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Abstract—Requirements Engineering is a critical part of the
software lifecycle, describing what a given piece of software
will do (functional) and how it will do it (non-functional).
Requirements documents are often textual, and it is up to
software engineers to extract the relevant domain models from
the text, which is an error-prone and time-consuming task.
Considering the recent attention gained by Large Language
Models (LLMs), we explored how they could support this task.
This paper investigates how such models can be used to extract
domain models from agile product backlogs and compare them
to (i) a state-of-practice tool as well as (ii) a dedicated Natural
Language Processing (NLP) approach, on top of a reference
dataset of 22 products and 1, 679 user stories. Based on these
results, this paper is a first step towards using LLMs and/or
tailored NLP to support automated requirements engineering
thanks to model extraction using artificial intelligence.

Index Terms—Domain Modeling, Natural Language Process-
ing, Large Language Models, Concept Extraction, User stories

I. INTRODUCTION

Requirements Engineering (RE) is essential to the software
lifecycle. RE is a spectrum between two extremes: included
as an early step in the waterfall/V-cycle models or advocated
as an on-the-fly activity by the Agile community (e.g., with
user stories backlogs). In both cases, requirements artifacts are
produced using natural language to express the requirements
to which the software under construction must conform.

It is up to the requirement engineers to adequately capture
such requirements from stakeholders and “formalize” them
(e.g., with use case models in UML and associated scenar-
ios, formal specifications, or a product backlog according to
agile methods). Then, software designers have to translate
these artifacts (which mainly consist of natural language) into
actionable design artifacts. This step is tricky, as ambigui-
ties/conflicts can exist despite all efforts put into the RE step.

This is where modelling and Natural Language Processing
(NLP) come to help [1]: automated techniques can help extract
models from these natural language artifacts [2]. By removing
“noise” and increasing “signal”, software engineers can focus
on the abstracted models to identify ambiguities, conflicts
and validate the completeness of requirements concerning the
involved stakeholders. Consequently, the automated support
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of model extraction from requirements artifacts is essential to
provide good support for engineers.

Recently, Large Language Models (LLMs) such as GPT [3]
and conversational agents such as ChatGPT [4] started to claim
to be breakthrough enablers for various tasks, including soft-
ware development. In this paper, we propose to investigate
how LLMs and conversational agents can support model
extraction from requirements, focusing on agile backlogs
as these are, in essence, only based on textual artifacts written
in natural language. We leverage here our expertise gained
in previous work on model composition for requirement ar-
tifacts [5]. We start by giving a comprehensive background
on such backlogs and defining a baseline for evaluation using
a reference dataset for backlogs and an extraction tool from
the state of practice in SEC. II. We then describe how GPT-
3.5 can be used in conversational mode to support such a
task SEC. III, and SEC. IV does the same using a tailored
approach developed with NLP experts. In SEC. V, we evaluate
how the three approaches compare to each other, and SEC. VI
concludes this paper.

II. BACKGROUND: AGILE-DRIVEN REQUIREMENTS

This paper focuses on agile backlogs to support require-
ments definition. As motivated in the previous section, this
choice is driven by multiple factors. First, being a mainstream
approach to express requirements in open-source software,
it gives us access to reference requirements, like the one
compiled by Dalpiaz et al. [6] in 2018. Despite this paper
focusing on agile backlogs, it would be easy to transfer the
experimental contribution to classical requirements documents
and compare the result with other tooling, depending on the
availability of such data. We emphasize that our focus here
is to support the accessibility of the datasets and tools (see
SEC. V) to support reproducibility, and, as a consequence, we
ruled out of scope any dataset or tooling that would rely on
proprietary/confidential information.

A. Related Work

A survey was published in 2021 by Zhao et al. [7] to answer
several questions, such as “What is the focus of NLP4RE
research?” (RQ3) and “What is the state of tool development
in NLP4RE research?” (RQ4). 64.59% of the studies were
working on requirement specification as input. Among 370
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Fig. 1. Metamodel for Agile Backlogs Domains

studies, they identified 59 studies related to modelling and
63 related to extraction (RQ4). From a tooling perspective,
they have identified 130 tools used in their collected studies.
Among this set, modelling tools represent 34 tools, and
extraction tools 24, representing 44% of the available tooling.
In total, 140 different NLP techniques are used in the corpus
of tools identified in this survey.

As the survey was published in a pre-GPT world, none
of the studies considered GPT per se, and only a few used
LLMs such as BERT. Since LLMs became popular, we
can see some preliminary results published as pre-prints or
conference papers. This paper mainly focuses (so far) on
recommendations more than extraction, such as the work
by Weyssow et al. [8] used to recommend concepts during
modelling. Related to extraction, Bajaj et al. [9] concludes that
GPT-3 outperforms classical tools from the state of practice
concerning use case extraction. These preliminary results seem
promising, so investigating how LLMs can be used to support
extraction seems legit.

B. Processing User stories Backlogs

According to agile methods, requirements are written as a
prioritized set of user stories, organized in a product backlog.
A story represents, using natural language, a tuple containing
the following information: (i) the persona involved in the story,
(ii) the actions this persona will perform on the system, (iii) the
entities involved in the actions, and, optionally, (iv) a benefit
obtained by the persona after having completed these actions.
Classically, user stories are expressed using the Connextra
Template [10], under the form: “As a <PERSONA>, I can
<ACTIONS over ENTITIES>, so that <BENEFIT>”. Even
if other templates exist, stories following template-based writ-
ing simplify the concept extraction tasks. In FIG. 1, we depict
the associated metamodel to represent a product backlog. It is
important to note that this paper focuses on concept extraction
according to this metamodel.

To support the product development phase, extracted con-
cepts are classically organized into analysis and design models

(e.g., class diagrams, sequence diagrams) [11]. We consider
these post-extraction transformations out of scope and focus
our contribution on the extraction task. By extracting personas,
actions and entities, tools can transform the extracted material
into their chosen domain model representation using ontolo-
gies or domain-oriented class diagrams.

C. Annotating User Stories as a Ground Truth

Considering our choice of only using publicly available re-
quirements, we focused on the dataset published by Dalpiaz et
al.. It contains 22 product backlogs and 1, 679 user stories that
the requirements engineering community curated. The dataset
is published as a raw archive, i.e., an archive of 22 text files,
each containing the user stories associated with the product
it describes, one per line. To the best of our knowledge, no
publicly available expert-based annotation establishes a ground
truth for the different concepts described in the dataset.

As a consequence, we first started by manually annotating
the dataset, using the Doccano1 platform, as a Named Entity
Recognition task. We loaded the different labels (i.e., Persona,
Action, Entity, Benefit) and two relations (i.e., triggers, targets)
used in out domain metamodel, as depicted in FIG. 2.

The annotation process was the responsibility of the 1st

author. To ensure the quality of the annotated set, we intro-
duced several cross-checks: (i) an initial calibration was done
in collaboration with the 3rd author on 75 stories randomly
sampled, (ii) validation meetings were held on a bi-weekly
basis over two months during the annotation phase, and
(iii) the 3rd author cross-checked manually 330 randomly
sampled annotated stories (19.6%). No significant deviations
were found during this step, as only 21 stories containing (mi-
nor) disputable elements were identified, leading to an inter-
rater agreement of 94% for this sample, which is classically
considered as excellent. In case of significant disputes, the 2nd

author would have acted as an external referee and, as such,
was kept out of the annotation process (SEC. V-C). Overall,
the annotation phase lengthed two months, and consumed in
total 10 days for the 1st author, and 1.5 days for the 3rd author
(not counting the bi-weekly meetings). The produced ground
truth is available as part of our open-data repository [12].

D. Creating a Baseline from the State of Practice

We complemented the ground truth by running Visual
Narrator (VN [11]) on top of the dataset and obtaining a
baseline from the state of practice. VN is an open-source
software designed to explicitly extract conceptual models from
user stories backlog. For each story, it extracts (using an
ontological approach) the same elements as the ones described
in our domain metamodel. We ran VN on top of the provided
backlogs and extracted the concepts it extracts by parsing the
output files it produces. Internally, VN relies on spaCy [13] for
natural language processing, using the en_core_web_md
model for English. The tool also leverages the Connextra

1https://doccano.herokuapp.com/



This story is extracted from backlog #02. In this backlog, “user testing” is a first-class entity understood as a synonym for “test reports summary”.

Fig. 2. Example of annotated user story using Doccano Annotation UI

template by looking for special keywords2 (e.g., “As a”) to
guide its extraction process.

After this step, we obtain a new annotated dataset containing
the results of a domain model extraction on top of the input
corpus.

III. A CONVERSATION WITH (CHAT)GPT 3.5
We experimented with ChatGPT to find the best way

to extract the information from a user story backlog in a
“rapid prototyping” way. When we obtained satisfying results
through the Web interface, we translated the prompts we were
using into calls to the API and used a backlog of 25 stories
to run the extraction and manually check the results. The
following section describes in a step-by-step way how we
ended up prompting GPT the way we did for the experiment,
as we defend it is part of the contribution of this paper to
describe how LLMs can be interacted with to obtain results.

A. Prompt Engineering
Initially, we designed the extraction as a batch approach:

we asked the GPT agent to extract concepts, categories and
relations from a set of stories. After explaining the extraction
task to the agent, we provided a complete backlog with the
hope that this comprehensive vision of the backlog would
support good results. Unfortunately, this faced two immediate
limitations. First, a query (prompt plus response) to the GPT
API is limited to 4, 097 tokens, representing an average of
3, 000 words. This limit is not a problem for ongoing product
backlogs (which are classically maintained below 100 stories3

by product owners) but would become one if someone is
interested in extracting information from legacy software. The
second issue was identified during the manual quality check.
With this approach, the agent was fabricating data (i.e., the
so-called “hallucinations”), for example, by mixing elements
between stories. The response would claim that story Si refers
to Persona Pj , even if the story does not mention Pj . In some
cases, Pj was not even mentioned anywhere in the backlog.

To limit this, we entered a second iteration of prompt
engineering. Both problems seemed triggered because we
provided the agent with a complete backlog. Consequently, we
transformed our prompt approach for the following: provide
stories one by one, ask GPT to extract concepts, categorize
them, and extract relations for each story independently. This
approach drastically limited “hallucinations”, as the answer

2https://github.com/MarcelRobeer/VisualNarrator/blob/master/lang/en/
indicators.py

3https://resources.scrumalliance.org/Article/
scrum-anti-patterns-large-product-backlog

mainly referred to elements in the provided story. It also fixed
the request length issue. Unfortunately, it does not produce
usable results. GPT produced texts that did not respect the
input constraints (we tried JSON or CSV) and mixed up things,
e.g., categorizing an entity as a persona. When not constrained,
each request led to a different output format (e.g., the CSV row
was named Entities, Entity, and positioned at different
places). When constrained, the system was not following the
instructions, mixing up rows and concepts.

To make this more straightforward and usable, we started
investigating the function calls mechanisms introduced in
gpt-3.5-turbo-0613. This version of GPT 3.5 was re-
leased on June 13, 2023. It became the standard version
for GPT 3.5 on June 27, 2023. Function calls are designed
in the API to give control to the output produced by the
system. Developers can provide a JSON schema to model their
response, and the system will use this schema and “fill in the
blanks” instead of regular text generation. For example, if one
expects their answer to be an array of strings containing the
name of the personas, they can provide a schema inside their
request, and GPT will use it as output format (as in LST. 1,
lines 3 → 12). An example of such a constrained response
is described in LST. 2. Instead of providing a content, the
agent answers with a function_call, providing its name
and how it should be called (arguments). When the engine
uses a function call as an answer, the conversation is immedi-
ately ended ("finish_reason": "function_call").
Consequently, obtaining a sequence of calls using this tech-
nique is impossible, as the engine will stop once a call is
returned in the answer.

Given this limitation, we faced two options: (i) defining
a large schema containing all the information we wanted
to extract from a user story, or (ii) engaging in a conver-
sation with the model. Without surprise, the first approach
was inconclusive, as GPT was mixing up elements in the
way it was filling in the blanks of the schema (e.g., using
personas as entities or, more surprisingly, as actions). As this
API is designed conversationally, we opted for the second
approach. We finally designed the processing of each story as
a conversation with the model, with each answer constrained
by a dedicated (and smaller) schema [14].

B. Extracting domain models with GPT 3.5

Building on the different approaches described in the previ-
ous section, we used the following protocol to extract concepts
from user stories. We handle each story independently, and
for each story, we engage in a conversation with GPT 3.5 and



1 response = openai.ChatCompletion.create(
2 model = "gpt-3.5-turbo-0613",
3 functions = [ # constraining GPT with a schema
4 { "name": "record_elements", # Function to be called in the response
5 "description": "Record the elements extracted from a story",
6 "parameters": { # Signature description
7 "type": "object",
8 "properties": {
9 "personas": {

10 "type": "array",
11 "description": "The list of personas extracted from the story",
12 "items": { "type": "string" }}}],
13 messages = conv,
14 temperature=0.0) # To make the answer deterministic (as much as possible)

Listing 1. Calling GPT 3.5 and specifying a function call argument

1 {
2 ...
3 "choices": [{
4 "index": 0, "message": {
5 "role": "assistant", "content": null,
6 "function_call": {
7 "name": "record_elements",
8 "arguments":
9 "{\"personas\": [\"repository manager\"]}"

10 }},
11 "finish_reason": "function_call"}],
12 ...
13 }

Listing 2. Example of answer from the API (execution of LST. 1)

constrain its responses using the function call mechanism. We
have organized the conversation into four phases:

1) Setup. First, we impersonate the system role and ask the
engine to adopt a persona. We describe the global task
that will be asked later to set up the request execution
context.

2) Concepts. Still using the system role, we now specify
with more detail the task to extract personas, entities,
actions and benefits from a story. We then provide an
example of such an extraction using one of our manually
annotated stories. Finally, switching to user role, we
provide the <STORY> to process.

3) Categorization. As the model is stateless, we have to
inject the answer from the previous phase into the con-
versation. Thus, we impersonate the assistant role and
add a conversation entry describing the <CONCEPTS>
previously obtained. Following the same pattern as in the
previous phase, we describe the task using the system
role (categorizing primary and secondary actions and
entities) and provide an example of such an execution.

4) Relations. The final step uses the same pattern. We first
inject the <CATEGORIES> as the assistant, and then
describe the task and provide an example as the system.

As of June 2023, OpenAI lists as best practices six strategies
and 17 tactics4 to support prompt engineering. The conversa-
tion we used is described in TAB. I and follows the relevant
OpenAI tactics. We implemented (see TAB. II) completely
seven of the provided guidelines (✓), three partially (∼), and
the remaining seven were not relevant to our problem (NA).
The complete code is available on GitHub [14].

4https://platform.openai.com/docs/guides/gpt-best-practices

C. Discussion & Lessons learned

In this section, we only discuss the technical dimensions of
using the GPT 3.5 API to support the extraction task. We will
discuss the quality of results in SEC. V.

• Ease of use. Based on the available documentation
and documented best practices, interacting with GPT
3.5 is straightforward and does not require specialized
programming skills: basic Python programming skills are
sufficient. Using ChatGPT to support fast prototyping is
also very helpful, as it allows one to quickly interact with
the LLM in a trial/error way.

• Privacy. Being a hosted LLM, each story processed
by GPT 3.5 is sent to OpenAI. For a publicly avail-
able dataset, it might not be considered an issue, but
this should be considered for backlogs containing pro-
prietary information (usually the case for commercial
products). OpenAI enacted (05/23) a policy stating that
they are no longer using users’ data for upcoming train-
ing/improvements of their model. This policy might not
be sufficient for some sovereign data, for example. This
can be mitigated by deploying an on-premise LLM.

• “Hallucination”. Being a stochastic parrot [15] by de-
sign, GPT does not understand the concepts it extracts.
Thus, even if careful prompt engineering can limit this
phenomenon, it commonly misuses concepts, e.g., con-
sider an element a persona and then an entity, despite
these two being exclusive concepts.

• JSON Schema. Constraining the answer to fit a given
JSON schema helps support the automation of extracted
data. Out of 5, 193 calls to the model required to process
our backlog dataset, only two responses (0.03%) were
invalid JSON. An inconvenient of the approach is that it
complexifies the interactions with the model and requires
more programming skills. We also encountered some sit-
uations where the generated JSON document was missing
elements (e.g., in a relation, the kind of relation –trigger
or target– was not specified).

• Cost. ChatGPT, used for prototyping, is free to use. When
calling the API, you need a valid account, and the system
invoices users on a pay-as-you-go. As of June 23, the
chat completion API (gpt-3.5-turbo) is offered for
$0.0015/1k input tokens. Processing the whole dataset
consumed 2, 228, 162 input tokens (85%) and produced
387, 324 completions tokens as output (15%). The overall



TABLE I
PROMPTS USED TO EXTRACT CONCEPTS FROM USER STORIES USING GPT-3.5

Phase Role Prompt

Setup
System You are a requirements engineering assistant specialized in agile methods and backlog management.
System You will be provided by the user a user story, and your task is to extract elements from these models

and call provided functions to record your findings.
System You are only allowed to call the provided function in your answer.

Concepts
System The elements you are asked to extract from the stories are the following: Persona, Action, Entity,

and Benefit. A Story can contain multiple elements in each category.
System Here is an example. In the story ’As a UI designer, I want to begin user testing, so that I can

validate stakeholder UI improvement requests’, the Persona is ’UI designer’. The actions are ’begin’
and ’validate’. The entities are ’user testing’ and ’stakeholder UI improvement requests’. The benefit
is ’I can validate stakeholder UI improvement requests’.

User Here is the story you have to process: <STORY>

Categorization
Assistant Here are the extracted concepts: <CONCEPTS>
System You now need to make the difference between primary concepts and secondary concepts in the

information you have extracted.
System In the example that was given initially, the actions primary action is ’begin’ and the secondary

one is ’validate’. The primary entity is ’user testing’ and the secondary entity is ’stakeholder UI
improvement requests’.

Relations
Assistant Here is the categorization: <CATEGORIES>
System You now need to extract relationships betwen personas and actions (named trigger), and between

actions and entities (named target).
System In the example that was given initially, the persona ’UI designer’ triggers the action ’begin’, and the

action ’begin’ targets the entity ’user testing’.

TABLE II
OPENAI’S TACTICS TO SUPPORT PROMPT ENGINEERING (JULY 2023)

Strategy #1: Write clear instructions
T1 Include details in your query to get more relevant

answers
✓

T2 Ask the model to adopt a persona ✓
T3 Use delimiters to clearly indicate distinct parts of

the input
✓

T4 Specify the steps required to complete a task ✓
T5 Provide examples ✓
T6 Specify the desired length of the output NA
Strategy #2: Provide reference text
T7 Instruct the model to answer using a reference text ∼
T8 Instruct the model to answer with citations from a

reference text
NA

Strategy #3: Split complex tasks into simpler subtasks
T9 Use intent classification to identify the most relevant

instructions for a user query
✓

T10 For dialogue applications that require very long
conversations, summarize or filter previous dialogue

✓

T11 Summarize long documents piecewise and construct
a full summary recursively

NA

Strategy #4: Give GPTs time to “think”
T12 Instruct the model to work out its own solution

before rushing to a conclusion
NA

T13 Use inner monologue or a sequence of queries to
hide the model’s reasoning process

∼

T14 Ask the model if it missed anything on previous
passes

NA

Strategy #5: Use external tools
T15 Use embeddings-based search to implement efficient

knowledge retrieval
NA

T16 Use code execution to perform more accurate cal-
culations or call external APIs

NA

Strategy #6: Test changes systematically
T17 Evaluate model outputs with reference to gold-

standard answers
∼

cost to analyze the 1, 679 stories in the corpus is $4.12
(USD), which can be considered neglectable.

• Reliability. Interacting with the model at scale required
more engineering than the documentation described.
While running the experiment, we encountered server-
side errors (e.g., BadGateway – HTTP 502, ServiceU-
navailableError – HTTP 500) with a 2.78% rate: out of
5, 193 calls, 144 were in error. To fix this, we introduced
a Circuit Breaker5 in the code. Introducing such a pattern
makes the code more complex and requires some solid
programming skills.

• Response time. When processing the first backlogs, we
encountered a response time of up to 45 minutes for a
single request. We fixed this by manually introducing a
client-side timeout mechanism, voluntarily interrupting
a call if it took more than 30 seconds. It drastically
improved the time required to process the upcoming
backlogs to the cost of a more complex code. Processing
the complete dataset consumed 200 minutes and six
seconds, equivalent to almost three hours and a half, with
no training required.

IV. USING A DEDICATED NLP APPROACH (CRF)

Before jumping to conclusions, we decided to include in
the comparison of the results an upper limit, being a dedicated
Natural Language Processing (NLP) approach, by teaming up
with an NLP group (represented by the 2nd author).

Where VN combines rule-based extraction and spaCy lan-
guage model, it misses the point that extracting domain models
from user story backlog can be modelled as a contextualized
pattern recognition task. This representation allows us to use
approaches known for being more efficient and accurate. The

5https://martinfowler.com/bliki/CircuitBreaker.html



fact that we built a ground truth of 1, 679 user stories also
allows us to rely on supervised learning approaches.

A. Introducing Conditional Random Fields (CRF)

CRFs [16] are a particular class of Markov Random Fields,
a statistical modelling approach supporting the definition of
discriminative models. They are classically used in pattern
recognition tasks (labelling or parsing) when context is im-
portant to identify such patterns.

To apply CRF to our task, we need to transform a given
story into a sequence of tuples. Each tuple contains minimally
three elements: (i) the original word from the story, (ii) its
syntactical role in the story, and finally (iii) its semantical role
in the story. The syntactical role in the sentence is classically
known as Part-of-Speech (POS), describing the grammatical
role of the word in the sentence. The semantical role plays
a dual role here. For training the model, the tags will be
extracted from the annotated dataset and used as target. When
used as a predictor after training, these are the data we will
ask the model to infer. Consider the following example:

S = [’As’, ’a’, ’UI’, ’designer’, ’,’, . . .] (1)
POS(S) = [ADP,DET,NOUN,NOUN,PUNCT, . . .] (2)
Label(S) = [∅, ∅,PERSONA,PERSONA, ∅, . . .] (3)

S represents a given user story (FIG. 2). POS(S) represent
the Part-of-speech analysis of S (here using spaCy, the same
library used by Visual Narrator). The story starts with an
adposition (ADP), followed by a determiner (DET), followed
by a noun, followed by another noun, . . . . Then, Label(S)
represents what we are interested in: the first two words are
not interesting, but the 3rd and 4th words represent a Persona.
A complete version of the example is provided in FIG 3.

The main limitations of CRF are that (i) it works at the
word level (model elements can spread across several words),
and (ii) it is not designed to identify relations between entities.

To address the first limitation, we use a glueing heuristic.
Words that are consecutively associated with the same label
are considered as being the same model element, e.g., the
subsequence [’UI’, ’designer’] from the previous example is
considered as one single model element of type Persona. We
apply this heuristic to everything but verbs, as classically, two
verbs following each other represent different actions. Again,
we use a heuristic approach to address the second limitation.
We bound every Persona to every primary Action (as
trigger relations), and every primary Actions to every
primary Entity (as target relations).

B. Implementing the task using CRF

As VN is implemented in Python 3.7 and relies on spaCy
for POS tagging, we decided to use the same stack to reduce
the comparison gap. Among the different implementations of
CRF available, sklearn-crfsuite6 was the most suitable
for this reason. Unfortunately, the code was outdated (2014)
and not maintained (referring to version 0.15 of scikit-learn).
Thus, we fixed the integration problems so that the code could

6https://github.com/TeamHG-Memex/sklearn-crfsuite

run in the recent scikit-learn version (1.x) and with a recent
version of Python (3.10). This version of the scikit-learn plugin
is available as an open source software [17]. The CRF tool is
available on GitHub7

Training the model is straightforward as soon as the CRF
framework is integrated. We transform each story into a
stream of words, compute the POS using spaCy, associate
the semantic label from the annotated dataset, and use this
to create our feature set used for training. The feature set
represents the context windows by associating a given word
with its POS, label, and information on the surrounding words.
In addition to the POS and labels described in the previous
section, we also provide the algorithm with the length of
the word, its capitalization, and its alphanumeric status. Our
current implementation has a sliding window of four words
preceding the current one and one following it. These values
were selected with an experimental approach to minimize
overfitting while maintaining a reasonable F-measure (see
SEC. V). When the model is trained, we can now provide an
unknown story to the model and obtain a sequence of semantic
labels as output. Using the previously described heuristics, we
transform these labels into instances of our domain metamodel
to obtain the final result.

C. Discussions & Lessons Learned

As for GPT, we only discuss the lessons learned at the
technical level.

• Domain Knowledge. We could only implement this ap-
proach thanks to a close collaboration with NLP experts.
The landscape of NLP approaches is wide, and without
domain expertise, we would have never identified CRF as
a potential candidate for domain model extraction. Being
able to transfer our software engineering problems to AI
experts is essential to avoid reinventing a squared wheel
by simply aggregating visible solutions.

• Fighting the hype. As stated, CRF is losing popularity.
The hype/fashion lifecycle is classical in software engi-
neering. Think about Aspect-oriented Programming: sup-
posed to revolutionize software development in the ’00s,
they are now forgotten, except in particular places where
they perfectly fit (e.g., Spring, a reference framework
to develop enterprise code in java, intensively rely on
aspects under the hood). It is important to build on the
shoulders of giants and not to succumb to the latest
fashionable “thing”.

• Technical Complexity. Compared to the simplicity of
the GPT code, implementing this CRF approach required
more advanced Python programming skills, including fix-
ing outdated dependencies, patching a sci-kit-learn mod-
ule, and integrating the approach in a machine learning
pipeline. This is not unachievable, but the effort and skills
required are clearly different by an order of magnitude.

• Cost. Being self-hosted, the approach does not directly
cost money. However, the training time and resource

7https://github.com/ace-design/nlp-stories/tree/main/nlp/nlp tools/crf



Word As a UI designer , I want to begin user testing ,
POS ADP DET NOUN NOUN PUNCT PRON VERB PART VERB NOUN NOUN PUNCT
Label – – PER PER – – – – P-ACT P-ENT P-ENT –

Word so that I can validate stakeholder UI improvement requests .
POS SCONJ SCONJ PRON AUX VERB NOUN NOUN NOUN NOUN PUNCT
Label – – – – S-ACT S-ENT S-ENT S-ENT S-ENT –

POS tags are the Universal POS tags (https://universaldependencies.org/u/pos/ ), computed by spaCy.
Labels: PER (Persona), P-ACT (Primary Action), P-ENT (Primary Entity), S-ACT (Secondary Action), S-ENT (Secondary Entity)

Fig. 3. Minimal Feature Set, associating part-of-speech (POS) and semantic labels to each word in a given story

consumption need to be considered. On an average laptop,
the training takes less than a minute for a set of 1k stories.

V. VALIDATION

This section empirically evaluates the three approaches
(Visual Narrator, GPT-3.5 and CRF) to the ground truth
established during the annotation phase.

A. Experimental Setup

First, we had to build the corpus that would be used to
support the evaluation. We started by cleaning up the dataset
from duplicated stories. Then, we consider the intersection
set of the backlogs as the set of stories where all the tools
considered were able to produce parsable outputs. Ultimately,
we perform our evaluation with a corpus containing 1, 459
stories (87% of the initial corpus).

As CRF requires training, we used a classical 80/20 sep-
aration. We randomly split the dataset into a training set
containing 80% of the stories and used the remaining 20%
for evaluation with the three tools. We trained CRF in two
modes: (i) global and (ii) individual. For the global mode, we
extracted the training set from the complete corpus, mixing
different products. The individual mode applied the 80/20
partition backlog by backlog (Fig. 4).

To properly compare results, we must define whether a
result is good or bad. At best, a result is perfect when the
AI approach produces precisely the same elements as the one
available in the ground truth. We call this comparison mode
the Strict one. To relax the constraints, we also considered
a comparison where the AI tool produces a superset of
the ground truth, checking that the baseline is Included in
the produced result. Finally, we also considered a Relaxed
comparison, where we relaxed the checking by considering
plurals and singular equivalent to each other, or ignoring ad-
jective qualifiers. Eventually, the results are consistent for each
tool, whatever comparison measure is used. To avoid unfair
comparisons, we do not compare the identified trigger and
target relations, as VN was not designed for this task.

We represent in FIG. 4 the averaged F-measure (F1) for each
algorithm, comparison mode, and extracted model element.
Being defined as the harmonic mean of precision and recall,
F1 considers correctly and incorrectly classified observations
(as opposed to accuracy, which focuses on positive cases). It
is classical to use F1 instead of accuracy when the cost of
making a wrong decision is essential (here, extracting domain
concepts that are not part of the domain). An F1 score of
1.0 means a perfect match, and a F1 score of 0.0 means that
precision or recall is null.

B. Result Interpretation

First, it is interesting to notice that VN (establishing a
baseline from the state of practice) performs reasonably on
Personas and Actions but quite poorly on Entity(ies),
with a maximum F1 < 0.25 (relaxed comparison).

Identifying the Persona instances is by far the most
straightforward task. The Conextra Template can explain this,
as their position in the user story is entirely predictable
(adding noise in front of the “As a” marker in a story disturbs
VN). Same for identifying the Actions, as their position is
also predictable (e.g., “I want to. . . ”). An Entity, being a
common noun that can appear anywhere in the sentence, is
harder to detect by a rule-based system. VN often fails at
identifying proper entities, and default to one named System
(even if not mentionned in the story).

When comparing GPT-3.5 with VN, it is clear that using
an LLM to support the concept extraction task creates a
breakthrough. VN’s implementation consists of a 23 Python
file and 2, 856 lines of code, while interfacing with GPT-
3.5 requires one single script of 337 lines. Furthermore, the
obtained results outperform VN in every case. The most
significant improvement relates to identifying Actions: VN
F1 score is around 0.2, whereas GPT-3.5 is around 0.6, without
any need for training or annotation. Based on the results,
LLMs are interesting for an average extraction, as they do not
require additional effort to outperform the state of practice.

However, it is essential to note that GPT-3.5 was systemat-
ically outperformed by our CRF implementation (its worst F1

value is 0.81, and it reaches a perfect 1.0 for Personas’
extraction). This is no surprise: LLMs are a one-size-fits-
all approach, where a tailored approach developed with a
domain expert (here in NLP) to use the correct underlying
model/algorithm is precisely addressing the problem to solve.

C. Limitations & Threats to Validity

First, the creation of the ground truth is, by nature, influ-
enced by subjective factors. We mitigated this according to
a precise protocol, including bi-weekly meetings and manual
cross-check of 19.6% of the annotated dataset with an inter-
rater agreement of 94%. However, the two authors involved in
the annotation process might have introduced unconscious bias
in their annotation guidelines. An external validation of the
annotated dataset would be beneficial. This threat is mitigated
by the fact that (i) the results are provided relatively to this
ground truth, and (ii) the 3rd author has 11 years of experience
teaching agile methods and user stories writing as an academic
instructor and industrial consultant.



Fig. 4. Comparing approaches to the ground truth: F-measure results for Visual Narrator, GPT-3.5 and CRF

The second threat to validity is related to the LLM model
we used and the prompt engineering method we followed. We
only used GPT-3.5, and more extensive experimentations are
needed to see if the results presented in this paper hold when
compared to GPT-4 (OpenAI), Bard (Google), or LLaMA
(Meta). Concerning prompt engineering, despite intensively
relying on OpenAI best practices, as LLMs are black boxes,
it is very hard to identify which elements influence the
model positively or negatively. To support reproducibility, we
also had to set GPT-3.5’s temperature to 0, making it as
deterministic as possible. This choice might have introduced a
negative bias in the result, and more experiments are needed
to handle the non-deterministic nature of LLMs to evaluate
their results in the context of domain model extraction.

VI. CONCLUSIONS

In this paper, we have experimented with how Visual
Narrator, GPT-3.5 and a CRF-based approach performed to
automate the extraction of domain concepts from agile product
backlogs. The first contribution of this paper is an open-data
repository [12] containing an annotated version of a reference
backlog corpus (22 products, 1, 679 user stories), reusable
by other researchers. Then, for both GPT-3.5 and CRF, we
provided an in-depth discussion of the engineering dimensions
associated with their development (including prompt engineer-
ing for GPT-3.5), and we evaluated the results at scale on top
of the annotated corpus.

Out of these results, if the GPT-3.5 LLM is better (F1 ≈ 0.6)
than the state of practice concerning this task, it is outper-
formed by the CRF approach designed with NLP experts
(F1 ≈ 0.85), which require less than a minute of training.
It triggers a question for the following research efforts in this
direction: Should we, as researchers, choose to use easily in-
tegrable but far-from-ideal (energy cost, average F1) solutions
available off-the-shelf, or should we instead choose to invest
in collaborating with AI/NLP domain experts to define tailored
solutions that would support MDE intelligence?
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