
|

Conclusions
▪ From figure 4, the “one-parent” commit is the most

common one. Well engineered projects limit the
amount of merging needed to be done.

▪ The reason why the Left Deletions and Additions
are zero in the fast-forwarded merge commit is that the
Left Parent is the common ancestor - they are
identical.

▪ In a diamond scenario, the results are quite erratic,
the changes can be attributed to both the left and right
parents.

▪ After analyzing numerous projects (Bytecode Viewer
was just an example figure 6), the Comment element
seems to be one of the most conflict prone elements.

Git Corpus: Analyzing git-merge
scenarios extracted from Open
Source Software

Richard Li1, Sebastien Mosser PhD2

1 Department of Computing and Software, McMaster University, Hamilton, Canada.

Introduction
▪ Each developer has felt at least once the so-called

“merge-conflict panic”: your code works well, and then
you push your code to the shared repository, and
suddenly the world crashes into pieces. Your code is
now full of conflict markers!

▪ The study of a smarter merge algorithm is currently
flawed (Shen et al, ICSE’20), as each algorithm is
validated on a tailer benchmark.

▪ Unfortunately, except from a paper that does not
contain reproducible data (Ghiotto et al, ICSE’18), a
reference benchmark does not exist.

Objectives
▪ To identify merge scenarios in open source Java

projects and organize them into a reference corpus.

▪ Develop numerous frameworks to run arbitrary

analyses on collected scenarios.

▪ Implement a JavaParser to parse Java code into

nodes in an Abstract Syntax Tree to identify
programming elements.

▪ Determine which programming elements are most
susceptible in merge conflict scenarios.

Note: The Java projects that are selected are from the
“Awesome Java” repository, a Category contains many
similar types of projects.

Results

Future Work
▪ Continue to run the frameworks on a larger sample size to confirm

results (on different categories and more projects)

▪ With a reference data collected, begin to analyze the individual

merges.

▪ Develop a new merge algorithm based on the large dataset to

handle such cases.

▪ Work with NLP frameworks to be able to parse conflicted comments

to determine correctness.

▪ Extend Support for Python, C++, JavaScript as well.

References
(1) S. Chacon and B. Straub, Pro Git, Berkeley, CA, USA:Apress, 2014. [Accessed August 19, 2022]

(2) S. Mosser, “Git Corpus” https://github.com/ace-design/git-corpus [Accessed August 19, 2022]

(3) “Git Merge” atlassian.com. https://www.atlassian.com/git/tutorials/using-branches/git-merge [Accessed August 19 2022]

Richard Li

B.Eng Software Engineering

McMaster University, Department of Computing and
Software

Email: li1502@mcmaster.ca

Git
▪ Distributed version control system commonly used

to track changes during the Software Development
process [1].

▪ Captures snapshots in time, rather than only
gathering the changes made.

▪ Every snapshot saved to the Git database is a Commit
and stored as a Commit Hash - a 40 character
hexadecimal string.

▪ Over the course of a project, there may be an
accumulation of thousands of these snapshots in time.

Figure 1: Snapshot view of storing data for a project

Merge Commits
▪ Normally happens in projects with multiple developers.

▪ Occurs when two different Commits are combined

together successfully.

▪ In a merge, there are 4 commit hashes involved:

1. Merged hash (green circle)

2. Left parent (feature branch)

3. Right parent (master branch)

4. Common Ancestor

▪ There are 2 cases of Merge Commits:

1. Diamond shape (Figure 2)

2. Fast Forwarded (Common Ancestor is the Left

parent)

Figure 2: Branching Merge Commit (Timeline moves left to right) [2]

Merge Conflict
▪ Normally happens in projects with multiple developers.

▪ Occurs when two separate Commits have different

changes to the same lines of a specific file.

▪ The Git merge algorithm is unable to decipher which

change is the correct one.

▪ The developer conducting the merge must manually

correct these changes, the code will now have
“conflict-markers”.

Figure 3: Merge Conflict-Marker [2]

Methodology
1. Capturing the Commit Hashes in the Git Commit

history by annotating for the type of Commit that is
present

2. From the Hashes with Two Parents, gather the 4
commit hashes (refer to Merge Commits section) to
gather the type of merge occurred (Diamond or Fast-
Forwarded). Gather the contributions of each parent in
terms of line additions and deletions.

3. Screen and identify the Files that were involved in the
conflict only for the Diamond merge scenarios.
Simulate a merging the left and right parents to check
if a merge conflict occurred and collecting the specific
files that were involved.

4. Identify and keep track of Java elements that were
involved in a merge conflict through simulating a merge
scenario and gathering the line numbers. Parse the
Java code looking for the elements present at each
line.

Figure 4: Types of commits present in a corresponding category

Figure 5: Addition and Deletion distribution between the two types of merge commits.

Figure 6: Most conflict prone elements in the Bytecode Viewer project

https://github.com/ace-design/git-corpus
https://www.atlassian.com/git/tutorials/using-branches/git-merge

