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Tuning Space Mapping Approach

simultaneously achieves electromagnetics (EM) accuracy and 

circuit-design speed

based on the intuitive idea of “space mapping” and an EM-

simulator-based tuning methodology

we review the state of the art of computer-based optimal tuning 

of microwave circuits

we explain the art of microwave design optimization through our 

“tuning space mapping” procedures



Tuning Space Mapping Procedures

involve three models

fine model

auxiliary fine model (fine model with tuning ports) of 

various distinct types (e.g., Type 1 and Type 0)

tuning models (auxiliary fine models augmented with 

tunable or tuning elements)

we implement these models utilizing commercial simulation 

software
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Postproduction Tuning

computer-aided network tuning (Pinel, 1971)

design centering, tolerancing and tuning (Bandler et al., 1976)

postproduction tuning technique utilizing simulated sensitivities 

and response measurements (Bandler et al., 1981)

functional and integrated tuning approach (Bandler and Salama, 

1983, 1985)

a scalar transmission-based tuning technique (Zahirovic et al., 

2010)

tuning robot (Yu and Tang, 2003)



Electromagnetics-Simulator-Based Tuning

fast analysis and optimization of combline filters using tunable 

components in FEM simulator (Swanson and Wenzel, 2001)

design closure—companion modeling and tuning methods 

(Rautio, 2006)



Space Mapping Concept

(Bandler et al., 1994-)
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Implicit, Input and Output Space Mappings

(Bandler et al., 2003-)

expert engineering expertise helpful in engineering expertise

knowledge helpful “tuning the surrogate” perhaps less necessary

(few designable (many possibilities, (many output variables)

variables) e.g., dielectric constant)



Tuning Space Mapping (TSM): Type 0 and Type 1

(Cheng et al., 2012)
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Tuning Space Mapping (TSM): Auxiliary Fine Model and 

Tuning Model (Cheng et al., 2012)

1. auxiliary fine model: fine model with tuning ports or split fine model components

2. tuning model: tuning components are added to the auxiliary fine model

Type 0– Type 0 and 1 Type 1d (fast) Type 2

fine model

auxiliary fine 

model1

tuning 

model2

auxiliary
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fine model

Type 1 Type 0

1

2

3



Tuning Space Mapping (TSM): Type 0 and Type 1

(Cheng et al., 2012) 
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Tuning Space Mapping (TSM): Type 1 and Type 1d 

(Cheng et al., 2012) 

Type 1 tuning

fine model             auxiliary fine model            conceptual

tuning model
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Tuning Space Mapping (TSM): Type 2 

(Cheng et al., 2012) 
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Tuning Space Mapping Optimization (Cheng et al., 2012) 

the original optimization problem

align tuning model with fine model

optimize tuning model

* arg min ( ( ))Ux R x
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( ) ( ) ( ) ( )arg min ( ) ( , )i i i i

f t 
p

p R x R t p

 ( ) ( ) ( )

opt argmin ( , )i i i

tU
t

t R t p



Tuning Space Mapping (TSM) Flowchart (Cheng et al., 2012) 
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Open-loop Ring Resonator Bandpass Filter 

(Koziel et al., 2008)

design parameters: 

x = [L1 L2 L3 L4 S1 S2 g]T mm

specifications:

|S21|  −3 dB, 2.8-3.2 GHz

|S21|  −20 dB, 1.5-2.5 GHz, 3.5-4.5 GHz  
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Open-loop Ring Resonator Bandpass Filter:

Types 1 and 0 Tuning Auxiliary Fine Model (Cheng et al., 2010)

Sonnet em model with internal (co-calibrated) ports:
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Open-loop Ring Resonator Bandpass Filter:

Mixed Type 1 and Type 0 Tuning Model (Cheng et al., 2010)

Sonnet em tuning model with tuning elements

(Type 0 elements in circles)
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Open-loop Ring Resonator Bandpass Filter:

Mixed Type 1 and Type 0 Tuning Model (Cheng et al., 2010)

initial responses: tuning model (—), fine model (○),

fine model with co-calibrated ports (---)
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Open-loop Ring Resonator Bandpass Filter:

Mixed Type 1 and Type 0 Tuning Model (Cheng et al., 2010)

responses after two iterations: the tuning model (—),

corresponding fine model (○)

|S
2

1
|



Third-Order Chebyshev Filter (Kuo et al., 2003)

fine model (Sonnet em)

design variables: x = [L1 L2 S1 S2]
T

design specifications:

|S21|  –20 dB, 1.0-1.6 GHz, 2.4-3.0 GHz

|S21|  –3 dB, 1.8-2.2 GHz
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Third-Order Chebyshev Filter: Type 1d (Fast) Tuning 

(Koziel et al., 2010)
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Third-Order Chebyshev Filter: Type 1d (Fast) Tuning 

(Koziel et al., 2010)

initial fine model (), 

tuning model (---), 

tuning model after the 

alignment procedure (…)

final model design (), 

tuning model (---)
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Coupled-line Bandpass Filter: Type 2 Tuning 

(Koziel and Bandler, 2011)
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Coupled-line Bandpass Filter: Type 2 Tuning 

(Koziel and Bandler, 2011)

final fine model responses obtained in two iterations 
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Conclusions

review of tuning techniques

categorize and illustrate tuning space mapping procedures

tuning space mapping is generally robust because of misalignment 

compensation by

physically valid tuning elements and

subsequent parameter extraction procedures

considerations: the engineer’s knowledge, available software, 

difficulties in implementation, simulation costs

our aim: to help engineers understand the methodology and to 

inspire new implementations and applications
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