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Space Mapping

(Bandler et al., 1994)
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H-plane Waveguide Filter Design (Young et. al., 1963, Bakr et al., 

1999)

H-plane filter

circuit model

(Marcuvitz,1951) 
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H-plane Waveguide Filter Space Mapping Design

(Bandler et al., 2004)

optimal coarse model

response (---) 

initial fine model* 

response (○)

*the fine model exploits Agilent HFSS 

5.2 0 6.06  6.92 7.78 8.64  9.5 0
0  

0.2

0.4

0.6

0.8

1  

frequency (GHz)

|S
1

1
|

Simulation Optimization Systems Research Laboratory
McMaster University



H-plane Waveguide Filter Space Mapping Design

(Bandler et al., 2004)

optimal coarse model

response (---) 

fine model* (○)

SMIS algorithm,

3 iterations,

4 frequency sweeps

(excluding Jacobian

estimations)

*the fine model exploits Agilent HFSS 
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The Space Mapping Concept

(Bandler et al., 1994-)
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Explicit Space Mapping Concept

(Bandler et al., 1994-)

used in the microwave industry (e.g., Com Dev, 2003-2004, for 

optimization of dielectric resonator filters and multiplexers)

Simulation Optimization Systems Research Laboratory
McMaster University

coarse

model

fine

model

space

mapping

design

parameters responses

responses

surrogate



Space Mapping: a Glossary of Terms

Space Mapping transformation, link, adjustment, correction,

shift (in parameters or responses)

Coarse Model simplification or convenient representation,

companion to the fine model,

auxiliary representation, cheap model

idealized model 

Fine Model accurate representation of system considered,

device under test, component to be optimized, 

expensive model
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Space Mapping: a Glossary of Terms

Surrogate model, approximation or representation to be 

used, or to act, in place of, or as a

substitute for, the system under consideration

Updated Surrogate mapped or enhanced coarse model

corrected coarse model 

Surrogate Model alternative expression for Surrogate

Target Response response the fine model should achieve,

(usually) optimal response of an idealized

“coarse” model, an enhanced coarse model,

or surrogate
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Space Mapping: a Glossary of Terms

(Parameter/input) Space Mapping1 mapping, transformation or

correction of design variables

(Response) Output Space Mapping2 mapping, transformation or

correction of responses

Response Surface Approximation linear/quadratic/polynomial 

approximation of responses

w.r.t. design variables

1concept used by Giunta et al. (May 16)
2Natalia Alexandrov’s “high-order model management” (May 16)
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Space Mapping Design of Dielectric Resonator Multiplexers

(Ismail et al., 2003, Com Dev, Canada)

channel coarse model (equivalent circuit)

channel fine model (HFSS finite element)
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Space Mapping Design of Dielectric Resonator Multiplexers

(Ismail et al., 2003, Com Dev, Canada)

5-pole dielectric resonator filter
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Space Mapping Design of Dielectric Resonator Multiplexers

(Ismail et al., 2003, Com Dev, Canada)

channel design

initial response                           final response
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Space Mapping Design of Dielectric Resonator Multiplexers

(Ismail et al., 2003, Com Dev, Canada)

manifold multiplexer: coarse channel model (equivalent circuit)

fine channel model (HFSS finite element)
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Space Mapping Design of Dielectric Resonator Multiplexers

(Ismail et al., 2003, Com Dev, Canada)

10-channel output multiplexer
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Space Mapping Design of Dielectric Resonator Multiplexers

(Ismail et al., 2003, Com Dev, Canada)

10-channel output multiplexer



Implicit, Extra and Output Space Mappings

(Bandler et al., 2003)
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Seven-Section Capacitively-Loaded Impedance Transformer

Matlab Implementation (Bandler, 2001)

fine model

coarse model

Rg = 50 , C1, . . . , C8 = 0.025 pF specifications

68 point frequency sweep |S11|  0.07 for 1 GHz    7.7 GHz

   

Z in   R L =100    C 3   C 2   

L 1   

C 5   C 4   C 7   C 6   C 8   C 1   

L 2   L 3   L 4   L 5   L 6   L 7   

   

Z in   R L =100    

L 1   L 2   L 3   L 4   L 5   L 6   L 7   
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Seven-Section Capacitively-Loaded Impedance Transformer

Matlab Implementation (Bandler et al., 2004)

parameter
initial 

solution (m)

solution reached 

by the SMIS

algorithm (m)

solution reached 

by direct 

optimization (m)

L1 0.01724138 0.01564205 0.01564205

L2 0.01724138 0.01638347 0.01638347

L3 0.01724138 0.01677145 0.01677145

L4 0.01724138 0.01697807 0.01697807

L5 0.01724138 0.01709879 0.01709879

L6 0.01724138 0.01723238 0.01723238

L7 0.01724138 0.01625988 0.01625988
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SMIS algorithm (○) , Hald-Madsen algorithm (□) , HASM (    ) using exact gradients

Seven-Section Capacitively-Loaded Impedance Transformer

Matlab Implementation (Bandler et al., 2004)
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Optimization methods used on the Section Capacitively-Loaded 

Impedance Transformer (Bandler et al., 2004)

method
number of 

iterations

number of fine 

model evaluations

fminimax* 14 153

HASM 25 26

Hald-Madsen 13 13

SMIS 5 6

Simulation Optimization Systems Research Laboratory
McMaster University

*the fminimax routine available in the Matlab Optimization

Toolbox
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Implicit and Output Space Mappings

(Bandler et al., 2003)
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Single Resonator Filter (Bakr et. al, 2002)

design of d and W with the waveguide dimensions fixed

(a = 60 mm and L = 150 mm)

Matlab implemented 2D TLM simulator is used (Bakr 2004)

W

da 
= 6

0 
m

m

L = 150 m
m

x

y
z
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Single Resonator Filter SM Design (Bandler et al., 2005)

3.0 GHz    5.0 GHz with 0.1GHz step (21 points) 

design parameters xf = [d W]T

preassigned parameter x = r  

Fine Model Coarse Model

dx = dy = 1 mm

d = 2dx, W = dy

Nx = 150

Ny = 30

Johns boundary

dx = dy = 5 mm

d = 2dx, W = dy

Nx = 30

Ny = 6

absorbing boundary at 4 GHz
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Single Resonator Filter SM Design (Bandler et al., 2005)
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Single Resonator Filter SM Design (Bandler et al., 2005)
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Single Resonator Filter Final SM Design (Bandler et al., 2005)
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Star Distribution for SM-based Modeling

(Bandler et al., 2001)

2n+1 points are used for a problem with n design parameters
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SM-based Model
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SM-based Modeling: Optimization (Parameter Extraction) 
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SM-based Modeling: Test Phase 
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Generic SM Surrogate (Mapped Coarse Model)

(Bandler et al., 2005)

parameter extraction

all the models are defined as 

for i =1, 2, 3, 4

( , , , , ) ( )s c    R x A B c d A R B x c d

2 ( ) ( )

0( , , , )
( , , , ) arg min || ( ) ( , , , , ) ||

n k k

f sk
 

A B c d
A B c d R x R x A B c d

( ) ( , , , , )si sR x R x A B c d
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SM-based Model Enhancement (Bandler et al., 2005)

model constraint PE parameters

Rc

B = In, c = 0n×1,

A = Im, and d = 0m×1

N/A

Rs1 A = Im, and d = 0m×1 B and c

Rs2 d = 0m×1 B, c, and A

Rs3 A = Im B, c, and d

Rs4 unconstrained B, c, A, and d

A = diag{a1,…,am}
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Space Mapping Example Using Agilent ADS:

Microstrip Transformer (Bandler et al., 2004)

 

L1 L2 L3 

W1 W3 W2 



Simulation Optimization Systems Research Laboratory
McMaster University

Microstrip Transformer SM Modeling Error

w.r.t. Sonnet em fine model

ADS coarse model Rc SM-based surrogate Rs4
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Microstrip Right-Angle Bend 

(Bandler et al., 2001)

Sonnet em fine model             coarse model (Kirschning et al., 1983)

H
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Microstrip Right-Angle Bend (Bandler et al., 2005)

10 random test points response error w.r.t. Sonnet em fine model

coarse model Rc SM-based surrogate Rs4
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Agilent Technologies ADS Space Mapping Framework

for Microwave Modeling

SM-based surrogate methodology for RF and microwave CAD

implemented and verified entirely in ADS

easy to switch between the surrogates in the ADS schematic

easy to use as a library model

good accuracy
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Work in Progress: Convergence Theory, Algorithms and

Software for SM-based Optimization Algorithms

to obtain convergence results for the original, the output and the 

implicit SM

to unify the formulation of the SM optimization concept and to 

classify algorithms

to formulate new and robust SM optimization algorithms

to develop new SM modeling methodologies

to develop a microwave engineering oriented and general purpose

tool for SM optimization/modeling (Bandler Corporation, 2005)



Preliminary Announcement

SECOND INTERNATIONAL WORKSHOP ON

SURROGATE MODELING AND SPACE MAPPING FOR

ENGINEERING OPTIMIZATION

John Bandler and Kaj Madsen, Organizers

Thursday, November 9, to Saturday, November 11, 2006

Technical University of Denmark

Lyngby, Denmark

Invited speakers to be announced
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