found the $d m r t l . L$ knockout males had longer ICIs compared to the wildtype groups whereas there was no significant difference in ICIs between $d m r t 1 . S$ knockout and wildtype frogs. In order to fully understand any impact of $d m r t l$ on the secondary sex characteristic of vocalization, further research is required.

Next steps in investigating the impact of $d m r t l$ on vocalizations include both histological analysis and further analysis of call recordings. In Xenopus, exposure to atrazine was found to result in feminization of the larynx in males as indicated by differences in the measurement of the dilator laryngis muscle (Hayes et al., 2010). The comparison of this muscle was possible by sectioning the larynx perpendicular to the orientation of our tissues. This allows the muscle which wraps underneath the larynx to be clearly seen. Future work with histology of larynx tissues at different orientation could allow us to better visualize more specific features of the larynx in order to detect any changes between our treatment groups. In addition, we will also be analyzing the dominant frequency of each call within wildtype and mutant male recordings. Vocalizations of Xenopus males generally have one dominant frequency per call unit and these frequencies vary between species (Tobias et al., 2011). As a result, comparing the dominant frequencies between wildtype and knockout groups can provide further knowledge of how dmrtl impacts vocalization in males. In addition, recordings of $X$. tropicalis dmrtl knockout males will also be tested to determine if the results are consistent across these two Xenopus species.

## 5 Conclusion

In this study, I used histological analysis, transcriptome analysis, fertility testing, and the examination of secondary sex characteristics, to provide a comprehensive understanding of how the well-known dmrtl gene impacts development in Xenopus species. Generations of knockout lines of $X$. tropicalis $d m r t 1$ and $X$. laevis dmrt1. $S$ and $d m r t 1$. L allowed us to closely examine the effect of these genes have on development in both males and females. While dmrtl knockouts have resulted in sex reversal in other species, our histological and transcriptome analysis results
found that sex reversal was not occurring for any of our mutant lines. However, we determined that dmrtl in X. tropicalis and dmrt1.L in X. laevis are required for the normal development of the testes as null males from each of these lines failed to produce sperm in densities comparable to wildtype males. Our investigation also identified a role of these genes in female development as each of the $X$. tropicalis $d m r t 1$ and $X$. laevis $d m r t 1 . L$ null females were completely lacking reproductive organs and are considered infertile. This finding offers new insights to the functionality of $d m r t l$ in female development, a novel area of research that could advance our understanding of how sex determination evolved in these species.

This investigation also introduces several areas for further research in these genes. Further work towards understanding the role of $d m r t l$ in somatic cell functions, interactions between $d m r t l$ and other sex determining genes and the ways in which epigenetic factors influence $d m r t l$ transcription promises to advance our knowledge of how sex determining systems function. Comprehensively, this work addresses key areas of evolutionary genetics by developing an understanding of how specific genes regulate the process of sexual differentiation and by providing evidence that gene duplication can be a major catalyst for evolutionary change across species.

## 6 Figures



Figure 1. Testis histology imaged at 10 x (A) and 40x (B). (A) outlines examples of the seminiferous and straight tubules as denoted by the yellow dotted lines. (B) shows examples of the spermatocytes, spermatids, Sertoli cells and Leydig cells represented by the yellow arrows and dotted lines.


Figure 2. Key stages of development from oocyte to tadpole. The images were each taken from the cross between the dmrt1.S knockout female and the wildtype male. (A) shows the formation of a blastula which has undergone multiple cleavage events. (B) shows the late embryonic stage of development and (C) provides an image of a young tadpole.


Figure 3. Sanger sequences of $X$. laevis dmrtl.S from individuals with the following genotypes: (A) wildtype (B) homozygous null, and (C) heterozygous. In the reverse sequence read in (C), double peaks can be seen following the deletion; a dotted circle demarcates the deleted region in the mutant allele.


Figure 4. Sanger sequences of $X$. laevis dmrtl. $L$ from individuals with the following genotypes: (A) wildtype (B) homozygous null, and (C) heterozygous. In the reverse read in (C), double peaks can be seen following the deletion. A dotted circle in (A) highlights the deleted region in the mutant allele.


Figure 5. Sanger sequences $X$. tropicalis dmrtl from individuals with the following genotypes (A) wildtype (B) homozygous knockout, and (C) heterozygous. A dotted circle in (A) highlights a single nucleotide deletion present in the mutant allele.


Figure 6. Example female-specific amplifications of individuals from the $d m r t 1 . L$ line. The leftmost lane is a $100-\mathrm{bp}$ ladder, the second column is a negative control with no DNA. The amplicon show here is $d m-w$ exon 2 .


Figure 7. Testis histology of X. laevis (A) wildtype and (B) dmrt1.L heterozygote individuals. Each image was taken under the 10X objective as indicated by the yellow scale bars representing $20 \mu \mathrm{~m}$.


Figure 8. Testis histology from (A) a wildtype male and (B) a stage-matched dmrt1.S knockout male. Each image was taken at 10X magnification; yellow scale bars indicate $20 \mu \mathrm{~m}$.


Figure 9. Testis histology of $X$. laevis (A) a wildtype male and (B) a stage-matched a dmrt1.L knockout male. Each image was taken at 10X magnification; yellow scale bars indicate $20 \mu \mathrm{~m}$.


Figure 10. Microscopy of sperm cells taken at 40X with phase contrast for $X$. laevis (A) wildtype and (B) $d m r t 1 . L$ null individuals. Because sperm count was much lower for the null individual, (B) optical zoom was used to highlight structure of an individual sperm cell.


Figure 11. Testis histology from X. tropicalis (A) wildtype and (B) dmrtl null individuals. Dotted circles indicate small amounts of maturing sperm in (B). The scale bars represent $50 \mu \mathrm{~m}$ under the 10 X objective.



Figure 12. Proportions of whitespace in testis histological cross sections. Comparisons are completed between preparations from (A) wildtype (blue) and dmrt1.S knockout (orange) individuals and (B) wildtype (blue) and the $d m r t 1 . L$ knockout (orange) individuals.


Figure 13. Body cavity of $X$. tropicalis females that are (A\&C) wildtype or (B\&D) dmrt1 knockout. In (A\&C), black and yellow eggs inside the transparent oviduct are apparent in the lower abdomen below the liver, whereas in (B\&D) the body cavity is completely devoid of eggs and oviduct.


Figure 14. Venn diagrams illustrating the results of the EdgeR analysis using the STAR counts data. Four diagrams on the left illustrate the number of differentially expressed genes each mutant analysis: (A) dmrt1.L females (dmrt1L_F), (B) dmrt1.L males (dmrt1L_M), (C) dmrt1.S females (dmrt1S_F), (D) dmrt1.S males (dmrt1S_M) that overlap with the differentially expressed genes from each of three wildtype analyses (MF1, MF2, MF3). The diagram on the right illustrates the number of differentially expressed genes that overlap between the four mutant analyses.


Figure 15. Results of the transcriptome masculinization analysis using EdgeR with STAR count data. Below the diagonal are the pairwise correlations between non-outlier $\log 2$ transformed expression ratios of 74 sex related genes for male:female comparisons for the wildtype analyses ( x -axis) and mutant:wildtype comparisons for mutant analyses ( y axis). Above the diagonal are the Pearson's correlation coefficients with asterisks indicating significant correlations. P values for the permutation tests for the pairwise comparisons between the three wildtype batches (MF1, MF2 and MF3) and the knockout and wildtype analyses (dmrt1Lfems, dmrt1Lmales, dmrt1Sfems and dmrt1Smales) indicate that none of the correlations are more positive or negative than expected by chance.


Figure 16. Larynx histology of a wildtype male (A), a dmrtl.S null male (B) and a dmrtl.L null male (C). Each image was produced by the ZIESS Axioscan 7 slide scanner to take multiple images at 10X magnification which were stitched together to form the comprehensive larynx images.


Figure 17. Larynx histology of a wildtype female (A), a $d m r t 1 . S$ null female (B) and a $d m r t 1 . L$ null female (C). Each image was produced by the ZIESS Axioscan 7 slide scanner to take multiple images at 10X magnification which were stitched together to form the comprehensive larynx images.



Figure 18. Inter-click-intervals (ICI) coloured by each individual. Comparisons are completed between (A) wildtype (orange) and dmrtl.S knockout (blue) individuals and (B) wildtype (orange) and dmrtl.L knockout (blue) individuals. The boxplot shows quartiles and the black error bars indicate confidence intervals of the mean ICI for each group.

## 7 Supplementary Information

Table S1. Summary of histological findings for $d m r t 1 . S$ and $d m r t 1 . L$ null males. The first column shows the pit tag ID belonging to each individual and the second column shows the knockout line each individual belonged to. The third column outlines the number of testes that were present in the individual at the time of dissection. The last column describes whether mature sperm was present in the histology cross sections or if the tissue was lacking sperm.

| Individual ID | Gene knockout | Number of Testes | Mature Sperm Present |
| :---: | :---: | :---: | :---: |
| 192 F | Dmrt1.S | 2 | Yes |
| 194 B | Dmrtl.S | 2 | Yes |
| 197 A | Dmrtl.S | 2 | Yes |
| 194 A | Dmrt1.S | 2 | Yes |
| 196 B | Dmrt1.S | 2 | Yes |
| 1939 | Dmrtl.S | 2 | Yes |
| 1880 | Dmrtl.L | 2 | No |
| 1929 | $D m r t 1 . L$ | 2 | No |
| 18 A 3 | Dmrtl.L | 1 | No |



Figure S2. Testis histology from each null male tested compared to a wildtype male. The knockout gene in each individual is indicated in the image label along with the pit tag ID for comparison to Table S1.


Figure S3. Results of the thresholding checks comparing three different threshold values. (A) Shows the correlation between the three threshold values for each testis image from the dmrtl.S analysis. (B) shows the correlation between the different threshold values for the $d m r t 1 . L$ analysis.

Table S4. Significantly differentially expressed transcripts in the mesonephros/gonad of each of three comparisons between wildtype males and females (MF1, MF2, MF3) and each of three comparisons between a knockout line and wildtype siblings (dmrt1L females, dmrt1L males, dmrt1S females, dmrt1S males). Analysis of differential expression were performed using STAR for quantification and two analysis edgeR for analysis of differential expression. The log2 fold change ( $\log \mathrm{FC}$ ) and false detection rate P -value is indicated for each significantly differentially expressed gene (FDR). For wildtype comparisons, female expression is the reference and thus the denominator of the log2FC. For mutant comparisons, wildtype expression is the reference and thus the denominator of the $\log 2 \mathrm{FC}$. When identified, the gene acronym of the putative human ortholog is listed (Human).


| XBXL10_1g15279 | ephx3.S | 1.22806601 | 0.03390803 | EPHX4 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g15350 | mak16.S | -1.35557827 | 0.00278316 | MAK16 |
| XBXL10_1g15474 | fam136a.S | -1.03561347 | 0.06845068 | FAM136A |
| XBXL10_1g15497 | znf703.S | 1.2002407 | 0.06935019 | ZNF703 |
| XBXL10_1g15520 | kif23.S | 1.59697879 | 0.00883719 | KIF23 |
| XBXL10_1g15674 | tmc3.5 | -5.18945757 | 0.03696158 | TMC3 |
| XBXL10_1g1593 | timm10.L | -1.01701105 | 0.04130092 | TIMM10 |
| XBXL10_1g16102 | hbp1.S | 2.01712365 | 0.02991123 | HBP1 |
| XBXL10_1g16173 | LOC108713110 | -1.78684183 | 0.00040325 | TFEC |
| XBXL10_1g1636 | plekhj1.L | 1.17682103 | 0.02293806 | PLEKHJ1 |
| XBXL10_1g16409 | tspan17.S | 1.25334077 | 0.0557594 | TSPAN17 |
| XBXL10_1g16443 | LOC108712397 | 3.27252427 | 0.03642151 | HTR4 |
| XBXL10_1g17018 | ppan.S | -1.09957721 | 0.02706136 | PPAN |
| XBXL10_1g1703 | LOC121400688 | 5.07010846 | 0.03487549 | CRYGA |
| XBXL10_1g17092 | raver1.S | 1.39243355 | 0.09944632 | RAVER1 |
| XBXL10_1g1740 | LOC108695244 | 2.34662444 | 0.06668676 | - |
| XBXL10_1g17473 | cldn15.1.S | -5.91198663 | 0.07080675 | CLDN15 |
| XBXL10_1g17578 | tmem86a.L | 1.93002702 | 0.01974438 | TMEM86A |
| XBXL10_1g17732 | cd44.L | 1.20091229 | 0.08526991 | - |
| XBXL10_1g17856 | LOC108713799 | 1.03386488 | 0.09269563 | PPFIBP2 |
| XBXL10_1g18028 | polr2l.1.L | -0.86771962 | 0.06566985 | POLR2L |
| XBXL10_1g1808 | polr1e.L | -0.86301388 | 0.09785107 | POLR1E |
| XBXL10_1g1812 | LOC494855 | -1.82504473 | 0.00165337 | GRHPR |
| XBXL10_1g18228 | wdr74.L | -1.05103138 | 0.01064102 | WDR74 |
| XBXL10_1g18412 | npas4.L | -6.1144557 | 0.07072374 | NPAS4 |
| XBXL10_1g18417 | pmt.L | -1.92515401 | 0.01974438 | - |
| XBXL10_1g18444 | zdhhc24.L | -1.04238427 | 0.02485625 | - |
| XBXL10_1g18597 | pdcd2I.L | -0.93946362 | 0.05588387 | PDCD2L |
| XBXL10_1g18655 | aprt.L | -1.06529854 | 0.03696158 | APRT |
| XBXL10_1g18753 | utp4.L | -0.97356749 | 0.0226726 | UTP4 |
| XBXL10_1g18808 | klhdc4.L | -1.05619187 | 0.06402212 | KLHDC4 |
| XBXL10_1g18818 | mvd.L | -1.79014975 | 0.00019733 | MVD |
| XBXL10_1g1901 | hsd11b1I.L | -1.00940931 | 0.0529964 | DHRS7 |
| XBXL10_1g19141 | LOC108714266 | -2.60734553 | 0.04394781 | - |
| XBXL10_1g19202 | tspan1.L | 1.24711155 | 0.04968635 | TSPAN1 |
| XBXL10_1g1933 | LOC108713575 | 5.12516672 | 0.03428207 | - |
| XBXL10_1g19451 | LOC108714409 | -1.33156686 | 0.02680088 | ITPA |
| XBXL10_1g19458 | LOC108714416 | -5.75473854 | 0.0519893 | FMO4 |
| XBXL10_1g19719 | dbp.L | 1.20108229 | 0.0182674 | TEF |
| XBXL10_1g19766 | csf2rb.L | 7.29622638 | 0.02576281 | - |
| XBXL10_1g19785 | MGC75753.L | 1.16662259 | 0.04053305 | BTG1 |
| XBXL10_1g19842 | LOC108714594 | 1.90861814 | 0.00516609 | SLC38A3 |
| XBXL10_1g19873 | acy1.2.L | -1.24592892 | 0.04497025 | ACY1 |
| XBXL10_1g20525 | gnl3.L | -0.90861421 | 0.05177051 | GNL3 |
| XBXL10_1g20632 | ppp1r14b.S | -1.13366591 | 0.01265758 | PPP1R14B |
| XBXL10_1g2070 | dmrt1.L | -8.57070145 | 4.88E-09 | DMRT1 |
| XBXL10_1g20778 | fads1.S | -1.5204348 | 0.01036165 | FADS1 |
| XBXL10_1g20779 | fads2.S | -0.85883864 | 0.05013091 | FADS2 |
| XBXL10_1g20797 | ins.S | -8.56252374 | 0.03273451 | INS |
| XBXL10_1g2099 | gda.L | -1.56398043 | 0.00705024 | GDA |
| XBXL10_1g21031 | prmt3.S | -0.92870573 | 0.04576055 | PRMT3 |
| XBXL10_1g21060 | pik3c2a.S | 1.50385321 | 0.09383819 | PIK3C2A |
| XBXL10_1g2125 | psat1.L | -2.30386459 | 8.68E-05 | PSAT1 |
| XBXL10_1g21313 | cdh3.S | 1.47991188 | 0.01033697 | CDH1 |
| XBXL10_1g21330 | LOC108715439 | -1.06108013 | 0.03642151 | MPHOSPH6 |
| XBXL10_1g2144 | isca1.L | -0.83994482 | 0.09685989 | ISCA1 |


| XBXL10_1g21477 | n4bp1.S | 1.09815218 | 0.07252704 | N4BP1 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g21548 | diras3.S | 2.33457101 | 0.06735624 | DIRAS2 |
| XBXL10_1g2157 | hsd17b3.L | 6.91437381 | 0.01974438 | HSD17B3 |
| XBXL10_1g2160 | cdc14b.L | 1.36941923 | 0.04394781 | CDC14B |
| XBXL10_1g22055 | tef.S | 1.01955181 | 0.06017849 | TEF |
| XBXL10_1g22105 | prkcd.S | 1.44423252 | 0.02293806 | PRKCD |
| XBXL10_1g22113 | MGC75753.S | 1.3289702 | 0.02012325 | BTG1 |
| XBXL10_1g22170 | rrp9.S | -1.16925968 | 0.04792293 | RRP9 |
| XBXL10_1g2222 | ngdn.L | -1.28821338 | 0.00266151 | NGDN |
| XBXL10_1g22233 | mrps25.S | -0.98461901 | 0.03508043 | MRPS 25 |
| XBXL10_1g22240 | chchd4.S | -1.54904732 | 0.00697965 | CHCHD4 |
| XBXL10_1g22256 | ruvbl1.S | -1.15827967 | 0.04087221 | RUVBL1 |
| XBXL10_1g2228 | LOC108695570 | -3.6286929 | 5.98E-07 | CARMIL3 |
| XBXL10_1g22416 | LOC108704592 | -0.95672511 | 0.06017849 | RPP14 |
| XBXL10_1g2262 | LOC121394338 | 7.63947612 | 8.96E-05 | - |
| XBXL10_1g22699 | coq8a.L | 1.29752967 | 0.05505196 | C0Q8A |
| XBXL10_1g22727 | trmt61b.L | -1.17761203 | 0.00923304 | TRMT61B |
| XBXL10_1g22850 | pcsk2.L | -7.01898698 | 4.48E-05 | PCSK2 |
| XBXL10_1g22881 | LOC108716586 | 1.39070433 | 0.05847714 | - |
| XBXL10_1g22948 | pygm.L | 2.07473628 | 0.09606051 | PYGB |
| XBXL10_1g23142 | rasgrp3.L | 1.73257315 | 0.0557594 | RASGRP3 |
| XBXL10_1g23171 | c1orf131.L | -1.08092488 | 0.04780407 | C1orf131 |
| XBXL10_1g23218 | urb2.L | -1.04401537 | 0.07252704 | URB2 |
| XBXL10_1g2327 | abhd4.L | -1.41320694 | 0.01733631 | ABHD4 |
| XBXL10_1g23365 | soga3.L | -1.86301704 | 0.03413628 | ENSG00000255330 |
| XBXL10_1g2371 | LOC108714907 | 1.16513896 | 0.06402212 | - |
| XBXL10_1g2378 | LOC121400923 | 7.04338006 | 0.01265758 | - |
| XBXL10_1g23781 | eif4g1.L | -0.91269115 | 0.05505196 | EIF4G1 |
| XBXL10_1g23907 | atp13a5l.2.L | -1.44058882 | 0.00082583 | ATP13A4 |
| XBXL10_1g23913 | eif4a2.L | -1.47853594 | 0.00469183 | EIF4A2 |
| XBXL10_1g2399 | LOC121394448 | 6.9014243 | 0.03313989 | - |
| XBXL10_1g23991 | LOC108717013 | -1.53636273 | 0.03157532 | CLDN11 |
| XBXL10_1g24021 | nmd3.L | -1.02679217 | 0.04432002 | NMD3 |
| XBXL10_1g2433 | Ipcat4.L | 2.6035608 | $1.48 \mathrm{E}-08$ | LPCAT4 |
| XBXL10_1g24512 | cyp2e1.L | 1.23026892 | 0.04394781 | CYP2C8 |
| XBXL10_1g24557 | tdh.L | 1.82871964 | 0.08501819 | TDH |
| XBXL10_1g2479 | LOC108715287 | -4.09069514 | 0.01069968 | - |
| XBXL10_1g24817 | pcsk2.S | -9.10069674 | 0.08299235 | PCSK2 |
| XBXL10_1g24915 | coq8a.S | 2.57707589 | 0.02440477 | C0Q8A |
| XBXL10_1g2492 | mtfp1.L | -0.9595321 | 0.02680088 | MTFP1 |
| XBXL10_1g2497 | castor1.L | 1.30836848 | 0.07676564 | CASTOR1 |
| XBXL10_1g25026 | socs5.S | 1.1451709 | 0.05371098 | SOCS5 |
| XBXL10_1g2504 | zmat5.L | -1.78566798 | $1.41 \mathrm{E}-09$ | ZMAT5 |
| XBXL10_1g2514 | rhbdd3.L | 1.24966231 | 0.05177051 | - |
| XBXL10_1g2520 | ddx54.L | -1.03675009 | 0.0981115 | DDX54 |
| XBXL10_1g25428 | LOC108717922 | 1.88919183 | 0.07252704 | RFX6 |
| XBXL10_1g2546 | iscu.L | 1.44744621 | 0.00028297 | ISCU |
| XBXL10_1g2560 | gltp.L | 1.08736098 | 0.06668676 | GLTP |
| XBXL10_1g25672 | eif4g1.S | -0.97508681 | 0.06309594 | EIF4G1 |
| XBXL10_1g25840 | slc2a2.S | -1.74810617 | 0.03987715 | SLC2A2 |
| XBXL10_1g25917 | gmps.S | -0.86681621 | 0.09270546 | GMPS |
| XBXL10_1g2602 | prodh.L | 1.49244208 | 0.05505196 | PRODH |
| XBXL10_1g26083 | neu4.S | -4.76873891 | 0.01974438 | NEU4 |
| XBXL10_1g2626 | srsf9.L | 2.05239147 | 4.88E-09 | SRSF9 |
| XBXL10_1g2628 | dynl\|1.L | -1.01114081 | 0.02021256 | DYNLL1 |
| XBXL10_1g2629 | coq5.L | 0.95858786 | 0.08847322 | COQ5 |


| XBXL10_1g2631 | LOC108716019 | 4.90198836 | 0.00502795 | - |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g2633 | cabp1.L | -1.97736211 | 0.05867243 | CABP1 |
| XBXL10_1g2640 | c12orf43.L | -1.31589015 | 0.00428659 | C12orf43 |
| XBXL10_1g2644 | patz1.L | -2.15865029 | 9.07E-06 | PATZ1 |
| XBXL10_1g2649 | LOC108716024 | -2.52537944 | 0.05013091 | - |
| XBXL10_1g2655 | gnaz.L | 2.25328251 | 0.02012325 | GNAZ |
| XBXL10_1g2669 | klhl22.L | 1.47686269 | 0.08794791 | KLHL22 |
| XBXL10_1g26705 | LOC121394525 | -2.16778218 | 0.01580076 | - |
| XBXL10_1g2673 | ddt.L | -3.58536095 | 1.90E-17 | - |
| XBXL10_1g26832 | crem.L | 1.30498132 | 0.07862648 | CREM |
| XBXL10_1g2684 | slc2a11.2.L | -1.84240494 | 0.00052205 | - |
| XBXL10_1g26933 | cyp51a1.L | -1.92652748 | 0.04338532 | CYP51A1 |
| XBXL10_1g2697 | LOC121394822 | -7.82935722 | $1.76 \mathrm{E}-05$ | - |
| XBXL10_1g2698 | LOC108695663 | -3.90432041 | 0.01733631 |  |
| XBXL10_1g27041 | LOC108718861 | -1.19649493 | 0.06638616 | - |
| XBXL10_1g2716 | ppm1f.L | 1.12611209 | 0.02684532 | PPM1E |
| XBXL10_1g2736 | LOC108716056 | 5.4451397 | 0.02653361 | COMT |
| XBXL10_1g2742 | trmt2a.L | -1.70535766 | 0.01737011 | TRMT2A |
| XBXL10_1g27624 | LOC734523 | -0.87964526 | 0.07262449 | PAK1IP1 |
| XBXL10_1g27640 | LOC108718740 | 2.11991224 | 0.00019733 | ARPC3 |
| XBXL10_1g27645 | ranbp9.L | 1.08142313 | 0.05454868 | RANBP9 |
| XBXL10_1g2769 | stx2.L | 1.28730843 | 0.02576281 | STX2 |
| XBXL10_1g27803 | Irrc30.L | -1.91747142 | 0.03334545 | LRRC30 |
| XBXL10_1g2782 | bri3bp.L | -1.31643916 | 0.01974438 | BRI3BP |
| XBXL10_1g2783 | dhx37.L | -1.27152386 | 0.02847882 | DHX37 |
| XBXL10_1g27887 | dsc3.L | -4.53092679 | 0.02576281 | DSCAS |
| XBXL10_1g27923 | LOC108719245 | -4.11039564 | 0.06866673 | - |
| XBXL10_1g28173 | polr2k.L | -0.93394035 | 0.04497025 | POLR2K |
| XBXL10_1g28200 | LOC108719356 | -1.92949611 | 0.00013203 | MTERF3 |
| XBXL10_1g2861 | hven1.L | -2.70735242 | 7.80E-09 | HVCN1 |
| XBXL10_1g28856 | cyp51a1.S | -2.03318809 | 0.06143215 | CYP51A1 |
| XBXL10_1g2886 | tesc.L | -1.000534 | 0.02813725 | TESC |
| XBXL10_1g2921 | hint1.L | 0.86785921 | 0.09685989 | HINT1 |
| XBXL10_1g29225 | nsun2.S | -1.17546149 | 0.01974438 | NSUN2 |
| XBXL10_1g29234 | znf622.S | -0.95453767 | 0.06845068 | ZNF622 |
| XBXL10_1g29495 | LOC108719724 | -2.99977606 | 0.06600333 | OSBPL1A |
| XBXL10_1g2953 | hsd17b4.L | -1.10946917 | 0.01733631 | HSD17B4 |
| XBXL10_1g29536 | LOC108719729 | 1.64286736 | 0.02270144 | PCMTD1 |
| XBXL10_1g29585 | rrs1.S | -1.08956017 | 0.0881544 | RRS1 |
| XBXL10_1g29690 | polr2k.S | -0.90898483 | 0.0405286 | POLR2K |
| XBXL10_1g29700 | nipal2.S | -2.20686606 | 0.06102189 | NIPAL2 |
| XBXL10_1g29792 | fer116.S | -4.76333027 | 0.07174852 | FER1L6 |
| XBXL10_1g2982 | wdr36.L | -0.93991096 | 0.05371098 | WDR36 |
| XBXL10_1g29903 | bop1.S | -1.22098225 | 0.03117853 | BOP1 |
| XBXL10_1g29947 | LOC108695976 | -2.61607496 | 0.00985634 | TRPV6 |
| XBXL10_1g30010 | dusp5.L | 2.13871087 | 0.06735624 | DUSP5 |
| XBXL10_1g30118 | emg1.L | -1.18560252 | 0.01036165 | EMG1 |
| XBXL10_1g30180 | nop2.L | -1.18232237 | 0.07473367 | NOP2 |
| XBXL10_1g30361 | pdcd11.L | -1.56487073 | 0.01265758 | PDCD11 |
| XBXL10_1g30384 | LOC121395350 | -4.68621932 | 1.58E-08 | SFXN2 |
| XBXL10_1g30420 | npm3.L | -1.43710548 | 0.00117729 | - |
| XBXL10_1g30598 | pla2g12b.L | 1.57697401 | 0.0864285 | PLA2G12B |
| XBXL10_1g30619 | scd.L | -1.39993828 | 0.01096837 | SCD5 |
| XBXL10_1g32239 | ubxn10.L | 1.61374661 | 0.03053562 | - |
| XBXL10_1g32260 | mrto4.L | -1.42754787 | 6.89E-05 | MRTO4 |
| XBXL10_1g3227 | hmgcs1.L | -2.38185921 | 0.02293806 | HMGCS1 |


| XBXL10_1g32437 | emg1.S | -1.03325854 | 0.04432002 | EMG1 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g32496 | papss2.S | -1.15307054 | 0.03487549 | PAPSS2 |
| XBXL10_1g32508 | LOC121396194 | -1.28419551 | 0.04784897 | - |
| XBXL10_1g32559 | eef1akmt2.S | -1.23311567 | 0.03157532 | EEF1AKMT2 |
| XBXL10_1g32729 | noc3l.S | -1.13830475 | 0.05505196 | NOC3L |
| XBXL10_1g32753 | slc16a12.S | 1.36949005 | 0.01974438 | SLC16A12 |
| XBXL10_1g32858 | scd.S | -1.41049883 | 0.01561645 | SCD5 |
| XBXL10_1g33273 | sc5d.S | -1.9709713 | 0.0226726 | SC5D |
| XBXL10_1g33549 | per3.S | 1.63304092 | 0.02021256 | PER3 |
| XBXL10_1g33705 | prmt1.S | -1.07226316 | 0.01530346 | PRMT1 |
| XBXL10_1g33796 | LOC108697833 | -1.72429393 | 0.07195131 | - |
| XBXL10_1g33866 | LOC108705051 | 1.6271913 | 0.01649442 | CMKLR1 |
| XBXL10_1g33927 | fbl.S | -1.48002784 | 0.01143093 | FBL |
| XBXL10_1g34373 | LOC121396868 | -1.30445041 | 0.00747521 |  |
| XBXL10_1g3456 | LOC121396193 | -1.62456544 | 0.01327864 | - |
| XBXL10_1g3484 | ca9.L | -5.35484765 | 0.0529964 | MEF2C |
| XBXL10_1g35261 | polr1d.2.L | -1.16598207 | 0.00428155 | POLR1D |
| XBXL10_1g35265 | nsdhl.L | -1.15442302 | 0.03987715 | NSDHL |
| XBXL10_1g35301 | hprt1.L | -0.99500417 | 0.03715409 | HPRT1 |
| XBXL10_1g35618 | exosc5.L | -0.85215104 | 0.08807545 | EXOSC5 |
| XBXL10_1g35906 | slc25a29.L | 2.50205276 | 0.04056777 | SLC25A29 |
| XBXL10_1g35916 | LOC108698781 | -1.28147466 | 0.01974438 | HSP90AA1 |
| XBXL10_1g35938 | trmt61a.L | -0.95445756 | 0.05454868 | TRMT61A |
| XBXL10_1g36169 | coch.L | -5.30412373 | 0.08307169 | COCH |
| XBXL10_1g36511 | LOC108699570 | -3.79805577 | 0.04394781 |  |
| XBXL10_1g36512 | LOC108699569 | -5.13584619 | 0.03715409 |  |
| XBXL10_1g36793 | LOC121397221 | 2.13686414 | 0.03987715 | - |
| XBXL10_1g37270 | slc25a29.S | 1.81105221 | 0.01265758 | SLC25A29 |
| XBXL10_1g37310 | LOC108699795 | 4.09673801 | 0.05505196 | GPR68 |
| XBXL10_1g3737 | sel113.S | 3.82214869 | 0.03436247 | SEL1L3 |
| XBXL10_1g37400 | ahsa1.S | -1.09771397 | 0.07862648 | AHSA1 |
| XBXL10_1g37750 | tmem268.S | 1.23620123 | 0.07195131 | - |
| XBXL10_1g37772 | ssr4.S | -0.88800232 | 0.04780407 | SSR4 |
| XBXL10_1g37924 | LOC121397625 | -1.41541402 | 0.01974438 | XIAPP3 |
| XBXL10_1g37997 | LOC108700113 | -1.89036495 | 0.00867124 | PCDH19 |
| XBXL10_1g38199 | gpr4.S | 1.69407121 | 0.07252704 | - |
| XBXL10_1g38321 | agbl5.S | 2.18918865 | 0.05443389 | AGBL5 |
| XBXL10_1g38413 | timm50.S | -0.8723761 | 0.06221703 | TIMM50 |
| XBXL10_1g38552 | LOC108705648 | -2.32239505 | 0.02576281 | ITLN2 |
| XBXL10_1g38553 | LOC121397554 | -4.02434738 | 0.07195131 | - |
| XBXL10_1g38668 | LOC108700366 | 3.90260307 | 0.07195131 | CIART |
| XBXL10_1g38960 | LOC108700761 | 2.79483563 | 0.02813725 | KRT222 |
| XBXL10_1g38964 | igfbp4.L | -1.37537594 | 0.0211413 | IGFBP4 |
| XBXL10_1g3907 | ppid.S | -0.89912013 | 0.09944632 | PPID |
| XBXL10_1g39423 | pcmtd2.L | 1.25179588 | 0.01974438 | PCMTD2 |
| XBXL10_1g39677 | LOC108701784 | 6.82984176 | 0.01558763 | ABCA9 |
| XBXL10_1g3968 | ucp1.S | 2.27056873 | 0.0881544 | UCP3 |
| XBXL10_1g39756 | LOC108701789 | 1.06250771 | 0.02706136 | BECN1 |
| XBXL10_1g39760 | utp18.L | -1.31239528 | 0.00211549 | UTP18 |
| XBXL10_1g40029 | LOC108701807 | -5.22808377 | 0.02152355 | - |
| XBXL10_1g40357 | utp6.L | -0.9623437 | 0.07077487 | UTP6 |
| XBXL10_1g40387 | sctr.L | -6.39651533 | 0.03642151 | SCTR |
| XBXL10_1g40400 | LOC108701824 | -5.69701295 | 0.03047316 | PARP14 |
| XBXL10_1g40430 | slc49a4.L | 1.61216177 | 0.08807545 | SLC49A4 |
| XBXL10_1g40486 | XB5760632.L | -1.24403803 | 0.03487549 | - |
| XBXL10_1g40670 | fastkd1.L | -1.34435971 | 0.06380675 | FASTKD1 |


| XBXL10_1g40804 | trpm8.L | -6.47450001 | 0.03696158 | TRPM8 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g40885 | wdr12.L | -1.52900005 | 7.60E-06 | WDR12 |
| XBXL10_1g41040 | eef2kmt.L | -1.07189191 | 0.03642151 | EEF2KMT |
| XBXL10_1g41148 | zfand2a.L | -1.4149429 | 0.07077487 | ZFAND2A |
| XBXL10_1g41178 | nptx2.L | -6.2878112 | 0.0321212 | NPTX2 |
| XBXL10_1g41261 | ears2.L | -0.84435027 | 0.09511788 | EARS2 |
| XBXL10_1g41430 | pemt.L | -1.12071278 | 0.01997733 | PEMT |
| XBXL10_1g41603 | bicdl2.L | 1.78075831 | 0.01830788 | - |
| XBXL10_1g41847 | LOC108703857 | -4.63168217 | 0.0881544 | URGCP |
| XBXL10_1g42010 | LOC108703776 | 5.28886834 | 0.01974438 | ZNF180 |
| XBXL10_1g42243 | fbxl20.S | 1.22010987 | 0.07080675 | FBXL20 |
| XBXL10_1g42430 | dcaf7.S | 2.04856878 | 0.05997663 | DCAF7 |
| XBXL10_1g42455 | hnf4a.S | 1.4771953 | 0.07252704 | HNF4A |
| XBXL10_1g42843 | nbr1.S | 1.38332814 | 0.06402212 | NBR1 |
| XBXL10_1g42942 | fam83d.S | 1.89824114 | 0.0662378 | FAM83D |
| XBXL10_1g4325 | dnaja1.S | -1.23464802 | 0.00066059 | DNAJA1 |
| XBXL10_1g43256 | ddx18.S | -0.98496616 | 0.07252704 | DDX18 |
| XBXL10_1g43265 | tmem37.S | -1.22121408 | 0.03053562 | TMEM37 |
| XBXL10_1g43371 | prkag3.S | -1.47755797 | 0.09347337 | PRKAG3 |
| XBXL10_1g43448 | upp2.S | 3.11100744 | 0.00020773 | UPP2 |
| XBXL10_1g43494 | sp5.S | 6.5853198 | 0.02492259 | SP3 |
| XBXL10_1g43573 | Iss.S | -1.78098214 | 0.00020009 | LSS |
| XBXL10_1g43660 | wdr12.S | -1.68356294 | 0.00106792 | WDR12 |
| XBXL10_1g43664 | nop58.S | -1.10253986 | 0.03313989 | NOP58 |
| XBXL10_1g43710 | wdr75.S | -1.33066687 | 0.03696158 | WDR75 |
| XBXL10_1g438 | nat8.3.L | -3.39344572 | 0.06735624 | NAT8 |
| XBXL10_1g439 | nat8.2.L | -1.46306511 | 0.05505196 | - |
| XBXL10_1g43903 | aimp2.S | -1.28683105 | 0.01561645 | AIMP2 |
| XBXL10_1g4400 | polr2e.S | -1.01286613 | 0.03596326 | POLR2E |
| XBXL10_1g44074 | LOC121399076 | -1.60319071 | 0.06921766 | - |
| XBXL10_1g44083 | XB5962511.S | 3.17933145 | 0.07578132 | GALR2 |
| XBXL10_1g458 | cyp26b1.L | 1.96479638 | 0.00089519 | CYP26B1 |
| XBXL10_1g4900 | psat1.S | -1.00429668 | 0.08987337 | PSAT1 |
| XBXL10_1g5270 | mmp11.S | 3.20402693 | 0.03487549 | MMP11 |
| XBXL10_1g5358 | ddx55.S | -0.98968324 | 0.07916623 | DDX55 |
| XBXL10_1g5427 | nos1.S | -4.74433338 | 0.0355608 | NOS1 |
| XBXL10_1g5465 | LOC108707195 | 4.91705094 | 0.08807545 | C5orf63 |
| XBXL10_1g5594 | utp15.S | -0.86402501 | 0.08807545 | UTP15 |
| XBXL10_1g568 | smyd1.L | -2.42402863 | 0.07268852 | SMYD1 |
| XBXL10_1g569 | LOC108696295 | -1.39345914 | 0.00545103 | FABP1 |
| XBXL10_1g5761 | hmgcs1.S | -2.25593206 | 0.06668676 | HMGCS1 |
| XBXL10_1g5935 | LOC121399557 | -4.77506367 | 0.03715409 | TRIM65 |
| XBXL10_1g6529 | tsr1.L | -1.32763985 | 0.03157532 | TSR1 |
| XBXL10_1g6672 | abhd15.L | -1.57450632 | 0.0226726 | ABHD15 |
| XBXL10_1g6901 | ctps1.L | -1.36750219 | 0.02039876 | CTPS1 |
| XBXL10_1g7050 | znhit3.L | -0.98063966 | 0.0865029 | - |
| XBXL10_1g7250 | LOC108708226 | -1.23129486 | 0.08847322 | - |
| XBXL10_1g7431 | LOC108707516 | -1.06867974 | 0.09627439 | - |
| XBXL10_1g7640 | wsb1.L | 1.15638918 | 0.01580076 | WSB1 |
| XBXL10_1g7831 | LOC108708464 | -1.30837297 | 0.06017849 | SLC10A2 |
| XBXL10_1g7850 | zic5.L | 6.21139118 | 0.04497025 | ZIC5 |
| XBXL10_1g8122 | mars1.L | -1.11204319 | 0.01733631 | MARS1 |
| XBXL10_1g8166 | mettl1.L | -1.32402832 | 0.01295498 | METTL1 |
| XBXL10_1g8218 | rapgef3.L | 4.98650087 | 0.01974438 | RAPGEF3 |
| XBXL10_1g8707 | slco2b1.L | 1.50230531 | 0.03157532 | SLCO2B1 |
| XBXL10_1g8729 | xdm-w | -1.90461153 | 0.03487549 | DMRT1 |


| XBXL10_1g8981 | LOC108708847 |
| :--- | :--- |
| XBXL10_1g899 | LOC108698820 |
| XBXL10_1g9018 | trarg1.S |
| XBXL10_1g9109 | usp16.S |
| XBXL10_1g9289 | rrp1b.S |
| XBXL10_1g9312 | wdr4.S |
| XBXL10_1g9549 | ngf.S |
| XBXL10_1g9729 | bysl.S |
| XBXL10_1g9888 | LOC108709510 |
| XBXL10_1g9892 | LOC108709511 |
| XBXL10_1g9902 | LOC108709514 |
| XBXL10_1g9966 | rcc1.S |


| dmrt1L males |  |
| :---: | :---: |
|  | XBXL10_1g10081 |
|  | XBXL10_1g12137 |
|  | XBXL10_1g2697 |
|  | XBXL10_1g2861 |
|  | XBXL10_1g4144 |

LOC108708928
dnd1.L
LOC121394822
hvcn1.L
herc6.S

| -4.97506331 | 0.04087221 | RTN4RL1 |
| ---: | ---: | :---: |
| -2.0494665 | 0.00018815 | TENM3 |
| -4.22167716 | 0.01552213 | TRARG1 |
| -2.01129689 | 0.05847714 | USP16 |
| -1.10658466 | 0.02293806 | RRP1B |
| -1.09050315 | 0.01265758 | WDR4 |
| -1.28158646 | 0.08878044 | NGF |
| -1.40098011 | 0.00014505 | BYSL |
| -1.68431277 | 0.00040325 | PLCXD2 |
| -5.10771649 | 0.00010032 | - |
| 1.26383722 | 0.0557594 | - |
| -1.54377361 | 0.03413628 | RCC1 |


| 5.17601357 | 0.00011736 | TRIM5 |
| ---: | ---: | :---: |
| 2.25964299 | 0.00512753 | DND1 |
| -3.66517532 | 0.0530821 | - |
| -1.69256899 | 0.00512753 | HVCN1 |
| 2.0836401 | 0.09139719 | HERC3 |

dmrt1S females

| XBXL10_1g15119 | ano2.S |
| :--- | :--- |
| XBXL10_1g15231 | cd74.S |
| XBXL10_1g2253 | LOC108714884 |
| XBXL10_1g2283 | LOC121394372 |
| XBXL10_1g2691 | XB5865341.S |
| XBXL10_1g29991 | LOC121395800 |
| XBXL10_1g31480 | LOC108696640 |
| XBXL10_1g31674 | cd79a.L |
| XBXL10_1g3450 | LOC108719144 |
| XBXL10_1g35418 | XB5827395.L |
| XBXL10_1g35916 | LOC108698781 |
| XBXL10_1g36783 | LOC121397218 |
| XBXL10_1g39458 | tnfrsf6b.L |
| XBXL10_1g41148 | zfand2a.L |
| XBXL10_1g42135 | LOC121398165 |
| XBXL10_1g4787 | ttc39b.S |
| XBXL10_1g4804 | LOC108706955 |
| XBXL10_1g4846 | LOC108706960 |
| XBXL10_1g551 | LOC108697575 |
| XBXL10_1g6378 | pir.L |


| -4.7626911 | 0.00743935 | ANO2 |
| ---: | ---: | :---: |
| 1.22172219 | 0.09080953 | - |
| 1.55106009 | 0.00743935 | IGHV3OR16-13 |
| 2.65153017 | 0.08840626 | - |
| 2.3659337 | 0.09080953 | - |
| -5.03568469 | 0.00608725 | - |
| -5.46151501 | 0.01623575 | - |
| 1.74054637 | 0.07023516 | CD79A |
| 1.83317802 | 0.07023516 | - |
| 1.26771308 | 0.09080953 | HLA-DRB1 |
| -2.0944146 | 0.00743935 | HSP90AA1 |
| 3.05043434 | 0.09080953 | - |
| -3.33528727 | 0.09080953 | RYR1 |
| -3.10222166 | 0.09080953 | ZFAND2A |
| 1.22688694 | 0.09080953 | - |
| -5.1925464 | 0.01955776 | TTC39B |
| -2.35503241 | 0.00685273 | - |
| 4.68043218 | 0.00743935 | - |
| 2.16799718 | 0.00743935 | IGKV3-15 |
| -1.73167247 | 0.01013162 | PIR |


| 0.86103316 | 0.05270507 | - |
| ---: | ---: | :---: |
| 0.9709033 | 0.08703685 | - |
| 1.46795855 | 0.01888028 | - |
| -0.76961264 | 0.06771662 | PSMB2 |
| -0.92498018 | 0.0400308 | ZNF706 |
| 5.93253364 | 0.01532462 | DLGAP3 |
| -1.75022951 | 0.00159012 | CITED2 |
| -1.01355443 | 0.02582152 | TOR2A |
| 0.65474809 | 0.07843314 | SMAD1 |
| -1.18922174 | 0.01345414 | NLE1 |
| -1.10558571 | 0.01258341 | MMP28 |
| 3.21755465 | 0.08353974 | SRRM3 |
| -0.89082211 | 0.00997873 | UBE2G1 |


| XBXL10_1g10470 | jade3.S | -0.86781031 | 0.08760058 | JADE3 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g10477 | atp4b.S | 3.14633321 | 0.08199359 | ATP4B |
| XBXL10_1g10493 | sox1.S | 4.97129627 | 0.01377495 | SOX1 |
| XBXL10_1g10505 | LOC108708968 | 5.54180345 | 0.08530951 | LIG4 |
| XBXL10_1g10546 | LOC108709757 | -1.46734943 | 0.05899301 | ABCC4 |
| XBXL10_1g10565 | ednrb.S | 1.2264816 | 0.07843314 | EDNRB |
| XBXL10_1g10568 | LOC108709769 | 1.59988522 | 0.02437716 | SCEL |
| XBXL10_1g10574 | uchl3.S | -0.84837464 | 0.04618132 | UCHL3 |
| XBXL10_1g10584 | mzt1.S | -0.95963973 | 0.04151686 | - |
| XBXL10_1g10593 | pcdh17.S | 2.18377052 | 0.03384704 | PCDH17 |
| XBXL10_1g10643 | Ipar6.S | -0.98946297 | 0.03452135 | LPAR6 |
| XBXL10_1g10683 | dnajc22.S | -1.12154319 | 0.01895304 | DNAJC22 |
| XBXL10_1g10703 | myl6.S | -0.97882557 | 0.00626312 | MYL6 |
| XBXL10_1g10783 | cyp27b1.S | 5.64213626 | 0.03228289 | CYP27B1 |
| XBXL10_1g10799 | galnt6.2.S | 3.75221856 | 0.05519435 | GALNT6 |
| XBXL10_1g10800 | tankl.S | -1.38666272 | 0.03784531 | - |
| XBXL10_1g10804 | LOC496010 | -0.75941422 | 0.08337501 | METTL7A |
| XBXL10_1g10822 | LOC108709888 | -1.94679419 | 0.00018295 | - |
| XBXL10_1g10869 | krt8.1.S | 1.22438797 | 0.00410253 | KRT8 |
| XBXL10_1g10880 | krt7.S | 1.84988043 | 0.00021169 | KRT8 |
| XBXL10_1g10932 | frem2.S | 0.9008795 | 0.08428086 | FREM2 |
| XBXL10_1g10938 | alg5.S | -0.73694333 | 0.07714323 | ALG5 |
| XBXL10_1g11025 | mmp13.S | -1.06471952 | 0.07346202 | MMP3 |
| XBXL10_1g11112 | LOC108710022 | 2.95931602 | 0.08214895 | GRM5 |
| XBXL10_1g1117 | LOC108710147 | 1.57084102 | 0.0747306 | COL25A1 |
| XBXL10_1g11191 | serpinh1.S | 1.09414453 | 0.0939586 | SERPINH1 |
| XBXL10_1g11225 | ucp2.S | -1.14702015 | 0.00151178 | UCP2 |
| XBXL10_1g11242 | slco2b1.S | 2.95173003 | 0.00410253 | SLCO2B1 |
| XBXL10_1g1126 | LOC108710167 | -0.97043967 | 0.08987188 | ELOVL6 |
| XBXL10_1g1127 | egf.L | 2.62470454 | 0.05588336 | EGF |
| XBXL10_1g11301 | LOC108710093 | 1.10803843 | 0.08428086 | - |
| XBXL10_1g11302 | trim391.1.S | 1.3575819 | 0.08337501 | ENSG00000267801 |
| XBXL10_1g11373 | LOC108710708 | -2.20901055 | 0.00364826 | INTS13 |
| XBXL10_1g11376 | cyb5r3.L | 1.80465092 | 0.00126033 | CYB5R3 |
| XBXL10_1g11390 | LOC121401119 | 4.1458194 | 0.05721626 | MED21 |
| XBXL10_1g11405 | mcat.L | -0.70819555 | 0.06806062 | MCAT |
| XBXL10_1g11497 | XB5891636.L | 3.47081687 | 0.04262417 | - |
| XBXL10_1g1150 | LOC108710474 | 3.84264952 | 0.04454243 | NDST3 |
| XBXL10_1g1154 | prss12.L | 1.67688302 | 0.00904935 | PRSS12 |
| XBXL10_1g11542 | Irp6.L | 1.61257616 | 0.00632874 | LRP6 |
| XBXL10_1g11544 | borcs5.L | -0.86626204 | 0.06101998 | BORCS5 |
| XBXL10_1g11583 | LOC121401005 | -1.22534691 | 0.08492216 | PPM1L |
| XBXL10_1g11888 | itk.L | 5.5648299 | 0.02353093 | ITK |
| XBXL10_1g11911 | skp1.L | -0.73379221 | 0.07121508 | ENSG00000272772 |
| XBXL10_1g11920 | mterf2.L | -1.03413413 | 0.01345414 | - |
| XBXL10_1g12039 | vwf.L | -1.01382611 | 0.03069778 | VWF |
| XBXL10_1g12091 | sec24a.L | 0.77791941 | 0.03452135 | SEC24A |
| XBXL10_1g12098 | pitx1.L | 2.47575575 | 0.04780062 | PITX1 |
| XBXL10_1g12108 | LOC108710847 | -2.33596589 | 0.07701028 | - |
| XBXL10_1g12256 | gnpda1.L | -0.98057747 | 0.00522436 | GNPDA1 |
| XBXL10_1g12277 | kif3a.L | 0.80301086 | 0.06632227 | KIF3A |
| XBXL10_1g12291 | grxcr2.L | 4.18075037 | 0.02582152 | GRXCR2 |
| XBXL10_1g12336 | rpl26.L | -0.76423283 | 0.06282312 | RPL26L1 |
| XBXL10_1g12353 | hrh2.L | -0.89315051 | 0.0966915 | HRH2 |
| XBXL10_1g12391 | sncb.L | 2.14169195 | 0.04119756 | SNCB |
| XBXL10_1g1242 | LOC108719625 | 5.06424605 | 0.01862502 | CELA3A |


| XBXL10_1g1245 | jchain.L | -1.47481621 | 0.0558175 | JCHAIN |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g12489 | acss3.L | 1.67279286 | 0.06389998 | ACSS3 |
| XBXL10_1g12497 | rassf9.L | -1.04622504 | 0.05180544 | RASSF9 |
| XBXL10_1g12515 | btg1.L | -1.08927717 | 0.01345414 | BTG1 |
| XBXL10_1g12517 | plekhg7.L | 4.40810708 | 0.07885872 | PLEKHG7 |
| XBXL10_1g12616 | csrp2.L | 1.02015744 | 0.00569957 | CSRP2 |
| XBXL10_1g12631 | slc38a4.L | 2.24815653 | 0.03522754 | SLC38A4 |
| XBXL10_1g12664 | znf277.L | -0.80214901 | 0.05121616 | ZNF277 |
| XBXL10_1g12670 | gpr85.L | -1.37010838 | 0.06806062 | GPR85 |
| XBXL10_1g1274 | areg.L | -1.28055114 | 0.0984431 | AREG |
| XBXL10_1g12814 | sema3d.L | 1.64947603 | 0.00752177 | SEMA3D |
| XBXL10_1g1283 | rassf6.L | -1.17365471 | 0.00410253 | RASSF6 |
| XBXL10_1g12868 | LOC108711235 | 0.86631003 | 0.0747306 | PODXL |
| XBXL10_1g12879 | LOC121401523 | -1.14223957 | 0.0101263 | SMKR1 |
| XBXL10_1g12927 | odf3.L | -1.14429271 | 0.00262842 | - |
| XBXL10_1g12952 | etfa.L | -1.08862258 | 0.00997873 | ETFA |
| XBXL10_1g12963 | LOC108711279 | -5.54465673 | 0.08760058 | - |
| XBXL10_1g12965 | LOC108711280 | -2.02463155 | 0.02436328 | MALT1 |
| XBXL10_1g12972 | LOC108710284 | 1.56213681 | 0.00690289 | CRABP1 |
| XBXL10_1g12991 | vps13c.L | 0.73534743 | 0.08326527 | VPS13C |
| XBXL10_1g13017 | LOC108711307 | 1.09701057 | 0.00450861 | LINGO1 |
| XBXL10_1g13023 | anxa2.L | 0.84812369 | 0.05081386 | ANXA2 |
| XBXL10_1g13033 | ulk3.L | -0.91073778 | 0.04356124 | ULK3 |
| XBXL10_1g13037 | cyp1a1.L | 1.93138693 | 0.0791753 | CYP1A1 |
| XBXL10_1g13050 | snx22.L | -1.36107303 | 0.01117796 | - |
| XBXL10_1g13066 | LOC108711334 | 1.67665224 | 0.0242025 |  |
| XBXL10_1g13074 | ctsl.L | 1.07950722 | 0.02607802 | CTSK |
| XBXL10_1g13078 | mrpl18.L | -0.80384678 | 0.05565102 | MRPL18 |
| XBXL10_1g1314 | cnot6I.L | 0.77671288 | 0.04000662 | CNOT6L |
| XBXL10_1g13149 | thsd4.L | 1.352294 | 0.09452853 | THSD4 |
| XBXL10_1g13155 | myo1e.1.L | 1.28853917 | 0.07201468 | MYO1E |
| XBXL10_1g13164 | aqp9.L | 1.63309409 | 0.01540511 | AQP9 |
| XBXL10_1g13165 | aldh1a2.L | 0.75510821 | 0.04598697 | ALDH1A2 |
| XBXL10_1g13189 | onecut1.L | 6.17407279 | 0.01019125 | ONECUT1 |
| XBXL10_1g13195 | LOC108711385 | -1.40482562 | 0.0101263 | GNB5 |
| XBXL10_1g13214 | dut.L | -0.92786774 | 0.05008283 | DUT |
| XBXL10_1g13234 | sppl2a.L | 0.9280539 | 0.09037014 | SPPL2A |
| XBXL10_1g13237 | selenow2.L | -0.77623598 | 0.06000436 | - |
| XBXL10_1g1324 | idua.L | -1.78311458 | 0.00669464 | IDUA |
| XBXL10_1g1325 | slc26a1.L | -1.38489534 | 0.0647764 | SLC26A2 |
| XBXL10_1g13253 | bnc1.L | 1.11950692 | 0.07258421 | BNC1 |
| XBXL10_1g13348 | mrps11.L | -0.83760835 | 0.06454458 | - |
| XBXL10_1g13351 | LOC108711464 | 2.05855084 | 0.05565763 | NTRK3 |
| XBXL10_1g13437 | pias1.L | 1.78448486 | 0.0931156 | PIAS1 |
| XBXL10_1g13493 | c2orf42.L | 1.09612327 | 0.02757151 | C2orf42 |
| XBXL10_1g13517 | pcna.L | -0.99685385 | 0.07502061 | PCNA |
| XBXL10_1g13523 | LOC108711553 | 1.44727169 | 0.03404715 | LRRTM4 |
| XBXL10_1g13564 | nt5dc4.L | 1.40984176 | 0.07128052 | NT5C2 |
| XBXL10_1g13684 | dmtn.L | 1.73904749 | 0.02837147 | DMTN |
| XBXL10_1g13740 | LOC108711632 | 4.83344593 | 0.08142161 | ZNF84 |
| XBXL10_1g13816 | pet100.L | -0.71978455 | 0.06567134 | ENSG00000283390 |
| XBXL10_1g13854 | LOC121401622 | 2.61014979 | 0.08492216 | - |
| XBXL10_1g13866 | Irrc8e.L | 1.13472193 | 0.05192146 | LRRC8C |
| XBXL10_1g14168 | LOC108710164 | -0.94212247 | 0.09385533 | - |
| XBXL10_1g14205 | elof1.S | -0.74725739 | 0.08636708 | ELOF1 |
| XBXL10_1g14232 | tmem205.L | -0.74338665 | 0.07128052 | TMEM205 |


| XBXL10_1g14239 | mast1.L | 4.7908782 | 0.01975394 | MAST1 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g14251 | dhps.L | -0.79290839 | 0.06517724 | DHPS |
| XBXL10_1g14253 | wdr83os.L | -0.88845796 | 0.0435752 | WDR83OS |
| XBXL10_1g14289 | c3.L | 1.6733435 | 0.000345 | C3 |
| XBXL10_1g14295 | LOC108711733 | 1.06444991 | 0.01440793 | C3 |
| XBXL10_1g14635 | LOC108711770 | 1.24327286 | 0.07128052 | TIPARP |
| XBXL10_1g14638 | naa38.L | -0.87031521 | 0.02353093 | NAA38 |
| XBXL10_1g1464 | aptx.L | -0.92373954 | 0.05317372 | APTX |
| XBXL10_1g14647 | LOC108711777 | -0.79516283 | 0.04526352 | EIF4E2 |
| XBXL10_1g14650 | rangrf.L | -0.8321202 | 0.03522754 | - |
| XBXL10_1g14706 | LOC108711786 | 2.30293933 | 0.01536739 | - |
| XBXL10_1g14718 | cldn15.1.L | 2.51371462 | 0.07497598 | CLDN15 |
| XBXL10_1g1475 | bmp3.L | 0.68350163 | 0.08530951 | BMP3 |
| XBXL10_1g14937 | slco1b3.S | 3.25321195 | 0.0991322 | SLCO1C1 |
| XBXL10_1g14962 | ppfibp1.S | 0.83952794 | 0.06035329 | PPFIBP1 |
| XBXL10_1g14996 | LOC121402088 | -1.41602861 | 0.01816117 | - |
| XBXL10_1g15005 | dennd2a.S | 2.5798826 | 0.04403508 | DENND2A |
| XBXL10_1g15018 | mrps33.S | -0.78376104 | 0.04294929 | MRPS33P2 |
| XBXL10_1g15021 | LOC108706056 | -0.7844358 | 0.04976642 | STMP1 |
| XBXL10_1g15052 | LOC108712252 | 1.79586086 | 0.00321868 | PARP12 |
| XBXL10_1g15064 | usp18.S | 2.50389646 | 0.05853693 | - |
| XBXL10_1g15075 | dcp1b.S | 1.05660566 | 0.02353093 | DCP1B |
| XBXL10_1g15115 | LOC443642 | 0.78776403 | 0.08337501 | CALD1 |
| XBXL10_1g15142 | ergic2.S | -0.7373529 | 0.06907758 | ERGIC2 |
| XBXL10_1g15145 | LOC108712601 | 3.00992557 | 0.06806062 | - |
| XBXL10_1g15149 | rhno1.S | -0.71218907 | 0.08942236 | - |
| XBXL10_1g15185 | LOC108712611 | 1.98941714 | 0.08760058 |  |
| XBXL10_1g15186 | LOC108712612 | 2.69376457 | 3.84E-05 | - |
| XBXL10_1g15193 | ube2b.S | -0.81816337 | 0.0647764 | UBE2B |
| XBXL10_1g15313 | ank1.S | 1.28614184 | 0.06522422 | ANK1 |
| XBXL10_1g15332 | sftpc.S | 3.3414397 | 0.04454243 | SFTPC |
| XBXL10_1g15347 | LOC108712707 | 5.7229917 | 0.03801284 | SLC18A1 |
| XBXL10_1g15353 | LOC108712710 | 1.08187803 | 0.08636708 | ADRB1 |
| XBXL10_1g15383 | tcim. S | -0.81977818 | 0.08663149 | TCIM |
| XBXL10_1g15395 | gck.S | 4.32317989 | 0.07346202 | GCK |
| XBXL10_1g15424 | vamp5.S | -1.8365155 | 0.00024858 | - |
| XBXL10_1g1545 | reep6.L | -1.14054785 | 0.01004921 | REEP5 |
| XBXL10_1g15458 | pcna.S | -1.13120343 | 0.02375806 | PCNA |
| XBXL10_1g15466 | LOC108712294 | 3.7222822 | 0.03384704 | - |
| XBXL10_1g15474 | fam136a.S | -1.06116538 | 0.01558425 | FAM136A |
| XBXL10_1g1549 | rps15.L | -0.82843305 | 0.05192146 | RPS15 |
| XBXL10_1g1551 | gamt.L | -0.82342849 | 0.07808471 | GAMT |
| XBXL10_1g15535 | aagab.S | -1.40625906 | 0.00055796 | AAGAB |
| XBXL10_1g15558 | igdcc4.S | 1.61985796 | 0.0594442 | IGDCC4 |
| XBXL10_1g15611 | mrps11.S | -0.90310904 | 0.04962861 | MRPS11 |
| XBXL10_1g15616 | mfge8.S | 1.56250687 | 9.70E-06 | EDIL3 |
| XBXL10_1g15685 | bnc1.S | 1.50565957 | 0.0747306 | BNC1 |
| XBXL10_1g15698 | selenow2.S | -1.0717652 | 0.02582152 | - |
| XBXL10_1g1571 | gpx4.L | -0.66538346 | 0.09637239 | GPX4 |
| XBXL10_1g15739 | LOC108712923 | 6.76351378 | 0.00109704 | ONECUT1 |
| XBXL10_1g15743 | rsl24d1.S | -0.93209057 | 0.02368351 | RSL24D1 |
| XBXL10_1g15760 | LOC108712939 | 1.91535519 | 0.03859697 | AQP9 |
| XBXL10_1g1592 | LOC108712617 | -1.28032199 | 0.00839396 | PGPEP1 |
| XBXL10_1g15922 | neo1.S | 0.79539789 | 0.04555164 | NEO1 |
| XBXL10_1g15969 | mapk8ip2.S | 3.46395989 | 0.09578457 | MAPK8IP2 |
| XBXL10_1g16015 | LOC121402177 | -0.75543379 | 0.08057675 | SMKR1 |


| XBXL10_1g1605 | LOC108712686 | -0.8956647 | 0.01709223 | MARCHF2 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g16058 | fam107b.S | -0.67845952 | 0.09717071 | FAM107B |
| XBXL10_1g16159 | ing3.S | -0.73872502 | 0.07044345 | ING3 |
| XBXL10_1g16173 | LOC108713110 | -1.11051423 | 0.08337501 | TFEC |
| XBXL10_1g16210 | slc38a4.S | 3.95591109 | 0.07701028 | SLC38A4 |
| XBXL10_1g16243 | myrfl.S | 5.80867658 | 0.0318387 | MYRFL |
| XBXL10_1g16273 | Ilphp3.S | -0.828455 | 0.02875538 | - |
| XBXL10_1g16304 | btg1.S | -0.99684748 | 0.00622698 | BTG1 |
| XBXL10_1g16381 | LOC108713216 | -1.69904136 | 0.05582389 | - |
| XBXL10_1g16388 | gfra3.S | 3.66038914 | 0.02367819 | - |
| XBXL10_1g16519 | gnpda1.S | -0.83018231 | 0.03522754 | GNPDA1 |
| XBXL10_1g1654 | enc1.2.L | -1.27056258 | 0.01345414 | ENC1 |
| XBXL10_1g16569 | LOC108712504 | 6.18276417 | 0.01086847 | PCDHGC5 |
| XBXL10_1g17163 | LOC108703481 | 2.32192169 | 0.04403508 | ELAVL3 |
| XBXL10_1g17197 | wdr83os.S | -0.86408801 | 0.03979949 | WDR83OS |
| XBXL10_1g17204 | clpp.S | -0.76050798 | 0.08971677 | CLPP |
| XBXL10_1g17451 | naa38.S | -0.75933168 | 0.05068248 | NAA38 |
| XBXL10_1g1749 | prss57.L | -1.09516246 | 0.06538164 | OVCH1 |
| XBXL10_1g17490 | LOC108703553 | 6.59449848 | 0.00487979 | - |
| XBXL10_1g17511 | pcolce.S | 1.1851718 | 0.03683869 | PCOLCE |
| XBXL10_1g17545 | LOC108703443 | -4.20250487 | 0.05951694 | - |
| XBXL10_1g1755 | isyna1.L | -0.85006428 | 0.06447567 | ISYNA1 |
| XBXL10_1g17562 | LOC108703581 | -0.77937407 | 0.09452853 | - |
| XBXL10_1g17569 | tp53.S | 1.16118638 | 0.09578457 | TP53 |
| XBXL10_1g1759 | fkbp8.L | -0.63972849 | 0.0918168 | FKBP8 |
| XBXL10_1g17597 | LOC108713706 | 1.89916908 | 0.05436935 | - |
| XBXL10_1g1765 | klhl26.L | -0.83639464 | 0.06943384 | KLHL26 |
| XBXL10_1g17661 | nell1.L | 6.25680618 | 0.00500051 | NELL1 |
| XBXL10_1g17700 | Irrc4c.L | 1.98823644 | 0.0879752 | LRRC4C |
| XBXL10_1g17718 | cd82.L | 0.86964553 | 0.02875538 | CD82 |
| XBXL10_1g1775 | tdrd7.L | 1.08975754 | 0.07808471 | TDRD7 |
| XBXL10_1g17752 | f2.L | 2.42194774 | 0.0400308 | F2 |
| XBXL10_1g17796 | large2.L | 0.80950837 | 0.09605255 | LARGE1 |
| XBXL10_1g17877 | pax6.L | 6.26312115 | 0.0057219 | PAX6 |
| XBXL10_1g17902 | ifitm3.L | 0.73720778 | 0.05192146 | - |
| XBXL10_1g1791 | LOC108713377 | 3.29763473 | 0.08636708 |  |
| XBXL10_1g17913 | cd81.L | 0.64435797 | 0.06522422 | CD81 |
| XBXL10_1g17942 | myrf.L | 1.14869456 | 0.03522754 | MYRF |
| XBXL10_1g17955 | XB990428.L | -1.43316115 | 0.00569957 | IFITM3P7 |
| XBXL10_1g17981 | LOC108704982 | 3.00043084 | 0.00013541 | MUC5AC |
| XBXL10_1g18018 | LOC108713473 | 2.1132151 | 0.02183481 | MUC5AC |
| XBXL10_1g18023 | muc6.L | 4.35647887 | 0.02485711 | MUC6 |
| XBXL10_1g18028 | polr2l.1.L | -0.82732167 | 0.06771662 | POLR2L |
| XBXL10_1g18191 | LOC108713901 | -1.11264479 | 0.00632847 | - |
| XBXL10_1g18199 | kcnk4.L | -2.76757418 | 0.02212481 | KCNK2 |
| XBXL10_1g18204 | ppp1r14b.L | -0.87883104 | 0.04033088 | PPP1R14B |
| XBXL10_1g18222 | zfta.L | 0.97847765 | 0.06101998 | ZFTA |
| XBXL10_1g18256 | gal.1.L | 4.81725356 | 0.04698731 | GAL |
| XBXL10_1g1826 | clta.L | -0.91449009 | 0.02607802 | CLTA |
| XBXL10_1g18316 | LOC108705472 | -1.3140552 | 0.01532462 | CTSF |
| XBXL10_1g1845 | LOC108713403 | 2.3525299 | 0.08896572 | B3GNT3 |
| XBXL10_1g18487 | nutf2.L | -0.75526707 | 0.0480112 | NUTF2 |
| XBXL10_1g18550 | osgin1.L | 1.25480011 | 0.02140165 | OSGIN1 |
| XBXL10_1g18555 | LOC108714002 | 4.63228213 | 0.07940259 | - |
| XBXL10_1g18588 | mt4.L | 0.90673595 | 0.01564178 | MT1F |
| XBXL10_1g18596 | tradd.L | -0.84289862 | 0.09012309 | - |


| XBXL10_1g18651 | ctu2 | -0.9045033 | 0.0833011 | CTU2 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g18655 | aprt.L | -0.79880125 | 0.07910198 | APRT |
| XBXL10_1g18690 | urah.L | -0.85554073 | 0.07279326 | URAHP |
| XBXL10_1g18762 | hnf4b.L | 5.52912355 | 0.00170859 | HNF4G |
| XBXL10_1g18766 | cotl1.L | -0.82361634 | 0.03151245 | COTL1 |
| XBXL10_1g1879 | dda1 | -0.69081881 | 0.07128052 | DDA1 |
| XBXL10_1g18809 | slc7a5.L | 0.87153249 | 0.07044345 | SLC7A5 |
| XBXL10_1g18813 | LOC108714099 | 1.20538913 | 0.01804243 | ZFPM1 |
| XBXL10_1g18828 | LOC108714107 | 1.88320044 | 0.07112016 | CES5A |
| XBXL10_1g18834 | ss1812.L | -0.76304561 | 0.09594197 | SS18L2 |
| XBXL10_1g18875 | mcoln2.L | -2.43032326 | 0.0950919 | MCOLN2 |
| XBXL10_1g18929 | calb2.L | 4.79689731 | 0.04971753 | CALB2 |
| XBXL10_1g1894 | tmem221.L | -0.87844807 | 0.09359215 | - |
| XBXL10_1g19030 | erich3.L | 2.11214008 | 0.08853299 | ERICH3 |
| XBXL10_1g19065 | ak4.L | -1.15497578 | 0.09452853 | AK4 |
| XBXL10_1g19084 | tm2d1.L | -0.93905183 | 0.00842874 | TM2D1 |
| XBXL10_1g1909 | gna11.L | 0.94446313 | 0.07301305 | GNA11 |
| XBXL10_1g19090 | XB5864909.L | -1.24910108 | 0.00278343 | RNF170 |
| XBXL10_1g19102 | LOC108714247 | 4.70431542 | 0.0102929 | - |
| XBXL10_1g1913 | igfbpl1.L | 4.88147714 | 0.00291812 | IGFBPL1 |
| XBXL10_1g19130 | dph2.L | -1.08429077 | 0.06806062 | DPH2 |
| XBXL10_1g19138 | prdx1.L | -1.02736948 | 0.01365224 | PRDX1 |
| XBXL10_1g19198 | pik3r3.L | 0.75802623 | 0.08726806 | PIK3R3 |
| XBXL10_1g19207 | uqcrh.L | -0.76220177 | 0.08632834 | UQCRH |
| XBXL10_1g19316 | pappa2.L | 1.44392095 | 0.04613674 | PAPPA2 |
| XBXL10_1g19332 | tor3a.L | 1.05597875 | 0.00836998 | TOR3A |
| XBXL10_1g19344 | rgs16.L | 5.59691713 | 0.01532076 | RGS16 |
| XBXL10_1g19345 | glul-like.1.L | -1.25959955 | 0.0106772 | GLUL |
| XBXL10_1g19356 | qsox1.L | 1.71622916 | 0.05878243 | QSOX1 |
| XBXL10_1g19367 | frrs1.L | 1.13671221 | 0.01213285 | FRRS1 |
| XBXL10_1g19375 | hccs.L | -0.99282012 | 0.04119756 | HCCS |
| XBXL10_1g19382 | LOC108714376 | 4.24697944 | 0.01518856 | PLPPR4 |
| XBXL10_1g19399 | dipk1a.L | -0.7277316 | 0.07294992 | DIPK1A |
| XBXL10_1g19439 | clca1.1.L | 3.71773008 | 0.04613674 | CLCA3P |
| XBXL10_1g19441 | ankrd45.L | -0.99545806 | 0.05204342 | - |
| XBXL10_1g19486 | ext\|2.L | -0.84978348 | 0.02607802 | EXTL2 |
| XBXL10_1g19488 | s1pr1.L | -0.83213369 | 0.07338373 | S1PR1 |
| XBXL10_1g19504 | Ihx9.L | 2.10704546 | 3.71E-06 | LHX9 |
| XBXL10_1g1953 | txn.L | -0.83520795 | 0.07044345 | - |
| XBXL10_1g19531 | LOC121403083 | 3.31797449 | 0.02353093 | - |
| XBXL10_1g19533 | cfh.L | 1.10158685 | 0.01936467 | - |
| XBXL10_1g19547 | desi1.L | -0.76925218 | 0.09333763 | DESI1 |
| XBXL10_1g19563 | rasd2.L | -1.0075416 | 0.06522422 | RASD2 |
| XBXL10_1g19578 | fmc1.L | -0.73229824 | 0.08337501 | FMC1 |
| XBXL10_1g19580 | rpsa.L | -0.75121563 | 0.0671417 | RPSA |
| XBXL10_1g1960 | ddx58.L | 1.69670024 | 0.03522754 | DDX58 |
| XBXL10_1g19602 | xpnpep3.L | -0.99303115 | 0.07044345 | XPNPEP3 |
| XBXL10_1g19604 | rbx1.L | -0.69167748 | 0.08937969 | RBX1 |
| XBXL10_1g19609 | gprc5a.L | 3.43288806 | 0.03452135 | GPRC5D |
| XBXL10_1g19657 | mgst3.L | -1.07530549 | 0.00780032 | MGST3 |
| XBXL10_1g19691 | ddx17.L | 1.03224927 | 0.02960385 | DDX17 |
| XBXL10_1g19733 | tmem184b.L | 1.05909575 | 0.06389998 | TMEM184B |
| XBXL10_1g19748 | Igals1.2.L | 5.87115772 | 0.01532076 | - |
| XBXL10_1g19749 | Igals1.3.L | 5.94095551 | $1.24 \mathrm{E}-05$ | - |
| XBXL10_1g19758 | rac2.L | -0.97165888 | 0.05937571 | RAC2 |
| XBXL10_1g1976 | rps6.L | -0.84108052 | 0.04555164 | RPS6 |


| XBXL10_1g19766 | csf2rb.L |
| :---: | :---: |
| XBXL10_1g19778 | LOC108714571 |
| XBXL10_1g19849 | tusc2.L |
| XBXL10_1g19871 | abhd14b.L |
| XBXL10_1g19873 | acy1.2.L |
| XBXL10_1g19889 | arhgdib.L |
| XBXL10_1g1990 | LOC121393901 |
| XBXL10_1g19906 | tnnc1.L |
| XBXL10_1g19956 | Ism3.L |
| XBXL10_1g20055 | LOC108714705 |
| XBXL10_1g20092 | slc25a26.L |
| XBXL10_1g20165 | LOC108704036 |
| XBXL10_1g20558 | LOC121393148 |
| XBXL10_1g20632 | ppp1r14b.S |
| XBXL10_1g20675 | slc25a45.S |
| XBXL10_1g20691 | LOC108715167 |
| XBXL10_1g20713 | fau.S |
| XBXL10_1g20734 | LOC121393158 |
| XBXL10_1g20735 | XB5761341.S |
| XBXL10_1g20737 | LOC121393422 |
| XBXL10_1g20743 | LOC108715185 |
| XBXL10_1g20744 | LOC108714924 |
| XBXL10_1g20750 | LOC121393160 |
| XBXL10_1g20779 | fads2.S |
| XBXL10_1g20784 | sdhaf2.S |
| XBXL10_1g20792 | pkp3.S |
| XBXL10_1g20809 | LOC108715206 |
| XBXL10_1g2082 | tmem252.L |
| XBXL10_1g20830 | pax6.S |
| XBXL10_1g20908 | fadd.S |
| XBXL10_1g20967 | LOC108715264 |
| XBXL10_1g21052 | LOC108715307 |
| XBXL10_1g21108 | ntf2 |
| XBXL10_1g21150 | MGC147117.S |
| XBXL10_1g21193 | cmc2.S |
| XBXL10_1g21292 | LOC121393244 |
| XBXL10_1g21317 | hnf4b.S |
| XBXL10_1g2132 | c15orf40.L |
| XBXL10_1g21358 | LOC121393266 |
| XBXL10_1g21426 | tshz3.S |
| XBXL10_1g2150 | fbp1.L |
| XBXL10_1g21533 | erich3.S |
| XBXL10_1g21540 | cth.S |
| XBXL10_1g21557 | insl5.S |
| XBXL10_1g21558 | dynlt5.S |
| XBXL10_1g21563 | leprot.S |
| XBXL10_1g21588 | LOC108715540 |
| XBXL10_1g21664 | pik3r3.S |
| XBXL10_1g21673 | nsun4.S |
| XBXL10_1g21686 | tal1. ${ }^{\text {S }}$ |
| XBXL10_1g21732 | fam151a.S |
| XBXL10_1g21773 | npl.S |
| XBXL10_1g2178 | cks2.L |
| XBXL10_1g21798 | hccs.S |
| XBXL10_1g21860 | rgs4.S |
| XBXL10_1g21863 | pbx1.S |


| 2.83355931 | 0.06035329 | - |
| ---: | ---: | :---: |
| 1.54185091 | $6.19 \mathrm{E}-05$ | - |
| -0.75771678 | 0.0872031 | TUSC2 |
| -0.97100461 | 0.01881439 | - |
| -1.24516091 | 0.05957098 | ACY1 |
| -0.86517644 | 0.08078023 | ARHGDIB |
| 5.75309123 | 0.01709223 | TAL2 |
| 2.01886071 | 0.04345838 | TNNC1 |
| -0.74861133 | 0.08760058 | LSM3 |
| -0.8086687 | 0.0467767 | ARPC4 |
| -1.06960623 | 0.01696219 | SLC25A26 |
| 4.06229084 | 0.08767825 | SLC6A1 |
| -1.27041979 | 0.0622009 | - |
| -0.84612294 | 0.04613674 | PPP1R14B |
| -0.97493634 | 0.09478417 | SLC25A45 |
| 6.07629987 | 0.02733126 | - |
| -0.80978813 | 0.05372224 | FAU |
| 3.09930277 | 0.07112016 | MUC2 |
| 2.89818607 | 0.0777023 | MUC2 |
| 3.01333576 | 0.02607802 | MIR4435-2HG |
| 3.44898228 | $3.73 E-05$ | RBM12 |
| 4.65534818 | $3.71 \mathrm{E}-06$ | MUC5AC |
| 2.56565606 | 0.02973011 | - |
| -0.96642867 | 0.02368351 | FADS2 |
| -0.82025036 | 0.0382218 | SDHAF2 |
| 1.11446513 | 0.07714323 | PKP3 |
| -0.70410389 | 0.0758163 | MOB2 |
| -2.47157635 | 0.00203908 | - |
| 4.72429911 | 0.02968976 | PAX6 |
| -1.20481787 | 0.000783 | - |
| 1.30985816 | 0.05565102 | ALX4 |
| 0.93263028 | 0.0747306 | PDE3B |
| -0.76331656 | 0.07154765 | NUTF2 |
| -0.83907127 | 0.06655029 | - |
| -0.89896703 | 0.01124109 | CMC2 |
| -0.90452947 | 0.01862502 | FAM151A |
| -1.19049416 | 0.06690872 | NPL |
| -1.01444727 | 0.02353093 | CKS2 |
| -1.11562696 | 0.02211568 | HCCS |
| -1.29649125 | 0.07246971 | RGS4 |
| 0.71654642 | 0.0968139 | PBX1 |
| -1.81722949 | 0.06314787 | ZFHX3 |
| 2.94996521 | 0.02614628 | HNF4G |
| -0.95870228 | 0.09132338 | C15orf40 |
| 4.88194921 | 0.01709223 | - |
| 1.32891436 | 0.00619736 | TSHZ3 |
| -1.08997368 | 0.04390154 | FBP1 |
| 1.77477519 | 0.04143366 | ERICH3 |
| -1.55425574 | 0.00150546 | CTH |
| -5.99653778 | 0.03404715 | - |
| -0.74998346 | 0.08760058 | DYNLT5 |
| -0.91337684 | 0.01281773 | LEPROT |
| 2.5465961 | 0.05193868 | - |
|  | 0.09632297 | PIK3R3 |


| XBXL10_1g21879 | XB5731323.S | -1.00749881 | 0.00462209 | - |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g21882 | LOC121393333 | -1.25159173 | 0.02353093 | - |
| XBXL10_1g21892 | Ihx9.S | 1.6207831 | 0.02353093 | LHX9 |
| XBXL10_1g21916 | snu13.S | -0.80118459 | 0.06672494 | SNU13 |
| XBXL10_1g21948 | hmox1.S | -0.94506625 | 0.0938312 | HMOX1 |
| XBXL10_1g21962 | rbx1.S | -0.84485513 | 0.05241337 | RBX1 |
| XBXL10_1g21979 | mettl11b.S | -2.39750157 | 0.02780869 | NTMT2 |
| XBXL10_1g21997 | uck2.S | -0.9120713 | 0.06035329 | UCK2 |
| XBXL10_1g2202 | LOC108714859 | -1.27911141 | 0.02382843 | - |
| XBXL10_1g2203 | LOC108714860 | -1.32926423 | 0.04454243 | RNF31 |
| XBXL10_1g22070 | kcnj4.S | 4.8028939 | 0.01281773 | KCNJ4 |
| XBXL10_1g22088 | LOC108715797 | -1.09751281 | 0.04555164 | RAC2 |
| XBXL10_1g22094 | tst.S | -1.41944989 | 0.00843601 | - |
| XBXL10_1g22097 | LOC121393351 | -1.70216203 | 0.01881439 | - |
| XBXL10_1g22126 | gpx1.S | -0.81065153 | 0.02694379 | GPX1 |
| XBXL10_1g22158 | mapkapk3.S | -0.86856628 | 0.02111617 | MAPKAPK3 |
| XBXL10_1g22189 | itih4.S | 1.30012996 | 0.07808471 | ITIH3 |
| XBXL10_1g22207 | Irrn1.S | 6.65274189 | 0.00094914 | LRRN1 |
| XBXL10_1g22240 | chchd4.S | -1.18660159 | 0.09800388 | CHCHD4 |
| XBXL10_1g22362 | thoc7.S | -0.73312523 | 0.06771662 | THOC7 |
| XBXL10_1g22396 | LOC121393393 | -0.95963789 | 0.06518557 | ABHD6 |
| XBXL10_1g22415 | rpp14.S | -0.83086184 | 0.0747306 | - |
| XBXL10_1g22443 | XB5944457.S | 7.17993509 | 0.00034495 | SLC6A1 |
| XBXL10_1g22459 | LOC108704415 | -0.82018964 | 0.0980397 | TAMM41 |
| XBXL10_1g2248 | slc7a7.L | -1.01959368 | 0.05192146 | SLC7A7 |
| XBXL10_1g22533 | LOC108716082 | 3.53126307 | 0.01888028 | NRXN1 |
| XBXL10_1g22570 | prepl.L | 1.0418512 | 0.05976228 | PREPL |
| XBXL10_1g22571 | slc3a1.L | -1.29686718 | 0.06018973 | SLC3A1 |
| XBXL10_1g22579 | zfp3612.L | 0.94523644 | 0.03465092 | ZFP36L2 |
| XBXL10_1g22605 | slc30a1.L | 0.81501287 | 0.03095157 | SLC30A1 |
| XBXL10_1g22680 | dnah14.L | -1.48344251 | 0.05565763 | DNAH14 |
| XBXL10_1g22751 | glo1.L | -0.78435195 | 0.04613674 | GLO1 |
| XBXL10_1g22810 | capn11.L | 0.6938941 | 0.07121508 | CAPN1 |
| XBXL10_1g2283 | LOC121394372 | -2.97986663 | 0.02675727 | - |
| XBXL10_1g22833 | LOC108716104 | -1.81239132 | 0.00410253 | - |
| XBXL10_1g22855 | LOC108716579 | -1.43400051 | 0.05367805 | - |
| XBXL10_1g22867 | meis2.L | 0.86285351 | 0.02902379 | MEIS1 |
| XBXL10_1g23035 | pkr2.L | 1.11404152 | 0.01497417 | - |
| XBXL10_1g23052 | LOC108716659 | 2.79745244 | 0.0001198 | - |
| XBXL10_1g23166 | sult6b1.1.L | -0.77194792 | 0.05582389 | SULT6B1 |
| XBXL10_1g23214 | pigh.L | -1.05856702 | 0.0022379 | PIGH |
| XBXL10_1g23247 | LOC108716727 | -1.49282414 | 0.07128052 | - |
| XBXL10_1g23268 | LOC108716742 | -5.94289519 | 0.09332809 | - |
| XBXL10_1g23273 | nid1.L | 0.94431393 | 0.05317372 | NID1 |
| XBXL10_1g23384 | enpp1.L | 1.29204043 | 0.0461029 | ENPP1 |
| XBXL10_1g23395 | LOC108705439 | 1.68235622 | 0.00653294 | VNN1 |
| XBXL10_1g23398 | rps12.L | -0.97411278 | 0.03522754 | ENSG00000227615 |
| XBXL10_1g23415 | gja1.L | -1.20607272 | 0.09452853 | GJA1 |
| XBXL10_1g23428 | LOC121393704 | -8.48474964 | 0.0286203 | - |
| XBXL10_1g23448 | rwdd1.L | -0.75738569 | 0.07910198 | RWDD1 |
| XBXL10_1g23478 | slc16a10.L | 0.74780943 | 0.0647764 | SLC16A10 |
| XBXL10_1g23479 | LOC121393712 | -3.49416836 | 0.02607802 | - |
| XBXL10_1g23499 | nr2e1.L | 4.51924864 | 0.04748231 | NR2E1 |
| XBXL10_1g23533 | pou3f2.L | 5.72803854 | 0.00081981 | POU3F2 |
| XBXL10_1g2371 | LOC108714907 | -1.2861259 | 0.04712571 | - |
| XBXL10_1g23801 | dvl3.L | 0.88415514 | 0.07637479 | DVL3 |


| XBXL10_1g23833 | nmur1.L | 4.02053048 | 0.02353093 | NMUR1 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g2386 | LOC108696994 | -3.30591421 | 0.04080668 | IGHV1-46 |
| XBXL10_1g23867 | LOC108716955 | 3.02662897 | 0.00473243 | JAG1 |
| XBXL10_1g23883 | LOC121393551 | 3.52524578 | 0.02968976 | - |
| XBXL10_1g23886 | sst.1.L | 3.23949938 | 0.07065938 | SST |
| XBXL10_1g2391 | sall2.L | 3.91920243 | 0.02500581 | SALL2 |
| XBXL10_1g23927 | meltf.L | -1.11350603 | 0.0747306 | MELTF |
| XBXL10_1g23937 | tmem44.L | -1.02777343 | 0.01564178 | - |
| XBXL10_1g23942 | LOC121393936 | 2.58976906 | 0.00109252 | - |
| XBXL10_1g23945 | atp13a4.L | 5.10143825 | 0.01055451 | ATP13A4 |
| XBXL10_1g23988 | eif5a.L | -0.88422425 | 0.02582152 | EIF5A2 |
| XBXL10_1g24015 | bche.L | -0.98580198 | 0.09326401 | BCHE |
| XBXL10_1g24021 | nmd3.L | -0.90910198 | 0.03649266 | NMD3 |
| XBXL10_1g24051 | slc66a1I.L | -0.78960012 | 0.05582389 | SLC66A1L |
| XBXL10_1g24090 | LOC108717061 | 4.68980009 | 0.04555164 | - |
| XBXL10_1g24102 | LOC121393810 | -1.78140976 | 0.06642754 | - |
| XBXL10_1g24120 | LOC108717074 | -1.81237471 | 0.06960911 | PLSCR1 |
| XBXL10_1g24123 | zic4.L | 4.30798292 | 0.05288473 | ZIC4 |
| XBXL10_1g24131 | LOC121393816 | 2.01108213 | 0.04604274 | CPB1 |
| XBXL10_1g24132 | gyg1.L | -0.88764454 | 0.09452853 | GYG1 |
| XBXL10_1g24158 | awat1.L | -0.93862397 | 0.09421888 | MOGAT1 |
| XBXL10_1g24186 | lamtor3-like.L | -0.97008315 | 0.01576938 | LAMTOR3 |
| XBXL10_1g24289 | rab6b.L | 4.13848895 | 0.03562279 | RAB6B |
| XBXL10_1g24302 | LOC108717148 | -1.09348252 | 0.00410253 | PDCD6IP |
| XBXL10_1g24353 | eipr1.L | -0.68891534 | 0.09216232 | EIPR1 |
| XBXL10_1g24369 | cmpk2.L | 2.22759167 | 0.02865858 | CMPK2 |
| XBXL10_1g24399 | LOC121393840 | 1.89609122 | 0.09452853 | - |
| XBXL10_1g24467 | itsn2.L | 0.92564794 | 0.07017961 | ITSN2 |
| XBXL10_1g24484 | LOC108717215 | 3.8719867 | 0.03836658 | ADGRF5 |
| XBXL10_1g24526 | XB5848842.L | -4.14483469 | 0.00328753 | CYP2C8 |
| XBXL10_1g24554 | gata4.L | 1.79903271 | 0.09910409 | GATA4 |
| XBXL10_1g24573 | pnoc.L | -1.1436603 | 0.01488697 | - |
| XBXL10_1g24584 | pomc.L | 8.43021527 | 0.0139193 | POMC |
| XBXL10_1g24730 | gtf3c2.L | 1.19955541 | 0.05338122 | GTF3C2 |
| XBXL10_1g24761 | LOC108717285 | 1.65154983 | 0.06035329 | - |
| XBXL10_1g24877 | ccdc167.S | -0.90078859 | 0.03375619 | CCDC167 |
| XBXL10_1g2490 | gal3st1.L | -1.04540275 | 0.01345414 | GAL3ST1 |
| XBXL10_1g2491 | LOC108715337 | -1.1508176 | 0.05317372 | - |
| XBXL10_1g24913 | ciao2b.S | -0.91767067 | 0.0286203 | CIAO2B |
| XBXL10_1g24935 | LOC121394156 | -1.01020959 | 0.07595737 | - |
| XBXL10_1g24938 | wdr26.S | 0.7213992 | 0.08542561 | WDR26 |
| XBXL10_1g24939 | cnih4.S | -0.85011448 | 0.05594094 | CNIH4 |
| XBXL10_1g2497 | castor1.L | -1.92202219 | 0.05192146 | CASTOR1 |
| XBXL10_1g24990 | slc30a1.S | 0.71343069 | 0.07940259 | SLC30A1 |
| XBXL10_1g24995 | ubr2.S | 0.83191132 | 0.07843314 | UBR2 |
| XBXL10_1g25008 | zfp3612.S | 0.80859378 | 0.04431759 | ZFP36L2 |
| XBXL10_1g2511 | rasl10a.L | -1.44989889 | 0.0286203 | RASL10B |
| XBXL10_1g25182 | LOC108717807 | 2.48559957 | 0.03409323 | - |
| XBXL10_1g25249 | shprh.S | 1.28308131 | 0.06314787 | SHPRH |
| XBXL10_1g25250 | sult6b1.5.S | -0.88374507 | 0.04608941 | - |
| XBXL10_1g2528 | tbx5.L | 5.22465042 | 0.05957098 | TBX5 |
| XBXL10_1g25296 | capn9.S | 1.75710367 | 0.0287799 | CAPN9 |
| XBXL10_1g25320 | trim50.S | 6.23826811 | 0.00500051 | TRIM50 |
| XBXL10_1g25345 | map7.S | 1.940608 | 0.08096525 | MAP7 |
| XBXL10_1g25366 | LOC108717894 | -1.70711503 | 0.01346613 | - |
| XBXL10_1g25367 | LOC108705638 | -1.78487726 | 0.00109252 | NTPCR |


| XBXL10_1g25368 | LOC121394210 | -1.88177099 | 6.93E-05 | NTPCR |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g2541 | dao.L | -1.42749231 | 0.02704975 | DAO |
| XBXL10_1g2546 | iscu.L | -1.91378098 | 0.00997818 | ISCU |
| XBXL10_1g25471 | rps12.S | -0.69782751 | 0.09681378 | RPS12 |
| XBXL10_1g2551 | kctd10.L | -1.21342803 | 0.0622009 | KCTD10 |
| XBXL10_1g25522 | grik2.S | 4.32413818 | 0.02437716 | GRIK2 |
| XBXL10_1g25559 | rars2.S | -0.79851755 | 0.07940259 | RARS2 |
| XBXL10_1g25604 | cox7a2.S | -0.73242902 | 0.06806062 | COX7A2 |
| XBXL10_1g25677 | LOC108718031 | -0.93783503 | 0.01497066 | - |
| XBXL10_1g25711 | LOC121394111 | -4.29680127 | 0.09734396 | CDK4 |
| XBXL10_1g25725 | cldn1.S | -0.83674583 | 0.07522722 | CLDN1 |
| XBXL10_1g25731 | sst.1.S | 3.38954495 | 0.03151989 | SST |
| XBXL10_1g25771 | fetub.S | 3.05343384 | 0.08169941 | - |
| XBXL10_1g25775 | meltf.S | -0.9448386 | 0.04604274 | MELTF |
| XBXL10_1g25840 | slc2a2.S | -1.74563555 | 0.04330698 | SLC2A2 |
| XBXL10_1g25853 | LOC108705376 | -1.03291867 | 0.06522422 | - |
| XBXL10_1g25866 | pdcd10.S | -1.00702003 | 0.0106772 | PDCD10 |
| XBXL10_1g25939 | selenot.S | -1.06992394 | 0.00182499 | SELENOT |
| XBXL10_1g25969 | zic1.S | 5.64644519 | 0.04533922 | ZIC1 |
| XBXL10_1g25987 | epha4.S | 1.05085813 | 0.0777023 | EPHA4 |
| XBXL10_1g26053 | LOC108717591 | -1.33696996 | 0.07270259 | - |
| XBXL10_1g26068 | tm4sf20.S | -1.54515525 | 0.02971541 | TDRD9 |
| XBXL10_1g26082 | ubxn7.S | -1.57411855 | 0.05347478 | UBXN7 |
| XBXL10_1g26117 | cldn18.S | 4.15141377 | 0.08494548 | CLDN18 |
| XBXL10_1g26143 | LOC108718228 | 3.04535067 | 0.07338373 | MYT1L |
| XBXL10_1g26195 | mycn.S | 0.84551763 | 0.08353974 | MYCN |
| XBXL10_1g26250 | LOC108717500 | 4.82967677 | 0.01226323 | ADGRF5 |
| XBXL10_1g26263 | crisp1.3.S | 2.94649452 | 0.00410253 | CRISP3 |
| XBXL10_1g26296 | stk35.S | -1.70512884 | 0.00576513 | PDIK1L |
| XBXL10_1g26299 | LOC108718301 | 2.00726537 | 0.01558425 | - |
| XBXL10_1g26306 | pomc.S | 3.92790657 | 0.03008655 | POMC |
| XBXL10_1g26348 | otof.S | 2.63301887 | 0.01399884 | OTOF |
| XBXL10_1g26372 | tmem214.S | 0.68755266 | 0.07128052 | TMEM214 |
| XBXL10_1g2640 | c12orf43.L | -0.93404048 | 0.03375619 | C12orf43 |
| XBXL10_1g2653 | slc5a1.2.L | -1.17843405 | 0.04604274 | SLC5A1 |
| XBXL10_1g26676 | LOC108718674 | -0.71423156 | 0.044008 | NDUFB10 |
| XBXL10_1g26703 | LOC108718460 | -1.06046574 | 0.06771662 | - |
| XBXL10_1g2673 | ddt.L | -1.05204772 | 0.00450861 | - |
| XBXL10_1g26736 | vipr1.L | 1.19869729 | 0.05121616 | VIPR1 |
| XBXL10_1g2674 | LOC108716035 | 1.41777277 | 0.05392457 | GSTT2B |
| XBXL10_1g2682 | slc2a1113.l | -1.27983705 | 0.0139193 | - |
| XBXL10_1g2684 | slc2a11.2.L | -1.03569059 | 0.03522754 | - |
| XBXL10_1g2685 | slc2a11.L | -2.06714158 | 0.00151178 | SLC2A11 |
| XBXL10_1g26861 | gad2.L | 4.10013091 | 0.02416194 | GAD2 |
| XBXL10_1g26899 | trdmt1.L | -0.94484623 | 0.01696299 | TRDMT1 |
| XBXL10_1g26903 | pter.L | -0.74105473 | 0.04533922 | PTER |
| XBXL10_1g26908 | LOC108718821 | -1.13694307 | 0.01840625 | - |
| XBXL10_1g2691 | XB5865341.S | -3.28532295 | 0.00213962 | - |
| XBXL10_1g26927 | pttg1ip2.L | -0.70753169 | 0.0918168 | PTTG1IP |
| XBXL10_1g26938 | LOC108718478 | 3.65190444 | 0.03785278 | FAIM2 |
| XBXL10_1g26993 | LOC108718856 | -1.0008224 | 0.02708059 | - |
| XBXL10_1g27026 | tmem196.L | 5.62530319 | 0.02968976 | TMEM196 |
| XBXL10_1g2706 | slc25a1.L | -1.09563221 | 0.00839396 | SLC25A1 |
| XBXL10_1g27143 | rpl15.L | -1.01551052 | 0.00755071 | RPL15 |
| XBXL10_1g27259 | acad11.L | -3.0579907 | 0.03404715 | ACAD11 |
| XBXL10_1g27270 | pgla.L | 7.01834651 | 0.00115968 | - |


| XBXL10_1g27272 | levi.L | 5.65141562 | 0.00586891 |  |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g27274 | magainins.L | 2.52200665 | 0.02560373 |  |
| XBXL10_1g27275 | xt6I.L | 5.64796738 | 0.00107404 | - |
| XBXL10_1g27290 | LOC108718975 | -0.93314974 | 0.0758163 | EXOSC7 |
| XBXL10_1g27317 | slc6a19.L | -0.79638561 | 0.04882674 | SLC6A19 |
| XBXL10_1g2732 | gnb1I.L | -1.10615774 | 0.03452135 | GNB1L |
| XBXL10_1g27332 | spata48.L | -1.57895364 | 0.08428481 | - |
| XBXL10_1g27346 | ppp1r17.L | -1.41480037 | 0.0101263 | - |
| XBXL10_1g27440 | pigm.L | -0.81296459 | 0.07365774 | PIGM |
| XBXL10_1g27443 | znfx1.2.L | 2.47211565 | 0.00223549 | ZNFX1 |
| XBXL10_1g27446 | cmbl.L | -0.72770709 | 0.05961917 | CMBL |
| XBXL10_1g27453 | LOC108718510 | -3.01029449 | 0.04080668 | CTNND2 |
| XBXL10_1g27479 | bag1.L | -4.9738448 | 0.00221399 | BAG1 |
| XBXL10_1g27482 | LOC121394666 | -7.06967975 | 0.00424585 | - |
| XBXL10_1g27530 | LOC121394681 | -7.37162342 | 0.00072909 |  |
| XBXL10_1g27531 | LOC121394682 | -7.88373348 | 3.15E-05 | - |
| XBXL10_1g27541 | rnf152.L | -1.54365538 | 0.00355293 | RNF152 |
| XBXL10_1g27557 | serpinb6.L | -0.9114277 | 0.02199226 | SERPINB8 |
| XBXL10_1g27566 | foxq1.L | 2.86247134 | 0.00424585 | FOXQ1 |
| XBXL10_1g27584 | eci2.L | -0.76316002 | 0.07128052 | ECl2 |
| XBXL10_1g27643 | sirt5.L | -0.7164095 | 0.0747306 | SIRT5 |
| XBXL10_1g27708 | LOC108719158 | -4.15362797 | 0.0872031 | CTXN3 |
| XBXL10_1g27734 | cndp1.L | -1.7700597 | 0.02754557 | CNDP1 |
| XBXL10_1g27737 | cyb5a.L | -0.83883986 | 0.07919594 | CYB5A |
| XBXL10_1g27740 | timm21.L | -0.84614685 | 0.05273014 | TIMM21 |
| XBXL10_1g27741 | LOC121394476 | 4.78579297 | 0.00262842 | NETO1 |
| XBXL10_1g27742 | neto1.L | 3.98224897 | 0.00321868 | NETO1 |
| XBXL10_1g27743 | cbln2.L | 1.37610465 | 0.00109252 | CBLN2 |
| XBXL10_1g2778 | LOC108716396 | -3.21835533 | 0.04735613 | TMEM132B |
| XBXL10_1g27781 | LOC108719192 | -0.86234223 | 0.06378494 | ELOC |
| XBXL10_1g27790 | twsg1.L | 0.92297599 | 0.06907671 | TWSG1 |
| XBXL10_1g2782 | bri3bp.L | -0.78310792 | 0.08861621 | BRI3BP |
| XBXL10_1g27861 | hrh4.c9.L | 5.75355623 | 0.02353093 | - |
| XBXL10_1g27887 | dsc3.L | 3.16715712 | 0.03877133 | DSCAS |
| XBXL10_1g27893 | opn7a.L | 6.64753882 | 0.00424585 | - |
| XBXL10_1g27982 | ttpa.L | 2.33964521 | 0.04414611 | TTPA |
| XBXL10_1g28052 | rdh10.L | 0.83183018 | 0.01058859 | RDH10 |
| XBXL10_1g28096 | tpd52.L | -0.66631985 | 0.07910198 | TPD52 |
| XBXL10_1g28103 | mrpl53.L | -1.08397405 | 0.0106772 | - |
| XBXL10_1g28169 | cibar1.L | -0.76815926 | 0.08636708 | CIBAR1 |
| XBXL10_1g2817 | LOC121395056 | 4.13346508 | 0.06806062 | - |
| XBXL10_1g28170 | esrp1.L | 0.81210271 | 0.08937969 | ESRP1 |
| XBXL10_1g28274 | derl1.L | -0.77899198 | 0.08760058 | DERL1 |
| XBXL10_1g28354 | LOC121394768 | 3.33098495 | 0.03535983 | - |
| XBXL10_1g28389 | pycr3.L | -0.87135736 | 0.04751939 | PYCR3 |
| XBXL10_1g28392 | XB22062350.L | -0.78289014 | 0.0581877 | - |
| XBXL10_1g28445 | fam83h.L | 1.32599267 | 0.09632297 | FAM83H |
| XBXL10_1g28455 | LOC108718625 | 1.02599995 | 0.07374689 | - |
| XBXL10_1g2846 | rnf34.L | -0.86239018 | 0.07077716 | RNF34 |
| XBXL10_1g28511 | LOC100158309 | 5.95804305 | 0.00151178 | TYR |
| XBXL10_1g28521 | LOC108695552 | 2.9466886 | 0.08341981 | TRIM11 |
| XBXL10_1g2855 | arpc3.L | -1.05419902 | 0.01399884 | ARPC3 |
| XBXL10_1g2861 | hven1.L | -1.46783549 | $1.20 \mathrm{E}-05$ | HVCN1 |
| XBXL10_1g28653 | scap.S | 0.98683324 | 0.07128052 | SCAP |
| XBXL10_1g28655 | ndufb10.S | -1.05713488 | 0.00755071 | NDUFB10 |
| XBXL10_1g28667 | nradd.S | 1.07492092 | 0.02367819 | NGFR |


| XBXL10_1g28677 | wnt3a.S | 5.68481593 | 0.01377495 | WNT3 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g28680 | guk1.S | -1.07060948 | 0.05808413 | GUK1 |
| XBXL10_1g28684 | cyp8b1.1.S | 1.05139743 | 0.06632227 | CYP8B1 |
| XBXL10_1g28691 | LOC108719808 | 1.20959094 | 0.03894292 | VIPR1 |
| XBXL10_1g28704 | myd88.S | -0.84548606 | 0.08000078 | MYD88 |
| XBXL10_1g28709 | LOC108719814 | 5.90084176 | 0.05739897 | FCN2 |
| XBXL10_1g2874 | LOC108716941 | 1.18821023 | 0.09594197 | TRAFD1 |
| XBXL10_1g28749 | klf6.S | -0.80694406 | 0.07514508 | KLF6 |
| XBXL10_1g28849 | sri.S | -0.80186456 | 0.06071726 | SRI |
| XBXL10_1g28875 | calcr.S | 3.49700854 | 0.0522144 | CALCR |
| XBXL10_1g28909 | dgkb.S | 3.73735514 | 0.07246971 | DGKB |
| XBXL10_1g28913 | sostdc1.S | -2.28672317 | 0.02353093 | SOSTDC1 |
| XBXL10_1g28955 | nfe2l3.S | 0.80527985 | 0.08515631 | NFE2L3P1 |
| XBXL10_1g29007 | rpl15.S | -0.79857601 | 0.06806062 | RPL15 |
| XBXL10_1g29026 | cmtm7.S | -1.0810703 | 0.05617914 | CMTM7 |
| XBXL10_1g29049 | mettl6.S | -0.91023873 | 0.03047566 | METTL6 |
| XBXL10_1g29081 | LOC121395042 | 5.55662571 | 0.0343112 | - |
| XBXL10_1g2910 | dusp18.L | -0.70195823 | 0.08096525 | DUSP21 |
| XBXL10_1g29166 | ino80c.S | -0.79875888 | 0.07572375 | INO80C |
| XBXL10_1g29259 | rnf152.S | -1.66160616 | 3.15E-05 | RNF152 |
| XBXL10_1g29287 | psmg4.S | -1.1454636 | 0.00424585 | - |
| XBXL10_1g29335 | elovl2.S | -5.1836682 | 0.00013541 | ELOVL2 |
| XBXL10_1g29395 | kcng2.S | 1.61095095 | 0.05317372 | KCNG1 |
| XBXL10_1g29414 | cyb5a.S | -0.99307513 | 0.0286203 | CYB5A |
| XBXL10_1g29418 | cbln2.S | 1.2855346 | 0.07941219 | CBLN2 |
| XBXL10_1g29431 | mc5r.S | -1.83567217 | 0.01759828 | MC5R |
| XBXL10_1g2945 | snx2.L | -0.70488256 | 0.0777023 | SNX2 |
| XBXL10_1g29504 | cdh2.S | 0.97844082 | 0.04735613 | CDH2 |
| XBXL10_1g2953 | hsd17b4.L | -1.02796769 | 0.04555164 | HSD17B4 |
| XBXL10_1g29557 | rps20.S | -0.75939228 | 0.0542316 | RPS20 |
| XBXL10_1g29559 | plag1.S | 2.88922343 | 0.02353093 | PLAG1 |
| XBXL10_1g29560 | penk.S | -1.18136556 | 0.01709223 | PENK |
| XBXL10_1g2958 | sema6a.L | 1.21593209 | 0.00021169 | SEMA6A |
| XBXL10_1g29616 | LOC108695345 | -0.76503982 | 0.05878243 | RPL7 |
| XBXL10_1g29647 | pmp2.S | -1.32523637 | 0.00669464 | PMP2 |
| XBXL10_1g29683 | gem.S | -1.23067177 | 0.0263004 | GEM |
| XBXL10_1g29710 | mterf3.S | -1.55577147 | 0.00081484 | MTERF3 |
| XBXL10_1g29720 | LOC108719749 | -1.34722992 | 0.0176051 | - |
| XBXL10_1g29878 | psca.S | 2.60470759 | 0.00610393 | - |
| XBXL10_1g29890 | LOC108719772 | -0.95668912 | 0.04565082 | LRRC14 |
| XBXL10_1g29930 | fam83h.S | 4.58428271 | 0.02582152 | FAM83H |
| XBXL10_1g29991 | LOC121395800 | -4.03411103 | 0.0872031 | - |
| XBXL10_1g30005 | bbip1.L | -1.02856991 | 0.00583953 | BBIP1 |
| XBXL10_1g30076 | prdx3.L | -0.69890083 | 0.07197379 | PRDX3 |
| XBXL10_1g30178 | gapdh.L | -1.37960914 | 0.02436328 | GAPDH |
| XBXL10_1g30194 | LOC108695739 | -5.85985212 | 0.0747306 | ASAH2 |
| XBXL10_1g30200 | cisd1.L | -0.86697804 | 0.02368351 | CISD1 |
| XBXL10_1g30211 | rhobtb1.L | 1.14869645 | 0.04604274 | RHOBTB1 |
| XBXL10_1g30226 | LOC121395810 | 3.67836812 | 5.45E-06 | - |
| XBXL10_1g30336 | ventx2.2.L | 3.43702618 | 0.02441789 | VENTX |
| XBXL10_1g30347 | LOC108696140 | -1.15286356 | 0.0758163 | GSTO1 |
| XBXL10_1g30348 | sfr1.L | -1.03831065 | 0.00364826 | - |
| XBXL10_1g30349 | col17a1.L | 2.7039676 | 0.04454243 | COL17A1 |
| XBXL10_1g30362 | atp5mk.L | -0.75371454 | 0.09867992 | ATP5MK |
| XBXL10_1g30374 | cnnm2.L | 0.95351401 | 0.02367819 | CNNM2 |
| XBXL10_1g30396 | mfsd13a.L | 1.18504361 | 0.08337501 | MFSD13A |


| XBXL10_1g30403 | mrpl43.L | -1.14085094 | 0.00483557 | MRPL43 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g30477 | LOC121395725 | -2.24316834 | 0.04613674 | - |
| XBXL10_1g3048 | LOC108717625 | -1.31445059 | 0.0101263 | - |
| XBXL10_1g30495 | ifit1b.L | 2.48584647 | 0.0791753 | - |
| XBXL10_1g30497 | LOC108705597 | 3.40596488 | 0.00021169 | IFIT1 |
| XBXL10_1g30498 | LOC108705596 | 3.09331108 | $3.84 \mathrm{E}-05$ | - |
| XBXL10_1g30500 | LOC108695773 | 3.64253875 | 0.02417019 | IFIT1 |
| XBXL10_1g30501 | LOC108696188 | 4.57861539 | 0.00576513 | - |
| XBXL10_1g30519 | LOC108696199 | 1.97111595 | 0.00450861 | ABCB1 |
| XBXL10_1g30521 | cox5b.2.L | -0.79984599 | 0.05079408 | - |
| XBXL10_1g30528 | bloc1s2.L | -0.74431377 | 0.07202038 | BLOC1S2 |
| XBXL10_1g30579 | LOC121395392 | 3.83107091 | 0.09281974 | - |
| XBXL10_1g30622 | ndufb8.L | -0.89983448 | 0.03174659 | NDUFB8 |
| XBXL10_1g30629 | nfkb2.L | -0.76921036 | 0.07945628 | NFKB2 |
| XBXL10_1g30636 | synpo2l.L | -2.14754746 | 0.05582389 | SYNPO2L |
| XBXL10_1g30654 | psap.L | 0.97718197 | 0.01076067 | PSAP |
| XBXL10_1g30714 | LOC121395414 | 3.32771661 | 0.0542316 | - |
| XBXL10_1g30720 | prxl2a.L | -0.7676476 | 0.04009657 | PRXL2A |
| XBXL10_1g3082 | LOC108717780 | -1.15997159 | 0.01748995 | BTF3 |
| XBXL10_1g30820 | LOC108696310 | -1.57489407 | 0.00410253 | - |
| XBXL10_1g30897 | pex14.L | -0.89631399 | 0.0208755 | PEX14 |
| XBXL10_1g30902 | srm.L | -0.74867301 | 0.09605255 | SRM |
| XBXL10_1g30929 | atp12a.L | 2.47119007 | 4.67E-05 | ATP12A |
| XBXL10_1g30972 | tmem45b.L | 0.81421974 | 0.07333488 | TMEM45B |
| XBXL10_1g30991 | LOC108695823 | -1.10376582 | 0.03437396 | - |
| XBXL10_1g31071 | cxcr5.L | -2.68481073 | 0.06241445 | CXCR1 |
| XBXL10_1g31093 | fxyd2.L | -1.29567635 | 0.04080668 | - |
| XBXL10_1g31148 | LOC108696493 | 1.43987889 | 0.04410518 |  |
| XBXL10_1g31196 | LOC108696519 | -0.76361621 | 0.0794409 | - |
| XBXL10_1g31242 | slc35e2b.L | -0.78133208 | 0.04780062 | SLC35E2B |
| XBXL10_1g31261 | mxra8.L | 1.72856567 | 0.04976642 | MXRA8 |
| XBXL10_1g31304 | c1orf50.L | -0.93668296 | 0.0538375 | C1orf50 |
| XBXL10_1g31506 | lig1.L | 0.79269007 | 0.0758163 | LIG1 |
| XBXL10_1g31536 | LOC108696667 | 2.05457726 | 0.00107404 | SACS |
| XBXL10_1g31544 | ndufa3.L | -0.7266118 | 0.08663149 | NDUFA3P1 |
| XBXL10_1g31671 | LOC108696694 | 3.51523834 | 0.03047566 | - |
| XBXL10_1g31674 | cd79a.L | -2.05615556 | 0.05801316 | CD79A |
| XBXL10_1g31694 | LOC108696707 | -1.07594754 | 0.0872031 | - |
| XBXL10_1g31700 | LOC121395610 | 7.10549434 | 0.00017624 | - |
| XBXL10_1g31731 | ceacam19lz.L | -0.88973289 | 0.05726535 | - |
| XBXL10_1g31734 | bcam.L | 0.94781279 | 0.0286203 | - |
| XBXL10_1g31738 | apoc1.L | 1.95246565 | 0.0400063 | - |
| XBXL10_1g31742 | LOC108695898 | 5.78443828 | 0.03409323 | PRSS3P1 |
| XBXL10_1g31745 | LOC108697037 | -1.15077981 | 0.00213962 | - |
| XBXL10_1g31760 | emc10.L | -0.92487578 | 0.04627619 | EMC10 |
| XBXL10_1g31778 | prmt1.L | -1.00713181 | 0.04139116 | PRMT1 |
| XBXL10_1g31784 | fut2.L | 5.13090759 | 0.00602974 | FUT2 |
| XBXL10_1g31826 | otogl2.L | 2.76307412 | 3.15E-05 | ENSG00000253107 |
| XBXL10_1g31893 | rps9.L | -0.87679147 | 0.02975692 | RPS9 |
| XBXL10_1g32042 | LOC108696821 | -1.49010246 | 0.09910409 | - |
| XBXL10_1g3210 | ndufs4.L | -0.96968107 | 0.03372956 | NDUFS4 |
| XBXL10_1g32111 | XB5760648.L | 0.78193367 | 0.06522422 | - |
| XBXL10_1g32128 | LOC108696931 | 3.62110615 | 0.02535037 | - |
| XBXL10_1g32129 | LOC108695967 | 4.8055705 | 0.00016783 | - |
| XBXL10_1g3213 | mocs2.L | -0.7452476 | 0.06825365 | MOCS2 |
| XBXL10_1g32147 | LOC108696926 | -1.69051743 | 0.03047566 | - |


| XBXL10_1g32166 | fxyd1.L | 0.80817372 | 0.09065524 | FXYD1 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g32195 | LOC108696889 | 1.70526654 | 0.01012531 | FCGBP |
| XBXL10_1g32198 | LOC108696888 | 3.08124714 | 0.01960092 | - |
| XBXL10_1g32199 | tyrobp.L | -1.20234257 | 0.05961917 | - |
| XBXL10_1g32223 | LOC121395792 | -2.04101788 | 0.01732925 | - |
| XBXL10_1g32225 | LOC108696872 | 3.45199982 | 0.03047566 | ATP4A |
| XBXL10_1g32242 | nbl1.L | 1.05590944 | 0.03437396 | NBL1 |
| XBXL10_1g32260 | mrto4.L | -0.89852271 | 0.04815781 | MRTO4 |
| XBXL10_1g32286 | clankb.L | 0.90416955 | 0.0813177 | CLCNKA |
| XBXL10_1g3230 | selenop1.L | -1.05163517 | 0.02535037 | SELENOP |
| XBXL10_1g32323 | znf362.L | 1.11390975 | 0.07488007 | ZNF362 |
| XBXL10_1g32358 | pdcd4.S | 1.09884382 | 0.02251956 | PDCD4 |
| XBXL10_1g3238 | c6.2.L | 6.74249218 | 0.00321868 | C6 |
| XBXL10_1g32414 | LOC108697326 | 0.90823178 | 0.04555164 | CASP2 |
| XBXL10_1g3246 | c9.L | 1.22961408 | 0.03815076 | C9 |
| XBXL10_1g32515 | LOC108697176 | 1.16552511 | 0.0762097 | ANK3 |
| XBXL10_1g32531 | LOC121396199 | 3.64427601 | $1.90 \mathrm{E}-05$ | - |
| XBXL10_1g32572 | LOC108697180 | 3.64587046 | 0.07077716 | TCERG1L |
| XBXL10_1g32587 | bccip.S | -0.74723598 | 0.0931156 | BCCIP |
| XBXL10_1g32615 | stn1.S | -0.80592093 | 0.05617914 | STN1 |
| XBXL10_1g3262 | slc1a3.L | 3.41064322 | 0.05853693 | SLC1A3 |
| XBXL10_1g32624 | atp5mk.S | -0.85071845 | 0.04767981 | ATP5MK |
| XBXL10_1g32627 | nt5c2.S | 0.82691901 | 0.07158899 | NT5C2 |
| XBXL10_1g32681 | pgam1.S | -0.71692127 | 0.08057675 | PGAM1 |
| XBXL10_1g32707 | LOC108697440 | -0.96485188 | 0.05961917 | - |
| XBXL10_1g3271 | agxt2.L | -0.89242822 | 0.05739897 | AGXT2 |
| XBXL10_1g32759 | LOC108697460 | 2.30009244 | 0.00109252 | SGTA |
| XBXL10_1g32833 | LOC108697209 | 2.78204607 | 0.07373838 | - |
| XBXL10_1g32868 | LOC108697492 | -0.65501392 | 0.09867992 | - |
| XBXL10_1g32969 | LOC108703391 | 1.68300874 | 0.00997873 | MAT1A |
| XBXL10_1g32977 | LOC121396009 | 4.1595259 | 0.08905686 | - |
| XBXL10_1g33009 | tmem2541.S | -0.89598316 | 0.07944875 | - |
| XBXL10_1g3309 | onecut2.L | 3.73258161 | 0.02441789 | ONECUT2 |
| XBXL10_1g33095 | fbxo2.S | -1.23309515 | 0.06000595 | FBXO2 |
| XBXL10_1g33116 | atp12a.S | 1.72745932 | 0.02716087 | ATP12A |
| XBXL10_1g33123 | LOC108697224 | -1.36412338 | 0.08755006 | OPCML |
| XBXL10_1g33152 | tmem45b.S | 2.240592 | 0.01011845 | TMEM45B |
| XBXL10_1g3325 | tspan36.L | 0.92943047 | 0.03965622 | - |
| XBXL10_1g33337 | fxyd2.S | -0.94892659 | 0.04357092 | - |
| XBXL10_1g3343 | c18orf32.L | -0.72191069 | 0.07588414 | C18orf32 |
| XBXL10_1g33435 | mxra8.S | 1.74237137 | 0.00483245 | MXRA8 |
| XBXL10_1g33493 | aadacl4.S | -1.09242862 | 0.02367819 | - |
| XBXL10_1g33584 | LOC108697723 | 0.91510215 | 0.07863528 | NPM1P21 |
| XBXL10_1g33604 | mpv17I.S | -0.92097583 | 0.09421345 | - |
| XBXL10_1g33607 | LOC108697739 | 3.33045029 | 0.00051737 | SACS |
| XBXL10_1g33639 | $\operatorname{atg} 12.5$ | -0.73488387 | 0.04735613 | ATG12 |
| XBXL10_1g33641 | cd79a.S | -2.00074671 | 0.03111471 | CD79A |
| XBXL10_1g33647 | znf574.S | 0.70720439 | 0.09800388 | ZNF574 |
| XBXL10_1g33653 | erf.S | 0.86288466 | 0.09244538 | ERF |
| XBXL10_1g33655 | pafah1b3.S | -0.7001675 | 0.0538375 | PAFAH1B3 |
| XBXL10_1g33679 | prss1.2.S | 6.52608303 | 0.01044594 | PRSS1 |
| XBXL10_1g33683 | xcxcra | -1.26029314 | 0.03370204 | - |
| XBXL10_1g33714 | slc6a16.S | 1.1416897 | 0.04020289 | SLC6A15 |
| XBXL10_1g33737 | LOC108697796 | 5.78344197 | 0.01088018 | - |
| XBXL10_1g3380 | aqp7.L | -7.2935428 | 0.01497066 | AQP3 |
| XBXL10_1g33820 | LOC108705380 | 4.596594 | 0.0440164 | - |


| XBXL10_1g33821 | LOC121396168 | 4.76834046 | 0.03522754 | - |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g33822 | LOC100126637 | 4.47682418 | 0.03649266 | - |
| XBXL10_1g33823 | gbp6.L | 1.00326442 | 0.05367805 | GBP2 |
| XBXL10_1g33862 | btg5.1.S | 5.64089897 | 0.02603105 | TOB2 |
| XBXL10_1g33885 | LOC108705485 | 1.99695736 | 0.08345145 | - |
| XBXL10_1g33905 | LOC108697060 | 4.23844924 | 0.09502394 | - |
| XBXL10_1g33938 | LOC108705702 | 3.82050203 | 0.07808471 | - |
| XBXL10_1g3394 | vwa5a.2.L | 0.98091781 | 0.02968976 | VWA5A |
| XBXL10_1g33965 | XB5897453.S | 2.2128173 | 0.06567134 | - |
| XBXL10_1g33967 | tyrobp.S | -0.94064873 | 0.08302643 | - |
| XBXL10_1g34002 | micos10.S | -0.95540851 | 0.02353093 | MICOS10 |
| XBXL10_1g34086 | rpl10.L | -1.09276929 | 0.01518856 | RPL10 |
| XBXL10_1g34133 | ssna1.L | -0.65831532 | 0.08224361 | SSNA1 |
| XBXL10_1g34201 | LOC121396852 | 2.72619193 | 0.0139193 | - |
| XBXL10_1g34211 | mrpl41.L | -0.88497645 | 0.05500854 | MRPL41 |
| XBXL10_1g34218 | LOC108706083 | -0.87277366 | 0.07112016 | - |
| XBXL10_1g34289 | tmem250.L | -0.98521757 | 0.04403508 | TMEM250 |
| XBXL10_1g34332 | c5.2.L | 1.70820637 | 0.01207803 | C5 |
| XBXL10_1g34336 | slc2a8.L | 1.79117149 | 0.07862673 | SLC2A8 |
| XBXL10_1g34373 | LOC121396868 | -0.81660896 | 0.08862882 | - |
| XBXL10_1g34385 | spaca9.L | -1.0198181 | 0.08095912 | SPACA9 |
| XBXL10_1g34391 | setx.L | 0.99270186 | 0.09421345 | SETX |
| XBXL10_1g34410 | prdm12.L | 6.03803913 | 0.01277539 | PRDM12 |
| XBXL10_1g34458 | LOC108704482 | -0.93421567 | 0.03524784 | PHYHD1 |
| XBXL10_1g34459 | Irrc8a.L | 0.86841401 | 0.06393273 | LRRC8A |
| XBXL10_1g34460 | kyat1.L | -0.94035283 | 0.03522754 | KYAT1 |
| XBXL10_1g3449 | LOC121396185 | -3.3303154 | 0.01345414 | - |
| XBXL10_1g34493 | sephs3.L | -0.72204635 | 0.04678105 | SEPHS2 |
| XBXL10_1g34540 | LOC108706216 | -1.56045032 | 0.00058402 | ATRIP |
| XBXL10_1g34615 | crb2.L | 1.33123484 | 0.05618748 | CRB2 |
| XBXL10_1g34625 | nr5a1.L | 1.79166914 | 0.00424585 | NR5A2 |
| XBXL10_1g34629 | wdr38.L | -1.23127484 | 0.0777023 | WDR38 |
| XBXL10_1g34689 | LOC108698244 | 2.13814766 | 0.0791753 | MYH4 |
| XBXL10_1g34719 | renbp.L | -1.02437335 | 0.04882674 | RENBP |
| XBXL10_1g34756 | LOC108698272 | -0.93430932 | 0.04735613 | - |
| XBXL10_1g34769 | klf8.L | 1.01046565 | 0.01399884 | KLF12 |
| XBXL10_1g34787 | tsc22d3.L | -1.04849282 | 0.00752177 | TSC22D3 |
| XBXL10_1g34967 | XB5730431.L | -1.52997602 | 0.01346694 | - |
| XBXL10_1g3498 | pcgf1.S | -0.92592048 | 0.04454243 | PCGF1 |
| XBXL10_1g34994 | LOC108698345 | 2.31405674 | 0.01004921 | ACOD1 |
| XBXL10_1g34996 | phyhdlc.1.L | 4.64184074 | 0.00151178 | - |
| XBXL10_1g35012 | phyhdla.1.L | 6.47435572 | 0.00445832 | - |
| XBXL10_1g35047 | LOC108698897 | 3.76537132 | 0.05739897 | FIP1L1 |
| XBXL10_1g35056 | rlim.L | 0.74529083 | 0.03452135 | RLIM |
| XBXL10_1g35087 | col4a5.L | 1.02334003 | 0.03690455 | COL4A5 |
| XBXL10_1g35114 | LOC108698411 | 1.00312377 | 0.03522754 | PCDH19 |
| XBXL10_1g35207 | sash3.L | -0.94264872 | 0.07077716 | SASH3 |
| XBXL10_1g35213 | klhl4.L | 1.58584529 | 0.01490376 | KLHL4 |
| XBXL10_1g35297 | gpc3.L | 1.17518057 | 0.0217952 | GPC3 |
| XBXL10_1g35309 | mmgt1.L | -0.93647351 | 0.02245085 | MMGT1 |
| XBXL10_1g35387 | rack1.L | -0.92142352 | 0.02607802 | RACK1 |
| XBXL10_1g35409 | LOC108698547 | -0.82845052 | 0.06632227 | RGL2 |
| XBXL10_1g35437 | agpat1.L | -0.72319125 | 0.07915921 | AGPAT1 |
| XBXL10_1g35439 | c4a.L | 1.5790552 | 0.00410253 | C4A |
| XBXL10_1g35565 | dpf1.L | 3.10936257 | 0.08726806 | DPF1 |
| XBXL10_1g35618 | exosc5.L | -0.99140402 | 0.0872031 | EXOSC5 |


| XBXL10_1g35631 | LOC108698636 | 3.41342571 | 0.03815137 | CAPN12 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g35637 | psmd8.L | -0.84157887 | 0.04971753 | PSMD8 |
| XBXL10_1g35661 | mrps12.L | -0.99272851 | 0.03166744 | MRPS12 |
| XBXL10_1g35692 | entpd5.L | -1.07340099 | 0.06538164 | ENTPD5 |
| XBXL10_1g35702 | fcf1.L | -0.79267601 | 0.0594442 | FCF1 |
| XBXL10_1g35712 | batf.L | -1.52092437 | 0.08987188 | BATF |
| XBXL10_1g35769 | LOC108698710 | -0.76831486 | 0.06001248 | CALM1 |
| XBXL10_1g35802 | serpina3m.L | 4.4386152 | 0.06127354 | SERPINB12 |
| XBXL10_1g35805 | serpina3k.L | 3.65967879 | 0.00402198 | SERPINA7 |
| XBXL10_1g35811 | clmn.L | 1.74526768 | 0.09421888 | CLMN |
| XBXL10_1g35814 | glrx5.L | -0.79108524 | 0.04823864 | GLRX5 |
| XBXL10_1g35817 | bdkrb2.L | 1.14824259 | 0.01576938 | BDKRB2 |
| XBXL10_1g35892 | gng2.L | -0.98484431 | 0.09065524 | GNG2 |
| XBXL10_1g35897 | trim9.L | -1.4436667 | 0.08428086 | TRIM9 |
| XBXL10_1g35910 | begain.L | 5.48626716 | 0.04139048 | BEGAIN |
| XBXL10_1g35925 | rcor1.L | 1.10824267 | 0.05241337 | RCOR1 |
| XBXL10_1g35970 | btbd6.L | -0.93334336 | 0.07062568 | BTBD6 |
| XBXL10_1g35978 | LOC108698814 | 3.23913137 | 0.07521587 | - |
| XBXL10_1g36020 | actr10.L | -0.66868637 | 0.09451798 | ACTR10 |
| XBXL10_1g36023 | slc35f4.L | -1.45419672 | 0.07232962 | SLC35F4 |
| XBXL10_1g36071 | LOC121397138 | -5.98613023 | 0.06165451 | - |
| XBXL10_1g36094 | sptb.L | 1.51752372 | 0.07342915 | SPTB |
| XBXL10_1g36114 | foxa1.L | 2.29610046 | 0.00215298 | FOXA1 |
| XBXL10_1g36122 | fam177a1.L | -0.85642801 | 0.04322825 | FAM177A1 |
| XBXL10_1g36133 | erh.L | -0.95923589 | 0.02627729 | ERH |
| XBXL10_1g36153 | dph6.L | 1.01287167 | 0.0747306 | DPH6 |
| XBXL10_1g36154 | znf770.L | -1.28850775 | 0.08002452 | ZNF770 |
| XBXL10_1g36174 | dtd2.L | -0.85487318 | 0.06468747 | DTD2 |
| XBXL10_1g36215 | gchfr.L | -0.86850873 | 0.04604274 | GCHFR |
| XBXL10_1g3630 | maea.S | -0.81291243 | 0.05582389 | MAEA |
| XBXL10_1g36321 | LOC121397396 | -3.00568998 | 0.07649552 | U2 |
| XBXL10_1g36360 | thbs1.L | 1.29671469 | 0.03384704 | THBS1 |
| XBXL10_1g36392 | LOC121397178 | 3.12769564 | 0.06806062 | - |
| XBXL10_1g3655 | add1.S | 0.73617406 | 0.08078023 | ADD1 |
| XBXL10_1g36581 | LOC108699362 | 0.64642727 | 0.09100763 | NR2F1 |
| XBXL10_1g36660 | LOC121397341 | 3.52523528 | 0.03801284 | - |
| XBXL10_1g36661 | LOC108699114 | 4.03910267 | 6.40E-05 | - |
| XBXL10_1g36670 | mrpl24.L | -0.78895026 | 0.04526352 | MRPL24 |
| XBXL10_1g36697 | LOC108699394 | 6.59602862 | 0.00107404 | MIR9-1 |
| XBXL10_1g36708 | ca14.L | 0.95413035 | 0.05490254 | CA14 |
| XBXL10_1g3671 | cpz.S | 1.88879909 | 0.00973676 | CPZ |
| XBXL10_1g36710 | LOC108699399 | 1.40837194 | 0.07306981 | KIRREL1 |
| XBXL10_1g36759 | LOC108699405 | -1.23843124 | 0.06771662 | - |
| XBXL10_1g36892 | LOC108699447 | 2.31094544 | 0.02271749 | - |
| XBXL10_1g36899 | LOC108699158 | -0.76301275 | 0.04604274 | EIF3F |
| XBXL10_1g3691 | msx1.S | 0.90859957 | 0.04431759 | MSX1 |
| XBXL10_1g36935 | LOC108699617 | -0.84262535 | 0.04330698 | UFC1 |
| XBXL10_1g37065 | LOC108699492 | 4.08758662 | 0.05192146 | KCNJ9 |
| XBXL10_1g37106 | g2e3.S | -1.30291441 | 0.06771662 | G2E3 |
| XBXL10_1g3712 | fgfbp1.S | 2.40241234 | 0.05758573 | OR8G1 |
| XBXL10_1g37140 | foxa1.S | 2.76325735 | 8.45E-05 | FOXA1 |
| XBXL10_1g3717 | qdpr.S | -1.42333855 | 0.00997873 | QDPR |
| XBXL10_1g37171 | ptgr2.S | -0.66476795 | 0.09452853 | PTGR2 |
| XBXL10_1g37181 | jmjd7.S | -1.05184095 | 0.02375806 | JMJD7 |
| XBXL10_1g37233 | LOC108699763 | 2.74448703 | 0.00164498 | - |
| XBXL10_1g37234 | LOC121397762 | 3.10297884 | 0.01532462 | - |


| XBXL10_1g3724 | LOC108706551 | -1.28399782 | 0.08760058 | KCNIP4 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g3742 | pcdh7.S | 1.58555722 | 0.02438838 | PCDH7 |
| XBXL10_1g37486 | ptgds.S | 1.83907612 | 0.00522436 | PTGDS |
| XBXL10_1g37498 | mrpl41.S | -1.00477827 | 0.03522754 | MRPL41 |
| XBXL10_1g37507 | entpd2.S | 0.92160143 | 0.08096525 | ENTPD2 |
| XBXL10_1g37553 | LOC108699910 | -1.04820444 | 0.02697134 | - |
| XBXL10_1g37574 | LOC108699917 | 4.33428309 | 0.09632297 | TRAF1 |
| XBXL10_1g37673 | phyhd1.S | -0.88348706 | 0.03127345 | PHYHD1 |
| XBXL10_1g37730 | ccnq.S | -0.87455345 | 0.03286254 | CCNQ |
| XBXL10_1g37801 | olfml2a.S | 0.98706706 | 0.06035329 | OLFML2A |
| XBXL10_1g37848 | XB5932841.S | -1.63667399 | 0.03971114 | - |
| XBXL10_1g37868 | tsc22d3.S | -0.88388357 | 0.02353093 | TSC22D3 |
| XBXL10_1g3790 | LOC121399278 | 4.37964915 | 0.04080668 | - |
| XBXL10_1g37924 | LOC121397625 | -1.35107642 | 0.07945628 | XIAPP3 |
| XBXL10_1g37929 | LOC121397580 | -2.07348106 | 0.05240236 | - |
| XBXL10_1g37948 | LOC108700083 | 5.48451043 | 0.03452135 | AMER1 |
| XBXL10_1g38054 | LOC108700139 | -1.05473905 | 0.02875538 | SOWAHC |
| XBXL10_1g38085 | XB5776174.S | -1.52114157 | 0.00168586 | - |
| XBXL10_1g38173 | vgll1.S | 2.62675034 | 0.04735613 | VGLL1 |
| XBXL10_1g38221 | tbcb.S | -0.83858308 | 0.04143366 | TBCB |
| XBXL10_1g38223 | polr2i.S | -0.97454981 | 0.03522754 | POLR21 |
| XBXL10_1g38253 | pfdn6.S | -0.98945144 | 0.02159199 | PFDN6 |
| XBXL10_1g38294 | csnk2b.S | -0.75563025 | 0.05853693 | CSNK2B |
| XBXL10_1g38378 | ehd2.S | 0.85663592 | 0.06032128 | EHD2 |
| XBXL10_1g38390 | clip3.S | 0.960906 | 0.02240955 | CLIP3 |
| XBXL10_1g38393 | arf6.S | -0.73395396 | 0.08096525 | ARF6 |
| XBXL10_1g38404 | Irfn1.1.S | 4.38683281 | 0.03452135 | LRFN5 |
| XBXL10_1g38418 | pqbp1.S | -0.84212865 | 0.03202045 | PQBP1 |
| XBXL10_1g38422 | LOC447781 | 0.82243547 | 0.0833011 | COMT |
| XBXL10_1g38429 | LOC108700302 | 2.19105661 | 0.03877133 | MYH1 |
| XBXL10_1g3849 | casp3.2.S | 1.38545048 | 0.00142478 | CASP3 |
| XBXL10_1g3855 | rwdd4.S | -1.06585381 | 0.03803739 | RWDD4 |
| XBXL10_1g38550 | LOC108700682 | 6.75081682 | 0.00109252 | - |
| XBXL10_1g38561 | LOC121397641 | 5.70479175 | 0.06018017 | BCHE |
| XBXL10_1g38660 | LOC121397571 | 6.02530194 | 0.00576513 | MIR9-1 |
| XBXL10_1g38678 | LOC121397574 | 4.29085205 | 0.07714323 | - |
| XBXL10_1g3868 | gpm6a.S | 3.95364854 | 0.03377234 | GPM6A |
| XBXL10_1g38688 | tnfaip812.S | -0.89489707 | 0.03448132 | TNFAIP8L3 |
| XBXL10_1g38701 | pex19.S | -0.8048905 | 0.03859697 | PEX19 |
| XBXL10_1g3875 | sap30.S | -1.03338484 | 0.08986039 | SAP30 |
| XBXL10_1g38784 | adar.S | 0.87298796 | 0.03824678 | ADAR |
| XBXL10_1g3887 | LOC108704313 | 1.95259991 | 0.04604274 | DDX60 |
| XBXL10_1g38892 | tbc1d20.1.L | -0.82392036 | 0.07910198 | TBC1D20 |
| XBXL10_1g38898 | mlx.L | -0.83939339 | 0.04712571 | MLX |
| XBXL10_1g3892 | cpe.S | 0.77560655 | 0.0931156 | CPE |
| XBXL10_1g38937 | krt19.L | 0.93718981 | 0.03837197 | KRT19 |
| XBXL10_1g38964 | igfbp4.L | -1.20364155 | 0.06632227 | IGFBP4 |
| XBXL10_1g38995 | LOC108700778 | 1.65793385 | 0.00355293 | PPP1R1B |
| XBXL10_1g39009 | LOC108700789 | 2.03980148 | 0.07393393 | PLXDC1 |
| XBXL10_1g39015 | LOC108700787 | -0.84016194 | 0.06378494 | RPL23 |
| XBXL10_1g39144 | LOC108700827 | 1.03201091 | 0.05726535 | FZD2 |
| XBXL10_1g39152 | slc4a1.L | 1.41047153 | 0.06381613 | SLC4A1 |
| XBXL10_1g39223 | MGC82392 | 0.85787561 | 0.05799786 | DCAF7 |
| XBXL10_1g39348 | LOC108700918 | 1.6800337 | 0.00145234 | - |
| XBXL10_1g39376 | phactr3.L | 4.7122253 | 0.02159199 | PHACTR3 |
| XBXL10_1g39377 | edn3.L | 1.80908976 | 0.0001198 | EDN3 |


| XBXL10_1g39399 | LOC108702031 | 1.19459463 | 0.05039604 | OGFR |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g39426 | LOC108702045 | 6.93163845 | 0.02485711 | FUT10 |
| XBXL10_1g39437 | LOC121398202 | -6.21471449 | 0.03630416 | TCEA2 |
| XBXL10_1g39455 | LOC108700949 | -1.80961296 | 0.01327069 | - |
| XBXL10_1g39671 | dusp3.L | -1.49472842 | 0.00107404 | DUSP3 |
| XBXL10_1g3968 | ucp1.S | -3.36744718 | 0.00821348 | UCP3 |
| XBXL10_1g39779 | enpp7.L | 3.89759294 | 0.06538164 | ENPP7 |
| XBXL10_1g39793 | ccdc56.L | -0.75756494 | 0.04555164 | - |
| XBXL10_1g39807 | g6pc1.1.L | -3.25377858 | 0.05180544 | G6PC1 |
| XBXL10_1g39809 | g6pc1.3.L | -2.7902458 | 0.00927761 | G6PC1 |
| XBXL10_1g3982 | LOC108706683 | -0.75322758 | 0.06771662 | - |
| XBXL10_1g39829 | slc12a5.L | 4.95582538 | 0.02788868 | SLC12A5 |
| XBXL10_1g39860 | znfx1.L | 3.08487152 | 0.00035791 | ZNFX1 |
| XBXL10_1g39891 | tti1.L | 0.92068962 | 0.0747306 | TTI1 |
| XBXL10_1g39897 | manbal.L | -0.79381324 | 0.02865858 | MANBAL |
| XBXL10_1g39905 | tgif2.L | 3.15142247 | 0.07944875 | TGIF2 |
| XBXL10_1g39918 | LOC108705538 | 5.84578044 | 0.0101263 | SLC32A1 |
| XBXL10_1g39919 | arhgap40.L | 4.07948896 | 0.04897155 | ARHGAP40 |
| XBXL10_1g4 | mrps26.L | -0.72848779 | 0.09503618 | - |
| XBXL10_1g40020 | ndrg3.L | 0.69048471 | 0.04971753 | NDRG3 |
| XBXL10_1g40094 | LOC108701125 | 1.79095778 | 0.01211775 | EVPL |
| XBXL10_1g40110 | LOC121398233 | -4.00393807 | 0.00448327 | - |
| XBXL10_1g40120 | LOC108701136 | 4.80403994 | 0.0139193 | ST6GALNAC2 |
| XBXL10_1g4024 | ostc.S | -1.02127914 | 0.01499783 | OSTC |
| XBXL10_1g40299 | LOC108701818 | 6.51733774 | 0.00143302 | MYH4 |
| XBXL10_1g40320 | prkca.L | 0.89211292 | 0.0449599 | PRKCA |
| XBXL10_1g40337 | polg2.L | -0.93321529 | 0.02697134 | POLG2 |
| XBXL10_1g40340 | LOC108701212 | -1.16529489 | 0.0758163 | - |
| XBXL10_1g40344 | XB5880825.L | 1.23745026 | 0.03631925 | SAMD9 |
| XBXL10_1g40353 | tefm.L | -0.87097853 | 0.03174659 | - |
| XBXL10_1g40363 | trim 25.L | 0.92640198 | 0.05961917 | TRIM25 |
| XBXL10_1g40382 | steap3.L | 1.34101747 | 0.00381154 | STEAP3 |
| XBXL10_1g40394 | dtx31.L | 1.47730329 | 0.00175592 | DTX3L |
| XBXL10_1g4041 | cfi.S | 1.45912466 | 0.05961917 | CFI |
| XBXL10_1g40416 | LOC108701252 | 4.56991105 | 0.06538164 | - |
| XBXL10_1g40479 | LOC108701269 | -0.84991573 | 0.03008655 | - |
| XBXL10_1g40487 | LOC108701272 | 2.01577877 | 0.01358652 | TMEM198 |
| XBXL10_1g40516 | tuba1cl.2.L | -1.49133891 | 0.00034606 | TUBA1B |
| XBXL10_1g40522 | LOC121397893 | -1.05714253 | 0.0212755 | TUBA1B |
| XBXL10_1g40524 | tuba1cl.3.L | -0.97492404 | 0.04698731 | TUBA1B |
| XBXL10_1g40542 | XB984297.L | 1.58125728 | 0.02968976 | CYP27A1 |
| XBXL10_1g40703 | cdca7.L | 0.64653641 | 0.07910198 | CDCA7 |
| XBXL10_1g40770 | LOC108701405 | -1.38036815 | 0.07270259 | SLC19A1 |
| XBXL10_1g40776 | ybey.L | -0.75046032 | 0.05582389 | YBEY |
| XBXL10_1g40798 | ackr3.L | 0.81436151 | 0.05565102 | ACKR3 |
| XBXL10_1g40815 | LOC108701422 | 2.93071884 | 0.00538948 | ABCA12 |
| XBXL10_1g40843 | sumo3.L | -0.80466633 | 0.04143366 | SUMO3 |
| XBXL10_1g40844 | LOC108705838 | -0.88630982 | 0.0209518 | SUMO3 |
| XBXL10_1g40848 | dbr1.L | -0.83557645 | 0.05726535 | DBR1 |
| XBXL10_1g40863 | LOC121398237 | -1.4458407 | 0.04604274 | - |
| XBXL10_1g40875 | maip1.L | -0.78706436 | 0.08096525 | MAIP1 |
| XBXL10_1g40878 | LOC108701447 | 1.45020594 | 0.07808471 | AOX1 |
| XBXL10_1g40907 | eef1b2.L | -0.81422729 | 0.03452135 | EEF1B2 |
| XBXL10_1g40957 | slc40a1.L | -1.1686732 | 0.05582389 | SLC40A1 |
| XBXL10_1g40958 | asnsd1.L | -0.97939219 | 0.01862502 | ASNSD1 |
| XBXL10_1g41004 | arpc1b.L | -0.72680979 | 0.06273607 | ARPC1B |


| XBXL10_1g41006 | natd1.L | -0.85476428 | 0.02257186 | NATD1 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g41029 | LOC108701509 | 1.42253721 | 0.07128052 | HBZ |
| XBXL10_1g4107 | dapp1.S | -1.31884774 | 0.03384704 | DAPP1 |
| XBXL10_1g41090 | ndufb7.L | -0.93042898 | 0.01399884 | NDUFB7 |
| XBXL10_1g4114 | metap1.S | -0.86570861 | 0.07090464 | METAP1 |
| XBXL10_1g41169 | get4.L | -2.07886163 | 0.00055672 | GET4 |
| XBXL10_1g41234 | pdilt.L | 4.00373433 | 0.08942236 | P4HB |
| XBXL10_1g4125 | XB5957215.S | 1.47339204 | 0.04081044 | OPN4 |
| XBXL10_1g41279 | MGC145260.L | 1.18988131 | 0.07112016 | - |
| XBXL10_1g41352 | slc5a11.L | -1.14689661 | 0.06632227 | SLC5A11 |
| XBXL10_1g41370 | grap.L | -1.34751188 | 0.03836658 | GRAP |
| XBXL10_1g41384 | LOC108701662 | 0.82509364 | 0.03452135 | SSTR3 |
| XBXL10_1g41390 | rps2.L | -0.78900307 | 0.05582389 | RPS2 |
| XBXL10_1g41405 | thdl20.L | 2.97936303 | 0.0193842 | - |
| XBXL10_1g41412 | LOC108701676 | 4.4784844 | 0.09532941 |  |
| XBXL10_1g41430 | pemt.L | -1.01108827 | 0.07712034 | PEMT |
| XBXL10_1g41436 | atpaf2.L | -1.14459043 | 0.00904935 | ATPAF2 |
| XBXL10_1g4144 | herc6.S | 1.76578224 | 0.00107404 | HERC3 |
| XBXL10_1g41482 | slc5a2.L | -1.03185958 | 0.08199359 | SLC5A2 |
| XBXL10_1g41503 | LOC108701721 | 1.78295626 | 8.05E-05 | - |
| XBXL10_1g41671 | LOC108701960 | 2.02815459 | 0.05582389 | KIF13A |
| XBXL10_1g41706 | MGC79752.L | -0.71722516 | 0.05961917 |  |
| XBXL10_1g41721 | LOC121398003 | 6.06862886 | 0.00653294 |  |
| XBXL10_1g41761 | xenoxin1.L | 4.55364119 | 0.04326199 |  |
| XBXL10_1g4177 | cxcl11.S | -1.52943336 | 0.06684541 |  |
| XBXL10_1g41811 | mfap4.1.L | -1.07440057 | 0.02353093 | MFAP4 |
| XBXL10_1g41819 | LOC108703896 | 3.56669092 | 0.01440793 | URGCP |
| XBXL10_1g4182 | scarb2.5 | 0.87776254 | 0.0747306 | SCARB2 |
| XBXL10_1g41837 | LOC108703861 | 5.96143792 | 0.0101263 | URGCP |
| XBXL10_1g41866 | XB994846.L | 2.52290411 | 0.03202045 | - |
| XBXL10_1g4190 | ccng2.S | -1.3942498 | 0.05347478 | CCNG2 |
| XBXL10_1g41980 | LOC121398054 | -1.86032806 | 0.09948331 |  |
| XBXL10_1g42079 | LOC108703917 | 3.12546307 | 0.04555164 |  |
| XBXL10_1g42140 | LOC108704730 | -0.88597952 | 0.09738963 | CDKL4 |
| XBXL10_1g42141 | nmral1.L | -1.39744031 | 0.00487047 | NMRAL2P |
| XBXL10_1g42142 | LOC121397868 | -1.13803196 | 0.07044345 | NMRAL2P |
| XBXL10_1g42146 | fbxl16.L | 3.64692358 | 0.03631925 | FBXL16 |
| XBXL10_1g42167 | cavin1.S | 0.92176549 | 0.07154659 | CAVIN1 |
| XBXL10_1g4217 | LOC108704562 | 5.84628466 | 0.01004921 | EPHA5 |
| XBXL10_1g422 | glod5.L | -0.70266761 | 0.0777023 | GLOD5 |
| XBXL10_1g42365 | phb.S | -0.94613694 | 0.05192146 | PHB1 |
| XBXL10_1g42384 | slc4a1.S | 1.39639969 | 0.04454243 | SLC4A1 |
| XBXL10_1g42396 | pyy.S | 5.54104162 | 0.01981548 | - |
| XBXL10_1g42416 | mapt.S | 1.27543733 | 0.02211568 | MAPT |
| XBXL10_1g42502 | pard6b.S | 1.3890233 | 0.05193868 | PARD6B |
| XBXL10_1g42539 | gata5.S | 1.17977977 | 0.02990064 | GATA5 |
| XBXL10_1g42672 | LOC108702671 | -1.41411434 | 0.00424585 | - |
| XBXL10_1g42697 | LOC108702687 | 2.33704071 | 0.06632227 | NUP160 |
| XBXL10_1g42708 | bcl2l1.S | -0.69280092 | 0.08862882 | BCL2L1 |
| XBXL10_1g42820 | enpp7.S | 3.53170955 | 0.0730426 | ENPP7 |
| XBXL10_1g42821 | LOC121398749 | 5.23927265 | 0.00709241 | - |
| XBXL10_1g42836 | g6pc1.1.S | -2.80909165 | 0.00872664 | G6PC1 |
| XBXL10_1g42838 | g6pc1.3.S | -1.87703252 | 0.00401207 | G6PC1 |
| XBXL10_1g4289 | LOC108706796 | -1.28683097 | 0.07551207 | MFSD12 |
| XBXL10_1g42890 | tgm5.S | 3.54691835 | 0.00568223 | TGM5 |
| XBXL10_1g42972 | ahcy.S | -1.02127564 | 0.05079408 | AHCY |


| XBXL10_1g430 | pced1a.L | 1.60745012 | 0.02189588 | PCED1A |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g43022 | LOC108702797 | -1.4180726 | 0.05192146 | RAB37 |
| XBXL10_1g43099 | LOC108702825 | -1.08164258 | 0.00445832 | - |
| XBXL10_1g43106 | LOC108702827 | 6.00739934 | 0.00724409 | ST6GALNAC2 |
| XBXL10_1g43109 | mettl23.S | -0.79183672 | 0.09734396 | METTL23 |
| XBXL10_1g43130 | uts2r.S | -3.64093233 | 0.00619736 | UTS2R |
| XBXL10_1g43167 | tekt3.S | -1.16569071 | 0.0467767 | TEKT3 |
| XBXL10_1g43252 | lypd1.S | -1.36471126 | 0.09675694 | LYPD1 |
| XBXL10_1g43265 | tmem37.S | -0.7068231 | 0.06632227 | TMEM37 |
| XBXL10_1g43273 | dtx31.S | 2.18047318 | 0.00669464 | - |
| XBXL10_1g43287 | LOC121399241 | -1.47587581 | 0.01816117 | - |
| XBXL10_1g43289 | gli2.S | 2.84047317 | 0.01198548 | GLI2 |
| XBXL10_1g43297 | slc15a2.S | -0.92081761 | 0.06655029 | SLC15A2 |
| XBXL10_1g43298 | eaf2.S | -0.97825881 | 0.01862502 | EAF2 |
| XBXL10_1g43329 | krt18.3.S | -1.0430069 | 0.07084384 | KRT18 |
| XBXL10_1g43353 | atg9a.S | 1.3610759 | 0.0747306 | ATG9A |
| XBXL10_1g43371 | prkag3.S | -1.19156476 | 0.06378494 | PRKAG3 |
| XBXL10_1g43381 | wnt6.S | 5.59463469 | 0.01668397 | WNT6 |
| XBXL10_1g43429 | arl5a.S | -0.7720162 | 0.04604274 | ARL5A |
| XBXL10_1g43444 | galnt5.S | 1.25943839 | 0.04735613 | GALNT5 |
| XBXL10_1g43495 | gad1.1.S | 4.2573636 | 0.05114091 | GAD1 |
| XBXL10_1g4357 | rorb.2.S | 3.97127992 | 0.0581877 | RORB |
| XBXL10_1g43596 | arl4c.S | 0.86600338 | 0.03631925 | ARL4C |
| XBXL10_1g43598 | ugt1a6.S | 1.69353213 | 0.02505439 | UGT1A6 |
| XBXL10_1g43618 | rab5d.S | -0.80421372 | 0.06806062 | RAB5B |
| XBXL10_1g43622 | map2.S | 3.32619651 | $5.45 \mathrm{E}-06$ | MAP2 |
| XBXL10_1g43627 | LOC108702286 | -0.77065505 | 0.0777023 | UBE2G2 |
| XBXL10_1g43630 | dbr1.S | -0.79657913 | 0.03785278 | DBR1 |
| XBXL10_1g43638 | cd28.S | -1.65138354 | 0.0542316 | - |
| XBXL10_1g43649 | LOC108702410 | -2.65320655 | 0.02353093 |  |
| XBXL10_1g43658 | maip1.S | -0.65039252 | 0.09400929 | MAIP1 |
| XBXL10_1g4367 | ap1m1.S | -0.80336959 | 0.0581877 | AP1M1 |
| XBXL10_1g437 | nat8.5.L | -1.48716571 | 0.00869516 | - |
| XBXL10_1g43721 | stat1.S | 1.13904946 | 0.02068405 | STAT1 |
| XBXL10_1g43727 | mob4.S | -0.90858661 | 0.02642041 | MOB4 |
| XBXL10_1g43741 | arpc1b.S | -0.70867957 | 0.07227085 | ARPC1B |
| XBXL10_1g43742 | arpc1a.S | -0.95204244 | 0.00709241 | ARPC1A |
| XBXL10_1g43743 | natd1.S | -0.85900774 | 0.02061134 | NATD1 |
| XBXL10_1g43763 | LOC108702421 | 2.0279487 | 0.02159199 | HBQ1 |
| XBXL10_1g4385 | rps15.S | -0.6917875 | 0.09832158 | RPS15 |
| XBXL10_1g43867 | c7orf50.S | -0.8472106 | 0.06538164 | C7orf50 |
| XBXL10_1g43923 | LOC108702428 | 5.13733388 | 0.05228498 | MCHR1 |
| XBXL10_1g43935 | scnn1g.S | 1.83783006 | 0.00364228 | SCNN1G |
| XBXL10_1g43996 | Icmt1.S | -0.8688091 | 0.09452853 | LCMT1 |
| XBXL10_1g4400 | polr2e.S | -0.98327702 | 0.03927902 | POLR2E |
| XBXL10_1g44031 | LOC108703225 | -0.82063411 | 0.02582152 | RPS2 |
| XBXL10_1g44040 | thdl20.S | 3.36038896 | 0.02436328 | - |
| XBXL10_1g44041 | LOC108703229 | 4.34228467 | 0.0747306 | - |
| XBXL10_1g44079 | ppl.S | 1.50155586 | 0.00632847 | PPL |
| XBXL10_1g44155 | LOC108702444 | 3.09457795 | 0.07817392 | - |
| XBXL10_1g4431 | angptl4.S | 1.13087808 | 0.03522754 | ANGPTL4 |
| XBXL10_1g44341 | trim7.L | 2.48795733 | 0.07189688 | TRIM5 |
| XBXL10_1g44379 | LOC108704190 | -0.79531974 | 0.06378494 | PITPNA |
| XBXL10_1g44409 | LOC121398931 | 3.55376186 | 0.06000436 | - |
| XBXL10_1g44432 | hmox2.S | -0.80661013 | 0.06907671 | HMOX2 |
| XBXL10_1g44433 | nmral1.S | -1.28001129 | 0.05419291 | NMRAL2P |


| *** mtDNA | XBXL10_1g44448 | COX2 | 0.70284454 | 0.0876235 | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | XBXL10_1g4454 | LOC108704680 | 3.18698938 | 0.06282312 | ZFX |
|  | XBXL10_1g447 | lyrm2.L | -0.87737868 | 0.02134031 | - |
|  | XBXL10_1g4559 | comp.S | 6.73480356 | 0.00740348 | THBS4 |
|  | XBXL10_1g4573 | sdsl.S | -0.91267282 | 0.06282312 | SDSL |
|  | XBXL10_1g4629 | LOC108703688 | 4.6185274 | 0.02603105 | - |
|  | XBXL10_1g4677 | borcs8.5 | -1.23776269 | 0.00070372 | BORCS8-MEF2B |
|  | XBXL10_1g4678 | nr2c2ap.S | -0.809373 | 0.06522422 | - |
|  | XBXL10_1g4725 | smim7.S | -0.73153593 | 0.08937969 | SMIM7 |
|  | XBXL10_1g4752 | rps6.S | -0.88406123 | 0.02582152 | RPS6 |
|  | XBXL10_1g4822 | ak3.S | -0.96966849 | 0.02607802 | AK3 |
|  | XBXL10_1g4861 | tmem252.S | -2.22071722 | 0.00116822 | - |
|  | XBXL10_1g4866 | fam189a2.S | -1.05829082 | 0.04555164 | FAM189A2 |
|  | XBXL10_1g4883 | aldh1a1.S | 1.44129884 | 0.00568223 | ALDH1A1 |
|  | XBXL10_1g4890 | ostf1.S | -1.00019214 | 0.06378494 | OSTF1 |
|  | XBXL10_1g4935 | prxl2c.S | -0.80863345 | 0.06538164 | PRXL2C |
|  | XBXL10_1g4953 | syk.S | -1.31136811 | 0.01536739 | SYK |
|  | XBXL10_1g5031 | sall2.S | 6.15165881 | 0.00445832 | SALL2 |
|  | XBXL10_1g5112 | sec1413.S | 2.35341535 | 0.09212897 | SEC14L2 |
|  | XBXL10_1g5123 | zmat5.S | -0.76747081 | 0.06852393 | ZMAT5 |
|  | XBXL10_1g5206 | dgcr6.S | -0.95700884 | 0.01004921 | DGCR6 |
|  | XBXL10_1g5225 | LOC121399481 | 4.35965024 | 0.0705302 | - |
|  | XBXL10_1g5235 | sppl3.S | 0.75727922 | 0.0777023 | SPPL3 |
|  | XBXL10_1g5260 | ggt5.S | 0.97628386 | 0.07979075 | GGT5 |
|  | XBXL10_1g5347 | ubc.S | -1.13556018 | 0.06035329 | UBC |
|  | XBXL10_1g5413 | LOC108707171 | 1.65958068 | 0.01888028 | - |
|  | XBXL10_1g5446 | osbp2.S | 6.09186585 | 0.00086197 | OSBP2 |
|  | XBXL10_1g5484 | tnfaip8.S | -1.04758578 | 0.03008655 | TNFAIP8 |
|  | XBXL10_1g5506 | reep5.S | -0.871075 | 0.0286203 | REEP5 |
|  | XBXL10_1g5536 | LOC108707228 | 0.95873743 | 0.04454243 | CAST |
|  | XBXL10_1g5539 | glrx.S | -0.69177274 | 0.05582389 | - |
|  | XBXL10_1g5583 | LOC108707252 | -0.70276085 | 0.09332809 | - |
|  | XBXL10_1g5593 | btf3.S | -0.98061209 | 0.05240236 | BTF3 |
|  | XBXL10_1g5683 | smim15.S | -1.05397429 | 0.03522754 | SMIM15 |
|  | XBXL10_1g5742 | esm1.S | -1.27587511 | 0.03758007 | ESM1 |
|  | XBXL10_1g5848 | baat.S | -1.117519 | 0.04139048 | BAAT |
|  | XBXL10_1g6055 | hao2.L | 2.08168495 | 0.08853299 | HAO2 |
|  | XBXL10_1g6073 | ndufb4.L | -0.92565432 | 0.02505439 | NDUFB4P2 |
|  | XBXL10_1g6081 | sidt1.L | 4.42637938 | 0.0350593 | SIDT1 |
|  | XBXL10_1g6099 | LOC108707818 | 1.44155101 | 0.03384704 | - |
|  | XBXL10_1g6135 | LOC108707830 | -1.10172401 | 0.0286203 | - |
|  | XBXL10_1g6194 | tmprss2.2.L | 3.84909575 | 0.06538164 | TMPRSS2 |
|  | XBXL10_1g6195 | tmprss2.3.L | 5.008568 | 0.02211568 | TMPRSS2 |
|  | XBXL10_1g6196 | tmprss2.4.L | 4.75514718 | 0.00552155 | TMPRSS2 |
|  | XBXL10_1g6204 | tmprss2.12.L | 4.45627719 | 0.03859697 | TMPRSS2 |
|  | XBXL10_1g6206 | tmprss2.14.L | 4.71207977 | 0.03375619 | TMPRSS2 |
|  | XBXL10_1g6208 | mx1.L | 2.13172195 | 0.00328753 | MX1 |
|  | XBXL10_1g6248 | LOC108707869 | 5.24857317 | 0.03384704 | CLIC6 |
|  | XBXL10_1g6310 | atp5pf.L | -0.70548898 | 0.08423317 | ATP5PF |
|  | XBXL10_1g6337 | cadm2.L | 3.23552234 | 0.01840625 | CADM2 |
|  | XBXL10_1g6344 | rbm11.L | -0.77110365 | 0.03877133 | RBM11 |
|  | XBXL10_1g6374 | asb9.L | -1.17175261 | 0.0594442 | ASB9 |
|  | XBXL10_1g640 | hgfac.L | 1.41395553 | 0.05490254 | HGFAC |
|  | XBXL10_1g6419 | abr.L | 0.96656915 | 0.01938401 | ABR |
|  | XBXL10_1g6422 | LOC108707940 | -1.23330096 | 0.0943991 | - |
|  | XBXL10_1g6497 | flot2.L | 0.73062828 | 0.0747306 | FLOT2 |

XBXL10_1g6516 XBXL10_1g6568 XBXL10_1g6599 XBXL10_1g6607 XBXL10_1g6631 XBXL10_1g6636 XBXL10_1g6797 XBXL10_1g6814 XBXL10_1g6851 XBXL10_1g6905 XBXL10_1g6913 XBXL10_1g6916 XBXL10_1g6922 XBXL10_1g6944 XBXL10_1g6945 XBXL10_1g6946 XBXL10_1g696
XBXL10_1g6964
XBXL10_1g6966 XBXL10_1g6967 XBXL10_1g7005 XBXL10_1g706 XBXL10_1g709 XBXL10_1g7091 XBXL10_1g7224 XBXL10_1g7260 XBXL10_1g7284 XBXL10_1g7350 XBXL10_1g736 XBXL10_1g7406 XBXL10_1g7428 XBXL10_1g7453 XBXL10_1g7463 XBXL10_1g7468 XBXL10_1g7478 XBXL10_1g7560 XBXL10_1g7599 XBXL10_1g7634 XBXL10_1g7642 XBXL10_1g7667
XBXL10_1g7684
XBXL10_1g7787
XBXL10_1g7818
XBXL10_1g7831
XBXL10_1g7834
XBXL10_1g7847
XBXL10_1g7877
XBXL10_1g7898
XBXL10_1g7908
XBXL10_1g7909
XBXL10_1g7930
XBXL10_1g7944
XBXL10_1g7963
XBXL10_1g7984
XBXL10_1g7986
XBXL10_1g799
sdf2.L
arx.L
eln1.L
hpd-like.2.L
sat1.L
LOC108708008
ngf.L
csde1.L
pnrc2.L
asap3.L
msra.2.L
med18.L
tmem222.L
LOC108708105
LOC108708106
thd117.L
LOC108698040
LOC108708110
LOC108708112
pafah2.L
dynlI2.L
tapt1.L
qdpr.L
LOC108708144
psmb2.L
cited4.L
zc3h12a.L
LOC108708261
slc34a2.L
ptrh2.L
aldh3a2.L
rad51d.L
LOC108708308
LOC108708312
rph3al.L
psph.L
eif4h.L
c1qbp.L
omg.L
tmsb4x.L
gk.L
rgn.L
rab20.L
LOC108708464
tex30.L
ggact.L
dct.L
scel.L
uchl3.L
commd6.L
cnmd.L
LOC108708519
cpb2.L
atg101.L
nckap5I.L
slc10a4.L

| -0.80335218 | 0.09452853 | SDF2 |
| :---: | :---: | :---: |
| 1.992916 | 0.03309254 | ARX |
| -1.35351554 | 0.03531044 | ELN |
| 1.79179981 | 0.01440064 | HPD |
| -0.72062581 | 0.05582389 | SAT1 |
| 1.00516413 | 0.04618132 | MAP3K15 |
| -1.13008912 | 0.02437716 | NGF |
| 0.6623674 | 0.07910198 | CSDE |
| 0.78069564 | 0.09812155 | PNRC2 |
| 1.60343177 | 0.00586891 | ASAP3 |
| -1.03360761 | 0.08530951 | MSRA |
| -0.78065504 | 0.08862882 | MED18 |
| -0.82794951 | 0.0671417 | TMEM222 |
| -0.86773534 | 0.02535037 | - |
| 2.62099974 | 0.0350593 |  |
| 2.85122616 | 0.01081257 |  |
| -1.26036315 | 0.03452135 |  |
| 3.05920691 | 0.02954754 |  |
| 3.61161002 | 0.00230658 |  |
| -0.94396334 | 0.07808471 | PAFAH2 |
| -0.78051631 | 0.02975692 | DYNLL2 |
| 1.12956973 | 0.02697134 | TAPT1 |
| -1.11718538 | 0.02353093 | QDPR |
| -0.84757652 | 0.03662879 | MAPK13 |
| -1.17422778 | 0.00405714 | PSMB2 |
| -1.26364726 | 0.00927752 | CITED2 |
| -0.97485224 | 0.05277372 | ZC3H12B |
| 2.18924449 | 0.07945628 | GJB5 |
| 4.69791125 | 0.01124109 | SLC34A2 |
| -0.88581471 | 0.09012309 | PTRH2 |
| 0.95182297 | 0.09062821 | ALDH3A2 |
| -0.90738259 | 0.04707099 | RAD51D |
| 7.82070037 | $9.70 \mathrm{E}-06$ | - |
| 1.1419677 | 0.02627729 | CYP4F22 |
| -0.84625828 | 0.05270507 | RPH3AL |
| -1.06415291 | 0.08492216 | PSP |
| 0.94438958 | 0.01518856 | ElF4H |
| -0.97736142 | 0.08903648 | C1QBP |
| 1.80988693 | 0.0747306 | - |
| -1.00058828 | 0.01804243 | TMSB4X |
| 0.73947126 | 0.0777023 | GK |
| -1.04108482 | 0.02907387 | RGN |
| -1.43164801 | 0.02902379 | RAB20 |
| -1.78063699 | 0.02505439 | SLC10A2 |
| -1.73067871 | 0.04456715 | tex30 |
| -1.51888542 | 0.02556016 | GGACT |
| 1.0676955 | 0.06771662 | DCT |
| 2.3235011 | 0.00050383 | SCEL |
| -0.7846698 | 0.07044345 | UCHL3 |
| -1.49688655 | 0.00343874 | COMMD6 |
| 1.77485271 | 0.02211568 | CNMD |
| 1.74279564 | 0.00269673 | - |
| 1.8467477 | 0.07166642 | CPB2 |
| -1.30658496 | 0.00151178 | ATG101 |
| 0.94264917 | 0.07283111 | NCKAP5L |
| 3.23715801 | 0.00501766 | SLC10A4 |

XBXL10_1g8049 XBXL10_1g8056
XBXL10_1g8068
XBXL10_1g8075
XBXL10_1g8082
XBXL10_1g8092
XBXL10_1g8094
XBXL10_1g8114
XBXL10_1g8118
XBXL10_1g8165
XBXL10_1g8188
XBXL10_1g8195
XBXL10_1g8208
XBXL10_1g8255
XBXL10_1g8256
XBXL10_1g8295
XBXL10_1g8321
XBXL10_1g8339
XBXL10_1g8343
XBXL10_1g8344
XBXL10_1g8386
XBXL10_1g8391
XBXL10_1g8454
XBXL10_1g8489
XBXL10_1g850
XBXL10_1g8649
XBXL10_1g8801
XBXL10_1g8821
XBXL10_1g8853
XBXL10_1g8968
XBXL10_1g897
XBXL10_1g9021
XBXL10_1g9026
XBXL10_1g9093
XBXL10_1g9149
XBXL10_1g9164
XBXL10_1g9176
XBXL10_1g920
XBXL10_1g9206
XBXL10_1g9241
XBXL10_1g9257
XBXL10_1g9261
XBXL10_1g931
XBXL10_1g9312
XBXL10_1g9415
XBXL10_1g942
XBXL10_1g9520
XBXL10_1g9564
XBXL10_1g9719
XBXL10_1g9723
XBXL10_1g9740
XBXL10_1g9765
XBXL10_1g9769
XBXL10_1g9781
XBXL10_1g9785
XBXL10_1g9803
rnf41.L
LOC108708564
sarnp.L
stat2.L
rbms2.L
naca.L
rdh7.2.L
LOC108708585
inhbc.1.L
cyp27b1.L
tankl.L
mettl7a.2.L
arl11l.1.L
tarbp2.L
XB5957062.L
krt7.L
arl11.L
vps36.L
slc25a15.2.L
LOC108707754
alox5ap.L
hmgb1.L
mmp3.L
fdx1.L
slc7a2.1.L
taf10.L
klhl35.L
tmem126a.L
rsph1.L
p2ry8.S
wwc2.L
LOC108709182
ubb.S
ncam2.S
LOC108709237
kenj15.S
bace2.S
aadat.L
LOC108709263
mix23.S
ndufb4.S
LOC108705578
anxa10.L
wdr4.S
bclaf3.S
npy5r.L
XB5951253.S
ampd1.S
btg 2.5
chia.S
foxp4.S
strip1.S
lamtor5.S
rnpep.S
nuak2.S
slc26a9.S

| -0.79570677 | 0.07910198 | RNF41 |
| :---: | :---: | :---: |
| -1.00904606 | 0.02597448 | RPL41P1 |
| -0.67753921 | 0.09062114 | SARNP |
| 1.32803678 | 0.0872031 | STAT2 |
| 0.81903576 | 0.07232977 | RBMS2 |
| -0.76937819 | 0.06381613 | NACA |
| 1.58444845 | 0.0471929 | RDH16 |
| -1.87965224 | 0.00113279 | - |
| 5.8999702 | 0.0274397 | INHBC |
| 3.04544279 | 0.04555164 | CYP27B1 |
| -1.56065186 | 0.0273016 | - |
| -0.76277817 | 0.06666249 | METTL7A |
| 2.90198672 | 0.08326003 | ARF5 |
| -0.98038859 | 0.04627619 | TARBP2 |
| 1.81988746 | 0.09734396 | PLEKHA8 |
| 0.94251601 | 0.01709223 | KRT8 |
| -1.3646461 | 0.02387483 | ARL11 |
| -0.70234827 | 0.09451798 | VPS36 |
| -0.98674754 | 0.02875538 | SLC25A15 |
| -2.14484661 | 0.01172663 | SLC25A15 |
| -1.41602397 | 0.03309254 | ALOX5AP |
| -0.85256432 | 0.06778413 | HMGB1 |
| 1.12252133 | 0.04454243 | MMP13 |
| -0.65967263 | 0.09717071 | FDX1 |
| 2.07290913 | 0.05347478 | SLC7A2 |
| -0.79994258 | 0.08303774 | TAF10 |
| 3.76709335 | 0.08078023 | KLHL35 |
| -0.76819665 | 0.07394173 |  |
| -0.80367863 | 0.05853693 | RSPH1 |
| -1.2287945 | 0.02971541 | SSTR2 |
| 0.86888964 | 0.07077716 | WWC2 |
| -0.81488473 | 0.05582389 | TIMM22 |
| -0.82623429 | 0.09612504 | UBC |
| 2.06438028 | 0.02582152 | NCAM2 |
| 2.59448578 | 0.00355293 | CLIC6 |
| -1.18193405 | 0.01134227 | KCNJ15 |
| 1.02652427 | 0.00109704 | BACE2 |
| -1.11971702 | 0.01709223 | AADAT |
| -0.97337706 | 0.05582389 |  |
| -1.04576476 | 0.01709223 | MIX23 |
| -0.73075325 | 0.06655029 | NDUFB4P2 |
| 1.45204885 | 0.00842874 | TENT5C |
| 2.95751362 | 0.06273607 | ANXA10 |
| -0.92601511 | 0.02937104 | WDR4 |
| 0.88706369 | 0.09012309 | - |
| 4.56917485 | 0.09899346 | NPY5R |
| 2.63430552 | 0.0172662 | MOV10 |
| -1.61652551 | 0.0440164 | AMPD1 |
| -1.48994494 | 0.03236341 | BTG1 |
| -1.20796491 | 0.01938401 | CHIA |
| 0.94911588 | 0.05121616 | FOXP4 |
| 0.75847879 | 0.06208399 | STRIP1 |
| -0.84609932 | 0.03404715 | LAMTOR5 |
| 1.31658128 | 0.09421888 | RNPEP |
| -1.17144864 | 0.0274397 | NUAK2 |
| 5.20007998 | 0.0030732 | SLC26A9 |

XBXL10_1g9866
XBXL10_1g9893
XBXL10_1g9894
XBXL10_1g9904
XBXL10_1g9907
XBXL10_1g993

| rabif.S | -0.85848338 | 0.04403508 | RABIF |
| :--- | ---: | ---: | :---: |
| thdl18.S | 2.68133641 | 0.00047591 | - |
| LOC121400559 | 5.94049723 | $1.48 \mathrm{E}-07$ | - |
| LOC108708919 | 8.47802456 | $6.61 \mathrm{E}-08$ | - |
| LOC108709109 | 3.16507894 | 0.00085954 | - |
| fhip1a.L | 3.42206728 | 0.00752177 | FHIP1A |



MF2

MF3

| LOC108697111 | -7.520 | 0.01586 | - |
| :---: | :---: | :---: | :---: |
| cdr21.S | -8.439 | 0.01586 | CDR2L |
| LOC108696007 | 9.507 | 0.01586 | ZSCAN2 |
| xdm-w | -8.262 | 0.00000 | DMRT1 |
| apoa5.L | -7.306 | 0.00237 | - |
| LOC100127252 | -6.013 | 0.00279 | CYP2W1 |
| LOC100158309 | -9.238 | 0.00356 | TYR |
| LOC108696033 | -7.778 | 0.01438 | PZP |
| LOC121399024 | -3.423 | 0.01508 | MFAP4 |
| ucp1.S | 2.446 | 0.02063 | UCP3 |
| LOC121395415 | -2.881 | 0.02120 | - |
| hpx.L | -5.190 | 0.02120 | - |
| LOC108705534 | 3.917 | 0.02319 | - |
| LOC496175 | -2.788 | 0.02319 | - |
| masp2.S | -5.538 | 0.02324 | MASP2 |
| LOC101027275 | -4.777 | 0.02358 | - |
| sgpp2.S | -5.657 | 0.02396 | SGPP2 |
| LOC108718478 | -7.245 | 0.02592 | FAIM2 |
| LOC108710052 | -9.160 | 0.02592 | THRSP |
| serpinf2.L | -4.020 | 0.02592 | - |
| c6orf58.L | -8.710 | 0.03360 | - |
| akr1d1.S | -2.328 | 0.03360 | AKR1D1 |
| serpina1.S | -2.948 | 0.03772 | SERPINA1 |
| cpb2.L | -3.142 | 0.04754 | CPB2 |
| ca6.L | -5.471 | 0.04898 | CA6 |
| cyp2b6.L | -7.558 | 0.05069 | CYP2C8 |
| proz.L | -2.459 | 0.05430 | F10 |
| tmem26.S | 2.430 | 0.05774 | TMEM26 |
| phlda2.L | 4.625 | 0.05774 | PHLDA2 |
| apoh.L | -1.644 | 0.05774 | - |
| clec10a.S | -6.968 | 0.05862 | - |
| thbs4.S | 7.879 | 0.06728 | THBS4 |
| LOC108708580 | -6.947 | 0.08165 | SDR9C7 |
| slc22a18.L | 3.632 | 0.08563 | SLC22A18 |
| LOC121399151 | -4.075 | 0.08563 | MFAP4 |
| cyb5r3.L | -1.977 | 0.00002 | CYB5R3 |
| LOC108716659 | -2.543 | 0.00011 | - |
| chia.S | 2.116 | 0.00025 | CHIA |
| xdm-w | -8.849 | 0.00064 | - |
| LOC108717285 | -2.175 | 0.00245 | - |
| LOC100036823 | -1.735 | 0.00249 | FTH1 |
| LOC121395810 | -2.784 | 0.00250 | - |
| atp12a.L | -2.530 | 0.00258 | ATP12A |
| LOC108714924 | -4.108 | 0.00424 | MUC5AC |
| XB994846.L | -3.620 | 0.00424 | - |
| fut2.L | -5.368 | 0.00456 | FUT2 |


| XBXL10_1g6099 | LOC108707818 | -1.976 | 0.00617 | - |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g20743 | LOC108715185 | -3.341 | 0.00868 | RBM12 |
| XBXL10_1g32531 | LOC121396199 | -3.124 | 0.01065 | - |
| XBXL10_1g43622 | map2.S | -2.521 | 0.01090 | MAP2 |
| XBXL10_1g6966 | LOC108708112 | -2.953 | 0.01168 | - |
| XBXL10_1g38949 | krt12.5.L | -1.888 | 0.01168 | KRT24 |
| XBXL10_1g32129 | LOC108695967 | -4.070 | 0.01168 | - |
| XBXL10_1g9904 | LOC108708919 | -7.033 | 0.01245 | - |
| XBXL10_1g41031 | hba2.L | -1.748 | 0.01326 | HBZ |
| XBXL10_1g1797 | LOC108713383 | 1.744 | 0.01326 | - |
| XBXL10_1g11415 | LOC108710720 | -4.221 | 0.01326 | - |
| XBXL10_1g5949 | LOC121398736 | 5.310 | 0.01326 | - |
| XBXL10_1g8825 | prcp.L | -1.154 | 0.01326 | PRCP |
| XBXL10_1g1913 | igfbpl1.L | -4.865 | 0.01326 | IGFBPL1 |
| XBXL10_1g21588 | LOC108715540 | -2.866 | 0.01401 | - |
| XBXL10_1g19367 | frrs1.L | -1.282 | 0.01401 | FRRS1 |
| XBXL10_1g11373 | LOC108710708 | 2.078 | 0.01667 | INTS13 |
| XBXL10_1g44393 | LOC108704227 | -1.909 | 0.01969 | - |
| XBXL10_1g23886 | sst.1.L | -4.032 | 0.01969 | SST |
| XBXL10_1g36987 | s100a1.L | -2.138 | 0.02078 | S100A1 |
| XBXL10_1g22181 | mgp.S | -2.645 | 0.02078 | - |
| XBXL10_1g15424 | vamp5.S | 1.665 | 0.02902 | - |
| XBXL10_1g7463 | LOC108708308 | -6.406 | 0.02902 | - |
| XBXL10_1g11333 | rerg.L | 3.251 | 0.02902 | RERG |
| XBXL10_1g36661 | LOC108699114 | -2.879 | 0.02934 | - |
| XBXL10_1g33737 | LOC108697796 | -6.480 | 0.03002 | - |
| XBXL10_1g23945 | atp13a4.L | -5.015 | 0.03002 | ATP13A4 |
| XBXL10_1g25731 | sst.1.S | -5.131 | 0.03009 | SST |
| XBXL10_1g38451 | LOC121397797 | -2.069 | 0.03196 | - |
| XBXL10_1g13564 | nt5dc4.L | -1.917 | 0.03196 | NT5C2 |
| XBXL10_1g42672 | LOC108702671 | 1.228 | 0.03220 | - |
| XBXL10_1g37233 | LOC108699763 | -2.240 | 0.03360 | - |
| XBXL10_1g43750 | hbd.S | -1.560 | 0.03502 | - |
| XBXL10_1g16960 | clec4e.S | 1.345 | 0.03558 | PPFIA2 |
| XBXL10_1g6659 | ptchd1.L | -5.427 | 0.03678 | PTCHD1 |
| XBXL10_1g24584 | pomc.L | -5.694 | 0.03722 | POMC |
| XBXL10_1g20691 | LOC108715167 | -5.678 | 0.03722 | - |
| XBXL10_1g34160 | LOC108698118 | -0.914 | 0.03722 | - |
| XBXL10_1g17981 | LOC108704982 | -3.080 | 0.03722 | MUC5AC |
| XBXL10_1g41029 | LOC108701509 | -1.548 | 0.03762 | HBZ |
| XBXL10_1g43022 | LOC108702797 | 1.299 | 0.03885 | RAB37 |
| XBXL10_1g28511 | LOC100158309 | -3.443 | 0.04088 | - |
| XBXL10_1g21184 | LOC108715076 | -5.871 | 0.04088 | CHST5 |
| XBXL10_1g9676 | mkrn3.S | 1.476 | 0.04305 | MKRN6P |
| XBXL10_1g41035 | hbg1.L | -1.789 | 0.04305 | - |
| XBXL10_1g43763 | LOC108702421 | -1.672 | 0.04378 | HBQ1 |
| XBXL10_1g38688 | tnfaip8l2.S | 1.090 | 0.04743 | TNFAIP8L3 |
| XBXL10_1g22833 | LOC108716104 | 1.808 | 0.04784 | - |
| XBXL10_1g41015 | hbe1.L | -1.593 | 0.04837 | HBG2 |
| XBXL10_1g14235 | epor.L | -1.435 | 0.05289 | EPOR |
| XBXL10_1g2823 | LOC108697103 | 3.142 | 0.05408 | - |
| XBXL10_1g41503 | LOC108701721 | -1.449 | 0.05408 | - |
| XBXL10_1g32223 | LOC121395792 | 2.080 | 0.05683 | - |
| XBXL10_1g42081 | LOC108703916 | 0.885 | 0.05683 | TRIM65 |
| XBXL10_1g44438 | fbxl16.S | 4.839 | 0.05683 | FBXL16 |
| XBXL10_1g28691 | LOC108719808 | -1.371 | 0.05789 | VIPR1 |


| XBXL10_1g8295 | krt7.L | -0.929 | 0.05789 | KRT8 |
| :---: | :---: | :---: | :---: | :---: |
| XBXL10_1g38809 | s100a11.S | -1.535 | 0.06090 | - |
| XBXL10_1g9894 | LOC121400559 | -4.476 | 0.06090 | - |
| XBXL10_1g13740 | LOC108711632 | -4.831 | 0.06090 | ZNF84 |
| XBXL10_1g27370 | trg.L | 1.299 | 0.06090 | - |
| XBXL10_1g32007 | btg5.2.L | -1.381 | 0.06118 | - |
| XBXL10_1g33116 | atp12a.S | -1.897 | 0.06282 | ATP12A |
| XBXL10_1g18725 | LOC121403015 | 1.094 | 0.06465 | MC3R |
| XBXL10_1g19102 | LOC108714247 | -3.888 | 0.06465 | - |
| XBXL10_1g39458 | tnfrsf6b.L | -3.292 | 0.06587 | RYR1 |
| XBXL10_1g7453 | rad51d.L | 0.845 | 0.06742 | RAD51D |
| XBXL10_1g2283 | LOC121394372 | 2.704 | 0.06742 | - |
| XBXL10_1g12298 | gpr151.L | -3.711 | 0.06742 | GPR151 |
| XBXL10_1g21864 | Imx1a.S | -4.634 | 0.06742 | LMX1A |
| XBXL10_1g15186 | LOC108712612 | -2.083 | 0.06742 | - |
| XBXL10_1g2056 | rfx3.L | -2.977 | 0.06926 | RFX3 |
| XBXL10_1g7623 | zpld1.L | -5.457 | 0.07128 | ZPLD1 |
| XBXL10_1g13334 | LOC108711460 | -3.850 | 0.07152 | MIR9-3 |
| XBXL10_1g28578 | LOC121395207 | 0.943 | 0.07494 | - |
| XBXL10_1g13799 | plekha2.L | 1.394 | 0.07494 | PLEKHA2 |
| XBXL10_1g25853 | LOC108705376 | 1.064 | 0.07739 | - |
| XBXL10_1g3038 | hapln1.L | -4.687 | 0.07739 | HAPLN1 |
| XBXL10_1g25182 | LOC108717807 | -2.243 | 0.07790 | - |
| XBXL10_1g32759 | LOC108697460 | -1.468 | 0.07984 | SGTA |
| XBXL10_1g14344 | gal3st4.2.L | -3.561 | 0.08172 | GAL3ST1 |
| XBXL10_1g5031 | sall2.S | -5.566 | 0.08304 | SALL2 |
| XBXL10_1g29857 | chrac1.S | 0.983 | 0.08605 | CHRAC1 |
| XBXL10_1g26263 | crisp1.3.S | -2.788 | 0.08605 | CRISP3 |
| XBXL10_1g40289 | LOC108701187 | -3.657 | 0.08605 | - |
| XBXL10_1g22073 | nog4.S | -3.681 | 0.08819 | - |
| XBXL10_1g28709 | LOC108719814 | -5.978 | 0.08884 | FCN2 |
| XBXL10_1g9333 | LOC108709314 | 4.577 | 0.08884 | - |
| XBXL10_1g24489 | mep1a.L | -5.128 | 0.09036 | MEP1A |
| XBXL10_1g21540 | cth.S | 1.186 | 0.09036 | CTH |
| XBXL10_1g42068 | LOC108703829 | -1.447 | 0.09036 | SULT1C2 |
| XBXL10_1g20797 | ins.S | -3.934 | 0.09036 | INS |
| XBXL10_1g41370 | grap.L | 1.293 | 0.09179 | GRAP |
| XBXL10_1g26152 | LOC121394366 | 1.980 | 0.09261 | SNORA73 |
|  |  |  |  |  |

Table S5. Gene ontology analysis of differentially expression genes in the developing gonads for three knockout lines (dmrt1L females, dmrt1L males, dmrt1S females, dmrt1S males) compared to wildtype sisters, and for wildtype males compared to wildtype females (MF1, MF2, MF3). Results are listed for three gene ontology categories (biological process, molecular function, cellular component); subcategories with significant enrichment follow their parent category and are indicated with ">"s, which reflect the degree of nestedness. For each gene and analyis, the number of differentially expressed genes is indicated (\# DE) and NS indicates no significant enrichment. Analyses were performed for one quantification method (STAR) and one method for analysis of differential expression (edgeR) and the false detection rate P-value is indicated for each significantly enriched annotation (FDR). Because a putative human ortholog was not identified for some transcripts (Table S1), the number of genes used in the gene ontology analysis was generally lower than the number of differentially expressed genes.

| Analysis and gene | \#DE | GO Biological process | FDR | GO molecular function | FDR | GO cellular component |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

STAR + EdgeR
dmrt1L females 337


|  |  | >>>>>cellular biosynthetic process | 0.002 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | >>>>organic cyclic compound |  |  |  |  |  |
|  |  | biosynthetic process | 0.049 |  |  |  |  |
|  |  | cholesterol biosynthetic process | 0.007 |  |  |  |  |
|  |  | >sterol biosynthetic process | 0.015 |  |  |  |  |
|  |  | >>>>lipid metabolic process | 0.000 |  |  |  |  |
|  |  | >>>lipid biosynthetic process | 0.004 |  |  |  |  |
|  |  | >>>>small molecule metabolic process | 0.000 |  |  |  |  |
|  |  | >secondary alcohol biosynthetic process | 0.007 |  |  |  |  |
|  |  | >>>small molecule biosynthetic process | 0.000 |  |  |  |  |
|  |  | nucleobase metabolic process | 0.047 |  |  |  |  |
|  |  | maturation of 5.85 SRNA | 0.050 |  |  |  |  |
|  |  | rRNA modification | 0.049 |  |  |  |  |
|  |  | ribonucleotide metabolic process | 0.044 |  |  |  |  |
|  |  | >ribose phosphate metabolic process | 0.050 |  |  |  |  |
|  |  | organophosphate biosynthetic process | 0.050 |  |  |  |  |
|  |  | cellular lipid metabolic process | 0.004 |  |  |  |  |
|  |  | oxoacid metabolic process | 0.038 |  |  |  |  |
|  |  | Unclassified | 0.022 |  |  |  |  |
| dmrt1L males | 5 | NS | - | NS |  | NS | - |
| $d m r t 15$ females | 20 | NS | - | NS |  | NS | - |
|  |  | gamma-aminobutyric acid biosynthetic |  |  |  | external side of apical plasma |  |
| dmrt15 males | 1251 | process | 0.013 | carbon-sulfur lyase activity | 0.035 | membrane | 0.026 |
|  |  | >amino acid biosynthetic process | 0.016 | >>catalytic activity | 0.000 | >apical plasma membrane | 0.022 |
|  |  | >>carboxylic acid biosynthetic process | 0.000 | L-amino acid transmembrane transporter activity | 0.002 | >>plasma membrane region | 0.000 |
|  |  | >>>carboxylic acid metabolic process | 0.000 | >amino acid transmembrane transporter activity | 0.000 | >>>membrane | 0.006 |
|  |  |  |  | >>carboxylic acid transmembrane transporter |  |  |  |
|  |  | >>>>0xoacid metabolic process | 0.000 | activity | 0.000 | >>>>cellular anatomical entity | 0.000 |
|  |  | >>>>>organic acid metabolic process | 0.000 | >>>organic acid transmembrane transporter activity | 0.000 | cytosolic small ribosomal subunit | 0.017 |
|  |  |  |  | >>>>transmembrane transporter |  |  |  |
|  |  | >>>>>>cellular metabolic process | 0.000 | activity | 0.000 | >cytosolic ribosome | 0.021 |
|  |  | >>>>>>>metabolic process | 0.000 | >>>>>transporter activity | 0.000 | >>ribosome | 0.010 |
|  |  |  |  | >>>>organic anion transmembrane transporter |  |  |  |
|  |  | >>>>>>>cellular process | 0.000 | activity | 0.000 | >>>intracellular organelle | 0.000 |
|  |  |  |  | secondary active |  |  |  |
|  |  | >>>>>>small molecule metabolic |  | transmembrane transporter |  | >>>>intracellular anatomical |  |
|  |  | process | 0.000 | activity | 0.000 | structure | 0.000 |
|  |  | >>>>>>organic substance metabolic |  | >active transmembrane |  |  |  |
|  |  | process | 0.000 | transporter activity | 0.000 | >>>>organelle | 0.000 |
|  |  |  |  | structural constituent of |  |  |  |
|  |  | >>>organic acid biosynthetic process | 0.000 | ribosome | 0.028 | >>cytosol | 0.000 |
|  |  | >>>>cellular biosynthetic process | 0.000 | >structural molecule activity | 0.044 | >>>cytoplasm | 0.000 |
|  |  |  |  | active monoatomic ion transmembrane transporter |  |  |  |
|  |  | >>>>>biosynthetic process | 0.000 |  | 0.030 | >small ribosomal subunit | 0.018 |
|  |  |  |  | >monoatomic ion |  |  |  |
|  |  | >>>>organic substance biosynthetic process | 0.000 | transmembrane transporter activity | 0.027 | >>ribosomal subunit | 0.003 |
|  |  | >>>>small molecule biosynthetic |  | salt transmembrane transporter |  |  |  |
|  |  | process | 0.000 | activity | 0.008 | basolateral plasma membrane | 0.001 |
|  |  |  |  | inorganic molecular entity |  |  |  |
|  |  | >>organonitrogen compound biosynthetic process | 0.001 | transmembrane transporter activity | 0.028 | >basal plasma membrane | 0.003 |
|  |  | >>>organonitrogen compound metabolic |  | oxidoreductase activity |  |  |  |
|  |  | process | 0.000 | oxidoreductase activity | 0.028 | >>basal part of cell | 0.004 |
|  |  | >>>>nitrogen compound metabolic process | 0.000 | identical protein binding | 0.003 | extracellular matrix | 0.022 |
|  |  | >>amino acid metabolic process | 0.004 | >protein binding | 0.000 | >external encapsulating structure | 0.021 |
|  |  | >>>primary metabolic process | 0.000 | >>binding | 0.000 | extracellular exosome | 0.000 |
|  |  | >gamma-aminobutyric acid metabolic process | 0.027 | transferase activity | 0.050 | >extracellular vesicle | 0.000 |
|  |  | >>monocarboxylic acid metabolic |  |  |  | >>extracellular membrane-bounded |  |
|  |  | process | 0.003 | Unclassified | 0.000 | organelle | 0.000 |
|  |  | liver regeneration | 0.037 | olfactory receptor activity | 0.000 | >>>membrane-bounded organelle | 0.000 |
|  |  | >liver development | 0.018 |  |  | >>>extracellular organelle | 0.000 |
|  |  | >>>animal organ development | 0.049 |  |  | >>>>extracellular region | 0.001 |
|  |  | >>>>anatomical structure development | 0.005 |  |  | >>vesicle | 0.000 |
|  |  | >>>>>developmental process | 0.018 |  |  | >extracellular space | 0.000 |
|  |  | >>hepaticobiliary system development | 0.021 |  |  | mitochondrial membrane | 0.040 |
|  |  | >>>system development | 0.016 |  |  | >mitochondrial envelope | 0.033 |
|  |  | >>>>multicellular organism |  |  |  |  |  |
|  |  | development | 0.002 |  |  | >>mitochondrion | 0.016 |
|  |  | >>>>>multicellular organismal process | 0.023 |  |  | >>>intracellular membrane-bounded | 0.000 |
|  |  | neutral amino acid transport | 0.018 |  |  | >organelle membrane | 0.004 |


| >amino acid transport | 0.001 |  |  | endoplasmic reticulum | 0.002 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| >>nitrogen compound transport | 0.009 |  |  | >endomembrane system | 0.034 |
| >>>transport | 0.000 |  |  | cell junction | 0.012 |
| >>>>establishment of localization | 0.000 |  |  | intracellular organelle lumen | 0.016 |
| >>>>>localization | 0.008 |  |  | >organelle lumen | 0.017 |
| >>carboxylic acid transport | 0.000 |  |  | >>membrane-enclosed lumen | 0.015 |
| >>>organic acid transport | 0.000 |  |  | Unclassified | 0.000 |
| >>>>organic substance transport | 0.002 |  |  |  |  |
| >>>>>organic anion transport | 0.000 |  |  |  |  |
| >>>>sulfur compound transport | 0.044 |  |  |  |  |
| L-alpha-amino acid transmembrane transport | 0.039 |  |  |  |  |
| >amino acid transmembrane transport | 0.000 |  |  |  |  |
| >>carboxylic acid transmembrane transport | 0.000 |  |  |  |  |
| >>>organic acid transmembrane transport | 0.001 |  |  |  |  |
| >>>>transmembrane transport | 0.001 |  |  |  |  |
| >L-amino acid transport | 0.043 |  |  |  |  |
| response to osmotic stress | 0.019 |  |  |  |  |
| cytoplasmic translation | 0.045 |  |  |  |  |
| >>>>amide metabolic process | 0.003 |  |  |  |  |
| >>>amide biosynthetic process | 0.044 |  |  |  |  |
| >>>>cellular nitrogen compound |  |  |  |  |  |
| biosynthetic process | 0.043 |  |  |  |  |
| alpha-amino acid metabolic process | 0.007 |  |  |  |  |
| cell fate commitment | 0.044 |  |  |  |  |
| response to inorganic substance | 0.019 |  |  |  |  |
| response to organonitrogen compound | 0.004 |  |  |  |  |
| >response to organic substance | 0.003 |  |  |  |  |
| >response to nitrogen compound | 0.004 |  |  |  |  |
| response to organic cyclic compound | 0.033 |  |  |  |  |
| monoatomic ion transport | 0.019 |  |  |  |  |
| tube development | 0.049 |  |  |  |  |
| response to oxygen-containing compound | 0.001 |  |  |  |  |
| response to endogenous stimulus | 0.012 |  |  |  |  |
| cellular response to chemical stimulus | 0.002 |  |  |  |  |
| catabolic process | 0.044 |  |  |  |  |
| regulation of biological quality | 0.002 |  |  |  |  |
| anatomical structure morphogenesis | 0.043 |  |  |  |  |
| negative regulation of biological process | 0.014 |  |  |  |  |
| positive regulation of biological process | 0.014 |  |  |  |  |
| Unclassified | 0.000 |  |  |  |  |
| detection of chemical stimulus involved in sensory perception of smell | 0.000 |  |  |  |  |
| >detection of chemical stimulus involved in sensory perception | 0.000 |  |  |  |  |
| >>detection of stimulus involved in sensory perception | 0.002 |  |  |  |  |
| >>>detection of stimulus | 0.005 |  |  |  |  |
| >>detection of chemical stimulus | 0.000 |  |  |  |  |
| >>sensory perception of chemical stimulus | 0.001 |  |  |  |  |
| >sensory perception of smell | 0.002 |  |  |  |  |
| NS | - | NS | - | NS | - |
| NS | - | monooxygenase activity | 0.027 | NS | - |
| NS | - | haptoglobin binding | 0.021 | hemoglobin complex | 0.000 |
|  |  | oxygen carrier activity | 0.026 | haptoglobin-hemoglobin complex | 0.005 |
|  |  | sulfotransferase activity | 0.029 |  |  |

S6. Paper entitled "Functional dissection and assembly of a small, newly evolved, femalespecific genomic region of the W chromosome of the African clawed frog Xenopus laevis" by Cauret et al. submitted to PLOS Genetics on July 19 ${ }^{\text {th }}, 2023$. I am identified as a coauthor of this paper due to contributions to the histological examination of $X$. laevis $d m-w$ null individuals.

Functional dissection and assembly of a small, newly evolved, female-specific genomic region of the W chromosome of the African clawed frog Xenopus laevis

Caroline M. S. Cauret ${ }^{1,2}$, Danielle C. Jordan ${ }^{3,4}$, Lindsey M. Kukoly ${ }^{1}$, Sarah R. Burton ${ }^{3}$, Emmanuela U. Anele ${ }^{1,5}$, Jacek M. Kwiecien ${ }^{6}$, Marie-Theres Gansauge ${ }^{7}$, Sinthu Senthillmohan ${ }^{1}$, Eli Greenbaum ${ }^{8}$, Matthias Meyer ${ }^{7}$, Marko E. Horb ${ }^{3}$, Ben J. Evans ${ }^{1 *}$
${ }^{1}$ Biology Department, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, ON L8S4K1, Canada
${ }^{2}$ Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
${ }^{3}$ Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543 USA
${ }^{4}$ The School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
${ }^{5}$ Department Zoology, Ahmadu Bello University, Zaria, Nigeria
${ }^{6}$ Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S4K1, Canada
${ }^{7}$ Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
${ }^{8}$ Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA

Correspondence: evansb@mcmaster.ca


#### Abstract

Genetic triggers for sex determination are frequently co-inherited with other linked genes that may also influence one or more sex-specific phenotypes. To better understand how sex-limited regions evolve and function, we studied a small female-specific region of the frog Xenopus laevis that drives female differentiation. Using gene editing, we found that the sex-determining function of this region requires a gene called $d m-w$ and that the two other female-specific loci (scan-w and ccdc69-w) are not essential for viability, female development, or fertility. Analysis of mesonephros/gonad transcriptomes during sexual differentiation illustrates masculinization of the $d m-w$ knockout transcriptome and identifies mostly nonoverlapping sets of differentially expressed genes in three knockout lines (dm-w, scan-w, ccdc69-w) compared to wildtype sisters. Capture sequencing of almost all Xenopus species and PCR surveys indicate that the female-determining function of $d m-w$ is present in only a subset of species that carry this gene. These findings map out a dynamic evolutionary history of a newly evolved but functionally fragile female-specific genomic region, whose components have distinctive functions that frequently degraded during Xenopus diversification, and evidence the evolutionary consequences of recombination suppression.

\section*{Introduction}

Proteins with functional associations are sometimes encoded by genes that are genetically linked in the genome [1] or in the same physical space in the nucleus [2], which may promote their co-regulation. Supergenes are physically linked sets of genes that together orchestrate ecologically relevant and


potentially complex phenotypes [3] such as behaviour [4], mimicry [5], color [6], heterostyly [7], male reproductive behaviour [8], offspring sex ratio [9], and (perhaps most notably) sexual differentiation [10].

Genetic associations between alleles of different loci can be favored under several scenarios such as heterogeneity of environmental conditions (if certain combinations of alleles are beneficial in some habitats but not others) or negative epistasis [if certain combinations of alleles are deleterious; 11]. Recombination arrest could be favored by natural selection in order to maintain advantageous combinations of alleles across multiple genes [12-16] and mechanistically could be achieved by genomic changes such as inversions or allelic divergence. Expansion of recombination suppression could be triggered by regulatory changes [17, 18], sexual antagonism [15, 19], heterozygote advantage and balancing selection [20, 21], meiotic drive [19], and neutral processes [22, 23].

Because recombination suppression causes co-inheritance of genes that are physically linked to the sexdetermining locus, sex-specific portions of sex chromosomes may act as supergenes by working together to sculpt sex-specific phenotypes [10]. However, in some cases, sex-linked genes encode diverse phenotypes, including some that are not directly related to sex determination. For example, the malespecific portion of the human Y-chromosome encodes a protein (Sry) that triggers male primary gonadal differentiation, and also several other genes that function long after primary sexual differentiation has been achieved [albeit related to male fertility; 24].

In principle, different genes in a supergene could have epistatic interactions that influence one phenotype [25]. If this were the case, each gene would be necessary but not individually sufficient to produce the phenotype that is controlled by the supergene, or multiple supergene components could have modifier effects on this phenotype. In the case of a sex-determining supergene, for example, sexual differentiation might require a functional version of all genes in the supergene. In some plants, for example, male differentiation is orchestrated by two genes; natural selection may have favoured the co-localization of both on a male-specific supergene in kiwis [26, 27]. At the other extreme is the possibility that individual genes on a sex-determining region lack strong epistatic interactions, with each locus influencing a different phenotype. For example, one locus could influence primary (gonadal) sexual differentiation and another could influence secondary (non-gonadal) differentiation, or even a non-essential or subtle trait. Because they occur in only one sex, each gene in a sex-specific genomic region necessarily must have sex-specific phenotypic influences. Clearly, however, not all loci on a sex-specific region are necessarily required for the most fundamental aspects of sexual differentiation, which are viability and reproduction.

## A small female-specific genomic region in the African clawed frog (Xenopus laevis)

To explore how sex-limited genomic regions arise, function, and change over time, we studied a small female-determining genomic region on the W chromosome of the African clawed frog, Xenopus laevis. This region is $\sim 278$ kilobases (kb) long, located on chromosome 2 L , and contains only three femalespecific genes [28]: $d m-w$, scan- $w$, and $c c d c 69-w$. No gametolog of these three female-specific genes is known to be present on the Z chromosome, and low sequence homology between the female-specific portion of the W chromosome and the Z chromosome [apart from repetitive elements; 28] presumably contributes to recombination suppression in this female-specific region. One of these genes - $d m-w-$ is thought to be the main trigger for primary (gonadal) sexual differentiation of female X. laevis [29, 30].

There are strong reasons to suspect that sex determination in $X$. laevis is triggered by the presence or absence of this female-specific genomic region, as opposed to environmental factors, or a polygenic trigger that involves genes outside of this female-specific region (such as the male related genes dmrtlL and $d m r t 1 S$ which reside on chromosomes 1 L and 1 S , respectively). In a survey of 24 females and 12 males in nature, all females and no males carried $d m-w$ [31]. In a laboratory-reared family that included 17 daughters and 20 sons, reduced representation genome sequencing recovered a strong association with phenotypic sex exclusively on the region of Chromosome 2L that contains the female-specific region
[32]. In three of nine or three of seven transgenic (ZZ) males (depending on the construct used), insertion of $d m-w$ by restriction enzyme-mediated integration resulted in the development of ovotestes, which contain both ovarian and testicular structures [29]. In the transgenic males that did not develop ovotestis, the $d m-w$ transgene was generally lowly expressed [29]. In three of 11 (ZW) female tadpoles and 10 of 38 female adults that carried an RNA interference transgene against $d m-w$, abnormal gonads developed that were partially sex-reversed $[29,30]$ and gonads of two of 38 transgenic female adults were fully sex reversed [30]. The variable effects of $d m-w$ transgenes and inactivation could indicate that dosages of other W-linked genes or Z-linked loci also influence sexual differentiation, or alternatively this could have a methodological basis (e.g., positional effects of the $d m-w$ transgene or incomplete inactivation of $d m-w$ by RNA interference).

In adult $X$. laevis, the other two female-specific genes in $X$. laevis - scan-w and ccdc $69-w$ - are have substantial expression levels in either the brain and stomach or the gonads and brain respectively [28]. In tadpoles, scan-w and ccdc69-w are both expressed in the developing gonads during and after sexual differentiation [28]. The scan domain, which is present in scan-w [28], is a highly conserved motif that facilitates dimerization and is typically found near the N -terminus of vertebrate $\mathrm{C}_{2} \mathrm{H}_{2}$ zinc-finger proteins, but most of these proteins have unknown function [33]. The $c c d c 69$ protein, which is paralogous to $c c d c 69-w$, is involved with microtubule binding activity and spindle formation during cytokinesis [34].

These three W-linked loci in X. laevis each became W-linked due to independent duplication events because their closest paralogs in the autosomes are not tightly linked [28, 29, 35-37]. These duplication events are separate from and subsequent to those associated with allotetraploidization in Xenopus (which occurred at least two separate times to generate the ancestors of extant allotetraploid species) [38, 39]. These allotetraploid species (ancestral and extant) have two subgenomes that are respectively derived from two different diploid ancestors. The subgenomes of the most recent common allotetraploid ancestor of $X$. laevis and $X$. clivii are denoted " $L$ " and " $S$ " $[40]$ and homeologous genes in each subgenome generally include these letters as a suffix (e.g., $d m r t 1 L$ and $d m r t 1 S$ are homeologs that by definition are duplicated genes that arose from genome duplication). Strikingly, $d m-w$ appears to be a chimerical gene, whose components are derived from as many as three different sources including: (i) the second and third exons and flanking regions, which formed from gene duplication of $\operatorname{dmrtlS}[28,35,36]$, (ii) the fourth exon and flanking regions, which arose from a noncoding DNA transposon called hAT-10 [36], and (iii) the first exon and flanking regions, which does not have discernible homology to $d m r t l S$, is rich in transposable elements, and has unclear origins [41]. A recent genome assembly for X. laevis (version 10.1) suggests that the transcribed regions of $d m-w$ and scan-w overlap because exons $4-6$ of scan-w are located in the first intron of $d m-w$. All three of these genes are transcribed in the same direction, which is in the reverse orientation of the coordinates for chromosome 2 L in the $X$. laevis genome assembly. Combined with the differing genomic locations of paralogous genes [28], the overlapping transcribed regions of $d m-w$ and scan $-w$ is consistent with a chimerical origin of $d m-w$ wherein exons 2 and 3 originated via separate duplication/translocation events from exon 1 and exon 4 [29, 36, 41].

We set out to better understand evolution and function of the W-linked sex-linked genomic region of $X$. laevis. We explored function of each of the three genes in this region by independently inactivating each one of them using CRISPR/Cas9 gene editing, and we then explored their mutant phenotypes in terms of sex-determination, fertility, and gonadal transcriptomics. We also investigated the evolutionary histories of each of these three genes using targeted capture sequencing across almost all Xenopus species and PCR assays, with interpretations in a phylogenetic context. These efforts provide comprehensive insights into functional evolution and assembly of a small female-specific sex-determining region, demonstrate nonoverlapping and partially non-essential activities of its components, and evidence functional degeneration of each component - findings that are in step with the expectation that the efficacy of natural selection is reduced in genomic regions lacking recombination [42, 43].

## Results

Female differentiation of $X$. laevis is triggered by $d m-w$, but not scan-w or $\boldsymbol{c c d c} 69-w$
To further characterize their functional roles, we created a knockout line for each of three genes: $d m-w$, scan-w and ccdc69-w in X. laevis using CRISPR/Cas9 (Supplementary Information; Fig. S1). F0 mosaic individuals were crossed with wildtype individuals to generate non-mosaic (i.e., containing only the mutant allele in all cells) F1 individuals. For each knockout line, viable F1 individuals were recovered, which demonstrates non-essentiality for each of these genes for viability of genetic females. Fertility of F1 knockout individuals was assessed by crossing them to wildtype individuals with the opposite sex phenotype; gonadal gross anatomy and histology of F1 individuals were then characterized after euthanasia.

In the F0 and F1 generations, genetic females carrying the $d m-w$ knockout mutation (a 10 bp deletion that was confirmed by Sanger sequencing; Fig. S1) developed into phenotypic males. When F0 individuals were crossed with wildtype (ZW) females, viable F1 offspring were produced, which demonstrates that the sex reversed F0 females developed into phenotypically fertile males. In the F1 generation, a wildtype (ZW) female and a phenotypically male $\left(\mathrm{ZW}^{*}\right)$ mutant female (where $\mathrm{W}^{*}$ indicates the W chromosome carrying an inactivated copy of $d m-w$ that was confirmed by Sanger sequencing) were crossed to produce offspring with four different sex chromosome phenotypes: $W^{*} Z(n=6), W^{*} W(n=8), W Z(n=5)$, and $\mathrm{ZZ}(\mathrm{n}=6)$. All $\mathrm{W} * \mathrm{Z}$ individuals developed into phenotypic males and all $\mathrm{W}^{*} \mathrm{~W}$ individuals developed into phenotypic females; wildtype offspring matched their expected sexes with WZ individuals developing into phenotypic females and ZZ individuals developing into phenotypic males. Fertility of a $\mathrm{W}^{*} \mathrm{~W}$ female was confirmed by a cross to a phenotypically male (ZW*) mutant female. This cross produced offspring that were $\mathrm{WZ}(\mathrm{n}=8), \mathrm{W}^{*} \mathrm{~W}(\mathrm{n}=16)$, and $\mathrm{W}^{*} \mathrm{Z}$ or $\mathrm{W}^{*} \mathrm{~W}^{*}(\mathrm{n}=19$ in total for these two offspring genotypes; we did not distinguish them because their $d m-w$ sequences are identical for the hemizygous mutant allele and the homozygous mutant allele). As expected, the $\mathrm{W}^{*} \mathrm{Z}$ or $\mathrm{W}^{*} \mathrm{~W}^{*}$ offspring were phenotypically male and the $\mathrm{W} * \mathrm{~W}$ and WZ offspring were phenotypically female. Histological analysis of testis tissue from four F2 sex-reversed $d m-w$ mutant females ( $\mathrm{W} * \mathrm{Z}$ ) is consistent with complete sex reversal, including normal sperm development (Figs. 1, S2). We also were able to obtain offspring from a sex-reversed genetic female and a wildtype female using natural mating after both individuals were injected with human chorionic gonadotropin (which is generally required to elicit sexual behavior in captive Xenopus). This indicates that, in addition to producing normal sperm and being fertile, sex-revered genetic females also exhibit sexual behaviour of phenotypic males (amplexus).

Together these results indicate in $X$. laevis that (i) loss of function mutation in $d m-w$ causes complete sex reversal of a genetic female to a fertile male, (ii) $d m-w$ is not necessary for viability of genetic females which develop into phenotypic males, and (iii) having a functional copy of scan-w and ccdc69-w does not prevent development of the male phenotype by genetic females that carry a knockout mutation for $d m-w$.


Fig. 1. Testis histology of (a) a wildtype male and (b) a sex reversed F1 female carrying a $d m$ - $w$ knockout mutation. Black bars are $50 \mu \mathrm{~m}$; individuals' identification numbers are (a) 17FO and (b) 1847. Dotted circles indicate the margins of seminiferous tubules, and Sertoli cells (ser), spermatocytes (spc) and spermatozoa ( spz ) are labeled.

All F1 scan-w knockout individuals ( $\mathrm{n}=10$ individuals with 20 bp deletion that creates a premature stop codon; Fig. S1) and all ccdc69-w knockout individuals ( $\mathrm{n}=9$ individuals in total including two with a 22 bp deletion creates a premature strop codon, Fig. S1, and seven with a 214 bp deletion associated with a 12 bp insertion that also creates a premature strop codon) developed into phenotypically normal (and gravid) adult females. These observations demonstrate that neither scan-w nor $c c d c 69-w$ are both not required for female differentiation. When crossed to wildtype males, scan-w and $c c d c 69-w$ knockout lines each produced viable F2 individuals, demonstrating that scan-w and $c c d c 69-w$ are not required for female fertility.

## Variable transcriptomic responses to knockout of different W-specific genes

In females, $d m-w$ is expressed in the developing gonad during sexual differentiation, and in adult ovary and liver [28, 44]. Using RNAseq data, we confirmed female-specificity of $d m-w$ in the developing mesonephros/gonad (Fig. S3). Because scan-w and $c c d c 69-w$ were not present in the most recent reference transcriptome (version 10), in order to evaluate expression of these loci we added previously reported transcripts from [28] to this reference transcriptome and performed a separate quantification and normalization. Both genes were found to have zero or almost zero expression in the tadpole stage 50 mesonephros/gonad of all individuals, whether male or female, knockout or wildtype. While this does not rule out expression in other tissues or developmental stages, it is at odds with real-time PCR results reported previously that detected expression of these genes in female tadpole stage 50 mesonephros/gonad tissue [28].

We then compared expression of genes in the developing mesonephros/gonad of genetically female knockout and wildtype individuals at tadpole stage 50. Irrespective of the methods for transcript quantification or analysis of differential expression (Methods), the sets of differentially expressed genes for each mutant line (mutant versus wildtype sisters; Table S1) were almost entirely non-overlapping with each other or with three independent analyses of sex-biased expression in wildtype individuals (wildtype brothers versus wildtype sisters; Table S1, Figs. 2, S4-S6). These results may be attributable in part to batch effects discussed below, but are also consistent with the distinctive functions of each of these genes that are evidenced respectively by the adult knockout phenotypes (sex-reversal for $d m-w$ but not for scan$w$ or $c c d c 69-w)$.

Analysis of differential expression of the $d m-w$ knockout line compared to wildtype siblings found 8-33 significantly differentially expressed genes depending on the analysis pipeline Table S1, Figs. 2, S4-S6). Gene ontology of differentially expressed genes in the $d m-w$ knockout line did not recover significant enrichments in biological process, molecular function, or cellular component in any analysis pipeline (Table S2).

Analysis of differential expression of the scan-w knockout line identified between 17 and 34 significantly differentially expressed genes, depending on the analysis pipeline (Table S1, Figs. 2, S4-S6). Gene ontology of differentially expressed genes identified enrichments in cellular components associated with extracellular space for results from some analysis pipelines (Kallisto + DeSeq2, STAR + DeSeq2; Table S2).

Analysis of differential expression of the $c c d c 69-w$ knockout line identified 17-263 significantly differentially expressed genes, depending on the analysis pipeline (Table S1, Figs. 2, S4-S6). Gene ontology of differentially expressed genes in the $c c d c 69-w$ knockout line recovered a significant
enrichment of genes involved in biological processes such as oxygen transport, detoxification, molecular functions such as binding of oxygen and heme, and cellular components associated with hemoglobin (Table S2).

We also evaluated sex-biased expression in the developing mesonephros/gonad in wildtype individuals. Here again, significantly differentially expressed genes were generally non-overlapping across these three independent clutches, even though the genotypes in each treatment were the same (i.e., wildtype male versus wildtype female). Gene ontology analysis identified an enrichment in biological processes including oxygen transportation and hydrogen peroxide catabolism, molecular functions such as haptoglobin and iron binding and oxygen carrier activity, and cellular components such as the hemoglobin complex (Table S2).

Overall, we found substantial among-batch variation in the number and identity of transcripts with significant sex-biased expression in three different batches of wildtype female and male gonad/mesonephros transcriptomes (MF1, MF2, MF3; Figs. 2, S4-S6). This variation could be in part due to technical differences, such as among-batch variation in the number of biological replicates and number of reads per individual. It could also stem from among-batch developmental asynchrony in the timing of gonadal differentiation versus the morphological features that demarcate tadpole stage 50. Transcriptomic variation could also stem from among-individual genetic variation (e.g., nucleotide and epigenetic variation, maternal proteins); and variation among batches could be attributable to differences between tanks in temperature and other environmental parameters.


Fig. 2. Venn diagrams showing the numbers of overlapping and batch-specific differentially expressed genes in three batches where sex-specific expression was considered (MF1, MF2, MF3) and knockout to wildtype comparison for each knockout line: $d m-w$ (dmw), scan-w (scan), and $c c d c 69-w$ (ccdc). Results are shown for quantification using STAR and analysis of differential expression using edgeR. In the analyses of sex-specific expression, female expression is the reference; in the analysis of knockout expression, wildtype (female) expression is the reference.

## Masculinization of the developing gonad transcriptome in the dm-w knockout

The comparison between the $d m-w$ knockout and wildtype transcriptomes discussed above did not recover a large number of shared significantly differentially expressed transcripts, and those that were recovered did not have a significant enrichment for sex-related functional ontologies. In addition to batch effects and technical variation, the inclusion of mesonephros tissue - which are substantially (>20X) larger than the gonads at tadpole stage 50 - in our transcriptomic analyses may have decreased the signal of sex-biased expression in the gonad transcriptomes.

However, it is still possible that knockout of $d m-w$ did lead to masculinization of the transcriptome of the mesonephros/gonad complex at this early stage of sexual differentiation, but that we lacked statistical power to detect this. To explore this possibility, we focused on 74 sex-related genes (Table S3) and tested whether the knockout:wildtype expression ratios of these genes were positively correlated with the wildtype male:female expression ratios of these genes at the same developmental stage and tissue type. For three of four analysis pipelines, there was a significantly positive correlation between the $\log 2$ fold changes of the $d m-w$ knockout analysis and those of the wildtype male:female MF1 analysis and with the wildtype male:female MF3 analysis (Figs. 3, S7-8). Permutation tests indicated that comparisons between the $d m-w$ knockout analysis male:female MF3 analysis were significantly more positive than expected by chance for three of four analysis pipelines (all except Kallisto-EdgeR). Overall, these results indicate that the $d m-w$ knockout transcriptomes are masculinized compared to wildtype females.

A few other correlations were significantly positive (e.g., between the scanw-w knockout analysis and the MF2 analysis for two of the four pipelines, and between the $c c d c 69-w$ knockout analysis and the MF1 analysis or the MF1 and MF3 analyses for two pipelines). However, permutation tests indicate that only the first of these comparisons (between the scanw-w knockout analysis and the MF2 analysis) is significantly more positive than expected and this was for only one of the analysis pipelines (KallistoEdgeR, Fig. S9). We expected expression ratios to generally be positively correlated between the ccdc69$w$ knockout analysis and the MF1 analysis because the wildtype females in these analyses were the same. Taken together, these results indicate that there is no evidence for masculinization of the transcriptomes of the $c c d c 69-w$ knockout lines, and that evidence for masculinization of the scan-w knockout lines is modest.


Fig. 3. Analysis of transcriptome masculinization using the STAR-EdgeR pipeline. Pairwise correlations between non-outlier $\log 2$ fold changes of sex-related genes are plotted below the diagonal. Pearson's correlation coefficients are plotted above the diagonal with asterisks indicating significantly positive correlation coefficients. The diagonal is a density plot of $\log 2$ fold changes for each analysis. For pairwise comparisons between wildtype analyses (MF1, MF2, MF3) and the knockout and wildtype analysis (dmw, scan, ccdc), which are highlighted by red boxes, p -values of permutation tests are reported in the top below each correlation coefficient, with red font and a red asterisk highlighting significantly positive correlations based on permutation tests.

## Assembly of the female-specific portion of the $\boldsymbol{X}$. laevis $\mathbf{W}$ chromosome

The components of $d m-w$ were assembled during diversification of Xenopus [35, 36, 41, 45] around 20 million or more years ago [ $37,38,46,47$ ]. To further explore the origins of genetic components of the
female-specific region of the $X$. laevis W chromosome, we collected capture sequence data for exon 4 of $d m-w$, exons 4 and 5 of scan- $w$, and both exons of $c c d c 69-w$ in the same sample of Xenopus species as previously [Table S4; 45]. This included all Xenopus species except $X$. fraseri, and almost all individuals from each species were female. Capture sequencing of $d m-w$ exons 2 and 3 were previously reported [45]. Exon 1 of $d m-w$ is small and non-coding and was not intentionally targeted for capture sequencing. However, as detailed below, $d m$ - $w$ exon 1 was sequenced as "by-catch" of scan-w exon 4 in some species. Scan-w has six exons but we focused our attention on only exons 4 and 5 because the other exons are highly repetitive based on searches using the $X$. laevis genome sequence version 10.1. Ccdc69-w has two exons and we captured both.

Capture sequencing of one individual (usually a female) from almost all Xenopus species identified $d m-w$ exon 4 in $X$. laevis, $X$. victorianus, $X$. poweri, $X$. petersii, $X$. gilli, $X$. pygmaeus, $X$. kobeli, $X$. itombwensis, $X$. andrei, and $X$. largeni. The top BLAST hit of the $d m$ - $w$ exon 4 sequences that were capture sequenced matched the annotated exon 4 of this gene in the $X$. laevis version 10 genome sequence (Table S5), which is consistent with our interpretation that these capture sequences were indeed $d m-w$ exon 4 . Xenopus vestitus and $X$. clivii are the only species in which $d m-w$ exons 2 and 3 were previously detected [45] but where capture sequences reported in this study did not detect $d m-w$ exon 4 . These observations minimally indicate an origin of $d m-w$ exon 4 prior to the diversification of the most recent common ancestor species that contain this exon (a blue star Fig. 4). These results further suggest that $d m-w$ exon 4 is not present in species that also lack $d m-w$ exons 2 and 3 [45] and that $d m-w$ exon 4 may have been lost in $X$. vestitus and possibly $X$. clivii (depending on when this exon became linked to $d m$ - $w$ exons 2 and 3; discussed further below). Xenopus petersii, $X$. itombwensis, and $X$. andrei had in-frame deletions in the coding region of $d m-w$ exon 4 , and $X$. poweri had a frameshift deletion near the end of the coding region of this exon (Supplemental Information); we did not attempt to assess the functional effects of these mutations.

Capture sequencing identified scan-w exons 4 and 5 in five species (X. laevis, X. petersii, X. poweri, $X$. victorianus, and $X$. gilli; Fig. 4). We detected scan-w exon 4 but not exon 5 in $X$. largeni. Capture sequencing identified ccdc $69-w$ exons 1 and 2 in seven species ( $X$. laevis, $X$. petersii, $X$. poweri, $X$. victorianus, $X$. gilli, $X$. largeni, and $X$. andrei; Fig. 4). BLAST results to the $X$. laevis genome were consistent with our annotations of these sequences (Table S5). Capture sequencing of scan-w exon 4 also captured the sequences of the $d m-w$ exon 1 (which is non-coding) in each individual for which scan-w exon 4 was detected (X. laevis, X. petersii, X. poweri, X. victorianus, X. gilli, and X. largeni; Table S5). This demonstrates that these exons of these genes are physically linked at least in these five species.

Capture sequencing additionally identified non-target sequences that are homologous to some of the targeted exons in various species (Table S5). In X. laevis, for example, we identified exons 1 and 2 of $c c d c 69 . L$ but not exons 1 and 2 of $c c d c 69 . S$, even though the genome assembly evidences both exons for both homeologs. This opens the possibility that the $X$. laevis sample used for capture sequencing lacked the $c c d c 69 . S$ gene, though we cannot rule out the possibility that this is due to failure to capture this sequence (for example due to divergence of $c c d c 69 . S$ from the capture probes).

Scan-w and ccdc69-w originated by gene duplication of autosomal loci [28], and we therefore interpret the detection of any portion of these genes as evidence that the entirety of these loci (i.e., all exons that are currently present in $X$. laevis) were present ancestrally. The capture data from scan-w and ccdc69-w thus indicate that all three of these genes became linked around the same time that $d m$ - $w$ exon 4 , or even earlier if scan-w and ccdc69-w were either lost or undetected in X. clivii (Fig. 4).

Some of the capture sequences had mutations that interrupted the reading frame (Supplementary Information). Overall, however, these capture results identify uninterrupted coding regions of exons 1 and 2 of $c c d c 69-w$ and exons 4 and 5 of scan-w in five species ( $X$. laevis, $X$. petersii, X. poweri, $X$.
victorianus, and $X$. gilli) and a subset of these exons and/or closely related paralogs in $X$. largeni and $X$. andrei.


Fig. 4. Targeted capture sequencing reveals evolutionary steps toward the female-determining supergene of $X$. laevis. The genomic orientations of transcribed exons is depicted above a phylogenetic representation of the presence/absence data of capture data from exons 1 and 2 of $c c d c 69-w$, exons 4 and 5 of scan-w and exons $1,2,3$, and 4 of $d m-w$. Female specificity of $d m-w$ (fem only?) is based on PCR assays [this study; 45] with question marks indicating species where female-specificity of $d m-w$ is unknown, including for $X$. petersii where our PCR assay had inconsistent results. Xenopus fraseri and $X$.
cf. tropicalis were not assayed by the capture sequencing. The order of numbered exons of each gene corresponds to their genomic locations, including overlapping transcribed regions of scan-w and $d m-w$; only captured exons are mapped on the phylogeny (limitations of "by-catch" data for $d m-w$ exon 1 are discussed in main text). A red dot inside symbols indicates mutations that alter the reading frame as detailed in the supplement. Data are plotted on a Bayesian phylogeny estimated from complete mitochondrial genomes [48] which does not reflect reticulating relationships among species that stem from allopolyploidation [38]. Ploidy level of each species is indicated by a circle (diploids), a square (tetraploids), a hexagon (octoploids), or a star (dodecaploids). Scale bar is in millions of years before the present, and almost all nodes have $100 \%$ posterior probability. See Evans et al. [48] for further details on phylogenetic estimation, node confidences, and confidence intervals of divergence estimates.

## PCR assay for sex-specificity of $\boldsymbol{d m}-\boldsymbol{w}$

If $d m-w$ is the trigger for female differentiation in Xenopus species in addition to $X$. laevis, then this gene is expected to be present in all females and no males. However, a previous PCR assay of six Xenopus species found $d m-w$ to be female specific in $X$. laevis and $X$. gilli but not in $X$. itombwensis, $X$. pygmaeus, $X$. clivii, or $X$. victorianus [45]. We tested the female specificity of $d m-w$ with a PCR assay in three additional species beyond those considered by [45]. These assays indicate that $d m-w$ is not femalespecific in $X$. poweri or $X$. kobeli and possibly not $X$. petersii, though the results in this last species were not conclusive due to inconsistent amplifications Table S6. We also identified additional X. victorianus individuals beyond those previously identified [45] in which $d m-w$ was not female-specific. With a handful of exceptions, for each individual independent attempts to amplify $d m-w$ exons 2,3 , and 4 were generally all successful or all unsuccessful (Table S6). This is consistent with these three exons being genetically linked and co-inherited. Based on these results and the consistent detection of all three exons in one female individual from several other species (Fig. 4), we suspect these exons, when present, are genetically linked in other Xenopus species as well.

Results presented here and in [45] - which include capture sequencing of one individual (usually female) of almost all Xenopus species and PCR surveys of multiple male and female individuals of several Xenopus species - provide context into the evolution of female-specificity of $d m$ - $w$ in extant Xenopus species (Fig. 4). These results suggest that female-specificity of $d m-w$ is positively correlated with (i) the presence of exon 4, (ii) a derived extension of the coding region of $d m-w$ exon 4 (due to mutation in an ancestral stop codon that extended the coding region; additional details are provided in the Supplement), and (iii) seemingly intact scan-w and ccdc69-w (for the exons examined here) on the ancestral genomic region that is female-specific in $X$. laevis (Fig. 4). In $X$. victorianus, $X$. poweri, and possibly $X$. petersii the most parsimonious interpretation is that sex-specificity of $d m-w$ was lost recently, presumably at some point after divergence from an ancestor of $X$. laevis.

## Discussion

We examined function and assembly of a female-specific genomic region on the W chromosome of the African clawed frog Xenopus laevis that includes three W-linked genes (dm-w, scan-w, ccdc69-w). All three of these genes arose de novo by one or more independent small scale duplication events during diversification of Xenopus [this study; 28, 35, 36].

A striking finding to emerge from this study is that all genes in this female-specific genomic region either are or have been functionally dispensable. Rapid and pervasive degeneration of these genes is consistent with the expectation that the efficacy of natural selection is lower in non-recombining compared to recombining genomic regions [42, 43]. In $X$. laevis, only $d m-w$ is required to trigger female development and fertility, but not for viability, and scan-w and ccdc69-w are not essential for viability or female development and fertility. We note that this study does not demonstrate whether $d m-w$ alone is sufficient to trigger female development because another (unidentified) factor could act upstream of $d m-w$. This possibility was tested using transgenic males that ectopically express $d m-w$ [29] but, as discussed
previously, sex reversal was observed only in a subset of transgenic males, possibly due to variable levels of transgene expression.

Comparisons across Xenopus species evidence dispensability of all three of these genes. Most descendant Xenopus species of the ancestor in which scan-w and ccdc69-w arose now carry truncated and perhaps non-functional versions of these genes, or appear to lack them altogether, and females that carry knockout mutations for scan-w or ccdc69-w are viable and fertile. Likewise, since its origin, several Xenopus species have lost $d m-w$, and several other species appear to retain it in a shorter ( $X$. clivii, $X$. vestitus) and/or diminished form (compared to the ortholog in $X$. laevis) in which $d m-w$ lacks a completely dominant female-determining function ( $X$. kobeli, $X$. itombwensis, $X$. pygmaeus, $X$. clivii, $X$. victorianus, $X$. petersii, $X$. poweri) [this study; 45]. Thus, available information suggests that $d m-w$ is the trigger for female differentiation in $X$. laevis, this gene became dispensable over relatively modest stints of evolution, with new mechanisms of sex determination abetting or replacing $d m-w$ in several species. Below we discuss these findings in more detail, and their implications for understanding the origin and evolution of supergenes.

## Non-overlapping functional components of a sex-specific supergene

In principle, the origin of a supergene may be favored by natural selection if it binds together genetic variation with synergistic benefits. This is perhaps most obvious at the level of an individual gene that triggers sex determination, and where recombination suppression prevents intra-genic disruptions that could lead to neutered, intersex, or infertile offspring. Across multiple linked genes, synergy conceivably could be achieved through biological interactions (epistasis). That $d m-w$, scan-w, and ccdc69-w are all female-specific in $X$. laevis opens the possibility that a combination of some or all three of these loci are necessary for female differentiation, fertility, or viability. However, we recovered no evidence for strong epistatic effects among these three genes. Sex-specific supergenes also have the potential to resolve sexual antagonism [12, 15]; in this study we did not attempt to evaluate this possibility.

Our knockout lines demonstrate that only $d m-w$ is required for female differentiation and fertility in $X$. laevis because genetic females with a non-functional $d m-w$ gene develop into fertile sex-reversed phenotypic males. Genetic females that carry non-functional scan-w and ccdc69-w genes develop into fertile phenotypic females, which demonstrates that these two genes are not required for female differentiation, fertility, or viability. This extends previous work by demonstrating that full knockout of $d m-w$ in $X$. laevis causes complete female to male sex reversal in all individuals, and allows us to reject the notion that all three or any two of the female-specific loci on the $X$. laevis W -chromosome are essential for female differentiation or fertility. Our knockout lines thus support previous inferences based on the observation of partial sex reversal elicited by RNA interference of $d m-w[29,30]$.

In fruit flies, $30 \%$ of newly evolved genes (which are typically also young) appear to be essential [49], which suggests that essential functions may arise quickly. Though $d m-w$ is essential for female development and thus reproduction of $X$. laevis, scan-w and ccdc69-w are not. In several other Xenopus species, $d m-w$ was replaced several times by novel but not yet known triggers for sex determination. These findings thus fail to provide support rapid evolution of essentiality in new genes.

Several insights into biological function of these supergene components can be gleaned from comparisons of the transcriptomes in the developing mesonephros/gonads at a crucial developmental junction (at tadpole stage 50) where $d m-w$ is thought to initiate sexual differentiation [29]. At this early stage of sexual differentiation, relatively few genes were found to be significantly differentially expressed in the $d m-w$ knockout line compared to wildtype sisters, and no significant enrichment of gene ontology was identified in differentially expressed genes in the $d m-w$ knockout line (Tables S1, S2). This suggests that pronounced transcriptomic consequences of $d m-w$ expression are realized later in development or that subtle (and undetected) changes in the transcriptome at this stage have mushrooming effects later during
development. Consistent with this latter scenario, a focused analysis of differential expression of 74 sexrelated genes demonstrates that the gonad/mesonephros transcriptome of the $d m-w$ knockout is significantly masculinized at tadpole stage 50 (Figs. 3, S7-8), even though most sex-related transcripts are not individually significantly differentially expressed.

Because they share a DNA binding domain and are co-expressed during development, $d m-w$ is proposed to be a transcription factor that competitively binds to regulatory regions that are also recognized by the male-related gene $d m r t l$ (from which $d m-w$ is partially derived [29]), thereby inhibiting the initiation of male differentiation by $d m r t l$ [30]. Antagonistic function analogous to that proposed for $d m-w$ also exists in newly evolved partial paralogs of the srgap2 gene that are involved in human cortical development [50, 51] and in amphioxus where one paralogous estrogen receptor is activated by estrogen while another lost this ancestral function and acts as a repressor of the first [52]. An interesting direction for future work would be to evaluate how knockouts of $d m r t 1 . L$ and $d m r t l . S$ affect sexual differentiation and gene expression in $X$. laevis and the diploid species $X$. tropicalis, which could offer insights into whether subfunctionalization or neofunctionalization of these homeologs after allotetraploidization preceded the origin of $d m-w$.

In the mesonephros/gonad at tadpole stage 50, transcriptome masculinization was not observed in the $c c d c 69-w$ knockout line and there was only a weak signal masculinization in the scan-w knockout line. Gene ontology analysis of significantly differentially expressed genes in the scan-w and $c c d c 69-w$ lines suggest distinctive functions with unclear relevance to sexual differentiation (Table S3). This suggests distinctive functional roles of these genes in comparison to $d m-w$. The functions of scan-w and ccdc69-w presumably overlap to some degree with those of their respective autosomal paralogs, but arguably are both substantially distinct from $d m-w$ and from each other, and our findings suggest they minimally impact or are extraneous to female sexual differentiation. Taken together, these results point to distinctive biological functions of each of these supergene loci, with effects of each gene that extend to diverse biological processes, cellular compartments, and developmental stages.

Only one gene - capn5-z - is found on the Z chromosome but not the W chromosome of $X$. laevis [28]. Wildtype females have one W and one Z chromosome and therefore have one capn5-z allele, whereas wildtype males have two Z chromosomes and two capn5-z alleles. This gene is expressed in both sexes in the developing gonads, and also in adult gonads, brain, and spleen, and to a lesser extent in several other tissues [heart, liver, stomach, mesonephros; 28]. That $d m-w$ knockout individuals ( $\mathrm{W} * \mathrm{Z}$ individuals) develop into what appear to be phenotypically normal and fertile males, demonstrates that two alleles of capn5-z are not required for male development or viability in X. laevis. That $\mathrm{W}^{*} \mathrm{~W}^{*}$ knockout individuals also developed into phenotypic males suggests that capn5-z may not be required at all for male development; this possibility could be further explored with histology or fertility assays that we did not perform.

## Diverse origins and temporarily staggered assembly of a sex-specific genomic region

New genes arise from a variety of mechanisms, including horizontal gene transfer [53], gene duplication [54], exon shuffling [55], replication or modification by transposable elements [56], gene fusion [57] or fission [58], and de novo origin from previously non-coding genomic regions [59]. These diverse possible origins raise the question of how the three differently functioned genes on the W chromosome of $X$. laevis arose and become tethered together. As discussed above, the closest paralogs in the autosomes of $d m-w$, scan-w, and ccdc69-w are not tightly linked, which suggests that they have independent origins on the female-specific portion of the W chromosome [28, 29, 35-37]. Homeologs of exons 2 and 3 of $d m-w$ (dmrtl.L, dmrt1.S) are on chr1L and chr1S at positions $\sim 139$ and 119 Mb in X. laevis genome assembly 10.1, respectively. Another part of the coding region of $d m-w$ (in exon 4 ) arose independently from a noncoding transposon sequence, and homologous sequences of $d m-w$ exon 4 are present on chromosomes 2 L , 7 L , and unplaced scaffolds [36]. Using Blast [60], we identified homeologs of $c c d c 69-w$ on chr3L
(ccdc69.L) and chr3S (ccdc69.S) at positions $\sim 21.5$ and 7.6 Mb , respectively, and on chr5L
(LOC108716149) at $\sim 63.5 \mathrm{Mb}$ on the $X$. laevis genome assembly version 10.1. Blast searches identified sequences with homology to scan-w in multiple genomic locations, including regions that are annotated as genes and regions that are not annotated. Despite its small size, this scattered genomic distribution of supergene homology underscores remarkably diverse origins of the small female-specific sex determining supergene of $X$. laevis.

Targeted capture sequencing reported here and elsewhere [45] demonstrates that the most recent common ancestor of species that carry $d m-w$ exons 2 and 3 is older than the MRCA of species in which $d m-w$ exon 4 , scan-w exons 4 and 5, and $c c d c 69-w$ exons 1 and 2 were detected (Fig. 4). We note that this inference depends on the phylogenetic placement of $X$. clivii; the placement of $X$. clivii depicted in the mitochondrial phylogeny presented in Fig. 4 is consistent with that recovered from a phylogenetic analysis of over 1,000 expressed transcripts [61]. "By-catch" sequencing of the non-coding $d m-w$ exon 1 with probes for scan-w exon 4 indicates that $d m-w$ exon 1 was present in the most recent common ancestor of $X$. laevis and $X$. largeni, which is consistent with findings from another study [41]. Because we did not attempt to directly capture $d m-w$ exon 1 , these data do not allow us to determine whether this exon was also present in an even older ancestor. $D m-w$ exon 4 has an independent origin from exons 2 and 3 [36] and has previously been detected in X. laevis, X. largeni, X. petersii, X. itombwensis, and $X$. pygmaeus $[29,36,45]$. We extend these findings by identifying $d m-w$ exon 4 in several more species (Fig. 4), but notably we do not infer $d m-w$ exon 4 to have been present in a more phylogenetically diverged species (such as $X$. clivii which carries $d m-w$ exons 2 and 3 but not 4 ) as compared to previous inferences.

One interpretation of these data is that $d m-w$ exons 2 and 3 appeared in the most recent common ancestor of $X$. clivii and $X$. laevis, and that $d m-w$ exon 4 , scan- $w, c c d c 69-w$, and possibly $d m$ - $w$ exon 1 subsequently arose in the most recent common ancestor of $X$. largeni and $X$. laevis. Another interpretation is that all of these components were present in the most recent common ancestor of $X$. clivii and $X$. laevis, and that $d m-w$ exon 4 , scan- $w, c c d c 69-w$, and perhaps $d m-w$ exon 1 were later lost in $X$. clivii. This second scenario is less parsimonious than the first because it necessitates two deletions in an ancestor of $X$. clivii (one upstream of $d m-w$ exons 2 and 3 to remove scan-w, and $c c d c 69-w$ and one downstream of $d m-w$ exons 2 and 3 to remove $d m-w$ exon 4). Either way, capture data suggests that subsequent evolution led to the loss of supergene components in various lineages (e.g., ccdc69-w exon 1 in $X$. andrei, scan-w exon 5 in $X$. largeni, $d m-w$ exon 4 in $X$. vestitus).

A caveat to our interpretations of the targeted capture sequences is the possibility of false negatives, where a gene was not detected in some species even though it was present. However, the congruence between the results from different capture data for $d m$ - $w$ exons 2 and 3 [45], a PCR survey for these exons [35], and capture data from $d m-w$ exon 4 (this study) is very high, with only two biologically plausible discrepancies (a failure to detect exon 4 in two species). For this reason, we suspect that the frequency of false negatives in our capture data is low.

With the exception of the "by capture" of $d m-w$ exon 1 by our probes for scan- $w$ exon 4, these capture sequences by themselves do not demonstrate that the captured sequences are physically linked on the same chromosome (apart from X. laevis where we know they are physically linked based on the genome assembly [28]). However, linkage of these exons in several other Xenopus species is supported by a PCR survey [45] that included 2-6 independent amplicons of different regions of $d m-w$, including portions of dm-w exons 2,3 , and 4 , a non-transcribed region upstream of $d m-w$, and a portion of the coding region of scan-w. Although $d m-w$ was found to not be female-specific specific in several species, independent attempts to amplify different portions of this gene in different samples from different species were generally all either successful or all unsuccessful [45], which is consistent with linkage, even in the absence of sex-specificity.

## Developmental systems drift

Developmental system drift refers to the origin of diverse genetic underpinnings for conserved traits across different species [62]. In sexual species, developmental pathways linked to sexual differentiation are crucial for reproduction but are orchestrated by diverse genes and genetic interactions, and are thus a prime example of developmental systems drift [62]. Findings discussed here and elsewhere [45] evidence developmental systems drift of sex-determination in Xenopus by demonstrating that $d m-w$ is not femalespecific in almost all species that carry this gene, even though it triggers female differentiation in $X$. laevis and possibly $X$. gilli (Fig. 4). The phylogenetic distribution of female-specificity of $d m-w$ suggests that the female determining capacity of $d m-w$ was probably in place in the most recent common ancestor of $X$. laevis and $X$. gilli, but then lost by developmental systems drift in several closely related species such as $X$. victorianus. An alternative interpretation is that the female determining capacity of $d m-w$ arose independently in $X$. laevis and $X$. gilli.

One or more mutations extended the coding region of $d m-w$ exon 4 of $X$. laevis, $X$. gilli and closely related species (Supplementary Information). Exon 4 increases the DNA-binding activity of $d m-w$ in $X$. laevis [36] though it is not clear what the functional implications of the ancestral extension of the coding region may be. Even though the coding region of $d m-w$ seems intact in $X$. victorianus, $X$. poweri, and $X$. petersii and includes the extended coding region in exon 4 , female-specificity of $d m-w$ was lost in some or all of these species based on our PCR surveys of several male and female individuals (results were inconclusive for $X$. petersii; Table S6), thereby providing further evidence of developmental systems drift of genetic sex determination.

## Outlook

Key unanswered questions raised by these findings ask what the ancestral function of $d m-w$ was when it arose, and whether and how $d m-w$ influences sex determination in species where this gene is not femalespecific (minimally $X$. kobeli, $X$. itombwensis, $X$. pygmaeus, $X$. clivii, $X$. victorianus, $X$. poweri, $X$. petersii). It remains unclear why $d m-w$ appears to segregate as a single allele in $X$. clivii, $X$. kobeli, and several other species - which would explain why it is found in some female and male individuals but not others - as opposed to being a "regular" autosomal locus with two alleles in all individuals of both sexes, which is the case in $X$. itombwensis [45]. It is possible that $d m-w$ was (and in some species is) an "influencer" of female differentiation in the sense that it tends to be found in females, but this also depends on variation at other loci. Because these downstream genes are autosomal, they also have been duplicated by allopolyploidization, which occurred several times independently in Xenopus to generate a diversity of tetraploids, octoploid, and dodecaploids species [47, 63, 64]. Due to differences in ploidy level, copy numbers of autosomal genes that interact with $d m-w$ - such as $d m r t l$ - vary considerably; barring gene loss and pseudogenization, dodecaploid species such as $X$. kobeli carry six copies of autosomal genes (each with two alleles); octoploid species such as $X$. itombwensis carry four, and tetraploid species have two. Interestingly, pseudogenization of $d m r t l$ homeologs has occurred independently multiple times in Xenopus, and in a phylogenetically biased fashion with more silencing of genes from one homeologous lineage ( $d m r t l S$ ) than the other ( $d m r t l L$ ) [35]. Clearly, further insights into these questions could be gained with experiments that explore function of homeologs of $d m r t l$ and other duplicated sex-related genes in $X$. laevis and of $d m-w$ in species where this locus is not female-specific.

## Methods

## Knockout of $\boldsymbol{d m}-\boldsymbol{w}$, scan-w, and $\boldsymbol{c c d c}$ 69-w

We generated knockout individuals using CRISPR/Cas9 [65]. Single guide RNAs (sgRNAs) were designed to target the beginning of the coding region for $d m-w$, scan-w, and $c c d c 69-w$ using CRISPRdirect (https://crispr.dbcls.jp/) with an aim of maximizing disruption of protein function (Table S7). The specificity of our guides was evaluated using the $X$. laevis genome assembly 9.1 . Single stranded
guide RNA (sgRNA) was generated from a DNA template that contained a promoter (SP6 for $d m-w$ and T7 for scan-w and ccdc69-w) and a universal reverse primer for subsequent transcription. The DNA template was then used for sgRNA production using the Megascript SP6 or T7 kit (Invitrogen, Thermo Fisher Scientific).

SgRNAs were injected with the Cas9 protein into one cell embryos from $X$. laevis $J$-strain individuals. Because cutting generally happens after several rounds of cell division, the resulting F0 embryos are mosaics of wild-type and mutant cells. F0 phenotypic females (in the case of scan-w and ccdc69-w) or phenotypic males (in the case of $d m-w$ ) were then back-crossed to wildtype (J strain) males or females respectively. Mutations were confirmed by sequencing and the genetic sex was verified by amplification of other W-specific genes and by surgical inspection of gonads after euthanasia. F1 individuals were also crossed to wild-type individuals to evaluate fertility, with ovulation (phenotypic females) or clasping (phenotypic males) facilitated by injection of human chorionic gonadotropin (Sigma).

For all three genes, sequence chromatograms of F0 individuals had overlapping sequences that begin at the targeted region and that disrupted the putative open reading frame of each gene. Because cutting occurs at a multicell stage of embryogenesis, overlapping sequences were expected due to a mosaic genotype comprising wild-type and mutant sequences. These F0 females were then crossed with wildtype (J-strain) males to generate non-mosaic F1 knockout individuals, which were confirmed by Sanger sequencing (Fig. S1).

## Transcriptome analysis of $F 1$ progeny

With an aim of better understanding the functions of $d m-w$, scan $-w$, and $c c d c 69-w$, we compared transcriptomes of the developing mesonephros/gonad of knockout individuals to developmental-stagematched wildtype sisters that were co-reared in the same tank. We focused on tadpole stage 50, which is when gonadal differentiation is thought to be initiated because the gonads are not differentiated at this stage and because an increase in expression of $d m-w$ at this stage precedes gonadal differentiation thereafter [29]. Tadpole stage 50 was determined based on morphological attributes including the shape of the head, size of tentacles, and size and shape of rear limb buds [66, 67]. The genotypic sex of the tadpoles was assessed by amplifying the three known W chromosome-specific genes ( $d m-w$, scan-w, and $c c d c 69-w$ ) with successful amplifications in all three genes used to identify genetic females. Mutant and wildtype individuals were then distinguished by sequencing the mutant gene for each line.

We compared transcriptomes from each knockout line to stage-matched wildtype sisters that were co-reared in the same tank. For the $d m-w$, scan-w and ccdc69-w knockout lines, mesonephros/gonadal transcriptomes from six, five, and six knockout individuals, and six, four, and two wildtype females were analyzed. To further understand the transcriptomic consequences of our gene knockouts, we established a baseline expectation for sex-biased gene expression using three independent batches of wildtype male and female gonad/mesonephros transcriptomes that were derived from three independent clutches of siblings at tadpole stage 50 . The MF1, MF2, and MF3 batches included two, three, or six females and six, five, or six males, respectively. The wildtype females in the MF1 of the sex-biased expression analysis were the same as those in the $c c d c 69-w$ knockout versus wildtype analysis; data from the MF2 and MF3 batches were from different clutches from each other and from all other analyses. For the $d m w$ dataset, four wildtype females were run on a different lane from the other samples. For the $c c d c 69-w$ and MF2 datasets, three wildtype males from each dataset were run on a different lane from the other samples. For the MF3 dataset, three wildtype females and three wildtype males were run on a different lane from the other samples. Because of this sampling distribution, we were only able to control for possible lane effects in the design of the MF3 analysis.

RNA quality was assessed for each sample using an Agilent Bioanalyzer; we selected samples with an RNA integrity number [68] of at least 8.5 out of 10 for analysis (median $=9.6$ ). RNAseq libraries were
generated using Clontech/Takara SMARTer v4 cDNA conversion kit followed by the Illumina Nextera XT library preparation. Paired-end sequencing ( 150 bp ) was performed on portions of three lanes of an Illumina Novaseq 6000 machine. Adapters and reads of poor quality and short length were removed using Trimmomatic v . 0.39 [69] with settings that retained reads of at least 36 bp and with an average quality per base higher than 15 on a sliding window of 4 bp ; bases of poor quality (below 3) at the start and end of a read were also removed. After trimming this resulted in an average of 46.9 million ( $d m-w$ ), 45.6 million (scan-w), and 54.6 million ( $c c d c 69-w$ ) paired-end reads per sample. These data have been deposited in the NCBI SRA (BioProject PRJNA989530).

For each analysis of differential expression, we quantified transcript abundance in the $X$. laevis transcriptome reference version 10.1 using a mapping method: STAR version 2.7.9a [70], and a pseudocount method: Kallisto version 0.46 .1 [71]. Counts from each method were processed with edgeR version 3.16 [72] and DeSeq2 version 1.34 .0 [73] to perform the analysis of differential expression. Prior to analysis of differential expression, genes with an average of less than two reads per individual were removed. Transcripts and genes were considered differentially expressed if the false detection rate adjusted $p$-value was less than 0.10 .

We then performed a gene ontology analysis on each set of differentially expressed genes. Unfortunately, the annotations for the latest version of the $X$. laevis transcriptome are incomplete with many of the differentially expressed genes lacking a functional annotation and instead having unknown annotations that begin with "LOC" (Table S2). Thus, for each quantification method and analysis of differential expression, we extracted the sequence of each differentially expressed gene and used the discontiguous blast algorithm [60] to identify putative orthologs (based on the best bit score) in a human transcriptome GRCh38.p13 release 42 [74]. This approach increased the number of annotated transcripts and the annotations of putative human orthologs generally matched the available annotations of $X$. laevis transcripts (Table S2). We then used the gene ontology resource (http://geneontology.org/) to perform gene ontology analyses of biological function, molecular function, and cellular component, with significant enrichment based on Fisher's exact test with a false discovery rate of 0.05 .

## Sex related genes and transcriptome masculinization

To further evaluate whether and to what degree each knockout line (each of which are genetically female) has signatures of transcriptome masculinization, we examined correlations between the $\log 2$ fold change of 74 sex-related genes [Table S3; 44] between each pairwise comparison between six analyses of differential expression (i.e., three comparisons between male and female wildtype transcriptomes and three comparisons between knockout and wildtype female transcriptomes). The expression data for these 74 sex related genes was obtained from the transcriptomic/RNAseq data. These correlations were calculated for each of the four RNAseq analysis pipelines that we performed (Kallisto + edgeR, Salmon + edgeR, Salmon + DeSeq2, and Kallisto + DeSeq2). For this analysis, no filtering was performed based on transcript abundance; instead we excluded outliers, defined as 1.5 times the interquartile range above or below the upper or lower quartile. Spearman's correlation was calculated between the non-outlier $\log 2$ fold changes for each pairwise comparison and a $p$-value for this coefficient was calculated using the cor() function in R, which assumes the samples follow independent normal distributions.

If a knockout mutation (dm-w, scan-w, or ccdc69-w) led to masculinization of the mesonephros/gonad transcriptome, we expected a higher correlation between the log2 fold changes from the knockout analyses and one or more of the analyses of sex-biased expression in the wildtype transcriptomes. To test this, 1000 permutations were performed where the correlation between the non-outlier $\log 2$ fold changes of 74 randomly selected genes was calculated and compared to the observed. A $p$-value was calculated as 1 minus the rank of the observed correlation in the permutated correlations, divided by 1001.

## Phenotyping of knockout progeny

The phenotype of each knockout line was ascertained with respect to (1) phenotypic sex, (2) fertility, and (3) testis histology (if present). Phenotypic sex was assessed either surgically by inspecting gonads after euthanasia or based on ability to lay eggs after injection with 400 international units of human chorionic gonadotropin. Fertility was assessed by crossing mutant individuals with wildtype individuals of the opposite phenotypic sex and examining whether embryos were produced. Crosses were achieved by injection of 400 or 300 international units of human chorionic gonadotropin in phenotypic female or male individuals, respectively. Testis histology was examined using $4 \mu \mathrm{~m}$ sections of formalin-fixed paraffinembedded tissues that were stained with a Leica Autostainer XL using Hematoxylin 560MX and Eosin 515LT SelecTech stains (Leica).

## Targeted next-generation sequencing and Sanger sequencing of $\mathbf{W}$-specific and autosomal loci

 We used targeted next-generation sequencing to assess presence, absence, and sequence variation of dm $w$ exon 4, scan-w exons 4 and 5, and both exons of ccdc69-w in 28 of 29 Xenopus species using the same panel of individuals and genomic DNA libraries as detailed previously [45]. To enrich the genomic libraries, we used 82 bp probes that overlap with 2 bp tiling (GenScript) that were designed based on exons of interest in X. laevis. Universal flanking sequences were added to each probe [75] and the probes synthesized on a 12 k oligonucleotide array (GenScript). The oligonucleotide pool was then amplified by PCR and converted into single-stranded biotinylated DNA probes for in-solution hybridization capture using the method of [75]. The libraries were multiplexed, and paired end sequencing was performed on a portion of one lane of an Illumina HiSeq 2500 machine, with 125 bp paired-end reads. Sequences from each species were demultiplexed, assembled using Trinity 2.5 .1 [76], and captured exons were identified using blastn [60]. Due to repetitive regions in scan-w, a 300 bp cutoff on all blast hits was applied. Sequences from each exon were aligned using MAFFT version 7.271 [77], adjusted manually, and manually inspected for putatively chimerical sequences. Our alignment included reference sequences from the $X$. tropicalis genome assembly 10.1 and $X$. laevis genome assembly 9.2 for each exon plus 200 bp upstream and downstream. Assembled capture sequences are deposited in GenBank (accession numbers XXX-XXX).PCR assay and Sanger sequencing were also performed to evaluate the female-specificity of $d m-w$ in three additional species beyond those evaluated previously [45]: X. kobeli, X. petersii, and X. poweri and additional $X$. victorianus individuals from two geographical areas. Amplification of a portion of the mitochondrial 16S ribosomal RNA gene was used as a positive control for each DNA extraction using primers $16 \mathrm{Sc}-\mathrm{L}$ and $16 \mathrm{Sd}-\mathrm{H}$ [78] and negative (no DNA) controls were performed for all amplifications. The phenotypic sex of each specimen of each species was determined surgically by inspecting gonads after euthanasia. For each individual, independent amplifications of $d m-w$ exons 2,3 , and 4 were attempted and in individuals with unexpected amplifications (positive amplifications in males, negative amplifications in females) multiple independent amplifications were attempted.

## Acknowledgements

We thank the National Xenopus Resource for maintaining the knockout lines and hosting the Xenopus Gene Editing Workshop at the Marine Biological Laboratory, and Takuya Nakayama for assistance with sgRNA design. We thank Svante Pääbo and Max Planck Institute for Evolutionary Anthropology for hosting B.J.E. on a sabbatical in Leipzig, Germany, and Birgit Nickel for performing library capture. We thank staff at the Central Animal Facility at McMaster University for assistance with animal care and Ian Dworkin for discussions about RNAseq analysis. We also thank two anonymous reviewers for constructive feedback on an earlier draft of this manuscript.

## Funding

This work was supported by the Natural Science and Engineering Research Council of Canada (RGPIN-2017-05770), Resource Allocation Competition awards from Compute Canada, the Whitman Center Fellowship Program at the Marine Biological Laboratory, the Max Planck Institute for Evolutionary

Anthropology, the National Xenopus Resource, and National Institutes of Health grants R01-HD084409 and P40-OD010997.

## References

1. Ogata H, Fujibuchi W, Goto S, Kanehisa M. A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Research. 2000;28(20):4021-8. doi: 10.1093/nar/28.20.4021. PubMed PMID: BIOSIS:PREV200100017132.
2. Thevenin A, Ein-Dor L, Ozery-Flato M, Shamir R. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome. Nucleic Acids Research. 2014;42(15):9854-61. doi: 10.1093/nar/gku667. PubMed PMID: BIOSIS:PREV201400791717. 3. Schwander T, Libbrecht R, Keller L. Supergenes and Complex Phenotypes. Current Biology. 2014;24(7):R288-R94. doi: 10.1016/j.cub.2014.01.056. PubMed PMID: BIOSIS:PREV201400369051. 4. Wang J, Wurm Y, Nipitwattanaphon M, Riba-Grognuz O, Huang Y-C, Shoemaker D, et al. A Ylike social chromosome causes alternative colony organization in fire ants. Nature. 2013;493(7434):6648.
3. Joron M, Papa R, Beltran M, Chamberlain N, Mavarez J, Baxter S, et al. A conserved supergene locus controls colour pattern diversity in Heliconius butterflies. PLoS Biology. 2006;4(10):1831-40. doi: 10.1371/journal.pbio.0040303. PubMed PMID: BIOSIS:PREV200700053212.
4. Funk ER, Mason NA, Palsson S, Albrecht T, Johnson JA, Taylor SA. A supergene underlies linked variation in color and morphology in a Holarctic songbird. Nature Communications.
2021;12(1):Article No.: 6833. doi: 10.1038/s41467-021-27173-z. PubMed PMID:
BIOSIS:PREV202200081833.
5. Labonne JDJ, Tamari F, Shore JS. Characterization of X-ray-generated floral mutants carrying deletions at the S-locus of distylous Turnera subulata. Heredity. 2010;105(2):235-43. doi:
10.1038/hdy.2010.39. PubMed PMID: BIOSIS:PREV201000464996.
6. Kuepper C, Stocks M, Risse JE, dos Remedios N, Farrell LL, Mcrae SB, et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nature Genetics. 2016;48(1):79-83. doi: 10.1038/ng.3443. PubMed PMID: BIOSIS:PREV201600151866.
7. Lagunas-Robles G, Purcell J, Brelsford A. Linked supergenes underlie split sex ratio and social organization in an ant. Proceedings of the National Academy of Sciences of the United States of America. 2021;118(46):Article No.: e2101427118. doi: 10.1073/pnas.2101427118j1of9. PubMed PMID: BIOSIS:PREV202200071151.
8. Charlesworth D. The status of supergenes in the 21st century: recombination suppression in Batesian mimicry and sex chromosomes and other complex adaptations. Evolutionary Applications. 2016;9(1, Sp. Iss. SI):74-90. doi: 10.1111/eva.12291. PubMed PMID: BIOSIS:PREV201600192110. 11. Otto SP, Lenormand T. Resolving the paradox of sex and recombination. Nature Reviews Genetics. 2002;3:252-61.
9. Fisher RA. The evolution of dominance. Biological Reviews. 1931;6:345-68.
10. Charlesworth D, Charlesworth B. Sex differences in fitness and selection for centric fusions between sex chromosomes and autosomes. Genetical Research. 1980;35(2):205-14. doi:
10.1017/S0016672300014051. PubMed PMID: BIOSIS:PREV198070057440.
11. Rice WR. Sex chromosomes and the evolution of sexual dimorphism. Evolution. 1984;38:735-
12. 
13. Rice WR. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution. 1987;41:911-4.
14. van Doorn GS, Kirkpatrick M. Turnover of sex chromosomes induced by sexual conflict. Nature. 2007;449:909-12.
15. Lenormand T, Fyon F, Sun E, Roze D. Sex chromosome degeneration by regulatory evolution. Current Biology. 2020;30(15):3001-6.
16. Lenormand T, Roze D. Y recombination arrest and degeneration in the absence of sexual dimorphism. Science. 2022;375(6581):663-6.
17. Ponnikas S, Sigeman H, Abbott JK, Hansson B. Why Do Sex Chromosomes Stop Recombining? Trends in Genetics. 2018;34(7):492-503. doi: 10.1016/j.tig.2018.04.001. PubMed PMID: BIOSIS:PREV201800572395.
18. Charlesworth B, Wall JD. Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proceedings of the Royal Society Biological Sciences Series B. 1999;266(1414):51-6. doi: 10.1098/rspb.1999.0603. PubMed PMID: BIOSIS:PREV199900220530. 21. Jay P, Chouteau M, Whibley A, Bastide H, Parrinello H, Llaurens V, et al. Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nature Genetics. 2021;53(3):288-93. doi: 10.1038/s41588-020-00771-1. PubMed PMID: BIOSIS:PREV202100413439. 22. Jeffries DL, Gerchen JF, Scharmann M, Pannell JR. A neutral model for the loss of recombination on sex chromosomes. Philosophical Transactions of the Royal Society B. 2021;376(1832):20200096.
19. Bull JJ. Evolution of sex determining mechanisms. Menlo Park: Benjamin Cummings; 1983.
20. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, et al. The malespecific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423:825-37.
21. Komata S, Kajitani R, Itoh T, Fujiwara H. Genomic architecture and functional unit of mimicry supergene in female limited Batesian mimic Papilio butterflies. Philosophical Transactions of the Royal Society of London B Biological Sciences. 2022;377(1856):Article No.: 20210198. doi: 10.1098/rstb.2021.0198. PubMed PMID: BIOSIS:PREV202200561162.
22. Akagi T, Varkonyi-Gasic E, Shirasawa K, Catanach A, Henry IM, Mertten D, et al. Recurrent neo-sex chromosome evolution in kiwifruit. Nature Plants. 2023;https://doi.org/10.1038/s41477-023-01361-9.
23. Charlesworth B, Charlesworth D. Model for Evolution of Dioecy and Gynodioecy. American Naturalist. 1978;112(988):975-97. doi: Doi 10.1086/283342. PubMed PMID: WOS:A1978FX45000001. 28. Mawaribuchi S, Takahashi S, Wada M, Uno Y, Matsuda Y, Kondo M, et al. Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis. Developmental Biology. 2017;426:393400.
24. Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, et al. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proceedings of the National Academy of Sciences. 2008;105(7):2469-74.
25. Yoshimoto S, Ikeda K, Izutsu Y, Shiba T, Takamatsu N, Ito M. Opposite roles of DMRT1 and its W-linked paralog, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sexdetermining system. Development. 2010;137:2519-26.
26. Cauret CMS, Jordan DC, Kukoly L, Burton S, Anele EU, Kwiecien JM, et al. Functional dissection and assembly of a small, newly evolved, sex-determining supergene in the African clawed frog Xenopus laevis. Plos Genetics. 2023:In review.
27. Furman BLS, Evans BJ. Divergent evolutionary trajectories of two young, homomorphic, and closely related sex chromosome systems. Genome Biol Evol. 2018;10(3):742-55. doi:
10.1093/gbe/evy045. PubMed PMID: 29608717; PubMed Central PMCID: PMCPMC5841384.
28. Sander T, Stringer K, Maki J, Szauter P, Stone J, Collins T. The SCAN domain defines a large family of zinc finger transcription factors. Gene. 2003;310:29-38. doi: 10.1016/S0378-1119(03)00509-2. PubMed PMID: WOS:000183677900003.
29. Pal D, Wu D, Haruta A, Matsumura F, Wei Q. Role of a novel coiled-coil domain-containing protein CCDC69 in regulating central spindle assembly. Cell cycle. 2010;9(20):4117-29.
30. Bewick AJ, Anderson DW, Evans BJ. Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution. 2011;65(3):698-712.
31. Hayashi S, Suda K, Fujimura F, Fujikawa M, Tamura K, Tsukamoto D, et al. Neofunctionalization of a noncoding portion of a DNA transposon in the coding region of the chimerical sex-determining gene dm-W in Xenopus frogs. Molecular Biology and Evolution. 2022;39(7):msac 138.
32. Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature. 2016;538(7625):336-43. doi: 10.1038/nature19840. PubMed PMID: 27762356; PubMed Central PMCID: PMCPMC5313049.
33. Evans BJ, Carter TF, Greenbaum E, Gvoždík V, Kelley DB, McLaughlin PJ, et al. Genetics, morphology, adverstisement calls, and historical records distinguish six new polyploid species of African clawed frog (Xenopus, Pipidae) from West and Central Africa. PLoS One. 2015;10(12):e0142823 (51 pages).
34. Evans BJ, Kelley DB, Melnick DJ, Cannatella DC. Evolution of RAG-1 in polyploid clawed frogs. Molecular Biology and Evolution. 2005;22(5):1193-207.
35. Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, et al. A new nomenclature of Xenopus laevis chromosomes based on the phylogenetic relationship to Silurana/Xenopus tropicalis. Cytogenetic and Genome Research. 2015;145(3-4):187-91.
36. Hayashi S, Tamura K, Tsukamoto D, Ogita Y, Takamatsu N, Ito M. Promoter generation for the chimeric sex-determining gene dm-W in Xenopus frogs. Genes \& Genetic Systems. 2023:22-00137.
37. Hill WG, Robertson A. The effect of linkage on limits to artificial selection. Genetics Research. 1966;8:269-94.
38. Muller HJ. Some genetic aspects of sex. American Naturalist. 1932;66(703):118-38.
39. Piprek RP, Damulewicz M, Kloc M, Kubiak JZ. Transcriptome analysis identifies genes involved in sex determination and development of Xenopus laevis gonads. Differentiation. 2018;100:46-56. doi: 10.1016/j.diff.2018.02.004. PubMed PMID: 29518581.
40. Cauret CM, Gansauge M-TT, Tupper A, Furman BLS, Knytl M, Song X, et al. Developmental systems drift and the drivers of sex chromosome evolution. Molecular Biology and Evolution. 2020;37:799-810.
41. Chain FJJ, Evans BJ. Multiple mechanisms promote the retained expression of gene duplicates in the tetraploid frog Xenopus laevis. PLoS Genetics. 2006;2(4):e56.
42. Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC. A mitochondrial DNA phylogeny of clawed frogs: Phylogeography on sub-Saharan Africa and implications for polyploid evolution.
Molecular Phylogenetics and Evolution. 2004;33:197-213.
43. Evans BJ, Gansauge MT, Stanley EL, Furman BLS, Cauret CMS, Ofori-Boateng C, et al. Xenopus fraseri: Mr. Fraser, where did your frog come from? PLoS One. 2019;14(9):e0220892 (14 pages). Epub 2019/09/12. doi: 10.1371/journal.pone.0220892. PubMed PMID: 31509539; PubMed Central PMCID: PMCPMC6738922.
44. Chen S, Zhang YE, Long M. New Genes in Drosophila Quickly Become Essential. Science (Washington D C). 2010;330(6011):1682-5. doi: 10.1126/science.1196380. PubMed PMID: BIOSIS:PREV201100072388.
45. Dennis MY, Nuttle X, Sudmant PH, Antonacci F, Graves TA, Nefedov M, et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell. 2012;149(4). doi: 10.1016/j.cell.2012.03.033. PubMed PMID: BIOSIS:PREV201200430842.
46. Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N, De Marchena J, et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell. 2012;149(4):923-35.
47. Bridgham JT, Brown JE, Rodriguez-Mari A, Catchen JM, Thornton JW. Evolution of a new function by degenerative mutation in Cephalochordate steroid receptors. PLoS Genetics.
2008;4(9):Article No.: e1000191. doi: 10.1371/journal.pgen.1000191. PubMed PMID:
BIOSIS:PREV200800702313.
48. Husnik F, McCutcheon JP. Functional horizontal gene transfer from bacteria to eukaryotes. Nature Reviews Microbiology. 2018;16(2):67-79. doi: 10.1038/nrmicro.2017.137. PubMed PMID: BIOSIS:PREV201800212510.
49. Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP. Structure, function, and evolution of the tRNA endonucleases of Archaea: An example of subfunctionalization. Proceedings of the National

Academy of Sciences of the United States of America. 2005;102(25):8933-8. doi:
10.1073/pnas.0502350102. PubMed PMID: BIOSIS:PREV200510191802.
55. Wang W, Zhang J, Alvarez C, Llopart A, Long M. The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Molecular Biology and Evolution. 2000;17(9):1294-301. doi: 10.1093/oxfordjournals.molbev.a026413. PubMed PMID: BIOSIS:PREV200000441396.
56. Velanis CN, Perera P, Thomson B, de Leau E, Liang SC, Hartwig B, et al. The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2). PLoS Genetics. 2020;16(5):Article No.: e1008681. doi: 10.1371/journal.pgen.1008681. PubMed PMID: BIOSIS:PREV202000575323. 57. Thomson TM, Lozano JJ, Loukili N, Carrio R, Serras F, Cormand B, et al. Fusion of the human gene for the polyubiquitination coeffector UEV1 with Kua, a newly identified gene. Genome Research. 2000;10(11):1743-56. doi: 10.1101/gr.GR-1405R. PubMed PMID: BIOSIS:PREV200100427725.
58. Wang W, Yu H, Long M. Duplication-degeneration as a mechanism of gene fission and the origin of new genes in Drosophila species. Nature Genetics. 2004;36(5):523-7. doi: 10.1038/ng1338. PubMed PMID: BIOSIS:PREV200400297756.
59. Cai J, Zhao R, Jiang H, Wang W. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics. 2008;179(1):487-96. doi: 10.1534/genetics.107.084491. PubMed PMID: BIOSIS:PREV200800476176.
60. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389-402.
61. Furman BLS, Dang UJ, Evans BJ, Golding GB. Divergent subgenome evolution after allopolyploidization in African clawed frogs (Xenopus). J Evol Biol. 2018;31(12):1945-58. doi: 10.1111/jeb.13391. PubMed PMID: 30341989.
62. True JR, Haag ES. Developmental system drift and flexibility in evolutionary trajectories. Evolution and Development. 2001;3:109-19.
63. Evans BJ. Genome evolution and speciation genetics of allopolyploid clawed frogs (Xenopus and Silurana). Frontiers in Bioscience. 2008;13:4687-706.
64. Evans BJ, Greenbaum E, Kusamba C, Carter TF, Tobias ML, Mendel SA, et al. Description of a new octoploid frog species (Anura: Pipidae: Xenopus) from the Democratic Republic of the Congo, with a discussion of the biogeography of African clawed frogs in the Albertine Rift. Journal of Zoology, London. 2011;283:276-90.
65. Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis: The Journal of Genetics and Development. 2013;51(12):835-43.
66. Zahn N, Levin M, Adams DS. The Zahn drawings: new illustrations of Xenopus embryo and tadpole stages for studies of craniofacial development. Development (Cambridge). 2017;144(15):270813. doi: 10.1242/dev.151308. PubMed PMID: BIOSIS:PREV201700805866.
67. Nieuwkoop PD, Faber J. Normal table of Xenopus laevis (Daudin). New York: Garland Publishing, Inc.; 1994. 252 p.
68. Lightfoot SJ, Mueller O. Quantitation comparison of total RNA using the Agilent 2100 bioanalyzer, Ribogreen analysis and UV spectrometry. Proceedings of the American Association for Cancer Research Annual Meeting. 2003;44:910. PubMed PMID: BIOSIS:PREV200300475698.
69. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20.
70. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford). 2013;29(1):15-21. doi: 10.1093/bioinformatics/bts635. PubMed PMID: BIOSIS:PREV201300134470.
71. Bray NL, Pimentel HMP, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology. 2016;34(5):525-7. doi: 10.1038/nbt. 3519.
72. Robinson MD, McCarthy DJ, Smyth GK. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40. doi: 10.1093/bioinformatics/btp616.
73. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
74. Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE, Mudge JM, et al. Gencode 2021. Nucleic Acids Research. 2021;49(D1):D916-D23.
75. Fu Q, Meyer M, Gao X, Stenzel U, Burbano HA, Kelso J, et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proceedings of National Academy of Sciences. 2013;110(6):2223-7. doi: 10.1073/pnas.1221359110. PubMed PMID: 23341637; PubMed Central PMCID: PMCPMC3568306.
76. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644-52. doi: 10.1038/nbt.1883. PubMed PMID: 21572440; PubMed Central PMCID: PMCPMC3571712.
77. Katoh K, Standley SM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013;30:772-80.
78. Evans BJ, Brown RM, McGuire JA, Supriatna J, Andayani N, Diesmos A, et al. Phylogenetics of Fanged Frogs (Anura; Ranidae; Limnonectes): Testing biogeographical hypotheses at the AsianAustralian faunal zone interface. Systematic Biology. 2003;52(6):794-819.

S7. Additional work has been completed alongside of Dr. Martin Knytl investigating X. laevis with knockouts of the androgen-receptor for further understanding of the factors influencing sex determination in Xenopus species.

## Bibliography

Alam, S., Sarre, S., Gleeson, D., Georges, A., \& Ezaz, T. (2018). Did Lizards Follow Unique Pathways in Sex Chromosome Evolution? Genes, 9(5), 239. https://doi.org/10.3390/genes9050239
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389-402.
Arandjelovic, S., \& Ravichandran, K. S. (2015). Phagocytosis of apoptotic cells in homeostasis. Nature Immunology, 16(9), 907-917. https://doi.org/10.1038/ni. 3253
Audacity ${ }^{\circledR}$ software is copyright © 1999-2021 Audacity Team. Web site: https://audacityteam.org/. It is free software distributed under the terms of the GNU General Public License. The name Audacity ${ }^{\circledR}$ is a registered trademark.
Bewick, A. J., Anderson, D. W., \& Evans, B. J. (2011). EVOLUTION OF THE CLOSELY RELATED, SEX-RELATED GENES DM-W AND DMRT1 IN AFRICAN CLAWED FROGS (XENOPUS): SEX DETERMINATION IN AFRICAN CLAWED FROGS (XENOPUS). Evolution, 65(3), 698-712. https://doi.org/10.1111/j.15585646.2010.01163.x

Birchler, J. A., \& Yang, H. (2022). The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. The Plant Cell, 34(7), 2466-2474. https://doi.org/10.1093/plcell/koac076
Cauret, C. M. S., Gansauge, M.-T., Tupper, A. S., Furman, B. L. S., Knytl, M., Song, X.-Y., Greenbaum, E., Meyer, M., \& Evans, B. J. (2020). Developmental Systems Drift and the Drivers of Sex Chromosome Evolution. Molecular Biology and Evolution, 37(3), 799810. https://doi.org/10.1093/molbev/msz268

Cauret, C. M. S., Jordan, D. C., Kukoly, L. M., Burton, S. R., Anele, E. A., Kwiecien, J. M., Gansauge, M. -T., Senthillmohan, S., Greenbaum, E., Meyer, M., Horb, M. E., \& Evans, B. J. (submitted for review July 19, 2023). PLOS Genetics.

Chang, C. Y., \& Witschi, E. (1956). Genic Control and Hormonal Reversal of Sex Differentiation in Xenopus. Experimental Biology and Medicine, 93(1), 140-144. https://doi.org/10.3181/00379727-93-22688
Chen, Y., Lun, A.A.T. and Smyth, G.K. (2016). From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasilikelihood pipeline. F1000Research. 5: 1438. doi: 10.12688/f1000research.8987.2.
Da Silva, S. M., Hacker, A., Harley, V., Goodfellow, P., Swain, A., \& Lovell-Badge, R. (1996). Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nature Genetics, 14(1), 62-68. https://doi.org/10.1038/ng0996-62
Dai, S., Qi, S., Wei, X., Liu, X., Li, Y., Zhou, X., Xiao, H., Lu, B., Wang, D., \& Li, M. (2021). Germline sexual fate is determined by the antagonistic action of $d m r t 1$ and foxl3/foxl2 in tilapia. Development, 148(8), dev199380. https://doi.org/10.1242/dev. 199380
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., \& Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner.

Bioinformatics, 29(1), 15-21. https://doi.org/10.1093/bioinformatics/bts635

El-Mogharbel, N., Wakefield, M., Deakin, J. E., Tsend-Ayush, E., Grützner, F., Alsop, A., Ezaz, T., \& Marshall Graves, J. A. (2007). DMRT gene cluster analysis in the platypus: New insights into genomic organization and regulatory regions. Genomics, 89(1), 10-21. https://doi.org/10.1016/j.ygeno.2006.07.017
Evans, B. J., Carter, T. F., Greenbaum, E., Gvoždík, V., Kelley, D. B., McLaughlin, P. J., Pauwels, O. S. G., Portik, D. M., Stanley, E. L., Tinsley, R. C., Tobias, M. L., \& Blackburn, D. C. (2015). Genetics, Morphology, Advertisement Calls, and Historical Records Distinguish Six New Polyploid Species of African Clawed Frog (Xenopus, Pipidae) from West and Central Africa. PLOS ONE, 10(12), e0142823. https://doi.org/10.1371/journal.pone. 0142823
Evans, B. J., Mudd, A. B., Bredeson, J. V., Furman, B. L. S., Wasonga, D. V., Lyons, J. B., Harland, R. M., \& Rokhsar, D. S. (2022). New insights into Xenopus sex chromosome genomics from the Marsabit clawed frog X. borealis. Journal of Evolutionary Biology, 35(12), 1777-1790. https://doi.org/10.1111/jeb. 14078
Fisher, M., James-Zorn, C., Ponferrada, V., Bell, A. J., Sundararaj, N., Segerdell, E., Chaturvedi, P., Bayyari, N., Chu, S., Pells, T., Lotay, V., Agalakov, S., Wang, D. Z., Arshinoff, B. I., Foley, S., Karimi, K., Vize, P. D., \& Zorn, A. M. (2023). Xenbase: Key features and resources of the Xenopus model organism knowledgebase. GENETICS, 224(1), iyad018. https://doi.org/10.1093/genetics/iyad018
Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE, Mudge JM, et al. Gencode 2021. Nucleic Acids Research. 2021;49(D1):D916-D23.
Furman, B. L. S., Cauret, C. M. S., Knytl, M., Song, X.-Y., Premachandra, T., Ofori-Boateng, C., Jordan, D. C., Horb, M. E., \& Evans, B. J. (2020). A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLOS Genetics, 16(11), e1009121. https://doi.org/10.1371/journal.pgen. 1009121
Furman, B. L. S., Dang, U. J., Evans, B. J., \& Golding, G. B. (2018). Divergent subgenome evolution after allopolyploidization in African clawed frogs (Xenopus). Journal of Evolutionary Biology, 31(12), 1945-1958. https://doi.org/10.1111/jeb. 13391
Furman, B. L. S., \& Evans, B. J. (2016). Sequential Turnovers of Sex Chromosomes in African Clawed Frogs ( Xenopus ) Suggest Some Genomic Regions Are Good at Sex Determination. G3 Genes|Genomes $\mid$ Genetics, 6(11), 3625-3633. https://doi.org/10.1534/g3.116.033423
Hayes, T. B., Khoury, V., Narayan, A., Nazir, M., Park, A., Brown, T., Adame, L., Chan, E., Buchholz, D., Stueve, T., \& Gallipeau, S. (2010). Atrazine induces complete feminization and chemical castration in male African clawed frogs ( Xenopus laevis ). Proceedings of the National Academy of Sciences, 107(10), 4612-4617. https://doi.org/10.1073/pnas. 0909519107
Herpin, A., \& Schartl, M. (2011). Dmrtl genes at the crossroads: A widespread and central class of sexual development factors in fish: Sexual development factors in fish. FEBS Journal, 278(7), 1010-1019. https://doi.org/10.1111/j.1742-4658.2011.08030.x
Inui, M., Tamano, M., Kato, T., \& Takada, S. (2017). CRISPR/Cas9-mediated simultaneous knockout of Dmrt1 and Dmrt3 does not recapitulate the 46,XY gonadal dysgenesis observed in 9p24.3 deletion patients. Biochemistry and Biophysics Reports, 9, 238-244. https://doi.org/10.1016/j.bbrep.2017.01.001

Ioannidis, J., Taylor, G., Zhao, D., Liu, L., Idoko-Akoh, A., Gong, D., Lovell-Badge, R., Guioli, S., McGrew, M. J., \& Clinton, M. (2021). Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics. Proceedings of the National Academy of Sciences, 118(10), e2020909118. https://doi.org/10.1073/pnas. 2020909118
Kubiak J. Z., Malgorzata Kloc, \& Rafal P Piprek. (2020). History of The Research on Sex Determination. Biomedical Journal of Scientific \& Technical Research, 25(3). https://doi.org/10.26717/BJSTR.2020.25.004194
Jeng, S.-R., Wu, G.-C., Yueh, W.-S., Kuo, S.-F., Dufour, S., \& Chang, C.-F. (2019). Dmrt1 (doublesex and mab-3-related transcription factor 1) expression during gonadal development and spermatogenesis in the Japanese eel. General and Comparative Endocrinology, 279, 154-163. https://doi.org/10.1016/j.ygcen.2019.03.012
Johnsen, H., Seppola, M., Torgersen, J. S., Delghandi, M., \& Andersen, Ø. (2010). Sexually dimorphic expression of dmrt1 in immature and mature Atlantic cod (Gadus morhua L.). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 156(3), 197-205. https://doi.org/10.1016/j.cbpb.2010.03.009
Josso, N., Di Clemente, N., \& Gouédard, L. (2001). Anti-Müllerian hormone and its receptors. Molecular and Cellular Endocrinology, 179(1-2), 25-32. https://doi.org/10.1016/S0303-7207(01)00467-1
Kelley, D. B., Ballagh, I. H., Barkan, C. L., Bendesky, A., Elliott, T. M., Evans, B. J., Hall, I. C., Kwon, Y. M., Kwong-Brown, U., Leininger, E. C., Perez, E. C., Rhodes, H. J., Villain, A., Yamaguchi, A., \& Zornik, E. (2020). Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication. The Journal of Neuroscience, 40(1), 22-36. https://doi.org/10.1523/JNEUROSCI.0736-19.2019
Kelley, D. B., Elliott, T. M., Evans, B. J., Hall, I. C., Leininger, E. C., Rhodes, H. J., Yamaguchi, A., \& Zornik, E. (2017). Probing forebrain to hindbrain circuit functions in Xenopus: KELLEY et al. Genesis, 55(1-2), e22999. https://doi.org/10.1002/dvg. 22999
Kim, S., Bardwell, V. J., \& Zarkower, D. (2007). Cell type-autonomous and non-autonomous requirements for Dmrt1 in postnatal testis differentiation. Developmental Biology, 307(2), 314-327. https://doi.org/10.1016/j.ydbio.2007.04.046
Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., \& Lovell-Badge, R. (1991). Male development of chromosomally female mice transgenic for Sry. Nature, 351(6322), 117121. https://doi.org/10.1038/351117a0

Krentz, A. D., Murphy, M. W., Sarver, A. L., Griswold, M. D., Bardwell, V. J., \& Zarkower, D. (2011). DMRT1 promotes oogenesis by transcriptional activation of Stra8 in the mammalian fetal ovary. Developmental Biology, 356(1), 63-70. https://doi.org/10.1016/j.ydbio.2011.05.658
Lenth R. (2023). _emmeans: Estimated Marginal Means, aka Least-Squares Means_. R package version 1.8.5, [https://CRAN.R-project.org/package=emmeans](https://CRAN.R-project.org/package=emmeans).
Li, M.-H., Yang, H.-H., Li, M.-R., Sun, Y.-L., Jiang, X.-L., Xie, Q.-P., Wang, T.-R., Shi, H.-J., Sun, L.-N., Zhou, L.-Y., \& Wang, D.-S. (2013). Antagonistic Roles of Dmrt1 and Fox12 in Sex Differentiation via Estrogen Production in Tilapia as Demonstrated by TALENs. Endocrinology, 154(12), 4814-4825. https://doi.org/10.1210/en.2013-1451
Lynch, M., \& Conery, J. S. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. https://doi.org/10.1126/science.290.5494.1151

Maier, M. C., McInerney, M.-R. A., Graves, J. A. M., \& Charchar, F. J. (2021). Noncoding Genes on Sex Chromosomes and Their Function in Sex Determination, Dosage Compensation, Male Traits, and Diseases. Sexual Development, 15(5-6), 432-440. https://doi.org/10.1159/000519622
Masuyama, H., Yamada, M., Kamei, Y., Fujiwara-Ishikawa, T., Todo, T., Nagahama, Y., \& Matsuda, M. (2012). Dmrtl mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka. Chromosome Research, 20(1), 163-176. https://doi.org/10.1007/s10577-011-9264-x
Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., Morrey, C. E., Shibata, N., Asakawa, S., Shimizu, N., Hori, H., Hamaguchi, S., \& Sakaizumi, M. (2002). DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature, 417(6888), 559-563. https://doi.org/10.1038/nature751
Mawaribuchi, S., Musashijima, M., Wada, M., Izutsu, Y., Kurakata, E., Park, M. K., Takamatsu, N., \& Ito, M. (2017). Molecular evolution of two distinct dmrtl promoters for germ and somatic cells in vertebrate gonads. Molecular Biology and Evolution, msw273. https://doi.org/10.1093/molbev/msw273
McCarthy, D.J., Chen, Y. and Smyth, G.K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research. 40(10): 4288-4297. doi: 10.1093/nar/gks042.
Nagahama, Y., Chakraborty, T., Paul-Prasanth, B., Ohta, K., \& Nakamura, M. (2021). Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiological Reviews, 101(3), 1237-1308. https://doi.org/10.1152/physrev.00044.2019
Nakada, K., Sato, A., Yoshida, K., Morita, T., Tanaka, H., Inoue, S.-I., Yonekawa, H., \& Hayashi, J.-I. (2006). Mitochondria-related male infertility. Proceedings of the National Academy of Sciences, 103(41), 15148-15153. https://doi.org/10.1073/pnas. 0604641103
Ni, F.-D., Hao, S.-L., \& Yang, W.-X. (2019). Multiple signaling pathways in Sertoli cells: Recent findings in spermatogenesis. Cell Death \& Disease, 10(8), 541. https://doi.org/10.1038/s41419-019-1782-z
Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. https://doi.org/10.1109/TSMC.1979.4310076
Ottolenghi, C., Pelosi, E., Tran, J., Colombino, M., Douglass, E., Nedorezov, T., Cao, A., Forabosco, A., \& Schlessinger, D. (2007). Loss of Wnt4 and Foxl2 leads to female-tomale sex reversal extending to germ cells. Human Molecular Genetics, 16(23), 27952804. https://doi.org/10.1093/hmg/ddm235

Owens, I. P., \& Short, R. V. (1995). Hormonal basis of sexual dimorphism in birds: implication for new theories of sexual selection. Trends Ecol Evol. 10(1):44-47.
Park, Y.-J., \& Pang, M.-G. (2021). Mitochondrial Functionality in Male Fertility: From Spermatogenesis to Fertilization. Antioxidants, 10(1), 98. https://doi.org/10.3390/antiox10010098
Piprek RP, Damulewicz M, Kloc M, Kubiak JZ. Transcriptome analysis identifies genes involved in sex determination and development of Xenopus laevis gonads. Differentiation. 2018;100:46-56. doi:10.1016/j.diff.2018.02.004. PubMed PMID: 29518581.

Pisarska, M. D., Barlow, G., \& Kuo, F. (2011). Minireview: Roles of the folkhead transcription factor FOXL2 in Granulosa cell biology and pathology. Endocrinology. 152(4): 1191208. doi: 10.1210/en.2010-1041

Ramalho-Santos, J., Varum, S., Amaral, S., Mota, P. C., Sousa, A. P., \& Amaral, A. (2009). Mitochondrial functionality in reproduction: From gonads and gametes to embryos and embryonic stem cells. Human Reproduction Update, 15(5), 553-572. https://doi.org/10.1093/humupd/dmp016
Raymond, C. (1999). A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators. Human Molecular Genetics, 8(6), 989-996. https://doi.org/10.1093/hmg/8.6.989
Raymond, C. S., Kettlewell, J. R., Hirsch, B., Bardwell, V. J., \& Zarkower, D. (1999). Expression of Dmrt1 in the Genital Ridge of Mouse and Chicken Embryos Suggests a Role in Vertebrate Sexual Development. Developmental Biology, 215(2), 208-220. https://doi.org/10.1006/dbio.1999.9461
Raymond, C. S., Murphy, M. W., O’Sullivan, M. G., Bardwell, V. J., \& Zarkower, D. (2000). Dmrtl , a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes \& Development, 14(20), 2587-2595. https://doi.org/10.1101/gad. 834100
Reaume, C. J., \& Sokolowski, M. B. (2011). Conservation of gene function in behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1574), 2100-2110. https://doi.org/10.1098/rstb.2011.0028
Rideout, E. J., Dornan, A. J., Neville, M. C., Eadie, S., \& Goodwin, S. F. (2010). Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster. Nature Neuroscience, 13(4), 458-466. https://doi.org/10.1038/nn. 2515
Robinson, M.D., McCarthy, D.J. and Smyth, G.K. (2010). EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26(1): 139140. doi: 10.1093/bioinformatics/btp616.

Roco, Á. S., Olmstead, A. W., Degitz, S. J., Amano, T., Zimmerman, L. B., \& Bullejos, M. (2015). Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proceedings of the National Academy of Sciences, 112(34). https://doi.org/10.1073/pnas. 1505291112
Roeszler, K. N., Itman, C., Sinclair, A. H., \& Smith, C. A. (2012). The long non-coding RNA, MHM, plays a role in chicken embryonic development, including gonadogenesis. Developmental Biology, 366(2), 317-326. https://doi.org/10.1016/j.ydbio.2012.03.025
RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
Sassoon, D., \& Kelley, D. B. (1986). The sexually dimorphic larynx ofXenopus laevis: Development and androgen regulation. American Journal of Anatomy, 177(4), 457-472. https://doi.org/10.1002/aja. 1001770404
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., \& Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. https://doi.org/10.1038/nmeth. 2019
Sekido, R., \& Lovell-Badge, R. (2009). Sex determination and SRY: Down to a wink and a nudge? Trends in Genetics, 25(1), 19-29. https://doi.org/10.1016/j.tig.2008.10.008

Session, A. M., Uno, Y., Kwon, T., Chapman, J. A., Toyoda, A., Takahashi, S., Fukui, A., Hikosaka, A., Suzuki, A., Kondo, M., Van Heeringen, S. J., Quigley, I., Heinz, S., Ogino, H., Ochi, H., Hellsten, U., Lyons, J. B., Simakov, O., Putnam, N., ... Rokhsar, D. S. (2016). Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 538(7625), 336-343. https://doi.org/10.1038/nature 19840
Shaidani, N.-I., McNamara, S., Wlizla, M., \& Horb, M. E. (2021). Obtaining Xenopus laevis Embryos. Cold Spring Harbor Protocols, 2021(3), pdb.prot106211. https://doi.org/10.1101/pdb.prot106211
Shen, M. M., \& Hodgkin, J. (1988). Mab-3, a gene required for sex-specific yolk protein expression and a male-specific lineage in C. elegans. Cell, 54(7), 1019-1031. https://doi.org/10.1016/0092-8674(88)90117-1
Shi, J., Li, Y., Ren, K., Xie, Y., Yin, W., \& Mo, Z. (2017). Characterization of cholesterol metabolism in Sertoli cells and spermatogenesis (Review). Molecular Medicine Reports. https://doi.org/10.3892/mmr.2017.8000
Sinclair, A. H., Berta, P., Palmer, M., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A.-M., Lovell-Badge, R., \& Goodfellow, P. N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. 346.
Smith, C. A., Katz, M., \& Sinclair, A. H. (2003). DMRT1 Is Upregulated in the Gonads During Female-to-Male Sex Reversal in ZW Chicken Embryos1. Biology of Reproduction, 68(2), 560-570. https://doi.org/10.1095/biolreprod.102.007294
Teshima, K. M., \& Innan, H. (2008). Neofunctionalization of Duplicated Genes Under the Pressure of Gene Conversion. Genetics, 178(3), 1385-1398. https://doi.org/10.1534/genetics.107.082933
Titi-Lartey OA, Khan YS. Embryology, Testicle. [Updated 2023 Apr 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557763/
Tobias, M., Evans, B. J., \& Kelley, D. B. (2011). Evolution of advertisement calls in African clawed frogs. Behaviour, 148(4), 519-549. https://doi.org/10.1163/000579511X569435
Tobias, M., Korsh, J., \& Kelley, D. (2014). Evolution of male and female release calls in African clawed frogs, Behaviour, 151(9), 1313-1334. doi: https://doi.org/10.1163/1568539X00003186
Vainio, S., Heikkilä, M., Kispert, A., Chin, N., \& McMahon, A. P. (1999). Female development in mammals is regulated by Wnt-4 signalling. Nature, 397(6718), 405-409. https://doi.org/10.1038/17068
Veitia, R., Nunes, M., Brauner, R., Doco-Fenzy, M., Joanny-Flinois, O., Jaubert, F., LortatJacob, S., Fellous, M., \& McElreavey, K. (1997). Deletions of Distal 9p Associated with 46,XY Male to Female Sex Reversal: Definition of the Breakpoints at 9p23.3-p24.1. Genomics, 41(2), 271-274. https://doi.org/10.1006/geno.1997.4648
Veyrunes, F., Waters, P. D., Miethke, P., Rens, W., McMillan, D., Alsop, A. E., Grützner, F., Deakin, J. E., Whittington, C. M., Schatzkamer, K., Kremitzki, C. L., Graves, T., Ferguson-Smith, M. A., Warren, W., \& Marshall Graves, J. A. (2008). Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Research, 18(6), 965-973. https://doi.org/10.1101/gr. 7101908
Voordeckers, K., \& Verstrepen, K. J. (2015). Experimental evolution of the model eukaryote Saccharomyces cerevisiae yields insight into the molecular mechanisms underlying
adaptation. Current Opinion in Microbiology, 28, 1-9. https://doi.org/10.1016/j.mib.2015.06.018
Webster, K. A., Schach, U., Ordaz, A., Steinfeld, J. S., Draper, B. W., \& Siegfried, K. R. (2017). Dmrtl is necessary for male sexual development in zebrafish. Developmental Biology, 422(1), 33-46. https://doi.org/10.1016/j.ydbio.2016.12.008
Wiechmann, A. F., \& Wirsig-Wiechmann, C. R. (2003). Color Atlas of Xenopus laevis Histology. Springer US. https://doi.org/10.1007/978-1-4419-9286-4
Yano, A., Guyomard, R., Nicol, B., Jouanno, E., Quillet, E., Klopp, C., Cabau, C., Bouchez, O., Fostier, A., \& Guiguen, Y. (2012). An Immune-Related Gene Evolved into the Master Sex-Determining Gene in Rainbow Trout, Oncorhynchus mykiss. Current Biology, 22(15), 1423-1428. https://doi.org/10.1016/j.cub.2012.05.045
Zhou, Y., Sun, W., Cai, H., Haisheng Bao, Zhang, Y., Guoying Qian, \& Chutian Ge. (2019). Supplemental Material for Zhou et al., 2019 (p. 1437758 Bytes) [Data set]. GSA Journals. https://doi.org/10.25386/GENETICS. 10028399
Yoshimoto, S., Ikeda, N., Izutsu, Y., Shiba, T., Takamatsu, N., \& Ito, M. (2010). Opposite roles of DMRT1 and its W-linked paralogue, $D M-W$, in sexual dimorphism of Xenopus laevis: Implications of a ZZ/ZW-type sex-determining system. Development, 137(15), 25192526. https://doi.org/10.1242/dev. 048751

Yoshimoto, S., Okada, E., Oishi, T., Numagami, R., Umemoto, H., Tamura, K., Kanda, H., Shiba, T., Takamatsu, N., \& Ito, M. (2006). Expression and promoter analysis of Xenopus DMRT1 and functional characterization of the transactivation property of its protein. Development, Growth and Differentiation, 48(9), 597-603. https://doi.org/10.1111/j.1440-169X.2006.00894.x
Yoshimoto, S., Okada, E., Umemoto, H., Tamura, K., Uno, Y., Nishida-Umehara, C., Matsuda, Y., Takamatsu, N., Shiba, T., \& Ito, M. (2008). A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proceedings of the National Academy of Sciences, 105(7), 2469-2474. https://doi.org/10.1073/pnas. 0712244105
Zhang, X., Li, J., Chen, S., Yang, N., \& Zheng, J. (2023). Overview of Avian Sex Reversal. International Journal of Molecular Sciences, 24(9), 8284.
https://doi.org/10.3390/ijms24098284

