
SEIS8S, A LIVE-CODING LANGUAGE FOR LATIN DANCE MUSIC

CULTURALLY SITUATED PROGRAMMING PLATFORMS:
SEIS8S, A LIVE-CODING LANGUAGE FOR ELECTRONIC LATIN

DANCE MUSIC

BY LUIS NAVARRO DEL ANGEL, B.A., M.A

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment
of the Requirements for the Degree Doctor of Philosophy

McMaster University © Copyright by Luis Navarro Del Angel, August 2023

McMaster University DOCTOR OF PHILOSOPHY (2023) Hamilton, Ontario (Communi-
cation Studies and Media Arts)

TITLE: Culturally situated programming platforms: Seis8s, a live-coding language for elec-
tronic Latin dance music

AUTHOR: Luis Navarro Del Angel, B.A. (Academia de Música Fermatta), M.A. (McMaster
University)

SUPERVISOR: Dr. David Ogborn

NUMBER OF PAGES: viii, 365

ii

Abstract

This dissertation speculates on culture, social spheres, and programming to gain insight

into how computer platforms can be (re)thought and (re)designed around the consciousness

and struggles of Latin American communities. This dissertation uses an interdisciplinary

methodology emphasizing approaches to live-coding performance, platform design and soft-

ware development, participatory action research, and interpretive and semiotic analysis.

The research in this dissertation starts with the argument that computer languages

are influenced by social spheres (e.g., science and arts), economic models (e.g., knowledge

economy), communication systems (e.g., natural language), and infrastructures (e.g., software

collaboration protocols and institutions). Next, it is discussed how I deployed this argument

by ideating and coding a computer language based on specific social spheres (i.e., live coding

practice and popular music), communication systems (i.e., Spanish), and infrastructures (i.e.,

cultural centers and online spaces) of Hispanoamerica. Finally, this computer-music language

is compared and contrasted against collective reflections and uses by this dissertation’s author

and members of the general public through a series of conversation circles and live coding

performances.

This research results in developing Seis8s, a computer-music language inflected by Span-

ish constructs borrowed from Latin dance music. Seis8s blends Latin American music sen-

sibilities and live coding techno-politics to promote critical reflection. Seis8s emphasizes

resistance to asymmetric types of computer-music abstraction by bringing Afro-Latin instru-

ments and rhythms to the center of the technology and the performance. Results of this

iii

research also include ten public presentations using Seis8s involving individual and collective

live coding performances and conference presentations. These public presentations showcased

Seis8s and promoted reflection toward universal understandings of bodies, culture, politics,

and economies of these technological and artistic milieus.

This research also gives insight into mestizaje and latinidad as concepts still present in

the belief systems and ways of knowing Spanish speakers in Latin America and, consequently,

in the software they develop. Mestizaje and latinidad are challenged collectively by position-

ing the white-mestizo ideology as a shared problem that could be resisted through reflection

on the irreducibility of the Latin American identity and its potential to coexist with other

identities.

iv

Acknowledgements

I thank my supervisor Dr. David Ogborn and my supervisory committee members, Dr.

Christina Baade and Dr. Rossana Lara, for their insightful feedback on this dissertation and

continued support throughout my doctoral studies. Thank you for being an inspiration inside

and outside the university through your kindness and patience.

Thank you to the Communication and Media Arts Department at McMaster University

for supporting this research through the departmental doctoral scholarship. Thank you

to Canada’s Social Sciences and Humanities Research Council for supporting this research

through my supervisor’s grant, ”Platforms and practices for networked, language-neutral

live coding”. Thank you to the Mexican Fund for Culture and the Arts (FONCA) and

the Mexican Council for Science and Technology (CONACYT) for supporting this research

through the grant ”Doctoral Scholarship for Studies Abroad 2019”.

Thank you to the Communication and Media Arts Department faculty at McMaster

University for their meaningful teaching. Thank you to McMaster professors Dr. Andrea

Zeffiro, Dr. David Harris Smith, and Dr. Sara Bannerman for their ongoing mentorship.

Thank you to the department administrators, Cassandra Weimann and Lorraine Bell, who

guided me through the operative aspects of the university.

Thank you to my parents, Fany Del Angel and José Luis Navarro, for encouraging me

to pursue this doctoral degree and for their emotional and economic support. Thank you

to my partner Jessica Rodŕıguez for all the insightful discussions and feedback about this

dissertation.

v

Thank you to all the participants and interviewees of this dissertation. Some of the

interviewees who permitted me to include their names are Tania Alejandra, Gabriel G. aka

alom, Jessica Rodŕıguez, Andres Miramontes, Laura Zapata, Milagros Saldarriaga, Marco

Valdivia, Patricia Cadavid, and Dr. Irene Soria. Thank you to the Factory Media Centre in

Hamilton, Ontario, for their support in promoting this research. Thank you to the Factory

Media Centre’s Operations Coordinator, Kristina Durka, for facilitating the connection with

participants and interviewees of this dissertation.

Thank you to Emilio Ocelotl and Marianne Teixido, members of the collective RGGTRN,

who were a source of inspiration through the many performances and workshops we did

together before and during my Ph.D. project. Thank you to my after-school music teacher

Gerardo Lopez Silva who encouraged me to explore all types of music, including cumbia.

Finally, I would like to provide a list of Latin dance music that inspired me while writing

this dissertation.

Los Ángeles Azules - Cumbia del Acordeón ft. Los Claxons • Los Ángeles Azules -

Viernes Cultural ft. Haydée Milanés • Joe Arroyo - La Rebelion • Megapuesta - Blinding

Lights • Celso Piña - Reina de Cumbias • Los Mirlos - La Danza de Los Mirlos / Cumbia

de Los Pajaritos • Raymix - Oye Mujer • Los Van Van - Soy Todo • Los Van Van - Aqúı el

que Baila Gana • Juan Formell y Los Van Van - Soy Todo / Ay Dios Ampárame • Willie

Colon and Hector Lavoe - Aguanile • Elito Revé y su Charangón - La Rumba feat Paulo

FG • La Delio Valdez - La Cancioncita • La Delio Valdez - De noche al amanecer • La

Delio Valdez - Joyita Norteña • Amantes del futuro - Fanataśıa Olmeca • Grupo Carabo -

El Afilador • Grupo Soñador - El paso del gigante • Grupo Jalado De Oscar Bakano - Que

Te Vaya Bien • Kumbia Queers - Chica de Calendario • Porfi Baloa - Persona ideal • Juan

Luis Guerra 4.40 - Vale la Pena • Jerry Rivera - Amores Como el Nuestro • Oscar D’Leon -

Llorarás • Septeto Acarey - Eres Mi Sueño • Los Ángeles Azules - Cómo Te Voy A Olvidar

• Celso Pina - Cumbia Sampuesana • Selena - Como La Flor • Aniceto Molina - Cumbia

Sampuesana • Sonora Dinamita - Que nadie sepa mi sufrir • Irakere - El volcán del caribe

vi

https://youtu.be/zpVrDxFkhPY
https://youtu.be/lKE7QDQpOqo
https://youtu.be/lKE7QDQpOqo
https://youtu.be/oWBf9hfW_4Y
https://youtu.be/zf9b64pjMN0
https://youtu.be/zf9b64pjMN0
https://youtu.be/z2c5xCmLiAE
https://youtu.be/kAap4MCq6WY
https://youtu.be/kAap4MCq6WY
https://youtu.be/qqqMyxv5al4
https://youtu.be/F6X1-l2F8gQ
https://youtu.be/a8aFAJyGZT4
https://youtu.be/a8aFAJyGZT4
https://youtu.be/Wkkm1E2zWmQ
https://youtu.be/5BPYFIWNehg
https://youtu.be/5BPYFIWNehg
https://youtu.be/subO23GIHyM
https://youtu.be/subO23GIHyM
https://youtu.be/ZDU4FJSvuEU
https://youtu.be/4YY8GMQVXIo
https://youtu.be/cpmAvs9UROw/4YY8GMQVXIo
https://youtu.be/cpmAvs9UROw/4YY8GMQVXIo
https://youtu.be/eHwJbgHY_Lk
https://youtu.be/2OUmgYlqRuM
https://youtu.be/2OUmgYlqRuM
https://youtu.be/uj80VjraMQc
https://youtu.be/CFw-Gctw5tI
https://youtu.be/CFw-Gctw5tI
https://youtu.be/PhYJBvVTkVk
https://youtu.be/lElVih3CPQk
https://youtu.be/RksYXExb0d0
https://youtu.be/RksYXExb0d0
https://youtu.be/sJqDmVekMWU
https://youtu.be/0mMtIYwjsO8
https://youtu.be/0mMtIYwjsO8
https://youtu.be/FXEKw5LGQzA
https://youtu.be/nxXvOEPsE0s
https://youtu.be/XwthVKd8DJ0
https://youtu.be/FwZTgDjRLM0
https://youtu.be/ERrDvPHD18k
https://youtu.be/ERrDvPHD18k
https://youtu.be/pAHXkLhbaFU
https://youtu.be/OhQc9RW05sk

Contents

Introduction 1
Anecdotes on culture and computer languages 2
Questions on culture and situated knowledge 6
Questions concerning this dissertation . 8
Description of chapters . 11

1 State of the art: programming languages as texts and cultural objects 15
1.1 Theoretical framework . 16
1.2 Logo . 18
1.3 Cornrow Curves and Rhythm Wheels software 21
1.4 Lenguaje Latino . 25
1.5 Alb . 30
1.6 Conclusion . 33

2 Seis8s, a live-coding language for electronic Latin dance music 35
2.1 Motivation . 36
2.2 Background: A personal anecdote on postmodernity and live coding in Mexico 38
2.3 Introducing Seis8s . 43

2.3.1 Lexicon . 43
2.3.2 Syntax . 45
2.3.3 Semantics . 46

2.4 Seis8s as text and cultural object . 52
2.5 Conclusion . 57

3 Seis8s in context: talking circles on music and software 59
3.1 Description of the circles . 60
3.2 Methodology for gathering and analyzing participants’ contributions 62
3.3 Part 1: Software in Latin America . 64

3.3.1 What is software? . 64
3.3.2 Parallel coexistence, delinking digital technology 66
3.3.3 The concepts of race, multiculturalism, and pluriculturalism in software 71
3.3.4 On software orientations . 76

3.4 Part 2: Latin dance music . 79
3.4.1 Cultural appropriation in Latin music 79
3.4.2 Sophisticated listening and instrument substitutions 84

vii

3.4.3 Kumbia Queer, commands, lyrics, and dance 87
3.5 Conclusion . 91

4 Seis8s in practice: public performances and exhibitions 96
4.1 Seis8s usage aesthetics: Live Coding and Networked Music performance . . . 97
4.2 Performances and Installations with Seis8s 98

4.2.1 D’Binis at Campamento Extendido <impendingvoid> by Posternura
Records . 98

4.2.2 RGGTRN at Digitropics . 100
4.2.3 Luis Navarro Del Angel at Galvanized Suns by Diasporic Futurisms . 103
4.2.4 Tania Alejandra, Gabriel G. aka alom, Jessica Rodŕıguez, Andres Mi-

ramontes, and Luis N. Del Angel: Rehearsal for a Performance at the
Factory Media Centre . 106

4.2.5 Cybernetic Orchestra at Estuary’s 5th Anniversary by the NIL 108
4.2.6 The ASCIItos: Barush, Nuriban and Gabriel G at Estuary’s 5th An-

niversary by the NIL . 111
4.2.7 Grupo D’Binis at PUMPUMYACHKAN Festival 16th by Asimtria . . 114
4.2.8 Seis8s as an online Installation at International Conference on Live

Coding . 117
4.2.9 Genuary 2022 Seis8s In Space by Illest Preacha 119
4.2.10 Seis8s as an online Installation at the New Interfaces for Musical Ex-

pression Conference . 120
4.3 Conclusion and further work . 122

5 General conclusions 125
5.1 General findings and main takeaways . 125
5.2 Reflections on the research process . 127
5.3 Contributions to computer programming and live coding practice 128

References 129

A Appendices: Talking circles, list of materials and themes 140
A.1 Thursday sessions . 140
A.2 Saturday sessions . 144
A.3 Categories and overarching themes . 146
A.4 Sei8s’ code . 160

A.4.1 The Main module . 160
A.4.2 The Program module . 183
A.4.3 The Parser module . 183
A.4.4 The Layer module . 318
A.4.5 The Global Material module . 334
A.4.6 The Style module . 335
A.4.7 The Rhythm module . 348
A.4.8 The Harmony module . 349

viii

Introduction

This dissertation speculates on culture, social spheres, and programming to gain insight into

how computer platforms, such as computer languages, can be (re)thought and (re)designed

around the consciousness and struggles of Latin American communities. This dissertation

uses an interdisciplinary methodology emphasizing approaches to live-coding performance,

platform design and software development, participatory action research, and interpretive and

semiotic analysis. The research in this dissertation starts with the argument that computer

languages are influenced by social spheres, economic models, communication systems, and

infrastructures.

This dissertation heavily discusses programming languages from a Spanish-speaking per-

spective; nonetheless, it tries to understand Latin America not as a homogenizing appellation

of origin but as the label of political movements resisting violence from colonial and imperial

power during the 20th century onwards (see Agurto, 2022; Bard Wigdor and Artazo, 2017;

Quijano; 2006). I identify myself as part of these political movements and communities of

resistance as a subject trying to push further the liberatory notions often attributed to digital

arts in favor of women and minority groups of Latin American descent. Nonetheless, I am

aware that being a Mexican, mestizo, settler, middle-class, heterosexual male modulates my

political action.

1

Anecdotes on culture and computer languages

The Flow-Matic: American inventories and respectable computers

At the 1977 History of Programming Languages Conference held in LA, Admiral Grace Mur-

ray Hopper explains how in the mid-1950s, computer programming took a clerical orientation

focused on a type of programmer dealing with data processing. This new programmer was

business trained and often lacked mathematical knowledge to code. Commissioned by the

Radio Corporation of America (RCA), a team led by her sat down to examine the jargon

at the workplace of this new programmer — for example when doing inventories. This way,

her team drew up a list of 30 verbs that later became a new computer notation based on

English-speaking business statements called the Flow-Matic (Hopper, 1981).

Figure 1: Cover and page 1 of the Flow-Matic user manual (Sperry Rand Corporation, 1957)

As Hopper continues her narration, she mentions that following a logic of translation

from mathematical to natural language, it was possible to generate code not only in English

but in other languages as well. To make the latter explicit, her team created some commands

2

in French and German along with the ones in English. Surprisingly enough, Hopper mentions

that after presenting these to the RCA directors, she and her team had to spend four months

apologizing for programming in languages other than English. As for these directors, “[i]t

was absolutely obvious that a respectable American computer, built in Philadelphia, could

not possibly understand French or German!” (Hopper, 1981, p. 16)

COMIC: Spanish-derived functions amidst a coup d’etat in Argentina

Between 1964-1966 in Argentina, mathematician Wilfred Oscar Durán Salvador developed

one of the first programming languages in the region called COMIC, an acronym for “Com-

pilador del Instituto de Cálculo [Compiler of the Calculus Institute]”. It was developed for

a Mercury computer bought by the University of Buenos Aires from British manufacturer

Ferranti Ltd. One of the main motivations for developing COMIC was finding a more friendly

way to express the mathematical ideas of Argentinian scientists of the time.

Strategies that Durán Salvador used to make the language friendly, included Spanish-

derived functions, for example, the function azar, which returned a random number between

0 and 1 – the word azar translates to random in English. COMIC also “introduced control

structures that took years to appear in other programming languages, such as mark tables,

a primitive version of ‘case’ [expressions]” (Durán Salvador, 2009, p. 9).

Figure 2: A COMIC program with commands in Spanish for solving a series of equations (Durán Salvador, 2009, p. 101)

However, one of the most interesting things about this language is the Argentinian so-

ciopolitical context in which it was developed: the period of dictatorship known as Revolución

Argentina [Argentinian Revolution] that lasted from 1966 to 1973. COMIC became usable

3

in May 1966, when the coup d’etat happened, as its creator Durán Salvador (2009) narrates.

“I still had the penultimate COMIC master tape with me, dated 5-2-66, from the

blue color reserved for compilers, in which two pieces of red tape are tied together,

from small changes that were made later, as we continued making touch-ups and

preparing larger aggregates. When President Illia was overthrown on June 28,

1966, the vigil began” (p. 46, translation mine).

A goal of the dictatorship was to forbidding the political movement of Peronismo1 and

its so-called communist ideology.

“Friday, July 29, 1966, was exam day. I left the Faculty early in the afternoon

because, at seven at night, I had to take a train to Tandil, where that year, I

taught a couple of courses on Saturdays at the University of Tandil ... In the

morning, when I had breakfast and read La Prensa newspaper, I learned about

the bloody intervention of the dictatorship’s police. I tried to contact someone

from the [institute] by phone, and it took me a while to do so since everyone

was meeting somewhere to orchestrate their resignation, to which I immediately

included myself” (p. 47, translation mine).

One of the effects of this dictatorship was brain drain, which is a massive flight of highly

trained individuals. Because the University of Buenos Aires did not copyright the language,

Durán Salvador was able to take it with him to a Venezuelan university, where he continued

developing it.

“And so, on February 22, [1967] we arrived in Venezuela, my wife, our son five

years old, and me; the delay was due to the delay of the university administration

1“Peronism, also called justicialism, is an Argentine political movement based on the ideas and legacy
of Argentine ruler Juan Perón (1895–1974). It has been an influential movement in 20th and 21st century
Argentine politics” (“Peronism”., 2022, para. 1). “The pillars of the Peronist ideal, known as the ’three
flags’, are social justice, economic independence, and political sovereignty. Peronism can be described as a
third position ideology as it rejects both capitalism and communism” (para. 7)

4

in obtaining the visas and sending me the tickets for the trip, a typical tropical

way of working” (p. 49, translation mine).

What do these two stories say about the cultural aspects of computer languages?

The anecdotes above point to some cultural aspects and social spheres influencing computer

languages, opening the potential to ask about what other cultural aspects influence these

technologies and about the implications of this. Hopper’s account, for example, highlights

a shift from commands based on mathematical constructs to commands based on natural

language in the 1950s. Her anecdote also unveils institutional attitudes and modes of knowing

that could be interpreted as part of a historical moment in the early-1950s United States

focused on the “widespread adoption of modern education and cultural values” under the

1949 Truman Doctrine (Escobar, 1995, p. 4). This way, it could have been that the RCA

directives were displeased because it was at this moment that the American people understood

English as the language of business, modernity, and truth inside and outside the US2.

The second anecdote allows one to envision cultural analyses applied to programming

technologies developed outside the US, for example, in Latin America. Such analysis is

essential to see that speculation on the relationship between culture, social spheres, and

programming in Latin America is not new, and could lead to understanding how natural

languages spoken in Latin America influenced these technologies throughout history. It could

also lead to knowing more about national ideologies and historical circumstances concerning

these technologies. Durán Salvador’s anecdote, for example, unveils some of the effects of

Argentina’s dictatorships on the development of computer programming in that country.

Moreover, it makes one wonder whether there has been a connection between computer

programming and peronismo – a political movement said to be ingrained in the mind and

customs of Argentinians?

2This analysis of the Flow-Matic is of my own research; however, another analysis of this languages is
discussed in a recent article from Mark Marino (2020b).

5

Questions on culture and situated knowledge

In the Dictionary of Latin American studies (Szurmuk et al., 2009), Cuban literary critic

Nara Araújo discusses the term culture. From a Latin etymology, “this word is associated

with the action of cultivation or of practicing something” (p. 71, translation mine). It is also

related to the action of “honouring ... a religious deity, the body or the spirit”. These two

definitions conflated position culture as “the result or effect of cultivating human knowledge”.

And, on a larger scale, “as the set of modes of life, and of customs of a time period, or a

social group” (p. 71, translation mine).

The Marxist cultural critic Raymond Williams (1977) follows this train of thought when

describing the 18th-century understanding of culture as a “noun of process”, meaning “the

culture of something - crops, animals, minds” (p. 14). Towards the 19th century, however,

culture became redefined as “a process of ’inner’ or ’spiritual’ [development]” (p. 13). And,

it is at this moment when culture became “a general classification of ’the arts’, religion,

and the institutions and practices of meanings and values” (pp. 13-14). Further into the

19th century, “the religious emphasis weakened”, and was replaced by the “secular forms [of]

’subjectivity’, ’the imagination’, and in these terms ’the individual’” (p. 15).

In this sense, Culture is understood as “a network of signs; a communicative act, a

supposedly constant exchange ... necessary in the relationship between the sender and the

receiver” (Szurmuk et al., 2009, pp. 72-73, translation mine). From this perspective, culture

is limited by the boundaries (e.g. cultural, economic, geographic) that shape the sender and

receiver. And as a result, the actions of naming, labelling, and thus constructing knowledge

are constrained too (see Hall, 1973). Furthermore, these boundaries are precisely what makes

it difficult to define the term culture.

It “can be understood as a dimension and expression of human life, through symbols

and artifacts; as the ground of production, circulation, and consumption of signs; and as a

praxis that is articulated in a given theory” (Szurmuk et al., 2009, p. 72, translation mine).

Nowadays, “one can talk about urban culture, media culture, popular culture, mass culture,

6

[and] literate culture”, to name a few (p. 72). And, according to Araújo, mass culture, and

media culture are two categories of great interest within Latin America since the 1950s. This

is due to increased circulation, often connected to dominant economic models and values,

and which creates patterns within day-to-day areas of life, for example in “fashion, sports,

food, the arts, literature, and taste” (p. 72, translation mine).

The latter is not particular to Latin America, nevertheless. French sociologist Pierre

Bordieu (1984), for example, describes how cultural practices and preferences are linked to

social and socialization practices. According to him, this socialization not only provides

societies with the “capacity to produce classifiable practices and works” but also guides the

individual’s “capacity to differentiate and appreciate practices and products (taste)” (p. 170).

From this perspective, culture, takes upon the role of a structure or series of structures that

condition a given society.

This conditioning, as a constitutive aspect, has been described by Jamaican-British cul-

tural theorist Stuart Hall (1958), who suggests a cyclical process where not only economy but

also culture serve as a ’base’ structure that shapes the “consciousness of working people” (p.

32). Hall points, for example, to the continuous technological advancement in the workplace,

which in turn “demands a higher level of culture, education and consciousness on the part

of a skilled labour force” (p. 35). Demands that are at the same time, modulated by “new

possibilities for consumption” promising a higher social status and lifestyle (p. 36). This

way, “culture, education and learning” can also be seen as “commodities” that have “a social

value in a hierarchy of status symbols” (p. 38).

Latin American studies of culture integrate the above with a particular focus on the

relation of culture as an “agent of resistance ... for its social action in times of globalization,

neoliberalism, and electronic media technologies” (Szurmuk et al., 2009, p. 73, translation

mine). Within this perspective, culture “is understood as entangled with the social, in

the transformation of popular culture and the cultural industry, as well as intersecting in

social discourses and symbolic processes, power formations, and construction of subjectivities:

7

gender, race, citizenship” (p. 73, translation mine).

Argentinian cultural scholar Nestor Garćıa Canclini (2005) exemplify the above through

the following shared questions in Latin American Cultural studies: What are the ways in

which Latin American “workers reformulate their work culture in the face of new productive

technologies without abandoning old beliefs”? What are the ways in which inhabitants of

this region “make sense - personally and collectively - [about] invest[ing] in extended studies

in order to end up in low-paying jobs”? And, what are the ways in which popular movements

appropriate technology to call attention to their issues and demands? (1-2).

Garćıa Canclini goes on by saying

“We have, then, three questions at issue. How to study the hybrid cultures that

constitute modernity and give it its specific profile in Latin America. Next, to

reunite the partial knowledges of the disciplines that are concerned with cul-

ture in order to see if it is possible to develop a more plausible interpretation

of the contradictions and the failures of our modernization. And third, what

to do—when modernity has become a polemical or suspect project—with this

mixture of heterogeneous memory and truncated innovations” (p. 3).

Questions concerning this dissertation

Borrowing from the questions above, this dissertation asks: What are some specific modes of

consciousness – i.e., sensibilities, moral systems, belief systems, modes of knowing and being

– of inhabitants of Latin America? What are their struggles – i.e., generalized difficulties

and their modes of resistance? In which ways do these modes of consciousness and struggles

intersect with music software? How can music software be (re)thought and (re)designed

around these modes of consciousness and struggles? What would be the implications of this

(re)design?

8

Self-reflexive questions

In this dissertation, among the broad questions I propose above, I also propose more indi-

vidual explorations and speculations based on my personal experience as a person belonging

to Latin America. An experience that is, however, modulated by borders delimiting me as

a Mexican, middle-class, heterosexual, and male settler currently living in Canada. These

personal explorations and speculations include, for example, the ways in which the Mexican

mestizo ideology with which I grew up modulated the development of the computer language

I present in Chapter 2 of this dissertation, Seis8s.

This dissertation also deals with issues I have experienced which are related to interdis-

ciplinary practice. For example, how to make sense of things that seem so apart from each

other and at the same time are deeply conflated? That is, when working with culture, music,

and programming, how can talk one about issues that seem particular to one discipline but

not to other, and still maintain focus on the broader picture? On this, various authors agree

that there exists uncertainty in defining and categorizing media technologies and practices,

as they lay in between human and exact sciences (see Elsaesser, 2006; Adler, 2016). For

some, this positioning of media not only prevents the media itself but also the artist from

being revolutionary in terms of narrative and technological development. That is, Jack of all

trades, master of none.

Another perspective, however, could be that it is actually the possibility of being in

between human and hard sciences that is revolutionary. For the interdisciplinary scholar

Beatriz da Costa (2008), it is the artist engaged with technology and science who has become

the link between art, audience, and science. In this sense, the new media artist has the

potential of being a political and disruptive “context provider” within the “ever-expanding

information society” (p. 367). They make art and science accessible and at the same time,

they are aware of the different social domains they are embedded in.

This dissertation subscribes to a larger degree to the latter perspective as it gives a

positive note in regard to interdisciplinary practices. However, it is still important to consider

9

the difficulty of finding the target of the investigation. That is to say, for the new media artist,

it could be very easy to get distracted and lean towards one or other practice. For example,

it is often the case that the artist-researcher leans more toward technological development

and/or technological display. In other cases, they lean more toward the production of the

artwork. And, in other cases, they lean more toward the theoretical and/or descriptive

aspects.

A question could then be if the new media artist needs to find a balance between all

these possibilities or if leaning toward some and not others is just fine. This dissertation

leans towards finding a balance, trying to look into different ways to approach the study of

culture, music, and programming on the same level. This approach, however, comes from the

possibility that my doctoral program allowed me, in that it is an interdisciplinary program

in Communication, New Media, and Cultural studies. This possibility was also enabled by

Dr. David Ogborn, Dr. Christina Baade, and Dr. Rossana Lara who are members of my Su-

pervisory Committee and who are interdisciplinary artists and researchers themselves. Thus,

throughout this dissertation, I investigate the communicative aspects of computer languages,

and how music is or is not part of these. I also entertain the idea of creating a computer-

music language and I investigate the uses of this language through live performance. Finally,

I investigate how specific cultures understand and make sense of the aspects investigated

themselves.

I am not claiming in any way, that this dissertation offers complete answers or method-

ologies, but the opposite. My intention is for it to open questions that someone else could

pick up and explore further. For this to happen, I would like to lay out the key issues of each

chapter, making sure to name the methodologies and authors used.

10

Description of chapters

Chapter 1

This chapter intends to add to current investigations around culture and software (see Gal-

loway, 2006; Chun, 2011; Allen, 2012; Lialina and Espenschied, 2015; Ali, 2016; McPherson,

2018; Eubanks, 2018). The latter, by investigating cultural traits in programming languages

through interpretative and semiotic analysis. The languages analyzed are Logo, Cornrow

Curves and Rhythm Wheels Software, Lenguaje Latino, and Alb. Initial findings include

these languages having strong influence from linguistic, pedagogical, artistic, and collabora-

tive approaches but also an orientation toward the labor force within the global economy.

This chapter draws upon Critical code studies (CCS) which is an interpretive framework

concerned with the task of reading code. That is, looking at code as “a form of communication

with layers of meaning for its wide and varied audiences” (Marino, 2018, p. 472). CCS applies

hermeneutics to investigate the interaction between various systems and “frames code as a

cultural text” by “assum[ing] its significance arises from its history, circulation, and reception”

(pp. 472-473). For CCS “[t]o treat code as a cultural text is to examine its accrual of

significance through the way it is regarded as well as the ways people respond to and interact

with it” (p. 473). CCS draws upon “media archeology and science and technology studies”

and “follows in the footsteps of critical race studies and critical legal studies in its calls for

reflexive interpretation” to investigate “issues of ethics, social relations, ideology, or other

aspects of epistemology and ontology” (p. 474).

Chapter 2

This chapter discusses Seis8s, a computer language designed by me, that allows real-time

interaction with digital audio and localized musical knowledge, particularly of Latin American

music – also known as urban Latin music or Latin popular music. This is a 20th-century

derivation of music “based on Afro-Cuban [and Afro-Caribbean] rhythms, as developed and

11

performed throughout the Hispanic Caribbean basin and its diaspora” and which is “designed

for accompanying social dancing” (Manuel, 1998, p. 127). At the moment of writing, Seis8s

revolves around Mexican cumbia and Salsa. Seis8s is also an art piece that invites us to

reflect on how culture gets embedded into computing technologies. Seis8s runs in the web

and was implemented using Haskell, the Reflex functional reactive programming platform,

and WebDirt.

This chapter as well as the development of Seis8s, draws upon the fields of New Inter-

faces for Musical Expression (NIME) and of Latin American musicology. NIME analyses how

technology affects the performer’s creative processes and the audience’s experiences by ex-

ploring human-computer interface design, development, testing, and evaluation (Lyons and

Fels, 2014). This field sees interface building as a method for learning through problem-

solving, embodiment, and kinesthetics, something that invites one to reflect on the material

position of the interface itself (see Drucker, 2013).

Latin American musicology involves the study of musics particular to this region in con-

nection with social, historical, cultural, and artistic processes to understand the surrounding

politics, economies, bodies, and power relations. In its critical form, it seeks to raise aware-

ness of the paradigms of being Latino that are constructed from national and global locations

(González, 2009). And it draws upon decolonial research and subaltern studies to defy the

“distinctive discursive faces of modernity” embodied in how musical knowledge is constructed

– e.g., the modes of musical institutionalization and professionalization that are distanced

from “cultural traditions and from the expressive and socio-affective needs of people” in this

region (Shifres and Rosaba-Coto, 2017, 86).

Chapter 3

This chapter reports on a series of online talking circles, held from August to December

2020, with people from Latin America distributed in different countries to discuss sociocul-

tural aspects of software and music. During these meetings, we discussed how software and

12

https://www.haskell.org/
https://reflex-frp.org/
https://github.com/dktr0/WebDirt

music relate to issues of gender, ethnicity, and social class in Latin America. Through these

discussions, participants were encouraged to raise their own questions and to discuss issues

revolving around their specific concerns and localities. This way, participants used this space

as a platform potentially situated within their context.

The methodology behind these conversations drew upon the frameworks of Participatory

Action research and Border Thinking. Participatory action research (PAR) involves “plac[ing]

researchers in the service of community members” to “address the imbalances that hinder our

world” by “combining knowledge and action” (Elliott, 2013, p. 2). To address this imbalance,

PAR looks for approaches that are “situated” in the individual locale and that are aligned

with “social justice”, “participatory democracy”, and with the “critique of socio-scientific

colonialism” (pp. 5, 20).

Border thinking deals with the ambiguity of the colonial subject who finds themself

operating between modes of indifference/complicity and resistance/innocence (see Anzaldúa,

1987). Border thinking is also a form of activism that invites people to subvert exploitative

structures by proposing possible futures that “transcend the imperial monologue established

by the European-centric modernity” (Grosfoguel, 2011, 26). Border thinking is aligned with

reflections from diasporic thinking (Hall, 2015; Rizvi, 2015), Critical Race Theory (Collins,

2015), and Latin American feminist thought (Bard Wigdor and Artazo, 2017; Di Próspero,

Di Próspero, 2016) to mention a few.

Chapter 4

This chapter reports on collaborative and individual performances and presentations of Seis8s

– the language described in Chapter 2. Each discussion starts with contextualizing the

place and event where they happened. This is followed by short vignettes narrating the

performances. Each section ends with a brief discussion identifying and reflecting upon the

project’s objectives: 1) Engaging the Latin American community worldwide with live coding

performance and asking them to reflect upon the options and restrictions of computer music

13

languages. 2) Engaging users in activities such as learning and producing electronic Latin

dance music.

The performances described in this chapter fall within the field of live coding practice,

which is the performance art of writing code in front of an audience to generate expressive

results such as real-time musical presentations (Collins et al., 2003; Nilson, 2007). As a

practice that emphasizes the theatrical use of textual and visual programming languages,

live coding works as a pedagogical tool for people to experience the affordances – i.e. options

and restrictions – of music-programming technologies.

14

Chapter 1

State of the art: programming
languages as texts and cultural objects

This chapter builds upon current investigations around culture and software 1 by investigating

cultural traits in programming languages through interpretative and semiotic analysis. The

languages investigated are Logo, Cornrow Curves, Rhythm Wheels, Lenguaje Latino, and

Alb. These languages are not all connected to Latin America or to music. However, I chose

them because, in addition to their computational focus, they have an explicit orientation

toward pedagogical, representational, linguistic, and infrastructural spheres, thus allowing for

a broader overview of the topic. Guiding questions include: How are cultural traits embedded

consciously and unconsciously into computer languages? How do these traits orient computer

languages? What does this orientation do to their users and their societies?

My analysis starts with Logo, a well-known computer language developed in the 1960s

US but whose reach extended internationally. I focus on the familiar culture of English-

speaking children in the US and the moment where a type of computer culture emerged around

Constructivist theories. By discussing the resulting emergence of programming practices

based on natural language, procedural thinking, and anthropomorphism of computers, I

briefly suggest how this cognitive theory helped orient a generation of computer developers

1Galloway (2004); Chun (2011); Allen (2013); Lialina and Espenschied (2015); Ali (2016); McPherson
(2018); Eubanks (2018); and Noble (2018)

15

and users.

After this analysis, I look at the languages Cornrow Curves and Rhythm Wheels, provid-

ing a discussion of some pedagogical frameworks that have developed in response to another

type of universality. That is the one connected to the Westernized orientations that logic

and mathematics took in elementary schools in the US in the 20th century. Here, I pay

particular attention to the ways computing both absorbed and resisted these orientations

through culturally situated software.

After, I move on to discuss Lenguaje Latino, a general-purpose Spanish-inflected lan-

guage, where I reflect on the linguistic hierarchies that emerge from its use of standard

Spanish. These hierarchies seem to intersect with the concept of general-purpose technology,

which I also explore in this section. I provide nuance by discussing Spanish-speaking user

forums where both positive and negative attitudes tend to emerge from the use of Spanish

in these technologies. And I conclude by pointing out how the so-called digital divide and

the knowledge economy in Latin America might influence these comments.

The last discussion revolves around Alb, another general-purpose language but now

Arabic-inflected, where I put forward the practice of reading code from cultural studies and

software development perspectives. I highlight the complications that exist with the latter,

some of which arise from the current socialization practices in programming. For example,

in open-source software where social and technological infrastructures of collaboration for

reading, critiquing, and improving code are only possible if one operates in English. I conclude

by discussing how Alb borrows from speculative design to visualize these matters.

1.1 Theoretical framework

In the mid-20th century, literary theorist Roland Barthes applied “European linguistic struc-

turalism” theories to the analysis of mass-culture artifacts to unveil how they were “capable

of displaying an idea, or even an ideology” (Calefato, 2008, p. 72). From this perspective,

16

magazine photographs, films, food, plastic, and even soap are texts conveying social patterns

resulting from discourse. For example, in his essay about French toys, Barthes (1957/1927)

discusses how these represent the “microcosm of the [Frenchman] adult world”, reproducing

socializations found in “the Army”, “the Post Office”, and in “Hair-Styling”, among others

(p. 53).

In a similar way, in the 1970s, cultural studies scholar Stuart Hall developed a theory

about the ways mass communication flows through the “distinctive moments [of] production,

circulation, distribution, consumption, and reproduction” (Hall, 1999, p. 508). Applied to

television, this theory allowed seeing how this artifact resulted from a production language

tied to the structures of broadcasting institutions (p. 509). The latter, orienting it to convey

messages tied to these institutions’ standardized social practices and their societies at large.

More recently, borrowing from the authors above, e-literature scholar Mark (Marino,

2020a) proposed investigating computer programs as cultural objects to enable discussions

about them and their cultures. This methodology, called Critical Code Studies, investigates

computer programs in the physical and virtual worlds and the “realms of production, com-

merce ... and scientific and academic inquiry” (p. 31). Furthermore, Critical Code Studies

pays attention to “studies of technology and innovation” in connection with current “discus-

sions of race and ethnicity, gender, sexuality, socioeconomic status, political representation,

[and] ideology”, among others (p. 32).

In this chapter, I suggest using the toolkit described above not only for the analysis of

computer programs but also for the computer languages they are built with. The latter makes

sense as many of these languages rely on characters, such as letters and numbers connected

to specific modes of knowledge — e.g., the Latin alphabet or the Arabic numbers. It also

makes sense as many programming languages use keywords or commands, which often relate

to objects and actions described through nouns, adjectives, verbs, and adverbs. Moreover, it

makes sense as programming languages are objects designed for specific purposes in specific

parts of the world and around specific cultural logics and historical moments.

17

1.2 Logo

Logo was a programming language for children, designed in Massachusetts in 1966 by Sey-

mour Papert, Wallace Feurzeig, and others (Solomon et al., 2020). Just by this brief intro-

duction, it becomes obvious that, in addition to having a computational orientation, Logo

also had a cultural orientation related to children. But what are the specifics of this orienta-

tion? That is, what makes this language particularly oriented to the social sphere of children?

One answer could be found in that Logo was influenced by the scientific realm of psychology,

particularly from Constructivist theories. Logo designers focused on children being able to

construct their knowledge as opposed to passively receiving it. They achieved this through

target experiences or activities that Logo designers embedded into the language.

Some consequential questions could be about the type of activities children were ori-

ented to do in Logo, or perhaps, about the relation between these activities and the society

children were members of. Logo’s creators Solomon et al. (2020) highlight that Logo was

developed around the idea of microworlds. The first of these microworlds revolved around

natural language, particularly the use of “English words and sentences” that children could

experiment with by coding “nonsense poetry [and] word games” (p. 79:21). As Logo was

created in Massachusetts, one could presuppose that —at least at the beginning— it was

oriented to children in that geographical area. And, as there is a large amount of English-

speaking people there, one could assume that Logo’s first microworld was oriented towards

English.

One can also wonder if all the English-speaking children in Massachusetts speak the same

English, just to discover that in Massachusetts there are the dialects of the New England

accent and the Boston Accent —both with distinct vocabularies. And, this could lead one

to wonder if meaning in Logo was affected by these or other linguistic variations. Solomon

et al. (2020) recount the difficulty of translating the command names in the so-called English

Logo. Here, a procedure is named using the infinitive mood, and the command to request it

uses the imperative mood. Take, for example, the Logo procedure name to gossip, which

18

Figure 1.1: A Logo program that generates a poem (Goldenberg and Feurzeig, 1987, p. 32)

after defining it can be called back with the command gossip. In English, both moods

have few differences because the language has low inflection, but in more inflected languages,

the moods vary more (p. 79:48). In Spanish, for example, the infinitive of the verb gossip

would be chismear, whereas the imperative could be either chismea, chismee, chismeemos, or

chismeen — depending on their grammatical context.

Figure 1.2: Code that generates a sentence from a subject and a predicate (Goldenberg and Feurzeig, 1987, p. 18)

Reflecting on the relation between Logo and the region of the world in which it was cre-

ated might enable conversations about the sociopolitical aspects of this region. Furthermore,

it might enable seeing a relation between sociopolitics and the sensibilities the language in-

tended to awaken. For example, Solomon et al. (2020) explain that in 1957 USA, one major

19

concern was the space race, which generated a societal crisis after Russia put the Sputnik

satellite in orbit. This event oriented the U.S. to focus on improving the math and science

programs within their public education system. And, by consequence, this oriented Logo

designers to create a second microworld for the language, which by 1970 allowed children

to explore mathematics, with the long-term expectation of awakening in them the desire to

become mathematicians (p. 79:16).

Discussing geographical specificities also unfolds into questions about Logo’s influence

in virtual worlds. For example, from the many existent forms of mathematics, Logo creators

chose to develop learning activities around geometry. The geometry they used, however, was

not formal geometry such as the Euclidean and Cartesian styles. Rather, they developed their

own “computational style of geometry” called Turtle Geometry, where children were able to

direct the movement of a point in space —also called a Turtle— to create shapes (Papert,

1980, pp. 55-58). This geometry was based on the idea of learning through association.

That is, in Turtle Geometry, children learned how bodies occupy space by associating the

movement of the human body with the movement of the turtle’s body (pp. 53, 63).

Figure 1.3: Steps of a Turtle program that generates a square (“Off the Floor and Onto the Screen”, 2022)

Reflecting on the cultures that made it into Logo makes us wonder about the cultures

that came out of it. For example, we have already discussed how Logo creators instilled

values for children to become active users, and creative researchers interested in mathemat-

ics. But what about the modes of thinking these children developed? Solomon (1978),

20

for example, describes how Logo was a “computer culture” in that it was both “a way of

thinking about computers and about learning” through computers (p. 20). This learning

culture encompassed, for example, the “anthropomorphic view of the computer” drawn from

Constructivism and explained in the paragraph above. It also encompassed a compassion

culture where the error was normalized and where debugging was expected. And, it also

encompassed a way of thinking in terms of procedures, that is, where the smaller parts of a

complicated process are given meaning by naming them and describing them based on one’s

prior knowledge (pp. 21-22). The latter unfolds into questions: How different would the

children’s development be if other modes of thinking were encouraged, such as declarative

thinking? 2 How does procedural thinking impact the ways real-world things are abstracted

into computer programs? What has been the impact of this mode of knowledge in the

development of other computer languages and in other areas of life?

1.3 Cornrow Curves and Rhythm Wheels software

Cornrow Curves and Rhythm Wheels is a software series for elementary and high-school

students made in the early 2000s by cybernetics scholar Ron Eglash, ethnomathematician

Jim Barta, and Indigenous educator Ed Galindo. This software sought to help students gain

a “sense of ownership over math and computing” by exploring culturally responsive activi-

ties and their underlying mathematics (Eglash et al., 2006, pp. 349, 352). Specifically, the

Cornrow curves software invites students to play with “fractal patterns” found in “cornrow

hairstyles” to learn about fractals themselves, and about geometrical transformations like

rotation and translation (p. 350). The Rhythm Wheels software invites students to experi-

ment with the “ratios between beats in percussion” in rhythms such as Afro-Cuban bembé

to learn about topics like the Least Common Multiple (p. 356).

2Declarative thinking, also known as declarative knowledge, refers to the “awareness and understanding of
factual information about the world—knowing that in contrast to knowing how. Its necessary and sufficient
conditions are that the information must be true, that the person must believe it to be true, and that the
person must be in a position to know it” (Colman, 2015).

21

Figure 1.4: Code generating a cornrow fractal. It was created by the author of this dissertation from https://csdt.org/

applications/128/run

The first thing to notice is the connection this software has to a series of pedagogical

approaches that emerged in the 1980s U.S. These include “culturally appropriate” teaching,

“culturally congruent” teaching, “culturally compatible” teaching, and “culturally relevant

teaching” (Ladson-Billings, 1995, p. 467). One main difference between them was how

they focused more or less on the “accommodation of student culture to mainstream culture”

and the creation of “a more dynamic or synergistic relationship between home/community

culture and school culture” (p. 467). These approaches made sense at the time as a way to

address poor content in math textbooks and pedagogical approaches where children failed to

connect their prior mathematical knowledge to the knowledge acquired at school (Gustein

et al., 1997). The latter, being more evident with students of color, keeping them from

“[developing] the tools for active participation in democratic public life” (pp. 710-711).

Pedagogies connecting the students’ cultures draw from anthropological fields like “com-

putational ethnography”, which focuses on developing computational and mathematical mod-

els based on the cultural traits of a given community (Eglash et al., 2006, p. 350). The

anthropological aspects of Cornrow Curves software are described by one of its creators Ron

Eglash, who was investigating the “iterative scaling” patterns —also known as fractals—

found in architecture in West and Central Africa (p. 349). Here, Eglash saw strong potential

in applying this fractal model into the classroom so children could engage with “African

mathematics” (349). For Rhythm Wheels software, the anthropological aspects came from

22

https://csdt.org/applications/128/run
https://csdt.org/applications/128/run

the interaction with Puerto Rican children living in New York, leading to the development of

activities focusing on the mathematical components of Caribbean music found in rhythmic

claves (p. 356).

Cornrow Curves and Rhythm Wheels are not programming languages per se. Rather

they are small libraries for the computer language Snap!, which is a visual language “that

[works] by snapping blocks together” and where “each block [represents] a procedure call”

(Solomon et al., 2020, 79:48). The idea behind visual languages is that they potentially

provide a more intuitive way to program by representing objects graphically, eliminating

convoluted syntax, and suggesting what data has to be given to the functions (Solomon

et al., 2020; Begel, 1996). Snap! started as a sub-project of another language called Scratch,

which at the same time is based on a Logo version called LogoBlocks, developed in 1996 for

the Danish toy company LEGO.

Figure 1.5: A LogoBlocks Program (Begel, 1996, p. 12)

An interesting aspect to consider here is that although visual programming existed before

as flowcharts, the idea of interlocking programming blocks was initiated with LogoBlocks,

arguably for two reasons. First, LEGO was all about interlocking blocks (or bricks), and

secondly, because at the time, Logo developers were experimenting with alternative code

23

representations (Solomon et al., 2020; Begel, 1996). Here, it might be interesting to ask what

else can one infer from the block/brick representation? One thing to say is that although

the brick, as a construction material, has been used by many cultures throughout the mil-

lennia, it is also strongly tied to Denmark’s architectural heritage where there was a lack of

other materials like rock (“Architecture of Denmark”, 2022). The value of the brick is also

connected to broader European 20th-century aesthetics like Brick Expressionist architecture,

happening in places like Germany and the Netherlands. This is not to say that the brick-

/block representation in visual programming was necessarily Eurocentric but it might suggest

that because of its tie to these architectural histories, it became —perhaps unconsciously—

an epistemology worth pursuing 3.

Figure 1.6: A picture of Rhythm Wheels code (left) and graphical interface (right) taken by me from https://csdt.org/

projects/18209/run & https://csdt.org/applications/39/run

The brick also invites one to think about the construction of national identity through

working-capital standards revolving around software like Cornrow Curves and RhythmWheels.

About this, Labor studies scholar Teitelbaum (2016) describes that since World War II, the

U.S. has had recurrent concerns about “falling behind in a global ‘race of talent’ that will

determine the country’s future prosperity, power, and security” (p. 1). As a result, these

concerns have produced public policies “[addressing] all levels of education together, from

kindergarten through postdoc”; and where “worries about the performance of the [elemen-

tary] education system over the long term [has been conflated] with concerns about the

3For more discussion on how bricks are metaphors of ways of knowing please see Jimmy, E., Andreotti,
V., and Stein, S. (2019). Bricks and Threads. In Towards braiding. Musagetes Foundation, pp. 13-20

24

https://csdt.org/projects/18209/run
https://csdt.org/projects/18209/run
https://csdt.org/applications/39/run

adequacy of U.S. production of advanced degrees (especially doctorates) in science and en-

gineering in the present-to-near term” (p. 26).

In the late 1990s, these worries appeared again due to a boom in “information technology

(IT), Internet, telecommunications, and biotech” which produced a “sudden rapid growth in

demand” for workers (54). In the early 2000s, concerns about insufficient workers influenced

education policies as mentioned above, resulting in curricula development focused on science,

technology, engineering, and mathematics (also known as STEM). These curricula, however,

is often seen as imbued in a corporate ideology that prevents students from focusing on

“lifeways which are not based on alienated labor and value extraction” (Eglash et al., 2017, p.

6). And where the student is expected to be a “problem solver, logical thinker, technologically

literate and able to relate his (or her) own culture to the learning” (Gallant, 2010, p. 2).

1.4 Lenguaje Latino

Latino is an open-source general-purpose programming language for Spanish-speaking people

created in 2015 by Mexican software developer Primitivo Roman. Latino is directed to both

non-experts —who want to reduce their learning curve— and experts who might just want

to program using Spanish keywords. For example, the command escribir, which in its

infinitive form translates to “to write”, will print a given text.

Figure 1.7: A Latino command to print a given text (Guerrero, 2021b)

Linguist Heriberto Avelino (2018) explains that Spanish, a language “spoken by approx-

imately 405,638,110 speakers in the world”, encompasses two main categories corresponding

to the one spoken in Spain — known as “Peninsular Spanish” — and the one “spoken in the

25

Americas” —including the United States and Canada (p. 223). It also encompasses “some

parts of Africa”, where it is spoken natively too (p. 223). Because Latino’s developer, Prim-

itivo Roman, is located in Mexico City, one can infer that Latino draws from the Spanish of

that city, where among many particularities, one can find “two major intonational patterns”,

one where the “peak of a pitch accent is shifted from the stressed syllable to the follow-

ing syllables” and another “where the peak of the pitch accent is aligned with the stressed

syllable”. The latter being “emblematic of the working class speech variety of Mexico City

Spanish” (p. 228).

Generally, written Spanish includes graphic accents both to provide guidance on intona-

tion and to help differentiate between words with similar spelling. It is interesting, however,

that in Latino, the keywords or commands do not have accents. Thus, making it difficult to

correlate the written code with intonation. For example, the command indice for finding an

element within a list lacks the accent in the letter “i” to form ı́ndice.

Figure 1.8: Latino code that generates a list and finds an element from that list (Guerrero, 2021a)

Perhaps the lack of accents is because of practical reasons, for example, so the user avoids

spending time typing keyboard combinations. This practicality, however, makes one think

that Latino is, perhaps inadvertently, using a so-called neutral Spanish or standard Spanish.

This is a type of Spanish, connected to the historical development of the entertainment and

communication industry in early 20th-century Latin America, where the vocabulary and the

accents are hard to trace back to any particular country. This is audible in translated U.S.

TV shows that aimed to reach a large number of Latin American countries (Chavarŕıa, 1997).

It is also found in the “adaptation of text manuals, informatics programs, [and] websites”,

where because of the practicality of being translated once, they “avoid terms that could

be connected to with specific countries . . . or linguistic regional phenomena” (“Español

26

estándar”, nd, para. 15)

This practicality is also reinforced by the fact that the syntax of Latino seems not to

change much from languages like Python or C++, for example. In other words, it seems that

most of the effort has been put into translating the commands, missing explorations with

other language constructs related to Spanish. And, while this might work for learners who

want to learn programming, it might also be a missed opportunity to explore functionalities

that come from the ways of knowing and being of Spanish speakers in Latin America. Fur-

thermore, by just exploring the form and leaving the function untouched, Latino potentially

validates normative values of programming.

Perhaps the latter becomes more obvious by looking at Latino’s intention to enable the

production of a diverse range of software applications, such as mathematical computations,

web server development, database connectivity, and system scripting (“About Latino”, 2022).

Languages that have the characteristic of developing such a wide range of applications are

called general-purpose languages —in contrast to languages with a specific orientation or

domain. Arguably, the concept of general-purpose languages finds its roots in the concept of

general-purpose technology. That is, technology capable of “[spreading out] to most sectors”,

being in constant improvement to “keep lowering the costs [for] its users”, and “[making it]

easier to invent and produce new products or processes” (Janovic and Rousseau, 2005, 3).

Examples of these technologies are “[s]team, electricity, internal combustion, and information

technology” (p. 1).

In evaluating Latino’s status as a general-purpose technology, one can see clear intentions

for it to spread to various sectors through the activities mentioned above. It also does this

through its capacity for running on Windows, Apple, and Linux computers and interacting

with industrial computer languages like Redis and MySQL (“About Latino”, 2022). Latino’s

intentions to be in constant improvement are present in that it adheres to the open-source

model by having a GitHub page where people can contribute and add to the language freely.

Finally, Latino intends to make software production easier for Spanish speakers through its

27

commands and documentation where programming concepts are explained in Spanish.

Figure 1.9: Latino code that generates the Fibonacci numeric series (“Latino v1.4.1”, 2021)

One thing to consider, however, is to what extent users see the intentions described

above as congruent. One can do this by looking at attitudes towards Latino in places like

opinion forums. For example, in forobeta.com 4, under the title “Lenguaje de programación

con sintaxis en Español [A programming language with Spanish syntax]”(2017), participant

Son Lux states that “for a job, it would be difficult for a programmer to be asked to know

Latino” (translation mine). However, they ask the Spanish-speaking community how feasible

they think it is to learn this language and/or develop an application like a website. This

post generated nine responses, from which two can be categorized as positive and the rest as

negative. Positive answers included mentioning how interesting it would be to program in

Spanish, even more, if the language has a high utility or capacity. Negative responses focused

on a perceived impossibility of programming in something different than English. The latter,

because “the community” is already accustomed to programming in English, and because

information regarding programming concepts and procedures that are of good quality on the

Internet are in English.

Information technologists Herrera Rivas and Roque Hernández (2019) concur that a

large amount of digital information found in the Internet is in English as “the majority

of Internet nodes and domains belong to the United States and to other English-speaking

4See full discussion here: https://forobeta.com/temas/lenguaje-de-programacion-con-sintaxis-en-espanol.
594213/

28

https://forobeta.com/temas/lenguaje-de-programacion-con-sintaxis-en-espanol.594213/
https://forobeta.com/temas/lenguaje-de-programacion-con-sintaxis-en-espanol.594213/

countries” (p. 4, translation mine). In this regard, the ability to read texts in that language

is key for non-English speakers within the current globalized world. In Latin America, this is

categorized as a common barrier to overcome, adding to others such as access to the Internet

itself. The latter makes one think that perhaps a bigger motivation for building Latino is

to contribute to overcoming the so-called digital divide. The digital divide is defined by

the OECD (2001) as “the gap between individuals, households, businesses and geographic

areas at different socio-economic levels with regard both to their opportunities to access

information and communication technologies (ICTs) and to their use of the Internet for a

wide variety of activities” (p. 5). The importance of overcoming the digital divide is, for

example, for people to be able to communicate with others, for them to be able to access

information and to be able to enter the global economy. To achieve these goals, it is said

that nations should focus on increasing communication infrastructures and providing their

inhabitants with “computer/Internet literacy” skills (p. 6).

From all this, one can infer that Latino is motivated by the current global economic

model, known as the knowledge economy. This is a term coined in the late 20th century

by business educators describing how after World War II, the U.S. economy started shifting

from “an economy of goods” into an economy where “ideas, concepts, and information” are

“[applied] to productive work” (Drucker, 2017, pp. 263-264). This type of knowledge, now

a global trend, differs from other knowledge, such as intellectual knowledge, in that it is

“[t]he systematic and purposeful acquisition of information and its systematic application”

(p. 267). The latter, so it aligns to the knowledge industries, like the ones focused on ser-

vices, which insatiably demand “knowledge workers”, particularly “computer programmers”,

“system engineers, system designers, information specialists, and health professionals” (pp.

266-267).

29

Figure 1.10: The welcome information displayed when starting the programming language Alb (Nasser, 2012a)

1.5 Alb

Alb is a programming language derived from Arabic that explores the “impact of human

culture on computer science, the role of tradition in software engineering, and the connection

between natural and computer languages” (Nasser, 2012b, para. 1). Alb, whose name

translates to “heart”, was created in 2012 by Lebanese-American computer scientist and

game designer Ramsey Nasser with the purpose of illustrating the challenges of coding in

languages other than English (Galperina, 2014).

Figure 1.11: A snippet of code that prints “hello world” (Nasser, 2012a)

The first thing that one can infer from the statement above is that Alb is not necessarily

targeted at Arab speakers. Rather, its function is to expose an English-speaking audience

—or more broadly speaking, a non-Arab speaking audience— to a critique of programming

being too strongly tied to English logic as a natural language. The latter becomes clear when

its creator mentions the following.

“All modern programming tools are based on the ASCII character set, which en-

codes Latin Characters and was originally based on the English Language. As a

result, programming has become tied to a single written culture. It carries with it

30

a cultural bias that favors those who grew up reading and writing in that cultural

[context]” (Nasser, 2012a, para. 2).

An interesting aspect is that Nasser does not intend for English/non-Arab speakers to

learn his computer language nor to start programming in Arabic. Rather, he invites them to

try reading its code. This approach makes sense as reading code is tied not only to cultural

studies as discussed in the introduction of this paper. Reading code is also tied with the

more practical field of software development where a common task for programmers involves

“fixing, inspecting, or improving code” and where skills of “reading, understanding, and

modifying the original code” are key (Spinellis, 2003, 1). In this sense, the first practical

limitation that Alb conveys is the difficulty for the conventional or standard programmer to

perform the aforementioned tasks and thus of improving a given program or system. From a

different perspective, this reading is about the possibility for the programmer’s knowledge to

deepen if borrowing from languages like Arabic. The latter has happened already with the

Arabic numerals that were introduced to Europe in the 13th by Fibonacci, and that are not

only used in programming but in Western sciences in general.

Reading code also involves socialization practices; for example, open-source software in-

vites programmers to contribute, “read, critique, and improve” the code and, in exchange,

learn from the code itself (Spinellis, 2003, p. 3). The latter is even seen as a literary prac-

tice where code is “[d]iscussed, internalized, generalized, and paraphrased” and where there

are aesthetic judgments of high-quality vs low-quality code. Furthermore, reading code in

such a way is key for programmers to “enrich [their] vocabulary, trigger [their] imagina-

tion, and expand [their] mind” by discovering “new architectural patterns, data structures,

coding methods algorithms, style and documentation conventions, application programming

interfaces (APIs), or even a new computer language” (p. 3).

Figure 1.12: A command to display the “about” section. It has a reversed question mark at the end (Nasser, 2012a)

31

Although Alb proves to be obscure for non-Arab speakers, aspects of its code can still

be discussed in a literary way. For example, looking at the command in 1.12, one notices the

use of parentheses which is a known symbol to computer users. From this, one can then start

reflecting on the semantic meaning of punctuation marks like brackets and semicolons in

modern programming and later start speculating how that meaning might change in Arabic.

In that same example, the use of a reversed question mark makes one see parallelisms with

symbols in other natural languages. For example, in Spanish, there is the use of an inverted

question mark “¿” used in the opening of a written question. One can also discuss the

aesthetics of Alb, for example, the diacritical marks and the cursive aspect of it, to make one

realize the lack of these aspects in programming languages.

This constant invitation to reflection and speculation makes one infer that Alb is also

imbued within the field of speculative design. This is a type of design that tries to move

away from design as “problem solving” into design as an enabler of “discussion and [debates]

about alternative ways of being” (Dunne and Raby, 2013, p. 2). The goal of speculative

design is not to predict nor define the future, but rather to investigate “the idea of possible

futures” (p. 2). The connection makes more sense as speculative design came out in the early

2000s —near to the time of the first exhibition of Alb —which was a time when the state of

digital technologies and applications for the Arab world was very deficient. In terms of the

Internet, for example, there were poor developments in morphological analyzers and language

identification systems, which made it difficult “getting the right meanings” of Arabic texts

to applications like text-to-speech translators and search engines (Albalooshi et al., 2011, p.

379).

Finally, the obscure quality experienced when reading Alb makes one wonder about its

connection to the concept of esoteric knowledge. That is a knowledge whose quality is “be-

ing obscure” in contrast to “exoteric knowledge” which is accessible or public (“Esotericism”,

2022, para. 1). Esoteric knowledge might also denote a type of knowledge with a testing

purpose that will lead to “learning the higher truth” (para 1). It might also denote a certain

32

Figure 1.13: A snippet of code that shows some program examples (Nasser, 2012a)

knowledge that by “nature” is “accessible only to those with the proper intellectual back-

ground” (para. 1). In programming, there is actually a type of languages called esoteric

which include some or all of the characteristics mentioned above. Furthermore, the purpose

of these languages is not necessarily to be executed, but rather to be a proof of concept or an

art piece. For the communication culture scholar Geoff Cox, these languages are ones that

“shift attention from command and control toward cultural expression and refusal” (Cox and

McLean, 2012, p. 5).

1.6 Conclusion

Throughout this chapter, I investigated the programming languages Logo, Cornrow Curves,

Rhythm Wheels, Lenguaje Latino, and Alb. Using interpretive and semiotic analysis, I out-

lined threads discussing the influence of culture in these languages. On a larger scale, the aim

of this chapter was to open the possibility of a thesis suggesting that culture gets embedded

in all computer languages. The latter might be obvious to some, however, my experience is

that suspicion often emerges when one brings up these connections. For example, when peo-

ple point out that computer languages should be universal after I comment on the Spanish

computer language I built for this dissertation.

Another takeaway from this chapter is the various spheres intersecting in each of the

discussed languages. For example, Logo, Cornrow Curves, and Rhythm Wheels were influ-

enced by pedagogical theories such as Constructivism and Culturally Responsive Teaching,

33

respectively. In Lenguaje Latino pedagogy emerged as the invitation for Spanish-speaking

users to learn programming concepts in their mother tongue. And, in Alb, this was precisely

a reflection of how culture and tradition get embedded in these technologies.

The pedagogical sphere intersected with diverse representational dimensions. This is

perhaps most evident in Cornrow Curves and Rhythm Wheels, motivated by the creation of

meaningful connections between the user’s culture and the scientific mainstream culture. In

my discussion, however, I suggested the caveat that often, the appeal to the representational

dimension is not the exploration of other lifeways but rather the incorporation of the user

into the US corporate way of life.

When discussing the linguistic realm, this chapter uncovered the potential imagined

communities of these languages. For example, in my discussion of Logo, I pointed out

the usage of standard English over other linguistic variations, such as the New England

and Boston accents. When discussing Lenguaje Latino, I highlighted the dual aspect of

encouraging computational learning through one’s mother tongue: it helps reduce the digital

divide while using a standardized version of Spanish, representing just a few in Latin America.

Finally, standardized Spanish in Lenguaje Latino revealed a connection to concepts such

as general-purpose technology. This connection also appeared in other languages discussed in

this chapter, providing insight into the multiple infrastructures they belong to. For example,

in the discussion of Alb, I identified the need for the users to subscribe to the Anglophone

thinking structures to participate in the social and technological spaces where digital collab-

oration happens, mainly through the Internet.

34

Chapter 2

Seis8s, a live-coding language for
electronic Latin dance music

This chapter discusses Seis8s, a web-based computer language that I developed that allows

real-time interaction with digital audio and localized musical knowledge. Seis8s is particularly

oriented towards Latin Dance Music, where commands and their resulting sounds revolve

around instruments, such as teclado (i.e. a keyboard), bajo (i.e. a bass guitar), güira (i.e.

a percussion whose sound resembles one of a shaker), and congas (i.e. drums characteristic of

Cuban music). Seis8s commands also revolve around nouns that convey actions connected to

those instruments, for example, acompa~namiento (accompaniment), ritmo (rhythm), punteo

(picking), and tumbao (i.e. rhythmic pattern).

Seis8s draws from live coding, a practice where audiovisual outputs are performed live

using code and where sharing the performer’s screen is strongly encouraged (Collins et al.,

2003; Nilson, 2007). Seis8s is meant for the performer and the audience to experience

the code in addition to the music, helping them connect with additional cultural layers

of computer-music languages, like natural language. Through building Seis8s, I explore the

following possibilities: 1) to derive a computer-music language from Spanish; 2) to appeal

to an imagined community in/from Latin America; and 3) to explore the cultural, political,

economic, and historical commonalities of that imagined community. Seis8s can be accessed

35

at https://seis8s.org/ and https://estuary.mcmaster.ca/.

tempo 100;

compás "partido";

acordes [re m, fa, la];

punteo [3a, 5a] [3, 4, 1 1.5 2 2.5] $ sample 3 $ cumbia acordeón;

acompa~namiento (2 4) $ vol 0.75 $ cumbia teclado;

tumbao [1a 3a 4a] [1 3 4] $ sample 4 $ cumbia bajo;

ritmo [1 2 2.5 3 4 4.5] $ paneo 1 $ cumbia guira;

marcha (p t p a a) (1 2 3 4 4.5) $ paneo 0 $ cumbia congas;

Figure 2.1: A functioning snippet of code from Seis8s

2.1 Motivation

Mymotivation to develop Seis8s comes from my experience using and teaching with computer-

music languages. For example, in 2015, working at an elementary school in Mexico City, I

encouraged children to explore music creation through the well-known children-oriented mu-

sic language Sonic Pi (Aaron, 2016). Sonic Pi was first implemented in 2013 with the aim

of teaching computer programming and computer music to children in the UK. Sonic Pi

developed into a larger ecosystem that, in addition to the software, it included lesson plans

inviting the students to discover the “artistic aspects of the software” (p. 175).

However, in the process of my teaching, cultural mismatches came up. For example,

Sonic Pi used alphabet letters to program music notes (i.e. C, D, E, F, G, A, B) as opposed

to syllables (i.e. do, re, mi, fa, sol, la, si). Letters are often taught in Anglophone music,

and syllables are often taught in Hispanophone music. Another mismatch was that although

this language advertised the potential to create within various genres, it seemed to favor

Electronic Dance Music through inbuilt preset sounds and synthesizers recalling this genre.

I have experienced similar things as an artist using these technologies. For example,

although English is my second language, I remember having difficulty when trying to un-

derstand the meaning of some commands from the well-known computer-music language

36

https://seis8s.org/
https://estuary.mcmaster.ca/

SuperCollider. One command I remember was yield, which allows suspending a procedure

or routine. The confusion lay in that I could not find a translation that made sense in rela-

tion to computing or sound. The dictionary describes it as a verb connected to processes of

cultivation, production, and investment; and to the action of demanding and surrendering

something (Merriam-Webster, nd). Years later, I could infer that yield in SuperCollider

was potentially connected to the expression “to yield the right of way”. This expression is

related to the act of stopping or slowing down in driving intersections and is often said this

way in Anglophone countries.

\begin{singlespacing}

(

r = Routine { arg inval;

inval.postln; // Post the value passed in when started.

5.do { arg i;

inval = (i + 10).yield;

inval.postln; // Post the value passed in when resumed.

}

}

)

(

5.do {

r.value("hello routine").postln; // Post the value that the Routine yields.

}

)

\end{singlespacing}

Figure 2.2: A SuperCollider code using the command yield (“Routine”, n.d)

Seis8s, however, is not a project about translating commands from English into Spanish.

Rather it is about exploring textual and aural meaning from computer-music languages and

from a Latin American perspective. Early work on this includes my collaboration with the

Mexican audiovisual collective RGGTRN, where between 2016-2019, I used SuperCollider to

create pieces alluding to the popular music of this region. Chichiricha, for example, is a piece

based on ”Cuban descarga”1, which allows the performer to program live a percussion solo

using samples resembling the ones used by a timbalero. Another piece is Cacharpo, made

in collaboration with media artist David Ogborn (Del Angel and Ogborn, 2017). This is an

automated live coding system that, among many things, explores how melody and rhythm

can evoke music styles related to Mexican cumbia and electronic cumbia.

1Cuban descarga is a mode of improvisation over rhythmic and harmonic ostinatos.

37

https://supercollider.github.io/
https://soundcloud.com/rggtrn/chichiricha?utm_source=clipboardandutm_medium=textandutm_campaign=social_sharing
https://vimeo.com/manage/videos/277561996

Early work also involved detaching from my personal experience and looking into other

cultural dimensions by engaging with the community. For example, in 2018, RGGTRN and

I co-organized a series of workshops where people in Colombia, Perú, and Ecuador came to

design mini-computer music languages based on their own cultural context (Del Angel et al.,

2019). In these workshops, two interesting exercises came out: La Calle, by sound artist

Ivanka Cotrina, is a mini-language based on the slang from working-class neighbourhoods in

Lima, Perú; and, Sucixxx, by DJs and performers Chakala, Maria Juana, Carolina Velasco,

and Daniela Moreno, is a mini-language borrowing from trans-feminism and where the textual

interface is a reappropriation of misogynistic reggaeton lyrics. The interesting aspect lies in

that these exercises provided an example of “intelligible ideology critiques of both live coding

practice and the specificity of the artist-programmer”2 (p.1).

This way, Seis8s is a project that intends to add to current investigations on the semiotic

aspects of computer-music languages and computer-music technologies in general (see Cox

and McLean, 2012; McCartney, 1994; Rodgers, 2012; Rodgers, 2016; Sterne and Rodgers,

2011; Ogborn et al., 2015). The latter is by conceptually and practically exploring the

creation of a Spanish-derived textual interface that connects meaning with functionality as

well as with shared cultural dimensions of Spanish speakers in/from Hispanoamerica.

2.2 Background: A personal anecdote on postmoder-

nity and live coding in Mexico

Between 2010 and 2013, I made an apprenticeship at the Mexican National Centre for the

Arts (Cenart) in Mexico City. There, I was involved in an initiative to explore the artistic

possibilities of Live Coding and Free-Libre/Open Source Software. I was one of many artists

involved through teaching workshops and participating in audiovisual performances. Overall,

this initiative helped Cenart train a community of audiovisual performers who have now

2The artist programmers are “end-user programmers, in that they create software not for others to use
as tools, but as a means to realise their own work” (McLean, 2011, p. 14)

38

spread out to various parts of Mexico and abroad.

Cenart was founded in 1994 by the Mexican Council of Culture and Arts to teach art

and culture and promote interdisciplinarity in this realm (López, 2020). Mexican historian

Pilar Maseda (2005) explains that several sociopolitical aspects were happening in Mexico at

the moment of CENART’s foundation. These included shifts towards a more neoliberal and

globalized life, influencing the arts in Mexico through the incorporation of postmodernist

thought in governmental cultural policies.

There are at least two dichotomic understandings of postmodernism in Mexico and Latin

America, as explained by Argentinian anthropologist Nestor Canclini (Garcia Canclini, 2005).

The first one is “the rupture with what came before”, and the second is “being the land of

pastiche and bricolage, where many periods and aesthetics are cited ... in a unique way” (6).

Now, the type of postmodernist thought pointed out by Pilar Maseda (2005) in the paragraph

above is not the eclectic one. Rather, it was one oriented toward the “disappearance of the

manifestations of the past”, “especially those from the national artistic past” (para. 5). In

Mexico, this postmodern perspective, paired with governmental elitism, resulted in cultural

projects that were incoherent with the “cultural manifestations ... and the economic situation

of the country” (para. 13).

For example, Maseda talks about the schools of classical, contemporary, and folkloric

dance, where the first two were incorporated into CENART, and the last one was left out.

This rupture with the national past and its popular culture matches another definition of

postmodernity, now given by French Philosopher Jean-François Lyotard (1979), in which

postmodernity is a condition of knowledge based on the “incredulity toward metanarratives”

(xxiv). This incredulity, he continues, is a “product of progress in the sciences” where

legitimacy is gained through technological efficacy (xxiv).

Not all places in CENART were scientifically nor technologically oriented; however, the

facility I was working in, called Centro Multimedia, definitely was. At this facility, one could

find different ateliers, each oriented toward very specific digital technologies. There was the

39

http://cmm.cenart.gob.mx/acercaDe.php#laboratorios

audio atelier, the moving image atelier, the digital graphics atelier, the interactive systems

atelier, and the virtual reality atelier. This facility, altogether, had a strong commitment to

researching the application of information technologies to artistic processes. And it also had

a strong preference for Free-Libre/Open Source Software (FLOSS) tools.

During my stay at Centro Multimedia, I worked at the audio atelier 3. One aspect of

particular interest to discuss is this place’s adoption of SuperCollider as one of its main tools

to compose and teach music throughout the early 2000s. The adoption of this tool over

others interests me for many reasons, starting with the fact that SuperCollider was a recent

tool just made available for the major multiple operating systems. SuperCollider presented

a new area of research that contrasted with software like Max/MSP, which dated back to the

1980s and already had a usage tradition within Mexico’s experimental composers.

Another characteristic of SuperCollider was that it was open-source software, contrasting

to Max/MSP, which was proprietary. Here, the open-source paradigm presented a hidden

contradiction. On the one hand, it made the audio atelier aware of the potential for displacing

the category of ’expert’ and allowing the general public to legitimize scientific and artistic

knowledge. On the other hand, this same openness left unchallenged the accumulation of

knowledge that characterizes the “general paradigm of progress in science and technology”

(Lyotard, 1979, 7).

Less contradictory, perhaps, was SuperCollider’s heavy emphasis on the concept of real-

time programming, a well-identified characteristic of the postmodern society where the com-

putational “miniaturization and commercialization of machines [leads to] advancements ...

in the circulation of sounds and visual images” (4). Real-time programming enabled per-

formers to experience audio results almost immediately after execution. It also allowed the

audio atelier to pursue aesthetic research through the practice of live coding, through weekly

audiovisual performances where a new type of artist known as live coder became common-

place.

3An archived website of the audio atelier, as it was in 2013, can be accessed here, http://cmm.cenart.
gob.mx/tallerdeaudio/

40

http://cmm.cenart.gob.mx/tallerdeaudio/
http://cmm.cenart.gob.mx/tallerdeaudio/

So far, I have discussed the technoscientific aesthetic of the audio atelier. But what

about its musical orientation? An aspect to note was its strong alignment with the Western

art music tradition through genres drawing from Electroacoustic, Noise and Serial Music.

This alignment was so present that during my stay there, I believed this type of music was

actually an aesthetic result of using SuperCollider and live coding. It was not until 2012

that Algorave music – a live coding Techno-oriented genre – was introduced to me by a live

coding band from the UK at an international festival by the audio atelier.

The latter unveils not only a strong emphasis on the Western art music tradition but

also a separation between cultured and popular arts. A separation perhaps connected to the

cultural policy mentioned at the beginning of this section, which encompassed an outdated

and elitist understanding of fine arts. And which Maseda (2005) exemplifies by how CE-

NART, as an institution, incorporated certain schools like the National School of Classical

Dance and left out others like the School of Design.

Maseda also points out how this cultural policy was disconnected from regional art as

well, for example, by not incorporating the National School of Folkloric Dance nor the School

of Crafts into Cenart. It is common sense to infer then that this cultural policy extended

into Centro Multimedia and the audio atelier through research schemata that did not include

regional electronic music formations happening decades ago4. For example, Tecnocumbia,

Nortech, or Latin rock, all of which, by the way, heavily rely on synthesized sounds and thus

on technoscientific experimentation.

By 2013, when I stopped frequenting the audio atelier, the computer-music language

TidalCycles was becoming more common in various parts of Mexico City and Latin America.

TidalCycles emphasizes patterns and repetition, making it suitable for creating Algorave

and Techno music. It differs from SuperCollider, whose scope is less defined. My perception,

however, is that in addition to Techno, the uses of TidalCycles by the people in this region are

4Terms such as regional and national still make sense in the globalized context of the Latin music industry.
For example, Chilean ethnomusicologist Agurto (2022) mentions that pan-continental ideals such as “the
formation of a common Latin American consciousness [have] historically been secondary to national ideologies
and superseded by nationalist divisions” (p. xxiv)

41

https://tidalcycles.org/

still heavily aligned with the Western art music tradition, for example, through workshops

on sound art with TidalCycles at institutions such as the Mexican Center for Music and

Sound Arts. A few exceptions I have encountered from 2012 until 2023 include the live

coders Rafrobeat (Colombia), and Sireñoras (Argentina), who perform electronic cumbia

music with TidalCycles.

The point of this brief account is not to judge the artistic practice or musical taste of

the people involved in the live coding scene in Mexico and Latin America but, perhaps, to

allow for further reflection on why the strong emphasis on a lineage of Western art music

and non-regional popular music. Or, the other way around: why the non-exploration of

electronic music formations with a national or regional lineage? Furthermore, what were the

implications of leaving these unexplored through programming languages and live coding?

On the one hand, being a member of the audio atelier, Centro Multimedia, and CENART

allowed me to engage with Western art music and Algorave music. This was a rich experience

that, at the time, complemented my recent undergraduate studies in music composition in

popular music. On the other hand, it ingrained in me a dichotomic view between cultured

and popular arts. And I developed a value system where being a technoscientific artist was

more valuable than being a plain artist.

On a larger scale, the institutional non-exploration of the possible relationships between

national and regional music through electronic means, like live coding, was a lost opportunity.

For example, in the potential development of tools like the one I present in the following

section. And, in terms of practices such as the ones that in recent years have given birth to

music variations such as “electronic cumbia, cumbiatrónica ... nu-cumbia” or simply “digital

cumbia”, “referring to .. the innovative crossing between cumbia and electronic music”

(Márquez, 2016, 55).

42

https://www.rafrobeat.com/rafrobeat

2.3 Introducing Seis8s

Seis8s is a computer language that allows real-time interaction with digital audio and localized

musical knowledge, particularly towards Latin Dance Music. Seis8s is zero-installation and

runs in the web-based platform for collaborative live coding, Estuary (Ogborn et al., 2017;

Ogborn et al., 2022). It also runs as a web application on my personal website. Seis8s

was implemented with Haskell, a strongly-typed, functional, general-purpose programming

language that has been used in computer music (e.g., Hudak, 2008; Hudak et al., 2007; Quick

and Hudak, 2013) and live coding projects (e.g., McLean, 2014; McLean and Wiggins, 2011;

Murphy 2016a; Murphy 2016b). Building Seis8s using Haskell facilitated incorporating it into

the Estuary platform – also written in Haskell – allowing Seis8s to be used collaboratively.

Haskell also has many libraries for translating high-level code into lower-level effects and

computations, allowing me to explore various paths.

As a web application, Seis8s uses GHCJS and the Reflex Platform to translate Haskell

code into JavaScript code to allow user interactivity, for example, the generation of real-time

sound in the browser. Seis8s uses the JavaScript library WebDirt (Ogborn and Beverley,

2016), which allows playing and modifying sampled sounds on the web and which was initially

developed for Estuary.

2.3.1 Lexicon

Seis8s revolves around keywords or commands related to Latin dance music – also known as

urban Latin music or Latin popular music. This is a 20th-century derivation of musics “based

on Afro-Cuban rhythms, as developed and performed throughout the Hispanic Caribbean

basis and its diaspora” and which are “designed for accompanying social dancing” (Manuel,

1998, p. 127). It includes musics like “Dominican merengue”, “Puerto Rican bomba”, New

York Salsa, and “Colombian cumbia”, to mention a few (p. 127).

The first category of commands from Seis8s revolves around the instrumentation of

43

https://estuary.mcmaster.ca/
http://luisnavarrodelangel.net/seis8s
https://www.haskell.org/
https://github.com/ghcjs/ghcjs
https://hackage.haskell.org/package/reflex-dom
https://github.com/dktr0/WebDirt

these musics, which incorporate instruments from European cultures – e.g., “string, wood-

wind, brass, and keyboard melodic instruments”; African cultures – e.g., congas, güira, and

marimba; and Indigenous cultures – e.g., flutes like the “Andean quena” (Béhague, n.d, para.

2, 8). At the time of writing, Seis8s has the following instruments: acordeón, teclado (key-

board), bajo (bass guitar), güira (i.e., a percussion scraper), jamblock (i.e., a wood-sound

percussion), and congas (i.e., drums characteristic of Cuban music).

acordeón; teclado; bajo; güira; jamblock; congas

Figure 2.3: A functioning snippet of code that, when evaluated, plays the sound of the available instruments in Seis8s

The second category of commands makes reference to the styles mentioned above. At

the time of writing, there is one preset style that is accessed through the command cumbia.

This command gives access to a set of rhythmic and melodic patterns that correspond to the

instruments above and which allude to Mexican types of cumbia, such as “cumbia sonidera”,

“tecnocumbia”, and “digital cumbia”. Future styles will include other types of cumbia as

well, such as the incorporation of salsa and reggaeton styles.

cumbia teclado; cumbia bajo; cumbia güira; cumbia congas; cumbia jamblock

Figure 2.4: A functioning snippet of code where the style cumbia is applied to a set of instruments in Seis8s. When evaluated,
this code plays the sound of basic rhythmic and melodic patterns alluding to Mexican cumbia

The third category of commands revolves around nouns that convey actions connected

to those styles and instruments. These commands also relate to the terminology used col-

loquially by musicians playing some of these musics. At the time of writing, these include

punteo (picking), acompa~namiento (accompaniment), tumbao (i.e. rhythmic and melodic

pattern for the keyboard, the bass, and the congas), marcha (i.e. rhythm for the congas),

and ritmo (rhythm).

There are also less idiomatic commands such as volumen and paneo that modify, more

generally, the quality of the sounds. Finally, Seis8s includes the command sample, from

44

marcha (p t p a a) (1 2 3 4 4.5) $ cumbia congas;

Figure 2.5: A functioning code that returns the marcha command for the congas in Seis8s. When evaluating this code, it plays
a rhythmic pattern with the congas sound

which different sound variations of these instruments can be accessed. Future commands will

include ones related to sound effects to be applied to the instruments.

sample 3 $ volumen 0.75 $ paneo 1 $ acordeón;

Figure 2.6: Function snippet of code that modifies the sound quality of Seis8s’ instruments by selecting sample 3, setting the
volume to 75%, and panning the sound to the right

Finally, the fourth category relates to global modifications to be applied to all of the

instruments. At the moment of writing, these include the commands acordes (chords),

compás (measure or bar), and tempo.

tempo 100;

acordes [re m, fa, la];

compás "partido";

punteo [3a, 5a] [3, 4, 1 1.5 2 2.5] $ sample 3 $ cumbia acordeón;

acompa~namiento (2 4) $ vol 0.75 $ cumbia teclado;

tumbao [1a 3a 5a] [1 3 4] $ sample 4 $ cumbia bajo;

ritmo ([1 1.5 2 2.5 3 3.5 4 4.5]) $ paneo 1 $ cumbia guira;

marcha (p t p a a) (1 2 3 4 4.5) $ paneo 0 $ cumbia congas;

Figure 2.7: A snippet of code using the four categories of commands in Seis8s to create a basic cumbia rhythm at 100 beats per
minute, using the chords Dm, F, and A

2.3.2 Syntax

The parsing library that Seis8s uses is called Haskellish (Ogborn, 2019), and it helps create

small languages that have similarities with Haskell. In this way, Seis8s inherits, in a very

general way, the Haskell way of forming valid instructions, particularly the application of

functions done from right to left. It also inherits the use of parentheses and the “$” symbol,

which are punctuation marks that separate the functions from each other – the “$” sign is

45

https://hackage.haskell.org/package/haskellish

equivalent to parentheses (loosely speaking). Finally, Seis8s uses the semicolon to separate

expressions – i.e. structures formed from concatenated commands.

In Seis8s, the basic unit is the instrument, to which commands can be added to the left

to modify it, for example: acompa~namiento (2 4) $ teclado. Using a parenthesis or a ‘$’

sign, more commands can be added to continue the modification of the instrument, for exam-

ple: volumen 1 ((acompa~namiento (2 4)) teclado), or, volumen 1 $ acompa~namiento

(2 4) teclado.

2.3.3 Semantics

Seis8s has two types of relations between its commands and the music. The first is tied to the

global commands and the instruments as an ensemble, and the second is tied to the action

commands and the individual instruments.

Relationships between global commands and the instruments as an ensemble

This relationship is established by Seis8s’ instruments, each of which represents a layer to

the overall music – which could be seen representing a composition or an ensemble. Some

global aspects of this music can be (re)defined as follows.

tempo and compás

The command tempo establishes the speed at which the music – or ensemble – will play. This

command is very common in computer-music languages. The tempo can be set in beats per

minute. The command compás, which translates to “measure” or “bar”, allows modifying the

time signature in Seis8s’ music. At the moment of writing, there are two available values for

compás, namely, 4/4 and 2/2 – also available as partido. The default argument is partido

which translates to “cut” or “cut time”. This is a time signature usually used in music that

is festive and rapid, such as marches, as well as some forms of Latin dance music, such as

Salsa, Merengue, and Cumbia.

46

tempo 120;

compás "2/2";

Figure 2.8: Seis8s’ tempo and compás commands

Armońıa

Harmonies and melodies in Latin dance music are usually created with the twelve-tone system

borrowed from Western European music. In Seis8s, the harmony of the ensemble can be

changed with the command armonı́a, affecting all the instruments at once. Chord names –

either in syllables or letters – can be input as parameters to this command. At the moment

of writing chords with the following qualities are available: major, major7, minor, minor7,

fifth, dominant, sus2 and sus4, augmented, diminished, diminished7, and semi-diminished.

armonı́a [do m, re sdim, sol M, fa m];

Figure 2.9: A chord progression of C minor, D semi-diminished, G major, and F minor written with syllables

.

Relationships between action commands and the individual instruments

The commands that convey actions to Seis8s’ virtual instruments relate to actions usually

done to their real-world equivalents. In Seis8s, this means that some action commands will

work only over some instruments. For example, tumbao will have an effect over teclado,

bajo, and congas, but not over güira, or jamblock. This is because, in Latin dance music,

the rhythmic patterns of the güira and jamblock are not colloquially expressed as tumbaos.

Rather, a tumbao makes reference to the melodic and rhythmic line that the keyboard, the

conga, and/or the bass play within an ensemble – usually of salsa or cumbia music (Ochoa

et al., 2017, p. 17).

47

Bass tumbaos

The specificity of action commands, like tumbao, are also connected to the styles of music

played. In the case of a salsa bass guitar, for example, the tumbao is often construed from

the first and fifth intervals of the chord in turn. They are also played in a syncopated form

(Mauleón, 1993, p. 106). And, in cumbia, the bass tumbao is construed from the chord’s

first, third, and fifth intervals. And, in its basic form, there is no syncopation.

tempo 150;

compás "partido";

acordes [do];

tumbao [1a 5a 8a, 5a 1a] [1 2.5 4, 2.5 4] $ sample 4 $ bajo;

Figure 2.10: A salsa tumbao written with traditional notation (top) and with Seis8s (bottom). Adapted from Mauleón (1993,
p. 106)

tempo 100;

compás "partido";

acordes [la m];

tumbao [1a 3a 5a, 1a 3a 5a] [1 3 4, 1 3 4] $ bajo;

Figure 2.11: A cumbia tumbao written with traditional notation (top) and with Seis8s (bottom). Adapted from Martin (n.d)

In Seis8s, these relationships are reflected through the tumbao presets, which can be

used along with the style commands. At the moment of writing, four presets are available

representing rhythmic and melodic variations of the basic cumbia tumbao.

48

acordes [re, la];

tumbao 1 $ cumbia bajo;

Figure 2.12: A snippet of code that returns the preset #1 of a cumbia bass tumbao in the chords D major and A major

Piano tumbaos

Tumbaos in the piano are also identified as montunos, describing a “syncopated piano vamp

[that] provide[s] strong support for the melodic instruments and/or vocalists in an ensemble”

(Mauleón, 1993, p. 118). Other musics like cumbia do not have distinct tumbaos or montunos

as they often borrow them from Salsa.

tempo 150;

acordes [do];

compás "partido";

punteo [1a 3a (5a (-1)) (6a (-1)) 1a, 3a (5a (-1)) (6a (-1)) 1a]

[1 2 2.5 3.5 4.5, 1.5 2.5 3.5 4.5] $ teclado;

Figure 2.13: A salsa tumbao written with traditional notation (above) and with Seis8s (below). Adapted from Martin (n.d)

Similarly to bass tumbaos, piano/keyboard tumbaos can be used along with the style

commands. Four presets are available for the cumbia style at the moment of writing.

acordes [do];

tumbao 2 $ cumbia teclado;

Figure 2.14: A snippet of code the returns the preset #2 for a cumbia keyboard tumbao in the chord C major

Conga tumbaos

Tumbaos in the congas are also distinct in many of these musics. In Salsa music, for example,

a tumbao is “an eighth-note, one measure pattern which accents beat 2 with a slap and beats

4 and 4+ with open tones; the other notes are produced by a ‘heel-toe’ pattern of the opposing

49

hand, also referred to as marcha (march)” (Mauleón, 1993, p. 66). In cumbia, the basic conga

tumbao is a quarter note, one measure pattern which accents beats two and four with either

a slap or an open tone. In Seis8s, the user can select how the congas are hit with the hands.

Here, the parameters for tumbao are p which stands for palma (palm/heel-toe hit), t for

tapado (muted/slap hit), and a for abierto (open hit).

tempo 150;

compás "partido";

tumbao [p p t p p p a a] [1 1.5 2 2.5 3 3.5 4 4.5] $ congas

Figure 2.15: A salsa tumbao in the congas in traditional notation (above) and in Seis8s (below). Adapted from Mauleón (1993,
p. 66)

tempo 100;

compás "partido";

tumbao [p t p a, p t p a] [1 2 3 4, 1 2 3 4] $ congas

Figure 2.16: A cumbia tumbao in the congas written in traditional notation (above) and in Seis8s (below)

It is also possible to select which drum of the congas to be played.

tumbao [p (t a) p (t a)] [1 2 3 4] $ congas;

Figure 2.17: A conga pattern in Seis8s, where the first and third hits produce a sound of the quinto drum and where the second
and fourth sounds are a tumbadora (t) drum

Finally, conga tumbaos can be used along with the style commands. Four presets are

available for the cumbia style at the moment of writing.

50

Acompañamientos

An acompañamiento which translates to accompaniment makes reference to blocks of notes

or chords that provide harmonic and rhythmic support to melodic instruments and which are

played “over the chord progression” (Mauleón, 1993, p. 147). Instruments that provide this

type of accompaniment in Latin dance music are often plucked instruments and keyboards.

At the moment of writing, accompaniments for the keyboard are available.

tempo 150;

compás "partido";

acordes 2 [(do maj7 (0 0.45)), (re m (0.45 1.25)), (sol dom7 (1.25 2))];

acompa~namiento [1 2.5 4.5, 2.5] $ teclado;

Figure 2.18: A salsa accompaniment in the keyboard (top) and in Seis8s (bottom). Adapted from Mauleón (1993, p. 147)

tempo 100;

compás "partido";

acordes [la m];

acompa~namiento (2 4) $ teclado;

Figure 2.19: A cumbia accompaniment in the keyboard (top) and in Seis8s (bottom). Adapted from Avila and Madariaga (2009,
p. 34)

.

Punteos

Punteos, which translates to picking, refers to the melody and/or melodic solos in Latin

music. This technique is not particular to Latin music, as one can find them in rock and jazz

51

music for example. In genres like Cuban music, punteos often refer to the melodies made by

the player of a plucked instrument such as the tres cubano. In other musics such as Mexican

cumbia, punteo is also often used to describe the principal melodies made by the keyboard

player. The scales used for punteos vary but one that is common in cumbia is the pentatonic

scale.

tempo 95;

acordes [la m, mi m];

compas "partido";

punteo [(1a (-1)) (1a (-1)) (1a (-1)) (1a (-1)) (2M (-1)) (4a (-1)), 1a 1a 1a 1a (5a (-1)) (7a (-1))]

[1 1.5 2 2.5 3 4, 1 1.5 2 2.5 3 4] $ cumbia acordeón;

Figure 2.20: A punteo fragment from the cumbia ”Los Pajaritos” in traditional notation (top) and in Seis8s (bottom). Adapted
from Guerrero (n.d)

.

2.4 Seis8s as text and cultural object

In this section, I would like to reflect on Seis8s’ explorations stated in the introduction of

this chapter, some of which could be seen as intended properties of the language. That is

qualities that extend beyond functional ones 5 and that are, furthermore, readable or subject

to interpretation. These include, for example, the use of Spanish constructs to appeal to an

imagined community in/from Latin America with cultural, political, economic, and historical

commonalities.

5In computing, there is a difference between functional and extra-functional qualities. Functional are
things such as features, which is “a beneficial capability of a piece of software”. Extra functional qualities are
things like a property which is “an editable or read-only parameter associated with an application, component
or class, or the value of such a parameter” (“Feature vs Property - What’s the difference?”, n.d).

52

Spanish constructs from Latin dance music

The Spanish language is used in almost two-thirds of the countries located in what is known

as Latin America and the Caribbean. Thus, it is common sense to think that there would be

an appeal of some kind for the various inhabitants of this region, particularly programmers

and live coders of which there are many. There is, however, a lot of variation in Spanish in

Hispanomerica, thus, it is worth inquiring more about the Spanish being used in Seis8s.

On one hand, Seis8s’ linguistic aspect has been conceptualized mostly by the author of

this dissertation, making it to infer that Seis8s’ constructs are, however, drawn from Mexican

Spanish. What could this mean? Perhaps it means that Seis8s’ commands are closer to the

neutral Spanish mentioned in the previous chapter. A type of Spanish where the intention is

for its vocabulary and accent to be untraceable to a particular country, but which in reality

has a noticeable influence from the Spanish spoken in Mexico City.

On the other hand, Seis8s commands such as tumbao and punteo borrow from musicians’

lingo of globally distributed music like salsa and cumbia. How accurate is this terminology,

though? Well, I learned some of this musical terminology during my undergraduate studies

in Mexico. And more recently, I learned it from YouTube videos, and Salsa and Cumbia

textbooks produced in places such as Colombia, Mexico, and the US. It is possible to then

argue that the mediated aspect of my knowledge reflects in Seis8s a globalized, yet not

necessarily accurate state of Latin dance music.

Legibility and pedagogy from live coding practice

The intention behind Seis8s’ code is for it to be read by users, most of which are expected to

be performers and audiences. Furthermore, Seis8s’ code intends to invoke shared experiences

in them, such as the one of speaking Spanish, as discussed above. This train of thought

suggests a pedagogical expectation in Seis8s that aids in making legible cultural layers in

music programming. However, two important conditions have to be met for this pedagogical

approach. First, the performer has to share their screen with the audience. Second, the

53

audience has to pay attention to the screen.

Where do these conditions have to be met, though? Well, Seis8s draws from live coding

practice where audiovisual outputs are performed live using code, and where sharing the

performer’s screen is strongly encouraged. Here, sharing the screen intends to be pedagogical

in at least two ways. First, it looks to demystify programming practices by allowing the

audience to see the code that takes place behind computer programs. Second, by demystifying

the artist’s mind by seeing the decisions they take during the performance.

It is possible, then, that Seis8s’ legibility mostly makes sense among live coding commu-

nities as opposed to other computer music, where screen sharing is more uncommon. Even

within live coding practice, it is currently a matter of debate whether the audience really

reads, and furthermore, interprets the code during live performances. The latter is due to

factors that make the code unreadable such as the dim lighting of the venues, bad contrast

between the text and the background, and, the overall discreteness and abstractness of the

code.

All this, particularly the last point, prompts that Seis8s’ legibility seems dependent on

the artist and the audience to be very specialized. They must be acquainted with Spanish

and live coding practice and have a cognitive capacity to engage critically with information

technologies. Nonetheless, it is worth remembering that in addition to live coding perfor-

mance, other avenues for Seis8s’ to become legible include workshops, written tutorials, and

publications such as this dissertation. I will discuss some of these avenues in the following

chapters.

Commonalities within the imagined community

At this point, it is worthwhile to continue pinpointing the intended users of Seis8s. So far,

we know that a portion of this community is performers and audience members who attend

Spanish-speaking live-coding spaces. The latter looks like a particular membership; however,

the emphasis on the Spanish-speaking quality of the users strikes a potential connection with

54

the concept of South-South cooperation. This is the “cooperative exchange of experiences

among countries that share historical realities and that have similar challenges” (United

Nations, 2019, para. 11). The cooperative exchange intends to transform inhabitants’ lives

through “knowledge sharing, technology transfer, emergency response and livelihood recovery

led by the South” (para. 19).

South-South cooperation contrasts with North-South cooperation where sharing practices

intend to “make reference to the social, economic and political difference that exists between

developed [and developing] countries” (para. 12). Seis8s then seems to reflect the former

through its intention of fostering critical engagement with code in Latin America. And it

is through this perspective that, perhaps, Seis8s’ audience has the potential to extend into

a wider public interested in the investigation of information technologies in and from Latin

America.

In addition to Spanish-speaking users, Seis8s’ imagined community emphasizes those

who engage with live coding spaces. What does a live coding space imply, though? From my

experience, it implies a certain separation from other electronic-music spaces. For example,

the space of themusic producer, who produces music structured around the capacity to record

with digital workstations. In my experience, the latter contrasts with live coding’s emphasis

on a type of music production with less rigid, improvisational structures, that additionally

intend to be ephemeral through the erasure of the program at the end of the performance.

But how are these live coding spaces constructed? Who are the people that compose

them? In my experience, they are composed of musicians, sound engineers, media artists,

visual artists, dancers, web developers, and programmers of all sorts. However, I have also

encountered psychologists, journalists, historians, anthropologists, and sociologists who are

interested in the digital cultures being formed through live coding practice. And it is, perhaps,

this anthropological and sociological space that Seis8s points to, as I discuss below.

55

Commands as facilitators of dissent

In the background section of this chapter, I provided two dichotomic views of postmodernity

by Argentinian anthropologist Nestor Canclini (2005). Now, I would like to conclude this

chapter with a third, more negotiated definition:

“... we conceive of postmodernity not as a stage or tendency that replaces the

modern world, but rather as a way of problematizing the equivocal links that the

latter has formed with the traditions it tried to exclude or overcome in constitut-

ing itself. The postmodern relativization of all fundamentalism or evolutionism

facilitates revision of the separation between the cultured, the popular, and the

mass-based, upon which modernity still attempts to base itself, and elaboration of

a more open way of thinking that includes the interactions and integration among

levels, genres, and forms of collective sensibility” (9).

When ideating Seis8s, I wanted to experiment by embedding certain music metaphors

in the language, expecting users to ask about them and even challenge them. What I call

metaphors can also be thought of as boundary objects. These “are a sort of arrangement that

allows different groups to work together without consensus” (Leigh Star, 2010, 602). And,

where the arrangement or object “derives from action, not from a sense of prefabricated stuff

or ‘thing’-ness” (603) 6.

In Seis8s, the style commands and particularly the cumbia command exemplify the idea

of boundary objects as follows. Generally speaking, Cumbia is a term that references the mid-

20th century Colombian Caribbean music that, at the time, reached most countries in the

region and was adopted by their different cultures. Through this process, Cumbia developed

6The concept of boundary object was developed by American sociologist and information systems scholar
Susan Leigh Star. A boundary object is the idea that people can interpret objects differently. This interpretive
quality of objects is also called “interpretive flexibility” and is commonly found in sociology, history, and
philosophy (Leigh Star, 2010, p. 602). Leigh Star addresses this concept from the sociology of computer
science, where a boundary object is “something people ... act toward and with” (e.g., a program) (p. 603).
That is to say, the object’s materiality is “derived from action” (e.g., it is “embodied, voiced, printed, danced,
and named” without the need of a previous agreement) (p. 603)

56

into many local variants to become a generic concept in everyday speech, encompassing a

vast range of instrumentation, musical forms, lyrics, and political intentions.

This way, one can say that there is not a fixed essence of Cumbia, nor is it an irreducible

phenomenon. And at the same time, it is recognized in the collective imagination as a

result of migratory flows and lived experiences among the inhabitants of 20th-century Latin

America. In the next chapter, I discuss some of these lived experiences through interviews

with people from/in Latin America to explore how understandings of Cumbia and other Latin

dance musical styles have shifted with changing political fortunes in Latin America.

2.5 Conclusion

This chapter discussed Seis8s, a web-based live-coding language that allows real-time inter-

action with digital audio and localized musical knowledge. Seis8s is mainly oriented toward

Latin Dance Music, where commands and their resulting sounds revolve around instruments

of such music. These included acompa~namiento (accompaniment), ritmo (rhythm), punteo

(picking), and tumbao (i.e., rhythmic pattern), among others.

Seis8s’ motivation comes from my interest in addressing the cultural mismatches pre-

sented to me when creating and teaching music using computer-music languages. During my

membership with the audio atelier at the Mexican National Centre for the Arts, I experi-

enced the construction of this institution’s artistic and techno-scientific identity through a

strong emphasis on Western art music. This experience was rich but left me wondering what

exploring regional popular music through live coding practice would have looked like.

Through the creation of Seis8s, I now have the opportunity to start exploring the afore-

mentioned. Initial explorations include ideating properties in Seis8s that extend beyond

functional ones and that, furthermore, are readable or subject to interpretation. These prop-

erties include Spanish constructs borrowed from Latin dance music and my lived experience

as a Mexican citizen. These constructs, furthermore, could function as boundary objects that

57

help facilitate discussion and dissent about Latin dance music.

Finally, in this chapter, I tried to pinpoint the imagined community that Seis8s intends

to appeal to. From a zoomed-out perspective, this community is formed by performers and

audience members of Spanish-speaking live coding spaces. However, through a zoomed-in

approach, one can see that Seis8s can potentially engage with a broader audience who is, for

example, interested in studying digital cultures. Or is interested in simply belonging to the

digital cultures that engaged with live coding.

The latter include musicians, sound engineers, media artists, visual artists, dancers, web

developers, and programmers of all sorts. The former include psychologists, journalists, his-

torians, anthropologists, and sociologists. In the next chapter, I discuss various perspectives

on music and software by some of the aforementioned members of this imagined community.

58

Chapter 3

Seis8s in context: talking circles on
music and software

This chapter reports on a series of online talking circles held from August to November 2020,

where people from Latin America were invited to discuss software and music in connection

with sociocultural aspects specific to them and their locality. In these meetings, I invited

people to 1) discuss their perception of the interaction of gender, ethnicity, social class, and

national identity with music and music software in Latin America. And 2) to experiment

collectively with Seis8s to build community and generate ideas for its further development.

The final purpose of these circles was to generate discussion about the sociocultural

circumstances intersecting with the development and use of Seis8s. This chapter starts with

a short description of the circles, including where they took place, the number of people in-

volved, and the methodology used for gathering and analyzing the participants’ contributions.

Then, I analyze the emerging themes through an interpretive method, putting participants’

comments into conversation with critical theory.

The themes discussed in this chapter are categorized into two parts. Part 1 offers a

discussion about the relationship between software and concepts such as mestizaje, race,

multiculturalism, pluriculturalism, and sexual orientation. Part 2 of this chapter offers con-

versations around topics of cultural appropriation in Latin music, touching upon terms such

59

as latinidad and sophistication in listening practices. This section ends with a brief discussion

on the sexual dimensions of genres such as Cumbia.

Broad questions guiding the discussion include: What are some sensibilities, moral sys-

tems, belief systems, ways of knowing, and being of Latin American communities? What are

the generalized difficulties and forms of resistance of these communities? How do these sen-

sibilities, difficulties, and resistance intersect with music and software? How can knowledge

from these sensibilities, difficulties, and resistance be used to generate new design principles

in music software?

3.1 Description of the circles

A talking circle is a dialogical practice where people can reflect and comment on what others

have said in the group. This practice, which derives from the wisdom and tradition of

Indigenous communities, fosters horizontal conversations where the participants themselves

can organize and curate the themes to be discussed. Talking circles are used in places such as

the United States, Mexico, Chile, and Costa Rica as tools for self-awareness, anti-oppression,

and pedagogical practice (Malo de Molina, 2004; Arias, 2012; Moncada and Acebedo, 2017;

OEI Chile; 2017).

The circles this chapter reports on happened in partnership with the Factory Media

Centre (FMC), a non-profit and small gallery located in downtown Hamilton that provides

physical space and technological resources to artists of the region. Participants were convened

through the FMC’s social networks and my personal Facebook and Twitter accounts using

an enrolment poster in Spanish and another in English. Through these posters, people with

no required expertise were invited to engage with either Latin dance music, electronic music,

music software, and/or live coding as well as in issues of gender, ethnicity, social class, and/or

national identity in Latin America.

The circles started in August and ended in November 2020, and because of COVID-19,

60

Figure 3.1: Recruitment posters

they were held online through the videoconferencing platform Webex. They happened on

a drop-in basis, where people could attend as few or as many sessions as they liked. There

were ten meetings of two hours and thirty minutes each.

Participants were mainly Spanish speakers who self-identified as being 18 and above.

They were mainly from South America, but some lived abroad in places such as the United

States, Canada, and Spain. Participants were divided into two groups, one meeting on

Thursdays and another meeting on Saturdays. Based on the discussions, participants from

both groups identified mostly as either men or women. Women were the majority in the group

on Thursdays, whereas men and women were equally distributed in the Saturday group.

Most of the participants chose not to disclose their sexual identity. I perceived that,

generally, the participants saw themselves as part of a community that was not economically

marginal. Still, some participants did identify as marginalized and/or peripheral in terms

of migration, citizenship, sexual orientation, and/or gender within the place they were from

and/or they were currently living.

The Thursday group was intended to be for Latin American people living anywhere.

This group welcomed a total of 23 people, of which about one-third attended all the sessions.

In this group, people already had a great amount of experience with either music software,

live coding practice, and/or music performance.

61

The Saturday group was intended for people located in Hamilton, Canada, and sur-

rounding areas. By focusing on people living there, I intended to connect my research with

the place I was living at the time, the location of my university, and thus where my knowledge

was being produced. In the beginning, only four people, including myself, attended. After a

couple of meetings, two additional participants transferred from the Thursday group because

they could not continue attending on Thursday due to time conflicts.

Participants from this group were also musicians and sound artists; however, they did

not have much experience with computer-music or live coding. This allowed me to facilitate

explorations with Seis8s to generate shared musical moments, which led to follow-up discus-

sions. In addition to the discussion, this group and I put together a musical performance at

the FMC. This performance is described in the next chapter.

3.2 Methodology for gathering and analyzing partici-

pants’ contributions

Before meeting with the participants, I worked closely with McMaster Research Ethics Board

(MREB) to prepare an ethics protocol with procedures I would take to secure the participants’

well-being and engagement. The first steps included defining the method, i.e., talking circles,

and drafting the broad questions mentioned in this chapter’s introduction. Another step was

the creation of the recruiting poster shown above and the inviting of two initial co-moderators

to lead the sessions. Finally, a necessary procedure was for participants’ contributions to be

de-identified to protect their privacy.

During the sessions, I shared materials such as texts, videos, and audio with participants

to encourage conversation. These materials guided participants and me through issues re-

lated to identity, sexual orientation, language, capitalism, colonialism, extractivism, cultural

appropriation, feminism, queerness, decoloniality, anti-coloniality, multiculturalism, pluri-

culturalism, philosophy, and the music market. A detailed description of the themes and

62

materials discussed per session is given in Appendices A.1 and A.2.

Additionally, I invited participants to share materials that we could all comment on (e.g.

articles, videos, reviews, etc). Participants were also encouraged to share their artistic work

with the group. In my opinion, the latter worked well as participants could take the role of

both lead presenters and listeners. They also connected their thoughts to personal artifacts,

such as their artworks, to talk about them in connection with the broader issues of interest.

Participants’ contributions were gathered in the form of notes, audio recordings, and

summaries generated. Some notes were taken in the form of real-time transcriptions, where

my goal was to collect the exact words people were saying rather than focusing on their

interpretation or analysis. My typing speed has limitations, and thus parts of these tran-

scriptions might be incomplete or more inaccurate. On the other hand, the audio recordings

were transcribed word by word and reflect more accurately what people said.

The summaries were generated the same week after each meeting to capture the overall

themes and dynamics that happened. These summaries also served as a refresher of the state

of the discussion, and because of this, they were shared with the participants before the next

meetings. These also represent an initial analysis stage, which involved selecting the most

important things people said. When making these summaries, I also identified keywords and

short phrases that could describe the sub-themes of our discussions.

Additional keywords and phrases were included after transcribing the audio recordings.

These keywords and phrases were matched up with similar ones to identify relations and

broader categories. From these categories and related keywords and phrases, I went back

to the summaries, notes, and transcriptions to pull out topical themes, which in this case,

represent how participants perceived, felt, behaved, reacted, and generally mentioned in

regards to the main themes, questions, and suggested materials.

Finally, from these topical themes, I identified the conceptual or overarching themes.

Please see Appendix A.3 for these themes. Identifying these themes allowed me to better

connect the participants’ perspectives with the interaction of gender, ethnicity, social class,

63

and national identity with music and music software in Latin America. In the next section,

I discuss some of these themes, weaving together participants’ observations with scholarship

on the topic. Please note that the translation of the participants’ quotes is mine.

3.3 Part 1: Software in Latin America

3.3.1 What is software?

At our first meeting, one participant asked a key question that in my opinion helped estab-

lish common knowledge and common reflections. That question was “what is software?”.

Participants started with technical-oriented responses such as:

“The abstract logical part [of a computer]”.

“It is what is inside the hardware, [which is] the physical part”.

“Software could be a connection of circuits”.

“In popular terms, software refers to a graphical interface – a program on a

computer”.

Then they moved to more conceptual definitions of it:

“In Spanish Wikipedia, they define it as a masculine term”.

“The soul of things?”

“[A] matrix of a series of multi-connections”.

Participants also connected the idea of software with the one of a recipe or an algorithm,

mentioning software is related to instructions to create something. Someone made an inter-

esting distinction between algorithm and software, where the former is connected to labor.

In contrast, the latter is more connected to mass production and to a capitalist system.

Following this train of thought, it was said

64

“... we all have certain algorithmic behaviors, we follow steps, we have a daily

life. This is assembled to result in a larger gear that is capital”.

Participants also posed questions related to software’s political and conceptual aspects and

the infrastructures behind it.

“What are the political understandings behind software?”

“Who creates software?”

“Who distributes it?”

“What constitutes the logic behind software?”

Finally, someone suggested being aware of the distinction between free and private software,

“We are focusing a lot on software [in relation] to capitalism. What about software

that doesn’t fit in this box?”

To which someone answered,

“Open source or free software is also synonymous with prestige. Free software

doesn’t escape these same capitalist structures. Good intentions can be cor-

rupted”. And someone made the follow-up question, “Is free software created in

Universities exempt from the latter?”

This discussion about software, in addition to setting up common knowledge for all the

participants, also showed that participants were potentially more interested in investigating

it than other topics included in the poster description — such as electronic music, Latin dance

music, and live coding. Participants’ interest in discussing software could be connected to

the difficulty of finding spaces to talk about the social aspects of software design. In my

experience, it is more common to find spaces to talk about the social aspects of practices or

spaces where software is used— for example, electronic music-making and performance.

65

This lack of space to discuss software design from a social perspective was also pointed

out by one of the participants who talked about the need for software developers to enable

discussions about software design in conjunction with the users. For example, participant

J02 mentioned,

“Spaces for designing together are important, but spaces like these circles call my

attention more as there is a potentiality where many reflections can be shared.”

3.3.2 Parallel coexistence, delinking digital technology

Mestizaje was a recurrent topic in both Thursday and Saturday meetings and was introduced

by the following participant’s questions,

“How decolonial can one become if the tools that we use are produced by the

colonial? And, where does mestizaje come in? Is mestizaje a contradiction when

we work with technologies in Latin America?”.

Anthropologist Peter Wade (2003) mentions that mestizaje, in its nationalist form, refers to

an ideology where the foundations of the nation are thought to be a “mixture that occurred

during the colonial era between African, Indigenous, and European people” (p. 275, transla-

tion mine). Wade describes how this national identity was sometimes embraced in response

to nations such as the United States, “where racial mixing was taboo and racism against

black and indigenous populations was notorious” (p. 275, translation mine). Is in this way

that during the 20th century, “[c]elebrating mestizaje became an assertion of the supposed

Latin American racial democracy” (p. 275, translation mine).

The phenomenon ofmestizaje happened in different countries of Latin America in diverse

ways but with the shared “emphasis [that was] placed on the Indigenous or the Afro” and with

the constant that “the white always receive[d] attention” (p. 277, translation mine). Wade,

coinciding with other various authors, views mestizaje in general terms “as a nationalist

66

ideology . . . more or less disguised as whitening, both in physical and cultural terms” (p.

277, translation mine).

However, Wade considers,

“... mestizaje is more complex [and] that multiple mestizajes can be thought of

and . . . in order to understand why the idea of mestizaje and being mestizo or

the product of a mixing process is so deeply rooted in the populations and the

imaginary of the nations in Latin America, it is necessary to go beyond the idea

of mestizaje as a process of disguised exclusion” (p. 277, translation mine) 1.

Because of the latter, it seemed to me that it was important to uncover the participants’

position toward mestizaje, so I decided to inquire more. First, participant J05 gave their

point of view by making reference to the concept of ch’ixi or cheje from Bolivian sociologist

Silvia Rivera Cusicanqui. In an interview shared by this participant, Rivera Cusicanqui

defines it as:

“The notion of ch’ixi is equivalent to . . . [the] concept of ”mottled society”,

which expresses the parallel coexistence of multiple cultural differences that do

not extinguish but antagonize and complement each other” (TV UNAM, 2018).

This concept of cheje seemed to be familiar to other participants. For example, J05 described

it as a “decolonized mestizaje . . . as a color born from contradiction”. The latter was

complemented by participant J14 who mentioned,

“... we could see history without so many veils, which are not completely black

or white, but much more complex. [We should] understand the idea of mestizaje

. . . as the opposite of the pure, as contradictions”.

1“Another dimension of the variation in ideologies about mestizaje is the diverse importance given to
the indigenous and African contribution to thinking about the imaginary of the nation. In some countries,
mestizaje has been thought with reference above all to the mixture between whites and indigenous people
- for example, in Peru . . . while in others the basic reference has been the mixture between whites and
Africans - for example, Cuba” (Wade, 2003, p. 276, translation mine).

67

From my perspective, the reflections above regarding mestizaje pointed to participants’ will-

ingness to challenge nationalistic understandings of identity in Latin America. Moreover,

they challenged these understandings with care by trying not to demonize their identity and

avoid creating feelings of guilt within the group. They achieved this by focusing on ways of

resignifying the ideologies that formed their identity rather than on suppressing their identity

itself.

For example, participant J05 invited us to search for a resignification of this concept outside

of the “white mestizo” scheme,

“How to give a resignification, no longer thinking about the concept of the white

mestizo, but closer to what we are trying to define?”.

The term white mestizo struck me as novel as I have not heard it before. However, I think

the term could be explained by Chicana Activist Gloria Anzaldúa (1987/2001). Anzaldúa

critiques the 20th-century nationalistic ideologies in Mexico and the United States,

“... commonly held beliefs of the white culture attack commonly held beliefs of

the Mexican culture, and both attack commonly held beliefs of the indigenous

culture ... [because of this, the] new mestiza copes by developing tolerance for

contradictions, a tolerance for ambiguity. She learns to be Indian in Mexican

culture, to be Mexican from an Anglo point of view” (94-95).

Delinking digital technologies

I would like to return to the questions mentioned by participant J12 at the beginning of this

section where it was asked how mestizaje influences people living in Latin America when

creating with technology. Here, I believe participant J12 was inviting us to delink from the

idea of the use of digital technology —such as software— as an oppressive or a colonizing

aspect. The latter, as this same participant suggested,

68

“seeing ‘Eurocentric’ technologies as part of non-Western knowledge . . . to begin

rescuing the non-western from the western”.

J12 furthered this by reflecting on ideas —or technologies— from non-Western cultures that

have influenced Western thought such as “the non-Western mathematics . . . that has allowed

us to make computers . . . ”.

My interpretation of J12’s last comments is that mestizaje, seen as a series of contra-

dictions, is not only particular to places such as Latin American countries. The latter, as

contradictions, can also be found in places from Western countries within their tools and

technologies. The latter is not only valid for digital technologies but also for ideas and ide-

ologies. An example of this is the exploration of the mestiza identity in Donna Haraway’s

Cyborg Manifesto (1985/2016), through the concept of the “oppositional consciousness” by

Chicana scholar Chela Sandoval (1981).

In her essay, Haraway looks at Sandoval’s scholarship which describes a mode of political

thinking and being that looks to oppose or transgress the “dominant social order” and the

rigid categories it imposes (Sandoval, 1991/2013, 54,5). One of these modes is called the

differential mode, and it is drawn upon Gloria Anzaldúa’s ‘Chicana mestizaje’, which proposes

a “form of consciousness made up of transversions and crossings ... between races, genders,

sexes, cultures, languages, and nations (Sandoval, 1998, 352).

In this sense, I believe that some participants’ perspective was that the usage of digi-

tal technologies in Latin America and their tensions towards being ‘foreign’, should not be

connected to the false sense of purity that national understandings of mestizaje propose.

Rather, it should be seen as part of the diverse cultural artifacts that coexist, complement,

and antagonize within Latin American societies.

Software bricolage

Other themes that often emerged in our talking circles were about the asymmetric relations

on top of which software is made. These topics came up first from a question by participant

69

J04 in regards to programming languages,

“How to dialogue with these languages that are free software but are still directed

and that in their essence have a lot of [the] first world?”.

Five meetings after, participant J02 connected the term mestizaje to the term scarcity,

“What do you think about technological mestizaje? Have you found it some-

where? What does it sound like to you? . . . [In terms of mixing] old and new

technologies so to speak... due to scarcity . . . ?

To which participant J09 responded with the term of precarity by saying,

“. . . the word mestizaje is associated with the biological and [the] cultural ... if

there is a cultural mestizaje then there is also a technological mestizaje. Although

it can also be seen from the most negative point of view. . . I also know people

who work from precariousness and in that, there is a possibility of developing

with few elements [where] the answers do not depend on my ability but on my

possibility to go to a store”.

An interesting thing was that both questions and comments above were not directly connected

to mestizaje as a contradiction but more to a mixing of biological, cultural, and technological

materials and practices. The latter makes me think that mestizaje in this context might

actually have a relation to the French word bricolage. Bricolage is a term originally formulated

by French anthropologist Lévi-Strauss as “a survival of ancestral ways of thinking and doing

which persists in certain everyday practices of our modern industrial civilization” (Johnson,

2012, p. 357). Lévi-Strauss mentions,

“. . . in our own time the ‘bricoleur’ is still someone who works with his hands

and uses devious means [des moyens détournés, indirect or roundabout means]

compared to those of a craftsman [homme de l’art]” (as cited in Johnson, 2012,

p. 358).

70

For Lévi-Strauss the bricoleur was not “exactly coincident with the contemporary definition

of ‘handyman’ or ‘handywoman’, ‘DIY man’ or ‘DIY enthusiast” nor was it with engineer

(360). Furthermore, it is stated that what is produced by the bricoleur through bricolage

was not “a replicable object” (361).

In this sense, words such as scarcity, precarity, mestizaje and bricolage, might point to

a form or circumstance from and in which things can be produced under an unofficial and

non-mass production ideology.

3.3.3 The concepts of race, multiculturalism, and pluriculturalism

in software

From the responses shown in the previous section, I was able to feel a consensus where the

participants wanted to detach mestizaje from the dominant national understandings of their

respective countries. I also felt they were pushing for a resignification of the concept toward

a less universalized cultural experience or even an ideal for people living in Latin America.

The latter is likely to be connected with shifts in public discourses after the 1990s

when countries in Latin America started to recognize themselves as pluricultural and where

they started to recognize that Indigenous peoples living there have the right to their self-

determination (Jackson and Warren, 2005) 2.

Once the participants and I had commenced challenging national identities imposed by

our nation-states, I wanted to know to what extent participants have reflected on the cultural

differences and identities that other ethnicities in their countries have.

My interest extended to related concepts such as race, which was also new to me until

2For example, Mexican scholar Ortega Villaseñor (2010) describes Mexico’s complex process of moving
from “a monocultural state to a pluricultural one, that is, from a nation composed of a single ethnic group,
a single language, a single right, to one multiethnic, multilingual and of multiple legal regimes” (224). The
latter process saw its light for the first time in 1992 when published in the Mexican Constitution. According
to Ortega, these policies were the product of the pressure coming from “Indigenous peoples of [Mexico and]
the world, in their desire to preserve a freer world, fair and diversified culturally” (248). The latter, he
mentions, happened with the aid of international organizations such as the United Nations as well as to an
increase in international Indigenous and human rights.

71

recently. This concept and derivatives — such as ‘White’ and ‘Black’ — are often used in

research within social sciences and humanities in countries such as Canada and the United

States. It is also frequently used in the news, TV shows, and day-to-day conversations in

that country.

On the other hand —and despite Mexican historian, Velázquez Gutiérrez’s (2020) as-

sertion that the category of race is very used among Mexican intellectuals—, my experience

has been the opposite. That is not very used in the social sciences nor in the public sphere

in countries such as Mexico, and despite mestizaje being a racial concept.

me: “Is race a valid concept of analysis today?”

J04: “... the researchers [mention that race] is not constituted by natural or

biological concepts, but is constituted by social facts and is configured by contexts,

and this can have effects of power relations and of subjection. This is in relation

to blackness, and I have also heard the concept of Indianity, on the one hand. So,

if it is valid or not? As a biological or natural fact, it is no longer valid, but it

does have cultural effects that should not be ignored”.

It was also mentioned that sometimes terms related to the concept of ‘race’ are appropriated

by racialized groups as a process of empowerment,

J09: “...these terms appear from an appropriation of meaning by the racialized

groups themselves. . . One thing that resonates with me regarding this scientific

qualification, is that it is not a valid concept for measuring something”.

Likewise, it was pointed out that these same terms and the concept of ‘race’ become conve-

nient for the market and that is why they are perpetuated,

J09: “It resonates with me, first, from this pet word, where someone uses some-

thing that was scientifically proven in order to silence or impose a word. The

other thing that resonates [with me] is that the market is the one that ends up

72

influencing who uses those terms and discourses. These are convenient for the

market, and so reversing these ideas of difference could be dangerous for the

system ... Science also works for the market”.

Multiculturalism as technology

Within this same conversation, someone introduced for the first time the term multicultural-

ism, bringing to our attention its instrumental aspect,

J04: “. . . this discourse of representation and multiculturalism is violent and

. . . it is a discourse that is a technology that is redefined and revalued from the

nation”.

me: “Can you explain to us what is the problem with multiculturalism?”.

J04: “A little bit of the problem of assuming ourselves as mestizos or being

sheltered under [that] governance scheme is that there are other groups ... who

do not assume this [identity] ... who do not want to recognize themselves as

mestizos [and] then they are no longer represented by these governments. . . So

they are definitely not all represented. So if they move [from this representation],

they [now] have a complex power relationship where a position of a police state is

assumed against these Indigenous groups that do not want to identify with [what

the] government proposes”.

Three sessions later, we went back to discussing the concepts of multiculturalism and pluri-

culturalism. To have a better understanding of these terms in the context of Latin America,

I suggested reading a text from Ecuadorian Cultural Studies researcher Fernando Garcés

(2009). Garcés mentions that multiculturalism is “the simple acknowledgment of the exis-

tence of diverse cultures in a given space without making reference to their mutual relation-

ships” (24).

73

Pluriculturalism is when “the cultural diversity of the countries is seen as a wealth that

is incorporated into the white-mestizo political model and structure without questioning or

restructuring it. This is the model ... most commonly applied in Latin America and also in

the Andean region” (25).

After having read about these terms, we shared some more questions and reflections,

J02: “When is multiculturality confused with westernization?”

Participant J02 told us about central Mexico, where Indigenous Purépecha food sold in the

streets and which usually does not have much sugar, now has more sugar so that the mestizo

population likes it. For J02 this meant Westernization rather than multiculturalism.

I also offered some comments regarding Canada and Mexico, which are countries where

I have lived. On the one hand, I mentioned that multiculturalism in Canada seems to be un-

derstood in terms of tolerance and increasing the country’s labor force through immigration.

On the other hand, immigration is way lower in Mexico, meaning multiculturalism there is

connected to countryside migration. This type of migration is, nonetheless, connected to

increasing the labor force as well.

In this respect, Canadian political science scholar Murphy (2013), describes how mul-

ticultural policies differ worldwide. For example, in Europe, these revolve around “circum-

stances of immigrants and refugees”, whereas “in parts of Latin America [they] encompass

the very different sorts of claims and circumstances of indigenous peoples” (30).

In the United States, he continues, “the term is generally not applied to indigenous

peoples but it is applied to African Americans and policies geared towards issues of racial

difference and racial disadvantage” (30). Finally, he concludes, “Canada’s official multicul-

turalism casts its net even wider to include immigrants and refugees but also historic religious

and linguistic minorities and ... Aboriginal peoples and the Quebecois” (30).

Going back to our group discussion participant J04 mentioned,

74

“Under the discourse of multiculturalism . . . there is an opportunity to recognize

oneself within a race, but underneath there are some covert logics”.

J04 continued reflecting on these terms,

“I would like to make an attempt to turn things towards the concept of technology

and I wanted to take up some words from [Paul] Preciado. Preciado is inspired

by Haraway. [Preciado mentions] the footprint of man has been represented by

the control or domination of power, [where the man] understands and categorizes

[some cultures as] brute nature that must be domesticated”.

Race, multiculturalism, and pluriculturalism in software

The use of race and multiculturalism as technologies of categorization connect with what

critical studies scholar Tara McPherson (2013) mentions with particular attention to the US.

Focusing on the 1960s, she points out the double standard where modes of racism passed

from “overt to more covert” as a result of the civil rights movement fighting for Black people’s

rights (24).

According to her, it was possible that this double standard got embedded in the design

philosophy of operating systems such as UNIX, privileging “the discrete, the local, and the

specific” (25). Here, designers of UNIX reproduced particular wordings of problems and

solutions drawn from discourses of multiculturalism, poststructuralism, and post-Fordism

(29).

McPherson makes the latter more concrete by mentioning that the discourse of “ne-

oliberal pluralism” from the 1960s was grounded on hiding the racist core of the US white

society, similar to how the UNIX kernel (i.e. the core program that manages “‘hardware

memory, job execution, and time-sharing”) is hidden beneath the shell (i.e., languages) (29).

However, McPherson makes clear that the parallels between “racial and political formations”

and UNIX design were not conscious ones but systemic ones (30).

75

McPherson’s conversation on computer design is useful as it allows one to extrapolate it

into Latin American societies and the software they have been producing – including Seis8s.

For example, it allows one to ask in which ways has computer software in the region been

inadvertently influenced by national ideologies such as mestizaje. Or, have their philosophies,

metaphors, rules, and functions been influenced by the multiculturalism and pluriculturalism

particular to this region?

3.3.4 On software orientations

On one meeting from Saturdays, I shared a fragment of the text “Becoming Straight” by

Queer theorist Sarah Ahmed (2006). Ahmed begins with Simone de Beauvoir’s quote “one

is not born but becomes straight” (79). Ahmed then wonders “[w]hat does it mean to posit

straightness as about becoming rather than being?” (79).

She mentions that sexual orientation has been framed as either a biological question

or “a question of choice” (79). However, the latter and the former are the results of social

constructions that “[do] not quite explain the ways in which sexual orientation can be felt as

inherent and bodily or even as essential” (79). Because of this, Ahmed invites “to produce

explanations of how orientations can operate . . . as effects” and at the same time, be lived

or “experienced as if they are originary” (80).

Ahmed also says that social construction is also informed by the space and the objects

that surround us. To exemplify the latter, Ahmed quotes anthropologist Janet Carsten who

narrates how the kitchen table in her home brings her back strong memories not only of

cooking and eating but of “family discussions, community work, and . . . games” (80). Here,

the table allows a certain socialization that keeps people related by the “tangible” (81).

“The table in its very function as a kinship object might enable forms of gathering

that direct us in specific ways or that make some things possible and not others.

Gatherings, in other words, are not neutral but directive. In gathering, we may

be required to follow specific lines. If families and other social groups gather

76

‘around’ tables, what does this ‘gathering’ do? What directions do we take when

we gather in this way, by gathering ‘around’ the table?” (81).

When discussing objects and spaces as orienting social relationships, participant S01 men-

tioned,

“... That distinction between object and space seems appropriate to me. . . I find

it appropriate to show that a social domain does not necessarily inform the body.

It also happens vice versa, where bodies can take up space and form the social

sphere”.

In the same manner, Ahmed emphasizes “the role of repeated and habitual actions in shaping

bodies and worlds” (2). That is, “[it] is not just that bodies are moved by the orientations

they have; rather, the orientations [they] have toward others shape the contours of space by

affecting relations of proximity and distance between bodies” (3).

S01 also mentioned,

“... related to software: the design is not neutral. The very design of the table

or of the bodies that occupy space already enables certain processes, right?”

Ahmed coincides with S01 in that space is defined by how our bodies reside there. For

example, the rights that bodies have in a certain space define the space itself. Furthermore,

how bodies experience “social differences” affects not only their interaction with the space

but their interaction with other bodies sharing that same space (5).

Feminist activist Cynthia Cockburn (2004) exemplifies the latter when talking about the

spaces of science and technology. Cockburn describes how the over-involvement of men in

these fields gets to signify them having control over ‘the future’ (12). This over-involvement,

she says, has made technological research have a

77

“male orientation . . . [that] has long obscured the significance of ’women’s sphere’

inventions, and this in turn has served to reinforce the cultural stereotype of

technology as an activity appropriate for men” (15).

Social position and software

During our conversations, I questioned how my social position as a heterosexual male would

have influenced the design of Seis8s. I asked the participants, how could we do a textual

reading of Seis8s to discover the linguistic and non-linguistic signs that are normative in

terms of sexuality, to modify them or mitigate them. Participant S01 responded,

“Is it possible from the straight to design a space to liberate the bodies in a Queer

way? I think that’s the question right?”

To what participant J02 responded,

“I think that even for people who identify as Queer it would be difficult because

it means unlearning many things. I do believe that spaces are gendered in the

sense that they enable certain people to have more power than others. So, I find

it very difficult to think how to build something completely different”.

J02’s comments about unlearning things were connected to Ahmed’s (2006) discussion of the

familiar and how it is “shaped by actions that reach out toward objects that are already within

reach” (7). Here, creating “new impressions” involves the “dynamic negotiation between what

is familiar and unfamiliar” (7-8); and in this regard, it might that building new spaces, as

J02’s suggests, involves working with a mix of things we know (or not have unlearned yet)

and things we do have unlearned,

“Going back to . . . the cultural and biological constructions of gender, about how

we design certain spaces ... Programming languages is quite a masculine field.

Although this was not always the case, we already know that the first people who

78

started working with programming languages and doing computing were women.

So it was a female field”.

In connection with J02’s comments, we turned our attention to discussing ways to resist this

male over-involvement in computing and programming languages. Participant S01 mentioned

that a way to do so could be to

“... reminisce how code design has a female history and perhaps highlight it as a

[current] possibility”.

In this same vein, J02 ended our conversation by mentioning how education is another way

of resisting the patriarchal culture in computation,

“For me, it has to do with education ... obviously [not by] looking for [a certain]

gender to say that you are going to change something because you can be a

woman or a man, [as both can] repeat the same capitalist structures . . . I think

this space where we are, where there are reflections on certain things, calls my

attention more . . . Many of [us] at some point will teach, so then there is a

potentiality in which you [will] share many [of these] reflections. [And this, then

becomes] a space where you can change things”.

At the end of that session, someone mentioned the importance of asking about how gender and

sexuality are represented in Seis8s. For example, participant S01 pointed out the heterosexual

dimension of Latin music, particularly cumbia.

3.4 Part 2: Latin dance music

3.4.1 Cultural appropriation in Latin music

At the fourth meeting on Thursdays, I picked up on cultural appropriation. I suggested

reading a pop culture article about cultural appropriation and whitening in Latino popular

79

music that addressed the Spanish singer Rosaĺıa, who sings a mix of Flamenco and urban

music like Reggaeton. The article discusses the multiple times Rosaĺıa has been called or has

called herself a Latina artist, including in the 2019 Grammys and in the article “20 Latino

Artists making the world dance” from the magazine Vogue Mexico (Agrelo, 2019).

Participant J07 started by saying,

“... the truth is that I have heard little about [Rosaĺıa], I have heard about her

through friends, and that she has been criticized for cultural appropriation. The

article mentions that she won at the Grammys . . . [but] that does not respond

to a desire for it, but to the market that seeks to sell cultural things. When can

we talk about appropriation and when not?”.

Participant J05 built upon,

“She is Catalan from Barcelona and does not have [Roma] roots and she was also

accused of appropriating the [Roma] culture and the accent because it is not the

way she normally speaks”.

Participant J05 redirected their comments by mentioning that in Spain, Latin-American

immigrant women have made backlashes against Rosaĺıa as for example, “she has never been

detained [or asked for] her [immigration] papers” in that country.

The latter points out that Rosaĺıa potentially benefits from identities that are in a more

asymmetric position in relation to the Spanish government. This participant concluded that

one way to avoid cultural appropriation is to create around “shared oppressions” rather than

upon “other” oppressions.

Farther into that conversation, participant J09 suggested that there was a type of ap-

propriation that involves the transformation of oneself. This participant exemplified this

by mentioning that if Rosaĺıa had lived under the socio-economic conditions experienced by

people living in Latin America, she might call herself Latina.

80

This was followed by participant J10 who mentioned,

“I have heard Spanish people saying they name themselves as Latinas because

their language comes from the Latin [language]”.

The language of Latinidad

The comments from participants above pointed to important contradictions within terms such

as Latin, Latino, Latina, and latinidad. Ethnic and Gender studies professor Juana Maŕıa

Rodŕıguez explains the “problematics involved in the construction of Latinidad” (2003, 9).

She starts by saying,

“Latinidad serves to define a particular geopolitical experience but it also contains

within it the complexities and contradictions of immigration, (post)(neo)colonialism,

race, color, legal status, class, nation, language, and the politics of location” (p.

9-10).

Rodŕıguez continues by asking,

“So what constitutes latinidad? Who is Latina? Is latinidad in the blood, in a

certain geographic space? Is it about language, history, and culture, or is it a

certain set of experiences?” (p. 10).

Reflecting on these questions, she talks about the issues that imply defining latinidad through

geographical spaces. One of the problems, she says, is that geography is “constructed by

history and politics”, and often marginalizes “Indigenous ethnic communities throughout

the Américas that refuse to be subsumed by occupying nation states” (p. 10).

Something similar was commented on by participant J12,

“... the term latinoamericano is problematic because if we speak about geography,

then where do the native peoples who do not speak Spanish belong? Let’s say,

the Quechua and Aymara peoples . . . ”.

81

J12 pointed to heritage and natural language as other contentious ways of defining latinidad.

Rodŕıguez explains that if we try to see latinidad through the lens of a “shared linguistic

‘Latin’ heritage”, then many people and regions will fail to fit into that scheme. This is

because there are many non-Latin-derived languages used ‘officially and unofficially’ in Latin

America, such as “Quechua, Aymara, Guarańı, French, Hindi, Creole, Papiamento, and

English, to name a few” (p. 14).

Rodŕıguez continues, “Spain and Portugal also spread their colonial seeds elsewhere, in

the Philippines, the Canary Islands, Cape Verde, Morocco, Macao, Mozambique, Guinea

Bissau, and Angola, for example” (p. 14). Furthermore, if “[in] México, the mixture of

Indigenous and Spanish blood is considered mestizo, . . . in the Philippines this same mix-

ture is considered Asian” (p. 14). In the same way, “[t]he cultural fusion of African and

Portuguese brought about through enslavement may be considered Latino in Brazil, yet the

same combination in Cape Verde is considered . . . something else” (p. 14).

To complicate things more, Rodŕıguez says,

“Ironically, several regions of the Iberian Peninsula also make claims to being un-

willing subjects of Spanish colonialism and conquest . . . Populations in Galiza,

Catalunya and Euskal Herria make varying claims for a cultural and linguis-

tic identity separate from an imposed, culturally Castilian, Spanish nationalism,

which has historically attempted to consolidate itself precisely through colonial-

ism and conquest” (p. 15).

Cultural appropriation in Caribbean music

Resuming our conversation about cultural appropriation, participant J04 finished with a

question that invited us to reflect on the limits of musical exchange,

“.. one is always determined by the world of production and it is a very homoge-

nizing way of operating. That on the one hand, but on the other, it is interesting

82

to ask ourselves when it is hybridization and when it is appropriation . . . what

happens when there are others who assume and talk with the marimberos of the

Pacific and then do some super productions and these ‘maestros’ are forgotten

and at risk [because they are left in] poverty?”.

J04’s comment pointed to a real situation that has often happened with Caribbean music.

Arboleda (2012), for example, mentions that during the 1940s Caribbean music from Colom-

bia such as cumbia and porro, became popular in Mexico. Furthermore, its establishment

there, through both Colombian and non-Colombian bands, helped to extend this music all

over the Americas.

Figure 3.2: A picture of Mike Laure’s album ‘Cumbias picosas’

However, within this establishing process, a whitening process also happened through the “de-

africanization of the melodies, distilling the ‘peasant’ performativity in the instrumentation

and interpretation” (p. 56). The above can be exemplified through the Mexican musician

Mike Laure who in the 1970s was known for mixing Rock n’ roll with Caribbean music,

creating the “first versions of ‘Mexican cumbia’” (p. 57, translation mine). Arboleda explains,

“Mike Laure was the first Mexican recording cumbia . . . transforming it into

83

https://youtu.be/KgDVsCt8J8Y

what he or the Mexican record industry said was a more “adequate” sound for

the population of those latitudes”(p. 57, translation mine).

Additionally, Laure never “gave credit to the [original] composers of this music, so his public

believed these were originally composed by him” (p. 57, translation mine).

3.4.2 Sophisticated listening and instrument substitutions

Critiques about the ways that Caribbean music, particularly cumbia, gets legitimized in

different regions in Latin America continued two sessions after. Here, participant J07 re-

membered Mexican musician Celso Piña — another exponent of cumbia during the 1970s

onwards — when talking about the cumbia scene in Monterrey, Mexico.

J07: “... in Monterrey, Colombian cumbia for many years . . . until relatively re-

cently . . . was music for the lowest class ... And the case of Celso Piña seems very

relevant to me, because ... one of the strongest moments for cumbia in Monterrey

to be accepted or to begin to have that acceptance, was when Gabriel Garćıa

Marquez came and asked Celso Piña to be the one entertaining his presentation

or at least the dinner after his presentation”.

J07 continued by explaining how after this event, “the intellectual elites from Monterrey

started adopting cumbia”, switching their perception of cumbia from a “study object” to

a “study subject”. J07 continued by explaining how this affected Monterrey’s society in

both good and not-so-good ways. On one hand, people there were able to openly say when

they liked a cumbia song or band. On the other hand, there still was a reminiscence of

discriminatory dynamics.

J07: “... even though ... there is already a little more license and more fluency

to be able to . . . say ‘these [sounds are] mine’ [or] ‘I like this’, a curious dynamic

continues. Cumbia is a success when it is in a large public space, where there

84

is a certainty that you can listen to it without problems. That there is security.

That it is a cultural event. But cumbia when it is produced or is heard in the

places where it is actually generated, which are the ‘barrios’ . . . is not as ‘pretty’

anymore”.

J07 continued by comparing this type of legitimation to the idea of sophistication, particularly

with Punk music in Mexico,

“... the experience that I have had . . . [is that] the first approach to punk ... is

with bands that play a [very basic] rhythm. A very monotonous rhythm that is

very easy to reproduce, and that anyone can play, but since it is so monotonous

it’s almost hypnotic. And at the beginning, when you start to listen to this type

of music, well, it is good that you say that you like that because it is what you

are getting to know. But eventually, it is not so cool that you say you like that

because it is very ‘primitive’, very ‘basic’.

When you start to get a little more technique, ... when you start to sophisticate

the rhythms and sounds a bit, it’s like you’re already talking that you have ‘good

taste’, that you have a little more ‘knowledge’. . . . [You start accessing] other

things a little more complex. And, that complexity in the rhythms and in the

compositions also comes from the production centers of punk music, which would

be the United States, Europe, England mainly, and Japan. But all this sound of

the ‘basic’ and the ‘primitive’ is being pushed aside”.

Responding to J07’s comments, participant J04 returned to the topic of sophistication within

the acts of music-making and listening,

“... I found very interesting what [J07] said about that ... sound sophistication

perhaps shows that Europe began to be constituted as the domain or as the one

that dominated the rest of the world ... This makes me reflect on [the saying

85

that]: ”we have to sophisticate our music or our ways of listening”. But this

[sophistication] is in line ... with European heritages ...

Well, it seems interesting to think about ourselves, ... how perhaps ... [we can]

unmark ourselves or ... ’decolonize’ ourselves from these colonized listenings”.

Here the comments from J04 seemed to connect the idea of sophistication with modernization

or with the idea of what something modern could be. J04 proposed to read an article from

Ecuadorian Mayra Estévez (2015, 57), who investigates the historical and cultural factors

that define sound, understood as “the articulation between sound/silence/sound”. Estévez

says that “sound as a form of ‘creative expression’ . . . has been tied to the imposed exigencies

of dominant discourses”, such as the discourse of development. Estévez continues,

“... within this framework, forms of knowing and power articulated to the idea

of renewal of art through sound were produced; at the same time, the ‘illusion’

of development as the detriment of the local, was effectively conveyed” (p. 57).

For Estévez, “sound is conditioned to factors . . . such as geography, climate, architecture”

but also to “cultural conditions” such as politics and economy (p. 57). Furthermore, she

posits power relations as elements that “condition the generation of the worlds of sound” (p.

58). For her, reflecting on the latter was missing within the artistic discourse of the “van-

guards of the 20th century”, in the same manner, that more obvious practices of development

were put into practice critically in Latin America and other parts of the world.

Instrument substitutions

Towards the end of one of these meetings, J04 directed the following questions to Seis8s,

“In regards to listening and the sophistication of sound, it also accounts for colo-

nizations that we may even have naturalized ... So, thinking about the software

... well in the program that you showed us. It is interesting to think about the

86

sophistication of the sounds, what does that imply? And what does this new

dynamic imply with your program?”

In response to this important question, I said that my intention is not to convey that Seis8s

produces an ‘authentic’ cumbia, but rather, that it produces music influenced by cumbia —

and other musical genres.

I also understood this question as related to instrumentation, where for example, in Mex-

ican cumbia, the congas substitute the more traditional drums from Colombian cumbia. And

in this respect, my response to J04 also involved acknowledging that Seis8s’ instrumentation

responds to a ‘whitened’ and ‘modern’ version of cumbia and tropical music.

This type of substitution is not particular to cumbia or Seis8s but to tropical music in

general. For example, during the 20th century, Vallenato, a musical expression of Colombian

peasant Black people, was slowly transformed from the traditional to the modern by non-

Black bourgeois composers. The latter through the substitution of instruments such as the

“accordion, caja, and guacharaca” with “the guitar, maracas, and instruments”, which were

thought as “less stigmatized” (Blanco Arboleda, 2005, 176).

From a different perspective, I intended to reclaim some of these instruments and

rhythms, and I put them at the center of Seis8s as a form of resistance to asymmetric

types of abstraction in computing. For example, this asymmetric abstraction happens in

drum machines by not giving a central place to specific instruments and rhythms. These

instruments and rhythms include, for example, the congas and the Cuban clave, which are

often seen as a ”flavor” that could be added to rock or pop music.

3.4.3 Kumbia Queer, commands, lyrics, and dance

At another session, I picked up on the topic of Seis8s and the heterosexual dimension of

cumbia that some participants had mentioned in some meetings before. I started by sum-

marizing some strategies that participants have been mentioning in relation to making the

language feel less heterosexual. Drawing from what participant J02 said about programming

87

languages and cumbia as spaces that have a gender, other participants suggested that the

language continued to be designed in collaboration with other people.

Others suggested reflecting on who normally plays the instruments represented in Seis8s.

That is to say, to reflect and ask what is the imaginary revolving around the instruments

such as the conga, maracas, bass, etc. We asked, do I imagine myself playing, or a woman,

or someone Queer?

As we were preparing for a performance, it was suggested to make the exercise of giving

preference to women and Queer people from our group when picking up the instrument

they want to experiment with during rehearsals. The latter, we said, trying to avoid an

essentialization but to foster a reflection about the bodies that perform these instruments in

this music.

Another suggestion was to use lyrics as a way to convey pro-women messages. I said,

however, that Seis8s does not have a direct way to convey lyrics. I proposed then that a

parallel approach might be achieved through the commands of Seis8s. For example, the

command tumbao which is a masculine noun in Spanish, could have the alternative option

tumbaa which might correspond to a feminized version of that noun. Or, we could have

tumbax, which would correspond to a neutral version of that same noun and command 3.

The strategies above connect with feminist reflections around inclusive language. For

example, the expression womxn, which through the substitution of the “e” for the “x”,

“creates a space for . . . [all] women-identifying people”, especially “when certain spaces

align with white feminists and/or trans exclusionary radical feminist . . . ideology” (Womxn’s

Center for Success, 2021, para. 14).

In places such as Mexico and Argentina, women also change the gender of day-to-day

words such as “cuerpo”, which is the masculine noun that translates to ‘body’. Here, activist

women refer to it as “cuerpa” to make the statement that their body is hers and no one else’s

(see Franulic, 2013; Vicente, F, 2018).

3We did not include this syntax in Seis8s, but it remains a future project.

88

More on playing with lyrics

To further the conversation and continue ideating about how to resist heteronormativity in

cumbia and Latin Dance music, I suggested discussing the article “A queer look at urban

popular music: Analysis from different musical proposals with a common queer sensitivity”

by Spanish scholar Teresa López Castilla (2014).

In this text, Lopéz, who focuses on the field of Queer musicology, discusses the Canadian

electro-punk artist Peaches and the Argentinian tropical punk band Kumbia Queers. López

pays particular attention to how both artists “use performance as a political act, subverting

and de-naturalizing gender through their songs, attitude, clothes, while touching upon other

subjectivities” (p. 3, translation mine).

In terms of the lyrics, López highlights that in addition to being “intelligent, lascivious,

and bold” they also convey an explicit Queer message (p. 3, translation mine). For example,

in Peaches’ album “Fatherfucker”, the title of the album “is a form of making justice by

changing the gender to the insult ‘motherfucker’” (p. 3, translation mine). López also

highlights how Peaches modulates her voice through technological means to make it sound

ambiguous and to be able to perform or play different roles or genders within her music.

In the same vein, in Kumbia Queers’ productions, they play with the Argentinian cumbia

style cumbia villera that emerged in the late 1990s. This music, López explains, is a “re-

action to romantic cumbia”, where instead of being about love, “it talks about the life in

the neighborhoods such as violence, issues with the police, alcohol, drugs, and sex” (p. 5,

translation mine).

Here, villera is an appropriation or resignification of a pejorative term that originally

made reference to a person living in a shanty town and who is considered to “like and deserve

poverty” (Mart́ın, 2012). In this regard, Castilla (2014) points to some similarities between

the name villera and Queer in that both terms have been resignified to “return loaded with

identity and pride of belonging” (p. 6, translation mine).

89

Is cumbia Queer in Canada?

Even though the conversation of dance did not come up much during our conversations,

participant S01 did bring it up at the closing moment of one meeting in Hamilton,

Is cumbia Queer in Canada?

This participant continued by mentioning it potentially is, as it responds to a type of sexuality

different from Country or Rock. They also asked,

How does cumbia affect bodies when they are dancing? For example, does their

[lilting] movement blur their gender?

So far, I have not found much information with respect to cumbia scenes in Canada. However,

S01’s questions reminded me of an article discussing the relationship between the nation-state

and the difficulty for bodies to dance in those spaces. Chilean sociologist Eileen Karmy Bolton

(2013) describes, for example, how dance in Chile is “related to long-lasting processes, such

as the formation of the Republic” (96)

More specifically, she explains, the development of “coercive processes of historical dis-

cipline (such as the ordering of the Nation-State) [resulted] in a kind of body atrophy when

dancing” (96). Among others, these coercive processes included the “omission of indigenous

and Afro-American heritage” in music (96). As well as the “proscription of carnival ... and

popular festivities during the beginning of the Republic” (96).

In the mid-20th century, cumbia arrived in Chile. Due to the nation-state processes

above, it developed an accent where the syncopated elements were minimized, making it

easier to dance. Here, “the dance of the Chilean cumbia [developed as an expression of] a

humorous, spontaneous and not very attractive modality of use of the body” (99). And where

its “simplicity ... [gave] the possibility of dancing it freely and unattractively by bodies not

used to moving their hips” (105).

90

In this regard, Chilean cumbia is perhaps also a place where gender blurs as it is also a

type of public dance experienced “collectively through choreographies” oriented to entertain-

ing rather than flirting or seducing. For example, through a conga line known as ’trenecito’

where not only couples but anyone can join to “drag their feet to the rhythm” (102).

This discussion on dance was not comprehensive, however, it is perhaps a starting point

for further exploration in regard to dance and choreography. And the ways it develops

meaning beyond the traditionally male/leader-female/follower in Latin America and beyond

such as in Canada, where this music has already arrived.

3.5 Conclusion

This chapter reported on a series of online talking circles, held from August to November 2020

where people from Latin America discussed software and music in connection to sociocultural

aspects specific to them and their locality. The purpose of this chapter was to expand the

understanding of some of the sociocultural circumstances intersecting with the creation and

use of Seis8s.

Through these circles participants’ opened up about their lived experiences to find meet-

ing points and perspectives based on the collective. This way, participants were vital for the

conversation to be as relevant and exciting as it was, allowing for the development of rich

commentary beyond the individual, academic task of thesis writing.

The number of people involved in these circles – i.e., twenty-six participants – also

provides insight into the need for spaces for collective discussion and creation around software

and the arts, where artists and developers engage in conversations around the sociocultural

aspects surrounding both their digital innovations and their target users. All this, with

the aim of making computer technologies and digital art better directed and meaningful to

people.

In this regard, participants’ questions and contributions in part 1 of this chapter pro-

91

vided insight into some belief systems and ways of knowing and being of Latin American

communities. For example, mestizaje, a belief system often tied to the nation-state’s inten-

tion of unifying through homogenization. And, the white-mestizo cultural model that sees

multiculturalism and pluriculturalism just in terms of tolerance and wealth.

These emerging themes provide value as they allow the formulation of interesting ques-

tions for future research. For example, in which ways has computer software in the region

been advertently or inadvertently influenced by national ideologies such as mestizaje? Have

their philosophies, metaphors, rules, and functions been influenced by the multiculturalism

and pluriculturalism particular to this region? And, what are the implications of this?

Participants’ contributions also provided insight into the generalized difficulties of Latin

American communities. One difficulty highlighted was the shared complication of breaking

the false sense of purity carried by everyday speech in Latin American societies. Another

difficulty discussed was that the use of digital technologies is seen as contradictory because

they are understood as foreign within these societies.

Upon reflection, participants offered ways of resisting the assumptions behind this rhetoric.

For example, they discussed the concept of Cheje, which invites Latin American societies to

be formed by the “parallel coexistence of multiple cultural differences that do not extinguish

but antagonize and complement each other” (TV UNAM, 2018). Moreover, participants

suggested that the Cheje concept can help think of digital technologies as artifacts part of

such coexistence.

At the end of part 1, participants discussed gender and sexual orientation as key dimen-

sions of culture, making us reflect on what our body is doing to the spaces from/where we

design software. For example, they suggested programming languages as spaces, moreover,

spaces with an overrepresentation of male bodies and a male-centered design perspective.

Here, participants offered a series of strategies to resist this male orientation. For exam-

ple, they suggested documenting and sharing the histories of women programmers with the

community at large to visualize these bodies while providing fresh perspectives on the matter.

92

Other suggestions included engaging with spaces where issues of gender can be discussed and

understood, with the expectation to educate the general public.

In part 2, the topics of gender and space were also discussed, now from a Latin dance

music perspective. Here, participants identified genres such as Cumbia as male-oriented and

heteronormative. Because of this, participants and I looked at alternatives to resist through

performance. For example, we discussed artists like Kumbia Queers who subvert gender

roles through Cumbia villera, an Argentinian style that emerged in the 1990s as a reaction

to romantic Cumbia, thus emphasizing other important dimensions of life.

The reflection above led us to discuss the importance of identifying if Seis8s’ music re-

sponds to a range of bodies. We did not have an answer, but participants and I developed

strategies to achieve this. We connected feminist reflections around inclusive language with

the naming of commands. And where, for example, the command tumbao, which is a mas-

culine noun in Spanish, could have the alternative option tumbaa, which might correspond

to a feminized version of that noun.

Our discussions also took us to discuss ways of knowing and being now from the perspec-

tive of latinidad. Here, we discover the ubiquitousness of terms such as Latino and Latina.

And we reflected on the different understandings of these terms and became aware of their

complexity as they convey different meanings for different people and vary highly depending

on the region or country where one is located.

Furthermore, we identified these terms as confusing and potential enablers of covert

asymmetric appropriations of musics and cultures in this region. For example, during the

20th century in Mexico, cumbia went through a process of whitening by the record industry

and the music elites.

Finally, participants questioned how sophistication, understood within a European ideal,

was connected to live coding and Seis8s. And how this sophistication influenced our under-

standing of cumbia. Here, participants touched upon the long history of sophistication of

cumbia and Latin Dance music in general, where the transformation of the traditional hap-

93

pened, among others, through the integration of instruments considered more modern.

Seis8s: applied conclusions

Since the beginning of my doctoral studies, I was very interested in discussing mestizaje in

relation to software. This is as I had the hypothesis that my identity as mestizo had informed

– consciously and unconsciously – the ideation and development of Seis8s. The statement

that one’s identity orients digital technologies might read as obvious. However, my experience

is that research on that topic often focuses on the perspective and critique of whiteness.

Because of this, it was very interesting to see how often this concept came up throughout

the three months of the circles. Furthermore, I was struck when participants proposed

discussing it since the first day, particularly as I had decided beforehand not to take the

conversation that way, to avoid directing participants to my personal interests. And because

I was not expecting them to identify as mestizos.

This way, the discussion of mestizaje opened my understanding of this concept through

other concepts such as Cheje, where I was able to detach from a false sense of purity of Latin

American societies and digital technologies as foreign. Detaching myself from these assump-

tions was essential to overcome my internal conflicts and fears about combining computation

with music forms like cumbia.

Another aspect of the circles that I enjoyed very much was when we discussed forms of

resistance through performance. For example, I enjoyed the discussion about ‘cumbia villera’

as a form of displacing normative forms of romance in songwriting confirms the existence of

such diverse sub-genres. Through this discussion, I learned that Latin dance music, overall, is

irreducible to rigid categorizations, either from the music industry or from the preconception

of latinidad.

The discussion above on displacing normativity in Latin music reminded me of genres

like ‘Salsa consciente’ (conscious Salsa), which “evokes the idea of class consciousness in

the Marxist sense ... and/or an ethical conscience that rejects consumerist individualism in

94

https://msupress.org/9781611864014/una-sola-casa/

favor of social solidarity” (Espinoza Agurto, 2014, ix). It also reminded me of the genre

of ‘Salsa dura’ (hard Salsa), which draws upon the jazz genre hard bop by focusing on the

improvisatory aspects of the music as opposed to the lyrics.

These genres then provided me with further material to reflect upon and potentially

direct me toward the music Seis8s is emphasizing. This made me think, what if Seis8s is

enabling a type of music emphasizing resistance to asymmetric types of computer-music

abstraction by putting Afro-Latin urban instruments and rhythms at the center rather than

as a ’flavor’?

To continue this incipient conversation, in the next and final chapter, I describe a series

of live coding performances and exhibitions using Seis8s, where I tried to engage the Latin

American community in reflections on the options and restrictions of computer music lan-

guages. And to promote critiques and appropriations challenging universal understandings

of bodies, culture, politics, and economies of these technological and artistic milieus.

95

https://en.wikipedia.org/wiki/Salsa_dura

Chapter 4

Seis8s in practice: public
performances and exhibitions

Since the summer of 2020, Seis8s has been used in nine collective performances and five

individual performances and has been submitted to two conferences as online installations.

This chapter reports on these performances and presentations, discussing them individually.

Each discussion starts with a contextualization of the place and event where they happened.

This is followed by short vignettes narrating the performances.

Additionally, each section ends with a brief discussion identifying and reflecting upon

foreseen and unforeseen project objectives. On the one hand, a foreseen objective was to en-

gage the Latin American community worldwide with live coding performance and for them

to reflect upon the options and restrictions of computer music languages. This critical objec-

tive intended to promote critiques and appropriations challenging universal understandings

of bodies, culture, politics, and economies of these technological and artistic milieus. On

the other hand, unforeseen objectives included users’ engagement in learning and producing

electronic Latin dance music.

Furthermore, reflecting upon these objectives revealed important steps that I had to

consciously and unconsciously follow to achieve them. Examples of this include achieving

stable functionality and usability of the software as well as providing documentation for the

96

users. Current and further directions to achieving these objectives better are also discussed.

4.1 Seis8s usage aesthetics: Live Coding and Networked

Music performance

As mentioned in chapter 3, Seis8s heavily draws from Live Coding practice (Collins et al.,

2003; Nilson, 2007). This influence is notable in the aesthetics of Seis8s; for example, the

economic aspect of its expressions allows spending less time typing. It is also noticeable in the

emphasis on the performer showing their code by sharing the screen with the audience. It is

important to be aware of these two characteristics to understand better why the performances

described in the following sections look the way they do.

Another aspect influencing the aesthetic experience, particularly within collaborative

performance, is the use of Seis8s through the Estuary platform. Estuary is a web-based soft-

ware that enables musical collaboration with other users through the Internet (Ogborn et al.,

2017). From a user interface perspective, by using Estuary, the users – i.e., performers and

audience – will experience other users writing and editing code. They might also experience

one or multiple syntaxes coming from Seis8s and from other languages available in Estuary.

This way, the users will also experience both sound and visual outputs in the form of music,

image, and/or video simultaneously.

The performances described in the following section happened online due to the global

pandemic of COVID-19. In the Spring of 2020, COVID-19 arrived in the city of Hamilton,

Canada, where I was developing this software. Worldwide, communities of artists, including

the ones belonging to live coding and networked music, shifted from an emphasis on in-person

concerts to virtual/online ones. I had planned in-person musical presentations using Seis8s

in Canada and Colombia; however, the pandemic made it impossible to do them. Future

work includes using Seis8s in in-person environments.

97

4.2 Performances and Installations with Seis8s

4.2.1 D’Binis at Campamento Extendido <impendingvoid> by

Posternura Records

Seis8s’ first live performance happened on Friday, July 3rd, 2020, at 21.00-00.00 hrs UTC-

41. Campamento de Verano Cyberpunk is a recurrent event where artists meet to showcase

artwork related to technology and culture. It is organized by Posternura Records, a Chilean

independent record label. Live coding participants at this event played a variety of music

styles, including algorithmic soundscapes by Mexican Hernani Villaseñor and Techno music

by Chilean Christian Oyarzún.

Figure 4.1: Poster for the online event “Tokata Campamento: impending
void” by Posternura Records and Campamento de Verano Cyberpunk (Chile,
July 3, 2020)

Seis8s’ performance took the form

of an online audiovisual per-

formance presented by Grupo

D’Binis, a duo composed of the vi-

sual artist Jessica Rodŕıguez and

myself. The performance hap-

pened on Estuary, where I per-

formed music with Seis8s, and Jes-

sica created visuals with CineCer0.

The link to the performance is

https://youtu.be/8UA8QdVat34?t=1355.

At this performance, I played a cumbia-like improvisation as this was the music style I had

been practicing up to this point with Seis8s.

The performance started with the woody sound of the jam block while a disem-

1UTC stands for Coordinated Universal Time, and it “is the primary time standard by which the world
regulates clocks and time” (“Coordinated Universal Time”, 2022, para. 1). UTC-4 is one of many time
zones which “are expressed using positive or negative offsets from UTC” (para. 7). UTC zones can easily be
translated to local time using the Internet, for example by googling them. During the COVID-19 emergency,
online live coding events online started coordinating using the UTC zones to avoid time misunderstandings.

98

http://www.hernanivillasenor.com/html/works.html
https://digitalartarchive.siggraph.org/person/christian-oyarzun/
https://youtu.be/8UA8QdVat34?t=1355

bodied voice – coming from the command altavoz – greeted: “¡Arriba Tokata

Campamento! [Come on Tokata Campamento!]”. I introduced a hi-hat sound

while continuing typing to produce a conga sound (24:13), followed by a bass gui-

tar playing a basic cumbia pattern with a C major chord and after a couple of

minutes also D minor chord (24:44).

The disembodied voice continues now saying the duo’s name: “Grupo D’Binis”

(26:37). A couple of minutes after, the güira comes along with a new chord

sequence of D min and C# min that creates a heavier texture (28:44). Suddenly,

a crash! Something made Seis8s and Estuary crash altogether – up to this point in

its development, Seis8s had many hidden bugs, mostly related to how it combined

the lists of notes and rhythmic values. From my experience, software crashes are

common in live coding practice, and sometimes that even adds some rush to the

performance. For me, the crash made the performance memorable (34:36).

After a necessary reload and a couple of minutes lost, the performance continues

almost from the same place – as I pasted back the code that I had copied before

reloading. Now a glissando sound comes in and out at no specific time. I type a

new chord and slowly increase the tempo to 190 beats per minute.

A plucked-string-like sound is now playing to produce a simple melody with the

unison and the octaves from each chord (39:47). The accompanying keyboard

becomes more noticeable when I try a new sample. A long-gone hi-hat sound

comes back, bringing an air of refreshment into the improvisation. I try to vary

the music more by changing the chords. Still, my inexperience with Seis8s makes

me program something different, making the chords disappear and leaving the

percussion alone for a couple of moments (46:09).

It’s time for the conga solo! I start with a list of rhythmic values arranged

randomly by hand (46:48). The disembodied voice comes back to announce “Grupo

D’Binis” and to greet “Arriba tokata campamento!”. It is time to go (49:51). A

99

https://www.youtube.com/live/8UA8QdVat34?feature=share&t=1450
https://www.youtube.com/live/8UA8QdVat34?feature=share&t=1481
https://www.youtube.com/live/8UA8QdVat34?feature=share&t=1597
https://www.youtube.com/live/8UA8QdVat34?feature=share&t=1720
https://www.youtube.com/live/8UA8QdVat34?feature=share&t=2073
https://www.youtube.com/live/8UA8QdVat34?feature=share&t=2382
https://www.youtube.com/live/8UA8QdVat34?feature=share&t=2767
https://www.youtube.com/live/8UA8QdVat34?feature=share&t=2792
https://www.youtube.com/live/8UA8QdVat34?feature=share&t=2988

Figure 4.2: Screenshot of D’Binis performance using Estuary at Tokata Campamento (Chile/Canada, July 3, 2020)

simple melody is playing while I simplify the code and the music in preparation

to end our 20-minute performance. Only the bass and the conga are left before

slowly fading away.

An aspect I was uncertain about was if I was going to be able to keep the music dynamic

and changing for the 20 minutes that we had programmed. The latter was because of the

little practice I had up to this point with Seis8s. After watching this performance again, I

felt that enough musical variation had happened, and it was fun to hear it again. I noticed

that I achieved a lot of dynamism by adding new chords, deleting older ones, and speeding

up Estuary’s tempo.

At this point in the development of Seis8s, a key goal was to put out the idea of this

language by engaging the audience in two ways: with its Spanish-derived commands and its

cumbia-like style of electronic music that could appeal to them differently than other more

pervasive styles such as techno. At this point, showing the audience that Seis8s was usable

was essential for me too. Showcasing Seis8s usability encompassed demonstrating that Seis8s

had many commands and options for their modification. It also encompassed conveying a

certain amount of reliability by avoiding too many crashes during my performances.

4.2.2 RGGTRN at Digitropics

100

Figure 4.3: Poster for the online event “DigiTropics”
by Tacacoding (Costa Rica, July 11, 2020)

Seis8s’ second live performance happened at the

event DigiTropics by Tacacoding on July 11th, 2020

at 19.00.00 hrs UTC-6. Tacacoding is a live coding

collective located in Costa Rica that frequently or-

ganizes live coding concerts. This particular edition

had a lineup of live coding artists performing Latin

dance music such as Argentinian-based Torotumbo

and Sireñoras.

Seis8s’ presentation at this event took the form

of an online audiovisual performance presented by

RGGTRN, a quartet composed by the media artists

Emilio Ocelotl and Marianne Teixido as well as of Jessica Rodŕıguez, and myself. The link

to the performance is https://youtu.be/McnXHFJYBQM.

Jessica and I started off the performance using Estuary. Emilio and Marianne were in

charge of the second act using SuperCollider. From our side, Jessica and I planned to im-

provise around videos of Walter Mercado, a hispanohablante TV celebrity known for reading

horoscopes.

Using Estuary’s CineCer0, Jessica starts by playing videos of Walter Mercado. I

focus again on creating cumbia-like music. I start with a disembodied voice, now

coming from a text-to-speech website I had open.

The voice greets “Tacacoding a través de Digitropics y RGGTRN Internacional

traen para ustedes Walter Mercado, el homenaje [Tacacoding through Digitropics

and RGGTRN International bring to you Walter Mercado, the tribute]”. After,

Jessica played a video from a TV announcement where Walter Mercado promoted

his horoscope services.

A conga sound starts, evolving from no apparent rhythmic pattern into a basic

cumbia marcha. A jam block and a kick drum come in. There is no specific

101

https://tacacocodin.com/
https://youtu.be/McnXHFJYBQM

command to play the kick at this time, so I use the command extras, which

contains a bunch of additional samples (1:37).

Figure 4.4: RGGTRN internacional at “DigiTropics” (Costa Rica/México/Canada, July 11, 2020)

An alarm-type sound plays for a couple of seconds while a cumbia bass fades in

slowly. Better control over Seis8s’ functions is noticeable this time! I start adding

new chords to vary the hypnotic aspect of cumbia while Jessica continues throwing

new videos. A new video now looping coincided with the introduction of a melody

using a very synthetic sound coming from the command teclado (5:46).

The melody commences varying while the video is still looping. Suddenly, the

chords stop. There is a big silence. This time this is not a mistake but a way to

produce silence on harmonic instruments like the keyboard. This silence also gives

space for a new video where Walter Mercado is speaking. The chords reactivate

their previous pattern, and there is no silence anymore (8:13).

A plucked-string-like comes in while I slowly accelerate the tempo on Estuary’s

terminal. The music is faster now (9:55). The cumbia-like texture now resembles

hypnotic circus music! There are three Walter Mercado videos playing at the same

time. Is this part the climax of the performance? I think so, as more videos are

added (10:47).

I lower the overall volume of the music, while the disembodied voice comes back to

greet the organizers again, namely Tacacoding. Walter Mercado’s voice gets in

102

https://www.youtube.com/live/McnXHFJYBQM?feature=share&t=94
https://www.youtube.com/live/McnXHFJYBQM?feature=share&t=346
https://www.youtube.com/live/McnXHFJYBQM?feature=share&t=493
https://www.youtube.com/live/McnXHFJYBQM?feature=share&t=593
https://www.youtube.com/live/McnXHFJYBQM?feature=share&t=645

the mix when he says “El amor es la razón de vivir” and “I am Walter Mercado”.

15 minutes have passed, and it is time to switch to Marianne and Emilio (11:23).

I prepare the streaming so they come in smoothly while I lower the volume of my

music. The music disappears almost completely (14:22). Only some congas and

a güira are left while Emilio and Marianne enter with a reggaeton-industrial-like

rhythm ...

I believe that RGGTRN’s performance, particularly the section performed with Seis8s,

fits well within the expectations and ideas behind this event. This event has been one of

the few ones in which there is an emphasis on electronic Latin dance music. For example,

the name of the event, that is Digitropics, seemed to convey the idea of digital “tropical

music”. Additionally, live coding cumbia bands such as Sireñoras and Torotumbo were

present performing at this event.

4.2.3 Luis Navarro Del Angel at Galvanized Suns by Diasporic

Futurisms

Seis8s’ fourth presentation happened on October 15th, 2020, during a three-day online event

called Galvanized Suns, organized by the curatorial team Diasporic Futurisms, composed

by Toronto-based artists Adrienne Matheuszik and Vanessa Godden. This event featured

artworks re-imagining “pasts, present and futures through narratives of diaspora outside

of Western hegemony by artists, designers, performers, and writers who contribute to the

Caribbean and Latin American diaspora culture in Canada” (“Galvanized Suns Archive”,

2020). Artists participating included Montreal-based live coder Illest Preacha. This event

was organized in partnership with the Toronto community-building platforms Subtle Tech-

nologies and was supported by the Canada Council for the Arts: Digital Originals Grant.

This solo performance happened in Estuary, and the link to the recording is the following:

https://youtu.be/b3qQDQ2N2Ko.

103

https://www.youtube.com/live/McnXHFJYBQM?feature=share&t=680
https://www.youtube.com/live/McnXHFJYBQM?feature=share&t=862
https://youtu.be/b3qQDQ2N2Ko

r8cm

Figure 4.5: Flyer of the online event “Galvanized Suns by Diasporic Futurisms (Hamilton, Canada, Oct 15th, 2020)

I start the performance with a preset cumbia rhythm for the bass moving through

the D min and G minor chords. After that, I introduce a jam block cumbia and

a conga preset as well as a keyboard accompaniment (0:40). To create variation,

I use the function alternar to switch between accompaniments in beats 2 and 4

to beats 1, 2, and 4 to create variation. I start playing with the tumbadora drum

part of the conga set. The tumbadora provided a bassy sound with every eight

beats, creating some more variation to the music (1:32).

I play a melody using two commands because the punteo command was not yet

conceived. With the command intervalo, I accessed the 5th and 3rd interval of

each chord, and with the ritmo command, I programmed the 16th beat pattern

(5:38). I duplicate the cumbia sound one octave above to reinforce the melody

(6:46). After a couple of moments, I erase the melody and start lowering the

intensity of the sounds, opening space for a conga solo (8:12).

104

https://youtu.be/b3qQDQ2N2Ko?t=37
https://youtu.be/b3qQDQ2N2Ko?t=40
https://youtu.be/b3qQDQ2N2Ko?t=307
https://youtu.be/b3qQDQ2N2Ko?t=338
https://youtu.be/b3qQDQ2N2Ko?t=489

Figure 4.6: A Seis8s’ syntax error during a conga solo at Galvanized Suns

The conga solo starts (9:43). The main drum for this solo was the quinto, which is

high-pitched. I start playing with 16th notes. I then add another pattern that now

includes two tumbadora open bassy sounds (10:00). I continue playing with 16th-

beat rhythms executing after each small change to add to the idea of the liveness

of the solo (10:48). However, a syntax error that I had not noticed earlier deters

the conga from responding to the changes and, thus from arriving at a climax.

There is nothing to do about it at this point as the fifteen minutes the organizers

gave me to play are coming to an end (13:23).

I decide to finish the conga solo and move on to prepare to end the performance.

I introduce all the instruments again to bring back the festive feeling (15:12).

The melody also came back, as well as a disembodied voice saying ”¡sensacional!”

(i.e. sensational!) (16:09). I start to lower the volume of all the sounds, and

one by one, they disappear slowly while the disembodied voice continues saying

”¡sensacional!”. I erase one instrument after the other until only the bass guitar

is left to fade out slowly.

This performance was one of the few that did not include visuals because I was rethinking

the relationship between the visuals and Seis8s. This state of mind partly developed after

perceiving that this event was more serious than the others described. This event had a

105

https://youtu.be/b3qQDQ2N2Ko?t=553
https://youtu.be/b3qQDQ2N2Ko?t=583
https://youtu.be/b3qQDQ2N2Ko?t=600
https://youtu.be/b3qQDQ2N2Ko?t=800
https://youtu.be/b3qQDQ2N2Ko?t=912
https://youtu.be/b3qQDQ2N2Ko?t=935

curatorial aspect, which felt like I was entering a gallery space, and thus, I felt my performance

with Seis8s had to comply with this space.

In previous performances, the visuals were intended to add a campy element. An ex-

ample of these visuals included video excerpts from the horoscope celebrity Walter Mercado

described above. However, at Galvanized Suns, I thought this type of exaggerated visuals

would not align with the gallery-wise quality I had presumed of this event. Ultimately, Gal-

vanized Suns resulted in the opposite of what I thought, with people dancing and enjoying

the music. Furthermore, the campy visuals would have encouraged people to dance and enjoy

even more.

4.2.4 Tania Alejandra, Gabriel G. aka alom, Jessica Rodŕıguez,

Andres Miramontes, and Luis N. Del Angel: Rehearsal for

a Performance at the Factory Media Centre

Figure 4.7: Poster for the online event “Talking and
Music Circles on Decoloniality and Software (Hamil-
ton, Canada, Oct 24, 2020)

This was a rehearsal in preparation for an online

performance and artist talk at the Factory Me-

dia Centre (FMC) located in Hamilton, Canada.

This rehearsal was on Saturday, October 24, 2020,

around noon EST. It happened at one meetup

for the Talking and Music-Making Circles on De-

coloniality and Software, described in the previous

chapter. The performers were Tania Alejandra,

Gabriel G. aka alom, Jessica Rodŕıguez, Andres Mi-

ramontes, and myself 2. The link to the performance

is https://youtu.be/jrCh43IFcac.

This rehearsal starts with güira and a plucked-string-like sound that I have used

2These participants agreed to be identified for this performance

106

https://youtu.be/jrCh43IFcac

in previous performances. Actually, at this point, Seis8s had only two plucked

sounds. This was a long one that was moving across the different chords. The

plucked string lowers one octave while one of the participants slowly introduces a

conga, trying out different “hand hits” (0:41).

Tania is in the process of coding an accompaniment keyboard, while the bass guitar,

played by Jessica, has been sounding for a while. This music does not resemble

the cumbia music previously done with Seis8s. The cadence feels more like Cuban

music (3:48). This cadence is accentuated by Tania’s accompanying keyboard now

playing quarters on each of the four beats (4:01).

Figure 4.8: Performance at the event “Talking and Music Circles on Decoloniality and Software (Hamilton, Canada, Nov 5,
2020)

The plucked string continues with a predictable yet comforting melody that is now

followed by a high-pitched, more synthetic sound. A 3/2 clave comes in, played

by Gabriel (5:02). I had forgotten there was a clave in Seis8s. The congas take

more presence; they vary each cycle. An accordion came in a moment ago, and

it is playing only one note with each chord change (6:50).

The performance seems to stall for a moment, but then people take out some of the

instruments, making it simpler to listen (9:30). The long-gone accompaniment of

the keyboards comes back with a reverberation that makes it sound more organic.

I am not sure where the reverberation comes from, though, as Seis8s does not

107

https://youtu.be/jrCh43IFcac?t=39
https://youtu.be/jrCh43IFcac?t=225
https://youtu.be/jrCh43IFcac?t=232
https://youtu.be/jrCh43IFcac?t=300
https://youtu.be/jrCh43IFcac?t=407
https://youtu.be/jrCh43IFcac?t=567

have these effects yet (10:09).

I suggest preparing ourselves to finish the rehearsal. The music still sounds like

Cuban music, with a slow cadence similar to Cuban Son (12:40). People start

fading out their instruments until only a constant quarter-note keyboard accom-

paniment fades out moments later.

I think this was a more memorable performance than the one we presented one week after

at the FMC. This is because the music we played in the rehearsal sounded within a completely

different style than my previous collaborative performances. It was also memorable because I

felt everyone was very relaxed and having fun. They also were able to follow my instructions

easily while keeping their flow and spontaneity.

The performance we gave at FMC was also very good; however, I felt that the participants

and I were nervous. We also ran into some technical issues where my computer, from where

I was streaming, halted a bit, hindering the performance flow. Some issues with visuals

happened as well, as they were not rendering properly.

4.2.5 Cybernetic Orchestra at Estuary’s 5th Anniversary by the

NIL

Figure 4.9: Lineup of the Estuary 5th Anniversary (Hamilton, Canada, Dec
3, 2020)

This performance happened as

part of a seven-hour online concert

celebrating Estuary’s 5th birthday.

Members participating with the

Cybernetic Orchestra were Liam

Foley, Alejandro Franco, Alex

MacLean, Sam McBride, Saman-

tha McEwan, David Ogborn, Jes-

sica Rodriguez, Gordon Simmons,

108

https://youtu.be/jrCh43IFcac?t=570
https://youtu.be/jrCh43IFcac?t=758

Stephen Surlin, Alejandro Tamayo, Andrew Veinot, and myself. This performance was on

Thursday, December 3rd, 2020, at 3:30 PM EST. The concert was streamed on Youtube and

can be accessed through this link: https://youtu.be/fd83R6gTgxY?t=18618.

Figure 4.10: Three text editors in Estuary, each with virtual conga lines
(Hamilton, Canada, Dec 3, 2020)

In this performance, the visuals

were brought back with the use

of CineCer0. Another language

called MiniTidal was used too.

This is a language for making

sound and music patterns. An in-

teresting aspect was that for this

performance, the orchestra used

the Estuary roulette widget that

simulates the action of lining up to

form a virtual conga line (see Ogborn et al., 2017). This way, the twelve of us were able to

modify code by lining up and taking turns on the three different text editors.

The orchestra starts with a cumbia bass pattern moving throughout a harmonic

progression composed by A minor, G, A minor, D minor, A minor, and G. At

the same time, Alejandro codes an image of a dog dancing in space. While this

playful image is displaying, a jam block sound and a clave join in (5:11:07). On

the Minitidal editor, a sound called glitch starts playing. In that same editor,

more orchestra members start lining up! The same happens in Seis8s’ editor,

where Gordon makes a quick change (5:11:51).

David is now lined up to change some parameters of Seis8s, while a text with the

generic line “lorem ipsum” appears on top of the dancing dog (5:15:02). Some

more percussive sounds get added through Minitidal; they move from the left to the

right speaker. The perceived randomness of Minitidal rhythmic patterns makes the

music dynamic and more entertaining. A melody is coming from Seis8s, which has

109

https://youtu.be/fd83R6gTgxY?t=18618
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=18664
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=18705
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=18900

Figure 4.11: A dancing dog in space and a lorem ipsum text (Hamilton, Canada, Dec 3, 2020)

been sounding for some time now. It is not the product of the punteo command

but from the acompañamiento command. Now, I do add another melody using

the punteo command to create a melodic counterpoint (5:16:11).

The counterpointing melodies progress through the same chords established at the

start but are now accompanied by a text saying ”cu cu cu cumbia!!!”. It is interest-

ing that this text, as well as the “Lorum Ipsum” text, substitutes the disembodied

voice heard in other performances. An audience member who previously com-

mented on the chat now comments on the melody: “totally bobbing my head over

here” (5:21:03). Orchestra member Jessica replies to the participant about how

one time we played Cuban son with Seis8s.

David suggests starting to deconstruct to produce a graceful exit. David, Liam,

and Alejandro proceed to do the same for Minitidal while Alex focuses on Cinecer0

visuals. Steve and I focus on Seis8s by simplifying the code and just erasing it at

times (5:23:25). We are almost finished when the text “Happy Birthday Estuary

displays on the screen”. As in other previous Seis8s’ performances, the bass is

the last to fade out. The orchestra achieves a smooth piece with minimal syntax

errors.

An exciting aspect to reflect upon is that the orchestra members preserved the idea of

110

https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=18902
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=19260
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=19402

producing cumbia-style music in contrast to the performance in the section above, where the

ensemble participants played Cuban-style music.

4.2.6 The ASCIItos: Barush, Nuriban and Gabriel G at Estu-

ary’s 5th Anniversary by the NIL

This performance also happened at the concert for Estuary’s 5th anniversary. This perfor-

mance is particularly important because it was the Seis8s’ first performance in which I did

not participate. Rather, participants of this performance were the Mexican musicians Barush

Fernández, Nuriban, and Gabriel G., aka alom. They used Minitidal and another language

hosted in Estuary, Punctual, for synthesizing sound and visuals for this performance. The

link to the performance is https://youtu.be/fd83R6gTgxY?t=22312.

Their performance starts with a drone sound coming from an accordion coded

in Seis8s. They are using the parameters to lower octaves using the command

punteo (6:12:35). Almost right away, a drum kick starts while more notes are

added to the droney accordion (6:13:21). At the top-left corner text editor, another

person struggles to resolve a syntax error that deters Punctual from rendering the

visuals. The music continues moving dynamically, however.

The rhythm of Minitidal’s kick transforms into something calm and smooth before

starting to be accompanied by some conga sounds coming from Seis8s (6:15:51).

Finally, Punctual’s syntax error gets resolved, making reactive, colorful vertical

lines appear (6:16:35). More hits are being added to the conga to produce a faster

rhythmic pattern. The sound of a square wave coming from Punctual is added

(6:17:05). It moves from low to high pitches while the multiple-color vertical lines

continue reacting accordingly.

Suddenly, the kick drum and the congas align, producing a more techno rhythm,

while the square wave seems to be getting to a climax by moving rapidly through

111

https://youtu.be/fd83R6gTgxY?t=22312
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=22353
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=22355
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=22548
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=22595
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=22597

Figure 4.12: Asciitos performing at Estuary’s 5th birthday (Hamilton, Canada, Dec 3, 2020)

mid-range pitches (6:20:15). The climax reaches, and the performers now enter

a new section using low-pitched drone sounds and a steady but calm kick drum

(6:20:43). A harsh melody seems to be processed by a cutoff and vowel filters in

Minitidal while the congas and the kick drum continue steadily.

The performers decide to deconstruct, and someone simplifies Seis8s’ code, leav-

ing a clave emphasizing each quarter note. Conga sounds also play at times. The

visuals are stacked in the upper-right corner. But they start to fade out when

someone types silence on Minitidal (6:22:27). Now, a smoother melody is play-

ing on Punctual, still using a square wave. This melody has two parts, one lower

and calm and another high-pitched and faster. This makes one realize the per-

formance is not actually ending but has just transitioned to a hypnotic, relaxed

moment.

Some more movement is created in Punctual’s visuals while the congas and the

melody continue. Drums are coded in Minitidal. Suddenly, a harmonic change

happens in Punctual’s melody (6:26:01). It becomes mysterious and appealing.

After a couple of moments, the melody volume goes down, almost imperceptible,

but it is still there (6:26:31). Seis8s’ congas continue steadily but in an inter-

esting way because they move through an intricate five-measure rhythmic pattern

(6:27:03).

112

https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=22812
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=22815
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=22945
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=23158
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=23161
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=23191

Figure 4.13: Asciitos performing at Estuary’s 5th birthday (Hamilton, Canada, Dec 3, 2020)

Figure 4.14: Asciitos performing at Estuary’s 5th birthday (Hamilton, Canada, Dec 3, 2020)

113

Estuary has a chat widget where one of the performers announces that the end of

the performance is coming soon. They say “let’s make some noise!” (6:33:10).

The music becomes techno, moving faster now, perhaps in preparation for a grand

finale. The congas and the kick drum are steady and very present. Punctual’s

melody is dynamically changing too (6:33:28). The visuals are now pure blue,

coming and going from right to left. Suddenly, the rhythmic steadiness breaks.

It becomes more random and slow. It is seductive. Percussive sounds not heard

before are coded while the melody evolves into a high-pitched area that gives the

feeling of an upcoming explosion (6:34:18).

Through the chat, they greet their city of origin, Morelia, Mexico (6:38:28). Punc-

tual’s code gets erased, and the visuals go with them. Finally, Minitidal’s code

disappears, cutting off its percussive sounds abruptly.

Asciitos’ exploration of the aesthetics of drone music through Seis8s showed an advance in

terms of the known goals of this project, namely the technological adoption and re-purposing

of Seis8 by its users. Furthermore, it showed the potential for users to break the constraints

of Seis8s’ ideology. This ideology was being conveyed through presets referencing Latin music

and commands, such as the cumbia command, required to initialize the instruments. Asciitos’

performance, two sections above, showed that asking the user always to use these initializing

commands was restrictive. Following a more recent revision to the language, the cumbia

command is now optional, allowing users to think about instruments and musical patterns

outside this genre more freely.

4.2.7 Grupo D’Binis at PUMPUMYACHKAN Festival 16th by

Asimtria

114

https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=23580
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=23590
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=23608
https://www.youtube.com/live/fd83R6gTgxY?feature=share&t=23904

Figure 4.15: Poster of PUMPUMYACHKAN Festival 16th by
Asimtria (Ayacucho, Perú, May 7, 2021)

This was the third online performance by

Grupo D’Binis – composed by visual artist

Jessica Rodŕıguez and myself. This perfor-

mance happened on May 7, 2021, during the

PUMPUMYACHKAN Festival 16th edition,

organized by the artistic platform Asimtria, lo-

cated in Ayacucho, Perú. The link to the video

is https://youtu.be/LkZvv30bU4g?t=4115.

This performance marked an important moment within the usage of Seis8s. First, in

this performance Jessica and I played two compositions that had a defined structure, rather

than relying purely on improvisation as in our previous performances. Secondly, we enriched

the use of Seis8s not only through visuals but also through a physical keyboard/synthesizer

that Jessica used to play melodies. In addition to this, I used a MIDI controller connected

to the digital audio workstation Reaper, to launch pre-recorded greetings, sound effects, and

to play some melodies as well.

Our performance starts with a disembodied voice triggered from Reaper by with

my MIDI controller. It says “Pumpumyachkan Festival Asimtria 16 trae para

ustedes a Grupo D’Binis. Con sus anfitrionas de confianza Dj Bini y Vj Bini.

Presentando el estreno mundial de la Cumbia Michoacana y la Cumbia de la

Lluvia 2.0. Vámonos con ellas! [Pumpumyachkan Festival Asimtria 16 brings

Grupo D’Binis to you. With your hostesses Dj Bini and Vj Bini. Presenting the

world premiere of Cumbia Michoacana and Cumbia de la Lluvia 2.0. I’ll leave

you to them”.]

A lower-voiced effect starts, paired with the congas (1:09:27). A disembodied voice

announces again “Grupo D’Binis, con sus anfitrionas de confianza Dj Bini and Vj

Bini [Grupo D’Binis, with your hostesses Dj Bini and Vj Bini]”. A keyboard starts

a cumbia-like accompaniment just before Jessica starts playing the main melody

115

https://youtu.be/LkZvv30bU4g?t=4115
https://youtu.be/LkZvv30bU4g?t=4165

of La Cumbia Michoacana (1:10:13). After one pass from Jessica, I double the

melody with my midi controller (1:11:06).

Figure 4.16: D’Binis La Cumbia Michoacana at PUMPUMYACHKAN Festival (Perú/Canada, May 7, 2021)

Then both move on to what seems to be a chorus section. We do not repeat the

melody right away, but rather only the bass is left sounding only (1:12:25). A

güira and the disembodied voice that announces the name of our band come again

(1:12:53).

Jessica plays the melody again with the synthesizer; I double the melody so there

are two layers (1:13:55). We move again to the chorus, which now repeats and

repeats. At the same time, a video of Walter Mercado plays in a loop.

Figure 4.17: D’Binis performing with physical keyboards/synthesizers at PUMPUMYACHKAN Festival (Perú/Canada, May 7,
2021)

I prepare Seis8s’ code to transition to the next composition, “La Cumbia de la

LLuvia”. The tempo increases while Walter Mercado is looping (1:16:40). The

116

https://youtu.be/LkZvv30bU4g?t=4167
https://youtu.be/LkZvv30bU4g?t=4213
https://youtu.be/LkZvv30bU4g?t=4266
https://youtu.be/LkZvv30bU4g?t=4345
https://youtu.be/LkZvv30bU4g?t=4373
https://youtu.be/LkZvv30bU4g?t=4598

keyboard accompaniment coming from Seis8s becomes more frequent, increasing

the intensity of the performance (1:17:10).

Jessica makes a glissando on the synthesizer to give some variation while there

is a hypnotic rhythm coming from the bass, the keyboard, and the güira. Jessica

repeats. The disembodied voice announces the band again “Grupo D’Binis, con

sus anfitriones de confianza Dj Bini y Vj Bini”.

I prepare to start playing the melody created for this composition. I select the

proper sound in the midi controller, and I start. It is a high-pitched short melody

that threads with a secondary, longer melody played by Jessica. Both melodies

complement. We repeat (1:21:17).

It is time to end our 15-minute performance. Jessica and I stop playing the

physical synthesizers giving space to a melody I launch from Seis8s. The music

lowers down while I present the band through a microphone I had set up: “Grupo

D’Binis es en los teclados Vj Binis, en los visuales Vj Binis. Su servidor, Dj Bini

en el teclado segundo y el código de Seis8s. ¡Gracias! [Grupo D’Binis is on the

keyboards Vj Binis, on the visuals Vj Binis. Dj Bini on the second keyboard and

code for Seis8s. Yours truly, thank you!]” (1:26:40).

4.2.8 Seis8s as an online Installation at International Confer-

ence on Live Coding

From December 15 to 17, 2021, I presented Seis8s as an online installation at the International

Conference on live coding, streamed from Chile. This was the first time Seis8s was introduced

to the public as a standalone website (or web application) rather than as a language hosted

in Estuary. Peer reviewers of the conference provided important feedback on technical and

conceptual issues with the application that influenced the user experience.

117

https://youtu.be/LkZvv30bU4g?t=4600
https://youtu.be/LkZvv30bU4g?t=4875
https://youtu.be/LkZvv30bU4g?t=5198

Figure 4.18: Seis8s at the International Conference on Live
Coding 2021 (Chile, Dec 15-17, 2022)

One important insight that this feedback pro-

vided was how Seis8s was now perceived as

both an artwork and a tool. The latter could

be linked to the tangibility that websites pro-

vide. That is to say, a computer language by

itself could be perceived as more ephemeral

and malleable, similar to the idea of the art-

work, which allows multiple interpretations. On the other hand, a website is often more

static and rigid and could be compared more to the idea of the tool, which has a more

defined function.

Seis8s being perceived as both an artwork (or a language) and a tool (or a website) can

be positive for the user experience. This is because this separation provides more clarity

about the graphical interface’s affordances versus the language’s affordances. Furthermore,

it also allows the user to understand whether an issue is coming from the interface or from

the language.

Figure 4.19: Website of the International Conference on Live
Coding 2021 (Chile, Dec 15-17, 2022)

In fact, the reviewers pointed out a lack of

intuitiveness connected to perceived latency in

the music changes, based on a delay between

the moment they pressed the play button and

the moment the code was taking effect.

On a different note, reviewers provided

insights in regards to the lack of discussion

about the conceptual aspect of Seis8s. At the

time, this was true because no website sections discussed its theoretical background. Fur-

thermore, this lack of conceptual discussion made it difficult for the users to pinpoint what

were the aspects challenging the norms within computer-music platforms. For example, al-

luding to Latin American music becomes simplistic by not providing more context about its

118

importance in relation to the cultures producing them and/or in relation to computer music

in general.

In this regard, the lack of discussion and documentation made it unclear how Seis8s’

was producing critique or how it was a product of critique. This also suggests that new

media art and technology need to be contextualized when it intends to convey critical inten-

tions. Otherwise, the work stays too open to interpretation and speculation that could be

counterproductive.

4.2.9 Genuary 2022 Seis8s In Space by Illest Preacha

Figure 4.20: Genuary 2022 Seis8s In Space (Canada, January 6, 2022)

Genuary 2022 Seis8s In Space

is a 55 seconds performance by

Montreal-based new media artist

Illest Preacha. This performance

happened on January 6, 2022, as

part of the event Genuary 2022.

People were invited to create one

small artistic piece per day us-

ing creative coding software at this

event. Illest Preacha performed using Seis8s and the online software Livecodelab for creating

visuals. The link to the performance is the following: https://youtu.be/zgbEE75fdRE.

Illest Preacha’s performance starts with a code snippet from Seis8s. The perfor-

mance starts with energetic music too. There is a prominent bass that jumps

from note to note. A keyboard sometimes responds by filling in the gaps, coincid-

ing with the bass. It switches from two different chords, namely Dm and F. In

parallel, abstract round shapes lay behind Seis8s’ code. They are white, yellow,

green, and red. The congas and the güira have been sounding since the beginning.

They have a steady pattern, but Illest Preacha transforms them at times to create

119

https://livecodelab.net/
https://youtu.be/zgbEE75fdRE

movement. At 41 seconds, the shapes transform into straighter lines just before

fading out at 55 seconds.

It is important to mention that Illest Preacha’s performance had a post-production stage

where he modified his recorded performance by accelerating the speed ratio. This modifica-

tion post-performance points to a novel and innovative type of appropriation of Seis8s. This

was innovative in that by speeding up the recording, a performance that originally might have

taken minutes now becomes abbreviated to less than one minute. This shortening of time

contrasts with all of the other performances in this chapter, whose length was 15 minutes or

more.

A second innovative aspect was that the fast speed of the recording not only made

the pitches higher but also made all of the cumbia presets that Illest Preacha was using

unrecognizable. This modulation allowed Illest Preacha to move away from Seis8s’ prescribed

music style.

4.2.10 Seis8s as an online Installation at the New Interfaces for

Musical Expression Conference

Figure 4.21: NIME conference poster (New Ze-
land, June 28-July 1, 2022)

From June 28 to July 1st, Seis8s’ standalone was exhib-

ited as an online installation at the 22nd New Interfaces

for Musical Expression conference (NIME), streamed

from New Zealand by the University of Auckland. This

NIME edition had the sub-theme of “Decolonising Musi-

cal Interfaces”.

As with the ICLC conference, important feedback

was provided by peer reviewers. A critical insight was

that Seis8s was described as a musical-loop software with

a text interface. This description is interesting as it provides innovative perspectives on

120

Seis8s’ code. For example, naming Seis8s’ code an “interface” positions it as the element

that enables direct interaction with the music to be produced.

The idea of the “interface” allows one to see the artificiality of code, thus opening the potential

for re-imagining it – for example, through the use of natural languages such as Spanish.

Furthermore, reviewers’ feedback revealed that looking at Seis8s’ code as artificial allowed

them to appreciate the intent of confronting and potentially re-configuring the default user

– e.g., the English speaker who performs jazz or rock music.

Other important feedback was in regards to issues with the graphical user interface that

could affect the user experience. For example, reviewers highlighted the lack of visual cues

to help the user know whether the code has been properly executed and/or when the code

is producing an error. This feedback was very important and guided me to include error

messages showing if there is a syntax error in the code.

Figure 4.22: Genuary 2022 Seis8s In Space (New Zeland, June 28-July 1,
2022)

A perceived issue with the lack

of Seis8s’ documentation was high-

lighted too. Seis8s’ website lacks

information describing the possi-

bilities and motivations of the soft-

ware. This was true at the time,

as no initial directions were given

to the users for them to know how

to use the language. Based on this,

I now have included an about section explaining what Seis8s is. I have also incorporated clear

steps for users to try the initial examples provided in the platform.

Finally, this feedback revealed a desire for users to have background information about

the Latin rhythms proposed in Seis8s. This made me recenter my reflections on one of Seis8s’

intentions: to disseminate and educate about Latin American music. This goes hand-to-

hand with reflecting on usability. That is, if users know contextual information about Latin

121

American music, they can make sense of Seis8s’ commands. Making sense of its commands

will allow them to use them better, appropriate them better, and create critique with them.

Currently, there is a reference section on Seis8s’ website describing the instruments, their

commands, and their parameters. Future work includes creating tutorials and how-to guides

to contextualize these rhythms.

4.3 Conclusion and further work

This chapter reported known uses of Seis8s, focusing on collaborative and individual perfor-

mances as well as online installations. For this chapter, my account of these uses included

short contextualization about the events where these happened, followed by vignettes of the

performances. Short discussions were weaved into the accounts touching upon the goals of

engaging a Latin American community and inviting them to produce critique through the

appropriation of the software.

An important aspect identified was the steps taken to achieve these goals. For example,

the first step was showing the language even if it was in its initial stages, just with the

purpose of putting out there the idea of a Latin-music Spanish-inflected computer language.

This step also involved making Seis8s legible through clear commands that consumed few

parameters. Another way to make it legible was through a quick start that helped convey

Seis8s functionality.

I started this chapter by identifying key aspects influencing the uses of Seis8s, for ex-

ample, the emphasis on the interactive experience that modifying and displaying the code

during the performance allows the users. This was also true for Seis8s in the context of

online installations. I also identified networked music as an important influence for these

uses, especially when performing collaboratively through Estuary. Finally, a relevant aspect

influencing Seis8s’ uses was the COVID-19 health emergency that encouraged performances

and conferences to happen in the virtual space.

122

In this chapter, I also talked about various people collaborating in the performances. For

example, from the first performance of Seis8s, visual artist Jessica Rodŕıguez collaborated

by coding visuals to accompany Seis8s’ music. Other collaborators of these performances

included my dissertation supervisor David Ogborn and the members of the Cybernetic Or-

chestra as well as the participants of the talking circles. These collaborations were crucial

for trying Seis8s in a shared space and opened the potential for future analysis of individual

roles in collective performance.

The description of the individual performances brought our attention to the appropri-

ations of Seis8s. In the performance of ASCIITOS – Barush, Nuriban, and Gabriel G –

unexpected drone sounds were produced by lowering the pitch of Seis8s’ accordion sample.

These were accompanied by constant drum kicks from TidalCycles and abstract visuals from

Punctual. The same was true for Montreal-based artist Illest Preacha who detached from

Seis8s’ cumbia presets to create a less specific music style that merged with complex visu-

als. Furthermore, Illest Preacha modified its performance after being recorded to produce a

sensation different from the one Seis8s allows in real-time.

Seis8s, in the context of online installations, also provided important insights, partic-

ularly on the user experience when interacting through a graphical interface. Here, users

revealed missing aspects of Seis8s as a web application outside Estuary. These included the

need for visual cues to show when there is an error in the code syntax and the need to in-

corporate buttons to allow stopping the sound without the need to erase the code. These

features have now been incorporated into Seis8s standalone, making it easier for users to

interact and engage with the software.

Within the same train of thought, the ICLC and NIME conference reviewers pointed

out the need for discussion documents for users to connect critique with Seis8s. Similarly,

reviewers’ feedback helped me bring to the front Seis8s’ education goal by pointing out the

need for better and more comprehensive documentation. In this respect, future work includes

creating explanatory documents and tutorials discussing more specific aspects of the music

123

styles supported by Seis8s, such as cumbia and Salsa.

Additional plans include offering workshops for the general audience to learn about

cumbia and other Latin music. Additional plans also include collectively reflecting on other

secondary goals, such as Seis8s as a tool to teach people how to program. Perhaps here is

precisely where Seis8s can offer perspectives of music software that emphasize resistance to

asymmetric types of computer-music abstraction, where Afro-Latin instruments and rhythms

are at the center of both the performance and the technology.

124

Chapter 5

General conclusions

In this dissertation, I speculated about culture, social spheres, and programming with a

particular focus on Latin America. The specific purpose of my speculation was to gain insight

into how computer platforms can be (re)thought and (re)designed around the consciousness

and struggles of Latin American communities. The final result of this speculation took the

form of Seis8s, a computer language inflected by Spanish and Latin Dance Music.

To arrive at this, nonetheless, I first asked the following questions to identify current

debates in the communities and the fields I intended to explore: What are some specific modes

of consciousness –i.e., sensibilities, moral systems, belief systems, modes of knowing and

being– of inhabitants of Latin America? What are their struggles –i.e., generalized difficulties

and their modes of resistance? In which ways do these modes of consciousness and struggles

intersect with music software? How can music software be (re)thought and (re)designed

around this consciousness and struggles? What would be the implications of this (re)design?

5.1 General findings and main takeaways

To gain insight into these questions, this dissertation foregrounded various cultural analyses

that allowed me to arrive at the following conclusions. Generally speaking, I argued that

computer languages are influenced by social spheres (e.g., science and arts), economic models

125

(e.g., knowledge economy), communication systems (e.g., natural language), and infrastruc-

tures (e.g., software collaboration protocols). And even though the languages discussed in

this dissertation could be perceived as niche ones, I contend that the influence of culture

in more industrial languages can also be easily perceived. Take, for example, the computer

language Python where readability is one of its core philosophies. This readability is achieved

through style practices for code, such as using lowercase letters when naming modules and

functions (van Rossum, 2001).

Another important realization of this research was the possibility of gaining insight into

the modes of consciousness of Latin American peoples. Of course, this research only allowed

for showing just but a glimpse of such an aspect. Nonetheless, I found it quite interesting

how participants’ responses provided insight into some of their belief systems and ways of

knowing, for example, mestizaje and latinidad. Their answers also allowed insight into shared

struggles, including the difficulty of breaking the white-mestizo ideology. And they suggested

modes of resistance, such as the invitation to reflect on the irreducibility of their identity and

the potential for their societies to coexist with others.

Finally, a first-class component of the doctoral work was coding Seis8s, as can be seen

in the section A.4, which contains hundreds of lines of code. The first version of Seis8s took

me eight months to develop, and it took me between two and three additional months to

develop two subsequent versions. During these months, my supervisor Dr. David Ogborn met

with me every other week to discuss and help me understand the technical and conceptual

requirements of the project. All the aforementioned draws attention to the substantial actions

taken to produce this doctoral work, and it also helps to see the value of work other than

writing within doctoral programs such as this one.

The coding skills I gained during the process of creating Seis8s are one of the most

valuable personal takeaways because I can now teach people interested in building their

own computer-music languages. However, gaining these coding skills was challenging. For

example, I had to spend several months learning Haskell and the Reflex Platform, and it

126

took me most of my Ph.D. to fine-tune my coding skills to code Seis8s. To aid in my learning

process, I organized various workshops, including the ones in South America mentioned in

Chapter 2. I invited people to imagine mini computer-music languages I would code with

them during the workshops. This approach proved helpful in increasing my coding skills and

allowed me to reflect more profoundly on the conceptual requirements of my own computer

language, Seis8s. It also allowed the participants of the workshops to see the potential of

building their own computer-music languages.

Once I had created Seis8s, its socialization through live coding performance allowed

me to reflect upon its different meanings and purpose. For me, Seis8s currently means the

possibility of emphasizing resistance to asymmetric types of computer-music abstraction by

bringing Afro-Latin instruments and rhythms to the center of the technology and the perfor-

mance. The latter could lead to further inquiry leading to novel improvisatory and theatrical

strategies aligning with critical computing, such as live coding and conscious music1, such as

cumbia villera and hard Salsa.

5.2 Reflections on the research process

Reflecting back on my research process, one of the elements I found most interesting was the

possibility for me to carry out such a diverse range of research methodologies, traversing from

theoretical approaches such as Critical Code Studies to hands-on ones by building Seis8s to

participatory ones through the conversation circles, to live-coding performance. Using these

different methodologies helped me address the topics of this dissertation from various and

distinct angles. And furthermore, it helped me gain valuable experience in interdisciplinary

research.

These multiple approaches also enabled the general public to engage early on with my

1Conscious Latin dance music refers to “texts and musical markers that poetically express political,
historical, and class awareness of the shared Latino/Latin American existences, identities, and experiences”
(Agurto, 2022, p. xix). This music reflects on issues of migration, poverty, and racism while also creating a
sense of belonging and collectiveness through festive rhythms and melodies.

127

research on various levels. For example, some participants from the conversation circles also

had the chance to perform live with Seis8s. In other cases, I engaged with the audience

through conference presentations in Canada, Perú, and Mexico about the theoretical com-

ponents of this research. The latter, although not discussed in this dissertation, helped me

to organize my thoughts, contributing to the legibility of the overall project.

One of the flaws of this research, however, was precisely in regards to the legibility of

the project. As mentioned in Chapter 4, ICLC and NIME reviewers suggested the need for

documents such as articles or posts for users to connect Seis8s’ music-making with critique

about these milieus’ culture, politics, and economies. This is an area for future work where

I foresee myself publishing the chapters of this dissertation in journals and making shorter

versions of them available through Seis8s’ website. This way, they could be consumed with

the music-making tutorials, allowing for a more rounded understanding of the project.

Another aspect that I look forward to continuing working on in terms of the legibility of

the project is to focus on finding ways to produce more structured performances with Seis8s.

For example, by having regular rehearsals solo and in groups. Or through the incorporation

of physical instruments into the performance. This aspiration will help find novel ways of

using it and increase the outreach potential of Seis8s.

5.3 Contributions to computer programming and live

coding practice

From my perspective, the aforementioned issues with respect to legibility and even user

adoption come from Seis8s potentially being perceived as unnecessary, silly, or even exotic.

Nonetheless, as design scholars Dunne and Raby (2013) mention, speculative practices are

“by necessity provocative, intentionally simplified, and fictional” (3). And, as an audience,

it is important to understand that the true goal of this type of speculation is often to enable

discussions on pressing topics in a given area. Furthermore, speculation serves “to create

128

spaces for discussion and debate about alternative ways of being, and to inspire and encour-

age people’s imaginations to flow freely” (2). In summary, it is “a catalyst for collectively

redefining our relationship to reality” (2).

I argue that the research presented in this dissertation contributes to the field of computer

programming by enabling discussion on questions of ideology and software in Latin America.

For example, in which ways have multiculturalism and pluriculturalism influenced computer

software in this region? Furthermore, what have been the implications of this?

The latter questions, nonetheless, were a collective result of the conversation circles

reported in this dissertation. These questions show the potential for computer development

to be informed by ethnographic and participatory research findings. Furthermore, this joint

effort points to the emerging field of computational ethnography, which among others, involves

investigating how non-virtual worlds influence virtual ones (Brooker, 2022, 37).

Research creation, such as that related to live coding and New Interfaces for Musical

Expression, can also benefit from research methodologies like computational musicology. This

is an “interdisciplinary research area that requires the contribution of questions, methods,

and insights from both musicology and computer science” (Volk et al., 2011).

Finally, another contribution this research provides is that it explores the possibility of

complementing live coding practice with the field of Critical Code Studies. The intersection

of these two areas of study opens the potential for finding new significance to the practice of

sharing the screen with the audience. For example, it could invite the audience to read the

multiple codes displayed by the software.

129

References

Aaron, S. (2016). Sonic pi–performance in education, technology and art. International
Journal of Performance Arts and Digital Media, 12(2):171–178.

“About Latino” (2022). In Lenguajelatino.org/. https://manual.lenguajelatino.org/

en/1.4.0/About-Latino.html.

Adler, J. (2016). Intermediate zones of culture. reflections on the (historiographical) problem
of contemporaneity. Andamios, 13(31):295–311.

Agrelo, J. (2019). Rosaĺıa and the blurry borders of what it means
to be a latin artist. In https://www.motherjones.com. Retrieved
May 11, 2023 from https://www.motherjones.com/media/2019/10/

rosalia-and-the-blurry-borders-of-what-it-means-to-be-a-latin-artist/.

Agurto, A. E. (2022). Salsa Consciente: Politics, Poetics, and Latinidad in the Meta-Barrio.
Michigan State University Press.

Ahmed, S. (2006). Queer phenomenology. In Queer Phenomenology. Duke University Press.

Albalooshi, N., Mohamed, N., and Al-Jaroodi, J. (2011). The challenges of arabic language
use on the internet. In 2011 International Conference for Internet Technology and Secured
Transactions, pages 378–382. IEEE.

Ali, S. M. (2016). A brief introduction to decolonial computing. XRDS: Crossroads, The
ACM Magazine for Students, 22(4):16–21.

Allen, M. (2013). What was web 2.0? versions as the dominant mode of internet history.
New Media & Society, 15(2):260–275.

Anzaldúa, G. (2009/1987). La conciencia de la mestiza. Feminisms redux: An anthology of
literary theory and criticism, 303.

Anzaldúa, G. ([1987] 2001). La conciencia de la mestiza [the conscience of the mestiza. In
Bhavnani, K., editor, Feminism and ‘race’, pages 93–107. Oxford University Press, Oxford.

“Architecture of Denmark” (2022). In Wikipedia. https://en.wikipedia.org/w/index.

php?title=Architecture_of_Denmark&oldid=1070209899.

Arias, M. (2012). El ćırculo de conversación como estrategia didáctica: Una experiencia para
reflexionar y aplicar en educación superior. Revista Electrónica Educare, 16(2):9–24.

130

https://manual.lenguajelatino.org/en/1.4.0/About-Latino.html
https://manual.lenguajelatino.org/en/1.4.0/About-Latino.html
https://www.motherjones.com/media/2019/10/rosalia-and-the-blurry-borders-of-what-it-means-to-be-a-latin-artist/
https://www.motherjones.com/media/2019/10/rosalia-and-the-blurry-borders-of-what-it-means-to-be-a-latin-artist/
https://en.wikipedia.org/w/index.php?title=Architecture_of_Denmark&oldid=1070209899
https://en.wikipedia.org/w/index.php?title=Architecture_of_Denmark&oldid=1070209899

Avelino, H. (2018). Mexico city spanish. Journal of the International Phonetic Association,
48(2):223–230.

Avila, A. S. F. and Madariaga, A. C. L. (2009). la cumbia, repertorio escolar para el conjunto
instrumental y vocal desde séptimo basico a cuarto medio. Master’s thesis, Universidad
Tecnologica de Chile-INACAP, Chile.

BardWigdor, G. and Artazo, G. (2017). Pensamiento feminista Latinoamericano: Reflexiones
sobre la colonialidad del saber/poder y la sexualidad [Latin American feminist thought:
Reflections on the coloniality of knowledge/power and sexuality]. Cultura y representa-
ciones sociales, 11(22):193–219.

Begel, A. (1996). Logoblocks: A graphical programming language for interacting with the
world. Epistemology and Learning Group MIT Media Laboratory, MIT, Boston, MA, pages
62–64.

Blanco Arboleda, D. (2005). la música de la costa atlántica colombiana transculturalidad e
identidades en méxico y latinoamérica. Revista colombiana de antropoloǵıa, 41:171–203.

Bourdieu, P. (1984). A social critique of the judgement of taste. Translated by R. Nice.
Cambridge, Massachusetts, Harvard University Press.

Brooker, P. (2022). Computational ethnography: A view from sociology. Big Data & Society,
9(1):20539517211069892.

Béhague, G. (n.d). Latin American Music, Characteristic instruments. In
https://www.britannica.com/. Retrieved April 17, 2022, from https://www.britannica.

com/art/Latin-American-music/Characteristic-instruments.

Calefato, P. (2008). On myths and fashion: Barthes and cultural studies. Sign Systems
Studies, 36(1):71–81.

Castilla, M. T. L. (2014). Una mirada queer hacia la música popular urbana: análisis desde
diferentes propuestas musicales con una sensibilidad queer común [a queer look at urban
popular music: analysis from different musical proposals with a common queer sensitivity].
Quadrivium, (5):23.

Chavarŕıa, M. P. (1997). Dimensiones Internacionales de la Comunicación [International
dimensions of communication]. Razón y Palabra 7 (2).

Chun, W. H. K. (2011). Programmed visions: Software and memory. Mit Press.

Collins, N., McLean, A., Rohrhuber, J., and Ward, A. (2003). Live coding in laptop perfor-
mance. Organised sound, 8(3):321–330.

Collins, P. H. (2015). Intersectionality’s definitional dilemmas. Annual review of sociology,
41(1):1–20.

131

https://www.britannica.com/art/Latin-American-music/Characteristic-instruments
https://www.britannica.com/art/Latin-American-music/Characteristic-instruments

Colman, A. M. (2015). declarative knowledge. In A Dictionary of Psychology. Oxford Uni-
versity Press. Retrieved 23 May. 2023, from https://www-oxfordreference-com.

libaccess.lib.mcmaster.ca/view/10.1093/acref/9780199657681.001.0001/

acref-9780199657681-e-2104.

“Coordinated Universal Time” (2022). In Wikipedia. Retrieved 23 May.
2023, from https://www-oxfordreference-com.libaccess.lib.mcmaster.ca/view/

10.1093/acref/9780199657681.001.0001/acref-9780199657681-e-2104.

Cox, G. and McLean, A. (2012). Speaking code: Coding as aesthetic and political expression.
MIT Press.

Da Costa, B. (2008). Reaching the limit. Tactical biopolitics: Art, activism, and techno-
science, pages 365–385.

Del Angel, L. N. and Ogborn, D. (2017). Cacharpo: Co-performing cumbia sonidera with
deep abstractions. In Proceedings of the International Conference on Live Coding (ICLC).

Del Angel, L. N., Teixido, M., Ocelotl, E., Cotrina, I., and Ogborn, D. (2019). Bellacode:
localized textual interfaces for live coding music. In International Conference on Live
Coding, volume 4.

Di Próspero, C. E. (2016). El live coding: subjetividades y sociabilidad en nuevas prácticas
art́ıstico técnicas.

Drucker, J. (2013). Performative materiality and theoretical approaches to interface. DHQ:
Digital Humanities Quarterly, 7(1).

Drucker, P. (1969/2017). The knowledge economy. In The age of discontinuity: Guidelines
to our changing society, chapter 12, pages 263–286. Routledge.

Dunne, A. and Raby, F. (2013). Beyond radical design? In Speculative everything: design,
fiction, and social dreaming, pages 1–10. MIT press.

Durán Salvador, W. O. (2009). El lenguaje de programación y compilador del Instituto de
Cálculo en 1965 [The Compiler and Programming Language of the Institute of Calculus in
1965]. Ediciones del domo.

Eglash, R., Babbitt, W., Bennett, A., Bennett, K., Callahan, B., Davis, J., Drazan, J.,
Hathaway, C., Hughes, D., Krishnamoorthy, M., et al. (2017). Culturally situated design
tools: Generative justice as a foundation for stem diversity. In Moving students of color
from consumers to producers of technology, pages 132–151. IGI Global.

Eglash, R., Bennett, A., O’donnell, C., Jennings, S., and Cintorino, M. (2006). Culturally sit-
uated design tools: Ethnocomputing from field site to classroom. American anthropologist,
108(2):347–362.

Elliott, P. W. (2013). Participatory action research: Challenges, complications, and oppor-
tunities. Centre for the Study of Co-operatives, University of Saskatchewan.

132

https://www-oxfordreference-com.libaccess.lib.mcmaster.ca/view/10.1093/acref/9780199657681.001.0001/acref-9780199657681-e-2104
https://www-oxfordreference-com.libaccess.lib.mcmaster.ca/view/10.1093/acref/9780199657681.001.0001/acref-9780199657681-e-2104
https://www-oxfordreference-com.libaccess.lib.mcmaster.ca/view/10.1093/acref/9780199657681.001.0001/acref-9780199657681-e-2104
https://www-oxfordreference-com.libaccess.lib.mcmaster.ca/view/10.1093/acref/9780199657681.001.0001/acref-9780199657681-e-2104
https://www-oxfordreference-com.libaccess.lib.mcmaster.ca/view/10.1093/acref/9780199657681.001.0001/acref-9780199657681-e-2104

Elsaesser, T. (2006). Early film history and multi-media: An archaeology of possible futures?
New media, old media: A history and theory reader, pages 13–26.

Escobar, A. (1995). Encountering development: the making and unmaking of the Third
World. Princeton studies in culture/power/history Encountering development. Princeton
University Press.

“Esotericism” (2022). New world encyclopedia. https://www.newworldencyclopedia.org/
p/index.php?title=Esotericism&oldid=1065483.

“Español estándar” (n.d). In Everybodywiki. https://es.everybodywiki.com/Espa%C3%

B1ol_est%C3%A1ndar#cite_note-1.

Espinoza Agurto, A. (2014). Una sola casa: Salsa consciente and the poetics of the meta-
barrio.

Eubanks, V. (2018). Automating inequality: How high-tech tools profile, police, and punish
the poor. St. Martin’s Press.

“Feature vs Property - What’s the difference?” (n.d). wikidiff.com. https://wikidiff.com/
feature/property.

Franulic, A. (2013). Consideraciones sobre la práctica feminista de cambio
lingǘıstico. . . o los destellos de insolencia [Consideraciones sobre la práctica fem-
inista de cambio lingǘıstico. . . o los destellos de insolencia]. In andreafran-
ulic.cl. Retrieved Jan 18, 2022 from https://andreafranulic.cl/lenguaje/

consideraciones-sobre-la-practica-feminista-de-cambio-linguistico-o-los-destellos-de-insolencia/.

Gallant, D. J. (2010). Science, technology, engineering, and mathematics (STEM) education
[White Paper]. Technical report, Ohio State University.

Galloway, A. R. (2004). Social realism in gaming. Game studies, 4(1):2004.

Galperina, M. (2014). Artist’s notebook: Ramsey nasser. http://animalnewyork.com/artists-
notebook-ramsey-nasser/.

“Galvanized Suns Archive” (2020). In diasporicfuturisms.com. https://www.

diasporicfuturisms.com/galvanized-suns.html.

Garcés, F. (2009). De la interculturalidad como armónica relación de diversos, a una inter-
culturalidad politizada [from interculturality as a harmonious relationship of diverse to a
politicized interculturality. Interculturalidad cŕıtica y descolonización: fundamentos para
el debate, pages 21–50.

Garcia Canclini, N. (2005). Hybrid Cultures Strategies for Entering and Leaving Modernity.
University of Minnesota Press, Minneapolis.

Goldenberg, E. P. and Feurzeig, W. (1987). Exploring language with Logo. Mit Press.

133

https://www.newworldencyclopedia.org/p/index.php?title=Esotericism&oldid=1065483
https://www.newworldencyclopedia.org/p/index.php?title=Esotericism&oldid=1065483
https://es.everybodywiki.com/Espa%C3%B1ol_est%C3%A1ndar#cite_note-1
https://es.everybodywiki.com/Espa%C3%B1ol_est%C3%A1ndar#cite_note-1
https://wikidiff.com/feature/property
https://wikidiff.com/feature/property
https://andreafranulic.cl/lenguaje/consideraciones-sobre-la-practica-feminista-de-cambio-linguistico-o-los-destellos-de-insolencia/
https://andreafranulic.cl/lenguaje/consideraciones-sobre-la-practica-feminista-de-cambio-linguistico-o-los-destellos-de-insolencia/
https://www.diasporicfuturisms.com/galvanized-suns.html
https://www.diasporicfuturisms.com/galvanized-suns.html

González, J. P. (2009). Musicoloǵıa y américa latina: una relación posible. Revista argentina
de Musicoloǵıa, 10:43–72.

Grosfoguel, R. (2011). Decolonizing post-colonial studies and paradigms of political-economy:
Transmodernity, decolonial thinking, and global coloniality. Transmodernity: journal of
peripheral cultural production of the luso-hispanic world, 1(1).

Guerrero, C. (n.d). Cumbia de los pajaritos. Available at https://fr.scribd.com/

document/335080889/Cumbia-de-Los-Pajaritos.

Guerrero, M. (2021a). Lib ≪lista≫. In Manual Lenguaje Latino.
https://manual.lenguajelatino.org/es/stable/.

Guerrero, M. (2021b). Mi primer programa. In Manual Lenguaje Latino.
https://manual.lenguajelatino.org/es/stable/.

Gustein, E., Lipman, P., Hernandez, P., and de los Reyes, R. (1997). Culturally relevant
mathematics teaching in a mexican american context. Journal for Research in Mathematics
Education, 28(6):709–737.

Gutiérrez, M. E. V. (2020). Racismo y afrodescendientes en méxico: cinco reflexiones para
la ‘deconstrucción’ de las nociones de raza y mestizaje [racism and afro-descendants in
mexico: Five reflections for the ‘deconstruction’ of the notions of race and mestizaje].
Bolet́ın de Antropoloǵıa. Universidad de Antioquia, Medelĺın, 35(59):17–34.

Hall, S. (1999). Encoding, decoding. In During, S., editor, The cultural studies reader,
chapter 36, pages 507–519. Routledge.

Hall, S. (2000/1973). Encoding/decoding. Media studies: A reader, pages 51–61.

Hall, S. (2015). Cultural identity and diaspora. In Colonial discourse and post-colonial theory,
pages 392–403. Routledge.

Hall, S. (2017/1958). A sense of classlessness. In Selected Political Writings, pages 28–46.
Duke University Press.

Haraway, D. ([1985] 2016). A cyborg manifesto: Science, technology, and socialist-feminism
in the late 20th century. In Manifestly haraway (Vol. 37), pages 4–90. U of Minnesota
Press.

Herrera Rivas, H. and Roque Hernández, R. V. (2019). Digital divide, english language
and their link with spanish reading comprehension. RIDE. Revista Iberoamericana para la
Investigación y el Desarrollo Educativo, 10(19).

Hopper, G. (1981). History of programming languages I, chapter Keynote address, pages
7–20. Academic Press.

Hudak, P. (2008). The haskell school of music. Yale University.

134

https://fr.scribd.com/document/335080889/Cumbia-de-Los-Pajaritos
https://fr.scribd.com/document/335080889/Cumbia-de-Los-Pajaritos

Hudak, P., Hughes, J., Peyton Jones, S., and Wadler, P. (2007). A history of haskell: being
lazy with class. In Proceedings of the third ACM SIGPLAN conference on History of
programming languages, pages 12–1.

Jackson, J. E. and Warren, K. B. (2005). Indigenous movements in latin america, 1992–2004:
Controversies, ironies, new directions. Annu. Rev. Anthropol., 34:549–573.

Janovic, B. and Rousseau, P. (2005). General purpose technologies. Nber working Paper
Series.

Karmy Bolton, E. (2013). También yo tengo mi cumbia, pero mi cumbia es chilena: apuntes
para una reconstrucción sociohistórica de la cumbia chilena desde el cuerpo [i also have
my cumbia, but my cumbia is chilean: notes for a sociohistorical reconstruction of chilean
cumbia from the body]. Resonancias, revista de investigación musical, pages 93–110.

Ladson-Billings, G. (1995). Toward a theory of culturally relevant pedagogy. American
educational research journal, 32(3):465–491.

“Latino v1.4.1” (2021). In https://www.lenguajelatino.org/. https://www.

lenguajelatino.org/.

Leigh Star, S. (2010). This is not a boundary object: Reflections on the origin of a concept.
Science, technology, & human values, 35(5):601–617.

Lialina, O. and Espenschied, D. (2015). Do you believe in users?/turing complete user. Mass
Effect: Art and the Internet in the Twenty-First Century, pages 1–14.

Lyons, M. and Fels, S. (2014). A nime primer. NIME.

Lyotard, J. (1979). The postmodern condition: A report on knowledge (vol.
10; translated from the 1979 les editions de minuit in 1984 to english
by g. bennington & b. massumi). Minneapolis, MN: University of Min-
nesota Press. Retrieved from https://monoskop. org/images/e/e0/Lyotard Jean-
Francois The Postmodern Condition A Report on Knowledge. pdf. Accessed on March,
8:2019.

López, A. I. (2020). Cenart, un espacio para las artes en
la ciudad de méxico. https://www.admagazine.com/lugares/

cenart-un-espacio-para-las-artes-en-la-cdmx-20200223-6499-articulos#:~:

text=El%20Centro%20Nacional%20de%20las%20Artes%20fue%20creado%20en%201994,

arte%2C%20la%20cultura%20y%20la.

Malo de Molina, M. (2004). La encuesta y la coinvestigación obreras, autoconciencia [the
worker survey and research, self-awareness]. Nociones Comunes. Experiencias y Ensayos
entre.

Manuel, P. (1998). The course of performance: Studies in the world of musical improvisation.
In Nettl, B. and Russell, M., editors, The Course of Performance: Studies in the World
of Musical Improvisation, chapter 6, pages 127–48. University of Chicago Press, Chicago.

135

https://www.lenguajelatino.org/
https://www.lenguajelatino.org/
https://www.admagazine.com/lugares/cenart-un-espacio-para-las-artes-en-la-cdmx-20200223-6499-articulos#:~:text=El%20Centro%20Nacional%20de%20las%20Artes%20fue%20creado%20en%201994,arte%2C%20la%20cultura%20y%20la
https://www.admagazine.com/lugares/cenart-un-espacio-para-las-artes-en-la-cdmx-20200223-6499-articulos#:~:text=El%20Centro%20Nacional%20de%20las%20Artes%20fue%20creado%20en%201994,arte%2C%20la%20cultura%20y%20la
https://www.admagazine.com/lugares/cenart-un-espacio-para-las-artes-en-la-cdmx-20200223-6499-articulos#:~:text=El%20Centro%20Nacional%20de%20las%20Artes%20fue%20creado%20en%201994,arte%2C%20la%20cultura%20y%20la
https://www.admagazine.com/lugares/cenart-un-espacio-para-las-artes-en-la-cdmx-20200223-6499-articulos#:~:text=El%20Centro%20Nacional%20de%20las%20Artes%20fue%20creado%20en%201994,arte%2C%20la%20cultura%20y%20la

Marino, M. (2018). Reading culture through code. In The Routledge Companion to Media
Studies and Digital Humanities, pages 472–482. Routledge.

Marino, M. (2020a). Critical code studies. MIT Press.

Marino, M. (2020b). Flow-matic. In Critical code studies: initial methods, Software studies,
pages 129–160. The MIT Press, Cambridge, Massachusetts.

Márquez, I. (2016). Cumbia digital: Tradición y postmodernidad. Revista musical chilena,
70(226):53–67.

Mart́ın, E. (2012). Cumbia villera and the end of the culture of work in argentina in the 90s.
Youth Identities and Argentine Popular Music: Beyond Tango, pages 59–81.

Martin, E. (n.d). How to play cumbia bass. https://www.debajoelectrico.com/en/

how-to-play-cumbia-bass/.

Maseda, P. (2005). El centro nacional de las artes y la poĺıtica cultural. Discurso Visual-
Revista Digital - Cenidiap, January-March(3).

Mauleón, R. (1993). The Salsa Guidebook for Piano Ensemble. Sher Music Co.

McCartney, A. (1994). Creating worlds for my music to exist: How women composers of
electroacoustic music make place for their voices. York University.

McLean, A. (2011). Artist-Programmers and Programming Languages for the Arts. PhD
thesis, Department of Computing, Goldsmiths, University of London.

McLean, A. (2014). Making programming languages to dance to: live coding with tidal. In
Proceedings of the 2nd ACM SIGPLAN international workshop on Functional art, music,
modeling & design, pages 63–70.

McLean, A. and Wiggins, G. A. (2011). Texture: Visual notation for live coding of pat-
tern. In Proceedings of the International Computer Music Conference 2011. University of
Huddersfield, UK.

McPherson, T. (2013). Us operating systems at mid-century: The intertwining of race and
unix. In Race after the Internet, pages 21–37. Routledge.

McPherson, T. (2018). Feminist in a Software Lab: Difference+ Design, volume 6. Harvard
University Press.

Merriam-Webster (n.d). Yield. In Merriam-Webster.com dictionary. Retrieved April 14,
2022, from https://www.merriam-webster.com/dictionary/yield.

Moncada, Z. M. and Acebedo, F. B. (2017). Ćırculos de paz y convivencia en los centros
educativos. Integración Académica en Psicoloǵıa.

Murphy, M. (2013). Chapter 3: A typology of multicultural policies. In Multiculturalism: A
critical introduction, pages 30–45. Routledge.

136

https://www.debajoelectrico.com/en/how-to-play-cumbia-bass/
https://www.debajoelectrico.com/en/how-to-play-cumbia-bass/
https://www.merriam-webster.com/dictionary/yield

Nasser, R. (2012a). Alb. Retrieved March 28, 2022 from http://nas.sr/---/.

Nasser, R. (2012b). The Alb Programming Language. GitHub.com. Retrieved Jan 31st, 2022
from https://github.com/nasser/---.

Nilson, C. (2007). Live coding practice. In Proceedings of the 7th international conference
on New interfaces for musical expression, pages 112–117.

Noble, S. U. (2018). Algorithms of oppression. In Algorithms of oppression. New York
University Press.

Ochoa, J. S., Pérez, C. J., and Ochoa, F. (2017). El libro de las cumbias colombianas.
Medellin: Universidad de Antioquia.

OECD (2001). Understanding Digital Divide. OECD Publications. Retrieved March 26, 2022
from https://www.oecd.org/digital/ieconomy/1888451.pdf.

OEI Chile (2017). Ćırculos de conversación [video]. Retrieved Feb 18, 2023 from https:

//youtu.be/YC352JrWxUM.

“Off the Floor and Onto the Screen” (2022). In https://el.media.mit.edu/. https://el.

media.mit.edu/logo-foundation/what_is_logo/logo_primer.html.

Ogborn, D. (2019). haskellish: For parsing Haskell-ish languages. In
https://hackage.haskell.org/. Retrieved April 16, 2022, from https://hackage.

haskell.org/package/haskellish.

Ogborn, D., Beverley, J., Brown-Hernandez, N., Briones, F., A., Gray, B., MacLean, A.,
Del Angel, L., Oduro, K., Park, S., Roberts, A., Rodŕıguez, J., Sicchio, K., Stewart, A.,
Testa, C., and Tsabary, E. (2022). Estuary 0.3: Collaborative audio-visual live coding
with a multilingual browser-based platform. In 7th International Web Audio Conference,
WAC 2022, volume 7th. DOI: 10.5281/zenodo.6767377.

Ogborn, D. and Beverley, J. (2016). WebDirt. In https://github.com/. Retrieved April 16,
2022, from https://github.com/dktr0/WebDirt.

Ogborn, D., Beverley, J., del Angel, L. N., Tsabary, E., McLean, A., and Betancur, C.
(2017). Estuary: Browser-based collaborative projectional live coding of musical patterns.
In International Conference on Live Coding (ICLC), volume 2017.

Ogborn, D., Tsabary, E., Jarvis, I., Cárdenas, A., and McLean, A. (2015). Extramuros:
making music in a browser-based, language-neutral collaborative live coding environment.
In Proceedings of the First International Conference on Live Coding, pages 163–69.

Papert, S. (1980). Turtle geometry: a mathematics made for learning. Mindstorms: Children,
computers and powerful ideas The Harvester Press Ltd.

“Peronism”. (2022). In Wikipedia. Retrieved May 28, 2023 from https://en.wikipedia.

org/wiki/Peronism.

137

http://nas.sr/---/
https://github.com/nasser/---
https://www.oecd.org/digital/ieconomy/1888451.pdf
https://youtu.be/YC352JrWxUM
https://youtu.be/YC352JrWxUM
https://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
https://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
https://hackage.haskell.org/package/haskellish
https://hackage.haskell.org/package/haskellish
https://github.com/dktr0/WebDirt
https://en.wikipedia.org/wiki/Peronism
https://en.wikipedia.org/wiki/Peronism

Quick, D. and Hudak, P. (2013). Grammar-based automated music composition in haskell.
In Proceedings of the first ACM SIGPLAN workshop on Functional art, music, modeling
& design, pages 59–70.

Quijano, A. (2006). The” indigenous movement” and the pending questions in latin america.
Argumentos (México, DF), 19(50):51–77.

Rizvi, F. (2015). Stuart hall on racism and the importance of diasporic thinking. Discourse:
Studies in the Cultural Politics of Education, 36(2):264–274.

Rodgers, T. (2012). Toward a feminist historiography of electronic music. The Sound Studies
Reader, pages 475–489.

Rodgers, T. (2016). Toward a feminist epistemology of sound. Engaging the World: Thinking
after Irigaray, pages 195–214.

Rodriguez, J. M. (2003). Queer latinidad identity practices, discursive spaces. Sexual cultures.
New York University Press, New York.

“Routine” (n.d). In supercollider 3.12.2 online manual. Retrieved April 15, 2022, from
https://doc.sccode.org/Classes/Routine.html.

Sandoval, C. ([1991] 2013). Methodology of the Oppressed, volume 18:Theory out of Bounds.
U of Minnesota Press.

Sandoval, C. (1998). Mestizaje as method: Feminists-of-color challenge the canon. In Trujillo,
C., editor, Living Chicana Theory, pages 352–370. Third Woman Press, Berkeley, CA.

Shifres, F. and Rosaba-Coto, G. (2017). Hacia una educación musical decolonial en y desde
latinoamérica / towards a decolonial music education in latin america. Revista Interna-
cional de Educación Musical, 5:85–91.

Solomon, C., Harvey, B., Kahn, K., Lieberman, H., Miller, M. L., Minsky, M., Papert, A.,
and Silverman, B. (2020). History of logo. Proceedings of the ACM on Programming
Languages, 4(HOPL):1–66.

Solomon, C. J. (1978). Teaching young children to program in a logo turtle computer culture.
ACM Sigcue Outlook, 12(3):20–29.

Sperry Rand Corporation (1957). Introducing a New Language for Automatic Programming.
Sperry Rand Corporation-Univac Data Processing Division.

Spinellis, D. (2003). Introduction. In Code reading: the open source perspective, chapter 1,
pages 1–18. Addison-Wesley Professional.

Sterne, J. and Rodgers, T. (2011). The poetics of signal processing. differences, 22(2-3):31–53.

Szurmuk, M., Irwin, R. M., et al. (2009). Diccionario de estudios culturales latinoamericanos.
Siglo XXI.

138

https://doc.sccode.org/Classes/Routine.html

Teitelbaum, M. (2016). Falling behind? boom, bust, and the global race for scientific talent
provider-name: Princeton university press, princeton, nj. Economics Books.

Trujillo, M. E. et al. (2015). Mis “manos sonoras” devoran la histérica garganta del mundo:
sonoridades y colonialidad del poder. Calle 14 revista de investigación en el campo del
arte, 10(15):54–73.

TV UNAM (2018). Utoṕıa ch’ixi” con Silvia Rivera Cusicanqui [ch’ixi utopia with Silvia
Rivera Cusicanqui]. Retrieved Feb 18, 2023 from https://www.youtube.com/watch?v=

pHJkCqe2gAk.

United Nations (2019). La cooperación sur-sur, ¿qué es y por qué importa? [south-south
cooperation, what is it and why does it matter?]. Retrieved Feb 8, 2023 from https:

//news.un.org/es/story/2019/03/1453001.

van Rossum, G. (2001). Pep 8 – style guide for python code. In https://peps.python.org.
Retrieved April 14, 2023 from https://peps.python.org/pep-0008/.

Vicente, F (2018). Cuerpas y úteras [bodies and uterus]. In womxnscenter.uci.edu. Retrieved
Jan 18, 2022 from https://feminarian.es/2018/02/15/cuerpas-y-uteras/.

Volk, A., Wiering, F., and van Kranenburg, P. (2011). Unfolding the potential of computa-
tional musicology. In Proceedings of the 13th International Conference on Informatics and
Semiotics in Organisations, pages 137–144.

Wade, P. (2003). Repensando el mestizaje [Rethinking mestizaje]. Revista colombiana de
antropoloǵıa, 39:273–296.

Williams, R. (1977). Marxism and literature, volume 392. Oxford Paperbacks.

Womxn’s Center for Success (2021). Why Womxn with a ‘X’ ? In womxnscen-
ter.uci.edu. Retrieved February 19, 2023, from https://womxnscenter.uci.edu/

why-womxn-with-a-x/.

139

https://www.youtube.com/watch?v=pHJkCqe2gAk
https://www.youtube.com/watch?v=pHJkCqe2gAk
https://news.un.org/es/story/2019/03/1453001
https://news.un.org/es/story/2019/03/1453001
https://peps.python.org/pep-0008/
https://feminarian.es/2018/02/15/cuerpas-y-uteras/
https://womxnscenter.uci.edu/why-womxn-with-a-x/
https://womxnscenter.uci.edu/why-womxn-with-a-x/

Appendix A

Appendices: Talking circles, list of
materials and themes

A.1 Thursday sessions

Session 1 - Thursday, Aug 27, 2020

During this session, I introduced and contextualized the circles within my doctoral studies.

The participants introduced themselves and were invited to generate questions and themes

to be discussed in the upcoming sessions. Questions generated by them included: What

is software? How decolonial can something be if the tools are produced by the colonial?

Where does mestizaje come in? How to dialogue with languages that are free software but

are directed to the first world?

Session 2 - Thursday, Sep 3, 2020

During this session, we discussed how we, the participants, use inclusive language within

our day-to-day interactions within and outside Latin America. We commenced reflecting on

some of the questions posed last week. I suggested potential lines of work and production

for our circles, including making write-ups, blog posts, live performances, and public talks. I

140

suggested the following readings to enable discussion: A Spanish translation of “The Master’s

Tools Will Never Dismantle the Master’s House” (Lorde, 1979/1984/2003); and “Software

Libre, entre la soberańıa, la descolonización y las proyecciones tecnológicas [Free Software,

between sovereignty, decolonization and technological projections]” (Terceros, 2015).

Session 3 - Thursday, Sep 10, 2020

This session was facilitated by two participants who talked about potential ways of resignify-

ing the concept of mestizaje. We used as a framework the Cheje concept by Bolivian feminist

sociologist Silvia Rivera Cusicanqui. We learn about this concept through the video ”Utoṕıa

ch’ixi” con Silvia Rivera Cusicanqui [ch’ixi utopia with Silvia Rivera Cusicanqui]” (UNAM,

2018). This video was proposed by one of the facilitators. We connected this discussion with

the artistic practice of both facilitators who work with Andean textiles and sound.

Session 4 - Thursday, Sep 17, 2020

This session was also facilitated by two participants. The first participant talked about

the hegemonic structures and the tensions within their practice of new media conservation

and restoration. The second participant helped us to reflect on the concept of Latinidad

within the music and the arts. These discussions were enabled by the following materials

selected by me and the participants and which include magazine articles and music and art

videos: “Rosaĺıa and the Blurry Borders of What it Means to Be a Latin Artist” (Argelo,

2019); “Renata Flores - Trap + Quechua - Tijeras ft. Kayfex” (Flores, 2018); “BARTOLINA

XIXA - Ramita Seca, La colonialidad permanente” (Xixa, 2019); “Lido Pimienta - Nada — A

COLORS SHOW” (Colors, 2020); “Things Change: Conservation and Display of Time-based

Media Art” (Genus, 2018); “Tony Conrad- Keeping an artwork alive” (Tate, 2020).

141

Session 6 - Thursday, Oct 8, 2020

This session was facilitated by me, where I suggested continuing reflecting on what is La-

tinidad or what represents to be Latino, Latina, Latinx. We reflected on Queerness and

Latinidad and we tried to connect these concepts to queer computing. Our discussion was

enabled by the following readings selected by me: “Que(e)rying Latinidad” (Rodŕıguez, 2003);

and “Critical unmaking: toward a queer computation” (Gaboury, 2018).

Session 5 - Thursday, Sep 24, 2020

I facilitated this session, where we explored Seis8s collectively by following a small tutorial

developed by me for this purpose. The participants played with Seis8s using the Estuary

platform which enables collective music-making. In the second hour, we reflected on the

concepts of colonialism, decoloniality, decolonization, anti-colonialism. We connected these

concepts with the history of Cumbia. Our discussion was enabled by the following videos:

“¿Qué es decolonialidad? [What is decoloniality?]” (Ochy Curiel, 2020); and “La cumbia

como matriz sonora de Latinoamérica [Cumbia as the sound matrix of Latin America]”

(Daŕıo Arboleda, 2020).

Session 7 - Thursday, Oct 15, 2020

Two participants facilitated this session, where we discussed the topics of creativity and

programming. The first participant presented their work about electronic literature, pro-

gramming languages, and speech. The second participant facilitated a discussion about

body-machine relationships and affective relationships within language and programming

from a psychological perspective. The participants selected the following material that en-

abled this conversation: ”Lectura expandida: una actividad viso/motora y significativa en

la realidad textual [Expanded literature: a visual / motor, significant activity in textual re-

142

ality]” (Rodŕıguez, Rodŕıguez, Brianza, ?); and “Educación emocional en Japon [Emotional

education in Japan]” (COPERAT, 2015).

Session 8 - Thursday, Oct 22, 2020

A participant and I facilitated this session. We discussed the concepts of multiculturalism,

pluriculturalism, and interculturality within our places of living. We reflected on how they

affect the language that we use daily. During the second hour, a participant facilitated

an overview of the Andean culture and sensibilities within Bolivia’s music, the arts, and

technology. I selected the following reading that enabled the first hour of the discussion:

“Multi, pluri e interculturalidad: ¿poĺıticas de la diferenciación colonial? [Multi, pluri and

interculturality: politics of colonial differentiation?]” (Garcés, 2009). The other facilitator

selected the following Bolivian movie, movie analyses, and news article to enable the second

hour: “La nación clandestina [The clandestine nation]” (Sanjinés, 1989); “Cine portable –

La Nación Clandestina: la mejor peĺıcula boliviana de la historia [Cine portable - La Nación

Clandestina: the best Bolivian film in history]” (Salvaje, 2018); “El barroco andino en La

nación clandestina: una lectura desde la ‘puesta en escena de la identidad mestiza’ [The

Andean Baroque in The clandestine nation: a reading from the ‘staging of mestizo identity’]”

(Romero, 2017); “Por qué el reloj del Congreso de Bolivia gira al revés [Why does the clock

of the Bolivian Congress turn backwards]” (BBC, 2014).

Session 9 - Thursday, Oct 22, 2020

We discussed social class, music, and software by critiquing the intentions behind the project

“One Laptop per Child”. I suggested the following movie to enable the discussion: “Web”

(Kleimann, 2014). We also talked briefly about how spirituality might look when talking

about software and technology. A participant suggested the following reading and videos to

enable the discussion: “Mis manos sonoras devoran la histérica garganta del mundo [My

sonorous hands devour the hysterical throat of the world]” (Mayra Estévez, 2015); and

143

“Bárbara Santos: La curación como tecnoloǵıa [Bárbara Santos: Healing as technology]”

(Santos, 2020).

Session 10 - Thursday, Nov 10, 2020

This was a farewell meeting, where some people shared their contact information to keep

in touch with others, and we discussed potential future projects including the residency at

Platohedro and a potential talk at the Universidad Nacional de Colombia.

A.2 Saturday sessions

Session 1 - Saturday, Aug 29, 2020

During this session, I explained the purpose of the circles and contextualized them within

my doctoral project. The participants also introduced themselves and generated questions

and themes to be discussed in the upcoming sessions.

Session 2 - Saturday, Sep 5, 2020

I facilitated this session, where we discussed the similarities and differences between using

inclusive language in Canada and Mexico. We briefly discussed how we perceive our iden-

tities fit within Canadian society. Finally, we talked about the gentrification of cumbia. I

selected the following reading that enabled our discussion: “La música de la costa atlántica

colombiana transculturalidad e identidades en México y Latinoamérica [The music of the

Colombian Atlantic coast transculturality and identities in Mexico and Latin America]” (Ar-

boleda, 2005).

144

Session 3 - Saturday, Sep 12, 2020

I facilitated this session where we experimented with Seis8s. We then reflected on the idea

or concept of Latinidad focusing on its limits of representation within mass media music. I

selected the following magazine articles to enable the discussion: “Shakira tiene a la champeta

de moda en el mundo: el momento dorado que vive el ritmo” (El Páıs, 2020); and “What

J-Lo and Shakira missed in their Super Bowl halftime show” (Rivera-Rideau, 2020).

Session 4 - Saturday, Sep 19, 2020

We continued discussing Latinidad and the categories of Latino, Latina, Latinx. We tried to

connect these concepts to Queer theory. A participant suggested the following talk to enable

the discussion: “Donna Haraway and Brigitte Baptiste at Bogota” (Idartes, 2019).

Session 5 - Saturday, Sep 26, 2020

We spent the entire session playing with Seis8. Participants commented on Seis8s and sug-

gested some functions to incorporate into the language.

Session 6 - Saturday, Oct 10, 2020

A participant facilitated a meeting where we discussed music institutions in Mexico, such

as the Mexican centre for Music and sound art (CMMAS), and festivals, such as Visiones

Sonoras. We could not talk about the texts shared, but we started discussing colonization

within the listening practice. The latter as no one read the suggested texts. The texts

suggested were Becoming Straight”. (Ahmed, 2006); and “La cumbia como matriz sonora de

Latinoamérica [Cumbia as the sound matrix of Latin America]” (Daŕıo Arboleda, 2020). A

participant and I co-facilitated an experimenting session with Seis8s for about thirty minutes.

145

Session 7 - Saturday, Oct 17, 2020

I facilitated this session, where we discussed the heterosexual dimension of things, including

programming languages and cumbia. I selected the following reading and video talks to

enable the discussion: “Becoming Straight”. (Ahmed, 2006); and “La cumbia como matriz

sonora de Latinoamérica [Cumbia as the sound matrix of Latin America]” (Daŕıo Arboleda,

2020).

Session 8 - Saturday, Oct 24, 2020

We discussed an upcoming public artist talk and performance at the Factory Media Centre,

to which I invited them. A participant and I co-facilitated another tutorial about Seis8s.We

connected our performance with the following case study of queer cumbia, which I suggested

to read and watch: “Una mirada queer hacia la música popular urbana: análisis desde

diferentes propuestas musicales con una sensibilidad queer común [A queer look at urban

popular music: analysis from different musical proposals with a common queer sensibility]”

Castilla, 2014); and “Chica de Calendario” (Kumbia Queers, 2011).

Session 9 - Saturday, Oct 24, 2020

We rehearsed with Seis8s for a public performance and artist talk at the Factory Media

Centre. I shared the following video for participants to find motivation for our public perfor-

mance and artist talk: ”Salsa cimarrona y sus pregones anti/descoloniales [Salsa cimarrona

and their anti/decolonial pregones]” (Glefas Latam, 2020).

A.3 Categories and overarching themes

146

Appendix II

nº Categories identified Level of
importance
(primary,
secondary,
tertiary)

Related keywords and
phrases

of related

keywords

and

phrases

Topical themes Overarching or
conceptual
themes

1 Language Political programming

languages, Language as a tool

and programming languages,

Inclusive language within our

meetings, Languages as

wound/injury, Language

rupture, Musical Languages,

Sonic languages, Prosthetic

language, As a

representation and as a

detonator (what does it

reaches to name?) and its

affective relationship with

language and tongue,

Languages as container,

Language incalculability and

irreproducibility due to the

randomness of its social

development, Esolangs,

Spanish, Portuguese,

Quechua, Discover the

linguistic and non-linguistic

signs that are normative

(e.g., heterosexual, western,

capitalist), textual reading,

Linguistic signs, name if it is

decolonial, colonial or

31 Participants used:
- inclusive language within our
meetings

Participants perceived:
- Language as a tool
- Language as wound/injury
- Language as a representation
and as a detonator
- Language is affective
- Language as a container
- Language is incalculable and
irreproducible
- Language develops randomly
- Speaking certain languages is a
result of survival
- Words as a space to create and
defend ourselves
- English as a colonial language
- Spanish as a colonial language
- Quechua offers other ways of
making sense of the world.

Participants asked:
- How to dialogue with these
languages that are free software
but are still directed to the first
world and that in their essence
have a lot of this first world?

- Inclusive
language.

- Language

- Characteristics
of language

- Colonial
languages

- Language as
worldview

147

anticolonial, tongue, speech

patterns, orality, survival

(sobrevivencia or

supervivencia), essence, The

word and its existence as an

image, aesthetic-graphic

respresentation, expanded

literature, electronic

literature, the words as a

space to create and defend

ourselves

2 Hegemonic
structures

 Violent processes of

unification and segregation in

the academy, social position,

strong male presence in

curatorial and conservation

practice, Violence, Dominant

“whiteness” in drag culture,

Coloniality, UNAM, CMMAS,

The market, The market and

the record labels, Masculine

place, the visible and the

invisible, privilege,

mechanisms of oppression,

Warrior empire, Political

divisions, migration,

liberatory issue, Aymara

culture,

socialization, capital,

accumulation, straight

bodies, imposition of a

masculine culture, male

culture, sexism, misogyny,

30 Participants denounced:
- Violent processes of unification
and segregation in the academy
- A strong male presence in the
curatorial and conservation
practice
- A dominant “whiteness” in
drag culture
- Sexism, misogyny, and
objectification in the video game
industry

- Hegemonic
processes
within the
Academy

- Dominant
cultures within
artistic
practices

148

and objectification in the

video game industry, eugenic

control, mestizaje, atrocities

in the name of love

3 Identity Conscience as Latin

Americans, Invalidation of

individual and collective

identity, Latino identity, Fluid

identity, Queer identity,

Identity politics, mestizaje,

“white” people, Erasure of

categories such as women or

Canadian, The concept of

race, Latin, Latina, Latinx,

Coexistence of multiple

cultural differences,

phenotype, Limits of self-

recognition, social position,

accents, self-identification,

Privilege, Indigenous, Cultural

descent, mixtures, mix, Body,

sexuality, migration, race,

28 Participants described
themselves as:
- Colonized people

Participants felt:
- There is some invalidation of
individual and collective identity
of people from Latin America.
- To be from Latin America
means to have lived through its
precariousness

Participants consider:
- The concept of race is
sometimes purposedly used by
racialized communities as a
political statement
- People should be free to self-
recognition
- Self-recognition have limits
- Mestizaje was synonym of
citizenship in Bolivia

- The limits of
self-
identification

- Latin America
and precarity

- Latin America
and
colonization

4 Programming Political programming
languages, Language as a tool
and programming languages,
Creativity and programming

code as a code of conduct,

Spiritual or affective

programming, Genetic

21 Participants perceived:
- Programming languages have

the essence of the first world

- Code as a code of conduct

- programming languages have a

heterosexual dimension

- Programming
languages
represent
assymetrical
relations

149

programming and vincular,

Affective processes that

cannot be programmed but

can be influenced, Module,

Esolangs, Users, live coding,

non-programmable,

expanded literature,

electronic literature, the

heterosexual dimension of

things, programming

languages and cumbia,

sexism, misogyny, and

objectification in the video

game industry, knowing how

to make a programming

language is vital to resist the

monoculture of computer

science and software design,

mnemonics

Participants asked:

- How to dialogue with these
languages that are free software
but are still directed to the first
world and that in their essence
have a lot of this first world?

5 Latin rhythms Champeta, Cumbia, Romantic

salsa, Extend the Latin

rhythms to other territories:

Carlos Vives and the

gentrification of cumbia,

Tuning, Music and

stereotypes, Reggaetón and

clave, The market and the

record labels, Willy Colón,

Celso Piña, Mixtures,

precarity, precariousness,

migration, flow, the music of

the Colombian Pacific,

20 Participants perceived:

- Cumbia has a heterosexual

dimension

- Cumbia is meant to extend to

other territories

- The tuning in cumbia is foreign

to jazz musicians

- Cumbia might be queer in

Canada because it potentially

responds to a sexuality other

than Country or Rock

- Cumbia is seen as something

acceptable when it is displayed

- Hegemonic

dimensions of

Cumbia

- Sexuality in

Cumbia

- Aspects of

cumbia that are

foreign in

Canada

150

Cumbia and tropical music,

queer cumbia

in large spaces and in a more

curated and ‘cultural’ form.

- Cumbia in Monterrey was went

from an object of study to a

subject of study.

6 Latin America/Abya
Ayala

 Global South, Governments

in Latin America, Identities

and music in Latin America,

Extractivism and music in

Latin America, Conscience as

Latin Americans, Colombia,

Central America, Monterrey,

Abya Ayala, Ahistorical

society, The Caribbean,

Spanish, Portuguese, mix,

mixtures, hybridization,

precariousness, Aymara

culture

18 Participants mentioned:
- Another name for Latin
America is Abya Ayala
- Colombia is an ahistorical
society
- An Andeacentrism is present in
Bolvia
- The use of Latin America as a
term that may even exclude
native peoples

Participants perceived:
- Spanish language rooted to
Latin America

- Languages
rooted to Latin
America

- ‘Proper’ ways
to name Latin
America

- Oppressive
particularities
of Colombia
and the Andes

7 Relationships Community relationships,

Computer-body

relationships, Collective

work, the visible and the

invisible, mixtures, warrior

empire, precariousness, links

between nature, technology,

and body, shared individual

questioning, socialization,

listening, sensitive gaze,

design spaces together, trust,

deep-rooted and

generational wound, social

practices

17 Participants perceived:
- Issues about colonization and
oppression are sometimes not
discussed in elementary school
in Mexico

Participants mentioned:
- In Spain, there is not much
consciousness about
colonization of the Americas
- In Spain, October 12 is the day
of Hispanidad.

Participants described:

- Elementary
school as
socialization

- National
festivities/holid
ays as
socialization

- Talking circles
as a
socialization
space

151

- Our discussion circles as a place
for shared individual
questioning.

8 Mestizaje Gendered dimensions of

mestizaje, Critique of

mestizaje, Resignification of

the concept of mestizaje

outside the “white mestizo”

scheme, Mixed race and/or

immigrants, Exclusion of

mestizx experiences within

anti-racism workshops in

Canada, White mestizo,

Cheje, hybridization,

Resignification, Biological and

cultural mestizaje, mix,

mixtures, Hybridization,

technological mestizaje,

precariousness, citizen,

eugenic control

17 Participants perceived:

- Mestizaje should be resignified

outside of the “white mestizo”

scheme

- There is an exclusion of the

mestizx experience within anti-

racism workshops in Canada

- There exists technological

mestizaje

Participants mentioned:

- Mestizaje is synonym of

citizenship in Bolivia

- Potential

resignifications

of mestizaje

- Potential

understandings

of mestizaje

9 Queer theory Post-punk and queer themes,

Gay people, Dominant

“whiteness” in drag culture,

Hegemonic narrative of

queer computing, worldview,

the street in relation to

nature and, sexuality, queer

phenomenology, orientations

informed by social practices,

queer cumbia, spaces have

13 Participants consider:

- There is a hegemonic narrative

of queer computing

- Spaces have gender

- Cumbia might be queer in

Canada because it potentially

responds to a sexuality other

than Country or Rock

- Gender and

sexuality of

computer

languages

- Gender and

sexuality of

cumbia in

Canada

152

gender, cultural and

biological constructions of

gender, social construct of

sexuality, queer sensibility

10 Multiculturalism Representation and colonial

multiculturalism,

Multicultural exchange,

Violence, Pluriculturalism,

Racial tolerance, mix,

mixture, Political divisions,

migration, biological

category, multiculturality,

pluriculturality,

interculturality and software

13 Participants considered:

- Multiculturalism could be

confused with Westernization

- Multiculturalism in Mexico

propose an asymmetric

relationship between Indigenous

and mestizo people

- Multiculturalism in Canada is

understood as tolerance

Participants defined:

- Multiculturalism as a space

where multiple cultures exist

- Pluriculturalism as a space

where cultures and their

geographies stand out

- Interculturality can be positive,

where there are different ways

of thinking and existing

- Interculturality can be negative

if it is crossed by politicized

instances.

- There is a utopian

interculturality where there are

complex relationships and

horizontal and multidirectional

negotiations.

- Traits of

multiculturalis

m in Mexico

and the

Americas

- Differences

between

multiculturalis

m,

pluriculturalism

and

interculturality

-

Multiculturalim

s within nation

states

153

- Unlike interculturality,

multiculturalism and

pluriculturalism are currently

visible in nation-states.

11 Software Free software, paid software,

software developers,

software documentation and

manuals as archival form,

algorithm, user, software

design as non-neutral,

software as a platform in

which bodies occupy space,

sexism, misogyny, and

objectification in the video

game industry, knowing how

to make a programming

language is vital to resist the

monoculture of computer

science and software design,

multiculturality,

pluriculturality,

interculturality and software

12 Participants perceive:

- Software is algorithms
- Software design is not neutral
- Software is a platform in which

bodies occupy space

- There is sexism, misogyny, and

objectification in the videogame

industry

- That knowing how to make a

programming language is vital to

resist the monoculture of

computer science and software

design

- Programming languages

is software directed to the first

world

Participants asked:

- What is software?

- How to dialogue with these

languages that are free software

but are still directed to the first

world, and that in their essence

have a lot of this world?

- Monoculture
of software
design
- Effects of the
monoculture of
software

12 Resignification

 Hybridization, Anti-

colonialism, decoloniality,

Mixtures, Precarity,

Liberatory issue, creation

10 Participants considered:
- There is a potential for
resignification of the concept of

- Mestizaje as a
“white mestizo”
scheme

154

processes outside the

domestication of recurring or

traditional methods,

resistance, opening to other

perspectives (miradas),

harmonize rather than have

specific knowledge,

representation, female

culture, prosecute or direct

our intentions

mestizaje outside of the “white
mestizo” scheme
- Is not necessarily to ask
whether technology can be
decolonial, or how decolonial it
can be, but rather the important
thing is to find ways of
resignification
- The appropriation of cumbia by
the "Cholombianos" in
Monterrey, Mexico is more
honest because it does not
respond to a commercial market

- Ways of
thinking the
resignification
of technology

- Honest
appropriation

13 Spirituality Spirituality in music,

Guadalupe virgin, The

present, Aymara vision of the

future, the Ayara vision of

time and space, to

salvage a more respectful

worldview, essence,

harmonize rather than have

specific knowledge, moral

sphere, the layer as one’s

harmonization

10 Participants consider:
- Harmonizing is more important
that having specific knowledge

Participants mentioned:
- In Andean culture, the future is
also the past

- Ways of
understanding
spirituality
within
knowledge and
technolgy

14 Ideology Mixtures, mestizaje, first

world, Worldview, Precarity,

National holidays, capital,

accumulation, dominant

ideologies, human

construction, object of

consciousness

10

155

15 Practice of
conservation and
restoration

 The museum tradition, new
codes and ethics within the
practice of conservation and
restoration, Planned
obsolescence and future
migrations, Curators,
Participatory conservation,
Anachronism of the museum,
Library processes,
Conservation and orality,
Participatory voices, Strong
male presence in curatorial
and conservation practice,
Violence

10 Participants denounced:
- Curatorial and conservation
practices have a strong male
presence

16 Body Subject, individual, user,

subjectivity, be a colonizer,

cognitive and visual motor

processes, software as a

platform in which bodies

occupy space, straight

bodies, cultural and

biological constructions of

gender, beings

undifferentiated to nature

10 Participants considered:
- Software as a platform in which
bodies occupy space

- Ways of being
a body

17 Art/Artists

 Philosophy, Khipus,

Worldview, Precarity,

expanded literature,

electronic literature, Sound

and visuals

7 South American
art

156

18 Appropriation Musical appropriation,

Cultural appropriation,

Reverse appropriation,

Negative appropriation vs

exchange, Cumbia

experiences in Monterrey:

potentially an honest

appropriation, dismantling vs

appropriating, The street in

relation to nature and

sexuality, moral sphere

6 Participants consider:
- Something has the potential to
stop being a negative
appropriation if the person who
appropriates it, returns
something in exchange to the
community from which it was
taken, or if a said person goes to
live in the same situation as the
person or community from who
takes such cultural material.
- It is utopian that it can be
eliminated completely, it would
have collateral effects

Participants asked:
- Is appropriation the same as
dismantling?

- What is
appropriation?

- Ways of
mitigating
appropriation

- Appropriation
vs dismantling

19 Dialogue Decoloniality,
Anticolonialism and

decoloniality as propaganda,

feminism, Limits of dialogue

and debate, Decolonization,

Anti-colonialism, Delinking,

unlearning, spaces of

reflection

6 Participants invited to:
- Create “dialogical
relationships”.

Forms of
dialogical
relationships

20 Music Post-punk and queer themes,
The market and the record

labels, worldview, The music

of the Colombian Pacific, pro-

feminist lyrics

5 Participants considered:

- The way of listening and the
sophistication of the sound
accounts for some colonizations
, now normalized within us

- Sophistication
of sound

- Sophistication
as colonized
thought

157

21 Design Software design as non-

neutral, the heterosexual

dimension of things,

programming languages and

cumbia, orientations

informed by social practices,

design spaces together,

Distinctions between objects

and space

5 Participants denounced:
- The heterosexual dimension of
programming languages and
cumbia

Participants suggested:
- Spaces where to design
together

Ways of
subverting
oppressive
design choices

22 Global North First World, Unites States,
Neatness and success stories
through materiality,
precariousness

4 Participants mentioned:
- Gay narratives of success are
wrapped around neatness and
materiality

- Narratives
from the Global
North
- Aspirational
narratives

23 Consent Inclusive language within our

meetings, preferred

pronouns, street

3 Participants used:
- Inclusive language within our
meetings
- As a political statement
- At the university in a regular
basis

- Using inclusive
language as
political
statement
- Places where
is common to
use inclusive
language

24 Extractivism Extractivism and music in

Latin America, Intellectual

extractivism, to salvage a

more respectful worldview

3

25 Khipus Textiles, Archeological way

instead of alive, Worldview

3 Participants mentioned:
- Khipus are studied as an
archeological way rather than as
alive

- Characteristics
of the study of
Quipus

158

26 Seis8s

 Flow, emulate, live coding

3 Participants mentioned:
- Playing with Seis8s has a
different flow than playing with
more traditional instruments

- Flow in
cumbia

27 Nation National holidays, enforced

disappearance

2

28 Reading The intermodality of reading,

nullified sensations when we

read

2 Participants perceived:
- Our senses are nullified when
reading

29 Laughter Fun, vulnerability 2

30 market/Marketing Color marketing 1

31 Today Covid-19 1

32 Progress Evolution 1

159

A.4 Sei8s’ code

A.4.1 The Main module

The Main module compiles Seis8s into a web application.

{-# LANGUAGE RecursiveDo, OverloadedStrings, JavaScriptFFI,

FlexibleContexts #-}

module Main where

import System.IO

import Control.Monad.Trans

import Control.Monad.Fix

import Reflex.Dom as Dom hiding (getKeyEvent,preventDefault)

import Data.Time

import Data.Tempo

import Data.Time.Clock.POSIX

import Data.Aeson

import Data.Text (Text)

import qualified Data.Text as T

import qualified Data.Text.IO as T

import TextShow

import Control.Concurrent.MVar

import Control.Concurrent

import Data.Map.Strict

import Control.Monad

import GHCJS.DOM.Types (HTMLCanvasElement(..),uncheckedCastTo,JSVal,

WebGLRenderingContext)

import JavaScript.Web.AnimationFrame

import GHCJS.Concurrent

import GHCJS.DOM.EventM

import Data.Bool

import Data.Maybe

import Data.Either

import GHCJS.Marshal.Pure

import Language.Javascript.JSaddle (liftJSM, toJSVal)

import GHCJS.Types

import Sound.OSC.Datum

import Data.Text.Encoding

import JavaScript.Object

import qualified Data.Map as Map

160

import Data.JSString.Text

import qualified Control.Concurrent as Con

import Debug.Trace

import Data.Char as C

import Language.Javascript.JSaddle

import Sound.MusicW

import Sound.Seis8s.Program

import Sound.Seis8s.Layer (Layer, emptyLayer)

import Sound.Seis8s.Parser

import Sound.Seis8s.GlobalMaterial

data RenderState = RenderState {

t0 :: UTCTime,

tSystemInit :: UTCTime, -- tSystemInit :: UTCTime,

tempo :: Tempo,

pVar :: ([Layer], GlobalMaterial) -- ([emptyLayer],

defaultGlobalMaterial)

}

main :: IO ()

main = do

hSetBuffering stdout LineBuffering

tNow <- getCurrentTime -- IO UTC

wd <- webdirtNode

initializeWebAudio wd

mainWidgetWithHead headElement (bodyElement wd) -- IO ()

webdirtNode :: IO WebDirt

webdirtNode = do

iwdn <- initializeWebDirtNode

wd <- liftAudioIO $ newWebDirt iwdn

return wd

headElement :: DomBuilder t m => m ()

headElement = do

el "title" $ text "Seis8s"

let attrs = fromList [("rel", "stylesheet"), ("type", "text/css"), ("href"

, "style.css")]

-- let attrs2 = fromList [("rel", "stylesheet"), ("type", "text/css"), ("

href", "jquery.highlight-within-textarea.css")]

elAttr "link" attrs $ return ()

-- elAttr "link" attrs2 $ return ()

161

intro :: Text

intro = "cumbia teclado;\n\

\cumbia bajo;\n\

\cumbia guira;\n\

\cumbia congas;"

ejemplo2 :: Text

ejemplo2 = " -- cumbia usando el comando acordes \n\

\acordes [re m, fa, la];\n\

\acompanamiento (2 4) $ cumbia teclado;\n\

\tumbao 2 $ cumbia bajo;\n\

\cumbia guira;\n\

\tumbao 3 $ cumbia congas;"

ejemplo3 :: Text

ejemplo3 = "-- cumbia psicodelica \n\

\acordes [re m, fa, sol, re m]; \n\

\punteo [1a 3a 5a 6a] [1 2 2.5 3 4] $ sample 7 $ cumbia teclado; \n\

\acompaamiento (2 4 4.5) $ sample 2 $ cumbia teclado; \n\

\tumbao [(t a) (t a) (q a) (t a) (t a) (q a), (q p) (q a) (q p) (q a)] [1

1.5 2 3 3.5 4, 1 2 3 4] $ congas; \n\

\tumbao [1a 2a 3a 5a, 1a 5a 3a] [1 2 3 4, 1 3 4] $ cumbia bajo; \n\

\ritmo 1 $ jamblock; \n\

\ritmo [1 2 3 4, 1 1.5 2 2.5 3 3.5 4 4.5] $ cumbia guira;"

-- "acordes [re m, fa, la]; \n\

-- \comps \"partido\"; \n\

-- \punteo [3a, 5a] [3, 4, 1 1.5 2 2.5] $ sample 3 $ acorden;\n\

-- \acompaamiento (2 4) $ vol 0.75 $ teclado; \n\

-- \tumbao 1 $ cumbia bajo; \n\

-- \ritmo [1 2 2.5 3 4 4.5] $ guira;\n\

-- \marcha [p t p a a] [1 2 3 4 4.5] $ pan 0 $ congas;"

-- "alternar 2 (acompanamiento (1 2)) $ acompanamiento (2 4) $ cumbia

teclado; \n\

-- \tumbao 2 $ cumbia bajo;\n\

-- \cumbia guira;\n\

-- \tumbao 3 $ cumbia congas;"

ejemplo4 :: Text

ejemplo4 = "-- cumbia psicodelica 2 \n\

\acordes [re m, fa, sol, re m]; \n\

162

\punteo [3a 5a 6a] [1 2 2.25 2.5 3 4] $ sample 8 $ teclado; \n\

\acompaamiento (4) $ sample 0 $ cumbia teclado; \n\

\alternar 4 (tumbao 0) $ tumbao 1 $ sample 3 $ cumbia bajo; \n\

\vol 0.65 $ cumbia gira; \n\

\tumbao 0 $ cumbia congas;"

ejemplo5 :: Text

ejemplo5 = "--cumbia tejana \n\

\tempo 0.5;\n\

\acordes [do, sol, fa];\n\

\punteo [1a 5a 6a] [1 2 2.5] $ acordeon; \n\

\tumbao [1a 3a 5a] [1 3 4] $ bajo;\n\

\acompanamiento (2 4) $ teclado; \n\

\ritmo [1 2 3 4, 1 1.5 2 2.5 3 3.5 4, 1] $ guira;\n\

\ritmo [1 2 3 4, 2 4] $ cumbia jamblock;\n\

\marcha [(q p) (q p) (q t) (q p) (q p) (q p) (q a) (q a), (q p) (q p) (q t)

(q p) (q a) (q p) (t a) (t a)] [1 1.5 2 2.5 3 3.5 4 4.5, 1 1.5 2 2.5 3

3.5 4 4.5] $ congas;"

ejemplo6 :: Text

ejemplo6 = "-- balada cumbia por Kofi Oduro\n\

\tempo 0.35;\n\

\acordes [re m, la, la, fa, do, do, fa, re m, la, la];\n\

\alternar 5 (acompanamiento (1 2 4)) $ acompanamiento (1 4) $ cumbia teclado

; \n\

\acompanamiento (2 3 4 4) $ cumbia teclado;\n\

\sample 4 $ teclado;\n\

\tumbao 5 $ cumbia congas;\n\

\vol 0.825 $ cumbia bajo;\n\

\cumbia guira;"

-- "alternar 2 (acompanamiento (1 2)) $ acompanamiento (2 4) $ cumbia

teclado;\n\

-- \alternar 2 (tumbao 3) $ tumbao 1 $ cumbia bajo;\n\

-- \ritmo ([1 1.5 2 2.5 3 3.5 4 4.5]) $ cumbia guira;\n\

-- \alternar 4 (tumbao 4) $ tumbao 1 $ cumbia congas"

ejemplo7 :: Text

ejemplo7 = "-- balada por Kofi Oduro \n\

\tempo 0.173; \n\

\acordes [re m, fa,fa, sol, re m, fa, fa, sol, fa,fa]; \n\

\punteo [3a 4a 5a 2a 6a] [1 1.35 2.7 2.25 2.5 3 4.7 5.4] $ sample 8 $
teclado; \n\

\acompanamiento (2) $ sample 1 $ teclado; \n\

\alternar 3 (tumbao 0) $ tumbao 1 $ sample 2 $ bajo; \n\

163

\vol 0.45 $ tumbao 1 $ guira; \n\

\tumbao 0 $ congas;"

ejemplo8 :: Text

ejemplo8 = "-- son cubano \n\

\acordes [do, do, do, do, fa, fa, fa, fa]; \n\

\tumbao [\"1a\" \"5a\", \"5a\" (\"1a\" 1),1a 5a, 5a 1a] [1 4, 1 3, 1 4, 1 4]

$ sample 4 $ bajo;\n\

\punteo [1a 3a 5a, 6a 1a, 3a 5a, 6a 1a] [1 3 4, 2 4, 2 4, 2 4] $ sample 1 $
teclado;\n\

\marcha [p p t p, p p a a, p p t (t a), p p (t a) (t a)] [1 2 3 4, 1 2 3 4,

1 2 3 4, 1 2 3 4] $ congas; \n\

\jamblock;"

ejemplo9 :: Text

ejemplo9 = "-- salsa suave \n\

\tempo 0.75; \n\

\compas \"4/4\"; \n\

\acordes [do m, do m , do m, re dim]; \n\

\tumbao 0 $ sample 1 $ teclado; \n\

\tumbao [1a 5a 1a, 5a 1a] [1 2.5 4, 2.5 4] $ sample 4 $ bajo;\n\

\marcha [p p t p p p a a] [1 1.5 2 2.5 3 3.5 4 4.5] $ congas;\n\

\preset 1 $ cumbia clave;\n\

\ritmo [2 4] $ guira"

-- "punteo [\"3a\", \"5a\"] [3, 4, 1 1.5 2 2.5]$ sample 3 $ cumbia

teclado;\n\

-- \alternar 2 (acompanamiento (1 2)) $ acompanamiento (2 4) $ cumbia

teclado; \n\

-- \tumbao 2 $ cumbia bajo; \n\

-- \cumbia guira; \n\

-- \tumbao 3 $ cumbia congas; \n"

ejemplo10 :: Text

ejemplo10 = "-- salsa rpida \n\

\tempo 0.45;\n\

\armonia [re m];\n\

\vol 0.8 $ punteo [3a 4a 5a] [1 2.5 3.5 4, 4] $ sample 1 $ teclado;\n\

\alternar 2 (acompanamiento (2.5 3.5)) $ acompanamiento (1 2 3.5 4.5) $
sample 0 $ teclado;\n\

\tumbao [\"1a\" \"5a\" (\"1a\" 1), \"5a\" \"1a\"] [1 2.5 4, 2.5 4] $ sample

5 $ bajo;\n\

164

\marcha [p p t p p p a a] [1 1.5 2 2.5 3 3.5 4 4.5] $ congas;\n\

\preset 1 $ clave;"

-- "acordes [re m, fa, la];\n\

-- \punteo [\"3a\", \"5a\"] [3, 4, 1 1.5 2 2.5]$ sample 3 $ cumbia

teclado;\n\

-- \alternar 2 (acompanamiento (1 2)) $ acompanamiento (2 4) $ cumbia

teclado; \n\

-- \alternar 2 (acompanamiento (1 2)) $ acompanamiento (2 4) $ cumbia

teclado;\n\

-- \alternar 2 (tumbao 3) $ tumbao 1 $ cumbia bajo;\n\

-- \ritmo ([1 1.5 2 2.5 3 3.5 4 4.5]) $ cumbia guira;\n\

-- \alternar 4 (tumbao 4) $ tumbao 1 $ cumbia congas"

navigateExamples :: Int -> Text

navigateExamples 0 = intro

navigateExamples 1 = ejemplo2

navigateExamples 2 = ejemplo3

navigateExamples 3 = ejemplo4

navigateExamples 4 = ejemplo5

navigateExamples 5 = ejemplo6

navigateExamples 6 = ejemplo7

navigateExamples 7 = ejemplo8

navigateExamples 8 = ejemplo9

navigateExamples 9 = ejemplo10

otherwise = intro

navigateExamplesWidget :: MonadWidget t m => Event t () -> m (Event t Text)

navigateExamplesWidget evButton = do

numbs <- foldDyn (+) (0 :: Int) (1 <$ evButton) -- Dynamic Int

let numbs’ = fmap (\n -> mod n 10) numbs -- Dynamic Int

let codeExamples = fmap navigateExamples numbs’ -- Dynamic Text

return $ updated codeExamples -- Event Text

attrsForGeneralInfo :: Bool -> Map.Map T.Text T.Text

attrsForGeneralInfo b = visibility b

where visibility True = "class" =: "contenedorTextoIntro"

visibility False = "class" =: "contenedorTextoIntro" <> "style" =: "

display: none"

bodyElement :: MonadWidget t m => WebDirt -> m ()

165

bodyElement wd = do

mv <- liftIO $ forkRenderThreads wd

-- divClass "titulo" $ do

-- text "Seis8s"

-- elAttr "a" ("href" =: "https://l.facebook.com/l.php?u=https%3A%2F%2

Finstagram.com%2Fmariapaula.jg%3Figshid%3Dpnjbzfn31ugn%26fbclid%3

DIwAR1nvWI1UKeRIvdkzYVsFICxaQee2cVjQLS4IbQc2DdnvbhOkwvT4tZbTH4&h=

AT3JFjrz0ZtST7h4CFALdMsX7L2ZB9VEN0UegRPOFAYMACdy79unNDgDAHkIeHgjP4E1Z3hOgOGoguTiyOwK81ZsVdf_DwY9V

-rqgmkbbmtrnEh6_NqKnCHIp7z20g") (text "Imgen por / background art by

: @mariapaula.jg")

elClass "div" "contenedorPrincipal" $ mdo

dynBoolForInfo <- toggle True evClickInfo

let dynAttrsForGeneralInfo = attrsForGeneralInfo <$> dynBoolForInfo

elDynAttr "div" dynAttrsForGeneralInfo $ do

divClass "titulo" $ text "Seis8s"

tabDisplay "botonesDeIdioma" "botonesDeIdiomaListItems"

tabMapEscogerIdioma

(evClickPlay, evClickStop, evClickInfo, examplesButton) <- elClass "div"

"editor" $ mdo

(evClickPlay’, evClickStop’, evClickInfo’, examplesButton’) <- divClass

"playEinstrucciones" $ do

evClickInfo’’ <- divClass "infoButton" $ button "?"

examplesButton’’ <- divClass "examplesButton" $ button ""

evClickStop’’ <- divClass "stopButton" $ button "" -- ([emptyLayer],

defaultGlobalMaterial)

evClickPlay’’ <- divClass "playButton" $ button ""

consoleInfo’ <- holdDyn "Haz sonar el cdigo presionando el botn |

Make the code sound by pressing the button" consoleInfo

divClass "consoleInfo" $ dynText $ fmap T.pack consoleInfo’

return (evClickPlay’’, evClickStop’’, evClickInfo’’, examplesButton

’’)

--

consoleInfo <- divClass "textAreaEditor" $ do

let textAttrs = constDyn $ fromList [("class", "maineditor"){--("

class", "class-example"),--}]

code <- do

-- liftIO $ jq_highlight_brackets

-- numbs <- foldDyn (+) (0 :: Int) (1 <$ examplesButton) --

Dynamic Int

-- let codeExamples = fmap navigateExamples numbs -- Dynamic Text

navigateExamplesWidget’ <- navigateExamplesWidget examplesButton

textArea $ def & textAreaConfig_attributes .~ textAttrs &

166

textAreaConfig_initialValue .~ intro & textAreaConfig_setValue

.~ navigateExamplesWidget’

e <- _element_raw . fst <$> el’ "div" blank -- script or text

let evaled = tagPromptlyDyn (_textArea_value code) evClickPlay --

Event t Text

let stopSound = tagPromptlyDyn (constDyn "silencio") evClickStop --

Event t Text

consoleInfo’ <- performEvaluate’ mv $ leftmost [evaled, stopSound] --

performEvaluate’ pVar evaled

return consoleInfo’

return (evClickPlay’, evClickStop’, evClickInfo’, examplesButton’)

return ()

-- performEvaluate’ :: (PerformEvent t m, MonadIO (Performable m)) => MVar

([Layer], GlobalMaterial) -> Event t Text -> m ()

performEvaluate’ :: (PerformEvent t m, MonadIO (Performable m)) => MVar

RenderState -> Event t Text -> m (Event t String)

performEvaluate’ mv e = performEvent $ ffor e $ \textAreaCode -> liftIO $ do

let p = parseLang $ T.unpack textAreaCode

let

case p of

Right x -> do

tNow <- getCurrentTime

rs <- takeMVar mv

putMVar mv $ rs {

pVar = x

}

return ""

Left x -> return $ "error: " ++ x

forkRenderThreads :: WebDirt -> IO (MVar RenderState)

forkRenderThreads wd = do

tNow <- liftIO getCurrentTime

mv <- newMVar $ RenderState {

tSystemInit = tNow,

t0 = tNow,

tempo = Tempo {freq = 0.50, time=tNow, Data.Tempo.count=0},

pVar = ([emptyLayer], defaultGlobalMaterial)

}

forkIO $ renderThread wd mv -- tNow evalT tempo wd pVar

return mv

-- renderThread :: UTCTime -> UTCTime -> Tempo -> WebDirt -> MVar ([Layer

167

], GlobalMaterial) -> IO ()

-- renderThread t0 evalT tempo wd pVar = do

renderThread :: WebDirt -> MVar RenderState -> IO ()

renderThread wd mv = do

mv’ <- takeMVar mv

mv’’ <- renderer wd mv’

putMVar mv mv’’

-- threadDelay 100000

let renderEnd = (t0 mv’’) -- (t0 mv’’)

let targetWakeUpTime = addUTCTime (-0.1) renderEnd

tNow <- liftIO $ getCurrentTime --currentTime

let diff = diffUTCTime targetWakeUpTime tNow

when (diff > 0) $ liftIO $ threadDelay $ floor $ realToFrac $ diff *

1000000

renderThread wd mv

renderer :: WebDirt -> RenderState -> IO RenderState

renderer wd mv = do

let iw = t0 mv

let ew = addUTCTime (0.1 :: NominalDiffTime) iw

let rend = renderForStandalone (pVar mv) iw ew --render (fromJust $ pVar

mv) (tempo mv) iw ew -- [Event], i.e. Event = (UTCTime, M.Map T.Text

Datum)

let singleJSValevents = fmap (\(u, m) -> ((realToFrac $
utcTimeToPOSIXSeconds u) + 0.0, fmap datumToJSVal m)) (fst rend)-- (

realToFrac $ diffUTCTime u (tSystemInit mv), fmap datumToJSVal m)) (

fst rend) -- [IO JSVal]

renderedCodes <- sequence $ fmap mapTextJSValToJSVal singleJSValevents --

IO [JSVal]

sequence_ $ fmap (\r -> playSample wd r) renderedCodes -- [IO ()] -> IO ()

return $ mv {t0 = ew, tempo = snd rend} -- mv {t0 = ew, tempo = snd rend}

tabMapEscogerIdioma :: MonadWidget t m => Map.Map Int (Text, m ())

tabMapEscogerIdioma = Map.fromList[(1, ("Espaol", tabMapEspanol’)),

(2, ("English", tabMapEnIngles’))]

tabMapEspanol’ :: MonadWidget t m => m ()

tabMapEspanol’ = do

tabDisplay "menuButtons" "menuContentContainer" tabMapEspanol

return ()

tabMapEnIngles’ :: MonadWidget t m => m ()

tabMapEnIngles’ = do

168

tabDisplay "menuButtons" "menuContentContainer" tabMapEnIngles

return ()

tabMapEspanol :: MonadWidget t m => Map.Map Int (Text, m ())

tabMapEspanol = Map.fromList[(1, ("Sobre Seis8s", descripcion)), (2, ("

Referencia", referencia)), (3, ("Agradecimientos", agradecimientos))]

--(2, ("Canal de Discord", discordEspanol), (3, ("Ejemplos",

ejemplos)), (4, ("Referencia", referencia)), (5, ("

Agradecimientos", agradecimientos))]

tabMapEnIngles :: MonadWidget t m => Map.Map Int (Text, m ())

tabMapEnIngles = Map.fromList[(1, ("About Seis8s", description)), (2, ("

Reference", reference)), (3, ("Acknowledgements", acknowledgements))]

-- (2, ("Discord Channel", discordEnglish), (3, ("Examples",

examples)), (4, ("Reference", reference)), (5, ("

Acknowledgements", acknowledgements))]

discordEspanol :: MonadWidget t m => m ()

discordEspanol = divClass "discord" $ do

text "Unete al grupo de Discord: "

elAttr "a" ("href" =: "https://discord.gg/ygEPS8tzzz") (text "https://

discord.gg/ygEPS8tzzz")

blank

text "Contacto: navarrol@mcmaster.ca"

-- el "br" $ blank

-- text $ "Y deja un mensaje abajo! "

-- liftJSM $ eval ("window.addEventListener(’load’,function() { \n\

-- \commentBox(’5731344961241088-proj’); \n\

-- \});" :: String)

return ()

discordEnglish :: MonadWidget t m => m ()

discordEnglish = divClass "discord" $ do

text "Join the discord group: "

elAttr "a" ("href" =: "https://discord.gg/ygEPS8tzzz") (text "https://

discord.gg/ygEPS8tzzz")

blank

text "Contact: navarrol@mcmaster.ca"

-- el "br" $ blank

-- text $ "And leave a message below! "

-- liftJSM $ eval ("window.addEventListener(’load’,function() { \n\

-- \commentBox(’5731344961241088-proj’); \n\

-- \});" :: String)

169

return ()

agradecimientos :: MonadWidget t m => m ()

agradecimientos = divClass "textoIntro" $ do

text "Este proyecto es parte de mi doctorado llamado ’Plataformas

culturalmente situadas de msica por computadora y es apoyada por el

Fondo Mexicano para la Cultura y las Artes (FONCA), el Consejo Mexicano

de Ciencia y Tecnologa (CONACYT) y el Consejo de Investigacin de

Ciencias Sociales y Humanidades de Canad."

divClass "contacto" $ do

text "Agradecimientos especiales a"

elAttr "a" ("href" =: "https://l.facebook.com/l.php?u=https%3A%2F%2

Finstagram.com%2Fmariapaula.jg%3Figshid%3Dpnjbzfn31ugn%26fbclid%3

DIwAR1nvWI1UKeRIvdkzYVsFICxaQee2cVjQLS4IbQc2DdnvbhOkwvT4tZbTH4&h=

AT3JFjrz0ZtST7h4CFALdMsX7L2ZB9VEN0UegRPOFAYMACdy79unNDgDAHkIeHgjP4E1Z3hOgOGoguTiyOwK81ZsVdf_DwY9V

-rqgmkbbmtrnEh6_NqKnCHIp7z20g") (text "@mariapaula.jg")

divClass "contacto" $ text "por la imgen que aparece detrs del editor."

divClass "contacto" $ text "Contctame a traves de navarrol@mcmaster.ca"

acknowledgements :: MonadWidget t m => m ()

acknowledgements = divClass "textoIntro" $ do

text "This project is part of my doctoral project called ’Culturally

situated platforms for computer music’ and is supported by the Mexican

Fund for Culture and Arts (FONCA), the Mexican Council of Science and

Technology (CONACYT), and Canadas Social Sciences and Humanities

Research Council."

divClass "contacto" $ do

text "Special thanks to"

elAttr "a" ("href" =: "https://l.facebook.com/l.php?u=https%3A%2F%2

Finstagram.com%2Fmariapaula.jg%3Figshid%3Dpnjbzfn31ugn%26fbclid%3

DIwAR1nvWI1UKeRIvdkzYVsFICxaQee2cVjQLS4IbQc2DdnvbhOkwvT4tZbTH4&h=

AT3JFjrz0ZtST7h4CFALdMsX7L2ZB9VEN0UegRPOFAYMACdy79unNDgDAHkIeHgjP4E1Z3hOgOGoguTiyOwK81ZsVdf_DwY9V

-rqgmkbbmtrnEh6_NqKnCHIp7z20g") (text "@mariapaula.jg")

divClass "contacto" $ text "for the editor’s background image."

divClass "contacto" $ text "To contact me, send me an email to

navarrol@mcmaster.ca"

descripcion :: MonadWidget t m => m ()

descripcion = divClass "textoIntro" $ do

divClass "descripcion" $ text "Seis8s es un lenguaje informtico basado en

la web que permite la interaccin en tiempo real con audio digital y

conocimientos musicales localizados. Seis8s gira en torno a comandos que

se relacionan con la msica latina bailable, tambin conocida como msica

170

latina urbana o msica popular latina. Si deseas saber ms, agregate al

canal de Discord de Seis8s:"

elAttr "a" ("href" =: "https://discord.gg/ygEPS8tzzz") (text "https://

discord.gg/ygEPS8tzzz")

elClass "h3" "empiezaAquiTitulo" $ text "Cmo usar Seis8s?"

elClass "ol" "empiezaAqui" $ do

el "li" $ text "Presiona para tocar el cdigo de ejemplo que aparece en

el editor a la derecha. Presiona para detenerlo."

el "li" $ text "Explora ms ejemplos presionando y despus presionando

para tocar cada ejemplo."

el "li" $ text "Aprende cmo modificar los ejemplos o crear un nuevo cdigo

consultando la seccin de Referencia en el men de arriba."

-- text "seis8s (pronunciado ’seis octavos’) es un lenguaje de programacin

que permite la interaccin en tiempo real con audio digital y

conocimiento musical localizado, particularmente de msicas de

Latinoamrica. Seis8s es un proyecto reciente que pretende ser

colaborativo, a travs de conocimiento musical consensuado desde las

diferentes fronteras personales y colectivas que existen en conexin

con Amrica Latina. Seis8s tambin espera ser una crtica ideolgica del

sistema mundial de msica por computadora dominante en lugar de una

abstraccin acrtica de las distintas visiones del mundo. El primer ’

mdulo’ de seis8s produce msica influenciada por la cumbia sonidera, un

estilo particular de la clase trabajadora mexicana en Mxico y Estados

Unidos. Para obtener ms informacin sobre Cumbia sonidera, consulte el

libro "

-- elAttr "a" ("href" =: "http://beyond-digital.org/sonideros/EPS%20Libro

-%20Sonideros%20en%20las%20aceras,%20vengase%20la%20gozadera%20-%20

PDFvert.pdf") (text "Sonideros en las aceras, vngase a gozadera.")

return ()

-- text "Tambin puedes unirte al grupo de Discord para continuar la

conversacin y preguntar cosas:"

-- link "https://discord.gg/ygEPS8tzzz"

-- return ()

description :: MonadWidget t m => m ()

description = divClass "textoIntro" $ do

text "Seis8s is a web-based computer language that allows real-time

interaction with digital audio and localized musical knowledge. Seis8s

revolves around commands that relate to Latin dance music also known as

urban Latin music or Latin popular music. Join Seis8s’ Discord channel

to know more:"

elAttr "a" ("href" =: "https://discord.gg/ygEPS8tzzz") (text "https://

discord.gg/ygEPS8tzzz")

171

elClass "h3" "empiezaAquiTitulo" $ text "How to start using Seis8s?"

elClass "ol" "empiezaAqui" $ do

el "li" $ text "Click to play the example code from the editor on the

right. Click to stop the sound."

el "li" $ text "Explore more examples by clicking and to play the

example."

el "li" $ text "Learn how to modify the examples or create your own code

by consulting the Reference section on the menu above."

-- text "seis8s (pronounced ’seis octavos’) is a programming language

that allows real-time interaction with digital audio and localized

musical knowledge, particularly of Latin American music. Seis8s is a

recent project that aims to be collaborative, through consensual

musical knowledge from the different personal and collective borders

that exist in connection with Latin America. Six8s also hopes to be

an ideological critique of the dominant world computer music system

rather than an uncritical abstraction of various worldviews. The

first ’module’ of six8s produces music influenced by the cumbia

sonidera, a particular style of the Mexican working class in Mexico

and the United States. For more information on Cumbia sonidera, see

the book "

-- elAttr "a" ("href" =: "http://beyond-digital.org/sonideros/EPS%20Libro

-%20Sonideros%20en%20las%20aceras,%20vengase%20la%20gozadera%20-%20

PDFvert.pdf") (text "Sonideros en las aceras, vngase a gozadera.")

return ()

-- text "You can also join the Discord group to continue the conversation

and ask questions:"

-- link "https://discord.gg/ygEPS8tzzz"

-- return ()

ejemplos :: MonadWidget t m => m ()

ejemplos = divClass "ejemplosCss" $ do

text "Copie cualquiera de los siguientes bloques de cdigo y pguelo en el

editor de texto de la derecha. Hazlo sonar presionando el boton ."

text "Para silenciar los sonidos borra tu cdigo y vuelve a presionar el

botn ."

let textAttrs = constDyn $ fromList [("class", "ejemCode")]

let textAttrs’ = constDyn $ fromList [("class", "ejemCodeLargo")]

-- liftIO $ jq_highlight_brackets

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ intro -- text

172

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ ejemplo2 -- text

textArea $ def & textAreaConfig_attributes .~ textAttrs’ &

textAreaConfig_initialValue .~ ejemplo3 -- text

textArea $ def & textAreaConfig_attributes .~ textAttrs’ &

textAreaConfig_initialValue .~ ejemplo4 -- text

textArea $ def & textAreaConfig_attributes .~ textAttrs’ &

textAreaConfig_initialValue .~ ejemplo5 -- text

textArea $ def & textAreaConfig_attributes .~ textAttrs’ &

textAreaConfig_initialValue .~ ejemplo6 -- text

textArea $ def & textAreaConfig_attributes .~ textAttrs’ &

textAreaConfig_initialValue .~ ejemplo7 -- text

return ()

examples :: MonadWidget t m => m ()

examples = divClass "ejemplosCss" $ do

text "Copy any of the following code blocks and paste it into the text

editor on the right. Make it sound by pressing the button."

text $ "To silence the sounds, delete your code and press the button

again (it will take a few seconds to stop, but if it doesn’t stop,

please reload the webpage)."

let textAttrs = constDyn $ fromList [("class", "ejemCode")]

let textAttrs’ = constDyn $ fromList [("class", "ejemCodeLargo")]

-- liftIO $ jq_highlight_brackets

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ intro -- text

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ ejemplo2 -- text

textArea $ def & textAreaConfig_attributes .~ textAttrs’ &

textAreaConfig_initialValue .~ ejemplo3 -- text

textArea $ def & textAreaConfig_attributes .~ textAttrs’ &

textAreaConfig_initialValue .~ ejemplo4 -- text

return ()

referencia :: MonadWidget t m => m ()

referencia = divClass "referenciaCss" $ do

text "Prueba seis8s escribiendo el siguiente cdigo: "

let textAttrs = constDyn $ fromList [("class", "refCode")]

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "cumbia bajo;"

text "Hazlo sonar presionando el boton . Una vez que lo ejecutes, debes

escuchar el sonido de un bajo con el ritmo base de la cumbia!"

173

el "h3" $ text "Instrumentos"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "teclado; congas; jamblock; guira; bajo;

"

text "Para silenciar los sonidos borra todo el cdigo y ejecuta de nuevo.

Tambien puedes utilizar el comando:"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "silencio"

el "h3" $ text "Sintaxis_bsica"

text "La funcin de estilo se coloca a la izquierda del instrumento: "

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "cumbia teclado;"

text "Todas las funciones que modifican el estilo se agregan a la

izquierda del instrumento seguidas de un parntesis o un signo de peso ’

$’: "

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompaamiento 2 (cumbia teclado);"

text "El signo $ es equivalente a los parntesis: "

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompaamiento 2 $ cumbia teclado;"

text "Para silenciar los sonidos puedes utilizar el comando:"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "silencio"

el "h3" $ text "Funciones_del_bajo"

divClass "imagen-bajo" $ return ()

elClass "span" "comandosCss" $ text "sample "

text "permite cambiar la muestra de audio o sample. Acepta nmeros enteros

iguales o mayores que 0. Hay 4 pre-sets disponibles."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "sample 0 $ cumbia bajo;"

elClass "span" "comandosCss" $ text "tumbao "

text "permite accessar a los distintos pre-sets del bajo. Acepta nmeros

enteros iguales o mayores que 0."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "tumbao 1 $ cumbia bajo;"

text "Con la funcin "

elClass "span" "comandosCss" $ text "tumbao "

text $ "tambin puedes sobreescribir las notas de los tumbaos."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "tumbao (\"1a\" \"3a\" \"5a\") $ cumbia

bajo;"

text "Tambin puedes reesecribir los ritmos de los tumbaos."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

174

textAreaConfig_initialValue .~ "tumbao (\"1a\" \"5a\") (1 3) $ cumbia

bajo;"

text "Tambin se pueden hacer listas de notas y ritmos de la siguiente

forma: "

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "tumbao [\"1a\" \"5a\", \"1a\" \"3a\"

\"5a\"] [1 3, 1 3 4] $ cumbia bajo;"

el "h3" $ text "Funciones_del_teclado"

divClass "imagen-teclado" $ return ()

elClass "span" "comandosCss" $ text "sample "

text "permite cambiar la muestra de audio o sample. Acepta nmeros enteros

iguales o mayores que 0."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "sample 1 $ cumbia teclado;"

elClass "span" "comandosCss" $ text "tumbao "

text "permite accessar a los distintos pre-sets del teclado como lo

hicimos con el bajo arriba. Acepta nmeros enteros iguales o mayores que

0."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "tumbao 2 $ cumbia teclado;"

elClass "span" "comandosCss" $ text "acompanamiento "

text "o "

elClass "span" "comandosCss" $ text "acompaamiento "

text "modifica el ritmo en el que se tocan los acordes o bloques de notas

del teclado."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompanamiento 2 $ cumbia teclado;"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompanamiento (2 4) $ cumbia teclado;"

text "Tambin sirve para modificar las notas del teclado. Acepta hasta un

mximo de 4 notas."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompanamiento 2 (\"1a\" \"3a\" \"5a\")

$ cumbia teclado;"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompanamiento (2 4) (\"1a\" \"3a\" \"5

a\")"

text "Tambin se puede modificar la octava de la nota, es decir que tan

grave o agudo suena."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompanamiento 2 (\"1a\" \"3a\" (\"5a\"

1)) $ cumbia teclado;"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompanamiento 2 (\"1a\" \"3a\" (\"5a\"

175

(-1)) $ cumbia teclado;"

el "h3" $ text "Funciones_de_las_congas"

divClass "imagen-congas" $ return ()

elClass "span" "comandosCss" $ text "tumbao "

text "permite accessar a los distintos pre-sets de las congas como lo

hicimos con teclado y el bajo arriba. Acepta nmeros enteros iguales o

mayores que 0. Hay 4 disponibles."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "tumbao 4 $ cumbia congas;"

elClass "span" "comandosCss" $ text "marcha "

text $ "permite asignar los golpes de la palma, tapado y abierto a las

congas. Por default suena el tambor quinto de la conga"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "marcha (\"p\" \"t\" \"p\" \"a\") $
cumbia congas;"

text $ "Tambin permite escribir el rimto de las congas."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "marcha (\"p\" \"t\" \"p\" \"a\" \"a\")

(1 2 3 4 4.5) $ cumbia congas;"

text $ "Tambin permite accesar a otros tambores de las congas como la

tumbadora."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "marcha (\"p\" \"t\" \"p\" (t \"a\") (t

\"a\")) (1 2 3 4 4.5) $ cumbia congas;"

text "Tambin se pueden hacer listas de notas y ritmos de la siguiente

forma."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "marcha [\"p\" \"t\" \"p\" \"a\", \"p\"

\"t\" \"p\" (t \"a\") (t \"a\")] [1 2 3 4, 1 2 3 4 4.5] $ cumbia congas

;"

el "h3" $ text "Funciones_de_la_guira"

divClass "imagen-guira" $ return ()

elClass "span" "comandosCss" $ text "preset "

text " permite accesar a algunos ritmos pre-cargados de la guira. Hay 2

disponibles."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "preset 0 $ cumbia guira;"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "preset 1 $ cumbia guira;"

el "h3" $ text "Funciones_del_jamblock"

divClass "imagen-jam" $ return ()

textArea $ def & textAreaConfig_attributes .~ textAttrs &

176

textAreaConfig_initialValue .~ "cumbia jamblock;"

text "Ms funciones vienen en camino!"

return ()

reference :: MonadWidget t m => m ()

reference = divClass "referenciaCss" $ do

text "Try seis8s by writing the following code: "

let textAttrs = constDyn $ fromList [("class", "refCode")]

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "cumbia bajo;"

text "Make it sound by pressing the button. Once you play it you should

hear the sound of a bass with the base rhythm of the cumbia!"

el "h3" $ text "Instruments"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "teclado; congas; jamblock; guira; bajo;

"

text "To silence the sounds you can use the command: "

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "silencio"

el "h3" $ text "Basic syntax"

text "The style function is placed to the left of the instrument: "

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "cumbia teclado;"

text "All the functions that modify the style are added to the left of the

instrument followed by a parenthesis or a ’$’ sign: "

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompaamiento 2 (cumbia teclado);"

text "The $ sign is equivalent to parentheses: "

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompaamiento 2 $ cumbia teclado;"

text "To silence the sounds you can use the command: "

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "silencio"

el "h3" $ text "Bass functions"

divClass "imagen-bajo" $ return ()

elClass "span" "comandosCss" $ text "sample "

text "allows you to change the audio sample or sample. Accepts whole

numbers equal to or greater than 0. There are 4 pre-sets available."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "sample 0 $ cumbia bajo;"

177

elClass "span" "comandosCss" $ text "tumbao "

text "allows access to the different bass pre-sets. Accepts whole numbers

equal to or greater than 0."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "tumbao 1 $ cumbia bajo;"

text "With the function "

elClass "span" "comandosCss" $ text "tumbao "

text $ "you can also overwrite the notes of the tumbaos.s"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "tumbao (\"1a\" \"3a\" \"5a\") $ cumbia

bajo;"

text "You can also rewrite the rhythms of the tumbaos."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "tumbao (\"1a\" \"5a\") (1 3) $ cumbia

bajo;"

text "Note and rhythm lists can also be made as follows: "

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "tumbao [\"1a\" \"5a\", \"1a\" \"3a\"

\"5a\"] [1 3, 1 3 4] $ cumbia bajo;"

el "h3" $ text "Functions of the keyboard"

divClass "imagen-teclado" $ return ()

elClass "span" "comandosCss" $ text "sample "

text "allows you to change the audio sample or sample. Accepts whole

numbers equal to or greater than 0."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "sample 1 $ cumbia teclado;"

elClass "span" "comandosCss" $ text "tumbao "

text "allows you to access the different keyboard pre-sets as we did with

the bass on top. Accepts whole numbers equal to or greater than 0."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "tumbao 2 $ cumbia teclado;"

elClass "span" "comandosCss" $ text "acompanamiento "

text "o "

elClass "span" "comandosCss" $ text "acompaamiento "

text "changes in rhythm chords of the keyboard."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompanamiento 2 $ cumbia teclado;"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompanamiento (2 4) $ cumbia teclado;"

text "It is also used to modify the notes on the keyboard. Accept up to a

maximum of 4 notes."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompanamiento 2 (\"1a\" \"3a\" \"5a\")

$ cumbia teclado;"

178

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompanamiento (2 4) (\"1a\" \"3a\" \"5

a\")"

text "You can also modify the octave of the note, that is, how low or high

it sounds."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompanamiento 2 (\"1a\" \"3a\" (\"5a\"

1)) $ cumbia teclado;"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "acompanamiento 2 (\"1a\" \"3a\" (\"5a\"

(-1)) $ cumbia teclado;"

el "h3" $ text "Conga functions"

divClass "imagen-congas" $ return ()

elClass "span" "comandosCss" $ text "tumbao "

text "allows you to access the different pre-sets of the congas as we did

with the keyboard and the bass on top. Accepts whole numbers equal to

or greater than 0. There are 4 available."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "tumbao 4 $ cumbia congas;"

elClass "span" "comandosCss" $ text "marcha "

text $ "allows you to assign the hits of the palm, covered and open to the

congas. By default the fifth drum of the conga plays."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "marcha (\"p\" \"t\" \"p\" \"a\") $
cumbia congas;"

text $ "It also allows you to write the rhythm of the congas."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "marcha (\"p\" \"t\" \"p\" \"a\" \"a\")

(1 2 3 4 4.5) $ cumbia congas;"

text $ "It also allows access to other conga drums such as the tumbadora."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "marcha (\"p\" \"t\" \"p\" (t \"a\") (t

\"a\")) (1 2 3 4 4.5) $ cumbia congas;"

text "Note and rhythm lists can also be made as follows."

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "marcha [\"p\" \"t\" \"p\" \"a\", \"p\"

\"t\" \"p\" (t \"a\") (t \"a\")] [1 2 3 4, 1 2 3 4 4.5] $ cumbia congas

;"

el "h3" $ text "Functions of te gira"

divClass "imagen-guira" $ return ()

elClass "span" "comandosCss" $ text "preset "

text "allows you to access some pre-loaded rhythms of the guide. There are

2 available."

179

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "preset 0 $ cumbia guira;"

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "preset 1 $ cumbia guira;"

el "h3" $ text "Funciones_del_jamblock"

divClass "imagen-jam" $ return ()

textArea $ def & textAreaConfig_attributes .~ textAttrs &

textAreaConfig_initialValue .~ "cumbia jamblock;"

text "More functions are coming on their way!"

return ()

-- foreign import javascript safe

-- -- "document.querySelector(’#estuary-root’)"

-- -- "$(’.array-example’).highlightWithinTextarea({highlight: [’1’, ’2’,

’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’0’]});"

-- "function myFunction() { \n\

-- \document.getElementById(\"myTextarea\").select(); \n\

-- \}"

-- js_arrayexample :: IO JSVal

--

-- newtype JQuery = JQuery JSVal

-- -- newtype Event = Event JSVal

--

-- foreign import javascript unsafe

-- "jQuery(document).ready(function(){$(’textarea’).select()});"
-- jq_select :: IO JQuery

--

-- foreign import javascript unsafe -- "$(’.array-example’).
highlightWithinTextarea({highlight: [’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,

’8’, ’9’, ’0’]});"

-- "jQuery(document).ready(function(){$(’.class-example’).
highlightWithinTextarea({\n\

-- \highlight: [{highlight: [’$’, ’--’, ’(’, ’)’, ’[’, ’]’], className: ’

green’ }, \n\

-- \{highlight: [’ ’], className: ’black’}, \n\

-- \{highlight: [’cumbia’], className: ’vino’}, \n\

-- \{highlight: [’alternar’, ’tumbao’, ’ritmo’, ’acompanamiento’, ’

acompaamiento’, ’marcha’, ’punteo’, ’sample’], className: ’red’}, \n\

-- \{highlight: [’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’0’],

className: ’green’}, \n\

-- \{highlight: [’teclado’, ’bajo’, ’guira’, ’guiro’, ’gira’, ’giro’, ’jam

’, ’congas’, ’acordeon’, ’silencio’]}, \n\

-- \{highlight: [’acordes’, ’armonia’, ’armona’, ’compas’, ’comps’],

180

className: ’yellow’}] \n\

-- \})});"

-- jq_highlight_brackets :: IO JQuery

-- -- \, {highlight: [’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’0’]}]

\n\

-- "jQuery(document).ready(function(){$(’.class-example’).
highlightWithinTextarea({\n\

-- \highlight: [{highlight: ’$’ , className: ’red’ }, \n\

-- \{highlight: ’(’, className: ’red’}, {highlight: ’)’, className: ’red

’}, \n\

-- \{highlight: ’[’, className: ’blue’}, {highlight: ’]’, className: ’

blue’}, \n\

-- \{highlight: [’teclado’, ’bajo’, ’guira’, ’jam’, ’congas’, ’acordeon

’]}] \n\

-- \})});"

-- foreign import javascript unsafe -- $(’.array-example’).
highlightWithinTextarea({highlight: [’orange’, /ba(na)*/gi, [0, 5]]});

-- "jQuery(document).ready(function(){$(’.array-example’).
highlightWithinTextarea({\n\

-- \highlight: [’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’0’]})});"

-- jq_highlight_numbers :: IO JQuery

type NoteEvent = (UTCTime, Map Text Datum)

datumToJSVal :: Datum -> JSVal

datumToJSVal (Int32 x) = pToJSVal x

datumToJSVal (Double x) = pToJSVal x

datumToJSVal (ASCII_String x) = pToJSVal $ decodeUtf8 x

datumToJSVal _ = nullRef

utcTimeToAudioSeconds :: (UTCTime,Double) -> UTCTime -> Double

utcTimeToAudioSeconds (t0utc,t0audio) t1utc = realToFrac $
utcTimeToPOSIXSeconds $ addUTCTime clockDiff t1utc

where clockDiff = realToFrac t0audio - utcTimeToPOSIXSeconds t0utc

utcTimeToAudioSeconds’ :: (UTCTime,Double) -> UTCTime -> Double

utcTimeToAudioSeconds’ (t0utc,t0event) tSystemInit = realToFrac $
utcTimeToPOSIXSeconds $ addUTCTime clockDiff tSystemInit

where clockDiff = realToFrac t0event - utcTimeToPOSIXSeconds t0utc

--

-- 11.10 - 11.00 = 0.20

-- 0.10 + 11.00 = 11.10

181

-- 0.20 + 11.10 = 11.30

-- what is the Double on (UTCTime,Double)?

noteEventToWebDirtJSVal :: UTCTime -> (NominalDiffTime, Map.Map Text JSVal)

-> IO JSVal

noteEventToWebDirtJSVal tnow (s,m) = do

let t’ = addUTCTime s tnow -- 1 14.53 = 14.54

let t’’ = diffUTCTime t’ tnow -- 14.54 - 14.53 = 0.01 --NominalDiffTime

mapTextJSValToJSVal (realToFrac t’’, m)

newtype WebDirt = WebDirt JSVal

instance PToJSVal WebDirt where pToJSVal (WebDirt x) = x

newWebDirt :: AudioIO m => Node -> m WebDirt

newWebDirt n = do

ctx <- audioContext

liftIO $ js_newWebDirt ctx n

foreign import javascript unsafe

"$1.initializeWebAudio()"
initializeWebAudio :: WebDirt -> IO ()

foreign import javascript unsafe

"$r = new WebDirt(’static/samples/sampleMap.json’,’static/samples’,0,null

,0.010,$1,$2)"
js_newWebDirt :: AudioContext -> Node -> IO WebDirt

foreign import javascript unsafe

"try { $1.playSample($2) } catch(e) { console.log(e)} "

playSample :: WebDirt -> JSVal -> IO ()

-- temporary, just for testing

foreign import javascript unsafe

"try { $1.playSample({ buffer: $2 }) } catch(e) { console.log(e)} "

playBuffer :: WebDirt -> JSVal -> IO ()

foreign import javascript unsafe

"commentBox(’5731344961241088-proj’)"

commentbox :: IO ()

initializeWebDirtNode :: IO Node

initializeWebDirtNode = liftAudioIO $ do

webDirtOutput’ <- createGain 1.0

182

dest <- createDestination

connectNodes webDirtOutput’ dest --clave!

let wdout = webDirtOutput’

return wdout

mapTextJSValToJSVal :: (Double, Map.Map Text JSVal) -> IO JSVal

mapTextJSValToJSVal (t,m) = do

o <- create

unsafeSetProp "whenPosix" (pToJSVal t) o

Map.traverseWithKey (\k v -> unsafeSetProp (textToJSString k) v o) m

return $ jsval o

A.4.2 The Program module

The Program module that runs the Seis8s program.

module Sound.Seis8s.Program where

import Sound.Seis8s.GlobalMaterial

import Sound.Seis8s.Style as S

import Sound.Seis8s.Layer

import Data.IntMap.Strict

-- type Program = (GlobalMaterial,Style,Instrument)

-- data Layer = Layer (S.Style, Instrument)

type Program = ([Layer], GlobalMaterial)

-- type Program = (Layer, GlobalMaterial)

-- emptyLayer = Layer (defaultStyle, emptyInstrument)

A.4.3 The Parser module

The Parser module translates functions into commands available to the end user.

{-# LANGUAGE OverloadedStrings #-}

module Sound.Seis8s.Parser (parseLang, render, renderForStandalone) where

import Sound.Seis8s.Program

import Sound.Seis8s.GlobalMaterial

183

import Sound.Seis8s.Style as S

import Sound.Seis8s.Layer

import Sound.Seis8s.LayerState

import Sound.Seis8s.Harmony

import Sound.Seis8s.Rhythm

import Sound.Seis8s.Generic

import Language.Haskellish as LH

import qualified Language.Haskell.Exts as Exts

import Control.Applicative

import Data.IntMap.Strict

import Control.Monad.State

import qualified Data.Map as Map

import qualified Sound.OSC as H

import qualified Data.Text as T

import qualified Data.List as List

import Data.List.Split (splitOn)

import Data.Bifunctor

import Data.Tempo

import Data.Time

import Data.Fixed

import Data.Maybe

import Data.Char as C

import qualified Sound.OSC as H

type H = Haskellish GlobalMaterial

-- data Program = Program [Layer] GlobalMaterial

-- type Program = ([Layer], GlobalMaterial)

-- f :: (Style, Intrument)

-- f cumbia teclado

-- so I can do :

-- cumbia teclado

-- (noDownBeats cumbia) teclado

parseLang :: String -> Either String ([Layer], GlobalMaterial)

parseLang s | all C.isSpace s’ = return ([emptyLayer], defaultGlobalMaterial

)

| otherwise = (f . Exts.parseExp) $ ("do {" ++ s’ ++ "}")

-- | otherwise = (f . Exts.parseExp) $ ("do {" ++ s ++ "}")

where

s’ = preParse s

184

f (Exts.ParseOk x) = runHaskellish layers defaultGlobalMaterial x --

Either String (a, st)

f (Exts.ParseFailed l s) = Left s

preParse :: String -> String

preParse s = do

let s’ = T.replace (T.pack "do") (T.pack "di") (T.pack s) -- Text

let s’’ = T.replace (T.pack "M") (T.pack "maj") s’ -- Text

let s’’’ = T.replace (T.pack "#") (T.pack "aug") s’’ -- Text

let s’’’’ = T.replace (T.pack "J") (T.pack "justa") s’’’ -- Text

let s’’’’’ = T.replace (T.pack "tecladi") (T.pack "teclado") s’’’’ -- Text

let s’’’’’’ = T.replace (T.pack "partidi") (T.pack "partido") s’’’’’ --

Text

let s’’’’’’’ = LH.removeComments $ T.unpack s’’’’’’

s’’’’’’’

layers :: H [Layer]

layers = listOfDoStatements statement

statement :: H Layer

statement = parseLayer <|> globalStatement <|> silencio

-- GlobalMaterial

-- e.g. clave dosTres --gets parsed 1st that changes the state

-- then harmony Cmaj Emin -- 2nd, and changes the state

-- then clave tresDos -- 3rd -- and changes the state

globalStatement :: H Layer

globalStatement = do

f <- globalMaterialFunctions -- progressionToGm

st <- get

let newState = f st

put newState

return emptyLayer

silencio :: H Layer

silencio = emptyLayer <$ reserved "silencio"

globalMaterialFunctions :: H (GlobalMaterial -> GlobalMaterial)

globalMaterialFunctions = parseSetChordProg

<|> parseCompasPartido

<|> parsetempoAGlobalMaterial

185

-- comps "partido"

-- comps ""

-- compas "4/4"

parseCompasPartido :: H (GlobalMaterial -> GlobalMaterial)

parseCompasPartido = parseCompasPartido’ <*> string

parseCompasPartido’ :: H (String -> GlobalMaterial -> GlobalMaterial)

parseCompasPartido’ = compasAGlobalMaterial <$ (reserved "compas" <|>

reserved "comps")

compasAGlobalMaterial :: String -> GlobalMaterial -> GlobalMaterial

compasAGlobalMaterial s gm = gm {compas = establecerCompas s}

parsetempoAGlobalMaterial :: H (GlobalMaterial -> GlobalMaterial)

parsetempoAGlobalMaterial = parsetempoAGlobalMaterial’ <*> double

parsetempoAGlobalMaterial’ :: H (Double -> GlobalMaterial -> GlobalMaterial)

parsetempoAGlobalMaterial’ = tempoAGlobalMaterial <$ reserved "tempo"

tempoAGlobalMaterial :: Double -> GlobalMaterial -> GlobalMaterial

tempoAGlobalMaterial newFreq gm = gm {tempoForStandalone = Tempo { freq =

toRational $ newFreq, time=mytime 0, Data.Tempo.count=0}}

--

parseSetChordProg :: H (GlobalMaterial -> GlobalMaterial)

parseSetChordProg = parseSetChordProgWMetre

<|> parseSetChordProgMetreAuto

parseSetChordProgWMetre :: H (GlobalMaterial -> GlobalMaterial)

parseSetChordProgWMetre = parseSetChordProgWMetre’ <*> chordList

parseSetChordProgWMetre’ :: H ([Chord] -> GlobalMaterial -> GlobalMaterial)

parseSetChordProgWMetre’ = parseSetChordProgWMetre’’ <*> rationalOrInteger

parseSetChordProgWMetre’’ :: H (Metre -> [Chord] -> GlobalMaterial ->

GlobalMaterial)

parseSetChordProgWMetre’’ = setChordProg <$ (reserved "armonia" <|> reserved

"armona" <|> reserved "acordes")

setChordProg :: Metre -> [Chord] -> GlobalMaterial -> GlobalMaterial

setChordProg metre hs gm = gm { harmony = castProgression metre (compas gm)

(multiplicarCompasInicioYFinal (compas gm) hs)}

-- parseSetChordProgMetreAuto :: H (GlobalMaterial -> GlobalMaterial)

186

-- parseSetChordProgMetreAuto = (reserved "armonia" >> return

setChordProgMetreAuto) <*> chordListMetreAuto

parseSetChordProgMetreAuto :: H (GlobalMaterial -> GlobalMaterial)

parseSetChordProgMetreAuto = parseSetChordProgMetreAuto’ <*>

listaDePitchOrPitchType -- chordListMetreAuto

parseSetChordProgMetreAuto’ :: H ([(Pitch, ChordType)] -> GlobalMaterial ->

GlobalMaterial)

parseSetChordProgMetreAuto’ = setChordProgMetreAuto <$ (reserved "armonia"

<|> reserved "armona" <|> reserved "acordes")

setChordProgMetreAuto :: [(Pitch, ChordType)] -> GlobalMaterial ->

GlobalMaterial

setChordProgMetreAuto hs gm = gm { harmony = castProgressionMetreAuto (

compas gm) (listaDePitchOPitchWType hs)}

-- listaDePitchOPitchWType :: Double -> [(Pitch, ChordType)] -> [Chord]

chordList :: H [Chord]

chordList = list $ (chordParser <|> chordParserMajAuto)

chordParser :: H Chord

chordParser = chordParser’ <*> rationalOrInteger

chordParser’ :: H (Rational -> Chord)

chordParser’ = chordParser’’ <*> rationalOrInteger

chordParser’’ :: H (Rational -> Rational -> Chord)

chordParser’’ = chordParser’’’ <*> chordTypeParser

chordParser’’’ :: H (ChordType -> Rational -> Rational -> Chord)

chordParser’’’ = do

p <- pitchParser

return $ \t s e -> castHarmony p t s e

--

chordParserMajAuto :: H Chord

chordParserMajAuto = chordParserMajAuto’ <*> rationalOrInteger

chordParserMajAuto’ :: H (Rational -> Chord)

chordParserMajAuto’ = chordParserMajAuto’’ <*> rationalOrInteger

chordParserMajAuto’’ :: H (Rational -> Rational -> Chord)

187

chordParserMajAuto’’ = do

p <- pitchParser

return $ \s e -> castHarmonyMajAuto p s e

--parses a list of chords with default dur of 1c, e.g. armonia [c maj, d

maj]

chordListMetreAuto :: H [Chord]

chordListMetreAuto = parsePitchtochord

<|> chordListMetreAuto’

--

--

parsePitchtochord :: H [Chord]

parsePitchtochord = do

p <- list pitchParser

return $ pitchtochord p

pitchtochord :: [Pitch] -> [Chord]

pitchtochord ps = do

let startandend = fmap (\s -> (toRational s, toRational s+1)) [0 .. (

length ps)]

let zipXSwithStartEnd = zip ps startandend --[(x,())]

fmap (\(p, (s,e)) -> Chord p major (s,e)) zipXSwithStartEnd

pitchAPicthYTipo :: Pitch -> (Pitch, ChordType)

pitchAPicthYTipo p = (p, major)

--

chordListMetreAuto’ :: H [Chord]

chordListMetreAuto’ = do

x <- listofpitchandchord

return $ pitchandtypetochord x

listofpitchandchord :: H [(Pitch, ChordType)]

listofpitchandchord = list parsepitchandtypetotuple

parsepitchandtypetotuple :: H (Pitch, ChordType)

parsepitchandtypetotuple = parsepitchandtypetotuple’ <*> chordTypeParser

parsepitchandtypetotuple’ :: H (ChordType -> (Pitch, ChordType))

parsepitchandtypetotuple’ = do

p <- pitchParser

return $ \t -> pitchandtypetotuple p t

188

pitchandtypetotuple :: Pitch -> ChordType -> (Pitch, ChordType)

pitchandtypetotuple p t = (p,t)

-- start here

pitchandtypetochord :: [(Pitch, ChordType)] -> [Chord]

pitchandtypetochord xs = do

let startandend = fmap (\s -> (toRational s, toRational s+1)) [0 .. (

length xs)]

let zipXSwithStartEnd = zip xs startandend --[((),())]

fmap (\((p,t), (s,e)) -> Chord p t (s,e)) zipXSwithStartEnd

--

-- parsePitchandtypetoPitchType :: H ()

listaDePitchOrPitchType :: H [(Pitch, ChordType)]

listaDePitchOrPitchType = list (parsePitchToPitchType <|>

parsePitchandtypetoPitchType)

parsePitchToPitchType :: H (Pitch, ChordType)

parsePitchToPitchType = do

p <- pitchParser

return $ pitchToPitchType p

pitchToPitchType :: Pitch -> (Pitch, ChordType)

pitchToPitchType p = (p, major)

parsePitchandtypetoPitchType :: H (Pitch, ChordType)

parsePitchandtypetoPitchType = parsePitchandtypetoPitchType’ <*>

chordTypeParser

parsePitchandtypetoPitchType’ :: H (ChordType -> (Pitch, ChordType))

parsePitchandtypetoPitchType’ = do

p <- pitchParser

return $ \t -> pitchandtypetoPitchType p t

pitchandtypetoPitchType :: Pitch -> ChordType -> (Pitch, ChordType)

pitchandtypetoPitchType p t = (p, t)

--

listaDePitchOPitchWType :: [(Pitch, ChordType)] -> [Chord]

listaDePitchOPitchWType xs = do

let startandend = fmap (\s -> (toRational s, toRational s+1)) [0 .. (

length xs)]

189

let zipXSwithStartEnd = zip xs startandend --[((),())]

fmap (\((p,t), (s,e)) -> Chord p t (s, e)) zipXSwithStartEnd

--

multiplicarCompasInicioYFinal :: Double -> [Chord] -> [Chord]

multiplicarCompasInicioYFinal compas hs = fmap (

multiplicarCompasInicioYFinal’ compas) hs

multiplicarCompasInicioYFinal’ :: Double -> Chord -> Chord

multiplicarCompasInicioYFinal’ compas (Chord p t (s, e)) = Chord p t (s *

toRational compas, e * toRational compas)

-- armonia 1 [C maj 0 1]

castProgression :: Rational -> Double -> [Chord] -> Progression

castProgression metre compas cs = Progression (metre * toRational compas) cs

-- armonia 1 [C maj 0 1]

castProgressionMetreAuto :: Double -> [Chord] -> Progression

castProgressionMetreAuto compas cs = do

let metre = realToFrac $ length cs

let cs’ = multiplicarCompasInicioYFinal compas cs

Progression (metre * toRational compas) cs’

castHarmony :: Pitch -> ChordType -> Rational -> Rational -> Chord

castHarmony p t s e = Chord p t (s, e)

castHarmonyMajAuto :: Pitch -> Rational -> Rational -> Chord

castHarmonyMajAuto p s e = Chord p major (s, e)

pitchParser :: H Pitch

pitchParser =

c <$ (reserved "c" <|> reserved "di")

<|> cs <$ (reserved "c’" <|> reserved "do’")

<|> cs <$ (reserved "db" <|> reserved "reb")

<|> d <$ (reserved "d" <|> reserved "re")

<|> ds <$ (reserved "d’" <|> reserved "re’")

<|> ds <$ (reserved "eb" <|> reserved "mib")

<|> e <$ (reserved "e" <|> reserved "mi")

<|> f <$ (reserved "f" <|> reserved "fa")

<|> fs <$ (reserved "f’" <|> reserved "fa’")

<|> fs <$ (reserved "gb" <|> reserved "solb")

<|> g <$ (reserved "g" <|> reserved "sol")

<|> gs <$ (reserved "g’" <|> reserved "sol’")

<|> gs <$ (reserved "ab" <|> reserved "lab")

190

<|> a <$ (reserved "a" <|> reserved "la")

<|> as <$ (reserved "a’" <|> reserved "la’")

<|> as <$ (reserved "bb" <|> reserved "sib")

<|> b <$ (reserved "b" <|> reserved "si")

chordTypeParser :: H ChordType

chordTypeParser =

major <$ (reserved "maj" <|> reserved "M")

<|> minor <$ (reserved "min" <|> reserved "m")

<|> major7 <$ (reserved "maj7" <|> reserved "M7")

<|> minor7 <$ (reserved "min7" <|> reserved "m7")

<|> dom <$ reserved "dom"

<|> fifths <$ reserved "quintas"

<|> sus4 <$ reserved "sus4"

<|> sus2 <$ reserved "sus2"

<|> aug <$ reserved "aug"

<|> dim <$ reserved "dim"

<|> dim7 <$ reserved "dim7"

<|> semidim <$ reserved "sdim"

parseLayer :: H Layer

parseLayer = inst

<|> transformadoresDeLayer

transformadoresDeLayer :: H Layer

transformadoresDeLayer = parseSeleccionarEstilo

<|> parseSeleccionarSample

<|> parseSeleccionarSamples

<|> parseTonicaYquinta

<|> parseTonicaYquinta2

<|> parseTonicaQoctava

<|> parseTonicaQtercera

<|> parseCambiarNota

<|> parseCambiarNotas

<|> parseCambiarRitmo

<|> parseCambiarRitmos

<|> parseCambiarRitmoAuto

<|> parseCambiarRitmosAuto

<|> parseCambiarIntervalo

<|> parseCambiarIntervalos

<|> parseCambiarIntervaloConOctava

<|> parseCambiarIntervalosConOctava

<|> parseCambiarIntervaloDouble

<|> parseCambiarIntervaloDoubleConOctava

<|> parseCambiarIntervalosDouble

191

<|> parseCambiarIntervalosDoubleConOctava

<|> parsePreset

<|> parseAlternar

<|> parseCambiarGain

<|> parseCambiarPaneo

<|> parsePunteo

<|> parsePunteos

<|> parseTumbao

<|> parseaTumbaoBajoVoicingSel

<|> parseaTumbaoBajoVoicingYRitmoSel

<|> parseaTumbaoBajoVoicingsYRitmoSel

<|> parseTumbaoCongasGolpesSel

<|> parseTumbaoCongasGolpesYRitmoSel

-- <|> parseTumbaoCongasListaDeGolpesSel

<|> parseTumbaoCongasListaDeGolpesYRitmoSel

<|> parseacompanamiento

<|> parseacompanamientos

<|> parseAcompanamientoConVoicingSel

<|> parseAcompanamientosConVoicingSel

--

inst :: H Layer

inst =

teclado <$ reserved "teclado"

<|> bajo <$ reserved "bajo"

<|> guira <$ (reserved "guira" <|> reserved "guiro" <|> reserved "giro"

<|> reserved "gira")

<|> contras <$ reserved "contratiempos"

<|> cuerda <$ reserved "cuerda"

<|> acordeon <$ (reserved "acordeon" <|> reserved "acorden")

<|> zampoa <$ (reserved "zampoa" <|> reserved "flauta")

<|> tarola <$ reserved "tarola"

<|> efecto <$ reserved "efecto"

<|> altavoz <$ reserved "altavoz"

<|> clave <$ reserved "clave"

<|> jamblock <$ (reserved "jamblock" <|> reserved "jam" <|> reserved "

block")

<|> congas <$ reserved "congas"

<|> extras <$ reserved "extras"

estilo :: H S.Style

estilo = defaultStyle <$ reserved "def"

<|> cumbia <$ reserved "cumbia"

-- a function to change the style of the layer

192

parseSeleccionarEstilo :: H Layer

parseSeleccionarEstilo = parseSeleccionarEstilo’ <*> parseLayer

parseSeleccionarEstilo’ :: H (Layer -> Layer)

parseSeleccionarEstilo’ = do

e <- estilo

return $ \c -> seleccionarEstilo e c

seleccionarEstilo :: S.Style -> Layer -> Layer

seleccionarEstilo e c = c {style = e}

-- a function for selecting a different sample n, e.g. (sample [2] cumbia)

teclado

parseSeleccionarSamples :: H Layer

parseSeleccionarSamples = parseSeleccionarSamples’ <*> parseLayer

parseSeleccionarSamples’ :: H (Layer -> Layer)

parseSeleccionarSamples’ = parseSeleccionarSamples’’ <*> parseNPattern1

parseSeleccionarSamples’’ :: H (NPattern -> Layer -> Layer)

parseSeleccionarSamples’’ = seleccionarSamples <$ reserved "sample"

seleccionarSamples :: NPattern -> Layer -> Layer

seleccionarSamples is c = c {style = nuevoE}

where nuevoE = (style c) {

acordeonSampleNPattern0 = is,

zampoaSampleNPattern0 = is,

cuerdaSampleNPattern0 = is,

tecladoSampleNPattern0 = is,

bassSampleNPattern0 = is,

guiraSampleNPattern0 = is,

contrasSampleNPattern0 = is,

tarolaSampleNPattern0 = is,

efectoSampleNPattern0 = is,

altavozSampleNPattern0 = is,

extrasSampleNPattern0 = is,

jamblockSampleNPattern0 = is,

claveSampleNPattern0 = is

-- congasSampleNPattern0 = is

}

-- a function to select a new sample from the folder

parseSeleccionarSample :: H Layer

parseSeleccionarSample = parseSeleccionarSample’ <*> parseLayer

193

parseSeleccionarSample’ :: H (Layer -> Layer)

parseSeleccionarSample’ = parseSeleccionarSample’’ <*> int

parseSeleccionarSample’’ :: H (Int -> Layer -> Layer)

parseSeleccionarSample’’ = seleccionarSample <$ reserved "sample"

seleccionarSample :: Int -> Layer -> Layer

seleccionarSample index c = c {style = nuevoE}

where nuevoE = (style c) {

cuerdaSampleNPattern0 = NPattern1 [index],

acordeonSampleNPattern0 = NPattern1 [index],

zampoaSampleNPattern0 = NPattern1 [index],

tecladoSampleNPattern0 = NPattern1 [index],

bassSampleNPattern0 = NPattern1 [index],

guiraSampleNPattern0 = NPattern1 [index],

contrasSampleNPattern0 = NPattern1 [index],

tarolaSampleNPattern0 = NPattern1 [index],

efectoSampleNPattern0 = NPattern1 [index],

altavozSampleNPattern0 = NPattern1 [index],

extrasSampleNPattern0 = NPattern1 [index],

claveSampleNPattern0 = NPattern1 [index],

jamblockSampleNPattern0 = NPattern1 [index],

congasSampleNPattern0 = NPattern1 [index]

}

-- TO DO: punteo [mi do] ... Y CON MIDINOTE

-- punteo "1a" 3 $ cumbia teclado;

-- parsePunteoConMidiNote :: H Layer

-- parsePunteoConMidiNote = parsePunteoConMidiNote’ <*> parseLayer

--

-- parsePunteoConMidiNote’ :: H (Layer -> Layer)

-- parsePunteoConMidiNote’ = parsePunteoConMidiNote’’ <*>

rationalOrInteger

--

-- parsePunteoConMidiNote’’ :: H (Rational -> Layer -> Layer)

-- parsePunteoConMidiNote’’ = parsePunteoConMidiNote’’’ <*>

parseUnNAListaDeN

--

-- parsePunteoConMidiNote’’’ :: H ([N] -> Rational -> Layer -> Layer)

-- parsePunteoConMidiNote’’’ = punteoConMidiNote <$ (reserved "punteo")

--

-- punteoConMidiNote :: [N] -> Rational -> Layer -> Layer

-- punteoConMidiNote nota ataque c = c {style = nuevoE}

-- where

-- rPat = cambiarRitmo’’’’ 1 [[ataque]]

194

-- nuevoE = (style c) {

-- tecladoRhythmPattern0 = rPat, --

-- tecladoPitchPattern0 = ("midinote", nota), --new ("intervalo", concat

notes)-- ("acorde", [note])

-- acordeonRhythmPattern0 = rPat,

-- acordeonPitchPattern0 = ("midinote", nota),

--

-- cuerdaRhythmPattern0 = rPat,

-- cuerdaPitchPattern0 = ("midinote", nota),

--

-- extrasRhythmPattern0 = rPat,

-- extrasPitchPattern0 = ("midinote", nota)

-- }

-- tecladoPitchPattern0 = ("intervalo", [("unisono" , 0, 0)]),

-- type PitchPattern = (PitchType, [Note])

octavarPatronDeTono :: PitchPattern -> PitchPattern

octavarPatronDeTono (pitchType, [(relacion, double, octava)]) = do

-- octavar punteo

octavarPunteo :: Layer -> Layer

octavarPunteo c = c {style = nuevoE}

where

nuevoE = (style c) {

fmap snd tecladoPitchPattern0 --new ("intervalo", concat

notes)-- ("acorde", [note])

--

-- acordeonPitchPattern0 = ("intervalo", nota),

--

-- zampoaPitchPattern0 = ("intervalo", nota),

--

-- cuerdaRhythmPattern0 = rPat,

-- cuerdaPitchPattern0 = ("intervalo", nota),

--

-- extrasRhythmPattern0 = rPat,

-- extrasPitchPattern0 = ("intervalo", nota)

}

-- punteo "1a" 3 $ cumbia teclado;

parsePunteo :: H Layer

parsePunteo = parsePunteo’ <*> parseLayer

195

parsePunteo’ :: H (Layer -> Layer)

parsePunteo’ = parsePunteo’’ <*> rationalOrInteger

parsePunteo’’ :: H (Rational -> Layer -> Layer)

parsePunteo’’ = parsePunteo’’’ <*> parseUnStringAListadeNotas --

parsePunteo’’’ :: H ([Note] -> Rational -> Layer -> Layer)

parsePunteo’’’ = punteo <$ (reserved "punteo")

punteo :: [Note] -> Rational -> Layer -> Layer

punteo nota ataque c = c {style = nuevoE}

where

rPat = cambiarRitmo’’’’ 1 [[ataque]]

nuevoE = (style c) {

tecladoRhythmPattern0 = rPat, --

tecladoPitchPattern0 = ("intervalo", nota), --new ("

intervalo", concat notes)-- ("acorde", [note])

acordeonRhythmPattern0 = rPat,

acordeonPitchPattern0 = ("intervalo", nota),

zampoaRhythmPattern0 = rPat,

zampoaPitchPattern0 = ("intervalo", nota),

cuerdaRhythmPattern0 = rPat,

cuerdaPitchPattern0 = ("intervalo", nota),

extrasRhythmPattern0 = rPat,

extrasPitchPattern0 = ("intervalo", nota)

}

-- punteo ["f" "5a", "f" "3a" "5a"] [1 3, 1 3 4] $ cumbia acordeon;

parsePunteos :: H Layer

parsePunteos = parsePunteos’ <*> parseLayer

parsePunteos’ :: H (Layer -> Layer)

parsePunteos’ = parsePunteos’’ <*> parseListasDeListasDeAtaques --

rationalList --

parsePunteos’’ :: H ([[Rational]] -> Layer -> Layer)

parsePunteos’’ = parsePunteos’’’ <*> praseListaDeListaStringAListaDeAcordes

parsePunteos’’’ :: H ([[Note]] -> [[Rational]] -> Layer -> Layer)

parsePunteos’’’ = listaDepunteos <$ (reserved "punteo")

196

listaDepunteos :: [[Note]] -> [[Rational]] -> Layer -> Layer

listaDepunteos notes rs c = c {style = nuevoE}

where

metre = toRational $ length rs -- [[Nothing], [1, 2, 3]] = metre 2 -- (

realToFrac $ floor rs’) + 1

rPat = cambiarRitmo’’’’ metre rs

nPat (NPattern1 xs) = NPattern1 $ concat $ replicate (length rPat) xs

pPat = take (length rPat) $ concat notes -- new

nuevoE = (style c) {

tecladoRhythmPattern0 = rPat, --

tecladoSampleNPattern0 = nPat $
tecladoSampleNPattern0 (style c), --

listaDeStringsANPattern nPat notes,

tecladoPitchPattern0 = ("intervalo", pPat), --new

("intervalo", concat notes)-- ("acorde", [note

])

acordeonRhythmPattern0 = rPat,

acordeonSampleNPattern0 = nPat $
acordeonSampleNPattern0 (style c),

acordeonPitchPattern0 = ("intervalo", pPat),

zampoaRhythmPattern0 = rPat,

zampoaSampleNPattern0 = nPat $
acordeonSampleNPattern0 (style c),

zampoaPitchPattern0 = ("intervalo", pPat),

cuerdaRhythmPattern0 = rPat,

cuerdaSampleNPattern0 = nPat $
cuerdaSampleNPattern0 (style c),

cuerdaPitchPattern0 = ("intervalo", pPat),

extrasRhythmPattern0 = rPat,

extrasSampleNPattern0 = nPat $
extrasSampleNPattern0 (style c),

extrasPitchPattern0 = ("intervalo", pPat)

}

-- tumbao ("f" "3a" "5a") $ cumbia bajo;

parseaTumbaoBajoVoicingSel :: H Layer

parseaTumbaoBajoVoicingSel = parseaTumbaoBajoVoicingSel’ <*> parseLayer

parseaTumbaoBajoVoicingSel’ :: H (Layer -> Layer)

197

parseaTumbaoBajoVoicingSel’ = parseaTumbaoBajoVoicingSel’’ <*> parseNoteList

--

parseaTumbaoBajoVoicingSel’’ :: H ([Note] -> Layer -> Layer)

parseaTumbaoBajoVoicingSel’’ = tumbaoBajoVoicingSel <$ (reserved "tumbao")

tumbaoBajoVoicingSel :: [Note] -> Layer -> Layer

tumbaoBajoVoicingSel notes c = c {style = nuevoE}

where

nuevoE = (style c) {

bassRhythmPattern0 = [(1, 0), (1, 0.5), (1, 0.75)],

--

bassSampleNPattern0 = bassSampleNPattern0 (style c)

, -- listaDeStringsANPattern nPat notes,

bassPitchPattern0 = ("intervalo", notes)-- ("acorde

", [note])

}

-- tumbao ("f" 5a") (1 3) $ cumbia bajo;

parseaTumbaoBajoVoicingYRitmoSel :: H Layer

parseaTumbaoBajoVoicingYRitmoSel = parseaTumbaoBajoVoicingYRitmoSel’ <*>

parseLayer

parseaTumbaoBajoVoicingYRitmoSel’ :: H (Layer -> Layer)

parseaTumbaoBajoVoicingYRitmoSel’ = parseaTumbaoBajoVoicingYRitmoSel’’ <*>

parseAtaquesAListaDeAtaques -- [] -- rationalList --

parseaTumbaoBajoVoicingYRitmoSel’’ :: H ([Rational] -> Layer -> Layer)

parseaTumbaoBajoVoicingYRitmoSel’’ = parseaTumbaoBajoVoicingYRitmoSel’’’ <*>

parseNoteList

parseaTumbaoBajoVoicingYRitmoSel’’’ :: H ([Note] -> [Rational] -> Layer ->

Layer)

parseaTumbaoBajoVoicingYRitmoSel’’’ = tumbaoBajoVoicingYRitmoSel <$ (

reserved "tumbao")

tumbaoBajoVoicingYRitmoSel :: [Note] -> [Rational] -> Layer -> Layer

tumbaoBajoVoicingYRitmoSel notes rs c = c {style = nuevoE}

where

metre = 1

-- indices = [0 .. metre]

-- rs’ = fmap (\n -> if (n == 0) then 0 else (abs $ n - 1)) rs -- [1,

2, 3, 4] a [0, 1, 2, 3]

rPat = cambiarRitmo’’ metre rs -- fmap (\n -> (metre, (realToFrac n) /4)

) rs’-- [(1, (realToFrac n’) / 4)]

198

nPat (NPattern1 xs) = NPattern1 $ concat $ replicate (length rPat) xs

pPat = take (length rPat) notes -- new

nuevoE = (style c) {

bassRhythmPattern0 = rPat, --

bassSampleNPattern0 = nPat $ bassSampleNPattern0 (

style c), -- listaDeStringsANPattern nPat notes

,

bassPitchPattern0 = ("intervalo", pPat)-- new ("

intervalo", notes)-- ("acorde", [note])

}

-- tumbao ["f" "5a", "f" "3a" "5a"] [1 3, 1 3 4] $ cumbia bajo;

parseaTumbaoBajoVoicingsYRitmoSel :: H Layer

parseaTumbaoBajoVoicingsYRitmoSel = parseaTumbaoBajoVoicingsYRitmoSel’ <*>

parseLayer

parseaTumbaoBajoVoicingsYRitmoSel’ :: H (Layer -> Layer)

parseaTumbaoBajoVoicingsYRitmoSel’ = parseaTumbaoBajoVoicingsYRitmoSel’’ <*>

parseListasDeListasDeAtaques -- rationalList --

parseaTumbaoBajoVoicingsYRitmoSel’’ :: H ([[Rational]] -> Layer -> Layer)

parseaTumbaoBajoVoicingsYRitmoSel’’ = parseaTumbaoBajoVoicingsYRitmoSel’’’

<*> praseListaDeListaStringAListaDeAcordes

parseaTumbaoBajoVoicingsYRitmoSel’’’ :: H ([[Note]] -> [[Rational]] -> Layer

-> Layer)

parseaTumbaoBajoVoicingsYRitmoSel’’’ = tumbaoBajoVoicingsYRitmoSel <$ (

reserved "tumbao")

tumbaoBajoVoicingsYRitmoSel :: [[Note]] -> [[Rational]] -> Layer -> Layer

tumbaoBajoVoicingsYRitmoSel notes rs c = c {style = nuevoE}

where

-- rs’ = ((maximum $ concat rs) - 1) / 4

metre = toRational $ length rs -- [[Nothing], [1, 2, 3]] = metre 2 -- (

realToFrac $ floor rs’) + 1

rPat = cambiarRitmo’’’’ metre rs

nPat (NPattern1 xs) = NPattern1 $ concat $ replicate (length rPat) xs

pPat = take (length rPat) $ concat notes -- new

nuevoE = (style c) {

bassRhythmPattern0 = rPat, --

bassSampleNPattern0 = nPat $ bassSampleNPattern0 (

style c), -- listaDeStringsANPattern nPat notes

,

bassPitchPattern0 = ("intervalo", pPat) --new ("

intervalo", concat notes)-- ("acorde", [note])

199

}

-- marcha ("p" "t" "p" "a") $ cumbia congas -- accepts only 4 beats

parseTumbaoCongasGolpesSel :: H Layer

parseTumbaoCongasGolpesSel = parseTumbaoCongasGolpesSel’ <*> parseLayer

parseTumbaoCongasGolpesSel’ :: H (Layer -> Layer)

parseTumbaoCongasGolpesSel’ = parseTumbaoCongasGolpesSel’’ <*>

parseNAListaDeN -- ["a" "t"] = ["a", "t"]-- congasN

parseTumbaoCongasGolpesSel’’ :: H ([N] -> Layer -> Layer)

parseTumbaoCongasGolpesSel’’ = tumbaoCongasGolpesSel <$ (reserved "tumbao"

<|> reserved "marcha")

tumbaoCongasGolpesSel :: [N] -> Layer -> Layer

tumbaoCongasGolpesSel xs c = c {style = nuevoE}

where

-- ns = fmap nSample xs --[nSample x1, nSample x2 ...] = [0, 1, ...]

-- nPat = fmap (\x -> ("quinto", x)) ns -- [("quinto", 0), ("quinto",

1) ...]

rPat = take (length xs) $ [(1, 0), (1, 0.25), (1, 0.5), (1, 0.75)] --

congasRhythmPattern0 (style c)

pPat = take (length xs) $ cycle [("mn", 60, 0)] -- snd $
congasPitchPattern0 (style c)

nuevoE = (style c) {

congasRhythmPattern0 = rPat,-- congasRhythmPattern0 (style c), -- [(1,

0), (1, 0.25), (1, 0.5), (1, 0.75)],

congasSampleNPattern0 = NPattern2 xs, -- [("quinto", 0), ("quinto", 1)

...]

congasPitchPattern0 = ("midinote", pPat) -- ("midinote", take 4 $
cycle [("mn", 60, 0)])

}

--tumbao ("p" "t" "p" "a") (1 2 3 4 4.5) $ cumbia congas

parseTumbaoCongasGolpesYRitmoSel :: H Layer

parseTumbaoCongasGolpesYRitmoSel = parseTumbaoCongasGolpesYRitmoSel’ <*>

parseLayer

parseTumbaoCongasGolpesYRitmoSel’ :: H (Layer -> Layer)

parseTumbaoCongasGolpesYRitmoSel’ = parseTumbaoCongasGolpesYRitmoSel’’ <*>

parseAtaquesAListaDeAtaques-- parseListasDeListasDeAtaques --

rationalList -- ["a" "t"] = ["a", "t"]-- congasN

parseTumbaoCongasGolpesYRitmoSel’’ :: H ([Rational] -> Layer -> Layer)

200

parseTumbaoCongasGolpesYRitmoSel’’ = parseTumbaoCongasGolpesYRitmoSel’’’ <*>

parseNAListaDeN -- ["a" "t"] = ["a", "t"]-- congasN

parseTumbaoCongasGolpesYRitmoSel’’’ :: H ([N] -> [Rational] -> Layer ->

Layer)

parseTumbaoCongasGolpesYRitmoSel’’’ = tumbaoCongasGolpesYRitmoSel <$ (

reserved "tumbao" <|> reserved "marcha")

tumbaoCongasGolpesYRitmoSel :: [N] -> [Rational] -> Layer -> Layer

tumbaoCongasGolpesYRitmoSel xs rs c = c {style = nuevoE}

where

metre = 1

rPat = cambiarRitmo’’ metre rs

nPat = take (length rPat) xs

pPat = take (length rPat) $ cycle [("mn", 60, 0)]-- snd $
congasPitchPattern0 (style c)

nuevoE = (style c) {

congasRhythmPattern0 = rPat, -- [(1, 0), (1, 0.25), (1, 0.5), (1,

0.75)],

congasSampleNPattern0 = NPattern2 nPat, -- [("quinto", 0), ("quinto",

1) ...]

congasPitchPattern0 = ("midinote", pPat) -- ("midinote", take 4 $
cycle [("mn", 60, 0)])

}

-- tumbao ["p" "s" "p" (q "a"), "p" "s" "p" (t "a")] $ cumbia congas; --

pendiente

parseTumbaoCongasListaDeGolpesSel :: H Layer

parseTumbaoCongasListaDeGolpesSel = parseTumbaoCongasListaDeGolpesSel’ <*>

parseLayer

parseTumbaoCongasListaDeGolpesSel’ :: H (Layer -> Layer)

parseTumbaoCongasListaDeGolpesSel’ = parseTumbaoCongasListaDeGolpesSel’’ <*>

parseListaDeNAListaDeListaDeN -- ["a" "t"] = ["a", "t"]-- congasN

parseTumbaoCongasListaDeGolpesSel’’ :: H ([[N]] -> Layer -> Layer)

parseTumbaoCongasListaDeGolpesSel’’ = tumbaoCongasListaDeGolpesSel <$ (

reserved "tumbao" <|> reserved "marcha")

-- ahora es tumbao ("p" "t" "p" "a") $ cumbia congas pero debe ser tumbao

("p" "t" "p" "a") $ cumbia congas;

tumbaoCongasListaDeGolpesSel :: [[N]] -> Layer -> Layer

tumbaoCongasListaDeGolpesSel xs c = c {style = nuevoE}

where

-- metre = 1 * (length xs) -- eg. 1 * 2 => [..., ...]

201

-- rs’ = fmap (\(m, n) -> if (n == 0) then 0 else (abs $ n - 1)) rs --

[1, 2, 3, 4] a [0, 1, 2, 3]

-- rPat = fmap (\(m, n) -> (metre, (realToFrac n) /4)) rs’-- [(1, (

realToFrac n’) / 4)]

nuevoE = (style c) {

congasRhythmPattern0 = congasRhythmPattern0 (style c), -- [(1, 0), (1,

0.25), (1, 0.5), (1, 0.75)],

congasSampleNPattern0 = NPattern2 $ concat xs, -- [("quinto", 0), ("

quinto", 1) ...]

congasPitchPattern0 = congasPitchPattern0 (style c) -- ("midinote",

take 4 $ cycle [("mn", 60, 0)])

}

-- marcha ["p" "t" "p" (q "a"), "p" "t" "p" (t "a") (t "a")] [1 2 3 4, 1 2

3 4 4.5] $ cumbia congas;

parseTumbaoCongasListaDeGolpesYRitmoSel :: H Layer

parseTumbaoCongasListaDeGolpesYRitmoSel =

parseTumbaoCongasListaDeGolpesYRitmoSel’ <*> parseLayer

parseTumbaoCongasListaDeGolpesYRitmoSel’ :: H (Layer -> Layer)

parseTumbaoCongasListaDeGolpesYRitmoSel’ =

parseTumbaoCongasListaDeGolpesYRitmoSel’’ <*>

parseListasDeListasDeAtaques -- rationalList

parseTumbaoCongasListaDeGolpesYRitmoSel’’ :: H ([[Rational]] -> Layer ->

Layer)

parseTumbaoCongasListaDeGolpesYRitmoSel’’ =

parseTumbaoCongasListaDeGolpesYRitmoSel’’’ <*>

parseListaDeNAListaDeListaDeN

parseTumbaoCongasListaDeGolpesYRitmoSel’’’ :: H ([[N]] -> [[Rational]] ->

Layer -> Layer)

parseTumbaoCongasListaDeGolpesYRitmoSel’’’ =

tumbaoCongasListaDeGolpesYRitmoSel <$ (reserved "tumbao" <|> reserved "

marcha")

tumbaoCongasListaDeGolpesYRitmoSel :: [[N]] -> [[Rational]] -> Layer ->

Layer

tumbaoCongasListaDeGolpesYRitmoSel xs rs c = c {style = nuevoE}

where

metre = toRational $ length rs -- [[Nothing], [1, 2, 3]] = metre 2 -- (

realToFrac $ floor rs’) + 1

rPat = cambiarRitmo’’’’ metre rs

202

nPat = take (length rPat) $ concat xs

pPat = take (length rPat) $ cycle [("mn", 60, 0)] -- snd $
congasPitchPattern0 (style c)

nuevoE = (style c) {

congasRhythmPattern0 = rPat, -- [(1, 0), (1, 0.25), (1, 0.5), (1,

0.75)],

congasSampleNPattern0 = NPattern2 nPat, -- [("quinto", 0), ("quinto",

1) ...]

congasPitchPattern0 = ("midinote", pPat) -- ("midinote", take 4 $
cycle [("mn", 60, 0)])

}

-- congasRhythmPattern0 = [(1, 0), (1, 0.25), (1, 0.5), (1, 0.75)],

-- -- congasSampleNPattern0 = [1, 2, 1, 2],

-- congasSampleNPattern0 = NPattern2 [("quinto", 0), ("quinto", 1), ("

quinto", 0), ("quinto", 1)],

-- congasPitchPattern0 = ("midinote", take 4 $ cycle [("mn", 60, 0)]),

-- congasPanPattern0 = 0.5,

-- congasGainPattern0 = 1,

parseUnNAuto :: H (Maybe N)

parseUnNAuto = do

s <- parseLiteratOrString

return $ unNAuto s

unNAuto :: String -> Maybe N

unNAuto "p" = Just ("quinto", 0)

unNAuto "t" = Just ("quinto", 1)

unNAuto "a" = Just ("quinto", 2)

unNAuto _ = Nothing

-- parseUnN :: H (Maybe N)

-- parseUnN = parseUnN’ <*> parseLiteratOrString

--

-- parseUnN’ :: H (String -> Maybe N)

-- parseUnN’ = do

-- s1 <- parseLiteratOrString

-- return $ \s2 -> unN s2 s2

parseQuinto :: H (Maybe N)

parseQuinto = parseQuinto’ <*> parseLiteratOrString

parseQuinto’ :: H (String -> Maybe N)

parseQuinto’ = (unN "quinto") <$ reserved "q"

parseTumba :: H (Maybe N)

203

parseTumba = parseTumba’ <*> parseLiteratOrString

parseTumba’ :: H (String -> Maybe N)

parseTumba’ = (unN "tumba") <$ reserved "t"

unN :: String -> String -> Maybe N

unN f "p" = Just (f, 0)

unN f "t" = Just (f, 1)

unN f "a" = Just (f, 2)

unN _ _ = Nothing

parseLiteratOrString :: H String

parseLiteratOrString = string

<|> identifier

parseCongasN :: H (Maybe N) -- [("quinto", 0), ("quinto", 1) ...]

parseCongasN = parseUnNAuto

<|> parseQuinto --parseUnN

<|> parseTumba

parseListaDeNAListaDeListaDeN :: H [[N]]

parseListaDeNAListaDeListaDeN = list parseNAListaDeN

parseNAListaDeN :: H [N]

parseNAListaDeN = parseUnNAListaDeN

<|> parseDosNAListaDeN

<|> parseTresNAListaDeN

<|> parseCuatroNAListaDeN

<|> parseCincoNAListaDeN

<|> parseSeisNAListaDeN

<|> parseSieteNAListaDeN

<|> parseOchoNAListaDeN

<|> parseNueveNAListaDeN

<|> parseDiezNAListaDeN

<|> parseOnceNAListaDeN

<|> parseDoceNAListaDeN

<|> parseTreceNAListaDeN

<|> parseCatorceNAListaDeN

<|> parseQuinceNAListaDeN

<|> parseDieciseisNAListaDeN

-- ("p" "t" "p" (t "a") ...)

parseDieciseisNAListaDeN :: H [N]

parseDieciseisNAListaDeN = parseDieciseisNAListaDeN’ <*> parseCongasN

204

parseDieciseisNAListaDeN’ :: H (Maybe N -> [N])

parseDieciseisNAListaDeN’ = parseDieciseisNAListaDeN’’ <*> parseCongasN

parseDieciseisNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseDieciseisNAListaDeN’’ = parseDieciseisNAListaDeN’’’ <*> parseCongasN

parseDieciseisNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

parseDieciseisNAListaDeN’’’ = parseDieciseisNAListaDeN’’’’ <*> parseCongasN

parseDieciseisNAListaDeN’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> [N])

parseDieciseisNAListaDeN’’’’ = parseDieciseisNAListaDeN’’’’’ <*>

parseCongasN

parseDieciseisNAListaDeN’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> [N])

parseDieciseisNAListaDeN’’’’’ = parseDieciseisNAListaDeN’’’’’’ <*>

parseCongasN

parseDieciseisNAListaDeN’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe

N -> Maybe N -> Maybe N -> [N])

parseDieciseisNAListaDeN’’’’’’ = parseDieciseisNAListaDeN’’’’’’’ <*>

parseCongasN

parseDieciseisNAListaDeN’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe

N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseDieciseisNAListaDeN’’’’’’’ = parseDieciseisNAListaDeN’’’’’’’’ <*>

parseCongasN

parseDieciseisNAListaDeN’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseDieciseisNAListaDeN’’’’’’’’ = parseDieciseisNAListaDeN’’’’’’’’’ <*>

parseCongasN

parseDieciseisNAListaDeN’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseDieciseisNAListaDeN’’’’’’’’’ = parseDieciseisNAListaDeN’’’’’’’’’’ <*>

parseCongasN

parseDieciseisNAListaDeN’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> [N])

parseDieciseisNAListaDeN’’’’’’’’’’ = parseDieciseisNAListaDeN’’’’’’’’’’’ <*>

parseCongasN

205

parseDieciseisNAListaDeN’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> [N])

parseDieciseisNAListaDeN’’’’’’’’’’’ = parseDieciseisNAListaDeN’’’’’’’’’’’’

<*> parseCongasN

parseDieciseisNAListaDeN’’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> [N])

parseDieciseisNAListaDeN’’’’’’’’’’’’ = parseDieciseisNAListaDeN’’’’’’’’’’’’’

<*> parseCongasN

parseDieciseisNAListaDeN’’’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe

N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseDieciseisNAListaDeN’’’’’’’’’’’’’ = parseDieciseisNAListaDeN

’’’’’’’’’’’’’’ <*> parseCongasN

parseDieciseisNAListaDeN’’’’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseDieciseisNAListaDeN’’’’’’’’’’’’’’ = parseDieciseisNAListaDeN

’’’’’’’’’’’’’’’ <*> parseCongasN

parseDieciseisNAListaDeN’’’’’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseDieciseisNAListaDeN’’’’’’’’’’’’’’’ = do

n1 <- parseCongasN

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16 ->

dieciseisNAListaDeN n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15

n16

dieciseisNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N]

dieciseisNAListaDeN n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16 =

catMaybes [n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14,

n15, n16]

-- ("p" "t" "p" (t "a") ...)

parseQuinceNAListaDeN :: H [N]

parseQuinceNAListaDeN = parseQuinceNAListaDeN’ <*> parseCongasN

206

parseQuinceNAListaDeN’ :: H (Maybe N -> [N])

parseQuinceNAListaDeN’ = parseQuinceNAListaDeN’’ <*> parseCongasN

parseQuinceNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseQuinceNAListaDeN’’ = parseQuinceNAListaDeN’’’ <*> parseCongasN

parseQuinceNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

parseQuinceNAListaDeN’’’ = parseQuinceNAListaDeN’’’’ <*> parseCongasN

parseQuinceNAListaDeN’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

[N])

parseQuinceNAListaDeN’’’’ = parseQuinceNAListaDeN’’’’’ <*> parseCongasN

parseQuinceNAListaDeN’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> [N])

parseQuinceNAListaDeN’’’’’ = parseQuinceNAListaDeN’’’’’’ <*> parseCongasN

parseQuinceNAListaDeN’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> [N])

parseQuinceNAListaDeN’’’’’’ = parseQuinceNAListaDeN’’’’’’’ <*> parseCongasN

parseQuinceNAListaDeN’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> [N])

parseQuinceNAListaDeN’’’’’’’ = parseQuinceNAListaDeN’’’’’’’’ <*>

parseCongasN

parseQuinceNAListaDeN’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseQuinceNAListaDeN’’’’’’’’ = parseQuinceNAListaDeN’’’’’’’’’ <*>

parseCongasN

parseQuinceNAListaDeN’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe

N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseQuinceNAListaDeN’’’’’’’’’ = parseQuinceNAListaDeN’’’’’’’’’’ <*>

parseCongasN

parseQuinceNAListaDeN’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe

N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [

N])

parseQuinceNAListaDeN’’’’’’’’’’ = parseQuinceNAListaDeN’’’’’’’’’’’ <*>

parseCongasN

parseQuinceNAListaDeN’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> [N])

207

parseQuinceNAListaDeN’’’’’’’’’’’ = parseQuinceNAListaDeN’’’’’’’’’’’’ <*>

parseCongasN

parseQuinceNAListaDeN’’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> [N])

parseQuinceNAListaDeN’’’’’’’’’’’’ = parseQuinceNAListaDeN’’’’’’’’’’’’’ <*>

parseCongasN

parseQuinceNAListaDeN’’’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> [N])

parseQuinceNAListaDeN’’’’’’’’’’’’’ = parseQuinceNAListaDeN’’’’’’’’’’’’’’ <*>

parseCongasN

parseQuinceNAListaDeN’’’’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseQuinceNAListaDeN’’’’’’’’’’’’’’ = do

n1 <- parseCongasN

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 ->

quinceNAListaDeN n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15

quinceNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> [N]

quinceNAListaDeN n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 =

catMaybes [n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14,

n15]

-- ("p" "t" "p" (t "a") ...)

parseCatorceNAListaDeN :: H [N]

parseCatorceNAListaDeN = parseCatorceNAListaDeN’ <*> parseCongasN

parseCatorceNAListaDeN’ :: H (Maybe N -> [N])

parseCatorceNAListaDeN’ = parseCatorceNAListaDeN’’ <*> parseCongasN

parseCatorceNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseCatorceNAListaDeN’’ = parseCatorceNAListaDeN’’’ <*> parseCongasN

parseCatorceNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

parseCatorceNAListaDeN’’’ = parseCatorceNAListaDeN’’’’ <*> parseCongasN

parseCatorceNAListaDeN’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

[N])

208

parseCatorceNAListaDeN’’’’ = parseCatorceNAListaDeN’’’’’ <*> parseCongasN

parseCatorceNAListaDeN’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> [N])

parseCatorceNAListaDeN’’’’’ = parseCatorceNAListaDeN’’’’’’ <*> parseCongasN

parseCatorceNAListaDeN’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> [N])

parseCatorceNAListaDeN’’’’’’ = parseCatorceNAListaDeN’’’’’’’ <*>

parseCongasN

parseCatorceNAListaDeN’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> [N])

parseCatorceNAListaDeN’’’’’’’ = parseCatorceNAListaDeN’’’’’’’’ <*>

parseCongasN

parseCatorceNAListaDeN’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe

N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseCatorceNAListaDeN’’’’’’’’ = parseCatorceNAListaDeN’’’’’’’’’ <*>

parseCongasN

parseCatorceNAListaDeN’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe

N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseCatorceNAListaDeN’’’’’’’’’ = parseCatorceNAListaDeN’’’’’’’’’’ <*>

parseCongasN

parseCatorceNAListaDeN’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> [N])

parseCatorceNAListaDeN’’’’’’’’’’ = parseCatorceNAListaDeN’’’’’’’’’’’ <*>

parseCongasN

parseCatorceNAListaDeN’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> [N])

parseCatorceNAListaDeN’’’’’’’’’’’ = parseCatorceNAListaDeN’’’’’’’’’’’’ <*>

parseCongasN

parseCatorceNAListaDeN’’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> [N])

parseCatorceNAListaDeN’’’’’’’’’’’’ = parseCatorceNAListaDeN’’’’’’’’’’’’’ <*>

parseCongasN

209

parseCatorceNAListaDeN’’’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> [N])

parseCatorceNAListaDeN’’’’’’’’’’’’’ = do

n1 <- parseCongasN

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 -> catorceNAListaDeN

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14

catorceNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> [N]

catorceNAListaDeN n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 = catMaybes

[n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14]

-- ("p" "t" "p" (t "a") ...)

parseTreceNAListaDeN :: H [N]

parseTreceNAListaDeN = parseTreceNAListaDeN’ <*> parseCongasN

parseTreceNAListaDeN’ :: H (Maybe N -> [N])

parseTreceNAListaDeN’ = parseTreceNAListaDeN’’ <*> parseCongasN

parseTreceNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseTreceNAListaDeN’’ = parseTreceNAListaDeN’’’ <*> parseCongasN

parseTreceNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

parseTreceNAListaDeN’’’ = parseTreceNAListaDeN’’’’ <*> parseCongasN

parseTreceNAListaDeN’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N -> [

N])

parseTreceNAListaDeN’’’’ = parseTreceNAListaDeN’’’’’ <*> parseCongasN

parseTreceNAListaDeN’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> [N])

parseTreceNAListaDeN’’’’’ = parseTreceNAListaDeN’’’’’’ <*> parseCongasN

parseTreceNAListaDeN’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> [N])

parseTreceNAListaDeN’’’’’’ = parseTreceNAListaDeN’’’’’’’ <*> parseCongasN

parseTreceNAListaDeN’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> [N])

parseTreceNAListaDeN’’’’’’’ = parseTreceNAListaDeN’’’’’’’’ <*> parseCongasN

parseTreceNAListaDeN’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

210

parseTreceNAListaDeN’’’’’’’’ = parseTreceNAListaDeN’’’’’’’’’ <*>

parseCongasN

parseTreceNAListaDeN’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseTreceNAListaDeN’’’’’’’’’ = parseTreceNAListaDeN’’’’’’’’’’ <*>

parseCongasN

parseTreceNAListaDeN’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe

N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N

])

parseTreceNAListaDeN’’’’’’’’’’ = parseTreceNAListaDeN’’’’’’’’’’’ <*>

parseCongasN

parseTreceNAListaDeN’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe

N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> [N])

parseTreceNAListaDeN’’’’’’’’’’’ = parseTreceNAListaDeN’’’’’’’’’’’’ <*>

parseCongasN

parseTreceNAListaDeN’’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> [N])

parseTreceNAListaDeN’’’’’’’’’’’’ = do

n1 <- parseCongasN

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 -> treceNAListaDeN n1 n2

n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

treceNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> [N]

treceNAListaDeN n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 = catMaybes [n1,

n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13]

-- ("p" "t" "p" (t "a") ...)

parseDoceNAListaDeN :: H [N]

parseDoceNAListaDeN = parseDoceNAListaDeN’ <*> parseCongasN

parseDoceNAListaDeN’ :: H (Maybe N -> [N])

parseDoceNAListaDeN’ = parseDoceNAListaDeN’’ <*> parseCongasN

parseDoceNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseDoceNAListaDeN’’ = parseDoceNAListaDeN’’’ <*> parseCongasN

parseDoceNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

211

parseDoceNAListaDeN’’’ = parseDoceNAListaDeN’’’’ <*> parseCongasN

parseDoceNAListaDeN’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N

])

parseDoceNAListaDeN’’’’ = parseDoceNAListaDeN’’’’’ <*> parseCongasN

parseDoceNAListaDeN’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> [N])

parseDoceNAListaDeN’’’’’ = parseDoceNAListaDeN’’’’’’ <*> parseCongasN

parseDoceNAListaDeN’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> [N])

parseDoceNAListaDeN’’’’’’ = parseDoceNAListaDeN’’’’’’’ <*> parseCongasN

parseDoceNAListaDeN’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> [N])

parseDoceNAListaDeN’’’’’’’ = parseDoceNAListaDeN’’’’’’’’ <*> parseCongasN

parseDoceNAListaDeN’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseDoceNAListaDeN’’’’’’’’ = parseDoceNAListaDeN’’’’’’’’’ <*> parseCongasN

parseDoceNAListaDeN’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseDoceNAListaDeN’’’’’’’’’ = parseDoceNAListaDeN’’’’’’’’’’ <*>

parseCongasN

parseDoceNAListaDeN’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N

])

parseDoceNAListaDeN’’’’’’’’’’ = parseDoceNAListaDeN’’’’’’’’’’’ <*>

parseCongasN

parseDoceNAListaDeN’’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe

N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> [N])

parseDoceNAListaDeN’’’’’’’’’’’ = do

n1 <- parseCongasN

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 -> doceNAListaDeN n1 n2 n3

n4 n5 n6 n7 n8 n9 n10 n11 n12

doceNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N

-> [N]

212

doceNAListaDeN n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 = catMaybes [n1, n2,

n3, n4, n5, n6, n7, n8, n9, n10, n11, n12]

-- ("p" "t" "p" (t "a") ...)

parseOnceNAListaDeN :: H [N]

parseOnceNAListaDeN = parseOnceNAListaDeN’ <*> parseCongasN

parseOnceNAListaDeN’ :: H (Maybe N -> [N])

parseOnceNAListaDeN’ = parseOnceNAListaDeN’’ <*> parseCongasN

parseOnceNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseOnceNAListaDeN’’ = parseOnceNAListaDeN’’’ <*> parseCongasN

parseOnceNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

parseOnceNAListaDeN’’’ = parseOnceNAListaDeN’’’’ <*> parseCongasN

parseOnceNAListaDeN’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N

])

parseOnceNAListaDeN’’’’ = parseOnceNAListaDeN’’’’’ <*> parseCongasN

parseOnceNAListaDeN’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> [N])

parseOnceNAListaDeN’’’’’ = parseOnceNAListaDeN’’’’’’ <*> parseCongasN

parseOnceNAListaDeN’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> [N])

parseOnceNAListaDeN’’’’’’ = parseOnceNAListaDeN’’’’’’’ <*> parseCongasN

parseOnceNAListaDeN’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> [N])

parseOnceNAListaDeN’’’’’’’ = parseOnceNAListaDeN’’’’’’’’ <*> parseCongasN

parseOnceNAListaDeN’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseOnceNAListaDeN’’’’’’’’ = parseOnceNAListaDeN’’’’’’’’’ <*> parseCongasN

parseOnceNAListaDeN’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseOnceNAListaDeN’’’’’’’’’ = parseOnceNAListaDeN’’’’’’’’’’ <*>

parseCongasN

parseOnceNAListaDeN’’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N

])

parseOnceNAListaDeN’’’’’’’’’’ = do

213

n1 <- parseCongasN

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 -> onceNAListaDeN n1 n2 n3 n4 n5

n6 n7 n8 n9 n10 n11

onceNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N]

onceNAListaDeN n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 = catMaybes [n1, n2, n3,

n4, n5, n6, n7, n8, n9, n10, n11]

-- ("p" "t" "p" (t "a") ...)

parseDiezNAListaDeN :: H [N]

parseDiezNAListaDeN = parseDiezNAListaDeN’ <*> parseCongasN

parseDiezNAListaDeN’ :: H (Maybe N -> [N])

parseDiezNAListaDeN’ = parseDiezNAListaDeN’’ <*> parseCongasN

parseDiezNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseDiezNAListaDeN’’ = parseDiezNAListaDeN’’’ <*> parseCongasN

parseDiezNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

parseDiezNAListaDeN’’’ = parseDiezNAListaDeN’’’’ <*> parseCongasN

parseDiezNAListaDeN’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N

])

parseDiezNAListaDeN’’’’ = parseDiezNAListaDeN’’’’’ <*> parseCongasN

parseDiezNAListaDeN’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> [N])

parseDiezNAListaDeN’’’’’ = parseDiezNAListaDeN’’’’’’ <*> parseCongasN

parseDiezNAListaDeN’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> [N])

parseDiezNAListaDeN’’’’’’ = parseDiezNAListaDeN’’’’’’’ <*> parseCongasN

parseDiezNAListaDeN’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> [N])

parseDiezNAListaDeN’’’’’’’ = parseDiezNAListaDeN’’’’’’’’ <*> parseCongasN

parseDiezNAListaDeN’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseDiezNAListaDeN’’’’’’’’ = parseDiezNAListaDeN’’’’’’’’’ <*> parseCongasN

parseDiezNAListaDeN’’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseDiezNAListaDeN’’’’’’’’’ = do

214

n1 <- parseCongasN

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 -> diezNAListaDeN n1 n2 n3 n4 n5 n6

n7 n8 n9 n10

diezNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N]

diezNAListaDeN n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 = catMaybes [n1, n2, n3, n4,

n5, n6, n7, n8, n9, n10]

-- ("p" "t" "p" (t "a") ...)

parseNueveNAListaDeN :: H [N]

parseNueveNAListaDeN = parseNueveNAListaDeN’ <*> parseCongasN

parseNueveNAListaDeN’ :: H (Maybe N -> [N])

parseNueveNAListaDeN’ = parseNueveNAListaDeN’’ <*> parseCongasN

parseNueveNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseNueveNAListaDeN’’ = parseNueveNAListaDeN’’’ <*> parseCongasN

parseNueveNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

parseNueveNAListaDeN’’’ = parseNueveNAListaDeN’’’’ <*> parseCongasN

parseNueveNAListaDeN’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N -> [

N])

parseNueveNAListaDeN’’’’ = parseNueveNAListaDeN’’’’’ <*> parseCongasN

parseNueveNAListaDeN’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> [N])

parseNueveNAListaDeN’’’’’ = parseNueveNAListaDeN’’’’’’ <*> parseCongasN

parseNueveNAListaDeN’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> [N])

parseNueveNAListaDeN’’’’’’ = parseNueveNAListaDeN’’’’’’’ <*> parseCongasN

parseNueveNAListaDeN’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> [N])

parseNueveNAListaDeN’’’’’’’ = parseNueveNAListaDeN’’’’’’’’ <*> parseCongasN

parseNueveNAListaDeN’’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N

-> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N])

parseNueveNAListaDeN’’’’’’’’ = do

n1 <- parseCongasN

return $ \n2 n3 n4 n5 n6 n7 n8 n9 -> nueveNAListaDeN n1 n2 n3 n4 n5 n6 n7

n8 n9

215

nueveNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N]

nueveNAListaDeN n1 n2 n3 n4 n5 n6 n7 n8 n9 = catMaybes [n1, n2, n3, n4, n5,

n6, n7, n8, n9]

-- ("p" "t" "p" (t "a") ...)

parseOchoNAListaDeN :: H [N]

parseOchoNAListaDeN = parseOchoNAListaDeN’ <*> parseCongasN

parseOchoNAListaDeN’ :: H (Maybe N -> [N])

parseOchoNAListaDeN’ = parseOchoNAListaDeN’’ <*> parseCongasN

parseOchoNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseOchoNAListaDeN’’ = parseOchoNAListaDeN’’’ <*> parseCongasN

parseOchoNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

parseOchoNAListaDeN’’’ = parseOchoNAListaDeN’’’’ <*> parseCongasN

parseOchoNAListaDeN’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N

])

parseOchoNAListaDeN’’’’ = parseOchoNAListaDeN’’’’’ <*> parseCongasN

parseOchoNAListaDeN’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> [N])

parseOchoNAListaDeN’’’’’ = parseOchoNAListaDeN’’’’’’ <*> parseCongasN

parseOchoNAListaDeN’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> [N])

parseOchoNAListaDeN’’’’’’ = parseOchoNAListaDeN’’’’’’’ <*> parseCongasN

parseOchoNAListaDeN’’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> [N])

parseOchoNAListaDeN’’’’’’’ = do

n1 <- parseCongasN

return $ \n2 n3 n4 n5 n6 n7 n8 -> ochoNAListaDeN n1 n2 n3 n4 n5 n6 n7 n8

ochoNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> Maybe N -> [N]

ochoNAListaDeN n1 n2 n3 n4 n5 n6 n7 n8 = catMaybes [n1, n2, n3, n4, n5, n6,

n7, n8]

-- ("p" "t" "p" (t "a") ...)

parseSieteNAListaDeN :: H [N]

parseSieteNAListaDeN = parseSieteNAListaDeN’ <*> parseCongasN

216

parseSieteNAListaDeN’ :: H (Maybe N -> [N])

parseSieteNAListaDeN’ = parseSieteNAListaDeN’’ <*> parseCongasN

parseSieteNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseSieteNAListaDeN’’ = parseSieteNAListaDeN’’’ <*> parseCongasN

parseSieteNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

parseSieteNAListaDeN’’’ = parseSieteNAListaDeN’’’’ <*> parseCongasN

parseSieteNAListaDeN’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N -> [

N])

parseSieteNAListaDeN’’’’ = parseSieteNAListaDeN’’’’’ <*> parseCongasN

parseSieteNAListaDeN’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> [N])

parseSieteNAListaDeN’’’’’ = parseSieteNAListaDeN’’’’’’ <*> parseCongasN

parseSieteNAListaDeN’’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> [N])

parseSieteNAListaDeN’’’’’’ = do

n1 <- parseCongasN

return $ \n2 n3 n4 n5 n6 n7 -> sieteNAListaDeN n1 n2 n3 n4 n5 n6 n7

sieteNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> Maybe N -> [N]

sieteNAListaDeN n1 n2 n3 n4 n5 n6 n7 = catMaybes [n1, n2, n3, n4, n5, n6, n7

]

-- ("p" "t" "p" (t "a") ...)

parseSeisNAListaDeN :: H [N]

parseSeisNAListaDeN = parseSeisNAListaDeN’ <*> parseCongasN

parseSeisNAListaDeN’ :: H (Maybe N -> [N])

parseSeisNAListaDeN’ = parseSeisNAListaDeN’’ <*> parseCongasN

parseSeisNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseSeisNAListaDeN’’ = parseSeisNAListaDeN’’’ <*> parseCongasN

parseSeisNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

parseSeisNAListaDeN’’’ = parseSeisNAListaDeN’’’’ <*> parseCongasN

parseSeisNAListaDeN’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N

])

parseSeisNAListaDeN’’’’ = parseSeisNAListaDeN’’’’’ <*> parseCongasN

217

parseSeisNAListaDeN’’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> [N])

parseSeisNAListaDeN’’’’’ = do

n1 <- parseCongasN

return $ \n2 n3 n4 n5 n6 -> seisNAListaDeN n1 n2 n3 n4 n5 n6

seisNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N ->

Maybe N -> [N]

seisNAListaDeN n1 n2 n3 n4 n5 n6 = catMaybes [n1, n2, n3, n4, n5, n6]

-- ("p" "t" "p" (t "a") ...)

parseCincoNAListaDeN :: H [N]

parseCincoNAListaDeN = parseCincoNAListaDeN’ <*> parseCongasN

parseCincoNAListaDeN’ :: H (Maybe N -> [N])

parseCincoNAListaDeN’ = parseCincoNAListaDeN’’ <*> parseCongasN

parseCincoNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseCincoNAListaDeN’’ = parseCincoNAListaDeN’’’ <*> parseCongasN

parseCincoNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

parseCincoNAListaDeN’’’ = parseCincoNAListaDeN’’’’ <*> parseCongasN

parseCincoNAListaDeN’’’’ :: H (Maybe N -> Maybe N -> Maybe N -> Maybe N -> [

N])

parseCincoNAListaDeN’’’’ = do

n1 <- parseCongasN

return $ \n2 n3 n4 n5 -> cincoNAListaDeN n1 n2 n3 n4 n5

cincoNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N

]

cincoNAListaDeN n1 n2 n3 n4 n5 = catMaybes [n1, n2, n3, n4, n5]

-- ("p" "t" "p" $ t "a")

parseCuatroNAListaDeN :: H [N]

parseCuatroNAListaDeN = parseCuatroNAListaDeN’ <*> parseCongasN

parseCuatroNAListaDeN’ :: H (Maybe N -> [N])

parseCuatroNAListaDeN’ = parseCuatroNAListaDeN’’ <*> parseCongasN

parseCuatroNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseCuatroNAListaDeN’’ = parseCuatroNAListaDeN’’’ <*> parseCongasN

parseCuatroNAListaDeN’’’ :: H (Maybe N -> Maybe N -> Maybe N -> [N])

218

parseCuatroNAListaDeN’’’ = do

n1 <- parseCongasN

return $ \n2 n3 n4 -> cuatroNAListaDeN n1 n2 n3 n4

cuatroNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> Maybe N -> [N]

cuatroNAListaDeN n1 n2 n3 n4 = catMaybes [n1, n2, n3, n4]

-- ("a" t "t" "a")

parseTresNAListaDeN :: H [N]

parseTresNAListaDeN = parseTresNAListaDeN’ <*> parseCongasN

parseTresNAListaDeN’ :: H (Maybe N -> [N])

parseTresNAListaDeN’ = parseTresNAListaDeN’’ <*> parseCongasN

parseTresNAListaDeN’’ :: H (Maybe N -> Maybe N -> [N])

parseTresNAListaDeN’’ = do

n1 <- parseCongasN

return $ \n2 n3 -> tresNAListaDeN n1 n2 n3

tresNAListaDeN :: Maybe N -> Maybe N -> Maybe N -> [N]

tresNAListaDeN n1 n2 n3 = catMaybes [n1, n2, n3]

-- ("a", t "a")

parseDosNAListaDeN :: H [N]

parseDosNAListaDeN = parseDosNAListaDeN’ <*> parseCongasN

parseDosNAListaDeN’ :: H (Maybe N -> [N])

parseDosNAListaDeN’ = do

n1 <- parseCongasN

return $ \n2 -> dosNAListaDeN n1 n2

dosNAListaDeN :: Maybe N -> Maybe N -> [N]

dosNAListaDeN n1 n2 = catMaybes [n1, n2]

-- ("a")

parseUnNAListaDeN :: H [N]

parseUnNAListaDeN = do

n <- parseCongasN

return $ unNAListaDeN n

unNAListaDeN :: Maybe N -> [N]

unNAListaDeN n = catMaybes [n]

parseTumbao :: H Layer

parseTumbao = parseTumbao’ <*> parseLayer

219

parseTumbao’ :: H (Layer -> Layer) -- (tonicaYquinta cumbia) bajo

parseTumbao’ = parseTumbao’’ <*> int

parseTumbao’’ :: H (Int -> Layer -> Layer) -- (tonicaYquinta cumbia) bajo

parseTumbao’’ = tumbao <$ reserved "tumbao"

tumbao :: Int -> Layer -> Layer -- ?

tumbao 0 c = c {style = nuevoE}

where nuevoE = (style c) {

bassPitchPattern0 = bassPitchPattern0 (style c),

bassRhythmPattern0 = bassRhythmPattern0 (style c),

congasRhythmPattern0 = [(1, 0), (1, 0.25), (1, 0.5), (1, 0.75)],

congasSampleNPattern0 = NPattern2 [("quinto", 0), ("quinto", 1), ("quinto"

, 0), ("quinto", 1)],

congasPitchPattern0 = ("midinote", take 4 $ cycle [("mn", 60, 0)]),

tecladoPitchPattern0 = tecladoPitchPattern2 (style c),

tecladoRhythmPattern0 = tecladoRhythmPattern2 (style c)

-- tecladoSampleNPattern0 = tecladoSampleNPattern2 (style c)

}

-- tonicaQuinta

tumbao 1 c = c {style = nuevoE}

where nuevoE = (style c) {

bassPitchPattern0 = ("intervalo", [(intervalo "

unisono" 0), (intervalo "5a" 0)]), -- index

from list of pitches i.e. [60, 67]

bassRhythmPattern0 = [(1, 0), (1, 0.5)], --i.e. [

],

congasRhythmPattern0 = [(1, 0), (1, 0.25), (1, 0.5)

, (1, 0.75)],

congasSampleNPattern0 = NPattern2 [("quinto", 2), (

"quinto", 1), ("quinto", 0), ("quinto", 1)],

congasPitchPattern0 = ("midinote", take 4 $ cycle

[("mn", 60, 0)]),

tecladoPitchPattern0 = tecladoPitchPattern3 (style

c),

tecladoRhythmPattern0 = tecladoRhythmPattern3 (

style c)

220

-- tecladoSampleNPattern0 = tecladoSampleNPattern3

(style c)

}

-- tonicaQuinta2

tumbao 2 c = c {style = nuevoE}

where nuevoE = (style c) {

bassRhythmPattern0 = [(1, 0), (1, 0.5), (1, 0.75)],

bassPitchPattern0 = ("intervalo", [intervalo "

unisono" 0, intervalo "5a" 0, intervalo "5a"

(-1)]), -- index from list of pitches i.e. [60,

64, 67]

congasRhythmPattern0 = [(1, 0), (1, 0.125), (1,

0.25), (1, 0.5), (1, 0.75)],

congasSampleNPattern0 = NPattern2 [("quinto", 2), (

"quinto", 2), ("quinto", 1), ("quinto", 0), ("

quinto", 1)],

congasPitchPattern0 = ("midinote", take 5 $ cycle

[("mn", 60, 0)])

}

-- tonicaAuintaOctava

tumbao 3 c = c {style = nuevoE}

where nuevoE = (style c) {

bassRhythmPattern0 = [(1, 0), (1, 0.5), (1, 0.75)],

bassPitchPattern0 = ("intervalo", [intervalo "

unisono" 0, intervalo "5a" 0, intervalo "8a" 0])

, -- index from list of pitches i.e. [60, 64,

67]

congasRhythmPattern0 = [(1, 0), (1, 0.125), (1,

0.25), (1, 0.5), (1, 0.75)],

congasSampleNPattern0 = NPattern2 [("quinto", 0), (

"quinto", 2), ("quinto", 1), ("quinto", 0), ("

quinto", 1)],

congasPitchPattern0 = ("midinote", take 5 $ cycle

[("mn", 60, 0)])

}

-- tonicaQuintaTercera

tumbao 4 c = c {style = nuevoE}

where nuevoE = (style c) {

bassRhythmPattern0 = [(1, 0), (1, 0.5), (1, 0.75)],

bassPitchPattern0 = ("intervalo", [intervalo "

unisono" 0, intervalo "5a" 0, intervalo "3a" 0])

221

, -- index from list of pitches i.e. [60, 64,

67]

congasRhythmPattern0 = [(1, 0), (1, 0.125), (1,

0.25), (1, 0.5), (1, 0.625), (1, 0.75)],

congasSampleNPattern0 = NPattern2 [("quinto", 0), (

"quinto", 2), ("quinto", 1), ("quinto", 0), ("

tumba", 0), ("quinto", 1)],

congasPitchPattern0 = ("midinote", take 6 $ cycle

[("mn", 60, 0)])

}

tumbao _ c = c

-- transforms the preset bass to just fundamental and fifth of the chord

-- e.g (tonicaYquinta cumbia) bajo

parseTonicaYquinta :: H Layer

parseTonicaYquinta = parseTonicaYquinta’ <*> parseLayer

parseTonicaYquinta’ :: H (Layer -> Layer) -- (tonicaYquinta cumbia) bajo

parseTonicaYquinta’ = tonicaYquinta <$ reserved "tonicayquinta"

-- una funcin que devuelve a tonica y la quinta del bajo

tonicaYquinta :: Layer -> Layer -- ?

tonicaYquinta c = c {style = nuevoE}

where nuevoE = (style c) {

bassPitchPattern0 = ("intervalo", [(intervalo "

unisono" 0), (intervalo "5a" 0)]), -- index

from list of pitches i.e. [60, 67]

bassRhythmPattern0 = [(1, 0), (1, 0.5)] --i.e. [

],

}

-- Arriba, el bajo toca la tnica, la quinta y la quinta una octava ms alta

.

parseTonicaYquinta2 :: H Layer

parseTonicaYquinta2 = parseTonicaYquinta2’ <*> parseLayer

parseTonicaYquinta2’ :: H (Layer -> Layer)

parseTonicaYquinta2’ = tonicaYquinta2 <$ reserved "tonicayquinta2"

tonicaYquinta2 :: Layer -> Layer

tonicaYquinta2 c = c {style = nuevoE}

where nuevoE = (style c) {

222

bassRhythmPattern0 = [(1, 0), (1, 0.5), (1, 0.75)],

bassPitchPattern0 = ("intervalo", [intervalo "

unisono" 0, intervalo "5a" 0, intervalo "5a"

(-1)]) -- index from list of pitches i.e. [60,

64, 67]

}

--tonicaQtonica $ cumbia bajo, el bajo toca la tnica, la quinta y la

octava alta de la tnica.

parseTonicaQoctava :: H Layer

parseTonicaQoctava = parseTonicaQoctava’ <*> parseLayer

parseTonicaQoctava’ :: H (Layer -> Layer)

parseTonicaQoctava’ = tonicaQoctava <$ reserved "tonicaQoctava"

tonicaQoctava :: Layer -> Layer

tonicaQoctava c = c {style = nuevoE}

where nuevoE = (style c) {

bassRhythmPattern0 = [(1, 0), (1, 0.5), (1, 0.75)],

bassPitchPattern0 = ("intervalo", [intervalo "

unisono" 0, intervalo "5a" 0, intervalo "8a" 0])

-- index from list of pitches i.e. [60, 64,

67]

}

-- tonicaQtercera $ cumbia bajo, el bajo toca la tnica, la quinta y la

tercer del acorde.

parseTonicaQtercera :: H Layer

parseTonicaQtercera = parseTonicaQtercera’ <*> parseLayer

parseTonicaQtercera’ :: H (Layer -> Layer)

parseTonicaQtercera’ = tonicaQtercera <$ reserved "tonicaQtercera"

tonicaQtercera :: Layer -> Layer

tonicaQtercera c = c {style = nuevoE}

where nuevoE = (style c) {

bassRhythmPattern0 = [(1, 0), (1, 0.5), (1, 0.75)],

bassPitchPattern0 = ("intervalo", [intervalo "

unisono" 0, intervalo "5a" 0, intervalo "3a" 0])

-- index from list of pitches i.e. [60, 64,

67]

}

--

-- a function for changing the preset pitch pattern provided by the style

223

parseCambiarNotas :: H Layer

parseCambiarNotas = parseCambiarNotas’ <*> parseLayer

parseCambiarNotas’ :: H (Layer -> Layer)

parseCambiarNotas’ = parseCambiarNotas’’ <*> doubleList

parseCambiarNotas’’ :: H ([Double] -> Layer -> Layer)

parseCambiarNotas’’ = cambiarNotas <$ reserved "nota"

cambiarNotas :: [Double] -> Layer -> Layer

cambiarNotas ps c = c {style = nuevoE}

where nuevoE = (style c) {

cuerdaPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

acordeonPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

zampoaPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

tecladoPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

bassPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

efectoPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

altavozPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

guiraPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

tarolaPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

contrasPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

extrasPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

clavePitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

jamblockPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps),

congasPitchPattern0 = ("midinote",

listDeNotasConRelacion "mn" ps)

}

listDeNotasConRelacion :: Relacion -> [Double] -> [(Relacion, Double, Octava

)]

listDeNotasConRelacion r ns = fmap (\n -> (r, n, 0)) ns

224

-- cambia una sola nota

parseCambiarNota :: H Layer

parseCambiarNota = parseCambiarNota’ <*> parseLayer

parseCambiarNota’ :: H (Layer -> Layer)

parseCambiarNota’ = parseCambiarNota’’ <*> double

parseCambiarNota’’ :: H (Double -> Layer -> Layer)

parseCambiarNota’’ = cambiarNota <$ reserved "nota"

cambiarNota :: Double -> Layer -> Layer

cambiarNota ps c = c {style = nuevoE}

where nuevoE = (style c) {

cuerdaPitchPattern0 = ("midinote", [("mn", ps, 0)])

,

acordeonPitchPattern0 = ("midinote", [("mn", ps, 0)

]),

zampoaPitchPattern0 = ("midinote", [("mn", ps, 0)])

,

tecladoPitchPattern0 = ("midinote", [("mn", ps, 0)

]),

bassPitchPattern0= ("midinote", [("mn", ps, 0)]),

efectoPitchPattern0 = ("midinote", [("mn", ps, 0)])

,

altavozPitchPattern0 = ("midinote", [("mn", ps, 0)

]),

tarolaPitchPattern0 = ("midinote", [("mn", ps, 0)])

,

contrasPitchPattern0 = ("midinote", [("mn", ps, 0)

]),

guiraPitchPattern0 = ("midinote", [("mn", ps, 0)]),

extrasPitchPattern0 = ("midinote", [("mn", ps, 0)])

,

clavePitchPattern0 = ("midinote", [("mn", ps, 0)]),

jamblockPitchPattern0 = ("midinote", [("mn", ps, 0)

]),

congasPitchPattern0 = ("midinote", [("mn", ps, 0)])

}

-- provee una lista de intervalos con Double y una octava seleccionable, e

.g. intervalo [0 1, "5a" 2]

parseCambiarIntervalosDoubleConOctava :: H Layer

225

parseCambiarIntervalosDoubleConOctava =

parseCambiarIntervalosDoubleConOctava’ <*> parseLayer

parseCambiarIntervalosDoubleConOctava’ :: H (Layer -> Layer)

parseCambiarIntervalosDoubleConOctava’ =

parseCambiarIntervalosDoubleConOctava’’ <*> listofTupleofdouble

parseCambiarIntervalosDoubleConOctava’’ :: H ([(Double, Double)] -> Layer ->

Layer)

parseCambiarIntervalosDoubleConOctava’’ = cambiarIntervalosDoubleConOctava <

$ reserved "intervalo"

listofTupleofdouble :: H [(Double, Double)]

listofTupleofdouble = list parseTupleofdouble

parseTupleofdouble :: H (Double, Double)

parseTupleofdouble = parseTupleofdouble’ <*> double

parseTupleofdouble’ :: H (Double -> (Double, Double))

parseTupleofdouble’ = do

i <- double

return $ \o -> tupleofdouble i o

tupleofdouble :: Double -> Double -> (Double, Double)

tupleofdouble index octava = (index, octava)

cambiarIntervalosDoubleConOctava :: [(Double, Double)] -> Layer -> Layer

cambiarIntervalosDoubleConOctava is c = c {style = nuevoE}

where

is’ = fmap (\(index, octava) -> intervaloDouble index octava) is

nuevoE = (style c) {

cuerdaPitchPattern0 = ("intervalo", is’),

acordeonPitchPattern0 = ("intervalo", is’),

zampoaPitchPattern0 = ("intervalo", is’),

tecladoPitchPattern0 = ("intervalo", is’),

bassPitchPattern0= ("intervalo", is’),

efectoPitchPattern0 = ("intervalo", is’),

altavozPitchPattern0 = ("intervalo", is’),

tarolaPitchPattern0 = ("intervalo", is’),

guiraPitchPattern0 = ("intervalo", is’),

contrasPitchPattern0 = ("intervalo", is’),

extrasPitchPattern0 = ("intervalo", is’),

congasPitchPattern0 = ("intervalo", is’),

jamblockPitchPattern0 = ("intervalo", is’),

clavePitchPattern0 = ("intervalo", is’)

226

}

--

parseCambiarIntervaloDoubleConOctava :: H Layer

parseCambiarIntervaloDoubleConOctava = parseCambiarIntervaloDoubleConOctava’

<*> parseLayer

parseCambiarIntervaloDoubleConOctava’ :: H (Layer -> Layer)

parseCambiarIntervaloDoubleConOctava’ = parseCambiarIntervaloDoubleConOctava

’’ <*> double

parseCambiarIntervaloDoubleConOctava’’ :: H (Double -> Layer -> Layer)

parseCambiarIntervaloDoubleConOctava’’ =

parseCambiarIntervaloDoubleConOctava’’’ <*> double

parseCambiarIntervaloDoubleConOctava’’’ :: H (Double -> Double -> Layer ->

Layer)

parseCambiarIntervaloDoubleConOctava’’’ = cambiarIntervaloDoubleConOctava <$
reserved "intervalo"

cambiarIntervaloDoubleConOctava :: Double -> Double -> Layer -> Layer

cambiarIntervaloDoubleConOctava index octava c = c {style = nuevoE}

where

nuevoE = (style c) {

cuerdaPitchPattern0 = ("intervalo", [

intervaloDouble index octava]),

acordeonPitchPattern0 = ("intervalo", [

intervaloDouble index octava]),

zampoaPitchPattern0 = ("intervalo", [

intervaloDouble index octava]),

tecladoPitchPattern0 = ("intervalo", [

intervaloDouble index octava]),

bassPitchPattern0= ("intervalo", [intervaloDouble

index octava]),

efectoPitchPattern0 = ("intervalo", [

intervaloDouble index octava]),

altavozPitchPattern0 = ("intervalo", [

intervaloDouble index octava]),

tarolaPitchPattern0 = ("intervalo", [

intervaloDouble index octava]),

guiraPitchPattern0 = ("intervalo", [intervaloDouble

index octava]),

contrasPitchPattern0 = ("intervalo", [

intervaloDouble index octava]),

extrasPitchPattern0 = ("intervalo", [

intervaloDouble index octava]),

227

congasPitchPattern0 = ("intervalo", [

intervaloDouble index octava]),

jamblockPitchPattern0 = ("intervalo", [

intervaloDouble index octava]),

clavePitchPattern0 = ("intervalo", [intervaloDouble

index octava])

}

--

parseCambiarIntervalosDouble :: H Layer

parseCambiarIntervalosDouble = parseCambiarIntervalosDouble’ <*> parseLayer

parseCambiarIntervalosDouble’ :: H (Layer -> Layer)

parseCambiarIntervalosDouble’ = parseCambiarIntervalosDouble’’ <*>

doubleList

parseCambiarIntervalosDouble’’ :: H ([Double] -> Layer -> Layer)

parseCambiarIntervalosDouble’’ = cambiarIntervalosDouble <$ reserved "

intervalo"

cambiarIntervalosDouble :: [Double] -> Layer -> Layer

cambiarIntervalosDouble indices c = c {style = nuevoE}

where

indices’ = fmap (\index -> intervaloDouble index 0) indices

nuevoE = (style c) {

cuerdaPitchPattern0 = ("intervalo", indices’),

acordeonPitchPattern0 = ("intervalo", indices’),

zampoaPitchPattern0 = ("intervalo", indices’),

tecladoPitchPattern0 = ("intervalo", indices’),

bassPitchPattern0= ("intervalo", indices’),

efectoPitchPattern0 = ("intervalo", indices’),

altavozPitchPattern0 = ("intervalo", indices’),

guiraPitchPattern0 = ("intervalo", indices’),

contrasPitchPattern0 = ("intervalo", indices’),

tarolaPitchPattern0 = ("intervalo", indices’),

extrasPitchPattern0 = ("intervalo", indices’),

clavePitchPattern0 = ("intervalo", indices’),

jamblockPitchPattern0 = ("intervalo", indices’),

congasPitchPattern0 = ("intervalo", indices’)

}

parseCambiarIntervaloDouble :: H Layer

parseCambiarIntervaloDouble = parseCambiarIntervaloDouble’ <*> parseLayer

parseCambiarIntervaloDouble’ :: H (Layer -> Layer)

228

parseCambiarIntervaloDouble’ = parseCambiarIntervaloDouble’’ <*> double

parseCambiarIntervaloDouble’’ :: H (Double -> Layer -> Layer)

parseCambiarIntervaloDouble’’ = cambiarIntervaloDouble <$ reserved "

intervalo"

cambiarIntervaloDouble :: Double -> Layer -> Layer

cambiarIntervaloDouble index c = c {style = nuevoE}

where

nuevoE = (style c) {

cuerdaPitchPattern0 = ("intervalo", [

intervaloDouble index 0]),

acordeonPitchPattern0 = ("intervalo", [

intervaloDouble index 0]),

tecladoPitchPattern0 = ("intervalo", [

intervaloDouble index 0]),

zampoaPitchPattern0 = ("intervalo", [

intervaloDouble index 0]),

bassPitchPattern0= ("intervalo", [intervaloDouble

index 0]),

efectoPitchPattern0 = ("intervalo", [

intervaloDouble index 0]),

tarolaPitchPattern0 = ("intervalo", [

intervaloDouble index 0]),

guiraPitchPattern0 = ("intervalo", [intervaloDouble

index 0]),

contrasPitchPattern0 = ("intervalo", [

intervaloDouble index 0]),

altavozPitchPattern0 = ("intervalo", [

intervaloDouble index 0]),

extrasPitchPattern0 = ("intervalo", [

intervaloDouble index 0]),

congasPitchPattern0 = ("intervalo", [

intervaloDouble index 0]),

jamblockPitchPattern0 = ("intervalo", [

intervaloDouble index 0]),

clavePitchPattern0 = ("intervalo", [intervaloDouble

index 0])

}

-- provee una lista de intervalos con una octava seleccionable, e.g.

intervalo ["3a" 1, "5a" 2]

parseCambiarIntervalosConOctava :: H Layer

parseCambiarIntervalosConOctava = parseCambiarIntervalosConOctava’ <*>

parseLayer

229

parseCambiarIntervalosConOctava’ :: H (Layer -> Layer)

parseCambiarIntervalosConOctava’ = parseCambiarIntervalosConOctava’’ <*>

listofTupleofStringDouble

parseCambiarIntervalosConOctava’’ :: H ([Index] -> Layer -> Layer)

parseCambiarIntervalosConOctava’’ = cambiarIntervalosConOctava <$ reserved "

intervalo"

data Index = IndexOctavaDef String | IndexConOctava {indice :: String,

octava :: Double}

-- --

-- listOfIndex :: H [Index]

-- listOfIndex = list parseTupleofStringDouble

listofTupleofStringDouble :: H [Index]

listofTupleofStringDouble = list parseTupleofStringDouble

parseTupleofStringDouble :: H Index

parseTupleofStringDouble = parseTupleofStringDouble’ <*> double

parseTupleofStringDouble’ :: H (Double -> Index)

parseTupleofStringDouble’ = do

s <- string

return $ \o -> tupleofStringDouble s o

tupleofStringDouble :: String -> Double -> Index --(String, Double)

tupleofStringDouble index octava = IndexConOctava index octava

cambiarIntervalosConOctava :: [Index] -> Layer -> Layer

cambiarIntervalosConOctava is c = c {style = nuevoE}

where

is’ = fmap (\x -> intervalo (indice x) (octava x)) is

nuevoE = (style c) {

cuerdaPitchPattern0 = ("intervalo", is’),

acordeonPitchPattern0 = ("intervalo", is’),

zampoaPitchPattern0 = ("intervalo", is’),

tecladoPitchPattern0 = ("intervalo", is’),

bassPitchPattern0= ("intervalo", is’),

efectoPitchPattern0 = ("intervalo", is’),

altavozPitchPattern0 = ("intervalo", is’),

guiraPitchPattern0 = ("intervalo", is’),

tarolaPitchPattern0 = ("intervalo", is’),

contrasPitchPattern0 = ("intervalo", is’),

extrasPitchPattern0 = ("intervalo", is’),

230

congasPitchPattern0 = ("intervalo", is’),

jamblockPitchPattern0 = ("intervalo", is’),

clavePitchPattern0 = ("intervalo", is’)

}

-- provee un intervalo con una octava seleccionable, e.g. intervalo "3a" 1

parseCambiarIntervaloConOctava :: H Layer

parseCambiarIntervaloConOctava = parseCambiarIntervaloConOctava’ <*>

parseLayer

parseCambiarIntervaloConOctava’ :: H (Layer -> Layer)

parseCambiarIntervaloConOctava’ = parseCambiarIntervaloConOctava’’ <*>

double

parseCambiarIntervaloConOctava’’ :: H (Double -> Layer -> Layer)

parseCambiarIntervaloConOctava’’ = parseCambiarIntervaloConOctava’’’ <*>

string

parseCambiarIntervaloConOctava’’’ :: H (String -> Double -> Layer -> Layer)

parseCambiarIntervaloConOctava’’’ = cambiarIntervaloConOctava <$ reserved "

intervalo"

cambiarIntervaloConOctava :: String -> Double -> Layer -> Layer

cambiarIntervaloConOctava index octava c = c {style = nuevoE}

where

nuevoE = (style c) {

cuerdaPitchPattern0 = ("intervalo", [intervalo

index octava]),

acordeonPitchPattern0 = ("intervalo", [intervalo

index octava]),

zampoaPitchPattern0 = ("intervalo", [intervalo

index octava]),

tecladoPitchPattern0 = ("intervalo", [intervalo

index octava]),

bassPitchPattern0= ("intervalo", [intervalo index

octava]),

efectoPitchPattern0 = ("intervalo", [intervalo

index octava]),

tarolaPitchPattern0 = ("intervalo", [intervalo

index octava]),

guiraPitchPattern0 = ("intervalo", [intervalo index

octava]),

contrasPitchPattern0 = ("intervalo", [intervalo

index octava]),

231

altavozPitchPattern0 = ("intervalo", [intervalo

index octava]),

extrasPitchPattern0 = ("intervalo", [intervalo

index octava]),

congasPitchPattern0 = ("intervalo", [intervalo

index octava]),

jamblockPitchPattern0 = ("intervalo", [intervalo

index octava]),

clavePitchPattern0 = ("intervalo", [intervalo index

octava])

}

-- provee los intervalos de una lista

-- ("intervalo", [intervalo "unisono" 0, intervalo "3a" 0, intervalo "5a"

0])

parseCambiarIntervalos :: H Layer

parseCambiarIntervalos = parseCambiarIntervalos’ <*> parseLayer

parseCambiarIntervalos’ :: H (Layer -> Layer)

parseCambiarIntervalos’ = parseCambiarIntervalos’’ <*> stringList

parseCambiarIntervalos’’ :: H ([String] -> Layer -> Layer)

parseCambiarIntervalos’’ = cambiarIntervalos <$ reserved "intervalo"

cambiarIntervalos :: [String] -> Layer -> Layer

cambiarIntervalos indices c = c {style = nuevoE}

where

indices’ = fmap (\index -> intervalo index 0) indices

nuevoE = (style c) {

cuerdaPitchPattern0 = ("intervalo", indices’),

acordeonPitchPattern0 = ("intervalo", indices’),

zampoaPitchPattern0 = ("intervalo", indices’),

tecladoPitchPattern0 = ("intervalo", indices’),

bassPitchPattern0= ("intervalo", indices’),

efectoPitchPattern0 = ("intervalo", indices’),

tarolaPitchPattern0 = ("intervalo", indices’),

guiraPitchPattern0 = ("intervalo", indices’),

contrasPitchPattern0 = ("intervalo", indices’),

altavozPitchPattern0 = ("intervalo", indices’),

extrasPitchPattern0 = ("intervalo", indices’),

congasPitchPattern0 = ("intervalo", indices’),

jamblockPitchPattern0 = ("intervalo", indices’),

clavePitchPattern0 = ("intervalo", indices’)

}

-- provee el intervalo con respecto a la tonica y cualidad del acorde

232

parseCambiarIntervalo :: H Layer

parseCambiarIntervalo = parseCambiarIntervalo’ <*> parseLayer

parseCambiarIntervalo’ :: H (Layer -> Layer)

parseCambiarIntervalo’ = parseCambiarIntervalo’’ <*> string

parseCambiarIntervalo’’ :: H (String -> Layer -> Layer)

parseCambiarIntervalo’’ = cambiarIntervalo <$ reserved "intervalo"

cambiarIntervalo :: String -> Layer -> Layer

cambiarIntervalo index c = c {style = nuevoE}

where nuevoE = (style c) {

cuerdaPitchPattern0 = ("intervalo", [intervalo

index 0]),

acordeonPitchPattern0 = ("intervalo", [intervalo

index 0]),

zampoaPitchPattern0 = ("intervalo", [intervalo

index 0]),

tecladoPitchPattern0 = ("intervalo", [intervalo

index 0]),

bassPitchPattern0= ("intervalo", [intervalo index

0]),

efectoPitchPattern0 = ("intervalo", [intervalo

index 0]),

altavozPitchPattern0 = ("intervalo", [intervalo

index 0]),

guiraPitchPattern0 = ("intervalo", [intervalo index

0]),

contrasPitchPattern0 = ("intervalo", [intervalo

index 0]),

tarolaPitchPattern0 = ("intervalo", [intervalo

index 0]),

extrasPitchPattern0 = ("intervalo", [intervalo

index 0]),

congasPitchPattern0 = ("intervalo", [intervalo

index 0]),

jamblockPitchPattern0 = ("intervalo", [intervalo

index 0]),

clavePitchPattern0 = ("intervalo", [intervalo index

0])

}

-- ritmo [1 2, 1 2 3 4]

parseCambiarRitmosAuto :: H Layer

parseCambiarRitmosAuto = parseCambiarRitmosAuto’ <*> parseLayer

233

parseCambiarRitmosAuto’ :: H (Layer -> Layer)

parseCambiarRitmosAuto’ = parseCambiarRitmosAuto’’ <*>

parseListasDeListasDeAtaques -- rationalList

parseCambiarRitmosAuto’’ :: H ([[Rational]] -> Layer -> Layer)

parseCambiarRitmosAuto’’ = cambiarRitmosAuto <$ reserved "ritmo"

cambiarRitmosAuto :: [[Rational]] -> Layer -> Layer

cambiarRitmosAuto [x] c = c {style = nuevoE}

where

-- [x’] = concat [x]

-- attack’ = (x’ - 1) / 4 -- metre? [1, 2, 3, 4] => 1 [0, 0.25, 0.5,

0.75]

-- metre |x’ <= 0 = 1

-- |otherwise = (realToFrac $ floor attack’) + 1

metre = toRational $ length [x] -- [[Nothing], [1, 2, 3]] = metre 2 -- (

realToFrac $ floor rs’) + 1

rPat = cambiarRitmo’’’’ metre [x]

nuevoE = (style c) {

cuerdaRhythmPattern0 = rPat,

acordeonRhythmPattern0 = rPat,

zampoaRhythmPattern0 = rPat,

tecladoRhythmPattern0 = rPat,

bassRhythmPattern0 = rPat,

guiraRhythmPattern0 = rPat,

contrasRhythmPattern0 = rPat,

tarolaRhythmPattern0 = rPat,

efectoRhythmPattern0 = rPat,

altavozRhythmPattern0 = rPat,

extrasRhythmPattern0 = rPat,

claveRhythmPattern0 = rPat,

jamblockRhythmPattern0 = rPat,

congasRhythmPattern0 = rPat

}

cambiarRitmosAuto attacks c = c {style = nuevoE}

where

-- attacks’ = concat attacks

-- attack’ = ((maximum attacks’) - 1) / 4 -- metre? [1, 2, 3, 4] => 1

[0, 0.25, 0.5, 0.75]

-- metre = (realToFrac $ floor attack’) + 1

metre = toRational $ length attacks -- [[Nothing], [1, 2, 3]] = metre 2

-- (realToFrac $ floor rs’) + 1

rPat = cambiarRitmo’’’’ metre attacks

234

nuevoE = (style c) {

cuerdaRhythmPattern0 = rPat,

acordeonRhythmPattern0 = rPat,

zampoaRhythmPattern0 = rPat,

tecladoRhythmPattern0 = rPat,

bassRhythmPattern0 = rPat,

guiraRhythmPattern0 = rPat,

contrasRhythmPattern0 = rPat,

tarolaRhythmPattern0 = rPat,

efectoRhythmPattern0 = rPat,

altavozRhythmPattern0 = rPat,

extrasRhythmPattern0 = rPat,

claveRhythmPattern0 = rPat,

jamblockRhythmPattern0 = rPat,

congasRhythmPattern0 = rPat

}

-- ritmo 4 cumbia cuerda, ritmo 1

parseCambiarRitmoAuto :: H Layer

parseCambiarRitmoAuto = parseCambiarRitmoAuto’ <*> parseLayer

parseCambiarRitmoAuto’ :: H (Layer -> Layer)

parseCambiarRitmoAuto’ = parseCambiarRitmoAuto’’ <*> rationalOrInteger

parseCambiarRitmoAuto’’ :: H (Rational -> Layer -> Layer)

parseCambiarRitmoAuto’’ = cambiarRitmoMetreAuto <$ reserved "ritmo"

cambiarRitmoMetreAuto :: Rational -> Layer -> Layer

cambiarRitmoMetreAuto attack c = c {style = nuevoE}

where

attack’ = (attack - 1) / 4

metre |attack <= 0 = 1 -- avoid metre of 0

|otherwise = (realToFrac $ floor attack’) + 1 -- metre? [1, 2, 3,

4] => 1 [0, 0.25, 0.5, 0.75]

nuevoE = (style c) {

cuerdaRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

acordeonRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

zampoaRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

tecladoRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

235

bassRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

guiraRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

contrasRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

tarolaRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

efectoRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

altavozRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

extrasRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

congasRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

jamblockRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

claveRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)]

}

-- type RhythmicPattern = [(Rational,Rational)]

-- ritmo 0.5 cumbia cuerda

parseCambiarRitmo :: H Layer

parseCambiarRitmo = parseCambiarRitmo’ <*> parseLayer

parseCambiarRitmo’ :: H (Layer -> Layer)

parseCambiarRitmo’ = parseCambiarRitmo’’ <*> rationalOrInteger

parseCambiarRitmo’’ :: H (Rational -> Layer -> Layer)

parseCambiarRitmo’’ = parseCambiarRitmo’’’ <*> rationalOrInteger

parseCambiarRitmo’’’ :: H (Rational -> Rational -> Layer -> Layer)

parseCambiarRitmo’’’ = cambiarRitmo <$ reserved "ritmo"

cambiarRitmo :: Rational -> Rational -> Layer -> Layer

cambiarRitmo metre attack c = c {style = nuevoE}

where nuevoE = (style c) {

cuerdaRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

acordeonRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

zampoaRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

236

tecladoRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

bassRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

guiraRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

contrasRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

tarolaRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

efectoRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

altavozRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

extrasRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

congasRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

jamblockRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)],

claveRhythmPattern0 = catMaybes [cambiarRitmo’ (

metre) (attack)]

}

--e.g. ritmo 1 [0.125, 0.25] cumbia cuerda, deberia ser ritmo 1 [1 1.25

1.5 1.75], ritmo 2 [1 2]

parseCambiarRitmos :: H Layer

parseCambiarRitmos = parseCambiarRitmos’ <*> parseLayer

parseCambiarRitmos’ :: H (Layer -> Layer)

parseCambiarRitmos’ = parseCambiarRitmos’’ <*> parseListasDeListasDeAtaques

-- rationalList

parseCambiarRitmos’’ :: H ([[Rational]] -> Layer -> Layer)

parseCambiarRitmos’’ = parseCambiarRitmos’’’ <*> rationalOrInteger

parseCambiarRitmos’’’ :: H (Rational -> [[Rational]] -> Layer -> Layer)

parseCambiarRitmos’’’ = cambiarRitmos <$ reserved "ritmo"

cambiarRitmos :: Rational -> [[Rational]] -> Layer -> Layer

cambiarRitmos metre rs c = c {style = nuevoE}

where

-- attacks’ = concat attacks

nuevoE = (style c) {

cuerdaRhythmPattern0 = cambiarRitmo’’’’ metre rs,

237

acordeonRhythmPattern0 = cambiarRitmo’’’’ metre rs,

zampoaRhythmPattern0 = cambiarRitmo’’’’ metre rs,

tecladoRhythmPattern0 = cambiarRitmo’’’’ metre rs,

bassRhythmPattern0 = cambiarRitmo’’’’ metre rs,

guiraRhythmPattern0 = cambiarRitmo’’’’ metre rs,

contrasRhythmPattern0 = cambiarRitmo’’’’ metre rs,

tarolaRhythmPattern0 = cambiarRitmo’’’’ metre rs,

efectoRhythmPattern0 = cambiarRitmo’’’’ metre rs,

altavozRhythmPattern0 = cambiarRitmo’’’’ metre rs,

extrasRhythmPattern0 = cambiarRitmo’’’’ metre rs,

claveRhythmPattern0 = cambiarRitmo’’’’ metre rs,

jamblockRhythmPattern0 = cambiarRitmo’’’’ metre rs,

congasRhythmPattern0 = cambiarRitmo’’’’ metre rs

}

-- a function to change the attacks

cambiarRitmo’ :: Rational -> Rational -> Maybe (Rational, Rational)

cambiarRitmo’ metre attack = metreAndAttack

where

cuartosPorCompas = 4 -- * metre

metreAndAttack | (attack >= 1) && (attack < (cuartosPorCompas + 1)) =

Just (metre, attack’) -- e.g. ritmo 1 [1 2 3 4] => ritmo 1 [0, 0.25,

0.5, 0.75], 2 [1 2 3 4, 5 6 7 8] => ritmo 2 [0, 0.25, 0.5, 0.75, 1,

1.25, 1.5, 1.75]

| otherwise = Nothing

where attack’ = (attack - 1) / 4

-- where attack’ = ((attack - 1) / 4) + indice

cambiarRitmo’’ :: Rational -> [Rational] -> [(Rational, Rational)]

cambiarRitmo’’ metre attacks = catMaybes $ fmap (cambiarRitmo’ metre)

attacks

cambiarRitmoSinMetre’ :: Rational -> Rational -> Maybe Rational

cambiarRitmoSinMetre’ metre attack = metreAndAttack

where

cuartosPorCompas = 4 -- * metre

metreAndAttack | (attack >= 1) && (attack < (cuartosPorCompas + 1)) =

Just attack’ -- e.g. ritmo 1 [1 2 3 4] => ritmo 1 [0, 0.25, 0.5,

0.75], 2 [1 2 3 4, 5 6 7 8] => ritmo 2 [0, 0.25, 0.5, 0.75, 1, 1.25,

1.5, 1.75]

| otherwise = Nothing

where attack’ = (attack - 1) / 4

cambiarRitmoSinMetre’’’ :: Rational -> [Rational] -> [Maybe Rational]

238

cambiarRitmoSinMetre’’’ metre attacks = fmap (cambiarRitmoSinMetre’ metre)

attacks

-- nota: falta dividir en /4 y luego sumar, ahora suma primero y divide

despues pero no es lo mismo

cambiarRitmo’’’’ :: Rational -> [[Rational]] -> [(Rational, Rational)] -- [(

metre, attack)]

cambiarRitmo’’’’ metre attacks = do

let dividirAttacks = fmap (cambiarRitmoSinMetre’’’ metre) attacks -- [[

Maybe Rational]]

let zipIAttacks = zip [toRational 0 .. (metre - 1)] dividirAttacks -- [(0,

[Just 1, Just 2..])), ...)]

let sumarIaAttacks = fmap (\(i, xs) -> fmap (\x -> (+) <$> x <*> Just i)

xs) zipIAttacks -- [[1,2, 3], [4, 5, 6]]

let attacks’ = catMaybes $ concat sumarIaAttacks

fmap (\attack -> (metre, attack)) attacks’

-- cambia el gain

parseCambiarGain :: H Layer

parseCambiarGain = parseCambiarGain’ <*> parseLayer

parseCambiarGain’ :: H (Layer -> Layer)

parseCambiarGain’ = parseCambiarGain’’ <*> double

parseCambiarGain’’:: H (Double -> Layer -> Layer)

parseCambiarGain’’ = cambiarGain <$ (reserved "vol" <|> reserved "volumen")

cambiarGain :: Double -> Layer -> Layer

cambiarGain gain c = c {style = nuevoE}

where nuevoE = (style c) {

cuerdaGainPattern0 = gain,

acordeonGainPattern0 = gain,

zampoaGainPattern0 = gain,

tecladoGainPattern0 = gain,

bassGainPattern0 = gain,

guiraGainPattern0 = gain,

contrasGainPattern0 = gain,

tarolaGainPattern0 = gain,

efectoGainPattern0 = gain,

altavozGainPattern0 = gain,

extrasGainPattern0 = gain,

congasGainPattern0 = gain,

jamblockGainPattern0 = gain,

claveGainPattern0 = gain

}

239

--cambia el paneo

parseCambiarPaneo :: H Layer

parseCambiarPaneo = parseCambiarPaneo’ <*> parseLayer

parseCambiarPaneo’ :: H (Layer -> Layer)

parseCambiarPaneo’ = parseCambiarPaneo’’ <*> double

parseCambiarPaneo’’:: H (Double -> Layer -> Layer)

parseCambiarPaneo’’ = cambiarPaneo <$ (reserved "pan" <|> reserved "paneo")

cambiarPaneo :: Double -> Layer -> Layer

cambiarPaneo pan c = c {style = nuevoE}

where nuevoE = (style c) {

cuerdaPanPattern0 = pan,

acordeonPanPattern0 = pan,

zampoaPanPattern0 = pan,

tecladoPanPattern0 = pan,

bassPanPattern0 = pan,

guiraPanPattern0 = pan,

contrasPanPattern0 = pan,

tarolaPanPattern0 = pan,

efectoPanPattern0 = pan,

altavozPanPattern0 = pan,

extrasPanPattern0 = pan,

congasPanPattern0 = pan,

jamblockPanPattern0 = pan,

clavePanPattern0 = pan

}

-- a function that allows switching between presets

-- e.g: preset 1 cumbia bajo

parsePreset :: H Layer

parsePreset = parsePreset’ <*> parseLayer

parsePreset’ :: H (Layer -> Layer)

parsePreset’ = parsePreset’’ <*> int

parsePreset’’ :: H (Int -> Layer -> Layer)

parsePreset’’ = preset <$ reserved "preset"

preset :: Int -> Layer -> Layer

preset 0 c = c {style = nuevoE}

where nuevoE = (style c) {

240

tecladoRhythmPattern0 = tecladoRhythmPattern0 (

style c), -- ie. [],

tecladoSampleNPattern0 = tecladoSampleNPattern0 (

style c),

tecladoPitchPattern0 = tecladoPitchPattern0 (style

c),

cuerdaRhythmPattern0 = cuerdaRhythmPattern0 (style

c),

cuerdaSampleNPattern0 = cuerdaSampleNPattern0 (

style c),

cuerdaPitchPattern0 = cuerdaPitchPattern0 (style c)

, -- or double? (nota [0, 2, 3]

acordeonRhythmPattern0 = acordeonRhythmPattern0 (

style c),

acordeonSampleNPattern0 = acordeonSampleNPattern0 (

style c),

acordeonPitchPattern0 = acordeonPitchPattern0 (

style c), -- or double? (nota [0, 2, 3] cumbia)

cuerda

zampoaRhythmPattern0 = zampoaRhythmPattern0 (style

c),

zampoaSampleNPattern0 = zampoaSampleNPattern0 (

style c),

zampoaPitchPattern0 = zampoaPitchPattern0 (style c)

, -- or double? (nota [0, 2, 3]

bassRhythmPattern0 = bassRhythmPattern0 (style c),

--i.e. [],

bassSampleNPattern0 = bassSampleNPattern0 (style c)

,

bassPitchPattern0 = bassPitchPattern0 (style c), --

index from list of pitches i.e. [60, 64, 67]

guiraRhythmPattern0 = guiraRhythmPattern0 (style c)

, --i.e. []

guiraSampleNPattern0 = guiraSampleNPattern0 (style

c),

guiraPitchPattern0 = guiraPitchPattern0 (style c),

contrasRhythmPattern0 = contrasRhythmPattern0 (

style c),

241

contrasSampleNPattern0 = contrasSampleNPattern0 (

style c),

contrasPitchPattern0 = contrasPitchPattern0 (style

c),

tarolaRhythmPattern0 = tarolaRhythmPattern0 (style

c),

tarolaSampleNPattern0 =tarolaSampleNPattern0 (style

c),

tarolaPitchPattern0 = tarolaPitchPattern0 (style c)

,

efectoRhythmPattern0 = efectoRhythmPattern0 (style

c),

efectoSampleNPattern0 = efectoSampleNPattern0 (

style c),

efectoPitchPattern0 = efectoPitchPattern0 (style c)

,

extrasRhythmPattern0 = extrasRhythmPattern0 (style

c),

extrasSampleNPattern0 = extrasSampleNPattern0 (

style c),

extrasPitchPattern0 = extrasPitchPattern0 (style c)

,

congasRhythmPattern0 = congasRhythmPattern0 (style

c),

congasSampleNPattern0 = congasSampleNPattern0 (

style c),

congasPitchPattern0 = congasPitchPattern0 (style c)

,

claveRhythmPattern0 = claveRhythmPattern0 (style c)

,

claveSampleNPattern0 = claveSampleNPattern0 (style

c),

clavePitchPattern0 = clavePitchPattern0 (style c)

}

preset 1 c = c {style = nuevoE}

where nuevoE = (style c) {

242

tecladoRhythmPattern0 = tecladoRhythmPattern1 (

style c), -- ie. [],

tecladoSampleNPattern0 = tecladoSampleNPattern1 (

style c),

bassRhythmPattern0 = bassRhythmPattern1 (style c),

--i.e. [],

bassSampleNPattern0 = tecladoSampleNPattern0 (style

c),

bassPitchPattern0 = bassPitchPattern1 (style c),

claveRhythmPattern0 = claveRhythmPattern1 (style c)

,

claveSampleNPattern0 = claveSampleNPattern1 (style

c),

clavePitchPattern0 = clavePitchPattern1 (style c)

}

preset 2 c = c {style = nuevoE}

where nuevoE = (style c) {

bassRhythmPattern0 = bassRhythmPattern2 (style c),

--i.e. [],

bassSampleNPattern0 = tecladoSampleNPattern0 (style

c),

bassPitchPattern0 = bassPitchPattern2 (style c),

claveRhythmPattern0 = claveRhythmPattern2 (style c)

,

claveSampleNPattern0 = claveSampleNPattern2 (style

c),

clavePitchPattern0 = clavePitchPattern2 (style c)

}

preset _ c = preset 0 c

-- funcion que modifica los acordes del teclado -- acompanamiento 2 => no

ms de 4.99

parseacompanamiento :: H Layer

parseacompanamiento = parseacompanamiento’ <*> parseLayer

parseacompanamiento’ :: H (Layer -> Layer)

parseacompanamiento’ = parseacompanamiento’’ <*> rationalOrInteger

parseacompanamiento’’ :: H (Rational -> Layer -> Layer)

parseacompanamiento’’ = acompanamiento <$ (reserved "acompaamiento" <|>

reserved "acompanamiento")

243

acompanamiento :: Rational -> Layer -> Layer

acompanamiento attack c = c {style = nuevoE}

where

-- n’ | n == 0 = 0

-- |otherwise = abs $ n - 1

attack’ = (attack - 1) / 4

metre = (realToFrac $ floor attack’) + 1 -- metre? [1, 2, 3, 4] => 1 [0,

0.25, 0.5, 0.75]

rPat = catMaybes [cambiarRitmo’ metre attack] -- fmap (\n -> (metre, (

realToFrac n) /4)) ns’

nuevoE = (style c) {

tecladoRhythmPattern0 = rPat, -- [(1, (realToFrac n’)

/ 4)],

tecladoSampleNPattern0 = tecladoSampleNPattern0 (style

c),

tecladoPitchPattern0 = ("acorde", [intervalo "unisono"

0, intervalo "3a" 0, intervalo "5a" 0]) --

pitchPat (style c) -- ("acorde", [note])

}

-- funcion que modifica los acordes del teclado -- acompanamiento (2 4)

parseacompanamientos :: H Layer

parseacompanamientos = parseacompanamientos’ <*> parseLayer

parseacompanamientos’ :: H (Layer -> Layer)

parseacompanamientos’ = parseacompanamientos’’ <*>

parseAtaquesAListaDeAtaques -- rationalList

parseacompanamientos’’ :: H ([Rational] -> Layer -> Layer)

parseacompanamientos’’ = acompanamientos <$ (reserved "acompaamiento" <|>

reserved "acompanamiento")

acompanamientos :: [Rational] -> Layer -> Layer

acompanamientos ns c = c {style = nuevoE}

where

-- ns’ = fmap (\n -> if (n == 0) then 0 else (abs $ n - 1)) ns -- [1,

2, 3, 4] a [0, 1, 2, 3]

-- rs’ = ((maximum ns’) - 1) / 4 -- metre? [1, 2, 3, 4] => 1 [0, 0.25,

0.5, 0.75]

ns’ = ((maximum ns) - 1) / 4 -- metre? [1, 2, 3, 4] => 1 [0, 0.25, 0.5,

0.75]

metre = (realToFrac $ floor ns’) + 1

244

-- metre = 1

rPat = cambiarRitmo’’ metre ns -- fmap (\n -> (metre, (realToFrac n) /4)

) ns’

nPat (NPattern1 xs) = NPattern1 $ concat $ replicate (length ns) xs

nuevoE = (style c) {

tecladoRhythmPattern0 = rPat, --

listaDeStringsARhythmicPattern rPat notes,

tecladoSampleNPattern0 = nPat $
tecladoSampleNPattern0 (style c), --

listaDeStringsANPattern nPat notes,

tecladoPitchPattern0 = ("acorde", [intervalo "

unisono" 0, intervalo "3a" 0, intervalo "5a" 0])

-- ("acorde", concat $ notes) -- (PitchType, [

Note])

}

acompanamientosTest :: [Double] -> [Note] -> (String, String, String)

acompanamientosTest ns notes = do

let ns’ = fmap (\n -> if (n == 0) then 0 else (abs $ n - 1)) ns -- [1, 2,

3, 4] a [0, 1, 2, 3]

let metre = 1

let notes’ = replicate (length ns) [intervalo "unisono" 0, intervalo "3a"

0, intervalo "5a" 0] -- [[Note]]

let rPat = fmap (\n -> (metre, (realToFrac n) /4)) ns’

let nPat = NPattern1 $ concat $ fmap (\x -> replicate (length ns) x) [0]

let tecladoRhythmPattern = listaDeStringsARhythmicPattern rPat notes’

let tecladoSampleNPattern = listaDeStringsANPattern nPat notes’

let tecladoPitchPattern = ("acorde", concat $ notes’)

(show tecladoRhythmPattern, show tecladoSampleNPattern, show

tecladoPitchPattern)

-- funcion que modifica los acordes del teclado -- acompanamiento 2 ("f"

"3a" "5a") o acompanamiento 2 $ "f" ("3a" (-1)) "5a"

parseAcompanamientoConVoicingSel :: H Layer

parseAcompanamientoConVoicingSel = parseAcompanamientoConVoicingSel’ <*>

parseLayer

parseAcompanamientoConVoicingSel’ :: H (Layer -> Layer)

parseAcompanamientoConVoicingSel’ = parseAcompanamientoConVoicingSel’’ <*>

parseNoteList --

parseAcompanamientoConVoicingSel’’ :: H ([Note] -> Layer -> Layer)

parseAcompanamientoConVoicingSel’’ = parseAcompanamientoConVoicingSel’’’ <*>

rationalOrInteger

245

parseAcompanamientoConVoicingSel’’’ :: H (Rational -> [Note] -> Layer ->

Layer)

parseAcompanamientoConVoicingSel’’’ = acompanamientoConVoicingSel <$ (

reserved "acompaamiento" <|> reserved "acompanamiento")

acompanamientoConVoicingSel :: Rational -> [Note] -> Layer -> Layer

acompanamientoConVoicingSel attack notes c = c {style = nuevoE}

where

attack’ = (attack - 1) / 4

metre = (realToFrac $ floor attack’) + 1 -- metre? [1, 2, 3, 4] => 1 [0,

0.25, 0.5, 0.75]

rPat = catMaybes [cambiarRitmo’ metre attack] -- fmap (\n -> (metre, (

realToFrac n) /4)) ns’

nPat = tecladoSampleNPattern0 (style c)

nuevoE = (style c) {

tecladoRhythmPattern0 = rPat, --

listaDeStringsARhythmicPattern rPat notes,

tecladoSampleNPattern0 = nPat, --

listaDeStringsANPattern nPat notes,

tecladoPitchPattern0 = ("acorde", notes)-- ("acorde

", [note])

}

---- test

-- p test this by taking the layer out

-- acompanamientoConVoicingSel :: Double -> [[Note]] -> Layer -> Layer

acompanamientoConVoicingSelTest n notes = do

let n’ | n == 0 = 1

|otherwise = abs $ n - 1

let rPat = [(1, (realToFrac n’) / 4)]

let nPat = NPattern1 [0]

let tecladoRhythmPattern = listaDeStringsARhythmicPattern rPat notes

let tecladoSampleNPattern = listaDeStringsANPattern nPat notes

let tecladoPitchPattern = ("intervalo", listaDeStringsANote notes)

(show tecladoRhythmPattern, show tecladoSampleNPattern, show

tecladoPitchPattern)

-- acompanamiento (2 4) ("f" "3a" $ "5a" (-1))

parseAcompanamientosConVoicingSel :: H Layer

parseAcompanamientosConVoicingSel = parseAcompanamientosConVoicingSel’ <*>

parseLayer

parseAcompanamientosConVoicingSel’ :: H (Layer -> Layer)

parseAcompanamientosConVoicingSel’ = parseAcompanamientosConVoicingSel’’ <*>

parseNoteList -- parseNoteList --

246

praseListaDeListaStringAListaDeAcordes

parseAcompanamientosConVoicingSel’’ :: H ([Note] -> Layer -> Layer)

parseAcompanamientosConVoicingSel’’ = parseAcompanamientosConVoicingSel’’’

<*> parseAtaquesAListaDeAtaques -- rationalList

parseAcompanamientosConVoicingSel’’’ :: H ([Rational] -> [Note] -> Layer ->

Layer)

parseAcompanamientosConVoicingSel’’’ = acompanamientosConVoicingSel <$ (

reserved "acompaamiento" <|> reserved "acompanamiento")

acompanamientosConVoicingSel :: [Rational] -> [Note] -> Layer -> Layer

acompanamientosConVoicingSel rs notes c = c {style = nuevoE}

where

-- metre = 1

-- ns’ = fmap (\n -> if (n == 0) then 0 else (abs $ n - 1)) ns -- [1,

2, 3, 4] a [0, 1, 2, 3]

-- rPat = fmap (\n -> (metre, (realToFrac n) /4)) ns’-- [(1, (

realToFrac n’) / 4)]

rs’ = ((maximum rs) - 1) / 4 -- metre? [1, 2, 3, 4] => 1 [0, 0.25, 0.5,

0.75]

metre = (realToFrac $ floor rs’) + 1

rPat = cambiarRitmo’’ metre rs

nPat (NPattern1 xs) = NPattern1 $ concat $ replicate (length rs) xs

nuevoE = (style c) {

tecladoRhythmPattern0 = rPat, --

listaDeStringsARhythmicPattern rPat notes,

tecladoSampleNPattern0 = nPat $
tecladoSampleNPattern0 (style c), --

listaDeStringsANPattern nPat notes,

tecladoPitchPattern0 = ("acorde", notes)-- ("

intervalo", listaDeStringsANote notes)

}

parseNote :: H Note --(Relacion, Double, Octava)

parseNote = parseNoteConOctava

<|> parseNoteConOctavaAuto

--

parseNoteConOctava :: H Note

parseNoteConOctava = parseNoteConOctava’ <*> double

parseNoteConOctava’ :: H (Octava -> Note)

247

parseNoteConOctava’ = do

i <- string

return $ \o -> intervalo i o

parseNoteConOctavaAuto :: H Note

parseNoteConOctavaAuto = do

i <- string

return $ intervalo i 0

parseNotesNoQuotes :: H [Note]

parseNotesNoQuotes = parseUnNoteConOctavaAuto

<|> parseDosNoteConOctavaAuto

<|> parseThreeNoteConOctavaAuto

<|> parseFourNoteConOctavaAuto

<|> parseFiveNoteConOctavaAuto

<|> parseSixNoteConOctavaAuto

<|> parseSevenNoteConOctavaAuto

<|> parseEightNoteConOctavaAuto

<|> parseNineNoteConOctavaAuto

<|> parseTenNoteConOctavaAuto

<|> parseElevenNoteConOctavaAuto

<|> parseTwelveNoteConOctavaAuto

<|> parseThirteenNoteConOctavaAuto

<|> parseFourteenNoteConOctavaAuto

<|> parseFifteenNoteConOctavaAuto

<|> parseSixteenNoteConOctavaAuto

parseSixteenNoteConOctavaAuto :: H [Note]

parseSixteenNoteConOctavaAuto = parseSixteenNoteConOctavaAuto’ <*>

identifier

parseSixteenNoteConOctavaAuto’ :: H (String -> [Note])

parseSixteenNoteConOctavaAuto’ = parseSixteenNoteConOctavaAuto’’ <*> int

parseSixteenNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’ = parseSixteenNoteConOctavaAuto’’’ <*>

identifier

parseSixteenNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’ = parseSixteenNoteConOctavaAuto’’’’ <*> int

248

parseSixteenNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [

Note])

parseSixteenNoteConOctavaAuto’’’’ = parseSixteenNoteConOctavaAuto’’’’’ <*>

identifier

parseSixteenNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’ = parseSixteenNoteConOctavaAuto’’’’’’ <*>

int

parseSixteenNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’ = parseSixteenNoteConOctavaAuto’’’’’’’

<*> identifier

parseSixteenNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’ = parseSixteenNoteConOctavaAuto’’’’’’’’

<*> int

parseSixteenNoteConOctavaAuto’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’ = parseSixteenNoteConOctavaAuto

’’’’’’’’’ <*> identifier

parseSixteenNoteConOctavaAuto’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’ = parseSixteenNoteConOctavaAuto

’’’’’’’’’’ <*> int

parseSixteenNoteConOctavaAuto’’’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’ = parseSixteenNoteConOctavaAuto

’’’’’’’’’’’ <*> identifier

parseSixteenNoteConOctavaAuto’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> [Note

])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’ = parseSixteenNoteConOctavaAuto

’’’’’’’’’’’’ <*> int

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

249

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’ = parseSixteenNoteConOctavaAuto

’’’’’’’’’’’’’ <*> identifier

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’ = parseSixteenNoteConOctavaAuto

’’’’’’’’’’’’’’ <*> int

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’ = parseSixteenNoteConOctavaAuto

’’’’’’’’’’’’’’’ <*> identifier

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’ :: H (String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’ = parseSixteenNoteConOctavaAuto

’’’’’’’’’’’’’’’’ <*> int

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ <*> identifier

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ :: H (String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ <*> int

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ <*> identifier

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ <*> int

250

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

251

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ =

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ <*>

identifier

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseSixteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ = do

i1 <- int

252

return $ \c1 i2 c2 i3 c3 i4 c4 i5 c5 i6 c6 i7 c7 i8 c8 i9 c9 i10 c10 i11

c11 i12 c12 i13 c13 i14 c14 i15 c15 i16 c16 -> [catIntervalo i1 c1,

catIntervalo i2 c2, catIntervalo i3 c3, catIntervalo i4 c4,

catIntervalo i5 c5, catIntervalo i6 c6, catIntervalo i7 c7,

catIntervalo i8 c8, catIntervalo i9 c9, catIntervalo i10 c10,

catIntervalo i11 c11, catIntervalo i12 c12, catIntervalo i13 c13,

catIntervalo i14 c14, catIntervalo i15 c15, catIntervalo i16 c16]

parseFifteenNoteConOctavaAuto :: H [Note]

parseFifteenNoteConOctavaAuto = parseFifteenNoteConOctavaAuto’ <*>

identifier

parseFifteenNoteConOctavaAuto’ :: H (String -> [Note])

parseFifteenNoteConOctavaAuto’ = parseFifteenNoteConOctavaAuto’’ <*> int

parseFifteenNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’ = parseFifteenNoteConOctavaAuto’’’ <*>

identifier

parseFifteenNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’ = parseFifteenNoteConOctavaAuto’’’’ <*> int

parseFifteenNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [

Note])

parseFifteenNoteConOctavaAuto’’’’ = parseFifteenNoteConOctavaAuto’’’’’ <*>

identifier

parseFifteenNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’ = parseFifteenNoteConOctavaAuto’’’’’’ <*>

int

parseFifteenNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’ = parseFifteenNoteConOctavaAuto’’’’’’’

<*> identifier

parseFifteenNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’ = parseFifteenNoteConOctavaAuto’’’’’’’’

<*> int

parseFifteenNoteConOctavaAuto’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> [Note])

253

parseFifteenNoteConOctavaAuto’’’’’’’’ = parseFifteenNoteConOctavaAuto

’’’’’’’’’ <*> identifier

parseFifteenNoteConOctavaAuto’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’ = parseFifteenNoteConOctavaAuto

’’’’’’’’’’ <*> int

parseFifteenNoteConOctavaAuto’’’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’ = parseFifteenNoteConOctavaAuto

’’’’’’’’’’’ <*> identifier

parseFifteenNoteConOctavaAuto’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> [Note

])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’ = parseFifteenNoteConOctavaAuto

’’’’’’’’’’’’ <*> int

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’ = parseFifteenNoteConOctavaAuto

’’’’’’’’’’’’’ <*> identifier

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’ = parseFifteenNoteConOctavaAuto

’’’’’’’’’’’’’’ <*> int

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’ = parseFifteenNoteConOctavaAuto

’’’’’’’’’’’’’’’ <*> identifier

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’ :: H (String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’ = parseFifteenNoteConOctavaAuto

’’’’’’’’’’’’’’’’ <*> int

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

254

String -> Int -> String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ <*> identifier

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ :: H (String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ <*> int

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ <*> identifier

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ <*> int

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

255

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’ =

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

256

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseFifteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 i4 c4 i5 c5 i6 c6 i7 c7 i8 c8 i9 c9 i10 c10 i11

c11 i12 c12 i13 c13 i14 c14 i15 c15 -> [catIntervalo i1 c1,

catIntervalo i2 c2, catIntervalo i3 c3, catIntervalo i4 c4,

catIntervalo i5 c5, catIntervalo i6 c6, catIntervalo i7 c7,

catIntervalo i8 c8, catIntervalo i9 c9, catIntervalo i10 c10,

catIntervalo i11 c11, catIntervalo i12 c12, catIntervalo i13 c13,

catIntervalo i14 c14, catIntervalo i15 c15]

parseFourteenNoteConOctavaAuto :: H [Note]

parseFourteenNoteConOctavaAuto = parseFourteenNoteConOctavaAuto’ <*>

identifier

parseFourteenNoteConOctavaAuto’ :: H (String -> [Note])

parseFourteenNoteConOctavaAuto’ = parseFourteenNoteConOctavaAuto’’ <*> int

parseFourteenNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’ = parseFourteenNoteConOctavaAuto’’’ <*>

identifier

parseFourteenNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’ = parseFourteenNoteConOctavaAuto’’’’ <*>

int

parseFourteenNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [

Note])

parseFourteenNoteConOctavaAuto’’’’ = parseFourteenNoteConOctavaAuto’’’’’ <*>

identifier

parseFourteenNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’ = parseFourteenNoteConOctavaAuto’’’’’’

<*> int

parseFourteenNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’ = parseFourteenNoteConOctavaAuto’’’’’’’

<*> identifier

257

parseFourteenNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’ = parseFourteenNoteConOctavaAuto

’’’’’’’’ <*> int

parseFourteenNoteConOctavaAuto’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’ = parseFourteenNoteConOctavaAuto

’’’’’’’’’ <*> identifier

parseFourteenNoteConOctavaAuto’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’ = parseFourteenNoteConOctavaAuto

’’’’’’’’’’ <*> int

parseFourteenNoteConOctavaAuto’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’ = parseFourteenNoteConOctavaAuto

’’’’’’’’’’’ <*> identifier

parseFourteenNoteConOctavaAuto’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> [Note

])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’ = parseFourteenNoteConOctavaAuto

’’’’’’’’’’’’ <*> int

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’ = parseFourteenNoteConOctavaAuto

’’’’’’’’’’’’’ <*> identifier

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’ = parseFourteenNoteConOctavaAuto

’’’’’’’’’’’’’’ <*> int

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’ <*> identifier

258

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’ :: H (String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’ <*> int

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ <*> identifier

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ <*> int

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ <*> identifier

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ <*> int

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ <*> int

259

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’ =

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseFourteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 i4 c4 i5 c5 i6 c6 i7 c7 i8 c8 i9 c9 i10 c10 i11

c11 i12 c12 i13 c13 i14 c14 -> [catIntervalo i1 c1, catIntervalo i2 c2,

catIntervalo i3 c3, catIntervalo i4 c4, catIntervalo i5 c5,

260

catIntervalo i6 c6, catIntervalo i7 c7, catIntervalo i8 c8,

catIntervalo i9 c9, catIntervalo i10 c10, catIntervalo i11 c11,

catIntervalo i12 c12, catIntervalo i13 c13, catIntervalo i14 c14]

parseThirteenNoteConOctavaAuto :: H [Note]

parseThirteenNoteConOctavaAuto = parseThirteenNoteConOctavaAuto’ <*>

identifier

parseThirteenNoteConOctavaAuto’ :: H (String -> [Note])

parseThirteenNoteConOctavaAuto’ = parseThirteenNoteConOctavaAuto’’ <*> int

parseThirteenNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’ = parseThirteenNoteConOctavaAuto’’’ <*>

identifier

parseThirteenNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’ = parseThirteenNoteConOctavaAuto’’’’ <*>

int

parseThirteenNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [

Note])

parseThirteenNoteConOctavaAuto’’’’ = parseThirteenNoteConOctavaAuto’’’’’ <*>

identifier

parseThirteenNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’ = parseThirteenNoteConOctavaAuto’’’’’’

<*> int

parseThirteenNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’ = parseThirteenNoteConOctavaAuto’’’’’’’

<*> identifier

parseThirteenNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’ = parseThirteenNoteConOctavaAuto

’’’’’’’’ <*> int

parseThirteenNoteConOctavaAuto’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’ = parseThirteenNoteConOctavaAuto

’’’’’’’’’ <*> identifier

261

parseThirteenNoteConOctavaAuto’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’ = parseThirteenNoteConOctavaAuto

’’’’’’’’’’ <*> int

parseThirteenNoteConOctavaAuto’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’ = parseThirteenNoteConOctavaAuto

’’’’’’’’’’’ <*> identifier

parseThirteenNoteConOctavaAuto’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> [Note

])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’ = parseThirteenNoteConOctavaAuto

’’’’’’’’’’’’ <*> int

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’ = parseThirteenNoteConOctavaAuto

’’’’’’’’’’’’’ <*> identifier

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’ = parseThirteenNoteConOctavaAuto

’’’’’’’’’’’’’’ <*> int

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’ =

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’ <*> identifier

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’ :: H (String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’ =

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’ <*> int

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’ =

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ <*> identifier

262

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ =

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ <*> int

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ =

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ <*> identifier

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ =

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ <*> int

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ =

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ =

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ =

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

263

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ =

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’ =

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseThirteenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 i4 c4 i5 c5 i6 c6 i7 c7 i8 c8 i9 c9 i10 c10 i11

c11 i12 c12 i13 c13 -> [catIntervalo i1 c1, catIntervalo i2 c2,

catIntervalo i3 c3, catIntervalo i4 c4, catIntervalo i5 c5,

catIntervalo i6 c6, catIntervalo i7 c7, catIntervalo i8 c8,

catIntervalo i9 c9, catIntervalo i10 c10, catIntervalo i11 c11,

catIntervalo i12 c12, catIntervalo i13 c13]

parseTwelveNoteConOctavaAuto :: H [Note]

parseTwelveNoteConOctavaAuto = parseTwelveNoteConOctavaAuto’ <*> identifier

parseTwelveNoteConOctavaAuto’ :: H (String -> [Note])

parseTwelveNoteConOctavaAuto’ = parseTwelveNoteConOctavaAuto’’ <*> int

parseTwelveNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’ = parseTwelveNoteConOctavaAuto’’’ <*>

identifier

parseTwelveNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’ = parseTwelveNoteConOctavaAuto’’’’ <*> int

parseTwelveNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [

Note])

parseTwelveNoteConOctavaAuto’’’’ = parseTwelveNoteConOctavaAuto’’’’’ <*>

identifier

parseTwelveNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

264

parseTwelveNoteConOctavaAuto’’’’’ = parseTwelveNoteConOctavaAuto’’’’’’ <*>

int

parseTwelveNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’ = parseTwelveNoteConOctavaAuto’’’’’’’ <*>

identifier

parseTwelveNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’ = parseTwelveNoteConOctavaAuto’’’’’’’’

<*> int

parseTwelveNoteConOctavaAuto’’’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’ = parseTwelveNoteConOctavaAuto’’’’’’’’’

<*> identifier

parseTwelveNoteConOctavaAuto’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’ = parseTwelveNoteConOctavaAuto

’’’’’’’’’’ <*> int

parseTwelveNoteConOctavaAuto’’’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’ = parseTwelveNoteConOctavaAuto

’’’’’’’’’’’ <*> identifier

parseTwelveNoteConOctavaAuto’’’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’ = parseTwelveNoteConOctavaAuto

’’’’’’’’’’’’ <*> int

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’ = parseTwelveNoteConOctavaAuto

’’’’’’’’’’’’’ <*> identifier

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’ = parseTwelveNoteConOctavaAuto

’’’’’’’’’’’’’’ <*> int

265

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’ = parseTwelveNoteConOctavaAuto

’’’’’’’’’’’’’’’ <*> identifier

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’ :: H (String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’ = parseTwelveNoteConOctavaAuto

’’’’’’’’’’’’’’’’ <*> int

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’ = parseTwelveNoteConOctavaAuto

’’’’’’’’’’’’’’’’’ <*> identifier

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’ :: H (String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’ = parseTwelveNoteConOctavaAuto

’’’’’’’’’’’’’’’’’’ <*> int

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ =

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ <*> identifier

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ =

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ <*> int

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ =

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ <*> identifier

266

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ =

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ <*> int

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’ =

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseTwelveNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 i4 c4 i5 c5 i6 c6 i7 c7 i8 c8 i9 c9 i10 c10 i11

c11 i12 c12 -> [catIntervalo i1 c1, catIntervalo i2 c2, catIntervalo i3

c3, catIntervalo i4 c4, catIntervalo i5 c5, catIntervalo i6 c6,

catIntervalo i7 c7, catIntervalo i8 c8, catIntervalo i9 c9,

catIntervalo i10 c10, catIntervalo i11 c11, catIntervalo i12 c12]

parseElevenNoteConOctavaAuto :: H [Note]

parseElevenNoteConOctavaAuto = parseElevenNoteConOctavaAuto’ <*> identifier

parseElevenNoteConOctavaAuto’ :: H (String -> [Note])

parseElevenNoteConOctavaAuto’ = parseElevenNoteConOctavaAuto’’ <*> int

parseElevenNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’ = parseElevenNoteConOctavaAuto’’’ <*>

identifier

parseElevenNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’ = parseElevenNoteConOctavaAuto’’’’ <*> int

parseElevenNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [

Note])

parseElevenNoteConOctavaAuto’’’’ = parseElevenNoteConOctavaAuto’’’’’ <*>

identifier

267

parseElevenNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseElevenNoteConOctavaAuto’’’’’ = parseElevenNoteConOctavaAuto’’’’’’ <*>

int

parseElevenNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’ = parseElevenNoteConOctavaAuto’’’’’’’ <*>

identifier

parseElevenNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’ = parseElevenNoteConOctavaAuto’’’’’’’’

<*> int

parseElevenNoteConOctavaAuto’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’’ = parseElevenNoteConOctavaAuto’’’’’’’’’

<*> identifier

parseElevenNoteConOctavaAuto’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’’’ = parseElevenNoteConOctavaAuto

’’’’’’’’’’ <*> int

parseElevenNoteConOctavaAuto’’’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’’’’ = parseElevenNoteConOctavaAuto

’’’’’’’’’’’ <*> identifier

parseElevenNoteConOctavaAuto’’’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’’’’’ = parseElevenNoteConOctavaAuto

’’’’’’’’’’’’ <*> int

parseElevenNoteConOctavaAuto’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’’’’’’ = parseElevenNoteConOctavaAuto

’’’’’’’’’’’’’ <*> identifier

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> [Note])

268

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’ = parseElevenNoteConOctavaAuto

’’’’’’’’’’’’’’ <*> int

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’ = parseElevenNoteConOctavaAuto

’’’’’’’’’’’’’’’ <*> identifier

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’ = parseElevenNoteConOctavaAuto

’’’’’’’’’’’’’’’’ <*> int

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’ = parseElevenNoteConOctavaAuto

’’’’’’’’’’’’’’’’’ <*> identifier

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ :: H (String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ = parseElevenNoteConOctavaAuto

’’’’’’’’’’’’’’’’’’ <*> int

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ =

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ <*> identifier

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ =

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ <*> int

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

269

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’ =

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ <*> identifier

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ :: H (String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseElevenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 i4 c4 i5 c5 i6 c6 i7 c7 i8 c8 i9 c9 i10 c10 i11

c11 -> [catIntervalo i1 c1, catIntervalo i2 c2, catIntervalo i3 c3,

catIntervalo i4 c4, catIntervalo i5 c5, catIntervalo i6 c6,

catIntervalo i7 c7, catIntervalo i8 c8, catIntervalo i9 c9,

catIntervalo i10 c10, catIntervalo i11 c11]

parseTenNoteConOctavaAuto :: H [Note]

parseTenNoteConOctavaAuto = parseTenNoteConOctavaAuto’ <*> identifier

parseTenNoteConOctavaAuto’ :: H (String -> [Note])

parseTenNoteConOctavaAuto’ = parseTenNoteConOctavaAuto’’ <*> int

parseTenNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseTenNoteConOctavaAuto’’ = parseTenNoteConOctavaAuto’’’ <*> identifier

parseTenNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseTenNoteConOctavaAuto’’’ = parseTenNoteConOctavaAuto’’’’ <*> int

parseTenNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [Note

])

parseTenNoteConOctavaAuto’’’’ = parseTenNoteConOctavaAuto’’’’’ <*>

identifier

parseTenNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseTenNoteConOctavaAuto’’’’’ = parseTenNoteConOctavaAuto’’’’’’ <*> int

parseTenNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String -> Int

-> String -> [Note])

parseTenNoteConOctavaAuto’’’’’’ = parseTenNoteConOctavaAuto’’’’’’’ <*>

identifier

parseTenNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseTenNoteConOctavaAuto’’’’’’’ = parseTenNoteConOctavaAuto’’’’’’’’ <*> int

270

parseTenNoteConOctavaAuto’’’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> Int -> String -> [Note])

parseTenNoteConOctavaAuto’’’’’’’’ = parseTenNoteConOctavaAuto’’’’’’’’’ <*>

identifier

parseTenNoteConOctavaAuto’’’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseTenNoteConOctavaAuto’’’’’’’’’ = parseTenNoteConOctavaAuto’’’’’’’’’’ <*>

int

parseTenNoteConOctavaAuto’’’’’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> [Note])

parseTenNoteConOctavaAuto’’’’’’’’’’ = parseTenNoteConOctavaAuto’’’’’’’’’’’

<*> identifier

parseTenNoteConOctavaAuto’’’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseTenNoteConOctavaAuto’’’’’’’’’’’ = parseTenNoteConOctavaAuto’’’’’’’’’’’’

<*> int

parseTenNoteConOctavaAuto’’’’’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String -> [

Note])

parseTenNoteConOctavaAuto’’’’’’’’’’’’ = parseTenNoteConOctavaAuto

’’’’’’’’’’’’’ <*> identifier

parseTenNoteConOctavaAuto’’’’’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> [Note])

parseTenNoteConOctavaAuto’’’’’’’’’’’’’ = parseTenNoteConOctavaAuto

’’’’’’’’’’’’’’ <*> int

parseTenNoteConOctavaAuto’’’’’’’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> [Note])

parseTenNoteConOctavaAuto’’’’’’’’’’’’’’ = parseTenNoteConOctavaAuto

’’’’’’’’’’’’’’’ <*> identifier

parseTenNoteConOctavaAuto’’’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> [Note])

parseTenNoteConOctavaAuto’’’’’’’’’’’’’’’ = parseTenNoteConOctavaAuto

’’’’’’’’’’’’’’’’ <*> int

271

parseTenNoteConOctavaAuto’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseTenNoteConOctavaAuto’’’’’’’’’’’’’’’’ = parseTenNoteConOctavaAuto

’’’’’’’’’’’’’’’’’ <*> identifier

parseTenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> [Note])

parseTenNoteConOctavaAuto’’’’’’’’’’’’’’’’’ = parseTenNoteConOctavaAuto

’’’’’’’’’’’’’’’’’’ <*> int

parseTenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseTenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’ = parseTenNoteConOctavaAuto

’’’’’’’’’’’’’’’’’’’ <*> identifier

parseTenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ :: H (String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> [Note

])

parseTenNoteConOctavaAuto’’’’’’’’’’’’’’’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 i4 c4 i5 c5 i6 c6 i7 c7 i8 c8 i9 c9 i10 c10 -> [

catIntervalo i1 c1, catIntervalo i2 c2, catIntervalo i3 c3,

catIntervalo i4 c4, catIntervalo i5 c5, catIntervalo i6 c6,

catIntervalo i7 c7, catIntervalo i8 c8, catIntervalo i9 c9,

catIntervalo i10 c10]

parseNineNoteConOctavaAuto :: H [Note]

parseNineNoteConOctavaAuto = parseNineNoteConOctavaAuto’ <*> identifier

parseNineNoteConOctavaAuto’ :: H (String -> [Note])

parseNineNoteConOctavaAuto’ = parseNineNoteConOctavaAuto’’ <*> int

parseNineNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseNineNoteConOctavaAuto’’ = parseNineNoteConOctavaAuto’’’ <*> identifier

parseNineNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseNineNoteConOctavaAuto’’’ = parseNineNoteConOctavaAuto’’’’ <*> int

parseNineNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [

Note])

272

parseNineNoteConOctavaAuto’’’’ = parseNineNoteConOctavaAuto’’’’’ <*>

identifier

parseNineNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseNineNoteConOctavaAuto’’’’’ = parseNineNoteConOctavaAuto’’’’’’ <*> int

parseNineNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String -> Int

-> String -> [Note])

parseNineNoteConOctavaAuto’’’’’’ = parseNineNoteConOctavaAuto’’’’’’’ <*>

identifier

parseNineNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseNineNoteConOctavaAuto’’’’’’’ = parseNineNoteConOctavaAuto’’’’’’’’ <*>

int

parseNineNoteConOctavaAuto’’’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> Int -> String -> [Note])

parseNineNoteConOctavaAuto’’’’’’’’ = parseNineNoteConOctavaAuto’’’’’’’’’ <*>

identifier

parseNineNoteConOctavaAuto’’’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseNineNoteConOctavaAuto’’’’’’’’’ = parseNineNoteConOctavaAuto’’’’’’’’’’

<*> int

parseNineNoteConOctavaAuto’’’’’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> [Note])

parseNineNoteConOctavaAuto’’’’’’’’’’ = parseNineNoteConOctavaAuto’’’’’’’’’’’

<*> identifier

parseNineNoteConOctavaAuto’’’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseNineNoteConOctavaAuto’’’’’’’’’’’ = parseNineNoteConOctavaAuto

’’’’’’’’’’’’ <*> int

parseNineNoteConOctavaAuto’’’’’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String -> [

Note])

parseNineNoteConOctavaAuto’’’’’’’’’’’’ = parseNineNoteConOctavaAuto

’’’’’’’’’’’’’ <*> identifier

parseNineNoteConOctavaAuto’’’’’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> Int ->

273

String -> [Note])

parseNineNoteConOctavaAuto’’’’’’’’’’’’’ = parseNineNoteConOctavaAuto

’’’’’’’’’’’’’’ <*> int

parseNineNoteConOctavaAuto’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseNineNoteConOctavaAuto’’’’’’’’’’’’’’ = parseNineNoteConOctavaAuto

’’’’’’’’’’’’’’’ <*> identifier

parseNineNoteConOctavaAuto’’’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> [Note])

parseNineNoteConOctavaAuto’’’’’’’’’’’’’’’ = parseNineNoteConOctavaAuto

’’’’’’’’’’’’’’’’ <*> int

parseNineNoteConOctavaAuto’’’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseNineNoteConOctavaAuto’’’’’’’’’’’’’’’’ = parseNineNoteConOctavaAuto

’’’’’’’’’’’’’’’’’ <*> identifier

parseNineNoteConOctavaAuto’’’’’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> [Note])

parseNineNoteConOctavaAuto’’’’’’’’’’’’’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 i4 c4 i5 c5 i6 c6 i7 c7 i8 c8 i9 c9 -> [

catIntervalo i1 c1, catIntervalo i2 c2, catIntervalo i3 c3,

catIntervalo i4 c4, catIntervalo i5 c5, catIntervalo i6 c6,

catIntervalo i7 c7, catIntervalo i8 c8, catIntervalo i9 c9]

parseEightNoteConOctavaAuto :: H [Note]

parseEightNoteConOctavaAuto = parseEightNoteConOctavaAuto’ <*> identifier

parseEightNoteConOctavaAuto’ :: H (String -> [Note])

parseEightNoteConOctavaAuto’ = parseEightNoteConOctavaAuto’’ <*> int

parseEightNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseEightNoteConOctavaAuto’’ = parseEightNoteConOctavaAuto’’’ <*>

identifier

parseEightNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseEightNoteConOctavaAuto’’’ = parseEightNoteConOctavaAuto’’’’ <*> int

274

parseEightNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [

Note])

parseEightNoteConOctavaAuto’’’’ = parseEightNoteConOctavaAuto’’’’’ <*>

identifier

parseEightNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseEightNoteConOctavaAuto’’’’’ = parseEightNoteConOctavaAuto’’’’’’ <*> int

parseEightNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> [Note])

parseEightNoteConOctavaAuto’’’’’’ = parseEightNoteConOctavaAuto’’’’’’’ <*>

identifier

parseEightNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseEightNoteConOctavaAuto’’’’’’’ = parseEightNoteConOctavaAuto’’’’’’’’ <*>

int

parseEightNoteConOctavaAuto’’’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> Int -> String -> [Note])

parseEightNoteConOctavaAuto’’’’’’’’ = parseEightNoteConOctavaAuto’’’’’’’’’

<*> identifier

parseEightNoteConOctavaAuto’’’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseEightNoteConOctavaAuto’’’’’’’’’ = parseEightNoteConOctavaAuto’’’’’’’’’’

<*> int

parseEightNoteConOctavaAuto’’’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> [Note])

parseEightNoteConOctavaAuto’’’’’’’’’’ = parseEightNoteConOctavaAuto

’’’’’’’’’’’ <*> identifier

parseEightNoteConOctavaAuto’’’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseEightNoteConOctavaAuto’’’’’’’’’’’ = parseEightNoteConOctavaAuto

’’’’’’’’’’’’ <*> int

parseEightNoteConOctavaAuto’’’’’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String -> [

Note])

parseEightNoteConOctavaAuto’’’’’’’’’’’’ = parseEightNoteConOctavaAuto

’’’’’’’’’’’’’ <*> identifier

275

parseEightNoteConOctavaAuto’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> [Note])

parseEightNoteConOctavaAuto’’’’’’’’’’’’’ = parseEightNoteConOctavaAuto

’’’’’’’’’’’’’’ <*> int

parseEightNoteConOctavaAuto’’’’’’’’’’’’’’ :: H (Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseEightNoteConOctavaAuto’’’’’’’’’’’’’’ = parseEightNoteConOctavaAuto

’’’’’’’’’’’’’’’ <*> identifier

parseEightNoteConOctavaAuto’’’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> Int -> String -> [Note])

parseEightNoteConOctavaAuto’’’’’’’’’’’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 i4 c4 i5 c5 i6 c6 i7 c7 i8 c8 -> [catIntervalo i1

c1, catIntervalo i2 c2, catIntervalo i3 c3, catIntervalo i4 c4,

catIntervalo i5 c5, catIntervalo i6 c6, catIntervalo i7 c7,

catIntervalo i8 c8]

parseSevenNoteConOctavaAuto :: H [Note]

parseSevenNoteConOctavaAuto = parseSevenNoteConOctavaAuto’ <*> identifier

parseSevenNoteConOctavaAuto’ :: H (String -> [Note])

parseSevenNoteConOctavaAuto’ = parseSevenNoteConOctavaAuto’’ <*> int

parseSevenNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseSevenNoteConOctavaAuto’’ = parseSevenNoteConOctavaAuto’’’ <*>

identifier

parseSevenNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseSevenNoteConOctavaAuto’’’ = parseSevenNoteConOctavaAuto’’’’ <*> int

parseSevenNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [

Note])

parseSevenNoteConOctavaAuto’’’’ = parseSevenNoteConOctavaAuto’’’’’ <*>

identifier

parseSevenNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseSevenNoteConOctavaAuto’’’’’ = parseSevenNoteConOctavaAuto’’’’’’ <*> int

276

parseSevenNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String ->[Note])

parseSevenNoteConOctavaAuto’’’’’’ = parseSevenNoteConOctavaAuto’’’’’’’ <*>

identifier

parseSevenNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String ->[Note])

parseSevenNoteConOctavaAuto’’’’’’’ = parseSevenNoteConOctavaAuto’’’’’’’’ <*>

int

parseSevenNoteConOctavaAuto’’’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> Int -> String ->[Note])

parseSevenNoteConOctavaAuto’’’’’’’’ = parseSevenNoteConOctavaAuto’’’’’’’’’

<*> identifier

parseSevenNoteConOctavaAuto’’’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseSevenNoteConOctavaAuto’’’’’’’’’ = parseSevenNoteConOctavaAuto’’’’’’’’’’

<*> int

parseSevenNoteConOctavaAuto’’’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> [Note])

parseSevenNoteConOctavaAuto’’’’’’’’’’ = parseSevenNoteConOctavaAuto

’’’’’’’’’’’ <*> identifier

parseSevenNoteConOctavaAuto’’’’’’’’’’’ :: H (String -> Int -> String -> Int

-> String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseSevenNoteConOctavaAuto’’’’’’’’’’’ = parseSevenNoteConOctavaAuto

’’’’’’’’’’’’ <*> int

parseSevenNoteConOctavaAuto’’’’’’’’’’’’ :: H (Int -> String -> Int -> String

-> Int -> String -> Int -> String -> Int -> String -> Int -> String -> [

Note])

parseSevenNoteConOctavaAuto’’’’’’’’’’’’ = parseSevenNoteConOctavaAuto

’’’’’’’’’’’’’ <*> identifier

parseSevenNoteConOctavaAuto’’’’’’’’’’’’’ :: H (String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> Int -> String -> Int

-> String -> [Note])

parseSevenNoteConOctavaAuto’’’’’’’’’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 i4 c4 i5 c5 i6 c6 i7 c7 -> [catIntervalo i1 c1,

catIntervalo i2 c2, catIntervalo i3 c3, catIntervalo i4 c4,

catIntervalo i5 c5, catIntervalo i6 c6, catIntervalo i7 c7]

277

parseSixNoteConOctavaAuto :: H [Note]

parseSixNoteConOctavaAuto = parseSixNoteConOctavaAuto’ <*> identifier

parseSixNoteConOctavaAuto’ :: H (String -> [Note])

parseSixNoteConOctavaAuto’ = parseSixNoteConOctavaAuto’’ <*> int

parseSixNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseSixNoteConOctavaAuto’’ = parseSixNoteConOctavaAuto’’’ <*> identifier

parseSixNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseSixNoteConOctavaAuto’’’ = parseSixNoteConOctavaAuto’’’’ <*> int

parseSixNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [Note

])

parseSixNoteConOctavaAuto’’’’ = parseSixNoteConOctavaAuto’’’’’ <*>

identifier

parseSixNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseSixNoteConOctavaAuto’’’’’ = parseSixNoteConOctavaAuto’’’’’’ <*> int

parseSixNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String -> Int

-> String -> [Note])

parseSixNoteConOctavaAuto’’’’’’ = parseSixNoteConOctavaAuto’’’’’’’ <*>

identifier

parseSixNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseSixNoteConOctavaAuto’’’’’’’ = parseSixNoteConOctavaAuto’’’’’’’’ <*> int

parseSixNoteConOctavaAuto’’’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> Int -> String -> [Note])

parseSixNoteConOctavaAuto’’’’’’’’ = parseSixNoteConOctavaAuto’’’’’’’’’ <*>

identifier

parseSixNoteConOctavaAuto’’’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseSixNoteConOctavaAuto’’’’’’’’’ = parseSixNoteConOctavaAuto’’’’’’’’’’ <*>

int

parseSixNoteConOctavaAuto’’’’’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> Int -> String -> Int -> String -> [Note])

278

parseSixNoteConOctavaAuto’’’’’’’’’’ = parseSixNoteConOctavaAuto’’’’’’’’’’’

<*> identifier

parseSixNoteConOctavaAuto’’’’’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> Int -> String -> [Note])

parseSixNoteConOctavaAuto’’’’’’’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 i4 c4 i5 c5 i6 c6 -> [catIntervalo i1 c1,

catIntervalo i2 c2, catIntervalo i3 c3, catIntervalo i4 c4,

catIntervalo i5 c5, catIntervalo i6 c6]

parseFiveNoteConOctavaAuto :: H [Note]

parseFiveNoteConOctavaAuto = parseFiveNoteConOctavaAuto’ <*> identifier

parseFiveNoteConOctavaAuto’ :: H (String -> [Note])

parseFiveNoteConOctavaAuto’ = parseFiveNoteConOctavaAuto’’ <*> int

parseFiveNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseFiveNoteConOctavaAuto’’ = parseFiveNoteConOctavaAuto’’’ <*> identifier

parseFiveNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseFiveNoteConOctavaAuto’’’ = parseFiveNoteConOctavaAuto’’’’ <*> int

parseFiveNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [Note

])

parseFiveNoteConOctavaAuto’’’’ = parseFiveNoteConOctavaAuto’’’’’ <*>

identifier

parseFiveNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseFiveNoteConOctavaAuto’’’’’ = parseFiveNoteConOctavaAuto’’’’’’ <*> int

parseFiveNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String -> Int

-> String -> [Note])

parseFiveNoteConOctavaAuto’’’’’’ = parseFiveNoteConOctavaAuto’’’’’’’ <*>

identifier

parseFiveNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseFiveNoteConOctavaAuto’’’’’’’ = parseFiveNoteConOctavaAuto’’’’’’’’ <*>

int

parseFiveNoteConOctavaAuto’’’’’’’’ :: H (Int -> String -> Int -> String ->

Int -> String -> Int -> String -> [Note])

279

parseFiveNoteConOctavaAuto’’’’’’’’ = parseFiveNoteConOctavaAuto’’’’’’’’’ <*>

identifier

parseFiveNoteConOctavaAuto’’’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> Int -> String -> [Note])

parseFiveNoteConOctavaAuto’’’’’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 i4 c4 i5 c5 -> [catIntervalo i1 c1, catIntervalo

i2 c2, catIntervalo i3 c3, catIntervalo i4 c4, catIntervalo i5 c5]

--

parseFourNoteConOctavaAuto :: H [Note]

parseFourNoteConOctavaAuto = parseFourNoteConOctavaAuto’ <*> identifier

parseFourNoteConOctavaAuto’ :: H (String -> [Note])

parseFourNoteConOctavaAuto’ = parseFourNoteConOctavaAuto’’ <*> int

parseFourNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseFourNoteConOctavaAuto’’ = parseFourNoteConOctavaAuto’’’ <*> identifier

parseFourNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseFourNoteConOctavaAuto’’’ = parseFourNoteConOctavaAuto’’’’ <*> int

parseFourNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [Note

])

parseFourNoteConOctavaAuto’’’’ = parseFourNoteConOctavaAuto’’’’’ <*>

identifier

parseFourNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseFourNoteConOctavaAuto’’’’’ = parseFourNoteConOctavaAuto’’’’’’ <*> int

parseFourNoteConOctavaAuto’’’’’’ :: H (Int -> String -> Int -> String -> Int

-> String -> [Note])

parseFourNoteConOctavaAuto’’’’’’ = parseFourNoteConOctavaAuto’’’’’’’ <*>

identifier

parseFourNoteConOctavaAuto’’’’’’’ :: H (String -> Int -> String -> Int ->

String -> Int -> String -> [Note])

parseFourNoteConOctavaAuto’’’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 i4 c4 -> [catIntervalo i1 c1, catIntervalo i2 c2,

catIntervalo i3 c3, catIntervalo i4 c4]

280

--

parseThreeNoteConOctavaAuto :: H [Note]

parseThreeNoteConOctavaAuto = parseThreeNoteConOctavaAuto’ <*> identifier

parseThreeNoteConOctavaAuto’ :: H (String -> [Note])

parseThreeNoteConOctavaAuto’ = parseThreeNoteConOctavaAuto’’ <*> int

parseThreeNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseThreeNoteConOctavaAuto’’ = parseThreeNoteConOctavaAuto’’’ <*>

identifier

parseThreeNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseThreeNoteConOctavaAuto’’’ = parseThreeNoteConOctavaAuto’’’’ <*> int

parseThreeNoteConOctavaAuto’’’’ :: H (Int -> String -> Int -> String -> [

Note])

parseThreeNoteConOctavaAuto’’’’ = parseThreeNoteConOctavaAuto’’’’’ <*>

identifier

parseThreeNoteConOctavaAuto’’’’’ :: H (String -> Int -> String -> Int ->

String -> [Note])

parseThreeNoteConOctavaAuto’’’’’ = do

i1 <- int

return $ \c1 i2 c2 i3 c3 -> [catIntervalo i1 c1, catIntervalo i2 c2,

catIntervalo i3 c3]

--

parseDosNoteConOctavaAuto :: H [Note]

parseDosNoteConOctavaAuto = parseDosNoteConOctavaAuto’ <*> identifier

parseDosNoteConOctavaAuto’ :: H (String -> [Note])

parseDosNoteConOctavaAuto’ = parseDosNoteConOctavaAuto’’ <*> int

parseDosNoteConOctavaAuto’’ :: H (Int -> String -> [Note])

parseDosNoteConOctavaAuto’’ = parseDosNoteConOctavaAuto’’’ <*> identifier

parseDosNoteConOctavaAuto’’’ :: H (String -> Int -> String -> [Note])

parseDosNoteConOctavaAuto’’’ = do

i1 <- int

return $ \c1 i2 c2-> [catIntervalo i1 c1, catIntervalo i2 c2]

--

parseUnNoteConOctavaAuto :: H [Note]

parseUnNoteConOctavaAuto = parseUnNoteConOctavaAuto’ <*> identifier

281

parseUnNoteConOctavaAuto’ :: H (String -> [Note])

parseUnNoteConOctavaAuto’ = do

i <- int

return $ \c -> [catIntervalo i c]

catIntervalo :: Int -> String -> Note

catIntervalo i c = intervalo ((T.unpack $ T.strip $ T.pack (show i)) ++ (T.

unpack $ T.stripStart $ T.pack c)) 0

-- listaDeStringsANote :: [[String]] -> [Note]

-- listaDeStringsANote xs = listaDeListaStringAListaDeNota xs -- [Note]

listaDeStringsANote :: [[Note]] -> [Note]

listaDeStringsANote xs = concat xs -- [Note]

-- listaDeStringsARhythmicPattern :: RhythmicPattern -> [[String]] ->

RhythmicPattern

listaDeStringsARhythmicPattern :: RhythmicPattern -> [[Note]] ->

RhythmicPattern

listaDeStringsARhythmicPattern rs xs = do

let z = zip xs rs -- [([String], INt)]

listaDeListaDeStringARhythmicP z --

-- let rPat’ = listaDeListaDeStringARhythmicP xs [(1, (realToFrac n) / 4)]

-- [(String, RhythmicPosition)]

-- listaDeStringsANPattern :: NPattern -> [[String]] -> NPattern

listaDeStringsANPattern :: NPattern -> [[Note]] -> NPattern

listaDeStringsANPattern (NPattern1 ns) xs = do

let z = zip xs ns -- [([String], Int)]

NPattern1 $ listaDeListaDeStringAN z --[Int]

-- listaDeListaDeStringARhythmicP :: [([String], RhythmicPosition)] ->

RhythmicPattern

listaDeListaDeStringARhythmicP :: [([Note], RhythmicPosition)] ->

RhythmicPattern

listaDeListaDeStringARhythmicP xs = do

let a = concat $ fmap (\x -> listaDeStringARhythmicP x) xs

fmap snd a

-- listaDeStringARhythmicP :: ([String], RhythmicPosition) -> [(String,

RhythmicPosition)] -- e.g. [((0,1),"f")]

listaDeStringARhythmicP :: ([Note], RhythmicPosition) -> [(Note,

RhythmicPosition)] -- e.g. [((0,1),"f")]

listaDeStringARhythmicP (xs, rs) = fmap (\x -> (x, rs)) xs

listaDeListaStringAListaDeNota :: [[String]] -> [Note]

282

listaDeListaStringAListaDeNota xs = concat $ fmap listaDeStringAListaDeNota

xs

listaDeStringAListaDeNota :: [String] -> [Note] -- [intervalo "unisono" 0,

intervalo "3a" 0, intervalo "5a" 0]

listaDeStringAListaDeNota xs = fmap stringANote xs

-- listaDeListaDeStringAN :: [([String], Int)] -> [Int]

listaDeListaDeStringAN :: [([Note], Int)] -> [Int]

listaDeListaDeStringAN xs = do

let a = concat $ fmap (\x -> listaDeStringAN x) xs

fmap snd a

listaDeStringAN :: ([Note], Int) -> [(Note, Int)]-- e.g. [("f", 0)]

listaDeStringAN (xs, n) = fmap (\x -> (x, n)) xs

stringANote :: String -> Note

stringANote s = intervalo s 0

--

praseListaDeListaStringAListaDeAcordes :: H [[Note]]

praseListaDeListaStringAListaDeAcordes = list parseNoteList

-- acompanamiento 2 ["f" "3a" "5a",]

-- parseStringsAListaDeNotes :: H [String]

parseNoteList :: H [Note]

parseNoteList = parseStringsAListaDeNotes

<|> parseNotesNoQuotes

parseStringsAListaDeNotes :: H [Note]

parseStringsAListaDeNotes = parseUnStringAListadeNotas

<|> parseDosStringsAListadeNotas

<|> parseTresStringsAListadeNotas

<|> parseCuatroStringsAListadeNotas

<|> parseCincoStringsAListadeNotas

<|> parseSeisStringsAListadeNotas

<|> parseSieteStringsAListadeNotas

<|> parseOchoStringsAListadeNotas

<|> parseNueveStringsAListadeNotas

<|> parseDiezStringsAListadeNotas

<|> parseOnceStringsAListadeNotas

<|> parseDoceStringsAListadeNotas

283

parseDoceStringsAListadeNotas :: H [Note]

parseDoceStringsAListadeNotas = parseDoceStringsAListadeNotas’ <*> parseNote

parseDoceStringsAListadeNotas’ :: H (Note -> [Note])

parseDoceStringsAListadeNotas’ = parseDoceStringsAListadeNotas’’ <*>

parseNote

parseDoceStringsAListadeNotas’’ :: H (Note -> Note -> [Note])

parseDoceStringsAListadeNotas’’ = parseDoceStringsAListadeNotas’’’ <*>

parseNote

parseDoceStringsAListadeNotas’’’ :: H (Note -> Note -> Note -> [Note])

parseDoceStringsAListadeNotas’’’ = parseDoceStringsAListadeNotas’’’’ <*>

parseNote

parseDoceStringsAListadeNotas’’’’ :: H (Note -> Note -> Note -> Note -> [

Note])

parseDoceStringsAListadeNotas’’’’ = parseDoceStringsAListadeNotas’’’’’ <*>

parseNote

parseDoceStringsAListadeNotas’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> [Note])

parseDoceStringsAListadeNotas’’’’’ = parseDoceStringsAListadeNotas’’’’’’ <*>

parseNote

parseDoceStringsAListadeNotas’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> [Note])

parseDoceStringsAListadeNotas’’’’’’ = parseDoceStringsAListadeNotas’’’’’’’

<*> parseNote

parseDoceStringsAListadeNotas’’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> Note -> [Note])

parseDoceStringsAListadeNotas’’’’’’’ = parseDoceStringsAListadeNotas’’’’’’’’

<*> parseNote

parseDoceStringsAListadeNotas’’’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> Note -> Note -> [Note])

parseDoceStringsAListadeNotas’’’’’’’’ = parseDoceStringsAListadeNotas

’’’’’’’’’ <*> parseNote

parseDoceStringsAListadeNotas’’’’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> Note -> Note -> Note -> [Note])

parseDoceStringsAListadeNotas’’’’’’’’’ = parseDoceStringsAListadeNotas

’’’’’’’’’’ <*> parseNote

284

parseDoceStringsAListadeNotas’’’’’’’’’’ :: H (Note -> Note -> Note -> Note

-> Note -> Note -> Note -> Note -> Note -> Note -> [Note])

parseDoceStringsAListadeNotas’’’’’’’’’’ = parseDoceStringsAListadeNotas

’’’’’’’’’’’ <*> parseNote

parseDoceStringsAListadeNotas’’’’’’’’’’’ :: H (Note -> Note -> Note -> Note

-> Note -> Note -> Note -> Note -> Note -> Note -> Note -> [Note])

parseDoceStringsAListadeNotas’’’’’’’’’’’ = do

s1 <- parseNote

return $ \s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 -> stringsAListadeDoceNotas

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

--

parseOnceStringsAListadeNotas :: H [Note]

parseOnceStringsAListadeNotas = parseOnceStringsAListadeNotas’ <*> parseNote

parseOnceStringsAListadeNotas’ :: H (Note -> [Note])

parseOnceStringsAListadeNotas’ = parseOnceStringsAListadeNotas’’ <*>

parseNote

parseOnceStringsAListadeNotas’’ :: H (Note -> Note -> [Note])

parseOnceStringsAListadeNotas’’ = parseOnceStringsAListadeNotas’’’ <*>

parseNote

parseOnceStringsAListadeNotas’’’ :: H (Note -> Note -> Note -> [Note])

parseOnceStringsAListadeNotas’’’ = parseOnceStringsAListadeNotas’’’’ <*>

parseNote

parseOnceStringsAListadeNotas’’’’ :: H (Note -> Note -> Note -> Note -> [

Note])

parseOnceStringsAListadeNotas’’’’ = parseOnceStringsAListadeNotas’’’’’ <*>

parseNote

parseOnceStringsAListadeNotas’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> [Note])

parseOnceStringsAListadeNotas’’’’’ = parseOnceStringsAListadeNotas’’’’’’ <*>

parseNote

parseOnceStringsAListadeNotas’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> [Note])

parseOnceStringsAListadeNotas’’’’’’ = parseOnceStringsAListadeNotas’’’’’’’

<*> parseNote

parseOnceStringsAListadeNotas’’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> Note -> [Note])

285

parseOnceStringsAListadeNotas’’’’’’’ = parseOnceStringsAListadeNotas’’’’’’’’

<*> parseNote

parseOnceStringsAListadeNotas’’’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> Note -> Note -> [Note])

parseOnceStringsAListadeNotas’’’’’’’’ = parseOnceStringsAListadeNotas

’’’’’’’’’ <*> parseNote

parseOnceStringsAListadeNotas’’’’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> Note -> Note -> Note -> [Note])

parseOnceStringsAListadeNotas’’’’’’’’’ = parseOnceStringsAListadeNotas

’’’’’’’’’’ <*> parseNote

parseOnceStringsAListadeNotas’’’’’’’’’’ :: H (Note -> Note -> Note -> Note

-> Note -> Note -> Note -> Note -> Note -> Note -> [Note])

parseOnceStringsAListadeNotas’’’’’’’’’’ = do

s1 <- parseNote

return $ \s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 -> stringsAListadeOnceNotas s1

s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

--

parseDiezStringsAListadeNotas :: H [Note]

parseDiezStringsAListadeNotas = parseDiezStringsAListadeNotas’ <*> parseNote

parseDiezStringsAListadeNotas’ :: H (Note -> [Note])

parseDiezStringsAListadeNotas’ = parseDiezStringsAListadeNotas’’ <*>

parseNote

parseDiezStringsAListadeNotas’’ :: H (Note -> Note -> [Note])

parseDiezStringsAListadeNotas’’ = parseDiezStringsAListadeNotas’’’ <*>

parseNote

parseDiezStringsAListadeNotas’’’ :: H (Note -> Note -> Note -> [Note])

parseDiezStringsAListadeNotas’’’ = parseDiezStringsAListadeNotas’’’’ <*>

parseNote

parseDiezStringsAListadeNotas’’’’ :: H (Note -> Note -> Note -> Note -> [

Note])

parseDiezStringsAListadeNotas’’’’ = parseDiezStringsAListadeNotas’’’’’ <*>

parseNote

parseDiezStringsAListadeNotas’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> [Note])

286

parseDiezStringsAListadeNotas’’’’’ = parseDiezStringsAListadeNotas’’’’’’ <*>

parseNote

parseDiezStringsAListadeNotas’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> [Note])

parseDiezStringsAListadeNotas’’’’’’ = parseDiezStringsAListadeNotas’’’’’’’

<*> parseNote

parseDiezStringsAListadeNotas’’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> Note -> [Note])

parseDiezStringsAListadeNotas’’’’’’’ = parseDiezStringsAListadeNotas’’’’’’’’

<*> parseNote

parseDiezStringsAListadeNotas’’’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> Note -> Note -> [Note])

parseDiezStringsAListadeNotas’’’’’’’’ = parseDiezStringsAListadeNotas

’’’’’’’’’ <*> parseNote

parseDiezStringsAListadeNotas’’’’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> Note -> Note -> Note -> [Note])

parseDiezStringsAListadeNotas’’’’’’’’’ = do

s1 <- parseNote

return $ \s2 s3 s4 s5 s6 s7 s8 s9 s10 -> stringsAListadeDiezNotas s1 s2 s3

s4 s5 s6 s7 s8 s9 s10

--

parseNueveStringsAListadeNotas :: H [Note]

parseNueveStringsAListadeNotas = parseNueveStringsAListadeNotas’ <*>

parseNote

parseNueveStringsAListadeNotas’ :: H (Note -> [Note])

parseNueveStringsAListadeNotas’ = parseNueveStringsAListadeNotas’’ <*>

parseNote

parseNueveStringsAListadeNotas’’ :: H (Note -> Note -> [Note])

parseNueveStringsAListadeNotas’’ = parseNueveStringsAListadeNotas’’’ <*>

parseNote

parseNueveStringsAListadeNotas’’’ :: H (Note -> Note -> Note -> [Note])

parseNueveStringsAListadeNotas’’’ = parseNueveStringsAListadeNotas’’’’ <*>

parseNote

parseNueveStringsAListadeNotas’’’’ :: H (Note -> Note -> Note -> Note -> [

Note])

287

parseNueveStringsAListadeNotas’’’’ = parseNueveStringsAListadeNotas’’’’’ <*>

parseNote

parseNueveStringsAListadeNotas’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> [Note])

parseNueveStringsAListadeNotas’’’’’ = parseNueveStringsAListadeNotas’’’’’’

<*> parseNote

parseNueveStringsAListadeNotas’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> [Note])

parseNueveStringsAListadeNotas’’’’’’ = parseNueveStringsAListadeNotas’’’’’’’

<*> parseNote

parseNueveStringsAListadeNotas’’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> Note -> [Note])

parseNueveStringsAListadeNotas’’’’’’’ = parseNueveStringsAListadeNotas

’’’’’’’’ <*> parseNote

parseNueveStringsAListadeNotas’’’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> Note -> Note -> [Note])

parseNueveStringsAListadeNotas’’’’’’’’ = do

s1 <- parseNote

return $ \s2 s3 s4 s5 s6 s7 s8 s9 -> stringsAListadeNueveNotas s1 s2 s3 s4

s5 s6 s7 s8 s9

--

parseOchoStringsAListadeNotas :: H [Note]

parseOchoStringsAListadeNotas = parseOchoStringsAListadeNotas’ <*> parseNote

parseOchoStringsAListadeNotas’ :: H (Note -> [Note])

parseOchoStringsAListadeNotas’ = parseOchoStringsAListadeNotas’’ <*>

parseNote

parseOchoStringsAListadeNotas’’ :: H (Note -> Note -> [Note])

parseOchoStringsAListadeNotas’’ = parseOchoStringsAListadeNotas’’’ <*>

parseNote

parseOchoStringsAListadeNotas’’’ :: H (Note -> Note -> Note -> [Note])

parseOchoStringsAListadeNotas’’’ = parseOchoStringsAListadeNotas’’’’ <*>

parseNote

parseOchoStringsAListadeNotas’’’’ :: H (Note -> Note -> Note -> Note -> [

Note])

288

parseOchoStringsAListadeNotas’’’’ = parseOchoStringsAListadeNotas’’’’’ <*>

parseNote

parseOchoStringsAListadeNotas’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> [Note])

parseOchoStringsAListadeNotas’’’’’ = parseOchoStringsAListadeNotas’’’’’’ <*>

parseNote

parseOchoStringsAListadeNotas’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> [Note])

parseOchoStringsAListadeNotas’’’’’’ = parseOchoStringsAListadeNotas’’’’’’’

<*> parseNote

parseOchoStringsAListadeNotas’’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> Note ->[Note])

parseOchoStringsAListadeNotas’’’’’’’ = do

s1 <- parseNote

return $ \s2 s3 s4 s5 s6 s7 s8 -> stringsAListadeOchoNotas s1 s2 s3 s4 s5

s6 s7 s8

--

parseSieteStringsAListadeNotas :: H [Note]

parseSieteStringsAListadeNotas = parseSieteStringsAListadeNotas’ <*>

parseNote

parseSieteStringsAListadeNotas’ :: H (Note -> [Note])

parseSieteStringsAListadeNotas’ = parseSieteStringsAListadeNotas’’ <*>

parseNote

parseSieteStringsAListadeNotas’’ :: H (Note -> Note -> [Note])

parseSieteStringsAListadeNotas’’ = parseSieteStringsAListadeNotas’’’ <*>

parseNote

parseSieteStringsAListadeNotas’’’ :: H (Note -> Note -> Note -> [Note])

parseSieteStringsAListadeNotas’’’ = parseSieteStringsAListadeNotas’’’’ <*>

parseNote

parseSieteStringsAListadeNotas’’’’ :: H (Note -> Note -> Note -> Note -> [

Note])

parseSieteStringsAListadeNotas’’’’ = parseSieteStringsAListadeNotas’’’’’ <*>

parseNote

parseSieteStringsAListadeNotas’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> [Note])

289

parseSieteStringsAListadeNotas’’’’’ = parseSieteStringsAListadeNotas’’’’’’

<*> parseNote

parseSieteStringsAListadeNotas’’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> Note -> [Note])

parseSieteStringsAListadeNotas’’’’’’ = do

s1 <- parseNote

return $ \s2 s3 s4 s5 s6 s7 -> stringsAListadeSieteNotas s1 s2 s3 s4 s5 s6

s7

--

parseSeisStringsAListadeNotas :: H [Note]

parseSeisStringsAListadeNotas = parseSeisStringsAListadeNotas’ <*> parseNote

parseSeisStringsAListadeNotas’ :: H (Note -> [Note])

parseSeisStringsAListadeNotas’ = parseSeisStringsAListadeNotas’’ <*>

parseNote

parseSeisStringsAListadeNotas’’ :: H (Note -> Note -> [Note])

parseSeisStringsAListadeNotas’’ = parseSeisStringsAListadeNotas’’’ <*>

parseNote

parseSeisStringsAListadeNotas’’’ :: H (Note -> Note -> Note -> [Note])

parseSeisStringsAListadeNotas’’’ = parseSeisStringsAListadeNotas’’’’ <*>

parseNote

parseSeisStringsAListadeNotas’’’’ :: H (Note -> Note -> Note -> Note -> [

Note])

parseSeisStringsAListadeNotas’’’’ = parseSeisStringsAListadeNotas’’’’’ <*>

parseNote

parseSeisStringsAListadeNotas’’’’’ :: H (Note -> Note -> Note -> Note ->

Note -> [Note])

parseSeisStringsAListadeNotas’’’’’ = do

s1 <- parseNote

return $ \s2 s3 s4 s5 s6 -> stringsAListadeSeisNotas s1 s2 s3 s4 s5 s6

--

parseCincoStringsAListadeNotas :: H [Note]

parseCincoStringsAListadeNotas = parseCuatroStringsAListadeNotas’ <*>

parseNote

parseCincoStringsAListadeNotas’ :: H (Note -> [Note])

290

parseCincoStringsAListadeNotas’ = parseCincoStringsAListadeNotas’’ <*>

parseNote

parseCincoStringsAListadeNotas’’ :: H (Note -> Note -> [Note])

parseCincoStringsAListadeNotas’’ = parseCincoStringsAListadeNotas’’’ <*>

parseNote

parseCincoStringsAListadeNotas’’’ :: H (Note -> Note -> Note -> [Note])

parseCincoStringsAListadeNotas’’’ = parseCincoStringsAListadeNotas’’’’ <*>

parseNote

parseCincoStringsAListadeNotas’’’’ :: H (Note -> Note -> Note -> Note -> [

Note])

parseCincoStringsAListadeNotas’’’’ = do

s1 <- parseNote

return $ \s2 s3 s4 s5 -> stringsAListadeCincoNotas s1 s2 s3 s4 s5

--

parseCuatroStringsAListadeNotas :: H [Note]

parseCuatroStringsAListadeNotas = parseCuatroStringsAListadeNotas’ <*>

parseNote

parseCuatroStringsAListadeNotas’ :: H (Note -> [Note])

parseCuatroStringsAListadeNotas’ = parseCuatroStringsAListadeNotas’’ <*>

parseNote

parseCuatroStringsAListadeNotas’’ :: H (Note -> Note -> [Note])

parseCuatroStringsAListadeNotas’’ = parseCuatroStringsAListadeNotas’’’ <*>

parseNote

parseCuatroStringsAListadeNotas’’’ :: H (Note -> Note -> Note -> [Note])

parseCuatroStringsAListadeNotas’’’ = do

s1 <- parseNote

return $ \s2 s3 s4 -> stringsAListadeCuatroNotas s1 s2 s3 s4

--

parseTresStringsAListadeNotas :: H [Note]

parseTresStringsAListadeNotas = parseTresStringsAListadeNotas’ <*> parseNote

parseTresStringsAListadeNotas’ :: H (Note -> [Note])

parseTresStringsAListadeNotas’ = parseTresStringsAListadeNotas’’ <*>

parseNote

parseTresStringsAListadeNotas’’ :: H (Note -> Note -> [Note])

parseTresStringsAListadeNotas’’ = do

291

s1 <- parseNote

return $ \s2 s3 -> stringsAListadeTresNotas s1 s2 s3

--

parseDosStringsAListadeNotas :: H [Note]

parseDosStringsAListadeNotas = parseDosStringsAListadeNotas’ <*> parseNote

parseDosStringsAListadeNotas’ :: H (Note -> [Note])

parseDosStringsAListadeNotas’ = do

s1 <- parseNote

return $ \s2 -> stringsAListadeDosNotas s1 s2

--

parseUnStringAListadeNotas :: H [Note]

parseUnStringAListadeNotas = do

-- s1 <- string

s1 <- parseNote -- Note

return $ stringAListadeUnaNota s1

--

-- helper funcs para acompanamiento

-- stringAListadeUnaNota :: String -> [String]

stringAListadeUnaNota :: Note -> [Note]

stringAListadeUnaNota s1 = [s1]

stringsAListadeDosNotas :: Note -> Note -> [Note]

stringsAListadeDosNotas s1 s2 = [s1, s2]

stringsAListadeTresNotas :: Note -> Note -> Note -> [Note]

stringsAListadeTresNotas s1 s2 s3 = [s1, s2, s3]

stringsAListadeCuatroNotas :: Note -> Note -> Note -> Note -> [Note]

stringsAListadeCuatroNotas s1 s2 s3 s4 = [s1, s2, s3, s4]

stringsAListadeCincoNotas :: Note -> Note -> Note -> Note -> Note -> [Note]

stringsAListadeCincoNotas s1 s2 s3 s4 s5 = [s1, s2, s3, s4, s5]

stringsAListadeSeisNotas :: Note -> Note -> Note -> Note -> Note -> Note ->

[Note]

stringsAListadeSeisNotas s1 s2 s3 s4 s5 s6 = [s1, s2, s3, s4, s5, s6]

stringsAListadeSieteNotas :: Note -> Note -> Note -> Note -> Note -> Note ->

Note -> [Note]

stringsAListadeSieteNotas s1 s2 s3 s4 s5 s6 s7 = [s1, s2, s3, s4, s5, s6, s7

]

292

stringsAListadeOchoNotas :: Note -> Note -> Note -> Note -> Note -> Note ->

Note -> Note -> [Note]

stringsAListadeOchoNotas s1 s2 s3 s4 s5 s6 s7 s8 = [s1, s2, s3, s4, s5, s6,

s7, s8]

stringsAListadeNueveNotas :: Note -> Note -> Note -> Note -> Note -> Note ->

Note -> Note -> Note -> [Note]

stringsAListadeNueveNotas s1 s2 s3 s4 s5 s6 s7 s8 s9 = [s1, s2, s3, s4, s5,

s6, s7, s8, s9]

stringsAListadeDiezNotas :: Note -> Note -> Note -> Note -> Note -> Note ->

Note -> Note -> Note -> Note -> [Note]

stringsAListadeDiezNotas s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 = [s1, s2, s3, s4,

s5, s6, s7, s8, s9, s10]

stringsAListadeOnceNotas :: Note -> Note -> Note -> Note -> Note -> Note ->

Note -> Note -> Note -> Note -> Note -> [Note]

stringsAListadeOnceNotas s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 = [s1, s2, s3,

s4, s5, s6, s7, s8, s9, s10, s11]

stringsAListadeDoceNotas :: Note -> Note -> Note -> Note -> Note -> Note ->

Note -> Note -> Note -> Note -> Note -> Note -> [Note]

stringsAListadeDoceNotas s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 = [s1, s2,

s3, s4, s5, s6, s7, s8, s9, s10, s11, s12]

-- [60 64 67] [59 62 67]

-- ["f" "3a" "5a", "3a" (-1) "5a" (-1) "f" (-1)]

--

-- helper funcs para acompanamiento con octava. e.g. acompanamiento 2 ["3a

" "5a"]

-- ?

parseAlternar :: H Layer

parseAlternar = parseAlternar’ <*> parseLayer

parseAlternar’ :: H (Layer -> Layer)

parseAlternar’ = parseAlternar’’ <*> parseLayerToLayerFunc

parseAlternar’’ :: H ((Layer -> Layer) -> Layer -> Layer)

parseAlternar’’ = parseAlternar’’’ <*> int

parseAlternar’’’ :: H (Int -> (Layer -> Layer) -> Layer -> Layer)

parseAlternar’’’ = alternar <$ reserved "alternar"

parseLayerToLayerFunc :: H (Layer -> Layer)

293

parseLayerToLayerFunc = parseSeleccionarEstilo’

<|> parseSeleccionarSample’

<|> parseSeleccionarSamples’

<|> parseTonicaYquinta’

<|> parseTonicaYquinta2’

<|> parseTonicaQoctava’

<|> parseTonicaQtercera’

<|> parseCambiarNota’

<|> parseCambiarNotas’

<|> parseCambiarRitmoAuto’

<|> parseCambiarRitmosAuto’

<|> parseCambiarRitmo’

<|> parseCambiarRitmos’

<|> parseCambiarIntervalo’

<|> parseCambiarIntervalos’

<|> parseCambiarIntervaloConOctava’

<|> parseCambiarIntervalosConOctava’

<|> parseCambiarIntervaloDouble’

<|> parseCambiarIntervaloDoubleConOctava’

<|> parseCambiarIntervalosDouble’

<|> parseCambiarIntervalosDoubleConOctava’

<|> parsePreset’

<|> parseAlternar’

<|> parseCambiarGain’

<|> parseCambiarPaneo’

<|> parsePunteo’

<|> parsePunteos’

<|> parseTumbao’

<|> parseaTumbaoBajoVoicingSel’

<|> parseaTumbaoBajoVoicingYRitmoSel’

<|> parseaTumbaoBajoVoicingsYRitmoSel’

<|> parseTumbaoCongasGolpesSel’

<|> parseTumbaoCongasGolpesYRitmoSel’

-- <|> parseTumbaoCongasListaDeGolpesSel’

<|> parseTumbaoCongasListaDeGolpesYRitmoSel’

<|> parseacompanamiento’

<|> parseacompanamientos’

<|> parseAcompanamientoConVoicingSel’

<|> parseAcompanamientosConVoicingSel’

alternar :: Int -> (Layer -> Layer) -> Layer -> Layer

alternar 0 f x = Layer { getEvents = updatedEv, style = style x}

where

f0 = getEvents x

294

s0 = style x

updatedEv gm s t iw ew = f0 gm s0 t iw ew

alternar 1 f x = Layer { getEvents = updatedEv, style = style (f x)}

where

f1 = getEvents (f x)

s1 = style (f x)

updatedEv gm s t iw ew = f1 gm s1 t iw ew

alternar n f x = Layer { getEvents = updatedEv, style = style (f x)}

where

f0 = getEvents x -- lista orginal de evs

f1 = getEvents (f x) -- lista nueva de evs

s0 = style x

s1 = style (f x)

updatedEv gm s t iw ew = liftM ordernarEv $ liftM concat $ liftM2 (++)

es0 es1

where

iw’ = timeToCount t iw -- Rational

ew’ = timeToCount t ew --

(w0, w1) = alternarWindows’’ (toRational n) (toRational $ compas gm)

iw’ ew’ -- find all the windows that comply with certain

condition within the provided window

es0 = mapM (\(i,e) -> f0 gm s0 t (countToTime t i) (countToTime t e))

w0 -- State LayerState [[Events]]

es1 = mapM (\(i,e) -> f1 gm s1 t (countToTime t i) (countToTime t e))

w1

data Event’ = Event’ (UTCTime, Map.Map T.Text H.Datum) deriving (Show, Eq)

instance Ord Event’ where

Event’ (u1, _) ‘compare‘ Event’ (u2, _) = u1 ‘compare‘ u2

ordernarEv :: [(UTCTime, Map.Map T.Text H.Datum)] -> [(UTCTime, Map.Map T.

Text H.Datum)]

ordernarEv evs = do

let evsToEv = List.sort $ fmap (\e -> Event’ e) evs

fmap (\e -> evToEv e) evsToEv

evToEv :: Event’-> (UTCTime, Map.Map T.Text H.Datum)

evToEv (Event’ (utc, d)) = (utc, d)

295

-- myEvent’ :: Event’

-- myEvent’ = Event’ ((mytime 0.75), Map.fromList [("s", H.string "test")

])

-- --

-- myEvents :: [Event’]

-- myEvents = [Event’ ((mytime 1.0), Map.fromList [("s", H.string "tres")

]), Event’ ((mytime 0.75), Map.fromList [("s", H.string "dos")]), Event

’ ((mytime 0.25), Map.fromList [("s", H.string "uno")])]

alternarWindows n compas iw ew = do

let n’ = n * compas

let iw’ = realToFrac $ floor iw

let ew’ = realToFrac $ floor ew

let lista = [iw’, iw’ + compas .. ew’]

let lista’ = fmap (\e -> (e, e + (1 * compas))) lista

let lista’’ = drop 1 $ init lista’

let lista’’’ = firstItem : lista’’ ++ lastItem

firstItem | (realToFrac $ floor iw) == (realToFrac $ floor ew) = (

realToFrac iw, realToFrac ew)

| otherwise = (realToFrac iw, (realToFrac $ floor iw) + (1 *

compas))

lastItem | (realToFrac $ floor ew) == (realToFrac $ floor iw) = []

| (realToFrac ew) > (realToFrac $ floor ew) = [(realToFrac $
floor ew, realToFrac ew)]

| otherwise = []

let x = catMaybes $ fmap (\(x, y) -> if (mod’ (realToFrac x) (realToFrac n

’)) /= ((realToFrac n’) - compas) then Just (x , y) else Nothing) lista

’’’

let fx = catMaybes $ fmap (\(x,y) -> if (mod’ (realToFrac x) (realToFrac n

’)) == ((realToFrac n’) - compas) then Just (x , y) else Nothing)

lista’’’

(x, fx)

-- alternarWindows’ :: Rational -> Rational -> Rational -> Rational -> ([(

Rational, Rational)], [(Rational, Rational)])

alternarWindows’ n compas iw ew = do

let n’ = n * compas

let iw’ = realToFrac $ floor iw

let ew’ = realToFrac $ floor ew

let lista = [iw’, iw’ + compas .. ew’]

let lista’ = fmap (\e -> (e, e + (1 * compas))) lista

let lista’’ = drop 1 $ init lista’

let lista’’’ = firstItem ++ lista’’ ++ lastItem

296

firstItem | (realToFrac $ floor iw) == (realToFrac $ floor ew) = [(

realToFrac iw, realToFrac ew)]

| (realToFrac iw) == ((realToFrac $ floor iw) + (1 * compas))

= []

| otherwise = [(realToFrac iw, (realToFrac $ floor iw) + (1 *

compas))]

lastItem | (realToFrac $ floor ew) == (realToFrac $ floor iw) = []

| (realToFrac ew) > (realToFrac $ floor ew) = [(realToFrac $
floor ew, realToFrac ew)]

| otherwise = []

let x = catMaybes $ fmap (\(x, y) -> if (mod’ (realToFrac x) (realToFrac n

’)) /= ((realToFrac n’) - compas) then Just (x , y) else Nothing) lista

’’’

let fx = catMaybes $ fmap (\(x,y) -> if (mod’ (realToFrac x) (realToFrac n

’)) == ((realToFrac n’) - compas) then Just (x , y) else Nothing)

lista’’’

(x, fx)

-- alternarWindows’’ :: Double -> Double -> Double -> Double -> ([(Double,

Double)], [(Double, Double)])

alternarWindows’’ n compas iw ew = do

let n’ = n * compas

let iw’ = realToFrac $ floor iw

let ew’ = realToFrac $ ceiling ew

let lista = [iw’, (iw’ + compas).. ew’]

let lowerFilteredList = Prelude.filter ((<=) iw) lista

let upwardsFilteredList = Prelude.filter ((>=) ew) lowerFilteredList

let lista’ = fmap (\e -> (e, e + compas)) upwardsFilteredList

let confirmHead |((length lista’) > 0) && (iw < (fst $ head lista’)) = ((

fst $ head lista’) - ((fst $ head lista’) - iw) , fst $ head lista’) :

lista’

| ((length lista’) > 0) && (iw == (fst $ head lista’)) =

lista’

| ((length lista’) == 0) = [(iw, ew)]

let confirmLast | (length confirmHead == 1) = [(fst $ head confirmHead, ew

)]

| (length confirmHead > 1) && (ew == (fst $ last confirmHead

)) = init confirmHead

| (length confirmHead > 1) && (ew > (fst $ last confirmHead)

) = init confirmHead ++ [(snd $ last $ init confirmHead,

ew)]

let x = catMaybes $ fmap (\(a, b) -> compararX (a, b) compas n’)

confirmLast

297

let fx = catMaybes $ fmap (\(a, b) -> compararFx (a, b) compas n’)

confirmLast

(x, fx)

-- compararX :: (Double, Double) -> Double -> Double -> Maybe (Double,

Double)

compararX (a,b) compas n

| (a > 0) && (a < (realToFrac $ floor a) + compas) = if (mod’ (realToFrac

$ floor a) (realToFrac n)) /= ((realToFrac n) - compas) then Just (a ,

b) else Nothing

| (a > (realToFrac $ floor a) + compas) && (a < (realToFrac $ ceiling a))

= if (mod’ ((realToFrac $ floor a) + compas) (realToFrac n)) /= ((

realToFrac n) - compas) then Just (a , b) else Nothing

| otherwise = if (mod’ (realToFrac a) (realToFrac n)) /= ((realToFrac n) -

compas) then Just (a , b) else Nothing

-- compararFx :: (Double, Double) -> Double -> Double -> Maybe (Double,

Double)

compararFx (a,b) compas n

| (a > 0) && (a < (realToFrac $ floor a) + compas) = if (mod’ (realToFrac

$ floor a) (realToFrac n)) == ((realToFrac n) - compas) then Just (a ,

b) else Nothing

| (a > (realToFrac $ floor a) + compas) && (a < (realToFrac $ ceiling a))

= if (mod’ ((realToFrac $ floor a) + compas) (realToFrac n)) == ((

realToFrac n) - compas) then Just (a , b) else Nothing

| otherwise = if (mod’ (realToFrac a) (realToFrac n)) == ((realToFrac n) -

compas) then Just (a , b) else Nothing

-- test funcs

-- let l = alternar 2 (tonicaYquinta) (seleccionarEstilo cumbia bajo)

-- (runState (getEvents l testgmm cumbia mytempo (mytime 0) (mytime 1))

emptyLayerState)

-- helper functions

stringList :: H [String]

stringList = list string

rationalList :: H [Rational]

rationalList = list $ rationalOrInteger

intList :: H [Int]

intList = list $ fromIntegral <$> integer

int :: H Int

298

int = fromIntegral <$> integer

parseNPattern1 :: H NPattern

parseNPattern1 = do

ix <- intList

return $ NPattern1 ix

double :: H Double

double = fromRational <$> rationalOrInteger

doubleList :: H [Double]

doubleList = list double

--

parseListasDeListasDeAtaques :: H [[Rational]]

parseListasDeListasDeAtaques = list parseAtaquesAListaDeAtaques

parseAtaquesAListaDeAtaques :: H [Rational]

parseAtaquesAListaDeAtaques = parseUnAtaqueAListDeAtaques

<|> parseDosAtaquesAListDeAtaques

<|> parseTresAtaquesAListDeAtaques

<|> parseCuatroAtaquesAListDeAtaques

<|> parseCincoAtaquesAListDeAtaques

<|> parseSeisAtaquesAListDeAtaques

<|> parseSieteAtaquesAListDeAtaques

<|> parseOchoAtaquesAListDeAtaques

<|> parseNueveAtaquesAListDeAtaques

<|> parseDiezAtaquesAListDeAtaques

<|> parseOnceAtaquesAListDeAtaques

<|> parseDoceAtaquesAListDeAtaques

<|> parseTreceAtaquesAListDeAtaques

<|> parseCatorceAtaquesAListDeAtaques

<|> parseQuinceAtaquesAListDeAtaques

<|> parseDieciseisAtaquesAListDeAtaques

parseDieciseisAtaquesAListDeAtaques :: H [Rational]

parseDieciseisAtaquesAListDeAtaques = parseDieciseisAtaquesAListDeAtaques’

<*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseDieciseisAtaquesAListDeAtaques’ = parseDieciseisAtaquesAListDeAtaques’’

<*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [

Rational])

299

parseDieciseisAtaquesAListDeAtaques’’ = parseDieciseisAtaquesAListDeAtaques

’’’ <*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’’ :: H (Rational -> Rational ->

Rational -> [Rational])

parseDieciseisAtaquesAListDeAtaques’’’ = parseDieciseisAtaquesAListDeAtaques

’’’’ <*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> [Rational])

parseDieciseisAtaquesAListDeAtaques’’’’ =

parseDieciseisAtaquesAListDeAtaques’’’’’ <*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> [Rational])

parseDieciseisAtaquesAListDeAtaques’’’’’ =

parseDieciseisAtaquesAListDeAtaques’’’’’’ <*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> [Rational])

parseDieciseisAtaquesAListDeAtaques’’’’’’ =

parseDieciseisAtaquesAListDeAtaques’’’’’’’ <*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> [Rational])

parseDieciseisAtaquesAListDeAtaques’’’’’’’ =

parseDieciseisAtaquesAListDeAtaques’’’’’’’’ <*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational -> [

Rational])

parseDieciseisAtaquesAListDeAtaques’’’’’’’’ =

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’ <*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> [Rational])

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’ =

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’ <*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> [Rational])

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’ =

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’ <*> rationalOrInteger

300

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> [Rational])

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’ =

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’’ <*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’’ :: H (Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> [Rational])

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’’ =

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’’’ <*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’’’ :: H (Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> Rational -> [Rational

])

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’’’ =

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’’’’ <*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’’’’ :: H (Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> Rational -> Rational

-> [Rational])

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’’’’ =

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’’’’’ <*> rationalOrInteger

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’’’’’ :: H (Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> [Rational])

parseDieciseisAtaquesAListDeAtaques’’’’’’’’’’’’’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16 ->

dieciseisAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

n13 n14 n15 n16

dieciseisAtaquesAListDeAtaques :: Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> [Rational]

dieciseisAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

n14 n15 n16 = [n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13,

n14, n15, n16]

301

-- ("p" "t" "p" (t "a") ...)

parseQuinceAtaquesAListDeAtaques :: H [Rational]

parseQuinceAtaquesAListDeAtaques = parseQuinceAtaquesAListDeAtaques’ <*>

rationalOrInteger

parseQuinceAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseQuinceAtaquesAListDeAtaques’ = parseQuinceAtaquesAListDeAtaques’’ <*>

rationalOrInteger

parseQuinceAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational])

parseQuinceAtaquesAListDeAtaques’’ = parseQuinceAtaquesAListDeAtaques’’’ <*>

rationalOrInteger

parseQuinceAtaquesAListDeAtaques’’’ :: H (Rational -> Rational -> Rational

-> [Rational])

parseQuinceAtaquesAListDeAtaques’’’ = parseQuinceAtaquesAListDeAtaques’’’’

<*> rationalOrInteger

parseQuinceAtaquesAListDeAtaques’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> [Rational])

parseQuinceAtaquesAListDeAtaques’’’’ = parseQuinceAtaquesAListDeAtaques’’’’’

<*> rationalOrInteger

parseQuinceAtaquesAListDeAtaques’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> [Rational])

parseQuinceAtaquesAListDeAtaques’’’’’ = parseQuinceAtaquesAListDeAtaques

’’’’’’ <*> rationalOrInteger

parseQuinceAtaquesAListDeAtaques’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> [Rational])

parseQuinceAtaquesAListDeAtaques’’’’’’ = parseQuinceAtaquesAListDeAtaques

’’’’’’’ <*> rationalOrInteger

parseQuinceAtaquesAListDeAtaques’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> [Rational])

parseQuinceAtaquesAListDeAtaques’’’’’’’ = parseQuinceAtaquesAListDeAtaques

’’’’’’’’ <*> rationalOrInteger

parseQuinceAtaquesAListDeAtaques’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational -> [

Rational])

parseQuinceAtaquesAListDeAtaques’’’’’’’’ = parseQuinceAtaquesAListDeAtaques

’’’’’’’’’ <*> rationalOrInteger

302

parseQuinceAtaquesAListDeAtaques’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> [Rational])

parseQuinceAtaquesAListDeAtaques’’’’’’’’’ = parseQuinceAtaquesAListDeAtaques

’’’’’’’’’’ <*> rationalOrInteger

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> [Rational])

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’ =

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’’ <*> rationalOrInteger

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> [Rational])

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’’ =

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’’’ <*> rationalOrInteger

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> [Rational])

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’’’ =

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’’’’ <*> rationalOrInteger

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> [Rational])

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’’’’ =

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’’’’’ <*> rationalOrInteger

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational -> [

Rational])

parseQuinceAtaquesAListDeAtaques’’’’’’’’’’’’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 ->

quinceAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

n14 n15

quinceAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> Rational -> [Rational]

quinceAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14

n15 = [n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15]

303

-- ("p" "t" "p" (t "a") ...)

parseCatorceAtaquesAListDeAtaques :: H [Rational]

parseCatorceAtaquesAListDeAtaques = parseCatorceAtaquesAListDeAtaques’ <*>

rationalOrInteger

parseCatorceAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseCatorceAtaquesAListDeAtaques’ = parseCatorceAtaquesAListDeAtaques’’ <*>

rationalOrInteger

parseCatorceAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational

])

parseCatorceAtaquesAListDeAtaques’’ = parseCatorceAtaquesAListDeAtaques’’’

<*> rationalOrInteger

parseCatorceAtaquesAListDeAtaques’’’ :: H (Rational -> Rational -> Rational

-> [Rational])

parseCatorceAtaquesAListDeAtaques’’’ = parseCatorceAtaquesAListDeAtaques’’’’

<*> rationalOrInteger

parseCatorceAtaquesAListDeAtaques’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> [Rational])

parseCatorceAtaquesAListDeAtaques’’’’ = parseCatorceAtaquesAListDeAtaques

’’’’’ <*> rationalOrInteger

parseCatorceAtaquesAListDeAtaques’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> [Rational])

parseCatorceAtaquesAListDeAtaques’’’’’ = parseCatorceAtaquesAListDeAtaques

’’’’’’ <*> rationalOrInteger

parseCatorceAtaquesAListDeAtaques’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> [Rational])

parseCatorceAtaquesAListDeAtaques’’’’’’ = parseCatorceAtaquesAListDeAtaques

’’’’’’’ <*> rationalOrInteger

parseCatorceAtaquesAListDeAtaques’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> [Rational])

parseCatorceAtaquesAListDeAtaques’’’’’’’ = parseCatorceAtaquesAListDeAtaques

’’’’’’’’ <*> rationalOrInteger

parseCatorceAtaquesAListDeAtaques’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational -> [

Rational])

parseCatorceAtaquesAListDeAtaques’’’’’’’’ =

parseCatorceAtaquesAListDeAtaques’’’’’’’’’ <*> rationalOrInteger

304

parseCatorceAtaquesAListDeAtaques’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> [Rational])

parseCatorceAtaquesAListDeAtaques’’’’’’’’’ =

parseCatorceAtaquesAListDeAtaques’’’’’’’’’’ <*> rationalOrInteger

parseCatorceAtaquesAListDeAtaques’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> [Rational])

parseCatorceAtaquesAListDeAtaques’’’’’’’’’’ =

parseCatorceAtaquesAListDeAtaques’’’’’’’’’’’ <*> rationalOrInteger

parseCatorceAtaquesAListDeAtaques’’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> [Rational])

parseCatorceAtaquesAListDeAtaques’’’’’’’’’’’ =

parseCatorceAtaquesAListDeAtaques’’’’’’’’’’’’ <*> rationalOrInteger

parseCatorceAtaquesAListDeAtaques’’’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> [Rational])

parseCatorceAtaquesAListDeAtaques’’’’’’’’’’’’ =

parseCatorceAtaquesAListDeAtaques’’’’’’’’’’’’’ <*> rationalOrInteger

parseCatorceAtaquesAListDeAtaques’’’’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> [Rational])

parseCatorceAtaquesAListDeAtaques’’’’’’’’’’’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 ->

catorceAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

n14

catorceAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> [Rational]

catorceAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14

= [n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14]

-- ("p" "t" "p" (t "a") ...)

parseTreceAtaquesAListDeAtaques :: H [Rational]

parseTreceAtaquesAListDeAtaques = parseTreceAtaquesAListDeAtaques’ <*>

rationalOrInteger

305

parseTreceAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseTreceAtaquesAListDeAtaques’ = parseTreceAtaquesAListDeAtaques’’ <*>

rationalOrInteger

parseTreceAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational])

parseTreceAtaquesAListDeAtaques’’ = parseTreceAtaquesAListDeAtaques’’’ <*>

rationalOrInteger

parseTreceAtaquesAListDeAtaques’’’ :: H (Rational -> Rational -> Rational ->

[Rational])

parseTreceAtaquesAListDeAtaques’’’ = parseTreceAtaquesAListDeAtaques’’’’ <*>

rationalOrInteger

parseTreceAtaquesAListDeAtaques’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> [Rational])

parseTreceAtaquesAListDeAtaques’’’’ = parseTreceAtaquesAListDeAtaques’’’’’

<*> rationalOrInteger

parseTreceAtaquesAListDeAtaques’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> [Rational])

parseTreceAtaquesAListDeAtaques’’’’’ = parseTreceAtaquesAListDeAtaques’’’’’’

<*> rationalOrInteger

parseTreceAtaquesAListDeAtaques’’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> [Rational])

parseTreceAtaquesAListDeAtaques’’’’’’ = parseTreceAtaquesAListDeAtaques

’’’’’’’ <*> rationalOrInteger

parseTreceAtaquesAListDeAtaques’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> [Rational])

parseTreceAtaquesAListDeAtaques’’’’’’’ = parseTreceAtaquesAListDeAtaques

’’’’’’’’ <*> rationalOrInteger

parseTreceAtaquesAListDeAtaques’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational -> [

Rational])

parseTreceAtaquesAListDeAtaques’’’’’’’’ = parseTreceAtaquesAListDeAtaques

’’’’’’’’’ <*> rationalOrInteger

parseTreceAtaquesAListDeAtaques’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> [Rational])

parseTreceAtaquesAListDeAtaques’’’’’’’’’ = parseTreceAtaquesAListDeAtaques

’’’’’’’’’’ <*> rationalOrInteger

306

parseTreceAtaquesAListDeAtaques’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> [Rational])

parseTreceAtaquesAListDeAtaques’’’’’’’’’’ = parseTreceAtaquesAListDeAtaques

’’’’’’’’’’’ <*> rationalOrInteger

parseTreceAtaquesAListDeAtaques’’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> [Rational])

parseTreceAtaquesAListDeAtaques’’’’’’’’’’’ = parseTreceAtaquesAListDeAtaques

’’’’’’’’’’’’ <*> rationalOrInteger

parseTreceAtaquesAListDeAtaques’’’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> [Rational])

parseTreceAtaquesAListDeAtaques’’’’’’’’’’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 ->

treceAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

treceAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> [Rational]

treceAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 = [n1,

n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13]

-- ("p" "t" "p" (t "a") ...)

parseDoceAtaquesAListDeAtaques :: H [Rational]

parseDoceAtaquesAListDeAtaques = parseDoceAtaquesAListDeAtaques’ <*>

rationalOrInteger

parseDoceAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseDoceAtaquesAListDeAtaques’ = parseDoceAtaquesAListDeAtaques’’ <*>

rationalOrInteger

parseDoceAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational])

parseDoceAtaquesAListDeAtaques’’ = parseDoceAtaquesAListDeAtaques’’’ <*>

rationalOrInteger

parseDoceAtaquesAListDeAtaques’’’ :: H (Rational -> Rational -> Rational ->

[Rational])

parseDoceAtaquesAListDeAtaques’’’ = parseDoceAtaquesAListDeAtaques’’’’ <*>

rationalOrInteger

307

parseDoceAtaquesAListDeAtaques’’’’ :: H (Rational -> Rational -> Rational ->

Rational -> [Rational])

parseDoceAtaquesAListDeAtaques’’’’ = parseDoceAtaquesAListDeAtaques’’’’’ <*>

rationalOrInteger

parseDoceAtaquesAListDeAtaques’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> [Rational])

parseDoceAtaquesAListDeAtaques’’’’’ = parseDoceAtaquesAListDeAtaques’’’’’’

<*> rationalOrInteger

parseDoceAtaquesAListDeAtaques’’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> [Rational])

parseDoceAtaquesAListDeAtaques’’’’’’ = parseDoceAtaquesAListDeAtaques’’’’’’’

<*> rationalOrInteger

parseDoceAtaquesAListDeAtaques’’’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> [Rational])

parseDoceAtaquesAListDeAtaques’’’’’’’ = parseDoceAtaquesAListDeAtaques

’’’’’’’’ <*> rationalOrInteger

parseDoceAtaquesAListDeAtaques’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational -> [

Rational])

parseDoceAtaquesAListDeAtaques’’’’’’’’ = parseDoceAtaquesAListDeAtaques

’’’’’’’’’ <*> rationalOrInteger

parseDoceAtaquesAListDeAtaques’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> [Rational])

parseDoceAtaquesAListDeAtaques’’’’’’’’’ = parseDoceAtaquesAListDeAtaques

’’’’’’’’’’ <*> rationalOrInteger

parseDoceAtaquesAListDeAtaques’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> [Rational])

parseDoceAtaquesAListDeAtaques’’’’’’’’’’ = parseDoceAtaquesAListDeAtaques

’’’’’’’’’’’ <*> rationalOrInteger

parseDoceAtaquesAListDeAtaques’’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> [Rational])

parseDoceAtaquesAListDeAtaques’’’’’’’’’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 -> doceAtaquesAListDeAtaques

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

308

doceAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> [Rational]

doceAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 = [n1, n2,

n3, n4, n5, n6, n7, n8, n9, n10, n11, n12]

-- ("p" "t" "p" (t "a") ...)

parseOnceAtaquesAListDeAtaques :: H [Rational]

parseOnceAtaquesAListDeAtaques = parseOnceAtaquesAListDeAtaques’ <*>

rationalOrInteger

parseOnceAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseOnceAtaquesAListDeAtaques’ = parseOnceAtaquesAListDeAtaques’’ <*>

rationalOrInteger

parseOnceAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational])

parseOnceAtaquesAListDeAtaques’’ = parseOnceAtaquesAListDeAtaques’’’ <*>

rationalOrInteger

parseOnceAtaquesAListDeAtaques’’’ :: H (Rational -> Rational -> Rational ->

[Rational])

parseOnceAtaquesAListDeAtaques’’’ = parseOnceAtaquesAListDeAtaques’’’’ <*>

rationalOrInteger

parseOnceAtaquesAListDeAtaques’’’’ :: H (Rational -> Rational -> Rational ->

Rational -> [Rational])

parseOnceAtaquesAListDeAtaques’’’’ = parseOnceAtaquesAListDeAtaques’’’’’ <*>

rationalOrInteger

parseOnceAtaquesAListDeAtaques’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> [Rational])

parseOnceAtaquesAListDeAtaques’’’’’ = parseOnceAtaquesAListDeAtaques’’’’’’

<*> rationalOrInteger

parseOnceAtaquesAListDeAtaques’’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> [Rational])

parseOnceAtaquesAListDeAtaques’’’’’’ = parseOnceAtaquesAListDeAtaques’’’’’’’

<*> rationalOrInteger

parseOnceAtaquesAListDeAtaques’’’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> [Rational])

parseOnceAtaquesAListDeAtaques’’’’’’’ = parseOnceAtaquesAListDeAtaques

’’’’’’’’ <*> rationalOrInteger

309

parseOnceAtaquesAListDeAtaques’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational -> [

Rational])

parseOnceAtaquesAListDeAtaques’’’’’’’’ = parseOnceAtaquesAListDeAtaques

’’’’’’’’’ <*> rationalOrInteger

parseOnceAtaquesAListDeAtaques’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> [Rational])

parseOnceAtaquesAListDeAtaques’’’’’’’’’ = parseOnceAtaquesAListDeAtaques

’’’’’’’’’’ <*> rationalOrInteger

parseOnceAtaquesAListDeAtaques’’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> [Rational])

parseOnceAtaquesAListDeAtaques’’’’’’’’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 -> onceAtaquesAListDeAtaques n1

n2 n3 n4 n5 n6 n7 n8 n9 n10 n11

onceAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> [Rational]

onceAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 = [n1, n2, n3,

n4, n5, n6, n7, n8, n9, n10, n11]

-- ("p" "t" "p" (t "a") ...)

parseDiezAtaquesAListDeAtaques :: H [Rational]

parseDiezAtaquesAListDeAtaques = parseDiezAtaquesAListDeAtaques’ <*>

rationalOrInteger

parseDiezAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseDiezAtaquesAListDeAtaques’ = parseDiezAtaquesAListDeAtaques’’ <*>

rationalOrInteger

parseDiezAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational])

parseDiezAtaquesAListDeAtaques’’ = parseDiezAtaquesAListDeAtaques’’’ <*>

rationalOrInteger

parseDiezAtaquesAListDeAtaques’’’ :: H (Rational -> Rational -> Rational ->

[Rational])

parseDiezAtaquesAListDeAtaques’’’ = parseDiezAtaquesAListDeAtaques’’’’ <*>

rationalOrInteger

310

parseDiezAtaquesAListDeAtaques’’’’ :: H (Rational -> Rational -> Rational ->

Rational -> [Rational])

parseDiezAtaquesAListDeAtaques’’’’ = parseDiezAtaquesAListDeAtaques’’’’’ <*>

rationalOrInteger

parseDiezAtaquesAListDeAtaques’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> [Rational])

parseDiezAtaquesAListDeAtaques’’’’’ = parseDiezAtaquesAListDeAtaques’’’’’’

<*> rationalOrInteger

parseDiezAtaquesAListDeAtaques’’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> [Rational])

parseDiezAtaquesAListDeAtaques’’’’’’ = parseDiezAtaquesAListDeAtaques’’’’’’’

<*> rationalOrInteger

parseDiezAtaquesAListDeAtaques’’’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> [Rational])

parseDiezAtaquesAListDeAtaques’’’’’’’ = parseDiezAtaquesAListDeAtaques

’’’’’’’’ <*> rationalOrInteger

parseDiezAtaquesAListDeAtaques’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational -> [

Rational])

parseDiezAtaquesAListDeAtaques’’’’’’’’ = parseDiezAtaquesAListDeAtaques

’’’’’’’’’ <*> rationalOrInteger

parseDiezAtaquesAListDeAtaques’’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

Rational -> [Rational])

parseDiezAtaquesAListDeAtaques’’’’’’’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 n5 n6 n7 n8 n9 n10 -> diezAtaquesAListDeAtaques n1 n2

n3 n4 n5 n6 n7 n8 n9 n10

diezAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational ->

[Rational]

diezAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 = [n1, n2, n3, n4,

n5, n6, n7, n8, n9, n10]

-- ("p" "t" "p" (t "a") ...)

parseNueveAtaquesAListDeAtaques :: H [Rational]

parseNueveAtaquesAListDeAtaques = parseNueveAtaquesAListDeAtaques’ <*>

rationalOrInteger

311

parseNueveAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseNueveAtaquesAListDeAtaques’ = parseNueveAtaquesAListDeAtaques’’ <*>

rationalOrInteger

parseNueveAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational])

parseNueveAtaquesAListDeAtaques’’ = parseNueveAtaquesAListDeAtaques’’’ <*>

rationalOrInteger

parseNueveAtaquesAListDeAtaques’’’ :: H (Rational -> Rational -> Rational ->

[Rational])

parseNueveAtaquesAListDeAtaques’’’ = parseNueveAtaquesAListDeAtaques’’’’ <*>

rationalOrInteger

parseNueveAtaquesAListDeAtaques’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> [Rational])

parseNueveAtaquesAListDeAtaques’’’’ = parseNueveAtaquesAListDeAtaques’’’’’

<*> rationalOrInteger

parseNueveAtaquesAListDeAtaques’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> [Rational])

parseNueveAtaquesAListDeAtaques’’’’’ = parseNueveAtaquesAListDeAtaques’’’’’’

<*> rationalOrInteger

parseNueveAtaquesAListDeAtaques’’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> [Rational])

parseNueveAtaquesAListDeAtaques’’’’’’ = parseNueveAtaquesAListDeAtaques

’’’’’’’ <*> rationalOrInteger

parseNueveAtaquesAListDeAtaques’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> [Rational])

parseNueveAtaquesAListDeAtaques’’’’’’’ = parseNueveAtaquesAListDeAtaques

’’’’’’’’ <*> rationalOrInteger

parseNueveAtaquesAListDeAtaques’’’’’’’’ :: H (Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> Rational -> Rational -> [

Rational])

parseNueveAtaquesAListDeAtaques’’’’’’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 n5 n6 n7 n8 n9 -> nueveAtaquesAListDeAtaques n1 n2 n3

n4 n5 n6 n7 n8 n9

nueveAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> Rational -> [Rational]

nueveAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 n9 = [n1, n2, n3, n4, n5,

n6, n7, n8, n9]

312

-- ("p" "t" "p" (t "a") ...)

parseOchoAtaquesAListDeAtaques :: H [Rational]

parseOchoAtaquesAListDeAtaques = parseOchoAtaquesAListDeAtaques’ <*>

rationalOrInteger

parseOchoAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseOchoAtaquesAListDeAtaques’ = parseOchoAtaquesAListDeAtaques’’ <*>

rationalOrInteger

parseOchoAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational])

parseOchoAtaquesAListDeAtaques’’ = parseOchoAtaquesAListDeAtaques’’’ <*>

rationalOrInteger

parseOchoAtaquesAListDeAtaques’’’ :: H (Rational -> Rational -> Rational ->

[Rational])

parseOchoAtaquesAListDeAtaques’’’ = parseOchoAtaquesAListDeAtaques’’’’ <*>

rationalOrInteger

parseOchoAtaquesAListDeAtaques’’’’ :: H (Rational -> Rational -> Rational ->

Rational -> [Rational])

parseOchoAtaquesAListDeAtaques’’’’ = parseOchoAtaquesAListDeAtaques’’’’’ <*>

rationalOrInteger

parseOchoAtaquesAListDeAtaques’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> [Rational])

parseOchoAtaquesAListDeAtaques’’’’’ = parseOchoAtaquesAListDeAtaques’’’’’’

<*> rationalOrInteger

parseOchoAtaquesAListDeAtaques’’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> [Rational])

parseOchoAtaquesAListDeAtaques’’’’’’ = parseOchoAtaquesAListDeAtaques’’’’’’’

<*> rationalOrInteger

parseOchoAtaquesAListDeAtaques’’’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> Rational -> [Rational])

parseOchoAtaquesAListDeAtaques’’’’’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 n5 n6 n7 n8 -> ochoAtaquesAListDeAtaques n1 n2 n3 n4 n5

n6 n7 n8

ochoAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> Rational -> Rational -> [Rational]

ochoAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 n8 = [n1, n2, n3, n4, n5, n6,

n7, n8]

313

-- ("p" "t" "p" (t "a") ...)

parseSieteAtaquesAListDeAtaques :: H [Rational]

parseSieteAtaquesAListDeAtaques = parseSieteAtaquesAListDeAtaques’ <*>

rationalOrInteger

parseSieteAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseSieteAtaquesAListDeAtaques’ = parseSieteAtaquesAListDeAtaques’’ <*>

rationalOrInteger

parseSieteAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational])

parseSieteAtaquesAListDeAtaques’’ = parseSieteAtaquesAListDeAtaques’’’ <*>

rationalOrInteger

parseSieteAtaquesAListDeAtaques’’’ :: H (Rational -> Rational -> Rational ->

[Rational])

parseSieteAtaquesAListDeAtaques’’’ = parseSieteAtaquesAListDeAtaques’’’’ <*>

rationalOrInteger

parseSieteAtaquesAListDeAtaques’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> [Rational])

parseSieteAtaquesAListDeAtaques’’’’ = parseSieteAtaquesAListDeAtaques’’’’’

<*> rationalOrInteger

parseSieteAtaquesAListDeAtaques’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> [Rational])

parseSieteAtaquesAListDeAtaques’’’’’ = parseSieteAtaquesAListDeAtaques’’’’’’

<*> rationalOrInteger

parseSieteAtaquesAListDeAtaques’’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> [Rational])

parseSieteAtaquesAListDeAtaques’’’’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 n5 n6 n7 -> sieteAtaquesAListDeAtaques n1 n2 n3 n4 n5

n6 n7

sieteAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> Rational

-> Rational -> Rational -> Rational -> [Rational]

sieteAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 n7 = [n1, n2, n3, n4, n5, n6,

n7]

-- ("p" "t" "p" (t "a") ...)

parseSeisAtaquesAListDeAtaques :: H [Rational]

parseSeisAtaquesAListDeAtaques = parseSeisAtaquesAListDeAtaques’ <*>

rationalOrInteger

314

parseSeisAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseSeisAtaquesAListDeAtaques’ = parseSeisAtaquesAListDeAtaques’’ <*>

rationalOrInteger

parseSeisAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational])

parseSeisAtaquesAListDeAtaques’’ = parseSeisAtaquesAListDeAtaques’’’ <*>

rationalOrInteger

parseSeisAtaquesAListDeAtaques’’’ :: H (Rational -> Rational -> Rational ->

[Rational])

parseSeisAtaquesAListDeAtaques’’’ = parseSeisAtaquesAListDeAtaques’’’’ <*>

rationalOrInteger

parseSeisAtaquesAListDeAtaques’’’’ :: H (Rational -> Rational -> Rational ->

Rational -> [Rational])

parseSeisAtaquesAListDeAtaques’’’’ = parseSeisAtaquesAListDeAtaques’’’’’ <*>

rationalOrInteger

parseSeisAtaquesAListDeAtaques’’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> Rational -> [Rational])

parseSeisAtaquesAListDeAtaques’’’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 n5 n6 -> seisAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6

seisAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> Rational ->

Rational -> Rational -> [Rational]

seisAtaquesAListDeAtaques n1 n2 n3 n4 n5 n6 = [n1, n2, n3, n4, n5, n6]

-- ("p" "t" "p" (t "a") ...)

parseCincoAtaquesAListDeAtaques :: H [Rational]

parseCincoAtaquesAListDeAtaques = parseCincoAtaquesAListDeAtaques’ <*>

rationalOrInteger

parseCincoAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseCincoAtaquesAListDeAtaques’ = parseCincoAtaquesAListDeAtaques’’ <*>

rationalOrInteger

parseCincoAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational])

parseCincoAtaquesAListDeAtaques’’ = parseCincoAtaquesAListDeAtaques’’’ <*>

rationalOrInteger

parseCincoAtaquesAListDeAtaques’’’ :: H (Rational -> Rational -> Rational ->

[Rational])

315

parseCincoAtaquesAListDeAtaques’’’ = parseCincoAtaquesAListDeAtaques’’’’ <*>

rationalOrInteger

parseCincoAtaquesAListDeAtaques’’’’ :: H (Rational -> Rational -> Rational

-> Rational -> [Rational])

parseCincoAtaquesAListDeAtaques’’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 n5 -> cincoAtaquesAListDeAtaques n1 n2 n3 n4 n5

cincoAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> Rational

-> Rational -> [Rational]

cincoAtaquesAListDeAtaques n1 n2 n3 n4 n5 = [n1, n2, n3, n4, n5]

-- ("p" "t" "p" $ t "a")

parseCuatroAtaquesAListDeAtaques :: H [Rational]

parseCuatroAtaquesAListDeAtaques = parseCuatroAtaquesAListDeAtaques’ <*>

rationalOrInteger

parseCuatroAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseCuatroAtaquesAListDeAtaques’ = parseCuatroAtaquesAListDeAtaques’’ <*>

rationalOrInteger

parseCuatroAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational])

parseCuatroAtaquesAListDeAtaques’’ = parseCuatroAtaquesAListDeAtaques’’’ <*>

rationalOrInteger

parseCuatroAtaquesAListDeAtaques’’’ :: H (Rational -> Rational -> Rational

-> [Rational])

parseCuatroAtaquesAListDeAtaques’’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 n4 -> cuatroAtaquesAListDeAtaques n1 n2 n3 n4

cuatroAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> Rational

-> [Rational]

cuatroAtaquesAListDeAtaques n1 n2 n3 n4 = [n1, n2, n3, n4]

-- ("a" t "t" "a")

parseTresAtaquesAListDeAtaques :: H [Rational]

parseTresAtaquesAListDeAtaques = parseTresAtaquesAListDeAtaques’ <*>

rationalOrInteger

parseTresAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseTresAtaquesAListDeAtaques’ = parseTresAtaquesAListDeAtaques’’ <*>

rationalOrInteger

316

parseTresAtaquesAListDeAtaques’’ :: H (Rational -> Rational -> [Rational])

parseTresAtaquesAListDeAtaques’’ = do

n1 <- rationalOrInteger

return $ \n2 n3 -> tresAtaquesAListDeAtaques n1 n2 n3

tresAtaquesAListDeAtaques :: Rational -> Rational -> Rational -> [Rational]

tresAtaquesAListDeAtaques n1 n2 n3 = [n1, n2, n3]

-- ("a", t "a")

parseDosAtaquesAListDeAtaques :: H [Rational]

parseDosAtaquesAListDeAtaques = parseDosAtaquesAListDeAtaques’ <*>

rationalOrInteger

parseDosAtaquesAListDeAtaques’ :: H (Rational -> [Rational])

parseDosAtaquesAListDeAtaques’ = do

n1 <- rationalOrInteger

return $ \n2 -> dosAtaquesAListDeAtaques n1 n2

dosAtaquesAListDeAtaques :: Rational -> Rational -> [Rational]

dosAtaquesAListDeAtaques n1 n2 = [n1, n2]

-- (1)

parseUnAtaqueAListDeAtaques :: H [Rational]

parseUnAtaqueAListDeAtaques = do

n <- rationalOrInteger

return $ unAtaqueAListDeAtaques n

unAtaqueAListDeAtaques :: Rational -> [Rational]

unAtaqueAListDeAtaques n = [n]

-- the renderer

-- getEvents :: GlobalMaterial -> Style -> Tempo -> BeginWindowTime ->

EndWindowTime -> State InstrumentState [Event]

-- render :: (GlobalMaterial,Style,Instrument) -> Tempo -> UTCTime ->

UTCTime -> [(UTCTime,Map Text Datum)]

-- runState :: State s a -> s -> (a, s) -- as soon as the state is

meaningful I should stop discarding it.

--check Tidal.params for looking at the available params for webdirt

render :: ([Layer], GlobalMaterial) -> Tempo -> UTCTime -> UTCTime -> [Event

]

render (ls, gm) tempo iw ew = Prelude.concat $ fmap (\l -> render’ (l, gm)

tempo iw ew) ls

317

render’ :: (Layer, GlobalMaterial) -> Tempo -> UTCTime -> UTCTime -> [Event]

render’ (layer, gm) tempo iw ew = do

fst $ runState x emptyLayerState --this should be another argument to my

render function

where

x = getEvents layer gm (style layer) tempo iw ew

renderForStandalone :: ([Layer], GlobalMaterial)-> UTCTime -> UTCTime -> ([

Event], Tempo)

renderForStandalone (ls, gm) iw ew = ((Prelude.concat $ fmap (\l ->

renderForStandalone’ (l, gm) iw ew) ls), (tempoForStandalone gm))

renderForStandalone’ :: (Layer, GlobalMaterial) -> UTCTime -> UTCTime -> [

Event]

renderForStandalone’ (layer, gm) iw ew = do

fst $ runState x emptyLayerState--this should be another argument to my

render function

where

x = getEvents layer gm (style layer) (tempoForStandalone gm) iw ew

A.4.4 The Layer module

The Layer module describes the virtual instrument processes.

{-# LANGUAGE OverloadedStrings, FlexibleInstances #-}

module Sound.Seis8s.Layer where

import Data.Time

import Data.Fixed

import Data.Tempo

import Sound.OSC as H

import qualified Data.Map as M

import Data.Tuple.Select

import Control.Monad.State

-- import Control.Monad

import qualified Data.Text as T

import qualified Data.List as List

import Sound.Seis8s.Style

318

import Sound.Seis8s.Harmony

import Sound.Seis8s.Generic

import Sound.Seis8s.LayerState

import Sound.Seis8s.GlobalMaterial

--Layer type has to look like Instrument

-- an instrument as a layer. layer should have been the fundamental type

all along.

-- what can be transformed from the instrument based on the Global and

Instrument material

data Layer = Layer {

getEvents :: GlobalMaterial -> Style -> Tempo -> BeginWindowTime ->

EndWindowTime -> State LayerState [Event],

style :: Style,

tempo’ :: Tempo

}

instance Show Layer where

show (Layer getEvents futureStyle t) = show futureStyle

--I can make function s from layer to layer that tranform the output (i.e.

like fmapping over the list of events)

-- or also override the informayioni of the style. e.g every event louder

--the style field is being prepared to later be an argument of getEvents.

mapStyle :: (Style -> Style) -> Layer -> Layer

mapStyle f x = x { style = f (style x)}

mapEvents :: (Event -> Event) -> Layer -> Layer

mapEvents f x = x {getEvents = g}

where

--a function calling the old function

g gm s t iw ew = fmap (fmap f) (getEvents x gm s t iw ew) -- State

LayerState [Event]

--list of events as an empty list

-- an event to event function could be one where makes all the events

louder

-- db :: Rational -> Layer -> Layer

-- db gain = mapEvents (dbEvents gain)

--

-- forwardTime :: NominalDiffTime -> Layer -> Layer

-- forwardTime n = mapEvents (efunc n)

319

-- let l = alternar 2 seleccionarEstilo bajo

-- (runState (getEvents l testgmm cumbia mytempo (mytime 0) (mytime 1))

emptyLayerStat)

-- convert windows to metric position, and do calcs in metre posiion a

convert to actual times.

-- if my condition is true i want to call the getEvents function of x

and if its false call the getEvents

--of (f x)

-- the events could come from f0 or f1

-- from where do i take the tempo?

-- myEvent :: [Event]

-- myEvent = [((mytime 3), M.fromList [("s", string "test")])]

-- dbEvents :: Rational -> Event -> Event

-- dbEvents gain x = --uses dbamp (copy from musicW). call dbam on the

gain to get a raw amplitude and

-- multiply that by whatever ampltude is on the event to return a new

event.

--

-- where :: [Event] -> [Event]

-- State LayerState [Event]-- is monad, when f map over it , you change

the value of the last type like m a

-- the style doesn’t need to be provided in layer, bcs it’s implicit in

the layer

-- now

-- parse style as layer

defTempo = mytempo

type BeginWindowTime = UTCTime

type EndWindowTime = UTCTime

type Event = (UTCTime, M.Map T.Text Datum)

-- ev :: [Event’]

-- ev = [Event’ (mytime 0, M.fromList [("n",Int32 {d_int32 = 1}),("note",

Double {d_double = 0.0}),("s",ASCII_String {d_ascii_string = "teclado

"})])]

emptyLayer :: Layer

emptyLayer = Layer {getEvents = emptyEvents, style = defaultStyle}

emptyEvents _ _ _ _ _ = do

320

return $ []

-- function that generates an instrument

acordeon :: Layer

acordeon = Layer {getEvents = acordeonEvents, style = defaultStyle}

zampoa :: Layer

zampoa = Layer {getEvents = guiraEvents, style = defaultStyle}

cuerda :: Layer

cuerda = Layer {getEvents = cuerdaEvents, style = defaultStyle}

teclado :: Layer

teclado = Layer { getEvents = tecladoEvents, style = defaultStyle}

bajo :: Layer

bajo = Layer {getEvents = bajoEvents, style = defaultStyle, tempo’ =

defTempo}

--

guira :: Layer

guira = Layer {getEvents = guiraEvents, style = defaultStyle}

contras :: Layer

contras = Layer {getEvents = contrasEvents, style = defaultStyle}

tarola :: Layer

tarola = Layer {getEvents = tarolaEvents, style = defaultStyle}

efecto :: Layer

efecto = Layer {getEvents = efectoEvents, style = defaultStyle}

altavoz :: Layer

altavoz = Layer {getEvents = altavozEvents, style = defaultStyle}

congas :: Layer

congas = Layer {getEvents = congasEvents, style = defaultStyle}

clave :: Layer

clave = Layer {getEvents = claveEvents, style = defaultStyle}

jamblock :: Layer

jamblock = Layer {getEvents = jamblockEvents, style = defaultStyle}

extras :: Layer

extras = Layer {getEvents = extrasEvents, style = defaultStyle}

321

zampoaEvents gmm style tempo iw ew = do

let paneo = zampoaPanPattern0 style

let gain = zampoaGainPattern0 style

let cutGroup = zampoaCutGroupPattern0 style

let pitchType = (fst $ zampoaPitchPattern0 style)

let equateLists’ = equateLists (zampoaRhythmPattern0 style) (

zampoaSampleNPattern0 style) (snd $ zampoaPitchPattern0 style)

let zampoaRhythmPattern = sel1 equateLists’ -- [(Rational, Rational)]

let zampoaRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational (

compas gmm), attack * toRational (compas gmm))) zampoaRhythmPattern

let zampoaSampleNPattern = sel2 equateLists’

let zampoaPitchPattern = sel3 equateLists’

let nPat = List.zip zampoaRhythmPattern’ zampoaSampleNPattern --[(

RhythmicPattern, Int)]

let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)]

let pat = List.zip zampoaRhythmPattern’ zampoaPitchPattern -- [(

RhythmicPosition, (String, Double))]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, (String, Int,

Double))]

let zampoaline = if pitchType == "intervalo" then (generateLine pitchPat (

harmony gmm)) else (generateLineFromMidi pitchPat) -- [(Rational, [

Pitch])]

let time = fmap (\c -> countToTime tempo (fst c)) zampoaline -- [UTCTime]

let instCmap = cmap’’ "zampoa" samplePat zampoaline paneo gain cutGroup --

[Map Text Datum]

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

acordeonEvents gmm style tempo iw ew = do

let paneo = acordeonPanPattern0 style

let gain = acordeonGainPattern0 style

let cutGroup = acordeonCutGroupPattern0 style

let pitchType = (fst $ acordeonPitchPattern0 style)

let equateLists’ = equateLists (acordeonRhythmPattern0 style) (

acordeonSampleNPattern0 style) (snd $ acordeonPitchPattern0 style)

let acordeonRhythmPattern = sel1 equateLists’ -- [(Rational, Rational)]

let acordeonRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational

(compas gmm), attack * toRational (compas gmm))) acordeonRhythmPattern

let acordeonSampleNPattern = sel2 equateLists’

let acordeonPitchPattern = sel3 equateLists’

322

let nPat = List.zip acordeonRhythmPattern’ acordeonSampleNPattern --[(

RhythmicPattern, Int)]

let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)]

let pat = List.zip acordeonRhythmPattern’ acordeonPitchPattern -- [(

RhythmicPosition, (String, Double))]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, (String, Int,

Double))]

let acordeonline = if pitchType == "intervalo" then (generateLine pitchPat

(harmony gmm)) else (generateLineFromMidi pitchPat) -- [(Rational, [

Pitch])]

let time = fmap (\c -> countToTime tempo (fst c)) acordeonline -- [UTCTime

]

let instCmap = cmap’’ "acordeon" samplePat acordeonline paneo gain

cutGroup --[Map Text Datum]

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

cuerdaEvents gmm style tempo iw ew = do

let paneo = cuerdaPanPattern0 style

let gain = cuerdaGainPattern0 style

let cutGroup = cuerdaCutGroupPattern0 style

let pitchType = (fst $ cuerdaPitchPattern0 style)

let equateLists’ = equateLists (cuerdaRhythmPattern0 style) (

cuerdaSampleNPattern0 style) (snd $ cuerdaPitchPattern0 style)

let cuerdaRhythmPattern = sel1 equateLists’ -- [(Rational, Rational)]

let cuerdaRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational (

compas gmm), attack * toRational (compas gmm))) cuerdaRhythmPattern

let cuerdaSampleNPattern = sel2 equateLists’

let cuerdaPitchPattern = sel3 equateLists’

let nPat = List.zip cuerdaRhythmPattern’ cuerdaSampleNPattern --[(

RhythmicPattern, Int)]

let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)]

let pat = List.zip cuerdaRhythmPattern’ cuerdaPitchPattern -- [(

RhythmicPosition, (String, Double))]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, (String, Int,

Double))]

let cuerdaline = if pitchType == "intervalo" then (generateLine pitchPat (

harmony gmm)) else (generateLineFromMidi pitchPat) -- [(Rational, [

Pitch])]

let time = fmap (\c -> countToTime tempo (fst c)) cuerdaline -- [UTCTime]

let instCmap = cmap’’ "cuerdas" samplePat cuerdaline paneo gain cutGroup

--Map Text Datum

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

323

return events

tecladoEvents gmm style tempo iw ew = do

let paneo = tecladoPanPattern0 style

let gain = tecladoGainPattern0 style

let cutGroupForChords = tecladoCutGroupPattern1 style

let cutGroupForIntervaloAndMidinote = tecladoCutGroupPattern0 style

let pitchType = fst $ tecladoPitchPattern0 style

let equateLists’ = equateLists (tecladoRhythmPattern0 style) (

tecladoSampleNPattern0 style) (snd $ tecladoPitchPattern0 style)

let tecladoRhythmPattern = sel1 equateLists’

let tecladoRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational (

compas gmm), attack * toRational (compas gmm))) tecladoRhythmPattern

let tecladoRhythmPattern’’ = fmap (\(metre,attack) -> (metre * toRational

(compas gmm), attack * toRational (compas gmm))) (tecladoRhythmPattern0

style)

let tecladoSampleNPattern = sel2 equateLists’

let tecladoPitchPattern = sel3 equateLists’

-- let nPat = List.zip tecladoRhythmPattern’ tecladoSampleNPattern --[(

RhythmicPattern, Int)]

-- let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)] --

maybe not needed of any of the instruments?

let pat = List.zip tecladoRhythmPattern’ tecladoPitchPattern -- [(

RhythmicPosition, (String, Double))]

let pitchPat = pitchPattern pat tempo iw ew

let tecladoline | pitchType == "intervalo" = (generateLine pitchPat (

harmony gmm)) -- [(Rational, Pitch)]

| pitchType == "midinote" = (generateLineFromMidi pitchPat)

-- [(Rational, Pitch)]

-- | pitchType == "acorde" = concatChords $ pickChords (

rhythmicPattern tecladoRhythmPattern’ tempo iw ew) (

harmony gmm) --[(Rational, Pitch)]

| pitchType == "acorde" = concatChords $ pickChords’ (

rhythmicPattern tecladoRhythmPattern’’ tempo iw ew) (

harmony gmm) (snd $ tecladoPitchPattern0 style) --

tecladoPitchPattern p

let time = fmap (\c -> countToTime tempo (fst c)) tecladoline -- [UTCTime]

324

-- let instCmap = cmap’’ "teclado" samplePat tecladoline paneo gain--Map

Text Datum

-- let nPat’ = concat $ replicate (length (rhythmicPattern

tecladoRhythmPattern’’ tempo iw ew)) (tecladoSampleNPattern0 style)

--[(Rational, Int)]

-- let samplePat’ = zip (fmap (\t -> timeToCount tempo t) time) (concat $
replicate (length time) (tecladoSampleNPattern0 style))

let samplePat’ = samplePatternRat time (tecladoSampleNPattern0 style)

tempo

let tecladoCutGroup | (pitchType == "intervalo") || (pitchType == "

midinote") = [cutGroupForIntervaloAndMidinote .. (

cutGroupForIntervaloAndMidinote + (length samplePat’))]

| pitchType == "acorde" = [cutGroupForChords .. (

cutGroupForChords + (length samplePat’))]

let instCmap = cmap’’’’ "teclado" samplePat’ tecladoline paneo gain

tecladoCutGroup --Map Text Datum

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

nTest = [0,0,0,0,0,0]

nTest2 = [0,0,0]

rTest :: [(Rational, Rational)]

rTest = [(0.5,0.125), (0.5,0.125), (0.5,0.125), (0.5, 0.375), (0.5, 0.375),

(0.5, 0.375)]

rTest2 :: [(Rational, Rational)]

rTest2 = [(0.5,0.125), (0.5, 0.375)]

rTest3 :: [(Rational, Rational)]

rTest3 = [(0.5,0.125), (0.5, 0.375), (0.5,0.125), (0.5, 0.375)]

-- p

-- tecladoSampleNPattern1 = take 6 $ cycle [0],

-- tecladoRhythmPattern1 = [(1,0.25), (1,0.25), (1,0.25), (1, 0.75), (1,

0.75), (1, 0.75)], -- ie. [],

-- tecladoPitchPattern1 = ("intervalo", [intervalo "unisono" 0, intervalo

"3a" 0, intervalo "5a" 0, intervalo "unisono" 0, intervalo "3a" 0,

intervalo "5a" 0]), -- not used yet

noteTest = [("unisono",0.0,0.0),("tercera",0.0,0.0),("quinta",0.0,0.0),("

unisono",0.0,0.0),("tercera",0.0,0.0),("quinta",0.0,0.0)]

325

noteTest2 = [("unisono",0.0,0.0),("tercera",0.0,0.0),("quinta",0.0,0.0)]

noteTest3 = [("unisono",0.0,0.0),("tercera",0.0,0.0),("quinta",0.0,0.0)]

bajoEvents gmm style tempo iw ew = do

let paneo = bassPanPattern0 style

let gain = bassGainPattern0 style

let cutGroup = bassCutGroupPattern0 style

let pitchType = (fst $ bassPitchPattern0 style)

let equateLists’ = equateLists (bassRhythmPattern0 style) (

bassSampleNPattern0 style) (snd $ bassPitchPattern0 style)

let bassRhythmPattern = sel1 equateLists’

let bassRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational (

compas gmm), attack * toRational (compas gmm))) bassRhythmPattern

let bassSampleNPattern = sel2 equateLists’

let bassPitchPattern = sel3 equateLists’

let nPat = List.zip bassRhythmPattern’ bassSampleNPattern --[(

RhythmicPattern, Int)]

let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)]

let pat = List.zip bassRhythmPattern’ bassPitchPattern --[(RhythmicPattern

, Double)]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, Int)]

let bassline = if pitchType == "intervalo" then (generateLine pitchPat (

harmony gmm)) else (generateLineFromMidi pitchPat) -- [(Rational, [

Pitch])]

let time = fmap (\c -> countToTime tempo (fst c)) bassline -- [UTCTime]

let instCmap = cmap’’ "bajo" samplePat bassline paneo gain cutGroup --Map

Text Datum

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

guiraEvents gmm style tempo iw ew = do

let paneo = guiraPanPattern0 style

let gain = guiraGainPattern0 style

let pitchType = fst $ guiraPitchPattern0 style

let equateLists’ = equateLists (guiraRhythmPattern0 style) (

guiraSampleNPattern0 style) (snd $ guiraPitchPattern0 style)

let guiraRhythmPattern = sel1 equateLists’

let guiraRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational (

compas gmm), attack * toRational (compas gmm))) guiraRhythmPattern

326

let guiraSampleNPattern = sel2 equateLists’

let guiraPitchPattern = sel3 equateLists’

let nPat = List.zip guiraRhythmPattern’ guiraSampleNPattern --[(

RhythmicPattern, Int)]

let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)]

let pat = List.zip guiraRhythmPattern’ guiraPitchPattern --[(

RhythmicPattern, Int)]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, Int)]

let guiraline = if pitchType == "intervalo" then (generateLine pitchPat (

harmony gmm)) else (generateLineFromMidi pitchPat) --

let time = fmap (\c -> countToTime tempo (fst c)) guiraline -- [UTCTime]

let instCmap = cmap’’ "guira" samplePat guiraline paneo gain 0 --Map Text

Datum

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

contrasEvents gmm style tempo iw ew = do

let paneo = contrasPanPattern0 style

let gain = contrasGainPattern0 style

let pitchType = fst $ contrasPitchPattern0 style

let equateLists’ = equateLists (contrasRhythmPattern0 style) (

contrasSampleNPattern0 style) (snd $ contrasPitchPattern0 style)

let contrasRhythmPattern = sel1 equateLists’

let contrasRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational (

compas gmm), attack * toRational (compas gmm))) contrasRhythmPattern

let contrasSampleNPattern = sel2 equateLists’

let contrasPitchPattern = sel3 equateLists’

let nPat = List.zip contrasRhythmPattern’ contrasSampleNPattern --[(

RhythmicPattern, Int)]

let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)]

let pat = List.zip contrasRhythmPattern’ contrasPitchPattern --[(

RhythmicPattern, Int)]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, Int)]

let contrasline = if pitchType == "intervalo" then (generateLine pitchPat

(harmony gmm)) else (generateLineFromMidi pitchPat) --

let time = fmap (\c -> countToTime tempo (fst c)) contrasline -- [UTCTime]

let instCmap = cmap’’ "contratiempos" samplePat contrasline paneo gain 0

--Map Text Datum

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

tarolaEvents gmm style tempo iw ew = do

327

let paneo = tarolaPanPattern0 style

let gain = tarolaGainPattern0 style

let pitchType = fst $ tarolaPitchPattern0 style

let equateLists’ = equateLists (tarolaRhythmPattern0 style) (

tarolaSampleNPattern0 style) (snd $ tarolaPitchPattern0 style)

let tarolaRhythmPattern = sel1 equateLists’

let tarolaRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational (

compas gmm), attack * toRational (compas gmm))) tarolaRhythmPattern

let tarolaSampleNPattern = sel2 equateLists’

let tarolaPitchPattern = sel3 equateLists’

let nPat = List.zip tarolaRhythmPattern’ tarolaSampleNPattern --[(

RhythmicPattern, Int)]

let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)]

let pat = List.zip tarolaRhythmPattern’ tarolaPitchPattern --[(

RhythmicPattern, Int)]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, Int)]

let tarolaline = if pitchType == "intervalo" then (generateLine pitchPat (

harmony gmm)) else (generateLineFromMidi pitchPat) --

let time = fmap (\c -> countToTime tempo (fst c)) tarolaline -- [UTCTime]

let instCmap = cmap’’ "tarola" samplePat tarolaline paneo gain 0 --Map

Text Datum

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

efectoEvents gmm style tempo iw ew = do

let paneo = efectoPanPattern0 style

let gain = efectoGainPattern0 style

let pitchType = fst $ efectoPitchPattern0 style

let equateLists’ = equateLists (efectoRhythmPattern0 style) (

efectoSampleNPattern0 style) (snd $ efectoPitchPattern0 style)

let efectoRhythmPattern = sel1 equateLists’

let efectoRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational (

compas gmm), attack * toRational (compas gmm))) efectoRhythmPattern

let efectoSampleNPattern = sel2 equateLists’

let efectoPitchPattern = sel3 equateLists’

let nPat = List.zip efectoRhythmPattern’ efectoSampleNPattern --[(

RhythmicPattern, Int)]

let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)]

let pat = List.zip efectoRhythmPattern’ efectoPitchPattern --[(

RhythmicPattern, Int)]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, Int)]

let efectoline = if pitchType == "intervalo" then (generateLine pitchPat (

harmony gmm)) else (generateLineFromMidi pitchPat) -- [(Rational, [

328

Pitch])]

let time = fmap (\c -> countToTime tempo (fst c)) efectoline -- [UTCTime]

let instCmap = cmap’’ "efecto" samplePat efectoline paneo gain 0 --Map

Text Datum

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

altavozEvents gmm style tempo iw ew = do

let paneo = altavozPanPattern0 style

let gain = altavozGainPattern0 style

let pitchType = fst $ altavozPitchPattern0 style

let equateLists’ = equateLists (altavozRhythmPattern0 style) (

altavozSampleNPattern0 style) (snd $ altavozPitchPattern0 style)

let altavozRhythmPattern = sel1 equateLists’

let altavozRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational (

compas gmm), attack * toRational (compas gmm))) altavozRhythmPattern

let altavozSampleNPattern = sel2 equateLists’

let altavozPitchPattern = sel3 equateLists’

let nPat = List.zip altavozRhythmPattern’ altavozSampleNPattern --[(

RhythmicPattern, Int)]

let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)]

let pat = List.zip altavozRhythmPattern’ altavozPitchPattern --[(

RhythmicPattern, Int)]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, Int)]

let altavozline = if pitchType == "intervalo" then (generateLine pitchPat

(harmony gmm)) else (generateLineFromMidi pitchPat) -- [(Rational, [

Pitch])]

let time = fmap (\c -> countToTime tempo (fst c)) altavozline -- [UTCTime]

let instCmap = cmap’’ "altavoz" samplePat altavozline paneo gain 0 --Map

Text Datum

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

extrasEvents gmm style tempo iw ew = do

let paneo = extrasPanPattern0 style

let gain = extrasGainPattern0 style

let pitchType = fst $ extrasPitchPattern0 style

let equateLists’ = equateLists (extrasRhythmPattern0 style) (

extrasSampleNPattern0 style) (snd $ extrasPitchPattern0 style)

let extrasRhythmPattern = sel1 equateLists’

let extrasRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational (

compas gmm), attack * toRational (compas gmm))) extrasRhythmPattern

329

let extrasSampleNPattern = sel2 equateLists’

let extrasPitchPattern = sel3 equateLists’

let nPat = List.zip extrasRhythmPattern’ extrasSampleNPattern --[(

RhythmicPattern, Int)]

let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)]

let pat = List.zip extrasRhythmPattern’ extrasPitchPattern --[(

RhythmicPattern, Int)]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, Int)]

let extrasline = if pitchType == "intervalo" then (generateLine pitchPat (

harmony gmm)) else (generateLineFromMidi pitchPat) -- [(Rational, [

Pitch])]

let time = fmap (\c -> countToTime tempo (fst c)) extrasline -- [UTCTime]

let instCmap = cmap’’ "extras" samplePat extrasline paneo gain 0 --Map

Text Datum

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

congasEvents gmm style tempo iw ew = do

let paneo = congasPanPattern0 style

let gain = congasGainPattern0 style

let pitchType = fst $ congasPitchPattern0 style

let equateLists’ = equateLists2 (congasRhythmPattern0 style) (

congasSampleNPattern0 style) (snd $ congasPitchPattern0 style)

let congasRhythmPattern = sel1 equateLists’

let congasRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational (

compas gmm), attack * toRational (compas gmm))) congasRhythmPattern

let congasSampleNPattern = sel2 equateLists’

let congasPitchPattern = sel3 equateLists’

let nPat = List.zip congasRhythmPattern’ congasSampleNPattern --[(

RhythmicPattern, (String, Int)]

-- let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)] --

debe ser (Rational, (String, Int))

let samplePat = samplePattern2 nPat tempo iw ew --[(Rational, Int)] --

debe ser (Rational, (String, Int))

let pat = List.zip congasRhythmPattern’ congasPitchPattern --[(

RhythmicPattern, Int)]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, Int)]

let congasline = if pitchType == "intervalo" then (generateLine pitchPat (

harmony gmm)) else (generateLineFromMidi pitchPat) -- [(Rational, [

Pitch])]

let time = fmap (\c -> countToTime tempo (fst c)) congasline -- [UTCTime]

let instCmap = cmap’’’ samplePat congasline paneo gain 0 --Map Text Datum

-- let instCmap = cmap’’’ samplePat congasline paneo gain--Map Text Datum

330

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

claveEvents gmm style tempo iw ew = do

let paneo = clavePanPattern0 style

let gain = claveGainPattern0 style

let pitchType = fst $ clavePitchPattern0 style

let equateLists’ = equateLists (claveRhythmPattern0 style) (

claveSampleNPattern0 style) (snd $ clavePitchPattern0 style)

let claveRhythmPattern = sel1 equateLists’

let claveRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational (

compas gmm), attack * toRational (compas gmm))) claveRhythmPattern

let claveSampleNPattern = sel2 equateLists’

let clavePitchPattern = sel3 equateLists’

let nPat = List.zip claveRhythmPattern’ claveSampleNPattern --[(

RhythmicPattern, Int)]

let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)]

let pat = List.zip claveRhythmPattern’ clavePitchPattern --[(

RhythmicPattern, Int)]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, Int)]

let claveline = if pitchType == "intervalo" then (generateLine pitchPat (

harmony gmm)) else (generateLineFromMidi pitchPat) -- [(Rational, [

Pitch])]

let time = fmap (\c -> countToTime tempo (fst c)) claveline -- [UTCTime]

let instCmap = cmap’’ "tarola" samplePat claveline paneo gain 0 --Map Text

Datum

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

jamblockEvents gmm style tempo iw ew = do

let paneo = jamblockPanPattern0 style

let gain = jamblockGainPattern0 style

let pitchType = fst $ jamblockPitchPattern0 style

let equateLists’ = equateLists (jamblockRhythmPattern0 style) (

jamblockSampleNPattern0 style) (snd $ jamblockPitchPattern0 style)

let jamblockRhythmPattern = sel1 equateLists’

let jamblockRhythmPattern’ = fmap (\(metre,attack) -> (metre * toRational

(compas gmm), attack * toRational (compas gmm))) jamblockRhythmPattern

let jamblockSampleNPattern = sel2 equateLists’

let jamblockPitchPattern = sel3 equateLists’

331

let nPat = List.zip jamblockRhythmPattern’ jamblockSampleNPattern --[(

RhythmicPattern, Int)]

let samplePat = samplePattern nPat tempo iw ew --[(Rational, Int)]

let pat = List.zip jamblockRhythmPattern’ jamblockPitchPattern --[(

RhythmicPattern, Int)]

let pitchPat = pitchPattern pat tempo iw ew --[(Rational, Int)]

let jamblockline = if pitchType == "intervalo" then (generateLine pitchPat

(harmony gmm)) else (generateLineFromMidi pitchPat) -- [(Rational, [

Pitch])]

let time = fmap (\c -> countToTime tempo (fst c)) jamblockline -- [UTCTime

]

let instCmap = cmap’’ "jamblock" samplePat jamblockline paneo gain 0 --Map

Text Datum

let events = List.zip time instCmap -- [(UTCTime, Map Text Datum)]

return events

-- [("quinto", 0), ("quinto", 1) ...]

cmap’’’’ :: String -> [(Rational, Int)] -> [(Rational, Pitch)] -> Double ->

Double -> [Int] -> [M.Map T.Text Datum]

cmap’’’’ sampleName is ps pan gain cutGroup = do

let is’ = fmap (\i -> snd i) is

let ps’ = fmap (\p -> snd p) ps

fmap (\(i, p, cg) -> cmap’ sampleName i p pan gain cg) $ zip3 is’ ps’

cutGroup

cmap’’’ :: [(Rational, (String, Int))] -> [(Rational, Pitch)] -> Double ->

Double -> Int -> [M.Map T.Text Datum]

cmap’’’ ns ps pan gain cutGroup = do

let fs’ = fmap (\f -> fst $ snd f) ns -- string - folder name

let ns’ = fmap (\n -> snd $ snd n) ns -- int

let ps’ = fmap (\p -> snd p) ps

fmap (\(f, n, p) -> cmap’ f n p pan gain cutGroup) $ zip3 fs’ ns’ ps’

cmap’’ :: String -> [(Rational, Int)] -> [(Rational, Pitch)] -> Double ->

Double -> Int -> [M.Map T.Text Datum]

cmap’’ sampleName is ps pan gain cutGroup = do

let is’ = fmap (\i -> snd i) is

let ps’ = fmap (\p -> snd p) ps

fmap (\(i, p) -> cmap’ sampleName i p pan gain cutGroup) $ zip is’ ps’

cmap’ :: String -> Int -> Pitch -> Double -> Double -> Int -> M.Map T.Text

Datum

cmap’ sampleName sampleIndex pitch pan gain cutGroup = M.fromList [("s",

string sampleName), ("n", int32 sampleIndex), ("note", double

332

pitchAdjustedOctave), ("pan", double pan), ("gain", double gain), ("cut",

int32 cutGroup)]

where pitchAdjustedOctave = pitch - 60

cmap :: String -> Pitch -> M.Map T.Text Datum

cmap sampleName pitch = M.fromList [("s", string sampleName), ("note",

double pitchAdjustedOctave)]

where pitchAdjustedOctave = pitch - 60

-- returns the the rhythm, pitch and n lists with equal number of indices

equateLists :: [(Rational, Rational)] -> NPattern -> [(String, Double,

Double)] -> ([(Rational, Rational)], [Int], [(String, Double, Double)])

equateLists attacks (NPattern1 ns) chi

| (length attacks == length ns) && (length ns == length chi) = (attacks,

ns, chi)

| (length attacks > length ns) && (length attacks == length chi) = (

attacks, take (length attacks) $ cycle’ ns, chi)

| (length attacks > length ns) && (length attacks > length chi) = (attacks

, take (length attacks) $ cycle’ ns, take (length attacks) $ cycle’ chi

)

| (length attacks > length ns) && (length attacks > length chi) = (attacks

, take (length attacks) $ cycle’ ns, chi)

| (length attacks > length ns) && (length attacks < length chi) = (attacks

, take (length attacks) $ cycle’ ns, chi)

| (length attacks == length ns) && (length ns > length chi) = (attacks, ns

, take (length ns) $ cycle’ chi)

| (length attacks < length ns) && (length ns == length chi) = (take (

length ns) $ cycle’ attacks, ns, chi)

-- | (length attacks < length ns) && (length ns > length chi) = (take (

length ns) $ cycle’ attacks, ns, take --??

| (length attacks < length ns) && (length ns > length chi) = (attacks, ns,

chi)

| (length attacks == length ns) && (length ns < length chi) = (take (

length chi) $ cycle’ attacks, take (length chi) $ cycle’ ns, chi) --

genera acordes

| otherwise = error "case not expected"

equateLists2 :: [(Rational, Rational)] -> NPattern -> [(String, Double,

Double)] -> ([(Rational, Rational)], [(String, Int)], [(String, Double,

Double)])

equateLists2 attacks (NPattern2 ns) chi

| (length attacks == length ns) && (length ns == length chi) = (attacks,

ns, chi)

| (length attacks > length ns) && (length attacks == length chi) = (

attacks, take (length attacks) $ cycle’ ns, chi)

333

| (length attacks > length ns) && (length attacks > length chi) = (attacks

, take (length attacks) $ cycle’ ns, take (length attacks) $ cycle’ chi

)

| (length attacks > length ns) && (length attacks > length chi) = (attacks

, take (length attacks) $ cycle’ ns, chi)

| (length attacks > length ns) && (length attacks < length chi) = (attacks

, take (length attacks) $ cycle’ ns, chi)

| (length attacks == length ns) && (length ns > length chi) = (attacks, ns

, take (length ns) $ cycle’ chi)

| (length attacks < length ns) && (length ns == length chi) = (take (

length ns) $ cycle’ attacks, ns, chi)

| (length attacks < length ns) && (length ns > length chi) = (attacks,

take (length attacks) ns, chi)

| (length attacks < length ns) && (length ns > length chi) = (attacks, ns,

chi)

| (length attacks == length ns) && (length ns < length chi) = (take (

length chi) $ cycle’ attacks, take (length chi) $ cycle’ ns, chi) --

genera acordes

| otherwise = error "case not expected"

-- [0.5, 0.25] [1, 1] [0,1]

-- [0.5, 0.25] [1] [0,1]

-- [0.5, 0.25] [1] [0]

-- [0.25, 0.25] [1,1] [0]

-- [0.5] [1, 1] [0, 1]

-- [0.5] [1, 1] [0]

-- [0.5] [1] [0,1] -- genera acordes

-- [0, 0.125] [1] [0,1, 2]

-- bassSampleNPattern0 = [1]

-- bassRhythmPattern0 = [(1/1, 0/1), (1/1, 1/8)]

--bassPitchPattern0 = [0, 1, 2]

A.4.5 The Global Material module

The GlobalMaterial module contains data types and functions related to global modifications
of the music in Seis8s like music harmony, tempo, and time signature.

module Sound.Seis8s.GlobalMaterial where

import Sound.Seis8s.Harmony

import Sound.Seis8s.Generic

import Data.Tempo

import Data.Time

334

--GlobalMaterial -- i.e current events in the global material

-- it doesnt change by itself, only by the user

data GlobalMaterial = GlobalMaterial {

-- tempo :: Tempo, --look at punctual, timenot, -- e.g. tempo 120 meaning

120/60 -- Cps, anchorTime(anyTime at the cycle grid)

numberOfTheCycleAtThatTime

harmony :: Progression, -- combination of a pitch and a chord type, e.g

60 major

compas :: Double,

tempoForStandalone :: Tempo

} deriving (Show)

defaultGlobalMaterial = GlobalMaterial {harmony = myharmony’, compas =

establecerCompas "partido", tempoForStandalone = mytempo}

-- {harmony = Progression 1 [Chord 60 major (0, 1)], compas =

establecerCompas "partido"}

myharmony = Progression 0.5 [Chord 60 major (0, 0.5)]

myharmony’ = Progression 1 [Chord 62 minor (0, 0.5), Chord 60 major (0.5, 1)

]

testgmm = GlobalMaterial {harmony = myharmony’, compas = establecerCompas "

partido" }

--

-- defTempo :: Tempo

-- defTempo = do

-- tNow <- getCurrentTime

-- Tempo { freq = 0.5, time=tNow, Data.Tempo.count=0}

establecerCompas :: String -> Double

establecerCompas "4/4" = 1

establecerCompas "partido" = 0.5

establecerCompas "" = 0.5

establecerCompas _ = 1

-- myTempo = Tempo {freq = 1, time = myTime 0, count = 0}

-- tempo is provided by Estuary in this case.

-- choice 1 is tempo being separate from the language, taking it out from

the

-- choice 2 is having it there and over

A.4.6 The Style module

The Style module contains hard-coded patterns of music styles like cumbia and salsa.

335

module Sound.Seis8s.Style where

import Sound.Seis8s.Generic

import Sound.Seis8s.Harmony

import Sound.Seis8s.Rhythm

import Data.Maybe

import Data.Tempo

import Data.Time

import qualified Data.List

-- style should be a collection of individual records that might be

accessed or not by the context.

-- The style could have many different fields to access at a time.

tecladoRhythmPattern4 -- they are defined but no universal. The style

is the rhythm (and other stuff) of all the instruments

-- 1) A style is a library of musical information, a style has a

tecladoRhyhtmPattern

type N = (String, Int)

data NPattern = NPattern1 [Int] | NPattern2 [N] -- (FolderDelSample, Int)

type CutGroup = Int

instance Eq NPattern where

(==) (NPattern1 xs) (NPattern1 ys) = xs == ys

(==) (NPattern2 xs) (NPattern2 ys) = (fmap snd xs) == (fmap snd ys)

instance Show NPattern where

show (NPattern1 x) = show x

show (NPattern2 y) = show y

data Style = Style {

altavozRhythmPattern0 :: RhythmicPattern,

altavozSampleNPattern0 :: NPattern,

altavozPitchPattern0 :: PitchPattern,

altavozPanPattern0 :: Double,

altavozGainPattern0 :: Double,

tecladoSampleNPattern0 :: NPattern,

tecladoSampleNPattern1 :: NPattern,

tecladoSampleNPattern2 :: NPattern,

tecladoSampleNPattern3 :: NPattern,

tecladoPitchPattern0 :: PitchPattern,

tecladoPitchPattern1 :: PitchPattern,

tecladoPitchPattern2 :: PitchPattern,

tecladoPitchPattern3 :: PitchPattern,

336

tecladoRhythmPattern0 :: RhythmicPattern, -- or could this be

accompaniment (used for various instruments)?-- [(Rational, Rational)]

-- not universal value, but semiuniversal values.

tecladoRhythmPattern1 :: RhythmicPattern,

tecladoRhythmPattern2 :: RhythmicPattern,

tecladoRhythmPattern3 :: RhythmicPattern,

tecladoPanPattern0 :: Double,

tecladoGainPattern0 :: Double,

tecladoCutGroupPattern0 :: CutGroup,

tecladoCutGroupPattern1 :: CutGroup,

acordeonRhythmPattern0 :: RhythmicPattern,

acordeonSampleNPattern0 :: NPattern,

acordeonPitchPattern0 :: PitchPattern,

acordeonPanPattern0 :: Double,

acordeonGainPattern0 :: Double,

acordeonCutGroupPattern0 :: CutGroup,

zampoaRhythmPattern0 :: RhythmicPattern,

zampoaSampleNPattern0 :: NPattern,

zampoaPitchPattern0 :: PitchPattern,

zampoaPanPattern0 :: Double,

zampoaGainPattern0 :: Double,

zampoaCutGroupPattern0 :: CutGroup,

cuerdaRhythmPattern0 :: RhythmicPattern,

cuerdaSampleNPattern0 :: NPattern,

cuerdaPitchPattern0 :: PitchPattern,

cuerdaPanPattern0 :: Double,

cuerdaGainPattern0 :: Double,

cuerdaCutGroupPattern0 :: CutGroup,

efectoRhythmPattern0 :: RhythmicPattern,

efectoSampleNPattern0 :: NPattern,

efectoPitchPattern0 :: PitchPattern,

efectoPanPattern0 :: Double,

efectoGainPattern0 :: Double,

bassSampleNPattern0 :: NPattern,

337

bassSampleNPattern1 :: NPattern,

bassSampleNPattern2 :: NPattern,

bassRhythmPattern0 :: RhythmicPattern,

bassRhythmPattern1 :: RhythmicPattern,

bassRhythmPattern2 :: RhythmicPattern,

bassPitchPattern0 :: PitchPattern, --index

bassPitchPattern1 :: PitchPattern, --index

bassPitchPattern2 :: PitchPattern, --index

bassPanPattern0 :: Double,

bassGainPattern0 :: Double,

bassCutGroupPattern0 :: CutGroup,

guiraRhythmPattern0 :: RhythmicPattern,

guiraSampleNPattern0 ::NPattern,

guiraPitchPattern0 :: PitchPattern,

guiraPanPattern0 :: Double,

guiraGainPattern0 :: Double,

guiraRhythmPattern1 :: RhythmicPattern,

guiraSampleNPattern1 ::NPattern,

guiraPitchPattern1 :: PitchPattern,

guiraPanPattern1 :: Double,

guiraGainPattern1 :: Double,

contrasRhythmPattern0 :: RhythmicPattern,

contrasSampleNPattern0 :: NPattern,

contrasPitchPattern0 :: PitchPattern,

contrasPanPattern0 :: Double,

contrasGainPattern0 :: Double,

tarolaRhythmPattern0 :: RhythmicPattern,

tarolaSampleNPattern0 :: NPattern,

tarolaPitchPattern0 :: PitchPattern,

tarolaPanPattern0 :: Double,

tarolaGainPattern0 :: Double,

claveRhythmPattern0 :: RhythmicPattern,

claveSampleNPattern0 :: NPattern,

clavePitchPattern0 :: PitchPattern,

claveRhythmPattern1 :: RhythmicPattern,

claveSampleNPattern1 :: NPattern,

clavePitchPattern1 :: PitchPattern,

claveRhythmPattern2 :: RhythmicPattern,

claveSampleNPattern2 :: NPattern,

338

clavePitchPattern2 :: PitchPattern,

clavePanPattern0 :: Double,

claveGainPattern0 :: Double,

jamblockRhythmPattern0 :: RhythmicPattern,

jamblockSampleNPattern0 :: NPattern,

jamblockPitchPattern0 :: PitchPattern,

jamblockPanPattern0 :: Double,

jamblockGainPattern0 :: Double,

congasRhythmPattern0 :: RhythmicPattern,

congasSampleNPattern0 :: NPattern,

congasPitchPattern0 :: PitchPattern,

congasPanPattern0 :: Double,

congasGainPattern0 :: Double,

extrasRhythmPattern0 :: RhythmicPattern,

extrasSampleNPattern0 :: NPattern,

extrasPitchPattern0 :: PitchPattern,

extrasPanPattern0 :: Double,

extrasGainPattern0 :: Double

} deriving (Eq, Show)

-- type PitchPostion = (Rational, Pitch)

-- type PitchPattern = [PitchPostion]

-- type RhythmicPosition = (Rational,Rational)

-- type RhythmicPattern = [RhythmicPosition]

defaultStyle :: Style

defaultStyle = Style {

altavozRhythmPattern0 = [(1, 0)],

altavozSampleNPattern0 = NPattern1 [0],

altavozPitchPattern0 = ("midinote", [("mn", 60, 0)]),

altavozPanPattern0 = 0.5,

altavozGainPattern0 = 1,

tecladoSampleNPattern1 = NPattern1 [0],

tecladoSampleNPattern0 = NPattern1 [0],

tecladoRhythmPattern0 = [(1, 0)], -- ie. [],

tecladoRhythmPattern1 = [(1, 0)], -- ie. [],

tecladoPitchPattern0 = ("intervalo", [("unisono" , 0, 0)]),

339

tecladoPitchPattern1 = ("intervalo", [("unisono" , 0, 0)]), -- not used

yet

tecladoSampleNPattern2 = NPattern1 $ take 10 $ cycle [0],

tecladoRhythmPattern2 = [(2, 0), (2, 0.25), (2, 0.25), (2, 0.5), (2,

0.875), (2, 1.25), (2, 1.25), (2, 1.375), (2, 1.625), (2, 1.625)],

tecladoPitchPattern2 = ("intervalo", [intervalo "unisono" 0, intervalo "3

a" 0, intervalo "5a" 0, intervalo "unisono" 0, intervalo "unisono" 0,

intervalo "3a" 0, intervalo "5a" 0, intervalo "unisono" 0, intervalo "

3a" 0, intervalo "5a" 0]),

tecladoSampleNPattern3 = NPattern1 $ take 14 $ cycle [0],

tecladoRhythmPattern3 = [(2, 0), (2, 0), (2, 0.25), (2, 0.25), (2, 0.5),

(2, 0.5), (2, 0.875), (2, 0.875), (2, 1.25), (2, 1.25), (2, 1.375),

(2, 1.375), (2, 1.625), (2, 1.625)],

tecladoPitchPattern3 = ("intervalo", [intervalo "unisono" 0, intervalo "

unisono" 1, intervalo "3a" 0, intervalo "5a" 0, intervalo "unisono" 0,

intervalo "unisono" 1, intervalo "unisono" 0, intervalo "unisono" 1,

intervalo "3a" 0, intervalo "5a" 0, intervalo "unisono" 0, intervalo "

unisono" 1, intervalo "3a" 0, intervalo "5a" 0]),

tecladoPanPattern0 = 0.5,

tecladoGainPattern0 = 0.75,

tecladoCutGroupPattern0 = 400,

tecladoCutGroupPattern1 = 500,

acordeonRhythmPattern0 = [(1,0)],

acordeonSampleNPattern0 = NPattern1 [0],

acordeonPitchPattern0 = ("intervalo", [("unisono", 0, 0)]),

acordeonPanPattern0 = 0.5,

acordeonGainPattern0 = 1,

acordeonCutGroupPattern0 = 300,

zampoaRhythmPattern0 = [(1,0)],

zampoaSampleNPattern0 = NPattern1 [0],

zampoaPitchPattern0 = ("intervalo", [("unisono", 0, 0)]),

zampoaPanPattern0 = 0.5,

zampoaGainPattern0 = 1,

zampoaCutGroupPattern0 = 200,

cuerdaRhythmPattern0 = [(1,0)],

cuerdaSampleNPattern0 = NPattern1 [0],

340

cuerdaPitchPattern0 = ("intervalo", [("unisono", 0, 0)]),

cuerdaPanPattern0 = 0.5,

cuerdaGainPattern0 = 0.75,

cuerdaCutGroupPattern0 = 100,

bassSampleNPattern0 = NPattern1 [0],

bassSampleNPattern1 = NPattern1 [0],

bassSampleNPattern2 = NPattern1 [0], --index

bassRhythmPattern0 = [(1, 0)], --i.e. [],

bassRhythmPattern1 = [], --i.e. [],

bassRhythmPattern2 = [],

bassPitchPattern0 = ("intervalo", [("unisono", 0, 0)]), -- int

bassPitchPattern1 = ("intervalo", [("unisono", 0, 0)]), --interval

bassPitchPattern2 = ("intervalo", [("unisono", 0, 0)]), --index

bassPanPattern0 = 0.5,

bassGainPattern0 = 1,

bassCutGroupPattern0 = 2,

guiraRhythmPattern0 = [(1,0)],

guiraSampleNPattern0 = NPattern1 [0],

guiraPitchPattern1 = ("midinote", [("mn", 60, 0)]),

guiraPanPattern1 = 0.5,

guiraGainPattern1 = 1,

guiraRhythmPattern1 = [(1,0)],

guiraSampleNPattern1 = NPattern1 [0],

guiraPitchPattern0 = ("midinote", [("mn", 60, 0)]),

guiraPanPattern0 = 0.5,

guiraGainPattern0 = 1,

contrasRhythmPattern0 = [(1, 0)],

contrasSampleNPattern0 = NPattern1 [0],

contrasPitchPattern0 =("midinote", [("mn", 60, 0)]),

contrasPanPattern0 = 0.5,

contrasGainPattern0 = 1,

tarolaRhythmPattern0 = [(1, 0)],

tarolaSampleNPattern0 = NPattern1 [0],

tarolaPitchPattern0 = ("midinote", [("mn", 60, 0)]),

tarolaPanPattern0 = 0.5,

tarolaGainPattern0 = 1,

341

efectoRhythmPattern0 = [(1, 0)],

efectoSampleNPattern0 = NPattern1 [0],

efectoPitchPattern0 = ("intervalo", [("unisono", 0, 0)]),

efectoPanPattern0 = 0.5,

efectoGainPattern0 = 1,

extrasRhythmPattern0 = [(1, 0)],

extrasSampleNPattern0 = NPattern1 [0],

extrasPitchPattern0 = ("intervalo", [intervalo "unisono" 0]),

extrasPanPattern0 = 0.5,

extrasGainPattern0 = 1,

congasRhythmPattern0 = [(1, 0)],

congasSampleNPattern0 = NPattern2 [("quinto", 0)],

congasPitchPattern0 = ("intervalo", [intervalo "unisono" 0]),

congasPanPattern0 = 0.5,

congasGainPattern0 = 1,

jamblockRhythmPattern0 = [(1, 0)],

jamblockSampleNPattern0 = NPattern1 [0],

jamblockPitchPattern0 = ("midinote", [("mn", 60, 0)]),

jamblockPanPattern0 = 0.5,

jamblockGainPattern0 = 1,

claveRhythmPattern0 = [(1, 0)],

claveSampleNPattern0 = NPattern1 [0],

clavePitchPattern0 = ("midinote", [("mn", 84, 0)]),

claveRhythmPattern1 = [(2, 0.25), (2, 0.5), (2, 1), (2, 1.375), (2, 1.75)

], -- clave 2 3

claveSampleNPattern1 = NPattern1 $ take 5$ cycle [0],

clavePitchPattern1 = ("midinote", take 5 $ cycle [("mn", 84, 0)]),

claveRhythmPattern2 = [(2, 0), (2, 0.375), (2, 0.75), (2, 1.25), (2, 1.5)

], -- clave 3 2

claveSampleNPattern2 = NPattern1 $ take 5$ cycle [0],

clavePitchPattern2 = ("midinote", take 5 $ cycle [("mn", 84, 0)]),

clavePanPattern0 = 0.5,

claveGainPattern0 = 1

}

--hh

--metal

342

-- where cumbia is a collection of all , but no information from the gmm

harmonies or pitches. Might be information on how to pick harmonies.

resist the temptation to customize, if I need new information I should

make a new field to it.

-- cumbia is a collection of knowledges (this would change). Try not to be

too specific or universal

-- user to access the presets or only have one preset that can be modified

with functions

-- maybe have two, functions that transform them

-- options: override information, field tranformation, tranform all the

rhythm at the same time?,

-- eg. remove any attacks but the fundamental, where multiple fields get

transformed,

-- but still be particular to the style, so it will still be specific

-- supercollider is modular that expects information from the user.

cumbia :: Style

cumbia = Style {

altavozRhythmPattern0 = [(1, 0)],

altavozSampleNPattern0 = NPattern1 [0],

altavozPitchPattern0 = ("midinote", [("mn", 60, 0)]),

altavozPanPattern0 = 0.5,

altavozGainPattern0 = 1,

tecladoRhythmPattern0 = [(1, 0.75)], -- ie. [],

tecladoSampleNPattern0 = NPattern1 [0],

tecladoPitchPattern0 = ("acorde", [intervalo "unisono" 0, intervalo "3a"

0, intervalo "5a" 0]), -- not used yet

tecladoSampleNPattern1 = NPattern1 [0, 0, 0],-- NPattern1 [0, 0, 0, 1,

1, 1]

tecladoRhythmPattern1 = [(1,0.25), (1, 0.75)], -- ie. [],

tecladoPitchPattern1 = ("acorde", [intervalo "unisono" 0, intervalo "3a"

0, intervalo "5a" 0]),

tecladoSampleNPattern2 = NPattern1 $ take 10 $ cycle [0],

tecladoRhythmPattern2 = [(2, 0), (2, 0.25), (2, 0.25), (2, 0.5), (2,

0.875), (2, 1.25), (2, 1.25), (2, 1.375), (2, 1.625), (2, 1.625)],

tecladoPitchPattern2 = ("intervalo", [intervalo "unisono" 0, intervalo "

3a" 0, intervalo "5a" 0, intervalo "unisono" 0, intervalo "unisono"

0, intervalo "3a" 0, intervalo "5a" 0, intervalo "unisono" 0,

intervalo "3a" 0, intervalo "5a" 0]),

343

tecladoSampleNPattern3 = NPattern1 $ take 14 $ cycle [0],

tecladoRhythmPattern3 = [(2, 0), (2, 0), (2, 0.25), (2, 0.25), (2, 0.5),

(2, 0.5), (2, 0.875), (2, 0.875), (2, 1.25), (2, 1.25), (2, 1.375),

(2, 1.375), (2, 1.625), (2, 1.625)],

tecladoPitchPattern3 = ("intervalo", [intervalo "unisono" 0, intervalo "

unisono" 1, intervalo "3a" 0, intervalo "5a" 0, intervalo "unisono"

0, intervalo "unisono" 1, intervalo "unisono" 0, intervalo "unisono"

1, intervalo "3a" 0, intervalo "5a" 0, intervalo "unisono" 0,

intervalo "unisono" 1, intervalo "3a" 0, intervalo "5a" 0]),

-- tecladoPitchPattern0 = ("voicing", [0, 0, 0]), -- not used yet

tecladoPanPattern0 = 0.5,

tecladoGainPattern0 = 0.75,

tecladoCutGroupPattern0 = 400,

tecladoCutGroupPattern1 = 500,

acordeonRhythmPattern0 = [(1,0)],

acordeonSampleNPattern0 = NPattern1 [0],

acordeonPitchPattern0 = ("intervalo", [intervalo "unisono" 0]), -- or

double? (nota [0, 2, 3] cumbia) cuerda

acordeonPanPattern0 = 0.5,

acordeonGainPattern0 = 1,

acordeonCutGroupPattern0 = 300,

zampoaRhythmPattern0 = [(1,0)],

zampoaSampleNPattern0 = NPattern1 [0],

zampoaPitchPattern0 = ("intervalo", [intervalo "unisono" 0]), -- or

double? (nota [0, 2, 3] cumbia) cuerda

zampoaPanPattern0 = 0.5,

zampoaGainPattern0 = 1,

zampoaCutGroupPattern0 = 200,

cuerdaRhythmPattern0 = [(1,0)],

cuerdaSampleNPattern0 = NPattern1 [0],

cuerdaPitchPattern0 = ("intervalo", [intervalo "unisono" 0]), -- or

double? (nota [0, 2, 3] cumbia) cuerda

cuerdaPanPattern0 = 0.5,

cuerdaGainPattern0 = 1,

344

cuerdaCutGroupPattern0 = 100,

bassRhythmPattern0 = [(1, 0), (1, 0.5), (1, 0.75)], --i.e. [],

bassSampleNPattern0 = NPattern1 [0, 0, 0],

bassPitchPattern0 = ("intervalo", [intervalo "unisono" 0, intervalo "3a"

0, intervalo "5a" 0]), -- index from list of pitches i.e. [60, 64,

67]

bassRhythmPattern1 = [(1, 0), (1, 0.5)], --i.e. [],

bassSampleNPattern1 = NPattern1 [0, 0],

bassPitchPattern1 = ("intervalo", [intervalo "unisono" 0, intervalo "5a"

0]),

bassPanPattern0 = 0.5,

bassGainPattern0 = 1,

bassCutGroupPattern0 = 2,

-- bassRhythmPattern2 = [(8, 0), (8, 0.5), (8, 0.75), (8, 1), (8, 1.5),

(8, 1.75), (8, 2), (1, 2.5), (8, 2.75), (8, 3), (8, 3.5), (8, 3.75)

, (8, 4), (8, 4.5), (8, 4.75), (8, 5), (8, 5.5), (8, 5.75), (8, 6),

(8, 6.5), (8, 6.75), (8, 7), (8, 7.25), (8, 7.5), (8, 7.75)], --i.e.

[

-- bassSampleNPattern2 = take 25 $ cycle [0],

-- bassPitchPattern2 = [0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0,

1, 2, 0, 1, 2, 0, 2, 0, 2],

-- tonicayquinta2 $ cumbia bajo

-- Aqui, escuchars tres notas distinas, la tnica, la quinta y la quinta

una octava abajo (i.e. ms grave).

bassRhythmPattern2 = [(1, 0), (1, 0.5), (1, 0.75)],

bassSampleNPattern2 = NPattern1 [0, 0, 0],

bassPitchPattern2 = ("intervalo", [intervalo "unisono" 0, intervalo "5a"

0, intervalo "5a" (-1)]), -- index from list of pitches i.e. [60,

64, 67]

-- bassRhythmPattern2 = [(4, 0), (4, 0.5), (4, 0.75), (4, 1), (4, 1.5),

(4, 1.75), (4, 2), (4, 2.5), (4, 2.75), (4, 3), (4, 3.25), (4, 3.5)

, (4, 3.75)],

-- bassSampleNPattern2 = take 13 $ cycle [0],

-- bassPitchPattern2 = ("intervalo", [intervalo "unisono", intervalo "3

a", intervalo "5a", intervalo "unisono", intervalo "3a", intervalo

"5a", intervalo "unisono", intervalo "3a", intervalo "5a", intervalo

"unisono", intervalo "5a", intervalo "unisono", intervalo "5a"]),

345

guiraRhythmPattern0 = [(1, 0), (1, 0.25), (1, 0.375), (1, 0.5), (1,

0.75), (1, 0.875)], --i.e. []

guiraSampleNPattern0 = NPattern1 [0, 1, 2, 0, 1, 2],

guiraPitchPattern0 = ("midinote", [("mn", 60, 0), ("mn", 60, 0), ("mn",

60, 0), ("mn", 60, 0), ("mn", 60, 0), ("mn", 60, 0)]),

guiraRhythmPattern1 = [(1, 0), (1, 0.5)], --i.e. []

guiraSampleNPattern1 = NPattern1 $ take 2 $ cycle [0],

guiraPitchPattern1 = ("midinote", take 2 $ cycle [("mn", 60, 0)]),

guiraPanPattern0 = 0.5,

guiraGainPattern0 = 0.8,

guiraPanPattern1 = 0.5,

guiraGainPattern1 = 0.5,

contrasRhythmPattern0 = [(1, 0), (1, 0.25), (1, 0.5), (1, 0.75)],

contrasSampleNPattern0 = NPattern1 [0, 1, 0, 1, 0, 1, 0, 1],

contrasPitchPattern0 = ("midinote", [("mn", 60, 0), ("mn", 60, 0), ("mn"

, 60, 0), ("mn", 60, 0), ("mn", 60, 0), ("mn", 60, 0)]),

contrasPanPattern0 = 0.5,

contrasGainPattern0 = 1,

tarolaRhythmPattern0 = [(1, 0.375), (1, 0.75)],

tarolaSampleNPattern0 = NPattern1 [0, 0],

tarolaPitchPattern0 = ("midinote", [("mn", 60, 0), ("mn", 60, 0)]),

tarolaPanPattern0 = 0.5,

tarolaGainPattern0 = 1,

efectoRhythmPattern0 = [(1, 0)],

efectoSampleNPattern0 = NPattern1 [0],

efectoPitchPattern0 = ("intervalo", [intervalo "unisono" 0]),

efectoPanPattern0 = 0.5,

efectoGainPattern0 = 1,

congasRhythmPattern0 = [(1, 0), (1, 0.25), (1, 0.5), (1, 0.75)],

-- congasSampleNPattern0 = [1, 2, 1, 2],

congasSampleNPattern0 = NPattern2 [("quinto", 0), ("quinto", 1), ("

quinto", 0), ("quinto", 1)],

congasPitchPattern0 = ("midinote", take 4 $ cycle [("mn", 60, 0)]),

congasPanPattern0 = 0.5,

congasGainPattern0 = 1,

claveRhythmPattern0 = [(1, 0), (1, 0.5)],

346

claveSampleNPattern0 = NPattern1 $ take 2 $ cycle [0],

clavePitchPattern0 = ("midinote", take 2 $ cycle [("mn", 84, 0)]),

claveRhythmPattern1 = [(2, 0.25), (2, 0.5), (2, 1), (2, 1.375), (2,

1.75)], -- clave 2 3

claveSampleNPattern1 = NPattern1 $ take 5$ cycle [0],

clavePitchPattern1 = ("midinote", take 5 $ cycle [("mn", 84, 0)]),

claveRhythmPattern2 = [(2, 0), (2, 0.375), (2, 0.75), (2, 1.25), (2,

1.5)], -- clave 3 2

claveSampleNPattern2 = NPattern1 $ take 5$ cycle [0],

clavePitchPattern2 = ("midinote", take 5 $ cycle [("mn", 84, 0)]),

clavePanPattern0 = 0.5,

claveGainPattern0 = 1,

jamblockRhythmPattern0 = [(1, 0), (1, 0.5)],

jamblockSampleNPattern0 = NPattern1 $ take 2 $ cycle [0],

jamblockPitchPattern0 = ("midinote", take 2 $ cycle [("mn", 60, 0)]),

jamblockPanPattern0 = 0.5,

jamblockGainPattern0 = 1,

extrasRhythmPattern0 = [(1, 0)],

extrasSampleNPattern0 = NPattern1 [0],

extrasPitchPattern0 = ("intervalo", [intervalo "unisono" 0]),

extrasPanPattern0 = 0.5,

extrasGainPattern0 = 1

}

-- 1. When to play

rhythmicPattern :: RhythmicPattern -> (Tempo -> UTCTime -> UTCTime -> [

Rational])

rhythmicPattern xs t iw ew = Data.List.sort $ concat $ fmap (\(x, y) ->

findBeats t iw ew x y) xs

samplePatternRat :: [UTCTime] -> NPattern -> Tempo -> [(Rational, Int)]

samplePatternRat times (NPattern1 xs)tempo = do

let times’ = (fmap (\t -> timeToCount tempo t) times)

let nPat = (concat $ replicate (length times) xs)

zip times’ nPat

samplePattern2 :: [(RhythmicPosition, (String, Int))] -> Tempo -> UTCTime ->

UTCTime -> [(Rational, (String, Int))]

samplePattern2 xs t iw ew = Data.List.sort $ concat $ fmap (\x ->

samplePattern2’ x t iw ew) xs

347

samplePattern2’ :: (RhythmicPosition, (String, Int)) -> Tempo -> UTCTime ->

UTCTime -> [(Rational, (String, Int))]

samplePattern2’ (xs, (s, i)) t iw ew = fmap (\attack -> (attack, (s, i)))

attacks

where

attacks = findBeats t iw ew (fst xs) (snd xs)

samplePattern :: [(RhythmicPosition, Int)] -> Tempo -> UTCTime -> UTCTime ->

[(Rational, Int)]

samplePattern xs t iw ew = Data.List.sort $ concat $ fmap (\x ->

samplePattern’ x t iw ew) xs

samplePattern’ :: (RhythmicPosition, Int) -> Tempo -> UTCTime -> UTCTime ->

[(Rational, Int)]

samplePattern’ (xs, sampleNumber) t iw ew = fmap (\attack -> (attack,

sampleNumber)) attacks

where

attacks = findBeats t iw ew (fst xs) (snd xs)

pitchPattern :: [(RhythmicPosition, Note)] -> Tempo -> UTCTime -> UTCTime ->

[(Rational, Note)]

pitchPattern xs t iw ew = Data.List.sort $ concat $ fmap (\x -> pitchPattern

’ x t iw ew) xs

pitchPattern’ :: (RhythmicPosition, Note) -> Tempo -> UTCTime -> UTCTime ->

[(Rational, Note)]

pitchPattern’ (xs, (relacion, midiOintervalo, octava)) t iw ew = fmap (\

attack -> (attack, (relacion, midiOintervalo, octava))) attacks

where

attacks = findBeats t iw ew (fst xs) (snd xs)

--webdirt uses end uses the % dependant on the length of the sample, cut

is used for drums (might be useful)

--we might need to add the duration parameters

A.4.7 The Rhythm module

The Rhythm module contains data types relative to rhythmic patterns.

module Sound.Seis8s.Rhythm where

348

type Metre = Rational

type Attack = Rational

type Start = Rational

type End = Rational

type RhythmicPosition = (Metre, Attack)

type ChordPosition = (Start, End)

type RhythmicPattern = [RhythmicPosition]

A.4.8 The Harmony module

The Harmony module contains data types and functions related to music harmony.

module Sound.Seis8s.Harmony where

import Sound.Seis8s.Generic

import Sound.Seis8s.Rhythm

import Data.Time

import Data.Tempo

import Data.Maybe

import Data.Function

import Data.List as List

import Data.Tuple.Select

type Relacion = String -- "segunda" "absoluto"

type Octava = Double

type Note = (Relacion, Double, Octava)

type PitchType = String -- intervalo o midinote

type PitchPattern = (PitchType, [Note])

data Chord = Chord Pitch ChordType ChordPosition deriving (Show)

type Pitch = Double

type ChordType = [Double]

-- data Harmony = Harmony Chord ChordPosition ChordPosition deriving (Show

)-- :: (Rational,Rational)

data Progression = Progression Metre [Chord] deriving (Show)

generateLineFromMidi :: [(Rational, (String, Double, Double))] -> [(Rational

, Pitch)]

generateLineFromMidi xs = fmap generateLineFromMidi’ xs

349

generateLineFromMidi’ :: (Rational, (String, Double, Double)) -> (Rational,

Pitch)

generateLineFromMidi’ (attack, (midiIdentifier, midinote, octava)) = (attack

, midinote)

generateLine :: [(Rational, (String, Double, Octava))] -> Progression -> [(

Rational, Pitch)]

generateLine attacksAndIntervals (Progression metre chords) = sort $ concat

$ fmap (generateNotesFromChord attacksAndIntervals metre) chords

generateNotesFromChord :: [(Rational, (String, Double, Octava))] -> Metre ->

Chord -> [(Rational, Pitch)]

generateNotesFromChord attacksAndIntervals metre chord = concat $ fmap (\x

-> generateSingleNoteFromChord x metre chord) attacksAndIntervals

generateSingleNoteFromChord :: (Rational, (String, Double, Octava)) -> Metre

-> Chord -> [(Rational, Pitch)]

generateSingleNoteFromChord (attack, (tipo, interval, octava)) metre (Chord

p t (start, end))

|compareRationalWChordRange attack metre (start, end) = attackAndNote

attack note

| otherwise = []

where

note = getNoteInChord (Chord p t (start, end)) (tipo, interval, octava)

-- Maybe Pitch

attackAndNote :: Rational -> Maybe Pitch -> [(Rational, Pitch)]

attackAndNote attack (Just note) = [(attack, note)]

attackAndNote _ Nothing = []

-- functions to pick a chord that has a voicing

pickChords’ :: [Rational] -> Progression -> [(String, Double, Octava)] -> [(

Rational, [Pitch])]

pickChords’ attacks (Progression metre chords) pitchPattern = concat $ fmap

(\a -> pickChordsWithVoicingFromRational’ (Progression metre chords) a

pitchPattern) attacks

pickChordsWithVoicingFromRational’ :: Progression -> Rational -> [(String,

Double, Octava)] -> [(Rational, [Pitch])]

pickChordsWithVoicingFromRational’ (Progression metre chords) attack

pitchPattern = do

let acordes = acordesConVoicing $ getNotesInChords (Progression metre

chords) pitchPattern--[([Pitch], (Rational, Rational))]

concat $ fmap (pickSingleChordFromRational’ attack metre) acordes

350

pickSingleChordFromRational’ :: Rational -> Metre -> ([Pitch], (Rational,

Rational)) -> [(Rational, [Pitch])]

pickSingleChordFromRational’ attack metre (acorde, (start, end))

| compareRationalWChordRange attack metre (start, end) = [(attack, acorde)

]

| otherwise = []

getNotesInChords :: Progression -> [(String, Double, Octava)] -> [([Pitch],

(Start, End))]

getNotesInChords (Progression metre chords) intervalos = fmap (\c ->

getNotesInChord c intervalos) chords

getNotesInChord :: Chord -> [(String, Double, Octava)] -> ([Pitch], (Start,

End))

getNotesInChord (Chord root chordType (start, end)) intervalos = do

let acorde = catMaybes $ fmap (\i -> getNoteInChord (Chord root chordType

(start, end)) i) intervalos

(acorde, (start, end))

getNoteInChord :: Chord -> (String, Double, Octava) -> Maybe Pitch

getNoteInChord (Chord root chordType (start, end)) (tipo, interval, octava)

| tipo == "segunda" = (+) <$> Just root <*> ((+) <$> Just (12 * octava

) <*> (intervaloDisponible chordType (tipo, interval, octava)))

| tipo == "tercera" = (+) <$> Just root <*> ((+) <$> Just (12 * octava

) <*> (intervaloDisponible chordType (tipo, interval, octava)))

| tipo == "cuarta" = (+) <$> Just root <*> ((+) <$> Just (12 * octava)

<*> (intervaloDisponible chordType (tipo, interval, octava)))

| tipo == "quinta" = (+) <$> Just root <*> ((+) <$> Just (12 * octava)

<*> (intervaloDisponible chordType (tipo, interval, octava)))

| tipo == "sexta" = (+) <$> Just root <*> ((+) <$> Just (12 * octava)

<*> (intervaloDisponible chordType (tipo, interval, octava)))

| tipo == "septima" = (+) <$> Just root <*> ((+) <$> Just (12 * octava

) <*> (intervaloDisponible chordType (tipo, interval, octava)))

| tipo == "novena" = (+) <$> Just root <*> ((+) <$> Just (12 * octava)

<*> (intervaloDisponible chordType (tipo, interval, octava)))

| tipo == "oncena" = (+) <$> Just root <*> ((+) <$> Just (12 * octava)

<*> (intervaloDisponible chordType (tipo, interval, octava)))

| tipo == "trecena" = (+) <$> Just root <*> ((+) <$> Just (12 * octava

) <*> (intervaloDisponible chordType (tipo, interval, octava)))

| otherwise = (+) <$> Just root <*> ((+) <$> Just (12 * octava) <*>

Just interval)

-- [Double]

intervaloDisponible :: ChordType -> (String, Double, Octava) -> Maybe Double

351

intervaloDisponible cht (tipo, _, _)

|cht == major && tipo == "segunda" = Just $ sel2 (intervalo "2maj" 0)

|cht == major7 && tipo == "segunda" = Just $ sel2 (intervalo "2maj" 0)

|cht == minor && tipo == "segunda" = Nothing

|cht == minor7 && tipo == "segunda" = Nothing

|cht == dom && tipo == "segunda" = Just $sel2 (intervalo "2maj" 0)

|cht == sus2 && tipo == "segunda" = Just $sel2 (intervalo "2maj" 0)

|cht == sus4 && tipo == "segunda" = Nothing

|cht == fifths && tipo == "segunda" = Just $ sel2 (intervalo "2maj" 0)

|cht == dim && tipo == "segunda" = Nothing

|cht == aug && tipo == "segunda" = Nothing

|cht == major && tipo == "tercera" = Just $ sel2 (intervalo "3maj" 0)

|cht == major7 && tipo == "tercera" = Just $ sel2 (intervalo "3maj" 0)

|cht == minor && tipo == "tercera" = Just $ sel2 (intervalo "3m" 0)

|cht == minor7 && tipo == "tercera" = Just $ sel2 (intervalo "3m" 0)

|cht == dom && tipo == "tercera" = Just $ sel2 (intervalo "3maj" 0)

|cht == sus2 && tipo == "tercera" = Nothing

|cht == sus4 && tipo == "tercera" = Nothing

|cht == fifths && tipo == "tercera" = Nothing

|cht == dim && tipo == "tercera" = Just $ sel2 (intervalo "3m" 0)

|cht == dim7 && tipo == "tercera" = Just $ sel2 (intervalo "3m" 0)

|cht == semidim && tipo == "tercera" = Just $ sel2 (intervalo "3m" 0)

|cht == aug && tipo == "tercera" = Just $ sel2 (intervalo "3maj" 0)

|cht == major && tipo == "cuarta" = Just $ sel2 (intervalo "4justa" 0)

|cht == major7 && tipo == "cuarta" = Just $ sel2 (intervalo "4justa" 0)

|cht == minor && tipo == "cuarta" = Just $ sel2 (intervalo "4justa" 0)

|cht == minor7 && tipo == "cuarta" = Just $ sel2 (intervalo "4justa" 0)

|cht == dom && tipo == "cuarta" = Nothing

|cht == sus2 && tipo == "cuarta" = Nothing -- ?

|cht == sus4 && tipo == "cuarta" = Nothing -- ?

|cht == fifths && tipo == "cuarta" = Nothing

|cht == dim && tipo == "cuarta" = Just $ sel2 (intervalo "4justa" 0)

|cht == dim7 && tipo == "cuarta" = Just $ sel2 (intervalo "4justa" 0)

|cht == semidim && tipo == "cuarta" = Just $ sel2 (intervalo "4justa"

0)

|cht == aug && tipo == "cuarta" = Just $ sel2 (intervalo "4justa" 0)

|cht == major && tipo == "quinta" = Just $ sel2 (intervalo "5justa" 0)

|cht == major7 && tipo == "quinta" = Just $ sel2 (intervalo "5justa" 0)

|cht == minor && tipo == "quinta" = Just $ sel2 (intervalo "5justa" 0)

|cht == minor7 && tipo == "quinta" = Just $ sel2 (intervalo "5justa" 0)

|cht == dom && tipo == "quinta" = Just $ sel2 (intervalo "5justa" 0)

|cht == sus2 && tipo == "quinta" = Just $ sel2 (intervalo "5justa" 0)

352

|cht == sus4 && tipo == "quinta" = Just $ sel2 (intervalo "5justa" 0)

|cht == fifths && tipo == "quinta" = Just $ sel2 (intervalo "5justa" 0)

|cht == dim && tipo == "quinta" = Just $ sel2 (intervalo "5b" 0)

|cht == dim7 && tipo == "quinta" = Just $ sel2 (intervalo "5b" 0)

|cht == semidim && tipo == "quinta" = Just $ sel2 (intervalo "5b" 0)

|cht == aug && tipo == "quinta" = Just $ sel2 (intervalo "5aug" 0)

|cht == major && tipo == "sexta" = Just $ sel2 (intervalo "6maj" 0)

|cht == major7 && tipo == "sexta" = Just $ sel2 (intervalo "6maj" 0)

|cht == minor && tipo == "sexta" = Nothing

|cht == minor7 && tipo == "sexta" = Nothing

|cht == dom && tipo == "sexta" = Just $ sel2 (intervalo "6maj" 0)

|cht == sus2 && tipo == "sexta" = Nothing -- ?

|cht == sus4 && tipo == "sexta" = Nothing -- ?

|cht == fifths && tipo == "sexta" = Nothing

|cht == dim && tipo == "sexta" = Just $ sel2 (intervalo "6b" 0)

|cht == dim7 && tipo == "sexta" = Just $ sel2 (intervalo "6b" 0)

|cht == semidim && tipo == "sexta" = Just $ sel2 (intervalo "6b" 0)

|cht == aug && tipo == "sexta" = Nothing

|cht == major && tipo == "septima" = Just $ sel2 (intervalo "7maj" 0)

|cht == major7 && tipo == "septima" = Just $ sel2 (intervalo "7maj" 0)

|cht == minor && tipo == "septima" = Just $ sel2 (intervalo "7m" 0)

|cht == minor7 && tipo == "septima" = Just $ sel2 (intervalo "7m" 0)

|cht == dom && tipo == "septima" = Just $ sel2 (intervalo "7m" 0)

|cht == sus2 && tipo == "septima" = Nothing -- ?

|cht == sus4 && tipo == "septima" = Nothing -- ?

|cht == fifths && tipo == "septima" = Nothing

|cht == dim && tipo == "septima" = Just $ sel2 (intervalo "7bb" 0) --

m7b5

|cht == dim7 && tipo == "septima" = Just $ sel2 (intervalo "7bb" 0)

|cht == semidim && tipo == "septima" = Just $ sel2 (intervalo "7m" 0)

|cht == aug && tipo == "septima" = Just $ sel2 (intervalo "7m" 0)

|cht == major && tipo == "novena" = Just $ sel2 (intervalo "9maj" 0)

|cht == major7 && tipo == "novena" = Just $ sel2 (intervalo "9maj" 0)

|cht == minor && tipo == "novena" = Just $ sel2 (intervalo "9maj" 0)

|cht == minor7 && tipo == "novena" = Just $ sel2 (intervalo "9maj" 0)

|cht == dom && tipo == "novena" = Just $ sel2 (intervalo "9maj" 0)

|cht == sus2 && tipo == "novena" = Just $ sel2 (intervalo "9maj" 0) --

?

|cht == sus4 && tipo == "novena" = Just $ sel2 (intervalo "9maj" 0) --

?

|cht == fifths && tipo == "novena" = Just $ sel2 (intervalo "9maj" 0)

353

|cht == dim && tipo == "novena" = Just $ sel2 (intervalo "9maj" 0) --

m7b5

|cht == dim7 && tipo == "novena" = Just $ sel2 (intervalo "9maj" 0)

|cht == semidim && tipo == "novena" = Just $ sel2 (intervalo "9maj" 0)

|cht == aug && tipo == "novena" = Just $ sel2 (intervalo "9maj" 0)

|cht == major && tipo == "oncena" = Just $ sel2 (intervalo "11aug" 0)

|cht == major7 && tipo == "oncena" = Just $ sel2 (intervalo "11aug" 0)

|cht == minor && tipo == "oncena" = Just $ sel2 (intervalo "11justa" 0)

|cht == minor7 && tipo == "oncena" = Just $ sel2 (intervalo "11justa"

0)

|cht == dom && tipo == "oncena" = Just $ sel2 (intervalo "11aug" 0)

|cht == sus2 && tipo == "oncena" = Just $ sel2 (intervalo "11b" 0)

|cht == sus4 && tipo == "oncena" = Just $ sel2 (intervalo "11b" 0)

|cht == fifths && tipo == "oncena" = Just $ sel2 (intervalo "11justa"

0)-- ?

|cht == dim && tipo == "oncena" = Just $ sel2 (intervalo "11justa" 0)--

m7b5

|cht == dim7 && tipo == "oncena" = Just $ sel2 (intervalo "11justa" 0)

|cht == semidim && tipo == "oncena" = Just $ sel2 (intervalo "11justa"

0)

|cht == aug && tipo == "oncena" = Just $ sel2 (intervalo "11aug" 0)

|cht == major && tipo == "trecena" = Just $ sel2 (intervalo "13maj" 0)

|cht == major7 && tipo == "trecena" = Just $ sel2 (intervalo "13maj" 0)

|cht == minor && tipo == "trecena" = Nothing

|cht == minor7 && tipo == "trecena" = Nothing

|cht == dom && tipo == "trecena" = Just $ sel2 (intervalo "13b" 0)

|cht == sus2 && tipo == "trecena" = Nothing

|cht == sus4 && tipo == "trecena" = Just $ sel2 (intervalo "13b" 0)

|cht == fifths && tipo == "trecena" = Nothing -- ?

|cht == dim && tipo == "trecena" = Just $ sel2 (intervalo "13b" 0)--

m7b5

|cht == dim7 && tipo == "trecena" = Just $ sel2 (intervalo "13b" 0)

|cht == semidim && tipo == "trecena" = Just $ sel2 (intervalo "13b" 0)

|cht == aug && tipo == "trecena" = Nothing

|otherwise = Nothing

-- (!!) (generateChord (Chord root chordType)) (round interval)

-- generates a list of chords according to a given harmony and a given

rhythm pattern

-- generatechords :: [Rational] -> Progression -> [(Rational, [Pitch])]

generatechords :: [Rational] -> Progression -> [(Rational, [Pitch])]

354

generatechords attacks (Progression metre chords) = concat $ fmap (

generateChordsFromRational (Progression metre chords)) attacks

generateChordsFromRational :: Progression -> Rational -> [(Rational, [Pitch

])]

generateChordsFromRational (Progression metre chords) attack = concat $ fmap

(generateSingleChordFromRational attack metre) chords

generateSingleChordFromRational :: Rational -> Metre -> Chord -> [(Rational,

[Pitch])]

generateSingleChordFromRational attack metre (Chord p chordType (start, end)

)

| compareRationalWChordRange attack metre (start, end) = [(attack,

generateChord (Chord p chordType (start, end)))]

| otherwise = []

-- return a list of pitches from one chord

generateChord :: Chord -> [Pitch]

generateChord (Chord root chordType (start, end)) = fmap ((+) root)

chordType

pickChords :: [Rational] -> Progression -> [(Rational, [Pitch])]

pickChords attacks (Progression metre chords) = concat $ fmap (

pickChordsWithVoicingFromRational (Progression metre chords)) attacks

pickChordsWithVoicingFromRational :: Progression -> Rational -> [(Rational,

[Pitch])]

pickChordsWithVoicingFromRational (Progression metre chords) attack = do

let acordes = acordesConVoicing $ generateChordsFromProg (Progression

metre chords) --[([Pitch], (Rational, Rational))]

concat $ fmap (pickSingleChordFromRational attack metre) acordes

pickSingleChordFromRational :: Rational -> Metre -> ([Pitch], (Rational,

Rational)) -> [(Rational, [Pitch])]

pickSingleChordFromRational attack metre (acorde, (start, end))

| compareRationalWChordRange attack metre (start, end) = [(attack, acorde)

]

| otherwise = []

generateChordsFromProg :: Progression -> [([Pitch], (Rational, Rational))]

generateChordsFromProg (Progression metre chords) = fmap (\c ->

generateChordFromProg c) chords

generateChordFromProg :: Chord -> ([Pitch], (Rational, Rational))

generateChordFromProg (Chord root chordType (start, end)) = do

355

let acorde = fmap ((+) root) chordType

(acorde, (start,end))

compareRationalWChordRange :: Rational -> Metre -> ChordPosition -> Bool

compareRationalWChordRange attack metre (startOffset, endOffset) = do

let attackInMetre = attack / metre

let attackInMetre’ = fract attackInMetre

let startInMetre = startOffset / metre

let endInMetre = endOffset / metre

let b | startOffset <= endOffset = (attackInMetre’ >= startInMetre) && (

attackInMetre’ < endInMetre)

| otherwise = (attackInMetre’ < startInMetre) && (attackInMetre’ >=

endInMetre)

b

-- armonia 1 [c 0 5] => Progression 0.5 [Chord 60 major (0, 0.25)]

-- attack 1 es 0.5

-- compas gmm = compas "partido" (i.e. 0.5)

-- por lo tanto compareRationalWChordRange’ 0.5 0.5 0.5 (0, 0.25)

-- compareRationalWChordRange’ 1 1 1 (0, 0.5)

-- not in use

compareRationalWChordRange’ :: Rational -> Metre -> Double -> ChordPosition

-> Bool

compareRationalWChordRange’ attack metre compas (startOffset, endOffset) =

do

let attack’ = attack / toRational compas

let metre’ = metre / toRational compas

let startOffset’ = startOffset / toRational compas

let endOffset’ = endOffset / toRational compas

let attackInMetre = attack’ / metre’ -- 1/1 = 1

let attackInMetre’ = fract attackInMetre -- 1.0 -> 0

let startInMetre = startOffset’ / metre’ -- 0/1 = 0

let endInMetre = endOffset’ / metre’ -- 0.5/1 = 0.5

let b | startOffset’ <= endOffset’ = (attackInMetre’ >= startInMetre) && (

attackInMetre’ < endInMetre)

| otherwise = (attackInMetre’ < startInMetre) && (attackInMetre’ >=

endInMetre)

b

concatChord :: (Rational, [Pitch]) -> [(Rational, Pitch)]

concatChord (attack, ps) = fmap (\p -> (attack, p)) (snd (attack, ps))

concatChords :: [(Rational, [Pitch])] -> [(Rational, Pitch)] -- eg. for [60,

64, 67] three events all whith the same time all with different

pitches

356

concatChords attackAndChords = concat $ fmap (\x -> concatChord x)

attackAndChords

-- a simple voicing

c1 = Chord 60 major (0, 0.5)

c2 = Chord 64 minor (0.5, 1)

--generateLine xs 1 myharmony = [(9 % 20,60.0),(9 % 20,64.0),(9 % 20,67.0)

]

agruparNotas :: [(Rational, Pitch)] -> [[(Rational, Pitch)]]

agruparNotas xs = groupBy ((==) ‘on‘ fst) xs

-- 1. se recibe como [(Rational, Pitch)]

-- 2. lo transformamos a [[(Rational, Pitch)]]

-- 3. lo regresamos a [(Rational, Pitch)]

-- [(0, 59), (0, 62), (0, 67), (0.5, 60), (0.5, 64), (0.5, 67)]

-- generateChordsFromProg :: Progression -> [([Pitch], (Rational, Rational

))]

--

--

acordesConVoicing :: [([Pitch], (Rational, Rational))] -> [([Pitch], (

Rational, Rational))]

acordesConVoicing prog

| length prog == 0 = []

| length prog == 1 = prog

| length prog == 2 = [a, ab]

| length prog == 3 = [a, ab, bc]

| length prog == 4 = [a, ab, bc, cd]

| length prog == 5 = [a, ab, bc, cd, de]

| length prog == 6 = [a, ab, bc, cd, de, ef]

| length prog == 7 = [a, ab, bc, cd, de, ef, fg]

| length prog == 8 = [a, ab, bc, cd, de, ef, fg, gh]

| length prog == 9 = [a, ab, bc, cd, de, ef, fg, gh, hi]

| length prog == 10 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij]

| length prog == 11 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk]

| length prog == 12 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl]

| length prog == 13 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm]

| length prog == 14 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn]

| length prog == 15 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no]

| length prog == 16 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op]

357

| length prog == 17 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq]

| length prog == 18 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr]

| length prog == 19 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs]

| length prog == 20 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st]

| length prog == 21 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st, tu]

| length prog == 22 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st, tu, uv]

| length prog == 23 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st, tu, uv, vw]

| length prog == 24 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st, tu, uv, vw, wx]

| length prog == 25 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st, tu, uv, vw, wx, xy]

| length prog == 26 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st, tu, uv, vw, wx, xy, yz]

| length prog == 27 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st, tu, uv, vw, wx, xy, yz, za]

| length prog == 28 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st, tu, uv, vw, wx, xy, yz, za, ab’]

| length prog == 29 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st, tu, uv, vw, wx, xy, yz, za, ab’, bc’]

| length prog == 30 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st, tu, uv, vw, wx, xy, yz, za, ab’, bc’, cd’]

| length prog == 31 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st, tu, uv, vw, wx, xy, yz, za, ab’, bc’, cd’,

de’]

| length prog == 32 = [a, ab, bc, cd, de, ef, fg, gh, hi, ij, jk, kl, lm,

mn, no, op, pq, qr, rs, st, tu, uv, vw, wx, xy, yz, za, ab’, bc’, cd’,

de’, ef’]

where

a = (!!) prog 0

ab = acordeConVoicing a ((!!) prog 1)

bc = acordeConVoicing ab ((!!) prog 2)

cd = acordeConVoicing bc ((!!) prog 3)

de = acordeConVoicing cd ((!!) prog 4)

ef = acordeConVoicing de ((!!) prog 5)

fg = acordeConVoicing ef ((!!) prog 6)

gh = acordeConVoicing fg ((!!) prog 7)

hi = acordeConVoicing gh ((!!) prog 8)

ij = acordeConVoicing hi ((!!) prog 9)

358

jk = acordeConVoicing ij ((!!) prog 10)

kl = acordeConVoicing jk ((!!) prog 11)

lm = acordeConVoicing kl ((!!) prog 12)

mn = acordeConVoicing lm ((!!) prog 13)

no = acordeConVoicing mn ((!!) prog 14)

op = acordeConVoicing no ((!!) prog 15)

pq = acordeConVoicing op ((!!) prog 16)

qr = acordeConVoicing pq ((!!) prog 17)

rs = acordeConVoicing qr ((!!) prog 18)

st = acordeConVoicing rs ((!!) prog 19)

tu = acordeConVoicing st ((!!) prog 20)

uv = acordeConVoicing tu ((!!) prog 21)

vw = acordeConVoicing uv ((!!) prog 22)

wx = acordeConVoicing vw ((!!) prog 23)

xy = acordeConVoicing wx ((!!) prog 24)

yz = acordeConVoicing xy ((!!) prog 25)

za = acordeConVoicing yz ((!!) prog 26)

ab’ = acordeConVoicing za ((!!) prog 27)

bc’ = acordeConVoicing ab’ ((!!) prog 28)

cd’ = acordeConVoicing bc’ ((!!) prog 29)

de’ = acordeConVoicing cd’ ((!!) prog 30)

ef’ = acordeConVoicing de’ ((!!) prog 31)

--

-- -- [(9 % 20,60.0),(9 % 20,64.0),(9 % 20,67.0)]

-- -- [([Pitch], (Rational, Rational))] -- ([60, 64, 67], (0, 1))

acordeConVoicing :: ([Pitch], (Rational, Rational)) -> ([Pitch], (Rational,

Rational)) -> ([Pitch], (Rational, Rational))

acordeConVoicing prev sig = do

let notasComunesPrev = notasComunes (fst prev) (fst sig) -- [(0, 60), (0,

64), (0, 67)] [(0.25, 64), (0.25, 67), (0.25, 71)] = [(0.25, 64),

(0.25, 67)]

let notasComunesSig = notasComunes (fst sig) (fst prev)

let notasNoComunesPrev = notasNoComunes’ (fst prev) notasComunesPrev --

[(0, 60)]

let notasNoComunesSig = notasNoComunes’ (fst sig) notasComunesSig --

[(0.5, 71)]

let dists = distancias’’ notasNoComunesPrev notasNoComunesSig -- [(Double,

Pitch)]

let notasCercanas’ = notasCercanas (length notasNoComunesSig) dists --

[71] -- [Pitch]

let listaFinal = List.sort $ notasComunesPrev ++ notasCercanas’

(listaFinal, snd sig)

359

-- notasNoComunes’ :: [(Rational, Pitch)] -> [(Rational, Pitch)] -> [(

Rational, Pitch)]

notasNoComunes’ :: [Pitch] -> [Pitch] -> [Pitch]

notasNoComunes’ xs ys = catMaybes $ fmap (\x -> notasNoComunes x ys) xs

-- [([Pitch], (Rational, Rational))]

-- notasNoComunes :: (Rational, Pitch) -> [(Rational, Pitch)] -> Maybe (

Rational, Pitch)

notasNoComunes :: Pitch -> [Pitch] -> Maybe Pitch

notasNoComunes x xs

| elem x xs = Nothing

| otherwise = Just x

-- 71 [64, 67, 71] [64, 67]

-- 1. encontrar las notas en comun entre ambas listas

-- notasComunes :: [Pitch] -> [Pitch] -> [Pitch]

notasComunes :: [Pitch] -> [Pitch] -> [Pitch]

notasComunes prev sig = concat $ fmap (\p -> notaComun’ p sig) prev

-- notaComun’ :: (Rational, Pitch) -> [(Rational, Pitch)] -> [(Rational,

Pitch)]

notaComun’ :: Pitch -> [Pitch] -> [Pitch]

notaComun’ prev sig = do

let hacerListasDeListas’ = hacerListasDeListas sig

concat $ fmap (\s -> notaComun prev s) hacerListasDeListas’

-- notaComun :: (Rational, Pitch) -> [(Rational, Pitch)] -> [(Rational,

Pitch)]

notaComun :: Pitch -> [Pitch] -> [Pitch]

notaComun prev sig = filter ((==) prev) sig

-- hacerListasDeListas :: [(Rational, Pitch)] -> [[(Rational, Pitch)]]

hacerListasDeListas :: [Pitch] -> [[Pitch]]

hacerListasDeListas xs = fmap (\x -> hacerListaDeListas x) xs

-- hacerListaDeListas :: (Rational, Pitch) -> [(Rational, Pitch)]

hacerListaDeListas :: Pitch -> [Pitch]

hacerListaDeListas x = do

let xs = List.sort $ [x, (x - 12) .. 0] ++ [(x + 12), (x + 24) .. 127] --

[Pitch]

xs

-- (0, 60) [(0.5, 65), (0.5, 69), (0.5, 72)]

-- (0, 60) [[], [], []]

360

-- 2. Escoger todos los 3 valores con distancia ms corta de la lista.

distancias :: Pitch -> Pitch -> [(Double, Pitch)]

distancias prev sig = do

let saltoSig = (sig - 12)

let sig’ = (sig + 12)

let saltoSig’ = (sig + 12) + 12

let sigs = List.sort $ [sig, saltoSig .. 0] ++ [sig’, saltoSig’ .. 127] --

[Pitch]

let sigs’ = catMaybes $ fmap (\s -> if (s >= (prev - 12)) && (s <= (prev +

12)) then Just s else Nothing) sigs -- [(Rational, Pitch)]

let sigsYdist = fmap (\d -> (abs $ prev - d, d)) sigs’

sigsYdist

distancias’ :: Pitch -> [Pitch] -> [(Double, Pitch)]

distancias’ prev sig = concat $ fmap (\s -> distancias prev s) sig

distancias’’ :: [Pitch] -> [Pitch] -> [(Double, Pitch)]

distancias’’ prev sig = List.sort $ concat $ fmap (\p -> distancias’ p sig)

prev

-- uniq which removes duplicates from a list (found here https://

codereview.stackexchange.com/questions/150533/filter-duplicate-elements

-in-haskell)

uniqPitch :: Eq b => [(a,b)] -> [(a,b)]

uniqPitch [] = []

uniqPitch ((x, y):xs) = (x,y) : uniqPitch (filter ((/= y) . snd) xs)

notasCercanas :: Int -> [(Double, Pitch)] -> [Pitch]

notasCercanas tamano notas = do

let lista1 = take tamano $ uniqPitch notas

List.sort $ fmap snd lista1

-- pitches

c :: Double

c = 60

cs :: Double

cs = 61

d :: Double

361

d = 62

ds :: Double

ds = 63

e :: Double

e = 64

f :: Double

f = 65

fs :: Double

fs = 66

g :: Double

g = 67

gs :: Double

gs = 68

a :: Double

a = 69

as :: Double

as = 70

b :: Double

b = 71

-- intervalos para generar acordes

major :: ChordType

major = [0, 4, 7]

minor:: ChordType

minor = [0, 3, 7]

major7 :: ChordType

major7 = [0, 4, 7, 11]

minor7 :: ChordType

minor7 = [0,3,7,10]

dom :: ChordType

dom = [0,4,7,10]

362

fifths :: ChordType

fifths = [0, 7]

sus4 :: ChordType

sus4 = [0,5,7]

sus2 :: ChordType

sus2 = [0, 2, 7]

aug :: ChordType

aug = [0, 4, 8]

dim :: ChordType

dim = [0, 3, 6]

semidim :: ChordType --m7b5

semidim = [0, 3, 6, 10]

dim7 :: ChordType

dim7 = [0, 3, 6, 9]

-- opcion 1: funcion octava

-- octavar -1 (intervalo "5a") -- returns ("quinta", (-1*12) (snd

intervalo "5a"))

-- entonces => octavar (intervalo "5a", "4a", "3a") que seria equivalente

a intervalo "5a" + 1, etc...

-- opcion 2: incorporarlo en la funcion intervalo

--intervalo "t" -1

-- una lista de intervalos

intervaloDouble :: Double -> Double -> (String, Double, Octava)

intervaloDouble intervalo octava = ("libre", intervalo, octava)

intervalo :: String -> Double -> (String, Double, Octava)

intervalo "unisono" octava = ("unisono", 0, octava)

intervalo "f" octava = ("unisono", 0, octava)

intervalo "1a" octava = ("unisono", 0, octava)

intervalo "2a" octava = ("segunda", 0, octava)

intervalo "2m" octava = ("segundaMenor", 1, octava)

363

intervalo "2maj" octava = ("segundaMayor", 2, octava)

intervalo "3a" octava = ("tercera", 0, octava)

intervalo "3m" octava = ("terceraMenor", 3, octava)

intervalo "3maj" octava = ("terceraMayor", 4, octava)

intervalo "4a" octava = ("cuarta", 0, octava)

intervalo "4justa" octava = ("cuartaJusta", 5, octava)

intervalo "4aug" octava = ("cuartaAug", 6, octava)

intervalo "5a" octava = ("quinta", 0, octava)

intervalo "5b" octava = ("quintaBemol", 6, octava)

intervalo "5justa" octava = ("quintaJusta", 7, octava)

intervalo "5aug" octava = ("quintaAug", 8, octava)

intervalo "6a" octava = ("sexta", 0, octava)

intervalo "6m" octava = ("sextaMenor", 8, octava)

intervalo "6maj" octava = ("sextaMayor", 9, octava)

intervalo "7a" octava = ("septima", 0, octava)

intervalo "7bb" octava = ("septimaMenor", 8, octava)

intervalo "7m" octava = ("septimaMenor", 10, octava)

intervalo "7maj" octava = ("septimaMayor", 11, octava)

intervalo "8a" octava = ("octava", 12, octava)

intervalo "9a" octava = ("novena", 0, octava)

intervalo "9m" octava = ("novenaMenor", 13, octava)

intervalo "9maj" octava = ("novenaMayor", 14, octava)

intervalo "11a" octava = ("oncena", 0, octava)

364

intervalo "11b" octava = ("oncenaBemol", 16, octava)

intervalo "11justa" octava = ("oncenaJusta", 17, octava)

intervalo "11aug" octava = ("oncenaAug", 18, octava)

intervalo "13a" octava = ("trecena", 0, octava)

intervalo "13b" octava = ("trecenaBemol", 20, octava)

intervalo "13maj" octava = ("trecenaMayor", 21, octava)

intervalo _ octava = ("nada", 0, octava)

365

	Introduction
	Anecdotes on culture and computer languages
	Questions on culture and situated knowledge
	Questions concerning this dissertation
	Description of chapters

	State of the art: programming languages as texts and cultural objects
	Theoretical framework
	Logo
	Cornrow Curves and Rhythm Wheels software
	Lenguaje Latino
	Alb
	Conclusion

	Seis8s, a live-coding language for electronic Latin dance music
	Motivation
	Background: A personal anecdote on postmodernity and live coding in Mexico
	Introducing Seis8s
	Lexicon
	Syntax
	Semantics

	Seis8s as text and cultural object
	Conclusion

	Seis8s in context: talking circles on music and software
	Description of the circles
	Methodology for gathering and analyzing participants' contributions
	Part 1: Software in Latin America
	What is software?
	Parallel coexistence, delinking digital technology
	The concepts of race, multiculturalism, and pluriculturalism in software
	On software orientations

	Part 2: Latin dance music
	Cultural appropriation in Latin music
	Sophisticated listening and instrument substitutions
	Kumbia Queer, commands, lyrics, and dance

	Conclusion

	Seis8s in practice: public performances and exhibitions
	Seis8s usage aesthetics: Live Coding and Networked Music performance
	Performances and Installations with Seis8s
	D'Binis at Campamento Extendido <impendingvoid> by Posternura Records
	RGGTRN at Digitropics
	Luis Navarro Del Angel at Galvanized Suns by Diasporic Futurisms
	Tania Alejandra, Gabriel G. aka alom, Jessica Rodríguez, Andres Miramontes, and Luis N. Del Angel: Rehearsal for a Performance at the Factory Media Centre
	Cybernetic Orchestra at Estuary's 5th Anniversary by the NIL
	The ASCIItos: Barush, Nuriban and Gabriel G at Estuary's 5th Anniversary by the NIL
	Grupo D'Binis at PUMPUMYACHKAN Festival 16th by Asimtria
	Seis8s as an online Installation at International Conference on Live Coding
	Genuary 2022 Seis8s In Space by Illest Preacha
	Seis8s as an online Installation at the New Interfaces for Musical Expression Conference

	Conclusion and further work

	General conclusions
	General findings and main takeaways
	Reflections on the research process
	Contributions to computer programming and live coding practice

	References
	Appendices: Talking circles, list of materials and themes
	Thursday sessions
	Saturday sessions
	Categories and overarching themes
	Sei8s' code
	The Main module
	The Program module
	The Parser module
	The Layer module
	The Global Material module
	The Style module
	The Rhythm module
	The Harmony module

