
|

§ Modern merge algorithms perform three-way merges
by differencing between the common ancestor (base)
and the latest commits of the merging branches [1]

§ The differences between the three versions are
analyzed using a structured or unstructured approach
§ Unstructured Merge tools like Git’s 3-way merge

rely on textual differencing using the LCS (Longest
Common Subsequence) algorithm [1]
§ However, these algorithms are unable to scale

well with significant changes between versions,
producing many merge conflicts

§ Structured Merge tools like jDime and Spork rely
on AST (abstract syntax trees) to provide a
representation of the source code whose nodes can
be directly compared
§ These tools are more precise than unstructured

tools, but they are often slower and poorly retain
the original code structure [1] These tools are
also more language dependant, which makes it
difficult generalize to all languages

Git ADV: Improving Java & Python
Source Code Merging using Abstract

Data Structures

Nirmal Chaudhari, Madhur Jain, Sebastien Mosser PhD P.Eng
Department of Computing & Software, McMaster University, Hamilton, Canada.

Objectives
§ Evaluate the accuracy of current tools using case

studies extracted from the Awesome Java & Python
Lists [2,3]

§ Develop an Abstract Data Structure for merge conflict
resolution that can be generalized to multiple
languages (like Git) and maintain the accuracy of
existing Structured merge tools (jDime & Spork)

§ Compare the accuracy of developed tool against
existing ones using the developer’s desired version as
the benchmark

Selective Set Union

Future Work
§ Improve MethodUnion accuracy for Python code by including

comment blocks and utilizing existing attributes in code for
ordering code segments using line numbers like Java.

§ Extend MethodUnion to include a representation for code
within methods in the general AST. Requires differencing using
sequential sets. Empirically test and validate tool by testing
new heuristics on method body.

§ Extend tools to integrate more Statically (C, Rust) and
Dynamically (Ruby, JavaScript) typed languages.

Nirmal Chaudhari
B.Eng Software Engineering

McMaster University, Department of Computing &
Software

Email: chaudn12@mcmaster.ca
Phone: +1(647) 619-1087

References
[1] S. LARSÉN, “Spork : Move-enabled structured merge for Java with GumTree and 3DM,” thesis, School of Electrical Engineering and Computer Science,
STOCKHOLM, SWEDEN , 2020
[2] akullpp, ”awesome-java” https://github.com/akullpp/awesome-java (accessed August 8, 2023)
[3] V. Chen, “awesome-python” https://github.com/vinta/awesome-python (accessed August 8, 2023)
[4] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-grained and accurate source code differencing,” thesis, International Conference on
Automated Software Engineering, Vasteras, Sweden, 2014
[5] Tree-Sitter, https://tree-sitter.github.io/tree-sitter/ (accessed Aug. 8, 2023)

Introduction

§ With the increased use of Git in Software
Development, developers often find themselves having
to resolve numerous merge conflicts when pushing
their changes to their shared repository [1]

§ Modern merge tools are either unable to scale well for
large number of differences, or cannot be used for
multiple programming languages

§ Without a better solution, source code merging is
becoming an increasingly tedious and time-consuming
process

Comparison Methodology
§ Measure the difference between the developer’s

desired version and the results generated by each tool
using Gumtree [4]

§ Five measurements for comparison:
§ Deletions: Code present in desired, but not result
§ Insertions: Code present in result, but not desired
§ Moves: Same code, but on different lines
§ Path Difference: Same structure, but slightly

different
§ Conflicts: Conflicts present after merge

§ Overall accuracy is measured as the distance from
desired version using the vector of all measurements:
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠! + 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠! +𝑀𝑜𝑣𝑒𝑠! +⋯

Results
§ Compared results using 2 of our developed tools.
§ Both tools run the same heuristics for import

statements. CompressedTree uses Git for the body,
whereas MethodUnion uses our heuristics

§ Java & Python results are based off 86 and 68 case
studies respectively

Conclusions

Improvement Over Existing Tools (Figure 3):
§ Overall empirical results suggest that CompressedTree

& MethodUnion are more semantically equivalent to
the desired version than other tools. Results show that:
§ Tools are removing less necessary code.
§ Merged result will include less unused code.
§ Original code structure is being preserved better.
§ Tools choose correct changes more often.

Extension to Other Languages (Figure 4):
§ CompressedTree and MethodUnion also demonstrate

strong accuracy for Python.
§ Results for Java were from a total of 86 case studies,

whereas Python a total of 68 case studies. Given
this, the ratio of Overall results to case studies is
better for Python.

CompressedTree vs MethodUnion:
§ Overall difference is small in Java, meaning our

heuristics provides approximately the same accuracy as
Git Merge on the body with half the conflicts.

§ Logically large different for Python makes sense for now
since we have yet to include comments and maintain the
code structure for it.

Figure 1: Git Branching Model for Merge Commits

Figure 2: Structure of MethodUnion designed for
Python and Java code

Figure 3: Comparing Structured Java merge tools using Java Cases

Figure 4: Comparing Structured Python merge tools using Python Cases

Abstract Data Structure
§ Focused on Java & Python code to provide the general

structure for both Statically & Dynamically Typed
Languages

§ Used the CST (Concrete Syntax Tree) generated by
Tree-Sitter to develop an Abstract Data Structure for
Python & Java Code (figure 2)

§ Data Structure is composed of:

Directory of imported package

Mechanics of Merges

Semantic Accuracy of Merge Tools on Java Case Studies

Semantic Accuracy of Merge Tools on Python Case Studies

https://github.com/akullpp/awesome-java
https://github.com/vinta/awesome-python

