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Lay Abstract

Applications in materials science often require the acquisition of images of semicon-

ductor computer chips at very high resolution. Using cameras with even tens of

millions of pixels might not give us enough resolution over a wide field of view. One

approach is to acquire several images of parts of the sample at high magnification

and assemble them into a single composite image. This way, we can preserve the high

resolution over a wide area. Algorithms developed for assembling the composite im-

age are known as tiling or mosaicing. This whole process is known as image stitching

(and includes image registration). In this thesis, we develop specialized algorithms

suited for the 2D stitching of semiconductor images, including the generalization to

3D. This case is challenging because slight alignment errors may completely change

the reconstructed circuit, and the images contain both repeated patterns (such as

many parallel wires) and changes in brightness and distortions caused by the scan-

ning device.
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Abstract

To acquire high-resolution Scanning Electron Microscopy (SEM) images over wide

areas, we must acquire several images “tiling” the surface and assemble them into

a single composite image, using a process called image stitching. While for some

applications, stitching is now routine, SEM mosaics of semiconductors pose several

challenges: (1) by design, the image features (wire, via and dielectric) are highly

repetitive, (2) the overlap between image tiles is small, (3) sample charging causes

intensity variation between captures of the same region, and (4) machine instability

causes non-linear deformation within tiles and between tiles. In this study, we com-

pare the accuracy and computational cost of three well-known pixel-based techniques:

Fast Fourier Transform (FFT), Sum of Squared Differences (SSD), and Normalized

Cross Correlation (NCC). We compare well-known 2D algorithms, as well as novel

projection-onto-1D versions. The latter reduces the computational complexity from

O(n2) to O(n), where n is the number of pixels, without loss of accuracy, and in some

cases, with greater accuracy. Another approach to reducing the computational com-

plexity of image alignment is to compare isolated landmarks, rather than pixels. In

semiconductor images, there are no natural fiducials and adding them would destroy

the information required to reconstruct their circuits, so we introduce a new class of

landmarks which we call numerical landmarks. Related to Harris corners, the novel
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numerical landmarks are insensitive to brightness variations and noise.

Finally, we consider the alignment problem between layers of image mosaics. Un-

like in the “horizontal” directions, the vertical dimension is only sparsely sampled.

Consequently, image features and landmarks cannot be used for alignment. Instead,

we must rely on the relationship between vias (through-plane metalization) and wires

(in-plane metalization), and we have developed a novel algorithm for matching vias

in the lower layer with wires above, and use this to align subimages.
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Chapter 1

Introduction

Scanning electron microscopy (SEM) problems are complex and thus require inter-

disciplinary solutions involving mathematics, computer science and materials science.

SEM probes a sample with an incident electron beam and then detects scattered elec-

trons emitted from the sample’s surface. This provides several signals with qualitative

and quantitative information about the specimen. This information includes the sam-

ple’s topography (through secondary electrons), composition (through backscattered

electrons and characteristic x-rays), and crystallographic information (electron chan-

nelling and backscattered diffraction) [19].

The SEM ability to observe compositional variations within a specimen is by using

atomic number dependence of electron backscattering. Experimental studies have

been conducted to determine the relationship between the back-scattered coefficient

and the specimen atomic number over a wide range of atomic numbers [47]. By

selecting appropriate operating conditions, the detected back-scattered signal can

be used to determine the atomic number of a specimen as well as the relationships

between atomic number, which establishes the ratio of the two components. The

1
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composition of the area of interest can be directly determined using measurements of

the back-scattered signal for suitable specimens, where the component elements are

well separated in atomic number [3].

In this thesis, we analyze the network of semiconductor circuit metallization lines.

The circuits that we image using SEM, have two major compositions of metal (typ-

ically copper, aluminum or tungsten) and dielectric, with three visible structures:

dielectric without metal, metal wires under a layer of dielectric, and metal vias

(through-plane wires connecting different layers vertically—i.e., into the sample [43],

see Figure 1.1).

2

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


PhD Thesis – N. Khoonkari; McMaster University – Computing and Software

dielectric
wire

via

a)

via

wire dielectric

b)

Figure 1.1: a)SEM image of the cross-section of integrated circuit metallization
stack showing the dielectric, metal lines and vias, b) plane view of the two aligned

layers showing the dielectric without metal, metal wires under a layer of silicon, and
metal vias (through-plane wires connecting different layers vertically.

3
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Figure 1.1 is the cross-section of the semiconductor sample, in which the three

gray levels are not distinguished sharply. The reason for this observation is that

when the images are taken from the top (i.e. a plan view), the depth of each material

type varies at each position. For instance, vias are metal lines connecting two layers,

so the amount of metal at the via position is high, and it looks brighter because of

backscattered electron contrast. However, looking at the vias from the side assumes

that the amount of material doesn’t change with the depth in the image. The same

is true for wires, but the depth of wires and the depth of the metal into the sample

is lesser than vias. The amount of metal in the sample from a cross-section view

is all the same because all of the metal is relatively “infinite” going into the plane.

Conversely, parts of the sample with vias contain more metal in plain view, while

the horizontal lines, which are wires, are made up of less metal. Therefore, in the

plan view, the density of metal is higher for through-plane wires connecting different

layers vertically than the horizontal wires (a via has a brighter gray level compared

to wire). This is also true for all other components and materials in the structure

of semiconductors. Dielectric, specifically, is not pure silicon (sometimes dielectric

oxide, sometimes poly-Si for packaging) in the semiconductor samples, so its gray

level depends on the local material density and composition. In [55], it is explained

how different types of dielectric affect the emissivity of materials. It is also mentioned

how the dielectric is decomposed and reacts.

Figure 1.2 shows a typical schematic of this structure, with five metallization

layers in a cross-sectional view. To image each layer in plan view, the upper layers

are cut away to a horizontal plane that intersects the vias, and the sample is then

polished. Because the vias connect wires in the upper and lower metallization layers,

4
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they appear as vertical wires in the resulting image. We will image these structures in

plan view for our work, thus imaging individually polished levels of this layer stack,

see Figure 1.2. Because the polishing process exposes the vias’ metal, the vias are

the brightest features of the image as they have the highest amount of high atomic

number material at those pixels. Each sample has a characteristic wire size, with

slight variation and regular patterns repeated throughout each layer [42].

Figure 1.2: The electronic chip with five layers of metallization. This image is
licensed under Creative Commons Attribution 2.5 Generic by user Cepheiden at
https://commons.wikimedia.org/wiki/File:Cmos-chip-structure-in-2000s-(en).svg.

In a computer, an integrated circuit is an ensemble set of electronic circuits on one

small flat piece (or chip) of semiconductor material, most often silicon. The current

5
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that flows through a gate establishes a voltage at a particular point in the circuit. This

voltage represents a single bit of information. The voltage may be high (representing

the value “1”) or low (representing the value “0”). At the most elementary level,

transistors control the flow of electrical current through a circuit, with a metallic

gate, allowing the device to form a “0” or a “1”[40]. A transistor is a miniature

electronic component that performs two functions: switch or amplifier. The lowest

level of a computer chip (with the smallest feature size) consists of transistors. The

chip designer selects the transistors’ logical operations that can be performed using

the software. As an amplifier, it acts as a current booster. This means the input

current is small, and the output current is much bigger. In other words, it’s a kind

of current booster. It is also possible to use transistors as switches. Computer chips

work in this way. When one part of a transistor is undergoing a very small electric

current, another can experience a much larger current, which means the small current

switches on the larger current. A memory chip, for instance, contains hundreds of

millions or even billions of transistors, each of which can be switched on and off

independently. Transistors can store either zero or one as they can have two distinct

states as a switch. By having billions of transistors, a chip can store billions of zeros

and ones which represent many characters. Having more transistors means having

bigger memory.

This is a hierarchical structure. The current is passed horizontally and vertically

between semiconductor layers to make up a computer’s logic operations and this

builds to higher and higher levels as logical blocks are connected so different parts of

the computer communicate with each other. Two individual transistors are getting

6
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connected at the smallest level, with bus lines and major sectors of the chips con-

necting further up the IC. A semiconductor’s size, known as node size, is measured in

nanometers. Its unit is equal to one billionth of a meter (or 0.000000001m). The cur-

rent ‘node’ sizes of the semiconductor chips are 7 nm and 5 nm, which is the channel

width at the lowest level of metallization, while the resolution of an SEM is about 0.6

nm at best. So, we are nearing the point where we cannot easily image the circuits

with confidence and employ more advanced data processing techniques to develop a

full process. In the following, the motivation behind this Ph.D. project is discussed.

1.1 Moore’s Law

Moore’s law is a computing term that originated by Intel CEO Gordon Moore in 1965;

the simplified version of this law states that processor speeds or overall processing

power of computers will double every two years. To break down the law further, it

specifically stated that the number of transistors on an affordable CPU would double

every two years (which is essentially the same thing), but measuring the increase by

increasing the density of transistors is more accurate. This is not a physical law but

rather a driving motivation to miniaturize and improve the chips’ speed.

From 2000–2009, there was not much of a speed difference as the clock rates ranged

from 1.3 GHz to 2.8 GHz, suggesting that the processor speeds have barely doubled

within that 10-year timeframe. In 2000, the number of transistors in the CPU num-

bered 37.5 million, while in 2009, the number went up to an astounding 904 million;

this is why it is more accurate to apply the law to transistor number/density than

to speed. In 2020, Apple announced M1, the most powerful chip it has ever created

and the first chip designed specifically for the Mac with 16 billion transistors. Three
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years later, in 2023, they announced M2 chips, consisting of 20 billion transistors,

which is 25 percent more than M1.

As transistors in integrated circuits can be fabricated at smaller sizes, computers

become smaller and faster. Chips and transistors are microscopic structures that

usually contain metal, oxides, and silicon aligned perfectly to move electricity along

the circuit faster. Smaller transistors mean less distance for electrical signals to travel.

The faster a microchip processes electrical signals, the more efficient a computer

becomes.

The word resolution refers to the smallest size that can be observed (the shortest

distance between two neighbouring points). The resolution of the human eye is said

to be 0.2mm. Depending on the instrument, the resolution of a scanning electron

microscope can fall somewhere between less than 1nm and 20nm. Currently, tran-

sistors are around 5nm in scale and are expected to shrink in the next few years,

while M1 and M2 are already 5nm. If one wanted to take an image of the layout of

a 16 billion transistor CPU, SEM is not able to scan them all at once. So, at the

transistor level, we are pushing the limits of the resolution of the SEM images. In

this case, we need to acquire a high-resolution image (perhaps at 16k by 16k pixel

dimension with 1nm pixel size), move the sample, acquire another image, move, and

so on. Ultimately, these images need to be reassembled. These three steps are the

main focus and motivation of this research. This leads to the following sections of

this document, which are about SEM and image processing algorithms to tackle this

issue of imaging semiconductors.

SEM details are discussed in chapter 2. This thesis contains several related

projects in which we try to solve two important problems we found while working with
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semiconductor metallization samples. In chapter 3, We explain 2-dimensional stitch-

ing, which is assembling the composite image from several images, also known as tiling

or mosaicing. This requires an algorithm for image stitching (inter-tile registration.

The common registration approaches are also discussed in this chapter. We discuss

and compare three main approaches: i) Fourier transform, ii) the sum of square dif-

ference, iii) and cross-correlation based on important metrics, including how they fit

specific aspects of the experimental acquisition conditions. Automating this process

is an essential issue as it is difficult and time-consuming to achieve manually. One

of the famous landmark-based registration techniques is also discussed in this chap-

ter. Our novel approach in 2D stitching is completely discussed in chapter 4. There

are two methods, one based on a new set of landmarks which we named “Numerical

Landmark”, and one based on dimension reduction to accelerate the computation.

Both methods increase the accuracy and efficiency of the stitching process.

Chapter 5 is on the alignment of stitched mosaics from layer to layer in three

dimensions. In the stitching process, the tiles get stitched in 2D, and then the as-

sembled images are needed to align in 3D to make a connectivity diagram of the

target sample. This problem is known as 3D reconstruction, and it is not simply a

3D interpolation problem. Chapter 6 main discussion is on our novel approach in

volume stitching. We introduce an algorithm that aligns consecutive tiles based on

the centroid of specific features in SEM images.

There are two related projects, stitching in 2D and 3D, based on the various data

sets we received from an industrial partner. We solved real-world applied problems

to benefit both industry and academia. Our research questions were:
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1. Is it possible to identify “numerical landmarks”, that is image regions which cor-

relate to themselves much more strongly than they correlate with neighbouring

regions, without having a predefined set of image features to match to? If so,

how can they best be determined?

2. What approaches reduce the computational complexity of stitching? Can di-

viding the overlap area into smaller subimages lead to effective parallelization?

3. How can we align 2D stitched images from multiple layers without common

features in order to reconstruct circuits?

Chapter 7 answers our research questions using the novel algorithms and analysis

presented in this thesis.

All of the algorithms are implemented using Python 3.7, 3.8, and 3.10. There are

multiple libraries which are used in our implementations, e.g. Numpy and Scipy are

used for fitting and calculations, Skimage and OpenCV are used for calculation on

images, Matplotlib is used for visualization, and Pickle is used for saving the data. In

order to accelerate the “for” loops, another library is used, which is called “Numba”.

Our data sets are big and include thousands of tiles. An automatic approach is needed

to solve stitching problems for big data sets. This explains the high demand for

computerized algorithms, which can accelerate the stitching process. The resolutions

varied based on the imaging tool, but most of the microscope parameters to take

those images were confidential and belonged to our industrial partner.
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Chapter 2

Scanning Electron Microscopy

The human eye can resolve two points that are 0.2mm apart from each other. How-

ever, with the help of a lens or group of lenses (aided eye), this power could be

modified to resolve much smaller features. Anything below 0.1 − 0.2mm requires

some magnification. The microscope was developed to help human eyesight limita-

tions and works as an efficient magnifying tool. That is an excellent aid for having a

higher resolution to study and investigate the characteristics of a wide range of ma-

terials [1] since their properties are often dictated by features at the nano and micro

scales.

The microscope resolving power is based on multiple factors, such as the quality

and number of the lenses used and the probe source used to produce an image. Ac-

cording to [1], microscopy radiation wavelength can be divided into categories based

on the source of radiation required to produce an image. Two are optical microscopy

(OM) and electron microscopy (EM). OM uses light of different wavelengths (x-ray,

visible light, infrared light) as a source, while EM uses accelerated electrons into a

11
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beam using electromagnetic lenses. Both microscopes are qualified for surface inves-

tigation of materials, but the optical microscope resolution is often limited by diffrac-

tion (or interference on the radiation waves). Using electron microscopy methods can

solve this problem and help to attain a much higher resolution, though it too has

some limitations, including requiring a high vacuum chamber to prevent scattering of

the radiation.

Scanning electron microscopy (SEM) is one of the most common electron mi-

croscopy techniques. The SEM principle was originally demonstrated by Knoll (1935;

Knoll and Theile 1939), with the first true SEM being developed by von Ardenne

(1938). The modern commercial SEM emerged from extensive development in the

1950s and 1960s by Prof. Sir Charles Oatley and his many students at the University

of Cambridge (Oatley 1972) [19]. This is a multipurpose instrument that can examine

and analyze materials with high resolution.

In SEM, an electron gun produces an electron beam in EM. The image is created

by the interaction of the primary electron beam focused on the material surface.

The beam scans the surface of the sample with the subsequently scattered secondary

and backscattered electrons gathered by electron detectors in a timed acquisition.

Accelerated electrons used in EM have a very short wavelength (0.859 − 0.037Å,

20eV − 100keV ). So, you can see microscopic features, although the resolution is

not simply determined by the wavelength (the quality of the lens and source, and

the spatial extent of electron-sample interactions are also important). EM also gives

information about composition as the electron beam can interact with inner-shell

electrons, causing energy transitions in the atom that can act as a fingerprint of the

chemical bonds within the sample. It also gives crystallography information because
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its wavelength is on the order of the lattice spacings in crystals, giving rise to Bragg

diffraction.

SEM can provide information about a sample surface’s features, including their

shape, size, and arrangement. Materials need to be electrically conductive to be

imaged in the SEM; otherwise, they experience electron charging, causing sample

damage and confusion in image interpretation [16]. Non-conductive materials must be

coated with a conductive layer of metal or carbon. If the specimen is observed without

a conductive coating, it can be electrically charged because, at certain locations on

the specimen surface, the number of electrons emitted is larger (or smaller) than the

amount of incident (primary) electrons. The electron beam scans over the sample’s

surface, and the scattered electron detectors register a grayscale value as a function

of position, see Figure 2.1. This gives a pixel grayscale value that corresponds to a

specific scattering mechanism and electron yield. Commonly, with a scanned electron

beam with a particular raster pattern (in this case, the beam flies back to the origin

as it initiates a new row while the beam is blanked), X-Y information about the

specimen can be collected. In the next three sections, we discussed two major signals

of our interest in this project.
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Figure 2.1: Scan path and pixel set in an SEM [2]. In raster scanning, the electron
beam sweeps horizontally left-to-right at a steady rate (solid yellow line), then

blanks (i.e. the beam is blocked while the scanning generating electronics return the
beam to the start of the next row) and rapidly moves back to the left (dashed

yellow line), where it turns back on (unblanks) and sweeps out the next line. The
sample emits different kinds of electrons that are detected. Each pixel of the image
gets a unique grey value based on the number of detected electrons and types. This

image is a crop of an 8k (i.e. 8192 pixel) image. The pixel dimension is
approximately 0.6nm, which is at the limit of the resolution of the instrument.

2.1 Electron-Specimen Interactions

SEM images are formed based on signals which are produced by the incident electron

beam and its interactions with specimen atoms. Generally, there are two kinds of

interactions: elastic interactions and inelastic interactions.

1. Elastic scattering results from the deflection of the incident electron by the
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nucleus of a specimen atom. This interaction is characterized by negligible en-

ergy loss during the collision and a wide-angle directional change of the scattered

electron. Backscattered Electrons (BSE) are produced by the incident electrons

elastically scattered through an angle of more than 90 degrees, see Figure 2.2.

BSEs produce a useful signal for imaging the sample. High atomic number (Z)

nuclei scatter BSE electrons more strongly and result in a higher electron yield

collected in the detector. This is the origin of the atomic number contrast (or

Z-contrast), which shows that heavier elements appear brighter in a BSE image.

BSE emitted with negligible energy loss but a wide angle of scattering are capa-

ble of providing information about complex properties of the target bulk down

to a certain subsurface depth, revealing its material composition and crystalline

structure. Contrast mechanisms reflecting these contributions to micrographs

are combined according to the energy of incident electrons and the energy and

angular acceptance of BSE detection.

2. Inelastic scattering occurs through a variety of interactions between the in-

cident electrons and the electrons and atoms of the sample, which results in the

primary beam electron transferring energy to that atom. The amount of energy

loss depends on whether the specimen electrons are excited singly (secondary

electrons), in multiple-scattering processes (x-ray, Auger), or collectively (plas-

mons) and on the electron’s binding energy to the atom. Secondary Electrons

(SE) are produced due to the excitation of specimen electrons during the ioniza-

tion of specimen atoms. SEs are conventionally defined as possessing less than

50eV , but the vast majority are less than 10eV in energy. Their information

depth, about 0.5–1.5nm for metals, is almost independent of the landing energy
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of exciting electrons because its limitation is based on the low energy of excited

electrons and their corresponding range [36]. Newly-generated secondary elec-

trons have additional elastic and inelastic scattering events, often losing their

energy further, see Figure 2.2. However, if they originate close to the sample

surface, some secondary electrons may be emitted into the vacuum of the mi-

croscope chamber, and then travel to the detector. Because of the reabsorption

mechanism of deeply-generated secondary electrons, only surface SEs tend to

be measured, giving the SE signal a topographical contrast illustrative of the

sample surface, which reflects the surface properties of the sample.

Figure 2.2: Scattering of an electron inside the electron cloud of an atom. This
image is licensed under properties of Electrons, their Interactions with Matter and

Applications in Electron Microscopy by Frank Krumeich
(https://www.microscopy.ethz.ch/downloads/Interactions.pdf)
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In addition to those signals utilised to form an image, several other inelastic

signals are produced when an electron beam strikes a sample, including the genera-

tion of plasmons (oscillations of the electric field of the electron cloud) or phonons

(manifested as heat - the collective oscillations of the nuclei themselves). Other use-

ful signals include the emission of characteristic x-rays and Auger electrons, which

give compositional information related to inner or outer-shell electrons (and can be

mapped to give spatial chemical information as well). When the sample is bombarded

by the electron beam of the SEM, electrons are ejected from the atoms comprising

the surface of the sample. A resulting electron vacancy is filled by an electron from

a higher shell, and an X-ray is emitted to balance the energy difference between the

two electrons or an Auger electron transition (beyond the scope of this work) can

take place giving surface information about the sample. Figure 2.3 shows the regions

from which different signals are detected [56].
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Figure 2.3: Signal generation and detection in SEM. This image is licensed under
the Creative Commons Attribution-Share Alike 4.0 International by user Rob Hurt

A direct consequence of the decrease in beam energy, E0 is the correlated decrease

in the penetration depth, R, of primary electrons (PE) interacting with the specimen.

The basis of the combined directional elastic and inelastic scattering along the direc-

tion of the electron beam path can be described in simple analytical term proposed by

the Bethe equation in power law [6]. The penetration of incident electrons decreases
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with increasing atomic number (Z). The penetration depth of incident electrons can

be given by the Kanaya-Okayama Formula [24],

R =
0.0276AEn

0

z0.89ρ
µm (2.1.1)

where, R is the depth penetration, A is the atomic weight (g/mole), n is a constant,

E0 is the beam energy (KV ), Z is the atomic number, and ρ is the density (g/cm)2.

“n” is often chosen to be ≈ 1.35 when the primary beam energy E0 is < 5keV , and

to be 1.67 when E0 > 5keV .

The mean free path length of secondary electrons varies in different materials

[46]. If the mean free path length is considered to be 10Å, although electrons are

generated throughout the region excited by the incident beam, only those electrons

that originate less than 10Å deep in the sample escape to be detected. This volume

of production is very small compared with BSE and X-rays. Therefore, the resolution

using SE is better than either of these and is effectively the same as the electron

beam size. The generation region of backscattered electrons is larger than that of the

secondary electrons, namely, several tens of nm; therefore, backscattered electrons

give poorer special resolution than secondary.

The specimen-electron interaction starts when the incident electron strikes the

specimen surface. In this stage, the energetic electrons penetrate the sample for some

distance and collide with a specimen atom. This happens in the region of primary

excitation, from which a variety of signals are produced. This zone’s size and shape are

largely dependent upon the beam’s electron energy, the specimen’s atomic number,

and the specimen’s density. Figure 2.4 illustrates the variation of interaction volume

with respect to different accelerating voltages and atomic number [56]. There is a
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direct relationship between volume and depth of penetration, and the beam energy,

while this relation is inverse with specimen atomic number. Specimens with higher

atomic numbers have increased nuclear scattering, so the higher the atomic number,

the less penetration occurs. Note that high accelerating voltages will result in deep

penetration and a large primary excitation region. Ultimately this causes the loss

of detailed surface information, and the high voltage might degrade the specimen.

This suggests that in composite materials like semiconductor metallization lines (see

below), there is the possibility that sample information comes from different depths,

causing some blurring and confusion about the exact feature location.
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Electron Beam Electron Beam
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a) b)

Figure 2.4: Influence of accelerating voltage and specimen atomic number on the
primary excitation volume: (a) low atomic number and (b) high atomic number.

This suggests that blurring is not linear, because the volume producing SE electrons
will be different in different materials. This image is from

(http://www.ammrf.org.au/myscope/sem/ptactice/principles/voltagevstype.php)

2.2 Secondary Electrons

When the primary beam strikes the sample surface and causes the ejection of valence

electrons of low energy, these weakly-bonded electrons emitted also lose energy in

interactions with adjacent atoms and are often reabsorbed into the sample. How-

ever, close to the sample surface, they can overcome a potential surface barrier and

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


PhD Thesis – N. Khoonkari; McMaster University – Computing and Software

get emitted into the sample chamber’s vacuum, thus becoming collectible. These

escaped electrons are referred to as secondary electrons. As they have low energy,

typically an average of around 3 to 5 eV , they can only escape from a region within

a few nanometers of the material surface. So secondary electrons accurately mark

the position of the surface atoms and give topographic information with good res-

olution. Because of their low energy, secondary electrons are readily attracted to a

detector carrying some applied bias. The Everhart-Thornley (ET) detector, which is

the standard collector for secondary electrons in most SEMs, it is designed to apply

a bias (+50 − 300V ) to a Faraday cage that screens the detectors and sweeps up

the electrons. Once inside the detector, the scintillator converts the energy of the

electrons into photons (visible light). The photons then move out through the semi-

conductor within the detector, and the quantized energy of the photons is converted

back into a measurable current that corresponds to grayscale for that pixel [56], [19]

which corresponds to the number of electrons emitted from the location.

Secondary electrons are used principally for topographic contrast in the SEM, i.e.,

for the visualisation of surface texture and roughness. The topographical image is

dependent on how many of the secondary electrons reach the detector. A secondary

electron signal can resolve surface structures down to the order of 1nm or better. Sec-

ondary electrons that are prevented from reaching the detector will generate shadows

or be darker in contrast to those regions that have an unobstructed electron path

to the detector. When the specimen surface is perpendicular to the beam, the zone

from which secondary electrons are emitted is smaller than found when the surface

is tilted [56], [19]. The contrast is dominated by the so-called edge effect, as more
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secondary electrons can leave the sample on sloped than in flat areas leading to in-

creased brightness spikes at the edges of the object. This makes topography in the

sample from SE contrast intuitively easy to interpret by the microscope operator.

SEs can be generated from interactions with the primary incident electron beam,

in which case they are called SE1 electrons. However, they can also be produced

by backscatter electrons travelling within the sample, producing SE2 electrons as

the backscattered electrons leave the sample or hitting the column or chamber wall,

producing SE3 electrons, See Figure 2.5. SE2 and SE3 degrade the image’s resolution

because the signal emitted does not correspond to the input probe electron’s position

but is still gathered by the ET detector (see below) and contributes to noise in the

image since its signal is delocalized.

Figure 2.5: Different types of SE generated in the SEM chamber [43].

There are different detectors for absorbing electrons. For an Everhart-Thornley
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detector, a Faraday cage which is biased, absorbs the electrons. The bias can be

either positive or negative. It is mostly positive and attracts low-energy SEs. If

we put a slight negative bias, it repels any secondary electrons from reaching the

detector, making an ET a poor backscatter detector which absorbs the high-energy

BSEs. Only those electrons that travel in a straight path from the specimen to the

detector contribute to the backscattered image [56]. Backscattered electron detectors

can be of several types (scintillators, semiconductors) and are often placed above

the specimen (with a donut hole in the middle to allow the incident beam to pass

through). We will mostly use backscattered electrons throughout this dissertation,

but the use of SE’s is possible for certain imaging scenarios.

2.3 Backscattered Electrons

Backscattered electrons (BSEs) provide both compositional and topographic infor-

mation in the SEM. A BSE can have single or multiple scattering events and escape

from the surface with energy in the kV range. The elastic collision between an elec-

tron and the specimen atomic nucleus causes the electron to scatter with wide-angle

directional change. Roughly 60 to 80 percent of these electrons’ initial energies will be

retained by the time the electron is reemitted into the vacuum chamber. Typically,

the backscattered electron emission follows a cosine distribution, with the highest

proportion of backscattered electrons scattered towards the electron source.

Elements with higher atomic numbers have more positive charges (protons) in

the nucleus, and as a result, scatter the incoming electrons more strongly, increasing

the backscattered electron yield. This, in turn, gives the atomic number effect, with

the resulting backscattered signal with atomic number. Thus, the amount of BSEs
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depends on the sample’s atomic number, providing contrast in SEM images. For

example, the BSE yield from a light element, such as carbon, is much lower than a

more massive element, such as tungsten or gold.

Nevertheless, with a reasonably large escape depth (10s of nm), BSEs can carry

information about features that are deep beneath the surface. In examining relatively

flat samples, one can deconvolve topography from composition, yielding an image that

contains mostly compositional information.

2.4 Configuration of Scanning Electron Microscopes

Figure 2.6 shows a conventional SEM [56]. We now give a brief explanation of where

the electrons are targeted on the sample and how the electron beam is generated and

demagnified to a focused point on the sample. An electron gun and electron lenses

perform these two processes. Other parts of the SEM are explained in detail in [56],

[19].
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Figure 2.6: Schematic diagram of a scanning electron microscope (JSM-5410,
courtesy of JEOL, USA).

2.4.1 Electron Gun

SEM systems require an electron gun that produces a stable electron beam with high

current, small spot size, adjustable energy, and small energy dispersion. Electrons

are produced by thermionic emission (i.e., heating a filament) or using the field-effect

(putting a high extractive electric field on the electron source and overcoming the

source metal’s work function.). Electrons are produced by an electron gun, but their

trajectory and beam characteristics need to be shaped by electron lenses which control
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their direction.

2.4.2 Electron Lenses

An electrostatic or electromagnetic field can focus an electron beam. Coils of wire,

known as electromagnets, are used to produce a magnetic field, and the trajectories

of the electrons can be adjusted by the current applied to these coils. Electron lenses

can be used to demagnify the electron beam and control the convergence angle. The

strength of electron lenses is variable, which results in a variable focal length. SEM

always uses electromagnetic lenses to de-magnify the emission source’s image to form

a narrow probe on the specimen’s surface. This leads to better resolution. The

following are two kinds of lenses we have in SEM. Apertures are used at different lens

planes to filter out aberrations of electrons that are far from the optic axis, at the

expense of losing beam current.

1. Condenser Lenses: The electron beam will diverge after passing through the

anode plate (a plate that imposes positive charges) from the emission source.

By using the condenser lens, the electron beam is converged and collimated into

a relatively parallel stream.

2. Objective Lenses: The electron beam will diverge below the condenser aper-

ture. Objective lenses are used to focus the electron beam into a probe point

at the specimen surface and supply further demagnification.
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2.4.3 Scanning Coils

As mentioned in the previous sections, the electron beam excites different signals

for SEM observation. The probe spot must be moved from place to place by a

scanning system to form an image, akin to an old-style cathode-ray tube television.

A typical image formation system in the SEM is shown in Figure 2.7 [56]. Scanning

coils deflect the electron beam to scan the specimen surface, typically along the x-

or y-axis. Several detectors are used to detect different signals, like solid-state BSE

detectors for BSEs, the ET detector for SEs and BSEs, and an energy-dispersive x-ray

spectrometer. The beam path, time spent at each spot, etc., are synchronized with

the detectors’ timing to make a coherent image as a function of beam position. It

should be noted that scan coils can be customized in their operation to change the

beam path.

Magnification is given by the ratio of the edge dimensions of the specimen area

to the corresponding scanning line on the specimen. A change of the scanning area’s

size, controlled by the scanning coils, will result in a change of the magnification.

Resolution is the ability to tell that two very close objects are distinct. If we try to

magnify too much, we will not be able to see any more detail because the microscope

will reach the limit of its resolution, as dictated by the beam size. A typical modern

SEM may have a resolving power of about 1nm. For SEM, the typical maximum

magnification is about 1 million x. By increasing the magnification, we decrease

the scan sweep, but the number of pixels remains constant. Ultimately, the beam

diameter limits the magnification. In other words, the resolution of the instrument

can be pixel limited (i.e. the size of the sampling area taken in the timing system) or

beam limited (i.e. limited by the size of the beam, to first approximation).
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Figure 2.7: Image formation system in a typical scanning electron microscope [56].

2.5 Sample and Stage

At the bottom of the electron column, the specimen is located on the specimen stage.

One can move the sample to investigate different parts of the surface with the help

of the stage. The stage has motors that are capable of translation, rotation, and tilt

to different orientations relative to the electron beam. The number of BSEs increases

by tilting the sample stage towards the detector. The working distance in the SEM

is the distance at which the beam is focussed, normally the distance from the final

pole piece of the lens to the sample surface when the image is in focus. The polepiece

concentrates the magnetic flux produced by the electromagnet by using soft magnetic

materials like pure iron.
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2.6 Measurement Analysis and Restrictions

The consistency and precision of measurements are a strong function of instrumental

stability. Instability is defined as the variation in measurement results over an ex-

tended period, and stability is its inverse. To consider the instrument’s stability, one

needs to take measurements over an extended period or account for tool stability in

an image processing model. Instrumental instability is related to thermal, acoustic,

and electromagnetic variations in the instrument environment, or within the instru-

ment itself. Noise is caused by many independent sources of error, but it is effectively

modelled by adding independent, but identically, normally distributed errors to mea-

surements. Instrumental instability can produce slowly-varying changes, and instead

of being a component independent of the sample, it typically results in the sample

being scanned differently than specified, either scanning too quickly, or too slowly,

or with different spot sizes or voltages. It is difficult to model, and the models are

unique to different imaging modalities.

Although modern manufacturing techniques have greatly improved the accuracy

of SEMs, it is good practice to regularly check if the alignment of the SEM lenses

and calibrated magnification remain stable. One should also take into account that

magnification in the SEM changes with defined microscope working distance. Mag-

nification and the scale bars are usually added by software, which relies on stored

calibration files after the lenses have been aligned. For each current and voltage used

in the microscope, the system is aligned to a calibration standard. The magnification

error of an SEM can be in the range of 5−10 percent. Calibration becomes of utmost

importance if quantitative measurements are made on SEM images.

An appropriate calibration feature size must be used for calibrating at a particular
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magnification. The magnification calibration standards comprise features, mostly

lines with a known distance (pitch). A calibration for 1000x magnification is not

valid for 100x or 10, 000x magnification.

One significant problem that can affect instrument stability is stage drift. Scan-

ning electron micrographs at high magnification (100, 000x and up) are distorted by

the sample’s motion during image acquisition, called drift. A typical distortion source

is thermal drift, see Figure 2.8. resulting from the slow thermal expansion of different

materials in the sample and microscope due to small temperature changes through-

out a scan or series of scans. Other sources of drift include electromagnetic fields and

acoustic vibrations in the surrounding environment.

Figure 2.8: The rough estimation of thermal drift on the overlap area of two
horizontally adjacent images are marked by orange arrows. Numbers in the Shift

correspond to the shift in the number of x-pixels of the features required in order to
align the feature. Note that the shift across the image varies in a non-linear manner
with a shift of 5 pixels on the left required to bring the two images into the registry

and 30 pixels on the right of the image. This precludes an alignment based on a
global shift of one image onto the other.

This will affect one of the common approaches in imaging large samples with SEM,

called montaging. A photomontage is a series of individual photographs taken and
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arranged together to create a single image. With this method, one can image large

samples in high magnification and with high resolution. This could be considered as

taking the sample’s image as pieces of a high magnification puzzle and putting them

together to have a seamless, high-resolution image of the sample’s whole surface. This

will be referred to going forward in our work as image stitching.

The time of the scan can be calculated considering different factors. dwell time

means the time for an electron beam to scan one pixel, or by scanning continuously as

the beam crosses the pixel area at a certain speed. The dwell time is an index for the

scan speed of the electron beam. When the dwell time is multiplied by the number

of scan pixels in one horizontal line scan, and then the flyback time is added, the

scan time for one horizontal line scan is obtained. When this scan time is multiplied

by the number of vertical scans (horizontal scan lines), the acquisition time of one

scanning image is calculated. The probe drift distorts the features and lowers the

spatial resolution when a long dwell time is used to increase the image signal-to-noise

ratio (SNR). By definition, increasing signal means less noise relative to signal. The

higher the number of pixels, the longer the total scan time.

2.7 Image Processing in Electron Microscopy

Getting an enhanced image or extracting useful information or features from images

forms a core research area within engineering and computer science. These methods

are known as image processing. It can be considered a type of signal processing, where

the input is an image, and the output could be an image or characteristics/features

associated with that image.

Image processing includes the following three steps:

32

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


PhD Thesis – N. Khoonkari; McMaster University – Computing and Software

1. Importing the image via image acquisition tools (like a camera or detectors

associated with a microscope);

2. Analysing and manipulating the image;

3. Output in the form of an altered image or image analysis.

There are two types of methods used for image processing, namely, analog and

digital image processing. Analog image processing can be used for hard copies like

printouts and photographs. Analog signals are like television broadcasting in older

days through the dish antenna systems, and in terms of images, they are manipulated

by electrical signals. Digital image processing techniques help in the manipulation

of digital images by using computers. The four general phases that all types of

data have to undergo while using digital techniques are pre-processing, enhancement,

display, and information extraction [8]. In this study, we are interested initially in

image processing and finally in feature extraction in order to make connectivity for

3D reconstruction, see Figure 2.9.
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Figure 2.9: Sample alignment of two layers called M1 (bottom layer) and M2 (top
layer), M1: light red, M2: Yellow, if there is a connection between the two layers in

any pixel, the pixel color appears to be more bright.

Large fast computers are capable of manipulating big image matrices in a reason-

able time. Images are stored as matrices in which each pixel has its own coordinate

and value. The idea is that recorded electron microscope images can be improved or

rendered more informative by digital image processing. Computer processing of elec-

tron microscopy images can help overcome the electron microscopist’s problems, espe-

cially where radiation-sensitive specimens or instrument instabilities are concerned.

Problems can include noise, jitter in the system, sample change due to radiation

damage, and changes in the resolution of the acquired image.

Modern electron microscopes allow visualisation up to sub-nanometer resolutions.
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Semiconductors seem to be very robust under the beam, but sometimes rapid scan-

ning, changes in the room temperature, or limiting the number of the electrons in

order to save the sample from any damage produces noise in semiconductor images

as well.

In this chapter, the performance and components of SEM are discussed. The

electron-specimen interactions and different types of electrons and their characteristic

information are also explained. The importance of image processing in SEM images

leads us to the following chapters, in which we will explain the critical problems in

this field that image processing techniques could address.
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Chapter 3

Stitching and Montaging Images in

2D

High-resolution images are essential in many scientific research areas, e.g. cancer

research, biology, material science, and semiconductors. SEM is a tool to produce

such images, capable of acquiring images at very high resolution (with pixel widths

approximately equal to the diameter of the electron beam). Still, one of the drawbacks

is the small field of view (FOV) of the acquired images[12]. Approaches such as

MultiSEM, which splits out a primary electron beam using beam splitters into 60−

90 simultaneously operating beams [37] address this problem, but cost and data

handling make this solution prohibitive in most cases. The most common approach

to large-scale imaging at ultrahigh resolution is to divide the surface of the sample into

multiple small regions with a degree of overlap, scan each region at high resolution

and magnification, move the sample stage, acquire the next image until all regions

have been imaged, and ultimately stitch them together using the overlaps. Stitching is

an approach to creating a single SEM image. However, this approach has difficulties,
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especially in ultra-large-scale integration (ULSI) circuits, as the images may contain

repeated patterns, distortions or nonlinear drift, leading to erroneous results [27].

Semiconductor metallization layers are among the most complex human-made

structures and have many repeating patterns and features, making naive feature-

based alignment challenging. Automating this process reliably is necessary as it is

difficult and time-consuming to achieve manually. Circuits’ SEM images are from

two materials, metal and dielectric. In terms of components, they have three visi-

ble components of dielectric without metal, metal wires under a layer of dielectric,

and metal vias (through-plane wires connecting different layers vertically - i.e., into

the sample) [43]. This is a relatively simple set of contrast levels but is made chal-

lenging to interpret by repetitive patterns, measurement error, and the pixel-level

precision required to connect nanoscale wires to reverse engineer a functioning inte-

grated circuit. The tiles are created by acquiring an image, moving the sample with a

certain degree of designated overlap, then re-assembling using a stitching algorithm.

There are several challenges in stitching: (1) by design, the image features (wires,

vias and dielectric) are highly repetitive, which are known as repeated patterns in

SEM images of semiconductors. In the presence of such patterns, many equally likely

matches between the overlap areas of two adjacent tiles are possible, and choosing the

wrong one will result in global stitching errors; (2) the overlap between image tiles is

small (generally around 5% overlap), which limits the search area for the best match

and affects the accuracy of the computation [5]; (3) sample charging causes intensity

variation between captures of the same region observed in the overlap region, (4) ma-

chine instability causes non-linear deformation within tiles, and imprecision of stage

movements causes uncertainty in the motion between tiles. So, although planned
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stage movements are simple translations, we need to detect and correct skew, shear,

rotation and scaling transformations as well.

Previous work on image stitching can be divided into two types of methods: 1.

intensity-based registration and 2. feature-based registration, which registration is

about maximizing similarities between images or minimizing differences in order to

register or align them on each other. Although the first is relatively simple to imple-

ment by comparing corresponding pixel gray values, it is computationally expensive

to compare millions of pixels against millions of adjacent pixels [32]. Feature-based

methods establish correspondences between points, lines or other geometrical entities

in overlapping image regions and lead to more accurate results at even higher com-

putational costs. In 2013, the term keypoint was introduced in [30], which stands

for image features. They investigate the problem in SEM image acquisition which is

mostly affected by the time-varying motion of pixel positions in consecutive images,

which is called drift. To perform accurate SEM measurements, it is necessary to

compensate for this drift in advance. They developed a method to compensate for

distorted images using keypoint correspondences and computing homography. This

image registration-based drift compensation method is effective in correcting image

distortions.

In the year 2003, Brown et al. [11] developed SIFT (Scale-Invariant Feature

Transform), a stitching algorithm for producing panoramas. In contrast to previous

methods, SIFT does not need human input or restrictions on the image sequence.

Brown et al. used feature recognition techniques based on invariant local features to

select matching images and a probabilistic model for verification, which is insensitive

to the images’ ordering, orientation, scale, illumination, and noise. In 2017, Chalfoun
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et al. [15] developed MIST (Microscopy Image Stitching Tool), which is a stitching

tool for 2D grids of images. MIST estimates the stage mechanical model (actuator

backlash, stage repeatability, etc.) from computing the translations for the image

and its horizontal and vertical neighbours and then minimizes stitching errors by

optimizing the translations within an area. This minimizes the maximum uncertainty

related to the translation computation for any pair of images. MIST has several

limitations that should be considered. This tool is to stitch microscopy images that

had been acquired via a mechanical stage that moves the sample in a repeatable grid

pattern, which prevents it from handling stitching problems with varying overlaps

within the same acquisition. It is expected that the overlap error between images will

be less than a pre-defined threshold (by default, it is set at ±3%), and any overlap

value beyond that error is considered unreliable. MIST is designed for 2D time-lapse

multichannel stitching and cannot perform volumetric (3D) stitching. High levels

of image noise can impact stitching accuracy, so preprocessing may be necessary if

the images being stitched are very noisy. These limitations prevented MIST from

stitching the data sets used in this thesis, at least not with the parameters tried,

including the default parameters.

In 2021, Pawlowicz et al. [34] accelerated this approach by using parallelization

and cloud computing, identifying the computationally expensive step to compute

correlations.
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Figure 3.1: Two vertically adjacent 8k tiles with an approximately 8000× 500-pixel
overlapping seam (outlined with a dotted blue line). There are three visible

contrasts: dielectric (dark), wire (grey) and via (bright), as labelled on the lower
tile. During the scan, non-linear drift was noted. To estimate the drift, subimages of
size 500× 600 pixels were extracted from the seam; example subimages are outlined

in red and yellow, with the lack of alignment being apparent in the inset 10×
magnified versions. The translation resulting in the best match for each pair was

calculated and displayed using one blue vector per subimage. The vectors are
positioned in between the two tiles, and their horizontal position approximately

matches the horizontal position of the subimage pair in the seam. It is also apparent
from these tiles that the variation in brightness is significantly attributed to

charging, as indicated by white arrows on the top tile. Since charging varies with
time, this can cause changes in brightness in the overlap, which is a challenge for

some registration methods.
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Our goal in this thesis was to extend existing stitching algorithms to detect and

correct non-linear transformations and to be robust in the presence of repeated pat-

terns. Figure 3.1 shows the nonlinear pattern of the drift in the overlap area of the

two tiles, which are adjacent vertically and have horizontal overlaps. The shift direc-

tion, which is shown in blue arrows, is calculated after dividing the overlap area into

subimages and resolving the shift for each. It is obvious that the shift varies even for

adjacent subimages. This figure also shows the three major features of the samples

we use in our study. Although cloud computing makes it possible to stitch very large

mosaics, adding to the complexity of the underlying image registration problem might

make this uneconomic. Therefore, we evaluated the robustness and computational

complexity of three core algorithms for stitching semiconductor metallization pat-

terns: i) Fast Fourier transform (FFT) methods, ii) minimizing the sum of squared

differences (SSD), iii) and maximizing the normalized cross-correlation (NCC). We

evaluated standard implementations and two novel approaches. In the first approach,

we introduce a concept named numerical landmarks. We take advantage of the Harris

Corner algorithm [21] to mathematically detect landmarks in our images and apply

NCC to find the maximum correlation between the overlap area of adjacent tiles and

stitch them. The second one is in which the 2D images are projected by summing

over columns (rows) to reduce the computational complexity of the optimization (in

ii and iii) and phase-difference (in i) steps. In the course of these experiments, we dis-

covered that “grain patterns” caused by localized variations in material properties,

and modulated by filtering as part of the image acquisition, are more visible after

projection and can be used to align images.

In the stitching process, some other visual problems, like differences in intensities
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of the two overlap sections, might appear. A blending algorithm is applied to eliminate

such effects and improve the composite image’s visual quality. The final image is often

interpolated using computer software if the components of the images are not perfectly

aligned. This is mostly the case where blending is to choose the final pixel value in a

location where two images are overlapping [7]. As an example of a useful reference for

understanding the concept of stitching problems and essential factors in this area, one

can refer to [28], where the authors describe the application of Autostitch. Autostitch

is software that is usually used for the generation of panoramas in photography and

the seamless stitching of microscope images. As we are interested in SEM images,

our focus is on SEM images of semiconductor metalization layers.

SEM imaging artifacts can be categorized into three classes according to [48], as

it is important to distinguish the time scale of the distortions. (1) Random, time-

dependent distortion due to positioning errors of the electron beam during scanning,

referred to as “scan line shifts”. (2) Non-random, time-independent spatial distortion,

similar to distortions observed in optical systems. (3) Non-random, time-dependent

distortion referred to as drift distortion. The time-varying or time-dependant dis-

tortion may be defined at each pixel location (x, y) by a time-dependent velocity

function, v(x, y; t). A schematic illustration of this can be found in Figure 3.2. The

velocity vector is estimated by using digital image correlation to obtain the displace-

ment of the current subset centred at this location several times, t. By integrating

v over time, the drift displacement correction at each pixel can be calculated. The

other two artifacts can be either time-independent or nonlinear drifts due to some

changes in the temperature or situation of the microscope.
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Image array

Figure 3.2: Schematic of pixel distortion that varies over time. SEM scan
parameters (dwell time, beam repositioning time) and detector location are known

and used to estimate the velocity vector. Image is licensed by [48].

Our research mostly focuses on resolving the distortion in SEM images during the

stitching process, which is about registering two or more adjacent tiles on each other

from their overlap area. For instance, two adjacent tiles are taken, and the two overlap

areas will get compared. Then, the degree of shift can be resolved by minimizing the

differences between the two images, matching the correlation, or locally measuring
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the difference in spatial frequency.

In this chapter, possible common approaches to dealing with mosaicing will be

discussed. Resolving the shift in the overlap areas in order to stitch the tiles is one

of the major problems in this topic; see Figure 3.3.

Figure 3.3: Resolving shift in matching the tiles. Each tile is slightly misaligned and
requires an X − Y translation to create a coherent mosaic. Horizontal and vertical

overlaps of one tile where the shift needed to be resolved as a matter of stitching are
marked by red rectangles.

As mentioned earlier, sometimes we encounter the measurement of complex dis-

placement fields, and the specimen images might experience compression, shear, skew

or rotation. In other words, an initially square reference subset might assume a con-

siderably distorted shape in a later image after deformation. Our algorithms are

focused on resolving the shift problem, and we believe that all other distortions can
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be solved in terms of shift.

There is a relation between shift and all other kinds of distortions, as u(x, y) and

v(x, y), which are shifts in x− and y− directions, respectively, can be rewritten using

other sorts of distortion, e.g. by using rotation and skew matrix. We can model

distortions in x and y as a polynomial where u(x, y) and v(x, y) are distortion in x

and y directions as a function of x and y, i.e.

x→ x+ u(x, y) (3.0.1)

y → y + v(x, y). (3.0.2)

This model depends on the order of the polynomials. If u and v are linear, we

can represent pure compression, skew, rotation and all linear transformations. For

example, rotation around (0, 0) by angle θ given by the rotation matrix

R =

cos θ − sin θ

sin θ cos θ

 (3.0.3)

is represented by the polynomials

u(x, y) = x(cos θ − 1) + y(sin θ) (3.0.4)

v(x, y) = x(− sin θ) + y(cos θ − 1), (3.0.5)
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and the skew matrix

S =

1 a01

0 1

 (3.0.6)

is given by polynomials:

u(x, y) = x+ a01y (3.0.7)

v(x, y) = y. (3.0.8)

Nonlinear polynomials can be thought of as interpolating between these basic

forms of distortion in different image parts. This model for distortions can be defined

as minimization and maximization problems to find the polynomials which best match

neighbouring tiled images, IT and IT ′ . This can be solved using either SSD,

min Σx,y||IT (x, y)− IT ′(x+ u(x, y), y + v(x, y))||`2 , (3.0.9)

or by finding the maximum correlation,

max Σx,yIT (x, y) ∗ IT ′(x+ u(x, y), y + v(x, y)). (3.0.10)

Solving this model is computationally expensive because our example images are

mostly having 8192× 8192 pixels, and in some cases, higher resolution makes matrix

operations require holding many values in memory. Also, in such a big tile, many

local extrema can happen due to repeated patterns in semiconductor SEM images

(i.e. a series of parallel lines).
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Instead of solving the problem for the whole overlap area at once, we can divide

it into two stages. First, to divide the overlap area into smaller boxes and find the

amount of the shift in each box, and second is to fit a global polynomial to the local

shifts. As mentioned, the above models are for the whole image overlap, but they

could be modified by dividing the overlap area into smaller boxes, Bi, as follows,

which for SSD it is formulated as,

min
u,v

ΣiΣ(x,y)∈Bi
||IT (x, y)− IT ′(x+ u(x, y), y + v(x, y))||`2 , (3.0.11)

and for correlation, it is,

max
u,v

ΣiΣ(x,y)∈Bi
IT (x, y) ∗ IT ′(x+ u(x, y), y + v(x, y)). (3.0.12)

As mentioned above, There is a relation between translation and all other kinds of

distortions. We can model distortions in x and y as a vector-valued function on the

plane. Most distortions can be approximated well by polynomials, i.e.,

x+ u(x, y)

y + v(x, y)

 =

x+ a00 + a10x+ a01y + a11xy + ...

y + b00 + b10x+ b01y + b11xy + ...

 (3.0.13)

where a00 is the overall shift in the x direction, b00 is the overall shift in y direction

and other coefficients are different shift directions. The order of the polynomial is

determined by the degree of non-linearity of the distortion. When we zoom in on a

subimage, if we rescale coordinates to match the new image size, all of the coefficients

aij are reduced, except for those of order zero. So for small enough subimages, the
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approximation is x+ u(x, y)

y + v(x, y)

 ≈
x+ a00

y + b00

 . (3.0.14)

This justifies looking only for local coordinate shifts (rather than non-linear transfor-

mations) in subimages, knowing that it may fail for some subimages with localized

non-linear distortions. Once we subdivide the overlap into subimages, and deter-

mine (x, y), as in approximation (3.0.14), we use ∆i to represent shift in subimage

i ∈ {1, 2, ...} having center (xi, yi). We can estimate the polynomial by setting up

an optimization problem which fits a polynomial to shift values by minimizing the

difference as,

min
a00,b00,a01,...

∑
i

‖f(xi, yi)−∆i‖ , (3.0.15)

where the norm ‖ · ‖ can be any norm, including the `1 (Manhattan distance) or

`2 (squared Euclidean distance), see Appendix E. For computational simplicity, we

consider the x and y shifts separately, resulting in one problem to fit the a00, a01, ...

and a separate problem for the b00, b01, .... Due to nonlinear distortions, specific

patterns in the overlap area (repeated patterns) or changes in the brightness, outliers

in shift calculation might appear. Using the `1 norm, see Appendix E, is generally

recommended in the presence of outliers [45], as it is less sensitive to them compared

to other norms.

The original stitching problem is a global optimization which is hard and expensive

to solve. It is preferable to solve convex problems, Appendix A, which have unique

global extrema, but the proposed above models are not convex problems. Therefore

maxima and minima may require an exhaustive search. Having discretization by

breaking up the overlap into boxes and searching in the space of integral pixel shifts,
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one can find ∆xBi
and ∆yBi

using exhaustive search. This is done by shifting one pixel

at a time and calculating the differences, storing the difference values in a matrix as a

shift matrix, and setting the coordinate of the minimum element in the shift matrix as

the shift values in x− and y− directions. See Appendix B for definitions of exhaustive

search, Appendix C for coordinate search, and Appendix D for local extrema.

The objective function for finding the amount of the shift for each box using Cross

Correlation is,

max
∆xBi

,∆yBi

Σ(x,y)∈Bi
(IT (x, y) ∗ IT ′(x+ ∆xBi

, y + ∆yBi
) (3.0.16)

∀i = 1, 2, 3, ..., N, (3.0.17)

where N is the number of boxes and Bi is the selected box from the overlap and i

is the index of each box. xBi
and yBi

are the coordinates of the boxes, and ∆xBi

and ∆yBi
are the amount of the shift in each direction, which is the information that

we have about the position of the pixels and the amount of the shift. The goal is to

interpolate the ∆ values to determine a shift for each pixel across the whole image.

min ΣiwBi
∗ (||(u(xBi

, yBi
)−∆xBi

, v(xBi
, yBi

)−∆yBi
)||L2) (3.0.18)

where wBi
is a per-box weighting. In the course of this research, we will identify and

compare different computations of the weighting.

The order of the polynomial in the interpolation problem is important. More

coefficients mean overfitting, which can appear by fitting to the noise and not just

the data. Less coefficients provide more confidence, but using only four coefficients

gives us linear interpolation, but we know the nature of the drifts in our problem is
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nonlinear. In this regard, we are looking for more than two points (boxes) while we

should take care of overfitting. In summary, the number of boxes should be bigger

than the number of coefficients. The same method could be applied to SSD.

According to the above formulation, dividing one big maximization problem into

smaller maximization problems followed by a minimization problem is computation-

ally affordable and possible to solve. There are various kinds of norms we can use for

modelling such a problem, Appendix E. `2 is useful in the presence of normal noise

and `1 is insensitive to outliers, which is an important feature to consider as there

might be some match in some parts of the image which are wrong. `2 norm squares

the error, so the model will see a much larger error than the `1 norm, see Appendix

E. In the presence of an outlier, the `2 will be adjusted to minimize this single out-

lier case, at the expense of many other common examples, since the errors of these

common examples are small compared to that single outlier case, see Figure 3.4.
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Figure 3.4: `2-norm squares the error, so the model will see a much larger error than
the `1-norm. The model is much more sensitive to this example and adjusts the

model to minimize this error.

In our image processing problem, outliers can happen when we get similar matches

based on similar features (like vias) in different parts of the image. There are some

other factors like skew and carbon deposit from the electron beam scanning process,

which can change the intensities, and can produce outliers. The other important

factor that can produce an outlier lies in the type of the shift.

There are two kinds of shifts in the mosaicing of semiconductor metallization

layers for microelectronics applications:

1. Translation, in which one slides one tile on the overlap area of the other tile

with prior knowledge of the intended stage movement from tile to tile in order
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to resolve the shift and stitch the images from the overlap area;

2. Instrument drift, which is usually a change in the imaging conditions related

to a change in temperature in the laboratory.

Translation resolves the linear shift between two adjacent tiles that will be stitched

from their overlap area. Instrument drift is more general and may not be rigid and

linear. In our experiments, instrument drift was mainly nonlinear (skew, shear or

scale).

To be able to give mathematical solutions to image processing problems, we first

need to know what an image is in a mathematical concept [32].

Definition Let d ∈ N , a function b : Rd → R is called a d-dimensional image, if

1. b is compactly supported,

2. 0 ≤ b(x) <∞ for all x ∈ Rd,

3.
∫ d
R
b(x)kdx is finite, for k > 0.

The set of all images is denoted by

Img(d) ∈ {b : Rd → R|b} is a d-dimension images(Img(d)).

In the following sections, we will describe mathematical tools that may be used to

accurately determine the shift between overlapping adjacent images. Each has advan-

tages and drawbacks and is studied for subtly different aspects of stitching montages.
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3.1 Fast Fourier Transform

Any wave, like sound waves, indeed any repeating function, can be broken up into a

number of sine waves of various frequencies and amplitudes (intensities). The expres-

sion of a sound wave, or any signal varying over time, as the sum of its constituent

sine waves, is known as the fast fourier transform of that signal.

The fast fourier transform is defined as

(1D)FFT (f) =

∫ ∞
−∞

g(t)e−i2πtfdt, (3.1.1)

(2D)FFT (kx, ky) =

∫
R2

g(x, y)e−i2π(kx∗x+ky∗y)dxdy, (3.1.2)

where g is an input signal or image. Many applications involve sampling over

time (t). With the help of the fast fourier transform, we can do calculations that

seemed difficult in the time domain, simply in the frequency domain (f). These

techniques were developed for time-series but can be applied to images in 2D with

spatial frequencies. Images can also be expressed as a sum of sine waves, but, instead

of one-dimensional waves, they are waves that vary in two-dimensions, like ripples on

a sheet. Two-dimensional sine waves are written as

z = a sin(kx ∗ x+ ky ∗ y) (3.1.3)

where x and y give the coordinates for points on the ”sheet”, z is the height, or

intensity, of the wave at that point, a gives the amplitude (the maximum height) of

the wave, and kx and ky give the number of times the wave repeats in the x and y
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directions respectively (they are the x and y frequencies). The following theorem can

be used to find the amount of shift in a delayed (shifted) signal. According to the

shift theorem, a delay in the time domain corresponds to a linear phase term in the

frequency domain.

Theorem (Shift Theorem) [26] Let g : R→ R be a function which has the fast

fourier transform G : R → R, then g′(t) = g(t − ∆) has the fast fourier transform

G′(k) = e−2πi∆kG(k).

This theorem says that a shift in the image domain, ∆, becomes a linear phase term,

e−2πi∆k , in the frequency domain, where k is the coordinate in frequency space. Given

G and G′, for any k, we can calculate

∆ =
arctan (G′(k)/G(k))

k
=

arctan
(
G′(k)G(k)

)
k

(3.1.4)

Using complex conjugate, G(k), eliminates a possible division by zero, but this for-

mula still has a non-linear sensitivity to noise and Gibbs’ ringing [17]. There are dif-

ferent ways of averaging over k, and pre-filtering the subimages. We used a Lanczos

window which is the central lobe of the sinc function [29], and reduces the artifacts.

Mathematically, outside of the window interval has a zero value when a wave is mul-

tiplied by a window function. So, all that is left is the part where they overlap, which

is called the view through the window. The isolated segment of the data within the

window is multiplied by the window function values called tapering. In particular,

this reduces ringing artifacts caused by abrupt changes in the sample values. The

NumPy library function atan2 in Python calculates the angle we need from the real

and imaginary parts. In this way, one can calculate the number of times the phase

changes by summing the difference pixel-to-pixel or by taking atan2 to convert the

54

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


PhD Thesis – N. Khoonkari; McMaster University – Computing and Software

complex number into an angle and divide the difference by the distance from 0. For

the periodic structure case, one could probably get a better answer by finding the

peak away from 0 and using atan in 2D.

The cells of k-space are commonly displayed on rectangular grids with principal

axes kx and ky. The kx and ky axes of k-space correspond to the x- (horizontal)

and y-axes (vertical) of the image. The k-axes, however, represent spatial frequencies

in the x- and y-directions rather than positions. The individual points (kx, ky) in

k-space do not correspond one-to-one with individual pixels (x, y) in the image. Each

k-space point contains spatial frequency and phase information about every pixel in

the final image. Conversely, each pixel in the image maps to every point in k-space.

In particular, the row ky = 0 is the 1D fast fourier transform of the projection onto

the x axis. This was our motivation to use projection in our novel stitching approach,

which also contains information about the whole image.

3.2 Sum of Squared Difference

A straightforward approach to deal with image stitching is based on minimizing the

so-called sum of squared differences (SSD) between two images within the overlapping

region [32].

Theorem Let I, I ′ be d-dimensional arrays of gray-valued pixels. The SSD dis-

tance is defined by

DSSD(I, I ′) =
1

2
||I − I ′||2`2 . (3.2.1)
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The best SSD alignment is found by solving the optimization problem

min
a00,b00

Σk,l||I(k, l)− I ′(k + a00, l + b00)||`2 (3.2.2)

where the subimages I and I ′ come from the overlap region of adjacent tiles. In

practice, we only calculate the SSD difference for integral shifts, but the optimization

problem can be defined for fractional shifts, and for nonlinear transformations by

using interpolation to turn the pixel arrays into real functions. As I ′ shifts relative

to I, the objective function would be sensitive to bright pixels shifting out of one

side while darker pixels shift in the other, etc. It is discussed in [22] that there are

different methods for calculating the similarity between images, but SSD is the most

straightforward and requires the least amount of computation since it only involves

a square operation and subtraction of pixels between the template and the original

images. It is also mentioned that is sensitive to changes in illumination.

3.3 Normalized Cross Correlation

In statistics, correlation usually refers to a linear relationship between variables. Pear-

son’s correlation coefficient [41] for two variables is calculated by multiplying them

after subtracting their means, summing over the samples and dividing by the product

of their standard deviations. In this case, we are looking for the linear relationships

between the pixels at corresponding locations in two images. The best alignment is

when this correlation is strongest. Due to [22], NCC has more complex calculations

than other measures of finding similarities like SSD, as it involves multiplication,

division and square root operation. It should be considered that it is more robust
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compared to SSD in illumination changes.

The expected value or mean of X as a discrete random variable is a weighted

average of the possible values that X can take. Each weight is according to the

probability of that event occurring. The expected value of X is usually written as

E(X) or m.

E(X) =
∑

(each possible outcomes) × (the probability of the outcome occurring).

The variance of a random variable tells us something about the spread of the

variable’s possible values. For a discrete random variable X and mean m, the variance

of X is written as Var(X).

V ar(X) = E(X −m)2, (3.3.1)

V ar(X) = E(X2)−m2, (3.3.2)

V ar(X) = E(X2)− E(X)2. (3.3.3)

In Mathematics, squaring is the same as multiplying by itself. So the variance equa-

tion can be rewritten as,

V ar(X) = E(XX)− E(X)E(X). (3.3.4)

One of the Xs can be substituted by another random variable Y,

V ar(XY ) = E(XY )− E(X)E(Y ). (3.3.5)

If the variance measures how a random variable varies with itself, then covariance

measures how one variable varies with another.
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Covariance measures the joint variability of two random variables in probability

theory and statistics [20]. If the higher values of one variable mainly correspond with

the other variable’s higher values, and the same holds for the lesser values (i.e., the

variables tend to show similar behaviour), the covariance is positive. In the opposite

case, when the higher values of one variable mainly correspond to the other’s lesser

values (i.e., the variables tend to show the opposite behaviour), the covariance is

negative.

The sign of the covariance, therefore, shows the tendency in the linear relationship

between the variables. The covariance’s magnitude is not easy to interpret because it

is not normalized and depends on the variables’ magnitudes. The normalized version

of the covariance, the correlation coefficient, however, shows by its magnitude the

strength of the linear relation.

Covariance between variables x = xt and y = yt is,

cxy =
1

N

N∑
i

(xi − x̄)(yi − ȳ). (3.3.6)

Cross-covariance is a function in which larger values of x are associated with larger

values of y and smaller values of x are associated with smaller values of y if the

covariance is positive. It is doing opposite when the covariance is negative. So, for

positive values of displacement between variables xt and yt+k is,

cxy(k) =
1

N

N−k∑
t=1

(xt − x̄)(yt+k − ȳ). (3.3.7)

As mentioned, the Pearson correlation coefficient (correlation) is defined as the co-

variance of two variables divided by the product of their standard deviations (which
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are the square roots of their respective variances),

rxy =
cxy√
cxxcyy

. (3.3.8)

The cross-correlation function is defined as,

rxy(k) =
cxy(k)√

cxx(0)cyy(0)
, (3.3.9)

where, cxx and cyy are the variances of x and y, respectively. Also, cxx(0) and cyy(0)

are the variances of xt and yt respectively.

So, correlation is used to test relationships between quantitative or categorical

variables. In other words, it is a measure of how things are related.

Positive Correlation No Correlation Negative Correlation

Correlation Coefficient (1) Correlation Coefficient (0) Correlation Coefficient (-1)

Figure 3.5: Correlation between the scatter of the points regarding their x and y
positions. It is also the same in 2D histograms.
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A correlation coefficient is a way to quantify the relationship. Correlation coef-

ficients have a value between −1 and 1. 0 means there is no relationship between

the variables at all, while −1 or 1 means that there is a perfect negative or positive

correlation, as shown in Figure 3.5.

Cross-correlation compares two time series to detect a correlation between metrics

with the same maximum and minimum values, like two audio signals in phase or how

two images align. Normalized cross-correlation is also the comparison of two-time se-

ries. It can compare metrics with different value ranges. As all ranges are normalized

in the same range, mostly in [0, 1], one can compare values in different ranges. In

[39], cross-correlation and normalized cross-correlation are used in image registration,

which is about comparing the two images to find the maximum correlation between

them, so one can do registration or mapping.

Given two input Images, I and I ′, that are size M × N and P × Q, the 2-D

cross-correlation value at the point (k, l) is given by:

C(k, l) =
M−1∑
m=0

N−1∑
n=0

I(m,n)I ′(m+ k, n+ l). (3.3.10)

The normalized cross-correlation value at the point (k, l) is calculated as:

CN(k, l) =

∑M−1
m=0

∑N−1
n=0 I(m,n)I ′(m+ k, n+ l)√∑M−1

m=0

∑N−1
n=0 I(m,n)2

√∑M−1
m=0

∑N−1
n=0 I

′(m+ k, n+ l)2

(3.3.11)

where:

0 ≤ k < M + P − 1

0 ≤ l < N +Q− 1

After algebraic simplification, we find that the best NCC alignment is found by
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solving the optimization problem

max
a00,b00

Σx,y
(I(x, y) · I ′(x+ a00, y + b00))√
I2(x, y).

√
I ′2(x+ a00, y + b00)

(3.3.12)

If an efficient library function in any programming language is available to calculate

image convolutions, it can be used here. In our case, we are using the Numpy library

in Python.

The stitching quality is expressed by measuring the correspondence between ad-

jacent stitched images that form the composite image [38]. Image stitching (registra-

tion) methods have been explained in detail in [10], which contains the correlation-

based and Fourier-based methods. Different sorts of distortions and transformations,

as well as point mapping methods, are discussed. In the paper written by Flynn et

al. [18], cross-correlation is the preferred method for automatically registering a large

number of images. Various registration methods were compared in this paper, and

it was shown that the cross-correlation method provided the smallest error, but we

noticed different kinds of shifts and data sets need algorithm adjustments.

3.4 Harris Corner and Edge Detection

In 1988, Harris and Stephens introduced the Harris response function for corner and

edge detection [21]. The Harris response function uses differences in pixel values for

a pixel and its neighbours. Figure 3.6 indicates different choices of neighbours for

comparison.
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a) b)

c)

Figure 3.6: a) flat region, no changes in intensity in any direction, b) Edge, no
changes in intensity along the edge, c) Corner, in any direction intensity changes,

can get recorded.

They detect the features of the image using the eigenvalues and response function

based on the auto-correlation surface, which will be discussed in this section.

Harris et al. [21] used the energy function E measuring differences caused by

translating in (x, y) the image I as,

E(k, l) = Σ(i,j)∈Ω|I(k + i, l + j)− I(k, l)|2, (3.4.1)

where Ω is a neighbourhood of translations, e.g., the set of one-pixel shifts would be

Ω = {(1, 0), (1, 1), (0, 1), (−1, 1)}. One can fit a polynomial to the E and have an

approximation of E using a quadratic surface. A function can be shown by its Taylor

expansion of it [53]. Taylor series can be considered as polynomials with infinite terms

used to approximate a function with its derivatives. The first few terms of the Taylor

series can be used to approximate a function, but taking more terms will give a better
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approximation. The quadratic approximation of E(k, l),

E ≈ E(0, 0) + (k, l)∇E +
1

2
(k, l)∇2E(k, l)T , (3.4.2)

in the neighbourhood of (0, 0) is the second-order Taylor expansion. We use the

second derivative of E in its Taylor expansion to approximate the auto-correlation

surface (ACS). The fitted paraboloid, which approximates ACS, gives us information

about the eigenvalues and their shape, which help to decide whether a chosen window

shift gives us sufficient information. The quadratic term in the approximation can be

written as

E = (k, l)M(k, l)T , (3.4.3)

where the partial derivatives in M can be approximated by the image derivatives.

M ≈

Σ ∂I
∂k

∂I
∂k

Σ ∂I
∂k

∂I
∂l

Σ ∂I
∂k

∂I
∂l

Σ∂I
∂l
∂I
∂l

 (3.4.4)

Note that Harris et al. [21] do not give conditions under which this approximation is

valid, but rather validate the corner detector on real images.

Using diagonalization [4], M can be written as,

M = R−1

λ1 0

0 λ2

R (3.4.5)

where λ1 and λ2 are the eigenvalues which indicate the length of the paraboloid in
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x and y directions, and R is the rotation matrix which determines the orientation of

the paraboloid.

If we consider the eigenvalues as local curvatures of the auto-correlation surface,

then they have three different conditions to extract features:

• If both curvatures are small so that the local auto-correlation function is flat,

then the windowed image region is of approximately constant intensity (ie.

arbitrary shifts of the image patch cause little changes.)

• If one curvature is high and the other low, so that the local auto-correlation

function is ridge shaped, then only shifts along the ridge (ie. along the edge)

cause little change: this indicates an edge;

• If both curvatures are high so that the local auto-correlation function is sharply

peaked, then shifts in any direction will increase our energy function: this indi-

cates a corner.

It is not only necessary to classify corners and edges but also to measure their

quality or response. Edges show the variation in one direction, while corners give

us a better response as they measure the variation in both x and y directions. To

select isolated corner pixels and edge pixels, the size of the response is considered.

They introduce the measure of the response, R, which is required to be a function

of α and β (eigenvalues). One can use the trace and determinant in the formulation,

as this avoids the explicit eigenvalue decomposition. Thus the response function is

formulated as,

R = Det− kTr2, (3.4.6)

64

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


PhD Thesis – N. Khoonkari; McMaster University – Computing and Software

where Det is the determinant and Tr is the trace of the Hessian (second derivative) of

the paraboloid. Constant k is to balance the tradeoff between trace and determinant,

which in literature, is chosen to be [0.04, 0.06], [51] [49].

The Harris Algorithm is based on approximating the distinctiveness using ACS.

This approximation is calculated based on the second derivative of the energy function

E. The criteria for choosing landmarks is based on the eigenvalues, which divide our

choices into flat, edge, or corner regions.

In sum, stitching can be done by translation, and the applied procedure can be

referred to as mosaicing, tiling, montaging, or stitching. First, we have to find the

relative positions of images that we want to match. We also need an empty image

array that we will define in our program code where these images will be placed. We

need to move image edges in both directions for the next step until the best match of

features is found. This is how we will find the best correlation point between adjacent

image edges[38].

Based on all these experiments (SSD, NCC, FFT, and Harris), we devised novel

and efficient algorithms to solve the stitching problem. Our method increases the

accuracy and efficiency of the stitching by detecting the landmark and reducing the

computation dimension from 2D to 1D, which we will discuss in Chapter 4.
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Chapter 4

Novel Approaches in 2D Stitching

Stitching algorithms need powerful registration techniques. There are two types of

methods that have been used for registration: 1. Intensity-based and 2. feature-based.

Although the first method is relatively simple to implement, comparing millions of

pixels against millions of pixels is computationally expensive. The feature-based ap-

proach establishes correspondences between points, lines, or other geometrical entities

in overlapping image regions with higher computational costs. They are collectively

called landmarks. In section 4.1, we introduce a new set of landmarks and resolve

the registration problem in stitching neighbouring tiles. In section 4.2, we reduce the

dimensionality to accelerate the stitching process and increase accuracy.

4.1 Numerical landmarks

Stitching, mathematically, turns out to be a registration problem, defined as finding

the maximum correlation or minimum difference between the overlapping area of

the neighbouring images. An accurate procedure is necessary, particularly if one
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wants to extract quantitative data from a stitched image. Typical features are, for

example, hard or soft landmarks in the images. A landmark is the location of a

typically outstanding feature of an image, particularly intense vias in semiconductor

metallization datasets. Hard landmarks are so-called fiducial markers added to

the sample before imaging at certain spatial positions on a sample. In SEM imaging,

fiducials can be added by using the FIB (focussed ion beam) to create a hole or trench

in the sample. These landmarks can be identified in the images with high accuracy.

However, fabricating this type of landmark might damage the sample or interfere

with the material’s functionality if they are deliberately etched or patterned into the

sample. In contrast, soft or retrospective landmarks are deduced from the images,

based on similarity to predetermined features, e.g., corners in any image, figures in

medical imaging, or cell components in biological imaging. The spatial location of

these landmarks requires expert knowledge and/or sophisticated image analysis tools

for automatic detection.

In this section, we introduce a new set of landmarks called numerical land-

marks based on the similarity of a subimage to its own translates. Specifically, if the

autocorrelation surface measuring the closeness of fit as a function of the translation

vector has a steep and isolated valley/peak (for SSD/NCC). Harris et al. [21] based

their corner-detector on the same concept: the energy function given by the SSD

between the image and a shifted version of itself, but their derivation diverges from

ours by using the image derivatives (differences between neighboring pixels) to ap-

proximate the first order coefficients of the Taylor polynomial to the energy function,

which makes their corner detector a pixel-wise function, whereas we consider much

large subimages.
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In Figure 4.1 we compare Harris’ original method with our own. Both methods

define a response function whose numerical value can be used to identify landmarks.

In Harris’ case, the response function was calculated based on image derivatives and

minimization. The response function identifies areas of positive curvature as corners.

In our case, the response function takes the same form as 3.4.6, but we use a poly-

nomial approximation to the NCC-based ACS, which is maximized at what we call

numerical landmarks.

All other methods (FFT, NCC, and SSD) directly find the shift in x− and y−

directions to match the subimages in the overlap area of the adjacent tiles. This is

not the case for Harris and our numerical landmark method. Harris assigns a score

to each pixel, with the highest scores for definite corners and lower scores for possible

corners or edges. The location of isolated corners could be used for registration, but

Harris’ response function does not generally find isolated corners. Our numerical

landmarks are subimages that would produce maximum correlations with themselves

and much lower correlations with their neighbourhood. This makes it hard to compare

numerical landmarks to the first three methods or Harris’ response function.

68

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


PhD Thesis – N. Khoonkari; McMaster University – Computing and Software

a) b)

Figure 4.1: Contour plot of Harris Corner ACS principal curvature space, in which
the horizontal and vertical coordinates represent the eigenvalues of the Hessian of

the best-fit paraboloid. Curved lines represent equal R values, and shading
represents different image features (corner, edge, or flat regions). (Reproduced from
[21].) b) Shows iso-R values for the modified response function based on NCC. Since
we use NCC rather than SSD because it is more robust in changes of brightness, the

eigenvalues in (b) are negative, so the orientation is reversed. Since the ACS is
calculated for a subimage in (b) rather than for a single pixel in (a) we cannot
characterize regions as corners and edges, but rather as numerical landmarks.

In the first step, the relative positions of the images we want to match are chosen

based on the information from the imaging tool (SEM). Then the overlap area is

divided into thinner strips with a degree of overlap. Each strip is divided into smaller

subimages, and self-correlation is applied to each; see Figure 4.2. As we are facing

changes in brightness due to charging during the course of imaging multiple tiles, we

use NCC for self-correlation, as it is less sensitive to such changes compared to SSD,

which is used in the original Harris corner detection algorithm.
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a)

b)

c)

Figure 4.2: Self-Correlation to find numerical landmarks. a) The height of the
overlap between adjacent tiles in this data set is 512 pixels. b) In the overlap

region, two stripes with the height of 256 pixels and an overlap of 100 pixels are
highlighted. c) In each of the stripes, dashed rectangles show how each stripe is

divided into smaller subimages overlapping horizontally by 100 pixels.
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Figure 4.3 (a) represents the self-correlation on an example subimage from the

overlap area. After calculating the NCC for the inner (dashed-line) and outer (solid-

line) subimages, we fitted a paraboloid to the auto-correlation surface using a weighted

objective function.

min
a,b,c,d,e,f

Σx,y wx,y
(
zNCC −

(
ax2 + 2bxy + cy2 + dx+ ey + f

))2
(4.1.1)

where

wx,y =


0 x = r

L
(√

(x− r)2 + (y − r)2
)

otherwise

(4.1.2)

L(u) =


sin(πu/r)

(πu/r)
u < r

0 u ≥ r.

(4.1.3)

In (4.1.1), we define the optimization problem for fitting the polynomial ax2 +

2bxy+cy2+dx+ey+f to zNCC , the ACS. This problem is quadratic in the coefficients,

and can be solved by setting the derivates of the objective function to zero, as follows:
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0 =
∂

∂a
Σx,ywx,y

(
zNCC −

(
ax2 + 2bxy + cy2 + dx+ ey + f

))2

=
∂

∂a
Σx,ywx,y

(
zNCC − ax2 − 2bxy − cy2 − dx− ey − f

)2

=Σx,y(−2)wx,y
(
x2
) (
zNCC − ax2 − 2bxy − cy2 − dx− ey − f

)
=(−2)Σx,y

(
wx,yx

2zNCC − awx,yx4 − 2bwx,yx
3y − cwx,yx2y2−

dwx,yx
3 − ewx,yx2y − fwx,yx2

)
=(−2)

(
Σx,ywx,yx

2zNCC − aΣx,ywx,yx
4 − bΣx,y2wx,yx

3y − cΣx,ywx,yx
2y2−

dΣx,ywx,yx
3 − eΣx,ywx,yx

2y − fΣx,ywx,yx
2
)

0 =
∂

∂b
Σx,ywx,y

(
zNCC −

(
ax2 + 2bxy + cy2 + dx+ ey + f

))2

=
∂

∂b
Σx,ywx,y

(
zNCC − ax2 − 2bxy − cy2 − dx− ey − f

)2

=Σx,y(−4)wx,y (xy)
(
zNCC − ax2 − 2bxy − cy2 − dx− ey − f

)
=(−4)

(
Σx,ywx,yzNCCxy − Σx,ywx,yax

3y − Σx,ywx,y2bx
2y2 − Σx,ywx,ycxy

3−

Σx,ywx,ydx
2y − Σx,ywx,yexy

2 − Σx,ywx,yfxy
)
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0 =
∂

∂c
Σx,ywx,y

(
zNCC −

(
ax2 + 2bxy + cy2 + dx+ ey + f

))2

=
∂

∂c
Σx,ywx,y

(
zNCC − ax2 − 2bxy − cy2 − dx− ey − f

)2

=Σx,y(−2)wx,y
(
y2
) (
zNCC − ax2 − 2bxy − cy2 − dx− ey − f

)
=(−2)

(
Σx,ywx,yy

2zNCC − Σx,ywx,yay
2x2 − Σx,ywx,y2bxy

3 − Σx,ywx,ycy
4−

Σx,ywx,ydxy
2 − Σx,ywx,yey

3 − Σx,ywx,yfy
2
)

0 =
∂

∂d
Σx,ywx,y

(
zNCC −

(
ax2 + 2bxy + cy2 + dx+ ey + f

))2

=
∂

∂d
Σx,ywx,y

(
zNCC − ax2 − 2bxy − cy2 − dx− ey − f

)2

=(−2)(x)Σx,ywx,y
(
zNCC − ax2 − 2bxy − cy2 − dx− ey − f

)
=(−2)

(
Σx,ywx,yxzNCC − Σx,ywx,yax

3 − Σx,ywx,y2bx
2y − Σx,ywx,yxcy

2−

Σx,ywx,ydx
2 − Σx,ywx,yexy − Σx,ywx,yxf

)

0 =
∂

∂e
Σx,ywx,y

(
zNCC −

(
ax2 + 2bxy + cy2 + dx+ ey + f

))2

=
∂

∂e
Σx,ywx,y

(
zNCC − ax2 − 2bxy − cy2 − dx− ey − f

)2

=(−2)(y)Σx,ywx,y
(
zNCC − ax2 − 2bxy − cy2 − dx− ey − f

)
=(−2)

(
Σx,ywx,yyzNCC − Σx,ywx,yayx

2 − Σx,ywx,y2bxy
2 − Σx,ywx,ycy

3−

Σx,ywx,ydyx− Σx,ywx,yey
2 − Σx,ywx,yyf

)
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0 =
∂

∂f
Σx,ywx,y

(
zNCC −

(
ax2 + 2bxy + cy2 + dx+ ey + f

))2

=
∂

∂f
Σx,ywx,y

(
zNCC − ax2 − 2bxy − cy2 − dx− ey − f

)2

=(−2)Σx,ywx,y
(
zNCC − ax2 − 2bxy − cy2 − dx− ey − f

)
=
(
Σx,ywx,yzNCC − Σx,ywx,yax

2 − Σx,ywx,y2bxy − Σx,ywx,ycy
2−

Σx,ywx,ydx− Σx,ywx,yey − Σx,ywx,yf)

Setting the above derivatives to zero, we can solve for the polynomial coefficients

a , b, c, d, e, and f . Figure 4.3 (b) shows the ACS and the weighted polynomial fit

using the obtained coefficients. It also shows the contour plot of the fitted ACS and

the curvatures. Figure 4.3 (c) shows how fitting paraboloids eliminate the noise in

our calculation.

The response function is calculated based on the eigenvalues of the Hessian, H.

As the determinant is the multiplication of the eigenvalues and the trace is their sum,

we use determinant and trace in our calculation because they are simpler to calculate

rather than eigenvalues.

R = λminλmax − k(λmin + λmax)
2 (4.1.4)

= det(H)− k tr(H) (4.1.5)

Notice that for round paraboloids, eigenvalues are equal and R = 0 when k = 0.25. By

choosing k = 0.25, the response function is always zero for the rounded paraboloids,

and for the non-rounded ones, it is negative. In our implementation, we use k = 0.125,

which controls for both roundness and large determinants/curvature, as being round
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is not enough, we want sharp local minima, and we need big eigenvalues/determinants

for this. The choice 0.125 is halfway in between. All steps of the proposed algorithm

are listed in Algorithm 1. In this algorithm, the subimages are taken by stepping

through the overlap area with step size 100 both horizontally and vertically. The

weighting for the polynomial fit in Algorithm 1 is to eliminate the noise caused by

the acquisition, see Figure 4.3, and reduce the artifacts like aliasing similar to Gibb’s

ringing [31].
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a)

b)

c)

Figure 4.3: A subimage from the overlap area is shown in the top row. In section a),
the solid yellow rectangle represents the subimage, and the dashed rectangle

represents the inner rectangle moving inside the solid rectangle and returning the
NCCs of the central subimage and its translates. The margin is 5 pixels from each
side; as a result, the ACS is 11× 11 pixels. b) A weighting factor is applied to the

ACS to remove the noisy central row and weight the NCCs according to the
magnitude of the translation. The contour plot shows the best-weighted-fit

paraboloid to the ACS and the eigenvectors of its Hessian from which we can read
the roundness of the paraboloid. c) The difference between the raw ACS and the
fitted paraboloid shows how the noise is removed from the calculation. Note, in

particular, the removal of the central ridge along the x−axis.
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Algorithm 1 Numerical landmark search for horizontal overlap

Require: I . Image
Require: h . Height of the overlap
Require: l . Width of the overlap
Require: hs . Height of the subimage
Require: ls . width of the subimage
Require: wx,y . Weighting for polynomial fit
Require: k . Parameter, used 0.125
Require: I . set of subimages (see text)
Ensure: hs ≤ h, ls ≤ l

for I ′ ← I do
zNCC ← NCC(I ′) . Autocorrelation Surface. See Algorithm 2

a, b, c, d, e, f ← argmin Σx,y wx,y (zNCC − (ax2 + 2bxy + cy2 + dx+ ey + f))
2

H ←
(

2a 2b
2b 2c

)
. Hessian of parabaloid at (0,0)

R ← det(H)− k tr(H)2 . Harris response function
if R ≥ 0 then add to list of landmarks
end if

end for

The NCC in Algorithm 1 is calculated using Algorithm 2. In this algorithm,

we pick a central subimage inside Is and calculate the correlation between it and

its translates within I up to a maximum translation of 5 pixels in either direction.

Rounded paraboloid ACSs with unique maximums are the best to use in Algorithm 1.

Figure 4.4 shows three data sets from our industrial partner to analyze them with

our algorithm. The response function histograms and the threshold zero (orange

bars) show how we pick numerical landmarks from the overlap area based on our

numerical criteria. As the NCC should have a maximum in the case of no translation,

eigenvalues should be both negative. As discussed, the roundness of the paraboloids
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Algorithm 2 NCC for self-correlation

Require: Is . Subimage
Require: hs . Height of the subimage
Require: ls . width of the subimage
Require: m . margin
r, c← size(Is) . Number of rows (r) and number of columns (c)
Imid ← Is[m : r −m,m : c−m]
for i ← −m to m do

for j ← −m to m do
Imove ← Is[i : i+ r − 2m, j : j + c− 2m]
NCCi,j ← Imove·Imid√

Imove·Imove
√
Imid·Imid

end for
end for
return NCC matrix

corresponds to having equal eigenvalues. Small R gives us flat regions, negative R

indicates edges, and positive R means that the subimage significantly changes when

moving in any direction and corresponds to corners or significant landmarks like vias

in semiconductor SEM images. Of the images which pass this threshold, if there are

overlapping subimages, we use only the one with the maximum R value.

78

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


PhD Thesis – N. Khoonkari; McMaster University – Computing and Software

a) b) c)

a)

b)

c)

Figure 4.4: Three data sets are compared. The histograms show the modified Harris
Corner response function based on NCC, with the frequency of subimages with

different R values plotted against the R values. The orange line on the histogram
shows the threshold for picking numerical landmarks. a, b and c indicate different
data sets and white outlined subimages on the stripes show numerical landmarks

with localizable features in them for the stitching.

Figures 4.5, 4.6 , and 4.7 show the 2D histograms of eigenvalues for different
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subimages. The maximum and minimum eigenvalues are plotted on the horizontal

and vertical axes, respectively. Figure 4.5 shows one of the chosen subimages and

self-correlation results, while the next two show the best curvature and the worst

ones. In order to plot the 2D histogram, a Python library named “plotly” is used.

One can plot the 1D histogram of the values on each axes on the edge of the 2D

histogram to track the changes in one axis for different amounts of the other axis. In

our case, the axes are eigenvalues.
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𝜆𝑚𝑖𝑛 = −20.35
𝜆𝑚𝑎𝑥 = −2.49
Count = 1

Figure 4.5: Using self-correlation to find numerical landmarks (R = −14.53). This
subimage will be selected because it has a large R value maximum and minimum
eigenvalues of the Hessian of the second-degree polynomial approximation to the

ACS. Histograms of the eigenvalues are shown separately (to the top and right) and
as a 2D histogram (top). The (0, 0) point in the histogram is near the top right
corner and contains the highest counts, indicating that most subimages are not

useful as numerical landmarks. The position of this subimage in the overlap region
is shown next, followed by the raw ACS and a contour plot of the 2D fit. The

eigenvectors of its Hessian are indicated on the contour plot. Finally, the quality of
the fit is illustrated (bottom) by visually subtracting surface plots of the polynomial

fit from the raw ACS.
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𝜆𝑚𝑖𝑛 = −4.94
𝜆𝑚𝑎𝑥 = −3.23
Count = 1

Figure 4.6: Using self-correlation to find numerical landmarks (R = 7.61). The best
case with the best curvature in all directions.
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𝜆𝑚𝑖𝑛 = −0.85
𝜆𝑚𝑎𝑥 = 0.10
Count = 1

Figure 4.7: Using self-correlation to find numerical landmarks (R = −0.15). It
indicates the worst curvature.

The next data set has more complex patterns of wires and vias, both isolated or

grouped. Figures 4.8, 4.9, and 4.10 show the results of our algorithm running for this
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dataset.

𝜆𝑚𝑖𝑛 = −7.94
𝜆𝑚𝑎𝑥 = −6.36
Count = 1

Figure 4.8: Self-Correlation to find numerical landmarks (R = 26.71), which
indicates one of the algorithm-chosen subimages with a rounded shape paraboloid.
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𝜆𝑚𝑖𝑛 = −14.25
𝜆𝑚𝑎𝑥 = −1.86
Count = 1

Figure 4.9: Typical numerical landmarks identified by the proposed procedure
(R = −5.93). A preponderance of features (e.g., wires) in one orientation results in
uneven eigenvalues, but both are sufficiently negative that the subimage can be used

as a numerical landmark.
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𝜆𝑚𝑖𝑛 = −1.15
𝜆𝑚𝑎𝑥 = 0.10
Count = 1

Figure 4.10: Self-Correlation to find numerical landmarks (R = −0.3). It represents
the worst curvature for a subimage in this data set. From the contour plot, we see

that the curvature is slightly negative. This happens when a subimage contains only
features with one orientation.

The third data set has a noise which we named rice noise, as its pattern is like the
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grains of rice. The noise is in the SEM scan direction. Figures 4.11, 4.12, and 4.13

are showing the results.

𝜆𝑚𝑖𝑛 = −11.32
𝜆𝑚𝑎𝑥 = −3.01
Count = 1

Figure 4.11: Self-Correlation to find numerical landmarks (R = 8.44). It represents
one of the bad choices for a subimage in this data set.
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𝜆𝑚𝑖𝑛 = −2.84
𝜆𝑚𝑎𝑥 = −-2.74
Count = 1

Figure 4.12: Self-Correlation to find numerical landmarks (R = 3.90), which
indicates one of the algorithm-chosen subimages with a rounded shape paraboloid.
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𝜆𝑚𝑖𝑛 = −1.63
𝜆𝑚𝑎𝑥 = 0.24
Count = 1

Figure 4.13: Self-Correlation to find numerical landmarks (R = −0.64), which
indicates one of the worst cases to consider as numerical landmark.

In the next step, the amount of the translation is calculated based on the position

of the maxima in the ACS of numerical landmarks. The result after correcting the
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translation error is shown in Figure 4.14.

a)

b)

c)

Figure 4.14: Results of correcting translation errors: a) numerical landmarks
(outlined in white) after thresholding based on the modified Harris response
function, b) uncorrected images superimposed red and green channels, and c)

corrected images using the result of polynomial fit. The subimage coordinates are
all outlined in white.

We also found that after using any of these methods to estimate local translations,

global non-linear transformations could be estimated by fitting those translations to
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a polynomial of order 2. Since even the most robust NCC-1D estimates still produce

outliers, see Figure 4.16, we recommend using `1 estimates over `2 estimates, i.e.,

fitting using a linear program rather than quadratic optimization.

Furthermore, after estimating local translations, it is possible to detect global non-

linear transformations by fitting those translations to a polynomial. Since even the

most robust NCC estimates still produce outliers, we recommend using `1 estimates

over `2 estimates.

Data sets a and b from Figure 4.4 has instrument drift during the course of the

scan using SEM. As the global fit is shown in Figure 4.15 for data set a and Figure 4.16

for data set b, the drift is in the x direction, which is the same as the scan direction.

The shift is not constant for all selected subimages in both axes. Therefore, fitting

a polynomial of order 2 can give us a global fit for the data sets with unexpected or

nonlinear drifts.
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a) b)

Figure 4.15: This figure illustrates the fit to the numerical landmarks determined
using NCC and ACS fitting. Red dots are the x− and y−translation values for each
of the selected subimages. Outlier rejection is necessary and can be accomplished by
fitting a polynomial using an `1 norm (black line) versus an `2 norm (blue line). For

the definition of the norms, please see Appendix E. In both plots, the horizontal
axis shows the subimage location (in pixels) within the horizontal seam of the data
set a in Figure 4.4. The left plot shows the estimated correction in the x-direction,

while the right shows that for the y-direction.
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a) b)

Figure 4.16: This figure illustrates the fit to the numerical landmarks obtained
using NCC and ACS fitting. Red dots are the shift values for each of the selected

subimages. Outlier rejection is necessary and can be accomplished by fitting a
polynomial using an `1 norm (black line) versus an `2 norm (blue line). For the

definition of the norms, please see Appendix E. In both plots, the horizontal axis
shows the subimage number within the horizontal seam of the data set b in Figure
4.4. The left plot shows the estimated correction in the x-direction, while the right

shows that for the y-direction.

Data set c from Figure 4.4 exhibits only simple translation, and there is no non-

linear instrument drift during the course of the scan using SEM. As the global fit is

shown in Figure 4.17, the shift is constant for all selected subimages in both axes.

Therefore, fitting a line can give us a global fit for the data sets without unexpected

or nonlinear drifts.
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a) b)

Figure 4.17: This figure illustrates the fit to the numerical landmarks. Red dots are
the shift values for each selected subimages after compensating the overlap height
for adjacent tiles. In both plots, the horizontal axis shows the subimage number

within the horizontal seam of the data set c in Figure 4.4. The left plot shows the
estimated correction in the x-direction, while the right shows one for the y-direction.

Using the fitted polynomials, one can calculate the shift for all the pixels of the

overlap area of the adjacent tiles, even in the presence of nonlinear drifts and stitch

the tiles by compensating for the distortion.
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4.2 Projection

In this method, we project an image block onto the x and y axes by column-wise and

row-wise summations of the pixel values to obtain two 1D vectors, see Algorithm 3.

Considering r as row and c as column, P r and P c which are row-wise and columns-wise

projections of image I are,

P r
Ij

= Σ#rows
k=0 Ik,j, for j = columns (row-wise summation) (4.2.1)

P c
Ii

= Σ#columns
k=0 Ii,k, for i = rows (column-wise summation). (4.2.2)

Algorithm 3 Projection

Require: I . Image
r, c← size(I) . number of rows(r) and columns(c) of image I
for j ← 0 to r do . row-wise summation, project on y− axis

P r
Ij

= Σc
k=0Ik,j

end for
for i← 0 to c do . column-wise summation, project on x− axis

P c
Ii

= Σr
k=0Ii,k

end for
return P r

Ij
and P c

Ii

Both metal and dielectric materials in our samples are non-uniform. The grain

pattern is anisotropic, sometimes looking like grains of rice, aligned along the scan

direction of the electron beam. By summing over the rows and columns of each

subimage, the projection will be either parallel or perpendicular to the grain pattern.

This pattern is different than noise. To validate this, one can choose one subimage

from the overlap area, which is pure dielectric, and subtract the projections from each

other (after alignment), to isolate the noise from the grain pattern, see Figure 4.18.
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Figure 4.18: A sub-image is taken from the solid part of the SEM image of a
semiconductor (dielectric part of the image). Translation values for both the x−

and y− directions are calculated using NCC-1D. By subtracting the matched signals
from each other, one can calculate the noise, which is different than the grain

pattern.

The projection onto 1D increases accuracy. For semiconductor images, estimates

of the translation between subimages in different tiles are more accurate when the

objective function fits the curves obtained by the summation of rows and columns

separately, than when it fits the 2D surfaces.
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Figure 4.19: This figure illustrates two findings: (1) NCC-1D estimates (red dots)
are much better than NCC-2D estimates (blue stars), and (2) outlier rejection is

necessary and can be accomplished by fitting a polynomial to the NCC-1D
estimates using an `1 norm (black line) versus an `2 norm (blue line). For the

definition of the norms, please see Appendix E. In both plots, the horizontal axis
shows the subimage number within the horizontal seam (blue dotted outline) in the

images in Figure 4.21. The left plot shows the estimated correction in the
x-direction, while the right shows that for the y-direction. In both cases, NCC-1D
estimates are clearly more consistent than NCC-2D estimates for well over half of
the subimages. Estimating the y component of the polynomial estimate for the

non-linear correction with either norm yields similar results, i.e., the black and blue
lines are indistinguishable. On the other hand, the x component (left plot) varies

significantly, even though there is only one significant outlier.

Figure 4.19 illustrates this in the case of NCC estimates using the projections

(red circles) and not (blue stars). The standard deviations for the x components

were 10.46 and 40.63, respectively, which represents a factor of 4 advantage for the

projection method. When considering the y component, which contains no outliers

in the projection case, the improvement is numerically infinite due to the limits of

floating-point arithmetic. We use NCC for the comparison because, as we will see, it

is the most accurate.

Projection methods are faster. SSD-1D is, by far, the fastest method for small
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subimages. NCC-1D is still at least 50× faster than NCC-2D. FFT-1D is also faster

than FFT-2D, which is itself fast, but, unfortunately, not accurate. Figure 4.23 shows

runtimes for representative subimage sizes. One can formulate SSD, NNC and FFT

in 1D as follows,

FFt(P ) =

∫ ∞
−∞

g(t)e−i2πtPdt, (1D Fast Fourier Transform) (4.2.3)

SSD(P, P ′) =
1

2
||P − P ′||2`2 , (1D Sum of Squared Differences) (4.2.4)

NCC(P, P ′) =

∑
P ∗ P ′√∑
P 2
√∑

P ′2
, (1D Normalized Cross Correlation), (4.2.5)

where P and P ′ are the projections of the images.

NCC-1D is the most accurate algorithm. For semiconductor images, in general,

SSD-1D and NCC-1D are more accurate than FFT-1D or FFT-2D, when aligning

subimages, as illustrated in Figure 4.21. For images containing brightness variations

(probably due to charging), NCC is more robust than SSD; see Figure 4.22. For

images containing the types of repeated patterns common in semiconductor images,

SSD-1D and NCC-1D are both highly accurate, while FFT-1D was less accurate, see

Figure 4.20.
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Figure 4.20: A comparison of 1D NCC, SSD and FFT methods on repeated
patterns. The images in the shaded blue upper-left triangle are the uncorrected

projections along rows (vertical lines) and columns (horizontal lines). The position
of the subimages with repeated patterns outlined in red and yellow are shown in the
full images (center). The images in the unshaded lower-right triangle illustrate the

correction, with the subimage outlined in yellow being translated down
approximately 40 pixels. Between the red and yellow images are three plots of the

projections after correction using NCC, SSD and FFT fitting. The y-corrections are
shown along the bottom of the figure, while the x-corrections are shown along the

right of the figure. The FFT is a direct method, but the NCC and SSD are
calculated by maximizing (respectively minimizing) an objective. Those objectives
are shown above and to the left of the corrected projections. It is also noticeable
that even in the presence of repeated patterns, the minima on the SSD objectives

are sharper than the NCC maxima, which would normally indicate greater
confidence in the estimate. If the SSD estimate were insensitive to variations in

brightness, it might be the better estimate.
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Polynomial fitting robustly estimates non-linear distortions. Although transla-

tion estimates between subimages in overlapping margins depend on local rigid-body

transformations and may fail for some subimages, fitting an overall nonlinear defor-

mation to the collection of these local translations recovers non-linear deformations.

In Figure 4.24, the individual x− and y−translations are fit to a polynomial using `1

and `2 norms. The `1 norm effectively rejects the influence of outliers, as shown by

composite RGB images (also in Figure 4.24). For the definition of the norms, please

see Appendix E.

One of the greatest advantages of this method is that the grain patterns can be

used for alignment. Surprisingly, the grain pattern created by the manufacturing

process can be easily distinguished from noise and therefore used for matching in

cases where image features are absent. Figure 4.18 shows one example.
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Figure 4.21: A comparison of 1D NCC, SSD and FFT methods. The images in the
shaded blue upper-left triangle are the uncorrected projections along rows (vertical
lines) and columns (horizontal lines). The position of the subimages outlined in red

and yellow are shown in the full images (center). The images in the unshaded
lower-right triangle illustrate the correction, with the subimage outlined in yellow

being shifted down, which approximates 40 pixels. Between the red and yellow
images are three plots of the projections after correction using NCC, SSD and FFT

fitting. The y-corrections are shown along the bottom of the figure, while the
x-corrections are shown along the right of the figure. The FFT is a direct method,
but the NCC and SSD are calculated by maximizing (respectively minimizing) an

objective. Those objectives are shown above and to the left of the corrected
projections. Notice that the minima on the SSD objectives are sharper than the

NCC maxima, which would normally indicate greater confidence in the estimate. If
the SSD estimate were insensitive to variations in brightness, it might be the better

estimate.
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Figure 4.22: An example of the projection method, using the magnified subimages
from Figure 3.1. Subfigure a) is a schematic illustrating summation along the rows

and columns of the images. Horizontal red and green lines represent summation
over the rows (projection on the y-axis). Vertical lines represent summation over

columns (projection on the x-axis). Subfigure b) shows the projection result before
and after estimating the translation between the (red and green) subimages images.

The upper plots show the uncorrected projections, the middle plots present the
correction based on SSD, and the lower plots the correction based on NCC. The

relative sizes of the corrections are represented by blue arrows based on the
reference position indicated by the dotted blue line. The NCC estimates are visibly

better than those based on SSD in this example. This pattern of superior
performance for NCC was only observed in the presence of charging. Although

charging is rare in our data sets, it cannot be eliminated.
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Figure 4.23: Using a semi-log plot, we observe that all methods incorporating
projection onto 1D are faster than their corresponding 2D method. For SSD and

NCC, the difference is significant. SSD-1D is the fastest, followed by the FFT
methods. These three methods are less accurate, at least in the presence of

charging. Fortunately, although slower than SSD-1D, NCC-1D is still 50× faster
than NCC-2D. The timing was calculated for four representative image sizes

(horizontal axis) to show that the real-world performance is consistent with the
theoretical and computational complexity and consistent across subimage sizes.
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Figure 4.24: A comparison of stitching along two seams, outlined in red (centre).
Representative subimages are labelled with yellow arrows indicating their positions

in the overlaps. Subimages in the horizontal (respectively vertical) overlap start
with “h” (respectively “v”). The same yellow arrows are used in the plots of

displacements (top center, x−translation on the left and y−translation on the right)
and (bottom center, similarly). The left two columns of images are from the

horizontal seam, and the right two from the vertical seam. In each pair of columns,
the images are labelled to show their position in the seam using the same system as
the images and plots. Each image is a composite, using the red and green channels
for the two images being aligned. In a perfect alignment, all overlapping pixels will
be yellow (or black). The left image in each pair is uncorrected, and the right one is

corrected using the NCC-1D correction. Notice that h13 and v5 appear to be
outliers in the plots, and the composite uncorrected images show large areas of red

and green pixels and smaller numbers of yellow pixels.

We compared six methods, conventional 2D and novel 1D versions of SSD, NCC

and FFT, with respect to computational cost, accuracy and reliability in the presence
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of artifacts (e.g., brightness changes due to charging). Although FFT methods can, in

theory, detect subpixel translations and benefit from the high efficiency of the FFT

itself (e.g., asymptotic computational complexity O(n2 log(n)) for FFT-2D versus

O(n4) complexity for SSD-2D and NCC-2D, for a n× n subimage), in practice, they

had the lowest accuracy, especially in the presence of repeated patterns, so we do not

recommend them for stitching semiconductor images.

On the other hand, SSD and NCC successfully handled repeated patterns; see

Figure 4.20. Between SSD and NCC, SSD-1D was faster than NCC-1D, but SSD

methods may become inaccurate in the presence of charging. In theory, the 1D-

projectional methods should be much faster, with computational complexity reduced

from O(n4) to O(n2), but in practice, the observed acceleration was greater for SSD-

1D than for NCC-1D, see Figure 4.23. We would still recommend NCC-1D based on

its insensitivity to charging.

We also found that after using any of these methods to estimate local translations,

global non-linear transformations could be detected by fitting those translations to a

polynomial. Since even the most robust NCC-1D estimates still produce outliers, see

Figure 4.19, we recommend using `1 estimates over `2 estimates, i.e., fitting using a

linear program rather than quadratic optimization.

Finally, we were able to observe a clear distinction between noise and grain pat-

terns, which becomes clearer after projecting onto 1D. This can be explained by the

reduction of noise (by a factor of 1/
√
n), which results from adding up rows (or

columns) of pixel values.

In this chapter, we introduced two novel methods to solve 2D stitching. One of the

methods is based on finding reliable landmarks using “numerical landmarks”, and the
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other is about reducing the computational complexity of matching by projecting onto

each axis and using 1D matching. In addition to the reduced complexity, projection

makes apparent so-called “grain patterns” which can also be used for matching. We

analyzed the accuracy and efficiency of the methods and tested them on multiple

data sets obtained from our industrial partner. Once we solve the mosaic in 2D, our

next goal is to stack the 2D layers and reconstruct the 3D connectivity of the sample,

which is discussed in the following chapter.
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Chapter 5

3D Reconstruction and Volume

Stitching

Recent advances in modern microscopy enable three-dimensional imaging of large

specimens at high resolution. Three-dimensional reconstruction is the process of

creating three-dimensional models from a set of multiple images. In materials science,

this is done by stacking a set of consecutive layers. These layers are formed by taking

the image of the sample surface, cutting and removing that surface, polishing it, and

taking the image of this new layer. Delayering is done using an ion beam. Focused ion

beam (FIB) is a technique in materials science, the biological field, and specifically

semiconductors for analysis and deposition of materials. While SEM uses electrons,

FIB uses ions for imaging. Ions are produced by a liquid metal ion source that uses

metal and heated it to the liquid state to form ions, especially gallium ion source. [50].

There are also instruments developed recently using plasma beams of gas ions, such as

xenon [13]. Unlike an electron microscope, FIB is destructive to the specimen. When

the high-energy gallium ions hit the sample, they sputter atoms from the surface.
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Gallium atoms will also be implanted into the top surface, and the surface will be

made non-crystalline. Due to sputtering, the FIB is used to modify materials at the

micro- and nanoscale. FIB tools are designed to etch surfaces. Using FIB, atoms

in one layer are milled without disrupting atoms in the following layer or without

any residual disruptions above the surface. Currently, because of the sputter, FIB is

milling the surface at the sub-micrometre length scale [33].

3D X−ray tomography and 3D Serial Sectioning by FIB-SEM are destructive

automated methods that have different resolutions in the 3D reconstruction of the

specimen without destroying the sample. Each pixel in X−ray CT images indicates

attenuation properties of a specific material volume. In this regard, the presence

of different substances results in representing an average of their properties in the

obtained images, which is known as a partial-volume effect. This results in the reso-

lution limitations of X−ray CT and could make all material boundaries blurred [25].

So, this conventional 3D imaging technique has its own drawbacks as it is not of

sufficient resolution. Although 3D FIB-SEM could work, it is not time efficient [54].

Generally, we take 2D images of 3D scenes while reconstructing them in 3D is

the reverse process, See Figure 5.1 and Figure 5.2.
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M0

M2

M1

Figure 5.1: Cross-section of semiconductor; vias connect layers. One can cut and
polish the sample from the orange lines on the magnified image to take an image of
the surface of each layer. Without cutting, M2 can be captured by even low voltage,

and for being able to see M1 and M0, higher voltages are needed.
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M1

M2

Figure 5.2: Plane view of two layers (SEM images) on top of one another. M2 is on
top of M1, the yellow circles on M1 show vias. As the via gets connected upward, it

should connect to either a via or wire in M2. The yellow circles on M2 show a
feasible solution for this connection.

Vias are always connected vertically, and they are only connected to wires and

vias; see Figure 5.3. So, there will be a feasible connection area on top of each via

in the top layer. The important thing is that when we cut and polish and see via on

the surface of a layer, we are sure that this via should be connected to a via or wire

in the latest removed layer.
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M0

M2

M3

M1

Blue: wire
Orange: dielectric
Yellow: via
Reg: feasible connection

Figure 5.3: Schematic view of possible connections between layers

Different solutions and tools are available for automatic 3D reconstruction of large

images. The typical strategy in 2D, which can be used in 3D as well, is to perform

a pairwise registration through Normalised Cross-Correlation (NCC) [44], which pro-

vides an image similarity score.

Similar to other state-of-the-art tools, the 3D reconstruction process has to per-

form the following main steps:
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1. find the relative position between each pair of adjacent stacks (in fact, since

in our case tiles are stacked in z−axis and parallel along the x−axis direction,

there might be small rotations, and this means to find the displacement between

them);

2. find a globally optimal placement of stacks in the final image space;

3. combine all stacks into a single 3D image and substitutes overlapping regions

with a blended version of them.

Our main focus in this dissertation is on finding an optimum registration technique

that can be used in aligning the stack of the layers. By applying segmentation algo-

rithms on the plan-view imaging of the alignment process for consecutive layers in a

metallization stack, one can extract vias and wires based on what is visible in each

image layer. Extracting features is known as feature detection. Then, a map between

vias and wires in consecutive layers can be defined and used to align consecutive

layers and build a 3D reconstruction of the semiconductor.

There are some attempts in the literature to solve the 3D reconstruction problem,

which will be discussed in the following section.

5.1 Registration Methods

There are lots of efforts in the literature to present a fully automatic and robust 3D

image registration method for the reconstruction of detailed 3D images, which will

deal with complex deformation problems for different types of microscopic images.

Image registration is done by either minimizing the differences between consecutive

layers or by maximizing the correlation (mutual information) between them. The
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optimization method and objective functions are the same as what is discussed for

registration in 2D in Chapter 3.

In 2015, a promising method for 3D registration was proposed in [52]. This fully

automatic method does 3D registration for all data and consistently produces solid

3D reconstructed objects with fewer discontinuities and deformations than benchmark

methods.

In 2019, Kajihara T. et al. proposed a registration method for three-dimensional

(3D) reconstruction from biological serial section images [23]. They had a novel reg-

istration method using blending rigid transformation to handle non-rigid distortions.

Secondly, they proposed a method of selecting target images based on a blending

criterion to avoid tissue discontinuity. The last problem in biological samples is to

scale change of tissue, so they proposed a scale adjustment method using the tissue

area before and after registration.

There are also some applications in medical science for image registration by

minimizing a loss function. For instance, in [14], Cao X. et al. proposed a method

to register the images from different modalities using loss function minimization. In

this way, they measured similarities between different modalities like MRI and CT,

which are different medical imaging modalities.

In the following section, one approach based on graph theory is proposed for

aligning corresponding features.

5.2 Minimum Spanning Tree (MST)

In this method, a weighted undirected graph of tiles whose edges represent displace-

ments is considered. Weights are computed as the inverse of displacement reliability
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measures. Reliability measurement is calculated using NCC, yielding +∞ for very

unreliable ones. NCC is searching for the maximum correlation between consecutive

layers. The smaller the NCC is, the bigger its inverse would be, which increases

the weight. These prevent the tree from connecting stitchable tiles (marked as blue

squares) from passing through the non-stitchable ones (marked as yellow circles); see

Figure 5.4.

If different reliability measures are available, minimum spanning trees are obtained

for each direction separately. The marked tile in the figure is a non-stitchable tile

that is excluded from any MST path traversing stitchable tiles[9].
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Figure 5.4: Minimum Spanning Tree (MST between two slices), H is for MST along
the horizontal axis, V is for MST along the vertical axis, and D is for along depth.
The weights along each direction are noted beside the nodes. Based on the weights,
three MST can be obtained from the graph for each direction. As an example of a

non-stitchable node, one of the yellow nodes is marked in the image.

One challenge for this method in our case is that nonlinear deformations in the

horizontal plane make it impossible to stitch a tile based on one or two neighbours.

5.3 In Plane Feature detection

Semiconductor metallization images mostly consist of three levels of grey values, light

gray, gray, and dark gray. Having an algorithm to detect these values and classify
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them is helpful. One method is to acquire a histogram of the images. In a plain image

without considering noise, we will have three bumps for these three values between

0 and 255. By fitting Gaussians to these bumps, the threshold could be found, and

each Gaussian will become the representative for one species.

The Gaussian fitting problem is an optimization problem which any optimization

algorithms and solvers could solve. The optimization problem is as follows:

min
µi,σi,wi

Σi∈100 bins(Σ
4
j=1bins(µj, σj, i)−H(i))2, (5.3.1)

where H is the histogram of the image.

After solving this optimization with IPOPT called from Pyomo in Python, the

fitted Gaussians were obtained in Figure 5.5.
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Figure 5.5: Four Gaussians (blue, orange, red, greed) are fit to the smooth
histogram (brown) of a semiconductor image. The purple colour shows the

histogram of the sum of the fitted Gaussians.

This approach could be used in segmenting images, which are needed for our

novel approach in 3D stitching. One aspect of our proposed solution is to reduce

the computational complexity to reduce our calculation. This way, our calculation

is more focused on necessary features in the image and does not consider all pixel

values.

An object can be viewed from multiple perspectives using three-dimensional (3D)
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modelling, which consists of data acquisition, 3D reconstruction and surface recon-

struction. Among all, 3D reconstruction is the important one, which can be cate-

gorized into three types, i.e. statistical models, discriminative learning models and

generative learning models [35]. Statistical models use mathematical theories to ex-

tract the spatial and geometric features of 3D data. In this approach, a corresponding

matching is performed between multiple layers of 3D data to search for the maximum

region likelihood and compute the best match. Through data-driven training, dis-

criminative learning models compute affine transformations with data inference based

on spatial coherence of 3D data. On the other hand, generative models use raw 3D

data directly to learn latent representations of input 3D data, which are then used

later to generate the output samples. In [35], a detailed comparison of the three types

of 3D reconstruction techniques is reviewed.

In conclusion, most of the methods in the literature are based on pixel-wise or

landmark-based image registration. In Chapter 6, we will propose a novel method

which matches via positions to metalization pixels to align consecutive 2D images ob-

tained from semiconductor z−stack layers. Matching isolated positions to pixel values

is novel where all other methods match positions to positions (if using landmarks) or

pixel values to pixel values.
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Chapter 6

Novel Approach to Volume

Stitching

3D reconstruction is about using 2D images to analyze and interpret micro-object

surface properties. The anatomic surface, which is obtained from the 3D shapes of

SEM micrographs, gives quantitative measurements and informative visualization,

which can benefit various branches of science, like biology and materials science. In

this research, we developed an algorithm to reconstruct the 3D structure of the sample

using the 2D SEM images of the layers of the sample, see Figure 6.1.
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b)a)

c)d)

Figure 6.1: Stack of multiple layers of a semiconductor sample is shown. a) shows
the stack of 3 layers, b) shows the two selected layers, c) is the plane view of the

selected layers, and d) shows moving the M2 (yellow) layer on top of the M1 (green)
layer to find the match.

The images have two major components: metal and dielectric (e.g. silicon), and

three visible structures: dielectric without metal, metal wires under a layer of dielec-

tric, and metal vias (through-plane wires connecting different layers), see Figure 6.2.

Vias always run vertically, connecting to either a via or a wire in the upper layer. The
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challenge, as mentioned in chapter 5 and Figure 5.3, is that above each via, there are

several possible connecting points (either via or wire). In most cases, like Figure 5.2,

wires are close together, so connecting them can be tricky.

via

Wire

Dielectric

Figure 6.2: Three visible structures in semiconductor images

In the following, we describe our algorithm using the two layers from the stack of
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layers, which is shown in Figure 6.1. Figure 6.3 shows the two layers M1 (bottom

layer) and M2 (top layer).

Figure 6.3: Left shows M1 (bottom layer), and right shows M2 (top layer) from a
set of layers that are imaged from semiconductor metallization layers using SEM.

Considering computational complexity and time, one can use parallelization. We

divide the layers into small subimages by putting a 4 × 4 grid on each layer, see

Figure 6.4. So, each subimage in M1 is going to get connected to its corresponding

subimage in M2.
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Figure 6.4: 4× 4 grid on the layers in Figure 6.3, which are picked from the stack of
layers.

As mentioned, vias are connecting vertically, i.e., when a via in M1 layer is de-

tected, it is going to connect to either via or wire in M2 layer. This clarifies that

vias connect to the metal part of the top layer and not dielectrics. Based on this

knowledge, one can segment metals in the top layer as both via and wire are metal.

Figure 6.5 shows the metal segmentation of the M2 layer with a 4× 4 grid for paral-

lelization. This segmentation considers all wires and vias as metal, i.e., vias from the

M1 layer connect to the metal segmentation in the M2 layer.
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Figure 6.5: Metal segmentation of the M2 layer with a 4× 4 grid.

Connecting the blocks may seem easy by looking for the metals on top of each via

and connecting them, but there are challenges here. In subimage alignment, one can

choose the yellow sublayers marked in Figure 6.6.
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(a)

(b)

Figure 6.6: (a) and (b) are two selected sublayers from the grid on the M1 layer,
which its vias are going to get connected vertically to the M2 layer.

We find the correlation between layers not based on the intensity or pixel values

but based on the important features in layers, which makes our approach not intensity-

wise but feature-wise. In M1 vias are the through-plane wires connecting different

layers. Knowing vias are connecting vertically, the only necessary feature in M1 is

via, which in Figure 6.7(1) the M1 segmentation based on via is shown for subimage
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(a) in Figure 6.6. Segmentation is done by putting a threshold on the M1 layer. Vias

are the brightest feature in semiconductor SEM images, as the amount of metal in

those coordinates is higher than in other parts of the imaged layer. So, the threshold

is near to the brightest gray value in the layer.

Each via has the size of approximately 10×10 pixels. Instead of using all via pixels,

which increases the calculation time to find the correlation between the M1 and M2

layers, we segment the vias and find their centroids using contours. Contours can be

explained simply as a curve joining all the continuous points (along the boundary),

having the same colour or intensity. It is also known as a blob, which is a group of

connected pixels in an image that shares some common property. The contours are a

useful tool for shape analysis and object detection and recognition; see Figure 6.7(2).

Step (3) in Figure 6.7 shows the centroid of each blob is found to reduce the number

of coordinates which are used in finding the maximum correlation between the via

layer (M1) and the metal layer (M2).

Having the centroids’ coordinates, instead of calculating the correlation for all pix-

els, only those coordinates are considered in the calculation. By finding the maximum

correlation and its position, which is equal to the shift in the x and y directions, the

two layers are aligned. Each layer is assigned to one channel of RGB, and the aligned

layers are shown in Figure 6.7 (4). The whole process is summarized in Algorithm 4
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Figure 6.7: Feature detection steps to find the input coordinates for finding the
correlation. (1) Via segmentation of the subimage (a) in Figure 6.6. The threshold

is set as 250. The vias are the brightest features in the layers as the metal density in
those coordinates is higher, so they are shown brighter in SEM images. Gray values
above 250 detect vias in our data set, (2) Contours of vias after thresholding in step
(1), (3) Centroids of the contours are plotted. The yellow box magnified a group of
vias to clarify how the centroids, (4) aligned subimages which, are taken from M1

and M2 layers. Each layer is assigned to one RGB channel after resolving the shift,
so the connection is shown.

We are dealing with big data sets. It is not only a matter of working with big

images with a high amount of data, but a high number of layers which need to be

stacked. We tried to refine the algorithm by lowering the computational complexity

as well as improving the accuracy.
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Algorithm 4 Aligning metalization layers

Require: M1 . First layer, source of vias
Require: M2 . Second layer, wires receiving vias
Require: t1 . Threshold to Segment via in M1 layer
Require: t2 . Threshold to Segment metal in M2 layer
Require: σ . smoothing parameter
Require: g . Grid size g × g
V ← Segment(M1, t1) . Via segmemtation M1
C ← contour(V ) . Contours of vias
P ← centroid(C) . Set of centroids of vias
P ← divide(P, g) . g2 subsets of via centroids
S ← Segment(M2, t2) . Metal segmemtation M2
S ′ ← smooth(S, σ) . Gaussian filter
for P ∈ P do . Iterate through grid of subimages

∆P ← argmaxδx,δy Σ(x,y)∈PS
′(x+ δx, y + δy) . Maximize vias under wires

end for
return ∆

To reduce the computational complexity, the proposed problem needs some pre-

processing to reduce the amount of data to accelerate our calculation and make our

computation efficient. The images are reduced to vias and then to the centroids of the

vias as single points. As a result, we compare a set of points against a set of images.

Also, to preserve the image features on the borders (vias and wires), we used the in-

formation of the neighbouring pixels. In this regard, the Fourier transform of the M2

layer is taken and a Gaussian filter is applied. Using a blurred version of the metal

layer, we make the objective function smoother, considering neighbouring pixels and

making it less likely to find the match to be on the edge of the metallization.

Another criterion is to increase the accuracy. As the size of the subimages or the

number of centroids is not enough to give us the best match, we can see several local

maxima, which leads to a wrong solution for the NCC. Original images are 8K×8K,

and each subimage’s size after putting a grid is 2K × 2K. In the subimage (a) in
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Figure 6.6, there are 14 coordinates of centroids which are recorded in a data file. In

this regard, we reduce our correlation calculation on a block of size 2K to 14 points.

The coordinates are recorded in a data file to only use those coordinates for calculating

the correlation and not the rest of the pixel coordinates. In some blocks, the best

match can happen in different positions, and that causes several local maxima and

may lead to a wrong alignment, see Figure 6.8. This can be seen as an outlier in our

x− and y− coordinate lists in the Excel sheet.
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Figure 6.8: Aligned subimages from M1 and M2 layers in RGB channels. The shift
value appeared to be an outlier in the correlation calculation.

To solve this problem, we use two methods: (1) increases the size of the search

area in the Metal layer (M2). In this method, we move the block from the M1 layer

of size 2k on an enlarged block from the M2 layer of size 3K by adding 1
4

of the size of

the neighbouring blocks to the current search area, (2) initializing our search for max

correlation on the median of the list or correlations and again applying NCC around

the median for each sublayer. We chose the median as the outliers are so large that
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other statistical center measurements would be affected by the outliers.

Figure 6.9: Resolve the shift with higher accuracy after increasing the search area.
This approach is most applicable when there is a drift or change in the position of

the beam of sample from layer to layer.

It is obvious that without using the statistical center measurements, we can find

the shift values mostly correct by increasing the search area in the metal layer. In this

specific layer, the last row of blocks does not contain any via or a very small number

of them, so they produce outliers as expected. Figure 6.10, Figure 6.11, Figure 6.12,
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and Figure 6.13 are showing the steps which are shown in Figure 6.7 for the whole

grid after increasing the search area in the M2 layer.

Figure 6.10: Whole grid in M1 layer.
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Figure 6.11: Whole grid in M2 layer after metal segmentation.
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Figure 6.12: Contours of segmented vias in M1 layer. The contrast is changed to
gray for the sake of better visualization.
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Figure 6.13: Centroids of the contours which are found for M1 blobs.
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Figure 6.14: Resolved shift for M1 and M2 layers in RGB channels.

In this specific layer, the last row of blocks does not contain any via or a very small

amount of them, so they produce outliers as expected; see Figure 6.15. Such outliers

can get eliminated using the `1 norm. Using `1 and `2 norms, a polynomial is fitted

to the shift values. For the definition of the norms, please see Appendix E. Based on

the results, the `1 norm acts better in the presence of outliers; see Figure 6.16.
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No via 6 vias 4 vias No via

Figure 6.15: Examples of subimages from M1 layer which produce outliers.
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Figure 6.16: Fitted parabolas using `1 and `2 norms. Even in the presence of
outliers, `1 fitted without getting affected by outliers. In both, x−axis is the number
of the boxes in the 4× 4 grid. y−axis shows the shift in columns in the left plot and

the shift in the rows in the right plot.

In simple cases, the alignment should be done without making the search focus

or expanding the search area in the metal layer. Using this simple alignment in the

presented data set, the outliers are evident for the grid of 4 × 4; see Figure 6.8.

Visualizing the maximum correlation using heat maps can show how local maximums

appear in finding the correlation. Figure 6.17 are the heat maps of sliding each

subimage from M1 on its corresponding subimage from M2 to find the maxima

(expanding the search area in M2 layer is applied). As can be seen, in some cases,

several local maxima were obtained, or the match happened in different places due

to having wide wires or a very small number of vias to be matched with the metal
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layer.

Figure 6.17: Heat maps of sliding vias extracted from the M1 subimages on the
corresponding M2 metallization subimages. The search area for each subimage on
M2 is expanded by 1

4
of the size of subimages in positive direction in both x− and

y− axes.

Expanding the search area helps us to preserve the features which are falling off

of the edge. This also leads to a nearly accurate estimation of the shifts. By making
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our search focus on the median position of maxima for all subimages, one can look

around the median on each heat map to find the maxima; in this way, we eliminate

many local maxima that lead to incorrect alignment of the layers.

To recap, our novel alignment algorithm for reconstructing the 3D structure of

semiconductor metallization layers from 2D SEM images reduces both the compu-

tational complexity and the time of the computation while achieving accuracy. Our

method is feature-wise instead of pixel- or intensity-wise, so the correlation compu-

tation is reduced to the detected via centroids instead of whole image pixels. In this

way, less data is involved in our calculation while we achieve accuracy by increasing

our search area and eliminating local maxima using statistical central measurements.
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Chapter 7

Conclusion

This Ph.D. focused on two related projects involving stitching in 2D and 3D using

SEM semiconductor data sets we received from an industrial partner. Due to the

volume of data, automatic stitching is very important, but given the ultimate goal

of reconstructing circuits, even small errors must be avoided in stitching since they

could lead to connections being broken. In addition to rigid-body motion (mostly

translation), which we would expect due to the mechanical movement of the stage,

we also observed non-linear distortions which cannot be explained by the mechanical

movement, but must be associated to variations in the electronic components of the

SEM. We were able to show that even this non-linear distortion can be resolved so that

tiles can be accurately stitched together. To do this, we registered multiple subimages

(typically under 10% of the width of the image), looking only for translations, and

then fit those translations to an overall polynomial distortion. We were able to show

that multiple approaches to fitting the distortion are feasible, and in this thesis,

we compare several methods from the point of view of accuracy and computational

efficiency.
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Matching individual subimages may exhibit large errors. It is necessary to reduce

the impact of these outliers. Fortunately, it is not necessary to use pre-processing

since polynomial fitting to the shift values in the overlap area using the `1 norm

(Manhattan distance) was observed to be insensitive to outliers. This was not the

case for the Cartesian distance (`2).

Chapter 1 explains the motivation behind our research by introducing Moore’s

law and reverse engineering. Chapter 2 explains the SEM and its configuration and

image formation. The 2D and 3D stitching are discussed in Chapters 3 to 6. In

conclusion, our research questions are answered using our novel methods and results.

7.1 Research Questions

1. Is it possible to identify “numerical landmarks”, that is, image re-

gions which correlate to themselves much more strongly than they

correlate with neighbouring regions, without having a predefined set

of image features to match to? If so, how can they best be deter-

mined?

Yes, in Chapter 4.1, we define a modified Harris response function, based on

NCC rather than SSD, and based on the self-correlation of a large neighbour-

hood of pixels, resulting in an ACS. Using the 2D histogram (x and y axes

represent minimum and maximum eigenvalues) and visualizing the agreement

between fitted paraboloids and the ACS, we identify the region with reliable

candidates for numerical landmarks, which corresponds to positive values for

the easy-to-calculate modified Harris response function. In addition to identi-

fying the numerical landmarks, we test them by defining a greedy algorithm for
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finding a distributed set of landmarks spanning the overlap region, and using

that set to register adjacent tiles.

2. What approaches reduce the computational complexity of stitching?

Can dividing the overlap area into smaller subimages lead to effec-

tive parallelization?

We compared three common methods (FFT, SSD, NCC) in image registration,

which is the main core of image stitching, both as conventional 2D methods

and our novel method of reducing the dimension to 1D by projection (summing

over rows and columns). We first compared the accuracy, with and without

artefacts (e.g., brightness changes due to charging), and found NCC methods

were more accurate overall, and the least susceptible to artefacts. The least

accurate methods were based on the FFT, even though, in theory, FFT methods

should be able to detect sub-pixel translations.

The 1D-projectional methods reduce the computational complexity from O(n4)

to O(n2), for a n × n subimage. While SSD-1D is faster than NCC-1D, SSD

methods were observed to be not accurate in the presence of artefacts, so we

do not recommend them. We even found that the projection methods revealed

undetected grain patterns which could be used for registration.

Dividing the overlap between tiles into subimages and processing them inde-

pendently could be done in parallel, and fortunately, we found that doing so

resulted in accurate registration.

3. How can we align 2D stitched images from multiple layers without

common features to reconstruct circuits?
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3D datasets are big because it is not only a matter of working with big images

with a high amount of data but a high number of layers that need to get stacked.

We define a method that lowers computational complexity and improves accu-

racy. Preprocessing is needed to reduce the amount of data to speed up our

computations. We know that the vias are going to get connected upward to the

wires or vias of the above layer. So, the key features in 3D reconstruction are

via and wires. The images are reduced to vias and then to the centroids of the

vias as single points. In this way, we compare a set of points against a set of

images rather than comparing the whole pixels in consecutive layers. In addi-

tion, we used neighbouring pixels to ensure that we are considering the borders

of the image components (vias and wires) by taking the Fourier transform of

the M2 layer and applying a Gaussian filter to it.

Parallelization is achieved by dividing the layer surface into smaller subimages

and aligning corresponding subimages. As a final result, we have shift values for

each of the subimages, and we can fit a polynomial to each layer obtained shift

values. This polynomial is used for the general alignment. As we are reducing

the inputs of the correlation function to a set of points rather than all pixels in

each layer, we are able to expand our search area to neighbouring subimages and

detect even nonlinear drifts that might fall off the edge of the subimages at a

low cost. We also use statistical central measurement (median) to eliminate the

outliers that occur due to various local maximums in correlation results. This

helps us have our search for maximum correlation focused around the median

of the subimages’ shift values.
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7.2 Future Work

Image stitching has wide applications. High-resolution images are essential in many

scientific research areas, like cancer research, biology, material science, and semicon-

ductors. Our study data sets were all semiconductor images. The algorithms in this

thesis should be tested on biological tissues since the need to examine biological struc-

tures in three dimensions also leads to very large data sets. Biological samples are

sensitive to increasing the voltage of SEM to gain better resolution or signal-to-noise

and creating fiducials before imaging to use it as a landmark for stitching is also not

recommended. Numerical landmarks and 1D projection in 2D stitching and the idea

of reducing our computation to the set of points (centroids of specific features) could

also be valuable in biological studies. Dealing with these problems mathematically,

reduces the damage to the sample, while it is an aid to the hardware system of SEM.
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Appendix A

Convex Optimization

A convex optimization problem is one of the form

min f0(x) (A.0.1)

Subject to:

fi(x) ≤ bi, i = 1, ...,m

where the functions f0, ..., fm : Rn → R are convex, i.e., satisfy

fi(αx + βy) ≤ αfi(x) + βfi(y) for all x, y ∈ Rn and all α, β ∈ R with α + β = 1,

α ≥ 0, β ≥ 0. The least-squares problem, and linear programming problem, are both

special cases of the general convex optimization problem [8].
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Appendix B

Local Extremum

The extremum (or extreme value) of a function is the point at which its maximum

or minimum value is obtained in some interval. The local extremum (or relative

extremum) of a function is the point at which its maximum or minimum value is

obtained in some interval which contains the point.
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Appendix C

Coordinate Search

Coordinate search begins with an initial guess in the parameter space, at which point

the score function is evaluated. To get a better score than the initial guess, a small

environmental search is initiated based on this location. In this method, the search

algorithm selects one point from each parameter axis to determine a better score

value. In the optimizer configuration section, you can define the search distance from

the current base location. If a better score value is found at a certain point during

the local environmental search, this point is selected as the base location for the next

environmental search. The search distance for an algorithm is reduced, by a user-

defined factor, if better results cannot be found in the given environment around the

current base location. Typically, this reduction is one-half.
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Appendix D

Exhaustive Search

When a problem includes searching for an element with a specific property, it is known

as a brute force solution, usually involving permutations, combinations, or subsets of

a set. A solution space is a space in which all possible answers can be enumerated

systematically. When conducting an exhaustive search for discrete problems where

no efficient solution method is known, it may be necessary to test each possibility

sequentially until the solution is determined. Exhaustive searching, direct searching,

or brute force searching are all terms used to describe such an exhaustive examination

of all possibilities. Finding the integral pixel shift between two images is an example

of a discrete problem.
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Appendix E

Norms

Norm is about measuring the distance. Different norms can be used based on the

choice of algorithm to calculate the distance between two points.

E.1 L1 Norm

This norm, known as the Taxicab norm, is about summing up the distances one would

take in different horizontal and vertical directions to reach the destination point. It

is like taking a taxi or walking through streets to move from one place to another on

the map, see Figure E.2. The L1 norm is formulated as follows:

||u− v||1 = |ux − vx|+ |uy − vy| (E.1.1)
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Figure E.1: L1 Norm (Taxicab Norm or Manhatan distance) visualization. To travel
from v to any of the pink points standing for destination u, one needs to move

through streets and pass blocks. So, the movements in x− and y− are adding up
based on the path which is used to reach any of the pink points that can be our

destination u. The left figure shows the map view example, and the right one is the
`1 norm in the mathematical coordinate system.

E.2 L2 Norm

This Norm is about finding the shortest distance between two points. In terms of the

geometrical aspect, it is like taking a plane to go from one point to another on the

map, see Figure E.1. L2 norm is formulated as follows:

||u− v||2 =
√

(ux − vx)2 + (uy − vy)2 (E.2.1)
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Figure E.2: L2 Norm visualization, which is the shortest distance between two
points. The left figure shows the map view example, and the right one is the `1

norm in the mathematical coordinate system.

E.3 L∞ Norm

This Norm is about finding the maximum distance in both directions of x and y. In

terms of the geometrical aspect, it is like taking the maximum straight distance in

both directions of x and y to reach the destination, see Figure E.3. L∞ norm is

formulated as follows:

||u− v||∞ = max ((ux − vx), (uy − vy)) (E.3.1)
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Figure E.3: L∞ Norm visualization, which is the maximum straight distance in both
x− and y− directions to reach the destination. The left figure shows the map view
example, and the right one is the `1 norm in the mathematical coordinate system.
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