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Space Mapping Concept (Bandler et al., 1994)

problem: optimize an expensive (high fidelity or fine) model Rf

with respect to given specifications

methodology: take advantage of a cheap but less accurate (low 

fidelity or coarse) model Rc so that the main optimization effort 

focuses on a (cheap) surrogate model Rs built through Rc, while Rf

is rarely referenced



Simulation Optimization Systems Research Laboratory
McMaster University

SM Concept: Illustration
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Space Mapping Algorithm Flow

Step 1  Set  i = 0. Choose an initial solution x(0)

Step 2  Using data from Rc and Rf at x(k), k = 0, 1 , …, i, determine 

the surrogate model Rs
(i)

Step 3  Optimize Rs
(i) to obtain x(i+1)

Step 4  Evaluate Rf at x(i+1)

Step 5  Set i = i + 1

Step 6  if not termination condition go to 2; else go to 7

Step 7  END: return x(i) as the final solution
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Space Mapping: Rigorous Formulation (Koziel et al., 2005)

notation Rf : Xf → Rm fine model (Xf  Rn)

Rc : Xc → Rm coarse model (Xc  Rn)

U : Rm → R objective function

optimization problem

generic SM optimization algorithm

where Rs
(i) : Xs

(i) → Rm , i = 0, 1, 2, … is a family of surrogate 

models (Xs
(i)Xf ≠ ) based on Rc and determined using Rf data at 

the previous points x(k), k = 0, 1, …, i.
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SM Algorithms: Original SM (Bandler et al., 1994)

let P : Xf → Xc be defined as 

define the ith surrogate model Rs
(i) as

where B(i) is an approximation to the Jacobian of P at point x(i)

( ) arg min || ( ) ( ) ||
c

f c f f
X

 
x
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SM Algorithms: Input SM (Bandler et al., 1994)

define the ith surrogate model Rs
(i) as

where B(i) and c(i) are determined using the parameter extraction 

procedure

where wk, vk are weighting coefficients
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s c  R x R B x c
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SM Algorithms: Output SM

(Bandler et al., 2004, Koziel et al., 2005)

define the ith surrogate Rs
(i) as

where                     is a local model of 

defined at point x(i)

first-order model:

second-order model:

( ) ( )( ) ( ) ( , )i i

s c m R x R x ΔR x x

( )( , )i

m ΔR x ( ) ( ) ( )f c ΔR x R x R x

( ) ( )( ) ( ) ( )i i

s c R x R x ΔR x

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )i i i i

s c    ΔRR x R x ΔR x J x x x
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SM Algorithms: Implicit SM (Bandler et al., 2004)

let Rc : XcXp → Rm, i.e., Rc depend on additional (preassigned) 

parameters (Xp  Rp)

define the ith surrogate model as

where

( ) ( )( ) ( , )i i

s c pR x R x x

( ) ( ) ( )argmin || ( ) ( , ) ||
p

i i i

p f c
X
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SM Algorithms: Combined Methods (Koziel et al., 2005)

it is possible (and utilized in practice) to combine the concepts 

discussed so far 

for example, define the ith surrogate Rs
(i) as

where B(i) and c(i) are determined using parameter extraction,

whereas 

( ) ( ) ( )f c ΔR x R x R x

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )i i i i i i

s c      ΔRR x R B x c ΔR x J x x x
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Characterization of Space Mapping

shifting the optimization burden to an inexpensive coarse model

convergence to a reasonable fine model solution after a small 

number of fine model evaluations

significant speed-up of the optimization process in comparison with 

direct optimization

the possibility of solving problems that cannot be dealt with by 

direct optimization

the necessity of providing a computationally cheap and reasonably 

good coarse model
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Convergence Theory: Original SM Algorithm (Koziel et al., 2005)

consider the idealized original SM algorithm

where

( ) ( ) ( ) ( )( ) ( ( ) ( ) ( ))i i i i

s c   PR x R P x J x x x
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Convergence Theory: Original SM Algorithm 

Assumption 1.1. Let Xf be a closed subset of Rn, and

(i) the space mapping P exists, it is differentiable on Xf and its      

Jacobian JP is non-singular on Xf,

(ii) JP
-1 satisfies the Lipschitz condition with constant L1, i.e.,                                                    

on Xf,

(iii) let                                                                         . There is a 

matrix                      such that |IP.ij(x,y)|≤Jij on Xf for i , j = 1, …, n.

(iv) the optimal solution of the coarse model exists and is unique 

(we shall denote it by xc
*),

(v) for any i = 0, 1, …, the optimal solution of Rs
(i) is in Xf,

(vi) there exists >0 and k>0 such that P(x(i))  B(xc
*, ) for i ≥ k,

(vii) L1,  and ||J|| are such that L = L1 + ||J|| < 1.
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Convergence Theory: Original SM Algorithm

Theorem 1.1. Suppose that Assumption 1.1 is satisfied. Then, 

the sequence {x(i)} is well defined and it is convergent to x*  Xf.

Assumption 1.2. Suppose that the mapping P is exact, i.e., 

Rc(P(xf)) = Rf(xf) for any xf  Xf, and the set of fine model 

minimizers is not empty.

Theorem 1.2. Suppose that Assumptions 1.1 and 1.2 hold. Then, 

the sequence {x(i)} is well defined on Xf and it is convergent to 

xf
*  Xf, the minimizer of the fine model Rf.
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Convergence Theory: Original SM Algorithm

Theorem 1.3. Suppose that Assumption 1.1 is satisfied and Xf
* is 

not empty.  Suppose further that the objective function U is 

Lipschitz continuous with constant LU on Rm, and Rc(xc
*) = Rf(xf

*),

where xc
* and xf

* are the coarse and fine model optimal solutions, 

respectively. Let R : Xf → Rm be a function defined, for any xfXf, 

as

Then, the sequence {xf
(i)} is well defined and convergent on Xf and 

there is                      satisfying                                                       , 

where                                    .

( ) ( ( )) ( )f c f f f  R x R P x R x

* *

min( ( )) || ( ) ||f UU U L  R x R x
* ( )lim i

f
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x x
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Convergence Theory: Output SM Algorithm (Koziel et al., 2005)

consider an OSM algorithm of the form

where

(we assume here that Xf = Xc = X)

(0) Xx

( 1) ( )arg min ( ( )), 0,1,2,...i i

s
X

U i


 

x
x R x

( ) ( ) ( )f c ΔR x R x R x

( ) ( )( ) ( ) ( )i i

s c R x R x ΔR x
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Convergence Theory: Output SM Algorithm

Assumption 2.1. Let  xc
* : ΔR(X) → Rn be a function defined as                                                  

. Suppose that the function xc
* is 

Lipschitz continuous on ΔR(X) with constant L. 

Assumption 2.2. Let the function ΔR be Lipschitz continuous on X

with constant LR.

Theorem 2.1. Suppose that X is a closed subset of Rn, Assumptions 

2.1 and 2.2 hold, and LR and L are such that q = LRL < 1. Then, for 

any x(0)  X the sequence {x(i)} is convergent to x*  X.

*( ) arg min ( ( ) )c c
X

U


 
x

x R R x R



Simulation Optimization Systems Research Laboratory
McMaster University

Convergence Theory: Output SM Algorithm

Assumption 2.3. Suppose that the coarse model has the following 

property: for each R  ΔR(X) there is xR  X such that 

U(Rc(xR)+R) ≤ Umin, where                                     .

Theorem 2.2. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, a 

fine model minimizer exists, and Rc and U are continuous. Then, 

the sequence {x(i)} is well defined on X and it is convergent to 

xf
* X, the minimizer of the fine model Rf.

min min ( ( ))
f

f
X

U U
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Convergence Theory: Output SM Algorithm

Remark 2.1. Under similar assumptions (and the requirement that 

the Jacobian of function R is bounded and Lipschitz continuous 

on X) one can show convergence of the OSM algorithm using the 

surrogate model                                                                        .       

It can also be shown that the convergence rate of this algorithm is 

much better (we have                                                          ) than 

the algorithm that uses the surrogate model                                  

(we have                                                        in this case).

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )i i i i

s c    ΔRR x R x ΔR x J x x x

( 2) ( 1) ( 1) ( ) 2

2|| || || ||i i i iC     x x x x

( 2) ( 1) ( 1) ( )

1|| || || ||i i i iC     x x x x

( ) ( )( ) ( ) ( )i i

s c R x R x ΔR x
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Example: Generalized “Cheese Cutting Problem”

(Koziel et al., 2005)

fine model:

coarse model:

problem: find x* such that Rf(x
*) = Aopt using the OSM algorithm

x

f(x)

H

x

 
0

( )
x

f x f t dt R

( )c x HxR
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Example: Generalized “Cheese Cutting Problem”

assumptions: (i)

(ii)  H = 2

(iii) fine/coarse model domain X = [0,10]

it follows that assumptions of Theorem 2.1 are satisfied with L = H-1

and . For our data, we have

this assures global convergence of the OSM algorithm

note: (i)  the actual convergence rate depends on local Lipschitz 

constants around optimal solution.

(ii) it is easy to find f for which the OSM algorithm is not

convergent for the considered problem.

( ) sin( )exp( /5)f x H x x  

( ) sup{| ( ) |: }RL x f t H t X  

sup{| ( ) / 1| : } 0.5RL L f t H t X   
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Example: Generalized “Cheese Cutting Problem”

Lower limit for the convergence rate (line), and actual convergence 

(circles) for Aopt = 10 (upper graph), and Aopt = 2 (lower graph).
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Conclusions

an exposition of recent convergence results for Space Mapping 

optimization algorithms has been presented

it follows that the fundamental (and natural) requirement for 

convergence of SM algorithms is similarity between the fine and 

coarse model (expressed by proper analytical conditions)

both convergence itself and the convergence rate depend on the 

quality of satisfying the above condition

future work will focus on obtaining convergence results for other 

types of SM optimization algorithms as well as unification of all 

SM algorithms in one theoretical framework 



Simulation Optimization Systems Research Laboratory
McMaster University

References 1

J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny and R. H. Hemmers, “Space mapping technique for 

electromagnetic optimization,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2536–2544, Dec. 1994.

S. Koziel, J.W. Bandler and K. Madsen, “Towards a rigorous formulation of the space mapping technique for 

engineering design,” to appear, Proc. Int. Symp. Circuits, Syst., ISCAS, 2005.

J.W. Bandler, Q.S. Cheng, S.A. Dakroury, D.M. Hailu, K. Madsen, A.S. Mohamed and F. Pedersen, “Space 

mapping interpolating surrogates for highly optimized EM-based design of microwave devices,” IEEE MTT-S 

Int. Microwave Symp. Digest (Fort Worth, TX, 2004), pp. 1565–1568. 

J.W. Bandler, Q. S. Cheng, N. K. Nikolova and M. A. Ismail, “Implicit space mapping optimization exploiting 

preassigned parameters,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 378–385, Jan. 2004.

S. Koziel, J.W. Bandler and K. Madsen, “An output space mapping framework for engineering optimization,” 

submitted, Math. Programming, 2005.

J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen and J. Søndergaard, “Space 

mapping: the state of the art,” IEEE Trans. Microwave Theory and Tech., vol. 52, pp. 337–361, Jan. 2004.



Simulation Optimization Systems Research Laboratory
McMaster University

References 2

M.H. Bakr, J.W. Bandler, N. Georgieva and K. Madsen, “A hybrid aggressive space mapping algorithm for EM 

optimization,” IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 2440–2449, Dec. 1999. 

Q.S. Cheng, “Advances in space mapping technology exploiting implicit space mapping and output space 

mapping,” Ph.D. Thesis, Dept. Elect. Computer Eng., McMaster University, Hamilton, ON, Canada, 2004.

S. Koziel, J.W. Bandler and K. Madsen, “On the convergence of a space mapping optimization algorithm,” 

submitted, SIAM Journal on Optimization.

S. Koziel, J.W. Bandler, A.S. Mohamed and K. Madsen, “Enhanced surrogate models for statistical design 

exploiting space mapping technology,” to appear, MTT-S Int. Microwave Symp. Dig., 2005.

J.W. Bandler, Q.S. Cheng and S. Koziel, “Implementable space mapping approach to enhancement 

of microwave device models,” to appear, MTT-S Int. Microwave Symp. Dig., 2005.

J.W. Bandler, N. Georgieva, M.A. Ismail, J.E. Rayas-Sánchez and Q. J. Zhang, “A generalized space mapping 

tableau approach to device modeling,” IEEE Trans. Microwave Theory and Tech., vol. 49, pp. 67–79, Jan. 

2001.



Simulation Optimization Systems Research Laboratory
McMaster University

References 3

M. H. Bakr, J. W. Bandler, K. Madsen and J. Søndergaard, “An introduction to the space mapping technique,” 

Optimization Eng., vol. 2, pp. 369–384, 2001.

J. W. Bandler, R. M. Biernacki, S. H. Chen, R. H. Hemmers and K. Madsen, “Electromagnetic optimization 

exploiting aggressive space mapping,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2874–2882, Dec. 

1995.

M. H. Bakr, J.W. Bandler, R.M. Biernacki, S. H. Chen and K. Madsen, “A trust region aggressive space 

mapping algorithm for EM optimization,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 2412–2425, Dec. 

1998.



Simulation Optimization Systems Research Laboratory
McMaster University

Convergence Theory: Original SM Algorithm 

Remark 1.1. Assumption 1.1 (v) is satisfied, particularly if

Xf = Xc = Rn.

Remark 1.2. The global Lipschitz condition in Assumption 1.1 (ii) 

can be replaced by a (weaker) local one with slight changes of the 

proof.

Remark 1.3. Assumption 1.1 (vii) is motivated by the fact that in 

practice the coarse and fine models usually match each other 

closely.
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Convergence Theory: Original SM Algorithm

Remark 1.4. When the function R in Theorem 1.3 is not 

identically zero, the sequence {xf
(i)} may not be convergent to the 

fine model optimal solution.

Remark 1.5. Theorem 1.3 says that the error of locating the fine 

model optimal solution is directly dependent on the error R of the 

mapping P.  In particular, if R  0 then the limit point                       

is the optimal solution of the fine model, i.e., x*  Xf
*. 

However, Theorem 1.2 is more general than Theorem 1.3 with      

R  0, i.e., Theorem 1.2 cannot be obtained from Theorem 1.3 by 

letting R → 0.

* ( )lim i

f
i

x x


