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ABSTRACT

The prevalence of batch and batch-like operations, in conjunction with the continued

resurgence of artificial intelligence techniques for clustering and classification applica-

tions, has increasingly motivated the exploration of the applicability of deep learning

for modeling and feedback control of batch and batch-like processes. To this end, the

present study seeks to evaluate the viability of artificial intelligence in general, and

neural networks in particular, toward process modeling and control via a case study.

Nonlinear autoregressive with exogeneous input (NARX) networks are evaluated in

comparison with subspace models within the framework of model-based control. A

batch polymethyl methacrylate (PMMA) polymerization process is chosen as a sim-

ulation test-bed. Subspace-based state-space models and NARX networks identified

for the process are first compared for their predictive power. The identified models

are then implemented in model predictive control (MPC) to compare the control per-

formance for both modeling approaches. The comparative analysis reveals that the

state-space models performed better than NARX networks in predictive power and

control performance. Moreover, the NARX networks were found to be less versatile

than state-space models in adapting to new process operation. The results of the

study indicate that further research is needed before neural networks may become

readily applicable for the feedback control of batch processes.
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Chapter 1

Introduction

1.1 Motivation

Increasing competition and environmental regulations, alongside the importance of

batch and batch-like process operation, have impelled manufacturing industries to

seek improved margins via optimization of production processes. Several valuable

products, including specialty chemicals and bio-pharmaceuticals, are manufactured in

batch processes, and advanced process control techniques that utilize process models

are being increasingly sought to improve process operation.

All of the diverse modeling techniques can be classified into one of two distinct model-

ing approaches: first-principles mechanistic-based modeling and empirical data-driven

modeling. First-principles models are desired for their ability to capture the underly-

ing mechanics of processes directly through the application of physical conservation

laws such as mass or energy balances. However, the development and maintenance

of first-principles models remains challenging. As an alternative, the prevalence of

historical process data has enabled data-driven modeling to emerge as an attractive

alternative.

Myriad modeling methods exist for the purpose of developing models from process

1



M.A.Sc. Thesis - M. Rashid; McMaster University - Chemical Engineering

data. Recently, neural networks have yielded compelling results in their ability to han-

dle human tasks such as classification, clustering, pattern recognition, image recog-

nition, and language processing [1]. Neural networks have particularly been shown

to be successful in data classification and segmentation tasks [11; 25]. The power

of neural networks is evidenced by their wide application, from business and social

science to engineering and manufacturing. Neural networks are useful because of their

versatility, which allows them to handle non-linear and complex behavior [9]. From

the above, it becomes natural to seek to apply neural networks in the context of

batch process control. However, the literature remains limited in the application of

neural networks toward the development of dynamic models and their use in control

in general, and batch process operation in particular.

Instead of neural networks, many statistical modeling approaches are available. One

statistical approach is the method of partial least squares (PLS). The PLS method

requires data to be partitioned into two matrices: a block for explanatory variables

(X) and a block for response variables (Y ). PLS is inspired by the methods of multi-

linear regression (MLR) and principal component regression (PCR). MLR maximizes

the correlation between X and Y ; PCR captures the maximum amount of variance in

X through orthogonal linear combinations of the explanatory variables. PLS seeks to

consolidate between the aims of both methods by maximizing the covariance between

X and Y . PLS achieves this by first projecting the explanatory variables onto a latent

variable space to remove collinearity, and then performing linear regression within that

latent space [15]. PLS is desired for its ability to handle collinear data and situations

in which there are fewer observations relative to the number of explanatory variables.

PLS techniques can also be adapted to incorporate first-principles knowledge via

appended variables to the data matrices, as calculated by first-principles equations.

An alternative statistical approach is prediction error methods (PEMs). The premise

underlying these methods is to determine the model parameters by minimizing the er-

2
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ror between measured and predicted outputs. Constraints can be readily implemented

into the optimization so as to impose regularity constraints on model parameters. The

advantage of PEM lies in its diverse applicability, as it can be applied to most model

structures and can readily handle closed systems. The drawback is the computational

cost, as PEM typically requires the solving of non-convex optimization problems.

Yet another popular statistical approach is subspace identification, which identifies

state-space models from input/output data. Subspace identification methods com-

prise of two main steps. The first is to estimate either the extended observability

matrix or the state trajectory sequence from a weighted projection of the row space

of the Hankel matrices formed from the input/output data. The second step is to

then calculate the system matrices [14]. Subspace identification methods are desir-

able since they are computationally tractable and inherently discourage over-fitting

through the use of singular value decomposition (SVD) to estimate the model order.

Recently, artificial neural networks (ANNs) have been championed for the purpose

of model identification [22]. The functional form of an ANN is a network of nodes,

called neurons, whose values are calculated from a vector of inputs supplied by each

neuron in the preceding layer in the network, either the input layer or a hidden

layer. Each neuron is connected to all neurons in the previous layer via a weighted

connection, essentially leading to a functional form with parameters. The activation

in each neuron is calculated as a linear combination of the activations in the previous

layer, including a bias, and is modified by an activation function of choice. Common

choices for the activation function are the sigmoid, hyperbolic tangent, and rectifier

functions.

The networks are trained (i.e., the parameters are determined) by minimizing a cost

function with respect to the network parameters, the weights and biases relating each

neuron to its preceding layer. To facilitate optimization of the network parameters,

3
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the partial derivatives of the cost function with respect to the network’s weights and

biases are necessary. The requisite partial derivatives can be calculated by the widely

used backpropagation algorithm, which can be conceptualized in two steps. Firstly,

the training data are fed to the neural network to calculate the network’s outputs

and internal activations. Secondly, the needed partial derivatives are calculated back-

wards, beginning from the output layer, using the chain rule from differential calculus.

Finally, the calculated partial derivatives allow for optimization by such methods as

gradient descent [29]. While neural networks have generally found widespread ac-

ceptance, a comparative study of neural networks with other approaches for batch

process modeling and control is lacking.

1.2 Research Problem Statement

In light of the above, the present study aims to address the dearth of results that

compare neural networks to other data-driven control techniques for batch processes.

Subspace identification, which remains a prevalent and validated modeling approach

for batch process control, is used as the comparative benchmark in this work. Due to

its dominance in industrial practice, model predictive control (MPC) was chosen as

the framework in which the viability of neural networks for control purposes could be

evaluated. To carry out the comparison, a batch polymethyl methacrylate (PMMA)

polymerization process was selected as the testbed. In particular, the objectives of

this research were two-fold:

1. Identification of State-Space and Neural Network Models

Develop state-space and neural network models for the PMMA polymerization

process and compare their capacities in modeling the input/output data.

2. Model Predictive Control

4
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Implement both state-space models and neural networks into MPC and compare

the control performances gained via each approach.

1.3 Outline of the Thesis

The comparison between the two modeling approaches is illustrated by means of a

motivating example which is presented in Section 2.1. Subspace identification and

neural networks are explained subsequently in Sections 2.2 to 2.3. Thereafter, Chap-

ter 3 evaluates the models identified and validated per both modeling approaches

and Chapter 4 presents the closed-loop results of implementing both types of models

into an MPC framework. Finally, concluding remarks and topics for future work are

presented in Chapter 5.

5



Chapter 2

Preliminaries

In this section, we first present an example to motivate our results, followed by a

review of existing subspace identification and ANN approaches.

2.1 Simulation Example

Consider a PMMA polymerization process carried out in a batch stirred tank reactor

with a heating/cooling jacket. The underlying kinetic mechanism for the free radical

polymerization of PMMA is given in Table 2.1, where I is the initiator, M is the

monomer, Ri is a live polymer with I monomer units, Pi is a dead polymer with I

units, and S is the solvent [32].

Table 2.1: Kinetic mechanism for PMMA polymerization.

Kinetic Mechanism Chemical Formula

Initiation I → 2ϕ
ϕ+M → R1

Propagation Ri +M → Ri+1

Termination by combination Ri +Rj → Ri+j

Termination by disproportionation Ri +Rj → Pi + Pj

Chain transfer to monomer Ri +M → Pi +R1

Chain transfer to solvent Ri + S → Pi + S

6
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The batch reactor is charged with methyl methacrylate (monomer), AIBN (initiator),

and toluene (solvent). The mechanistic model for the motivating example was adapted

from [12] while making appropriate alterations as per [13; 32], which are further

discussed in [7]. The first-principles model, which is used as a test bed, involves nine

states: the concentrations of the monomer and initiator, reactor temperature, and six

moments of living and dead polymer chains. The input to the process is the jacket

temperature, and the measured outputs are the reaction temperature, the logarithm

of viscosity, and density. The plant model was used to generate historical data for the

identification of state-space and NARX network models, as well as for producing the

process simulation required for model validation and MPC implementation.

2.2 Subspace Identification

Subspace identification techniques identify a linear time-invariant (LTI) state-space

model. The deterministic identification problem (for a continuous process) can be

described as follows: if s measurements (where s represents the length of the data) of

the input uk ∈ Rm and the output yk ∈ Rl are available, then a model with order n

can be identified in the form

xd
k+1 = Axd

k +Buk

yk = Cxd
k +Duk

(2.1)

where the objective is to determine the order n of this unknown system and the system

matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m.

We denote the measured outputs as y(b)[k], where k is the sampling time from when

the run is initialized and b denotes the run number. Thus, the Hankel matrix is laid

out as follows:

7
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Y
(b)
1|i =


y(b)[1] y(b)[2] · · · y(b)[j(b)]

...
...

...

y(b)[i] y(b)[i+ 1] · · · y(b)[i+ j(b) − 1]

 ∀ b = 1, . . . , nb (2.2)

where nb is the total number of runs used for identification.

A single Hankel matrix by itself would not allow data from multiple experiments or

runs to be utilized, and the simple concatenation of the outputs from all of the runs

would generate a data set where the initial condition of a subsequent run is the end

point of the previous run, which would also be incorrect. Therefore, when concate-

nating the data, it is important to generate a matrix where this assumption is not

necessary to solve for the states. This can be achieved by horizontally concatenating

the Hankel matrices from each run to generate our pseudo-Hankel matrix for both the

input and output variables. This pseudo-Hankel matrix for the output data is defined

as follows:

Y1|i =
[
Y

(1)
1|i Y

(2)
1|i · · · Y

(nb)
1|i

]
(2.3)

Similarly, a pseudo-Hankel matrix for the input data can be generated. A key con-

sideration of this approach is that horizontal concatenation of data allows for runs

of varying lengths to be identified without aligning the variables. The use of these

pseudo-Hankel matrices for input and output data allows for multiple runs to be an-

alyzed to compute the state trajectory using any subspace identification technique,

such as the deterministic method used in this approach [27]. A consequence of hori-

zontal concatenation is that the identified state trajectories also consist of horizontally

8
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concatenated state estimates from each run, which can be represented as

X̂
(b)
i+1 =

[
x̂(b)[i+ 1] · · · x̂(b)i+ j(b)]

]
∀ b = 1, . . . , nb (2.4)

X̂i+1 =
[
X̂

(1)
i+1 X̂

(2)
i+1 · · · X̂

(nb)
i+1

]
(2.5)

where nb is the total number of training runs used for identification. Finally, once

the state trajectory matrix is determined, the system matrices can be estimated using

such methods as ordinary least squares, as shown below:

Y (b)
reg =

x̂(b)[i+ 2] · · · x̂(b)[i+ j(b)]

y(b)[i+ 1] · · · y(b)[i+ j(b) − 1]

 (2.6)

X(b)
reg =

x̂(b)[i+ 1] · · · x̂(b)[i+ j(b) − 1]

u(b)[i+ 1] · · · u(b)[i+ j(b) − 1]

 (2.7)

[
Y 1
reg · · · Y

(nb)
reg

]
=

A B

C D

[
X

(1)
reg · · · X

(nb)
reg

]
(2.8)

yielding A, B, C and D as the state-space model matrices, which are henceforth

collectively referred to as the unconstrained model.

Remark 1. The key consideration for subspace identification of multiple data sets, as

opposed to a single data set, is in the generation of the state trajectory. The risk of not

using a pseudo-Hankel matrix structure through a concatenation of the data can result

in a single-state trajectory for the data set, where the initial point of the next run

is incorrectly linked to the end point of the previous run. The subspace identification

approach allows for the correct identification of the separate state trajectories from the

training data to be used for model identification, thus enabling the usage of multiple

9
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runs during training.

Notably, prior work has assessed the value of subspace identification for batch pro-

cesses [8]. Subspace identification was employed to generate a data-driven state-space

model for the PMMA polymerization process being used as a test-bed for the present

study. The state-space model was then implemented into MPC and the resulting

performance was compared with state-of-the-art latent variable methods. The results

from their investigation demonstrated the superiority of using subspace identifica-

tion for the modeling and control of batch processes. Motivated by these findings,

state-space models were selected as the benchmark by which to evaluate ANNs in this

work.

2.3 ANN-Based Dynamic Models

To enable the modeling of dynamical systems in ANNs, information is allowed to flow

between each iteration via tapped delay lines or recurrent (feedback) connections. For

instance, time delay neural networks are feedforward dynamic neural networks that

allow for the inclusion of historical data via tapped delay lines.

Recurrent neural networks (RNNs), however, are more suitable for dynamic process

modeling, as they encode an internal state (memory) of the system by incorporating

feedback connections. Past outputs or hidden states are looped back into the neural

network, thereby allowing for information to flow between each iteration of the net-

work. Hence, the response of RNNs depends on the historical sequences of both input

and output data. NARX networks, a class of RNNs involving only feedback from

the output neuron, are used as a representative for this study [33]. A mathematical

representation of a general NARX network is given by

10
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y(n+ 1) = f [y(n), ..., y(n− dy);u(n), ..., u(n− du)] (2.9)

where u(n) and y(n) are the current inputs and outputs, du(n) and dy(n) are the

associated input and output delays, and f(·) is a non-linear function [5].

NARX networks are derived from the application of autoregressive exogeneous (ARX)

models to the framework of artificial intelligence. Therefore, NARX networks are the

artificial intelligence counterparts of ARX models, which are a mainstay of process

modeling. Contrasting the two modeling approaches, it is noteworthy that far more

advanced computational techniques have been developed for neural networks than

exist for traditional ARX modeling. In particular, NARX networks can readily incor-

porate nonlinear elements via a host of different activation functions.

RNNs are able to learn temporal sequences by retaining a ”memory” of system dynam-

ics. However, practice reveals that RNNs are difficult to train, particularly in learning

dependencies over long sequences of data [34]. The difficulties in training RNNs can

be understood by looking carefully at their associated learning algorithms. To opti-

mize the cost function, the algorithm of back propagation through time (BPTT) is

used. In BPTT, the RNN is first ‘unrolled’ across a time sequence before the regular

backpropagation algorithm can be used for optimization purposes. Hence, BPTT is

simply a specific application of backpropagation to the learning of RNNs. Since the

unrolled RNN often becomes very deep, the training of RNNs is especially compli-

cated by the problem of exploding or vanishing gradients. For this reason, RNNs

struggle to store information over extended time intervals [19].

LSTM networks have been proposed as an alternative to RNNs. LSTM networks are

a class of RNNs whose architecture incorporates long-term memory over extended

time intervals via the inclusion of a cell state. The cell state is updated at each time

step via forget and input gates while the hidden state (the short-term memory state

11
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of RNNs) is controlled by an output gate. LSTM networks effectively mitigate the

vanishing gradient problem by maintaining constant error backpropagation via the

cell state [19].

In light of the above, LSTM networks have become a popular class of RNNs for a

variety of applications, such as speech recognition, translation, and language mod-

eling. However, for the purposes of dynamic systems modeling in the framework of

model-based control, the value of LSTM networks remains to be established. The

main advantage of LSTM networks is the ability to learn long-term dependencies in

sequential data. However, for dynamic models, the output at any given time step is

largely a function of recent input and output data; the contribution of historical data

reaching far back in time will attenuate over lengthy time intervals. Moreover, while

learning such long-term dependencies holds the promise of more nuanced modeling,

the drawback remains that over-fitting is likely to remain a problem. This is one of

the reasons why state-space models have become a mainstay in model-based control,

as they provide simpler but stable models which are robust to over-fitting.

Finally, it is noteworthy that [40] found that NARX networks outperformed LSTM

networks and convolutional neural networks in predicting groundwater level forecasts.

Based on these considerations, NARX networks were selected for the architectures of

the ANNs in this work.

The use of ANNs in a framework of MPC has been explored in some contexts. For

example, ANN-based MPC of constrained non-linear systems [3] was proposed, where

the ANN was trained by minimizing an MPC cost function. An ANN-MPC formu-

lation was also augmented with a second ANN that would adaptively update the

identified model online [18]. Another approach was to design an ideal MPC, and

then train LSTM networks on the generated control sequences to replace the MPC

framework altogether, thereby circumventing computationally expensive optimiza-

12
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tion solutions [24]. LSTM networks have also been implemented for the extraction of

phase-specific features in batch processes in order to decrease the overall dimension-

ality of the prediction scheme [36]. Moreover, LSTM networks have been applied to

develop reinforcement learning controllers for enhancing the performance of heating

ventilation and air conditioning systems [37].

Another approach is to include first-principles knowledge of the process via weight con-

straints on the training of RNNs or through the pruning of neuronal connections [39].

It was demonstrated that such physics-based modifications to the RNNs resulted in an

improved control performance. Similarly [4] incorporated a priori physical knowledge

into RNNs to improve the RNN-based MPC performance of large-scale and complex

chemical processes. The application of RNNs toward MPC despite the problem of

collinear or insufficiently rich input data [17] was also recently addressed. Their pro-

posed solution was to first use PCA to eliminate collinearity in the input space before

identifying an RNN based on the uncorrelated scores.

Among recent developments in the field, [21] compared first-principles, state-space,

and ANN models in an economic MPC framework. The authors found that the ANNs

often returned non-smooth prediction trajectories that complicated the solution of

the optimization problem. In another study, [2] was able to attain optimal or near-

optimal control of irrigation schedules by implementing an LSTM network in a mixed-

integer MPC scheme. Their contributions warrant further exploration of ANNs for the

modeling and control of processes with continuous inputs. Finally, [10] used LSTM

networks to develop reduced-order state estimators for mechanistic models of high

computational complexity.

Lastly, it must be noted that prior studies in the field have sought to examine the

value of ANNs for batch process modeling and control. For example, [38; 31; 23; 35;

28; 41; 20] implemented ANNS for process modeling and control. However, past re-

13
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search has either failed to benchmark ANNs or compared the use of ANNs to classical

proportional–integral–derivative control or first-principles mechanistic model-based

control. As such, the comparison of ANNs to other data-driven modeling techniques,

such as subspace-based state-space models, remains sparse in the literature, despite

subspace identification-based models having been shown to be particularly effective

in batch control [8]. Therefore, the present study seeks to address this gap by provid-

ing a comparison between subspace models and ANNs in the context of model-based

predictive control of batch processes.

14



Chapter 3

Model Identification

The first step in the proposed approach was to identify both (LTI) state-space models

and NARX networks for the PMMA polymerization process. To facilitate a compre-

hensive comparison between the state-space and NARX network models, data sets

were built using different input profiles. In particular, three distinct types of input

profiles were used to generate the data sets from which the models were identified.

The three types of input profiles were formed by implementing three different kinds

of input profiles on the PMMA polymerization process. Specifically, the input profiles

were as follows:

1. A proportional–integral controller was used to track set-point trajectories.

2. A pseudo-random binary sequence (PRBS) signal was superimposed onto the input

moves generated by a proportional–integral controller.

3. A PRBS signal was superimposed onto a nominal input trajectory.

A major aim of this study was to detect and compare over-fitting issues between sub-

space and NARX network models. To this end, two different sets of historical data

were used to identify all models: data both with and without measurement noise.

To generate noisy data, Gaussian noise was superimposed onto all output data. Specif-

ically, measurement noise was generated from standard normal distributions modified

15
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by factors of 0.10 for temperature, 0.01 for log(viscosity), and 0.10 for density. Hence,

each model was identified and evaluated for performance both in the presence and

absence of noise. In this way, state-space and NARX network models were compared

in their robustness to over-fitting issues resulting from noisy data.

The identification of ANNs is complicated by inherent randomness in the training al-

gorithms. Randomness is introduced in the training of ANNs via random parameter

initialization and sampling division, among other sources [26]. Such randomness in

the training process often leads to a lack of replicability in model identification. To

ensure replicability and consistency, the seed was set to a specific and definite value,

thereby permitting consistent comparisons between state-space models and NARX

networks. However, it is noteworthy that neural networks will often perform differ-

ently depending on the seed. A possible explanation for this observation can be the

existence of multiple local minima on the surfaces of the cost function. For this reason,

it has been suggested to include the seed as a hyperparameter in the identification of

neural networks [6].

The models were fitted against training data, and goodness-of-fit evaluations were

calculated as per the normalized root mean squared error (NRMSE) measure, given

by

NRMSE(i) =
||yref (:, i)− y(:, i)||

||yref (:, i)−mean(yref (:, i))||
(3.1)

where y is the predicted output, yref is the measured output, and i indexes the outputs.

For the NRMSE evaluation, zero indicates a perfect fit, unity indicates that the model

is no better than a straight line in explaining the variance of the data, and a large

value indicates a poor fit.

Three sets of historical data were generated for model identification. Each data set
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comprised of thirty batches, ten batches for each of the three types of input profiles

listed above. The first of these data sets was used as training data to identify the initial

state-space models and NARX networks; the associated NRMSE calculations yielded

the fit of the models. The identified models were then evaluated for predictive power

against a second data set, with the NRMSE calculations being taken as an internal

validation of the models. The models were then tweaked for improved performance

by trial-and-error optimization of the NRMSE evaluations with respect to model

parameters, for cases both with and without measurement noise.

However, the goodness-of-fit of a model does not preclude the possibility of over-

fitting. Hence, an approach as described would be naive and insufficient for accurately

assessing the predictive power of models. Consequently, it is essential to validate the

models against novel data. For this reason, an additional measure of the models was

calculated. In this last step, the tweaked models were validated against a third set of

data. Finally, these resulting NRMSE evaluations were taken as the validation and

true measures of model performance.

The procedure described above was followed in the identification of state-space mod-

els. The parameter for the number of states (n = 10) was tuned by a brute-force

search that yielded the best fit, or the best NRMSE evaluation, in comparing model

predictions to training data. The lag i was set to twice the number of states. The

identified state-space models were tested against the second set of data for the purpose

of internal validation. The associated NRMSE calculations were used to tweak model

parameters for improved performance; however, this step was found to be unnecessary

for state-space models. Finally, the state-space models were validated against the last

set of data; the resulting NRMSE calculations were considered the true measures of

the models’ predictive power.

In the validation of state-space models, Kalman filters were used for state estimation.

17



M.A.Sc. Thesis - M. Rashid; McMaster University - Chemical Engineering

The equations for the Kalman filter are given in Equation (3.2), where Pk|k−1 is the

estimated (a priori) covariance, Pk|k is the estimated (a posteriori) covariance, and

Kk is the Kalman gain; Q and R, calculated as per Equation (3.3), are the covariance

matrices for both the process and measurement noise, respectively. The two covariance

matrices are taken to be time independent.

Pk|k−1 = APk−1|k−1A
T +Q

Kk|k =
Pk|k−1C

T

CPk|k−1CT +R

Pk|k = (I −Kk C)Pk|k−1

x̂k|k−1 = Ax̂k−1|k−1 +Buk

x̂k|k = x̂k|k−1 +Kk[yk − (Cx̂k|k−1 +Duk)]

ŷk|k = Cx̂k|k +Duk

(3.2)

Q = cov(Xk+1 − [A B][Xk Uk]
T )

R = cov(Yk − [C D][Xk Uk]
T )

(3.3)

The initial state estimate was set as the zero vector and the initial Kalman gain was

set as the zero matrix. To ensure convergence, the Kalman filter was allowed to run

iteratively until the absolute values of the observation error for each output fell below

a threshold, as given in Equation (3.4). These threshold values were tuned via trial-

and-error until acceptable convergence was achieved. The first ten data samples were

discarded in all NRMSE calculations to allow for the observer to converge.
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|Yk − Ŷk| <
[
0.3 0.1 0.5

]T
(3.4)

NARX networks were identified following a similar procedure as for state-space mod-

els. Firstly, the NARX networks were trained on the first set of data. In the training

of all NARX networks, 70% of the input/output data were reserved for training,

15% for validation, and 15% for testing. For all NARX networks, outputs and errors

were normalized within the ranges of (−0.5, 0.5) and (−1, 1) respectively. The ini-

tial, rudimentary architecture from which neural networks were developed is shown

in Figure 3.1. The neural transfer functions, number of hidden layers, and size of the

hidden layers were determined by trial-and-error until the best NRMSE evaluation

was found.

Figure 3.1: Initial structure from which the architecture of the NARXs was developed.

Then, the trained networks were internally validated against a second set of in-

put/output data; the model parameters and architectures were tweaked by a trial-and-

error approach. Lastly, the neural networks were validated against the third and final

set of data to obtain NRMSE calculations representing the true model performance

of the networks. Figure 3.2 displays the final architecture of the neural networks
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identified, both in the absence and presence of measurement noise.

Notably, the first layer of the NARX network incorporates an initial nonlinear element

to capture the nonlinear dynamics of the PMMA polymerization process. As discussed

earlier, one of the main advantages of ANNs over state-space models is in their ability

to handle nonlinearities directly. By including nonlinearity into the model, ANNs

allow for the enhanced assimilation of process knowledge and thereby strive to improve

predictive and control performance.

Figure 3.2: Structure of NARX networks identified both in the absence and presence of
measurement noise.

Note that while the neural networks do not require an explicitly designed observer

as do state-space models, an initial fragment of the input/output data is required

to initialize the NARX networks, as is the case for ARX models in general. This

initial fragment of input/output data needed by NARX networks can be thought of

as representing the role of a state-space observer, with the length of data reflecting

the time it would take for the state-space observer to converge to an accurate state

estimate.

Table 3.1 tabulates the NRMSE evaluations associated with the validation of both

state-space models and NARX networks. Accordingly, Figures 3.3 and 3.4 display

an example of the validation of state-space models and NARX networks, identified
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both in the absence and presence of measurement noise, respectively. The state-space

models outperformed NARX networks in predictive power, as observed by the lower

NRMSE evaluations for state-space models in Table 3.1. The data also reveal that

both state-space models and NARX networks were resilient to over-fitting measure-

ment noise since the NRMSE evaluations did not increase sharply upon incorporation

of measurement noise.
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Figure 3.3: Validation of state-space models and NARX networks in the absence of
measurement noise.
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Figure 3.4: Validation of state-space models and NARX networks subject to measurement
noise.

Table 3.1: Mean NRMSE evaluations for the validation of the identified models.

Temperature
[K]

log(Viscosity) Density
[kg/m3]

State Space (without measurement noise) 0.19 0.08 0.08

State Space (with measurement noise) 0.23 0.08 0.10

NARX network (without measurement noise) 0.27 0.21 0.23

NARX network (with measurement noise) 0.29 0.22 0.23

To further assess model performance, the identified models were tested against a

fourth set of historical plant data. For the purposes of gauging possible over-fitting,

this new set of data was generated to be distinct from the three types of data sets
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used previously in model identification. In particular, the data set was formed via

the generation of PRBS input profiles. Figure 3.5 contrasts between one of the input

profiles used in model identification and one of the input profiles from this fourth data

set.
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Figure 3.5: Comparison of input profiles between training (top) and newly generated
(bottom) input profiles.

Table 3.2 tabulates the mean NRMSE evaluations associated with the plant data and

model predictions. Concurrently, Figures 3.6 and 3.7 present examples of prediction

performance for the identified models. Here, a large performance gap is observed

between the predictive power of state-space models and NARX networks, as observed

by the increased difference between NRMSE evaluations between the modeling ap-

proaches. NARX networks are shown to be poor in predicting new and distinct data

profiles. While the neural networks did not significantly over-fit measurement noise,
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as was established earlier, they did over-fit the training data. This is clearly evidenced

by the worse NRMSE evaluations for NARX networks modeling input/output data

that are characteristically distinct from the original training data.
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Figure 3.6: Validation of state-space models and NARX networks in the absence of
measurement noise and using distinctly generated input profiles.

24



M.A.Sc. Thesis - M. Rashid; McMaster University - Chemical Engineering

336

338

340

T
em

pe
ra

tu
re

[K
]

−8

−6

−4

lo
g(

V
is

co
si

ty
)

0 100 200 300
900

920

940

960

980

Time Step

D
en

si
ty

[k
g
/m

3
]

0 100 200 300

336

337

338

Time Step

Ja
ck

et
T
em

pe
ra

tu
re

[K
]

Plant SS Model NN model

Figure 3.7: Validation of state-space models and NARX networks subject to measurement
noise and using distinctly generated input profiles.

Table 3.2: Mean NRMSE evaluations for the validation of the identified models against
distinctly generated input trajectories.

Temperature
[K]

log(Viscosity) Density
[kg/m3]

State Space (without measurement noise) 0.20 0.13 0.09

State Space (with measurement noise) 0.20 0.14 0.12

NARX network (without measurement noise) 0.52 0.30 0.33

NARX network (with measurement noise) 0.52 0.30 0.33
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Chapter 4

Closed-Loop Results

Having identified both state-space models and NARX networks, the models were

then implemented into MPC for forward prediction of the evolution of the PMMA

polymerization process. The control structure of the MPC was such that the jacket

temperature (input) was used to control the reactor temperature, logarithm of vis-

cosity, and density (outputs). The MPC scheme was realized by minimizing the cost

function

J =

Hp∑
i=1

dy(i)×Qy × dy(i)T + du(i)×Rdu × du(i)T

dy(i) = y(i)− yref (i)

du(i) = u(i)− u(i− 1)

(4.1)

where Rdu and Qy are positive definite weighting matrices penalizing input moves and

deviation from the reference output trajectory, respectively. MPC was implemented

in MATLAB using the fmincon function; iteratively, at each time step, the fmincon

solver was called to solve the optimization problem for the optimal control moves.

In the case of state-space models, the MPC parameters were tuned such that Qy was

set to the identity matrix, Rdu was set to the zero matrix, and Hp = Hc = 1 was set as
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both the prediction and control horizons. Additionally, a Kalman filter was repeated

as similar to Chapter 3, except that the initial state vector was now estimated using

MATLAB’s findstates function from training data.

As with ARX models, it is necessary to initialize the internal states of the (closed-

loop) NARX networks at each time step to allow for forward prediction. To achieve

this, recent plant data were used to iteratively update the internal states of the NARX

networks; this can be thought of as being analogous to how state estimation is im-

plemented in the use of state-space models. In particular, the last 10 time steps of

input/output data were used to initialize the neural network at each iteration.

In the case of neural networks, the MPC parameters were picked as follows:

Qy =
( 100 0 0

0 1 0
0 0 1

)
, Rdu = 50, Hp = 2 was set as the prediction horizon, and Hc = 1

the control horizon. For the first 10 time steps, the plant was allowed to operate

under open-loop conditions. Then, closed-loop control was implemented using the

NARX networks as predictors for the MPC. At each iteration, the last 10 time steps

were used to estimate the current internal state of the neural network.

Remark 2. An important consideration is that the controllers for the state-space

models and NARX networks, which were tuned by trial-and-error for performance,

are different. Accordingly, the control performance depends on not only model perfor-

mance, but also on the suitability of the tuning parameters. However, it is not trivial

to separate and identify the specific impacts of the model’s predictive performance and

the controller’s tuning parameters. One possibility would be to examine the control

performance of both state-space models and NARX networks under a range of con-

trollers whose parameters have been selected randomly. Another possibility would be to

implement both state-space models and NARX networks on two different controllers:

one that has been tuned for state-space models and another that has been tuned for the

NARX networks. These explorations remain the subject of future work.
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Table 4.1 compares the mean errors over all three process outputs in applying MPC

using both state-space models and NARX networks. Both types of models were

implemented in MPC, and several tests were run for 10 different reference trajectories,

which were in turn determined from each of the three types of input profiles as from

Chapter 3.

Errors between the control and reference trajectories were evaluated via NRMSE

calculations; the means of those NRMSE calculations over all 30 implementations

are given in Table 4.1. State-space models outperformed NARX networks in control

of temperature, the output exhibiting the most non-linear behavior; both models

provided almost identical control over the other outputs. The control performance of

NARX networks deteriorated more due to noisy conditions than that of state-space

models. Figures 4.1 and 4.2 show examples of the implementation of state-space and

NARX network models in MPC.

Table 4.1: Mean NRMSE evaluations between the control and reference trajectories.

Temperature
[K]

log(Viscosity) Density [kg/m3]

State Space
(without

measurement
noise)

0.49 0.61 0.56

State Space (with
measurement

noise)

0.56 0.61 0.56

NARX network
(without

measurement
noise)

0.60 0.60 0.58

NARX network
(with

measurement
noise)

1.07 0.60 0.58
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To further assess model performance, the identified models were used to track novel

reference trajectories. For the purposes of gauging over-fitting, this new set of data

was generated to be distinct from the data sets used previously in model identification

and validation.As discussed in Chapter 3, the data set was formed via the generation

of PRBS input profiles. Refer back to Figure 3.5 to see an example comparison

between one of the input profiles used in model identification and one of the input

profiles from this final data set.

Table 4.2 tabulates the mean NRMSE evaluations associated with the plant data and

model predictions. State-space models and NARX networks provided similar control

performance for the log(viscosity) and density outputs. Additionally, neither model

was heavily impacted by measurement noise. However, there was a significant gap

between the two modeling approaches in the control of temperature. Therefore, it

is concluded that state-space models outperformed NARX networks in the control

of novel reference trajectories. The data indicate that NARX networks were less

versatile than state-space models in generalizing beyond the range of training data.

Figures 4.3 and 4.4 present a visual comparison between the prediction performance

of both modeling approaches with regards to novel data.
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Table 4.2: Mean NRMSE evaluations between the control and distinctly generated
reference trajectories.

Temperature
[K]

log(Viscosity) Density [kg/m3]

State Space
(without

measurement
noise)

0.05 0.01 0.00

State Space (with
measurement

noise)

0.18 0.02 0.01

NARX network
(without

measurement
noise)

0.58 0.04 0.02

NARX network
(with

measurement
noise)

0.67 0.04 0.03
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Figure 4.1: Implementation of state-space models and NARX networks into MPC in the
absence of measurement noise.
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Figure 4.2: Implementation of state-space models and NARX networks into MPC subject
to measurement noise.
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Figure 4.3: Implementation of state-space models and NARX networks into MPC in the
absence of measurement noise and using newly generated reference profiles.
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Figure 4.4: Implementation of state-space models and NARX networks into MPC subject
to measurement noise and using newly generated reference profiles.

In comparing state-space models and NARX networks, it is worthwhile to not only

compare control performance, but also computation times. Table 4.3 tabulates the

mean computation times taken for the MPC simulations to complete for each type

of model. The total simulation times were averaged over the 30 reference trajectories

that were tracked. Since the aim was to evaluate computational complexity, and not

performance, Hp = Hc = 1 was set as both the prediction and control horizons for

the NARX networks in order to make fair comparisons between computation times.

Judging by computation time, NARX networks exceeded the state space models in

computational complexity by an order of magnitude.
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Table 4.3: Mean computation times, in seconds, for MPC simulations.

Sans Noise With Noise

State-space 20 21

NARX Network 150 152
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Chapter 5

Conclusions and Future Work

The research presented aimed to explore if, in their present state, neural network-based

models are a useful tool for process control. In particular, the focus of this study was to

compare the efficacy of ANNs with state-space models within the framework of MPC.

To this end, state-space and NARX network models were developed for a batch

PMMA polymerization process. In this study, subspace-based state-space models

outperformed NARX networks in predictive power and control performance. In par-

ticular, there was a sizable gap in the prediction capability and control performance

with regards to adapting to novel data outside the scope of training data. The NARX

networks were found to be vulnerable to over-fitting training data.

The results of this work reveal that NARX networks are worse predictors than state-

space models in terms of model-based control. As such, more development is required

before neural networks can become viable toward modeling and process control.

Finally, it is to be noted that this study only encompassed NARX networks in the

context of a batch PMMA polymerization process, which does not feature highly

non-linear behavior and is a single-input multiple-output system. However, there are

diverse approaches for leveraging neural networks for the modeling and control of

industrial processes. Therefore, future directions for this work include: 1) applying

neural network models to the modeling and control of different systems 2) exploring
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other neural network architectures, 3) assessing different approaches for implementing

neural networks into MPC, 4) increasing process complexity, 5) investigating solutions

for addressing over-fitting, and 6) and examining the usefulness of controller perfor-

mance monitoring in bridging the control performance of NARX networks.

5.1 Different Systems

The PMMA polymerization process that was used as a testbed is a single-input

multiple-output system. For future work, it would be worthwhile to examine the

viability of neural networks for processes of different complexity. For instance, one

can begin by assessing the usefulness of neural networks in the modeling and control of

single-input single-output systems. Later, research should be extended to studying the

modeling and control performance of neural networks with respect to multiple-input

multiple-output systems. In this manner, we will be able to more comprehensively

gauge the effectiveness of neural networks, and their possible issues with overfitting,

with regards to control problems of varying complexity.

5.2 Different Neural Network Architectures

As previously discussed in Chapter 2, NARX networks are only one choice for the

architecture of neural networks. Consequently, it is worth considering the implemen-

tation of other architectures to thoroughly review the potential of neural networks

for modeling and control applications. For instance, a detailed case study of LSTM

networks may be a worthwhile pursuit for future work.
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5.3 Other Methodologies

Besides other architectures, there also exist different approaches for implementing

ANNs into MPC. For instance, it is possible to predict based on having the inputs

to the ANNs encompass the entire historical sequence rather than the most recent

data points. Moreover, rather than embedding them into MPC, the ANNs themselves

could form the controllers instead. Finally, as inspired by [16], it is possible to con-

sider a hybrid parallel model that employs an ANN, which is auxiliary to the state

space model, that models the residual gap between the plant and state-space model.

Therefore, there exist other methodologies for applying ANNs toward process control

that should be investigated further in subsequent studies.

5.4 Process Complexity

Unlike state-space models, NARX networks are able to directly encode non-linear

elements and dynamics. Therefore, a clear advantage of NARX networks is in their

ability to handle highly non-linear behaviour. As such, future work should compare

state-space models and NARX networks in exceedingly non-linear and complex pro-

cess dynamics. This will allow for a more comprehensive exploration of the strengths

and weaknesses of the two approaches.

5.5 Solutions for Addressing Over-fitting

Besides reducing model complexity, several regularization techniques have been pro-

posed as a means of curtailing the problem of over-fitting, as has been reported

previously [30]. However, the value of these regularization techniques for reducing
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over-fitting in ANNs that model dynamic processes requires further exploration. As

such, applying regularization techniques to the NARX networks identified in this work

would comprise a natural continuation to the present study.

5.6 Controller Performance Monitoring

The results of this study show that NARX networks, in comparison with state-space

models, were poor predictors of input/output data that are characteristically distinct

from the training data. Therefore, it would be prudent to explore the usefulness of

controller performance monitoring for evaluating the performance of ANNs in model-

based control toward bridging the gap of NARX networks in adapting to novel data.
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