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Lay Abstract

Electric cars are continuously challenged to meet regulatory mandates that be-

come stricter by the day. This is driven by the need for a clean, reliable, affordable,

and sustainable transportation system. In this research, a novel, more reliable, and

cost-effective power control unit (PCU) is proposed. The PCU manages the power

flow regulation between the battery and the motor(s). The proposed PCU employs

the same number of devices as a traditional counterpart, yet in a more modular ar-

chitecture that doubles the safety factor compared to the standard design. In fault

scenarios where the traditional PCU would fail, the proposed PCU would continue

operating at half power, allowing the driver and passengers to reach a safe destination

before the car is repaired. Extensive analyses were undertaken to identify an optimal

design in terms of performance, size, and cost. Then, an engineering prototype is

constructed and tested on an electric drivetrain testbed. Finally, the prototype is

benchmarked against commercial competitors in the market to establish its econom-

ical feasibility.
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Abstract

This thesis investigates the feasibility of using Silicon Carbide (SiC)-based mul-

tiphase inverters (MPIs) for transportation electrification applications. The research

begins with a comprehensive review on the state-of-the-art of MPIs, focusing on volt-

age source inverters (VSIs) and nine-switch inverters (NSIs), with five-, six-, and

nine-phase configurations. The quantitative and qualitative analyses demonstrate

that the six-phase VSI is the most promising topology, offering reduced DC-capacitor

requirements, lower cabling cost, and higher fault tolerance capability while maintain-

ing the same efficiency and power device count of a three-phase VSI. The feasibility

of the SiC-based six-phase inverter is further investigated at the vehicle level, where a

vehicle model is developed to study the energy consumption under different drive cy-

cles. The resulting indicate an 8% improvement in vehicle mileage and fuel economy

of the SiC-based six-phase inverter compared to its Si-based counterpart.

This thesis also examines the current and voltage stresses on the DC-bus capacitor

in two-level six-phase VSIs. The study considers two configurations of load/winding

spatial distribution: symmetric and asymmetric. Consequently, analytical formu-

las for the DC-bus capacitor current and voltage ripples are derived. Furthermore,

simple capacitor sizing rules in six-phase VSIs with different load configurations are
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provided. The accuracy of the derived formulas is verified by simulation and experi-

mental testing, and their boundary conditions are identified. Six-phase VSI supplying

symmetric loads was found to yield the smallest capacitor size.

Based on the foregoing technology review and analyses, a holistic design method-

ology for a 100 kW SiC-based six-phase traction inverter for an electric vehicle ap-

plication is presented. The proposed methodology considers the device power level,

where discrete SiC MOSFETs are utilized, and the DC-capacitor sizing, where a

multi-objective optimization algorithm is proposed to find the most suitable capac-

itor bank. Mechanical and thermal design constraints are also explored to deliver a

compact housing with an integrated coolant channel. The resultant inverter design

from the proposed electrical-thermal-mechanical design methodology is prototyped

and experimentally tested, demonstrating a 7% reduction in DC-capacitor volume

and 21% reduction in cabling cost when compared to conventional three-phase in-

verters of the same volt-ampere rating. The peak power density of the prototype

inverter is 70 kW/L, demonstrating a compact design. Besides, the proposed design

is benchmarked against commercial six-phase inverter models, whereby the competi-

tiveness of the proposed design is highlighted.

Finally, the unique control aspects of six-phase electric motor drives are inves-

tigated to identify suitable controls strategies for various operating conditions. The

study places special emphasis on high-speed operation and evaluates several overmod-

ulation techniques. An adaptive flux-weakening control algorithm is also proposed for

the six-phase motor drive, which significantly improves the DC-bus voltage utilization

of the inverter when used in conjunction with overmodulation.

Overall, this thesis provides a comprehensive study of SiC-based six-phase traction
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inverters and proposes a holistic design methodology that considers electrical, ther-

mal, and mechanical aspects. The results demonstrate the feasibility and advantages

of SiC-based six-phase traction inverters for electric vehicle applications.
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Chapter 1

Introduction

1.1 Background

Recent years have seen an uptake of electrification in the automotive industry

[1–3]. In 2019, we witnessed many original equipment manufacturers (OEMs) entering

the electric market, and auto products extending beyond the standard passenger

vehicle to include exotic cars [4]. Globally, sales of electric passenger vehicles have

grown by over 60% per year since 2012 and are projected to exceed 70 million in

2025. As for Canada, the fourth largest car exporter in the world, more than half

of all passenger vehicle sales are expected to be electric by 2030. This trend is only

expected to grow into the future. Figure 1.1 shows the global long-term sales of

passenger vehicles by drivetrain and region. It is projected that more than half of the

global sales of passenger vehicles will be electric by 2040 [5]. This is driven by the

need for clean, reliable, inexpensive and sustainable transportation system as global

warming concerns continue to rise [3].

1



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

2015 2020 2025 2030 2035 2040
0%

20%

40%

60%

80%

100% ICE
Electric
Fuel cell

(a)

2015 2020 2025 2030 2035 2040
0%

10%

20%

30%

40%

50%

60%

70%

80%

90% China
Europe
US
Canada
S. Korea
Global
Japan
India
Rest of
World

(b)

Figure 1.1: Global long-term share of passenger vehicle sales (a) by drivetrain, (b)
by region (electric vehicle only).

Electrified vehicles include pure electric vehicles (EVs), hybrid EVs (HEVs), plug-

in HEV (PHEV), and fuel cell vehicles, each having a different powertrain architec-

ture [3]. The driving power of all electrified powertrains is always one or more electric

machines (EMs) that operate either alone or in conjunction with an internal combus-

tion engine (ICE) [2, 6, 7]. Driving and controlling the EM is achieved by a traction

inverter, which converts the DC current drawn from the battery to a variable fre-

quency AC current in motoring mode. Conversely, in generation mode, the inverter

acts as a rectifier to transfer the energy from the EM to the battery. Accordingly,

optimizing the efficiency, power density, control techniques, and cost is crucial for

further development of EVs.

To accelerate the paradigm shift towards electrified transportation, regulatory

mandates are becoming more stringent. In 2015, the U.S. Department of Energy

(DOE) announced new targets, concerning the electric traction drive system (ETDS),

to be met by 2025 [8]. A power density of 33 kW/L at $6/kW is expected for a 100

kW traction drive system. Specifically, the power inverter module (referring to a

single 100 kW inverter and, if applicable, a boost converter) is expected to achieve a
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power density of 100 kW/L at a cost of $2.7/kW. This constitutes an 87% and 18%

reduction in volume and cost, respectively, compared to earlier targets set for 2020 [8].

Hence, disruptive innovative solutions are imperative to close in on the technology

gap.

In the context of the traction inverter, research and development (R&D) efforts

are focusing on a couple of frontiers. One promising frontier is the deployment of

wide bandgap (WBG) devices, as an alternative to silicon (Si) devices. Over the past

decade, WBG devices have gained a tremendous interest, owing to their superior ma-

terial properties [9–19]. Normally, the term WBG is synonym with silicon carbide

(SiC) and gallium nitride (GaN) semiconductor materials [20]. While both technolo-

gies are market-ready, the latter is limited to applications below 650 V [6,17,18, 21],

and therefore, is not suitable for traction applications.

SiC devices offer a multitude of features that can be exploited to produce trac-

tion inverters with a significantly higher power density. Currently, the cost premium

associated with SiC is a challenge for its wide adoption. Nonetheless, as SiC market

share expands, and manufacturing techniques improve, the cost is expected to dra-

matically decline [16]. In fact, Tesla’s Model 3 already employs a fully SiC traction

inverter [22].

On a second frontier, multiphase drives (beyond three phases) for ETDS have been

drawing the attention of OEMs in the automotive industry [23, 24]. The multiphase

drive was first introduced in the late ‘60s of the past century [25]. Its popular-

ity, though, had remained stagnant until the early 2000s. The major technological

advancement in power electronics and microprocessors of this century provided the

means to adopt such a technology thereafter. Multiphase drives offer many advantages

3



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

Figure 1.2: A Commercial 265 kW six-phase drive by Dana TM4 [24].

when compared to their three-phase counterparts, with two of particular interest to

EVs: 1) reduced per-phase current rating, thus relaxing the requirements on employed

semiconductors of the inverter, and 2) fault tolerance capability, which is of utmost

importance to vehicle safety [26–29]. The first feature can complement the low-

current-rated SiC devices. Figure 1.2 shows a commercial six-phase motor/inverter

system designed for light- to medium-duty trucks.

1.2 Motivation

Extensive research has been conducted on the modeling [30], motor design [31],

control [32], and fault-tolerance [33] of six-phase drives. However, the design of six-

phase inverters is often overlooked. This originates from the notion that three-phase

inverters can be extended to multiphase by mere addition of (half-bridge) switch-

ing legs [34]. Moreover, six-phase motors with two isolated neutrals are commonly

referred to as dual three-phase motors [35]. As the name suggests, with respect to

inverter construction, such motors can be driven by two three-phase voltage source
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inverters (VSIs), resulting in a six-phase inverter that is typically oversized with

switches rated at twice the rated current and two bulky DC-capacitor banks.

Therefore, it is imperative to have an elaborate design of six-phase inverters to

achieve a compact and cost-effective solution. A thorough design should take ad-

vantage of the inherent benefits of six-phase systems such as lower torque ripple (in

the case of an asymmetric motor) [36], reduction of DC-capacitor requirements [37],

and reduced cabling costs [38]. It should also address the challenges such as higher

numbers of sensors and gate drivers.

Dana TM4 offers commercial multiphase inverters (MPIs) for traction drives for

light- to heavy-duty trucks [24]. The CO200-HV (depicted in Figure 1.2) and CO300-

HV are MPIs dedicated for six- and nine-phase traction applications rated at 260 kW

and 430 kW, respectively, for operating voltages less than 750 V. The employed

semiconductor technology is not disclosed. The power density of both inverters, at

the rated power, is smaller than 10 kW/L, which is not competitive when compared to

state-of-the-art three-phase traction inverters [16]. Recently, Koenigsegg has released

David, a 700 kW SiC-based six-phase inverter for its limited production PHEV, the

Gemera [39]. The technical and commercial details of the inverter are not disclosed

and, at the time of writing of this thesis, the Gemera was not in production yet [40].

This objective of this thesis is to design and develop a SiC-based six-phase traction

inverter, while addressing the advantages and disadvantages of six-phase systems with

respect to inverter design.
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1.3 Contributions

This thesis has contributed to technical advances in six-phase traction inverters,

including efficiency analysis, DC-capacitor sizing, controls, and electro-thermal in-

verter design, as well as their implementation in EV applications. The summary of

these contributions is as follows:

1. State-of-the-art review on multiphase traction inverters and their technical and

commercial feasibility in EV applications.

2. Comparative vehicle level efficiency evaluation of Si- and SiC-based six-phase

traction inverters.

3. Current and voltage DC-ripples evaluation, harmonic analysis, and DC-capacitor

sizing in six-phase inverters and benchmarking to three-phase counterparts.

4. DC-capacitor sizing rules for six-phase inverters based on maximum allowable

current stress and voltage ripple.

5. Holistic electro-thermal-mechanical design of a SiC-based six-phase traction in-

verter.

6. Comprehensive evaluation of six-phase electric motor drive in terms of current

control, flux-weakening, and overmodulation using two three-phase modulators.
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1.5 Thesis Outline

The organization of this thesis is as follows. Chapter 2 provides a comprehensive

review of MPIs and their application in transportation electrification, with a focus on

the VSI and nine-switch inverter (NSI) topologies due to their popularity and poten-

tial as traction inverters. The state-of-the-art review covers topics such as modeling

and control techniques, DC-capacitor sizing, modulation strategies, inverter losses,

and cost. Promising future trends in MPIs are also investigated.

In Chapter 3, a quantitative and qualitative analysis is conducted to examine the

feasibility of SiC-based multiphase traction inverters. VSI and NSI topologies with

different phases (five-, six-, and nine-phase) are evaluated in terms of device count,

DC-capacitor sizing, efficiency, power density, and cost. The six-phase VSI is found

to have the best feasibility, offering reduced DC-capacitor requirements, lower cabling

cost, and higher fault tolerance capability while maintaining the same efficiency and

power device count.

The feasibility of the SiC-based six-phase inverter is further investigated at the

vehicle level in Chapter 4, where a dynamic powertrain model comprising the inverter

and motor is developed to evaluate efficiency and energy consumption under different

drive cycles. Furthermore, an EV model is developed to study the energy consumption

under the different traction inverters at different drive cycles. The resulting data

provides valuable insights into the performance of the SiC-based six-phase inverter

compared to its Si-based counterpart, including vehicle mileage and fuel economy.

Chapter 5 examines the current and voltage stresses on the DC-bus capacitor

in two-level six-phase VSIs. Analytical formulas for the DC-bus capacitor voltage

ripples and sizing for six-phase VSIs with different load/winding spatial distribution

9



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

are derived, and their accuracy is verified by simulation and experimental testing.

Six-phase VSI supplying symmetric loads was found to yield the smallest capacitor

size.

In Chapter 6, a holistic design methodology for a 100 kW SiC-based six-phase

traction inverter for electric vehicle applications is presented. The proposed method-

ology considers the power device level, where discrete SiC MOSFETs are utilized, and

the DC-capacitor level, where a multiobjective optimization algorithm is proposed to

find the most suitable capacitor bank. Mechanical and thermal design constraints

are also considered to deliver a compact housing with an integrated coolant channel.

The resultant inverter design is prototyped and experimentally tested in Chapter 7,

demonstrating a 7% reduction in DC-capacitor volume and 21% reduction in cabling

cost compared to three-phase inverters of the same rating. The peak power density

of the prototype inverter is 70 kW/L, demonstrating a compact design.

In Chapter 8, the unique control aspects of the six-phase electric motor drives are

investigated. More specifically, control and overmodulation techniques for operation

beyond the base speed are proposed. An adaptive flux-weakening control algorithm is

proposed using the vector space decomposition modeling to be seamlessly integrated

in the six-phase field-oriented control. Overmodulation techniques based on three-

phase modulators are investigated for employment in six-phase drives. Based on

this investigation, a simpler overmodulation technique with superior performance

characteristics is also proposed.

Finally, Chapter 9 outlines the conclusions drawn from this thesis. Additionally,

potential directions for future research and development are suggested.
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Chapter 2

Fundamentals of Multiphase

Traction Inverters

Extensive efforts are being invested in optimizing the efficiency, power density, and

cost of traction inverters. Such efforts are in line with the next-generation framework

of electrified transportation that includes increased voltage and power ratings [41]

and employment of WBG devices [13].

At the heart of traction inverters are power semiconductor devices, whose ratings

might be limited in the face of the aforementioned trends. When voltage is a limiting

factor, multilevel inverters (MLIs) constitute a viable solution [42]. MLIs are able

to utilize switching devices with lower voltage ratings for the same or higher DC-bus

voltages when compared to two-level inverters. Thereby, their application in power-

trains rated at and beyond 800 V is gaining a a significant attention [43]. On the

other hand, when current is a limiting factor for the semiconductor devices, discrete

device paralleling is the industry-accepted solution; multiple devices are connected

in parallel to withstand the output current of the inverter. Tesla’s Model 3 (2018),
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for example, employs four SiC discrete metal oxide semiconductor field effect tran-

sistor (MOSFET) devices per switch [44]. However, device paralleling poses design

challenges pertaining to static and dynamic current sharing among the paralleled de-

vices [45–48]. Mismatches between the paralleled devices lead to current unbalance,

which in turn causes hot spots [47].

Alternatively, multiphase drives (MPDs), beyond three phases, thrive in delivering

high-power, owing to their improved per-phase current handling [29]. With more

phases to share the required output power, device paralleling issues are alleviated, or

eliminated altogether [49]. Besides improved current handling, MPDs offer improved

fault tolerance capability, lower torque pulsations, better noise characteristics, and

modularity [28,29].

Whether to use a multilevel inverter or a multiphase drive is a subtle question, and

rather application-oriented. Increasing the powertrain voltage rating is attractive for

EVs as it enables fast charging and reduces cabling footprint. On the other hand, it

compounds insulation requirements. Improper insulation leads to partial discharge,

which in turn causes machine failures [50]. This poses a serious threat for more

electric aircrafts (MEA), for example, where reliability is of utmost importance. In

such applications, meeting high power demand can be achieved by increasing the

current supply at a relatively low voltage, around 400 V [51]. Heavy-duty vehicles

resemble another example of high-power electrified powertrain. In such cases, MPDs

are more suitable, thanks to their reduced per-phase current requirements. From

another perspective, electrified aircrafts can also exploit MPDs to leverage reliability

as multiphase drives have superior fault-tolerance capabilities. Figure 2.1 summarizes

the pros and cons of MPIs.
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STRENGTHS:
•  Enhanced fault tolerance
•  Improved current handling
•  Reduced DC-bus capacitor
    requirement
•  Modularity

WEAKNESSES:
•  Increased sensors and
    gate drivers
        •  Higher cost

•  Control complexity

OPPORTUNITIES:
•  Reliability-stringent 
    markets
•  High-power high-current 
    applica�ons

THREATS:
•  Immature technology
•  Shi� towards high-voltage 
    ba�ery packs

Figure 2.1: Strengths, weaknesses, opportunities, and threats (SWOT) analysis of
MPIs.

Both technologies, MLI and MPI, have been widely investigated in literature.

Application of MLIs in transportation electrification was recently reviewed in [42].

MPDs for traction applications was reviewed [29], with a focus on six-phase drives. A

little attention, though, has been paid to MPIs. This arises from the notion that con-

ventional three-phase inverters are extendable to MPIs by simply adding additional

switching legs to the existing ones [34]. Another reason is the modularity of six-phase

machines with two isolated neutrals, which can be treated as two three-phase sets,

commonly known as dual three-phase machines [35]. In principle, for n-phase ma-

chine with n multiples of three, the system can be decomposed into n/3 three-phase

systems [52]. Thus, as far as hardware implementation is concerned, these machines

can be driven by multiple three-phase inverters. While such reasoning is valid, the

resulting MPI is usually oversized with switches rated at twice the rated current and

two DC-bus capacitors, in the case of six-phase drives.

Proper considerations invested in MPI design can yield improved inverter design.
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Along with addressing the aforementioned device paralleling issues, input parasitic

can be made smaller, thanks to improved current handling in MPIs. Therefore, a

higher power density can be achieved. To this end, this thesis presents an in-depth

review of MPIs for traction applications. More specifically, two MPI topologies are

reviewed: VSI and NSI. The selection of those topologies is based on their potential

for the applications listed in Figure 2.1.

This chapter is organized as follows. Modeling techniques for MPIs are discussed

in Section 2.1. Sections 2.2 and 2.3 review multiphase VSI and NSI, respectively.

Section 2.4 investigates the future trends for MPIs and the challenges hindering their

adoption. Finally, Section 2.5 concludes the chapter.
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Figure 2.2: General phase distribution in n-phase inverters for different spatial
displacement configurations. (a) Symmetric: δ = 2π/n. (b) Asymmetric: δ = π/n,

k = (n − 3)/3 for n multiples of 3.
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2.1 Modeling of Multiphase Inverters

The spatial displacement between the phases, δ can be symmetric or asymmetric.

For symmetric systems, each two consecutive phases are δ = 2π/n apart. Asymmet-

ric distribution is exclusive to n-phase system where n is a multiple of three. In this

case, the system is composed of n/3 multiples of three-phase systems with a displace-

ment of δ = π/n between each three-phase set. Figure 2.2 depicts the general phase

distribution for symmetric and asymmetric MPIs.

Modeling of MPIs is an n-dimensional problem. There are two main methods to

model n-phase inverters, namely vector space decomposition (VSD) and multiple dq.

The two modeling approaches are reviewed in this section for multiphase inverters, in

addition to the general structure of the current control loop based on such approaches.

2.1.1 Vector Space Decomposition

The VSD technique is applicable to any n-phase system and any spatial displace-

ment configuration. It decomposes the n-dimensional system into multiple orthogonal

2D planes or subspaces [53]. For example, the vectors in six-phase inverter—six-

dimensional—are mapped into three two-dimensional subspaces, namely α–β, x–y,

and 01–02. Clarke’s transformation is extended to n-phase to yield a single transfor-

mation matrix for the multiphase space. The VSD transformation is equally applica-

ble for symmetric and asymmetric MPIs. The power-invariant VSD transformation,

in the complex vector form, for symmetric n-phase MPI is given in (2.0.1), where

f
α−β

= fα+ jfβ and f can be any n-phase variable, e.g. voltage or current. Similarly,

fX , X ∈ {A,B, . . . , n} is the X-phase variable in the stationary ABC . . . n frame.

The vector mapping is selected in such a way that the fundamental component
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is mapped into the α–β plane, whereas low order harmonics and zero-sequence com-

ponents are mapped into the x–y and 01–02 planes, respectively. Applying the VSD

transformation to MPIs with n > 6 yields multiple xk–yk planes, k ∈ [1, 2, ..]. A gen-

eral formulation for k in terms of n cannot be established. Five- and Six-phase MPIs

have a single x–y plane, while seven- and nine-phase MPIs have two x-y planes [26,54].

Additionally, applying VSD transformation to MPIs with odd number of phases, n,

produces a single zero-sequence component (02 = 0), whereas two zero sequence com-

ponents are produced in inverters with n even phases [55]. A special case, however, is

asymmetric MPIs with 3j, j ∈ [1, 2, ...] isolated neutrals. In such a configuration, all

the vectors in 01–02 are mapped at the origin, thus, nullifying the zero-sequence sub-

space [30]. Table 2.1 summarizes the harmonic mapping of the VSD transformation

in the 2D orthogonal subspaces for five-, six-, seven-, and nine-phase MPIs.

Table 2.1: Harmonic mapping into different planes using VSD transformation for
multiphase systems (k = 0, 1, 2, 3 . . . , m = 1, 3, 5 . . . )

Plane 5-Phase 6-Phase 7-Phase 9-Phase

α–β
10k ± 1 12k ± 1 14k ± 1 18k + 1

(1,9,11. . . ) (1,13,25. . . ) (1,13,15. . . ) (1,19,37. . . )

x1–y1

10k ± 3 6m ± 1 14k ± 5 18k + 17,
8m ± 4

(3,7,13. . . ) (5,7,17. . . ) (5,9,19. . . ) (5,13,17. . . )

x2–y2 — —
14k ± 7 9k ± 2

(3,11,17. . . ) (7,11,25. . . )

Zero 5(2k + 1) 3(2k + 1) 7(2k + 1) 3(2k + 1)
sequence (5,15,25. . . ) (3,9,15. . . ) (7,21,35. . . ) (3,9,15. . . )
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2.1.2 Multiple d–q

Known in the literature as double d–q for six-phase inverters [29], the notion is

extended herein to multiple d–q for MPIs with n multiples of three. Alternative to

the VSD modeling, which treats the n-dimensional space as one, the multiple d–q

decomposes the system into multiples of three-phase systems [56]. While multiple d–

q is applicable to symmetric and asymmetric spatial distributions, it is only famous

for the latter in the literature.

Each three-phase set is transformed using Clarke’s and Park’s transformation.

The stationary frames, αk–βk obtained from Clarke’s transformation are transformed

into the rotational frame using Park’s transformation with a phase shift of kδ, k ∈

[1, 2, ..., (n − 3)/3]. In this case, the same Clarke’s transformation is used for all

αk–βk frames. Thus, the transformations can be defined as:

[fα1 fβ1]T = T3 [fA1 fB1 fC1]T

[fα2 fβ2]T = T3 [fA2 fB2 fC2]T

⋮

[fαk fβk]T = T3 [fAk fBk fCk]T

, (2.1.1)

f
d1−q1

= e
jθ
f
α1−β1

f
d2−q2

= e
j(θ+δ)

f
α2−β2

⋮

f
dk−qk

= e
j(θ+kδ)

f
αk−βk

, (2.1.2)
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where θ ∈ [0, 2π] is the angular position. The resulting d-q frame is considered to be

the sum of all di-qi components, i.e. fd,q = fd1,q1 + fd2,q2 + ⋅ ⋅ ⋅ + fdk,qk.

2.1.3 Vector-Oriented Control

Figure 2.3 depicts the general structure for the current control of MPIs using VSD

and multiple d-q modeling techniques. In VSD (Figure 2.3a), the n-phase currents are
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Figure 2.3: General current control structure of MPIs using the two different
modeling techniques. (a) VSD modeling: TVSD is given in (2.0.1). (b) Multiple
d–q modeling: T3 is Clarke’s transformation, δ = π/n and k = (n − 3)/3 for n

multiples of 3.
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transformed into the stationary frame using TVSD in (2.0.1). Only the α-β frame is

transformed to the synchronous d-q frame using Park’s transformation, whereas cur-

rent components in the xi-yi, i = 1, 2, ..., k are controlled in the stationary frame. Since

the latter components carry the undesired harmonics, they are controlled to zero. The

employed controllers can be proportional-integral (PI), proportional-resonant (PR),

a combination of both [57], or model predictive controller (MPC) [58]. The output of

the current controllers, i.e. reference voltages, are mapped back to phasor quantities

using inverse transformations. The reference phase voltages are then used to generate

the switching pulses. Note that an additional zero-sequence controller(s) is required

when the n-phase inverter is connected to a single neutral point [36].

Current control in multiple d–q (Figure 2.3b) is straightforward. Currents are

transformed into multiple d-q frames using Clarke’s and Park’s transformations given

in (2.1.1) and (2.1.2), respectively. Each idi,qi (i ∈ [1, 2, ..., k], k = (n − 3)/3) is

controlled to a reference d- and q-axis current, i
∗
d,q.

The number of required controllers in both modeling techniques is usually the

same, regardless of spatial distribution (Figure 2.2). For example, for a six-phase

inverter with two isolated neutrals, four PI controllers are required in the VSD to

control d-, q-, x-, and y-currents. In multiple d–q, the same controllers regulate

d1-, q1-, d2-, and q2-currents. A similar performance can be achieved using both

modeling techniques when the system is balanced [56]. However, multiple d–q is

unable to correct for system asymmetries such as magnitude unbalance or inverter

dead-time compensation. This is because the contribution of each d–q subspace to

such asymmetries is usually undetermined. In this case, current control in VSD

is superior as xy-currents can be exploited to correct for system asymmetries [57].
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Furthermore, from drives perspective, integration of existing three-phase controls,

such as flux-weakening, is seamless in VSD since the MPD is treated as a single system

in the synchronous dq-frame [59, 60]. For such attributes, in addition to generality,

VSD modeling is favored over multiple d–q. Table 2.2 summarizes the comparison

between VSD and multiple d–q modeling.

After establishing the modeling techniques and the general vector control structure

of MPIs, the most relevant MPI topologies are reviewed next.

2.2 Multiphase Voltage Source Inverter

Owing to its simplicity, high efficiency and low cost, VSI is the most commonly

used inverter topology in transportation electrification applications [61]. This holds

true irrespective of the number of phases, n or the type of the load machine [34].

Nevertheless, multiphase VSIs have distinctive attributes that distinguish them from

Table 2.2: Comparison between VSD and multiple d–q modeling for MPIs

Modeling Technique VSD Multiple d–q

Applicable to any n n multiple of 3

Physical Fund. & Contributions of
interpretation of low-order fund. component
subspaces harmonics from each 3-ph set

Asymmetry
Yes No

compensation

Integration of 3-ph
Simple Complex

control techniques

Specific modulation n-dimensional Vector
schemes SVM classification
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Figure 2.4: Multiphase voltage source inverter (VSI).

their conventional three-phase counterpart, such as DC-bus capacitor sizing and mod-

ulation techniques. The remainder of this section reviews such features.

2.2.1 Topology

Figure 2.4 depicts the two-level (2L) multiphase VSI topology with n number of

phases. For traction applications, Si insulated gate bipolar transistor (IGBT) and

SiC MOSFET are the two most commonly used devices, with a breakdown voltage

range of 600 V – 1700 V [6,16]. The DC-bus capacitor is an indispensable component

in VSI as it reduces voltage fluctuations and current ripples [62]. The VSI is known

for its high efficiency and low cost, however, it suffers some drawbacks. Firstly, the

VSI exhibits a buck behavior where the output voltage level is lower than the DC-bus

voltage. Secondly, for high power applications, multiple power semiconductor devices

are usually paralleled per switch, which poses design challenges as will be discussed

next. Thirdly, the DC-bus capacitor is bulky and has a limited operating temperature

range. In fact, it is the bottleneck in the face of achieving higher power densities as it
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occupies up to two thirds of the total volume of the inverter [29, 63]. While the first

drawback is inherent in the VSI topology, multiphase VSIs alleviate the foregoing

challenges as discussed next.

2.2.2 Per-Phase Requirements

One of the most notable features of MPIs is the reduced per-phase current. The

phase current of MPIs can be defined with respect to their three-phase counterpart

as:

In−φ =
3
nI3−φ, n ≥ 3 (2.2.1)

The reduction in per-phase current in MPIs with respect to three-phase VSI is de-

picted in Figure 2.5. The higher the number of phases the lower the per-phase current

requirement is. However, this trend exhibits a diminishing return where at a certain

point the reduction in per-phase current is no longer appreciated in the face of in-

creased complexity. On the other hand, n-phase MPIs have, in large part, the same

cost, owing to the same volt-ampere (VA) rating. The inverter VA rating reflects the

power rating of the semiconductor switches, which in turn drives the cost in large

part [64, 65]. The VA rating is given based on the per-unit voltage stress, E and the

per-unit current stress, I, multiplied by the total number of switches, k. Note that

E is the rated blocking voltage of the switches and is equal to Vdc for 2L MPIs. Since

there are two switches per leg in an n-phase VSI (i.e. k = 2n), the VA rating can be

defined as:

V A = (2n) × E × In−φ (2.2.2)

Substituting (2.2.1) in (2.2.2) yields 6EI, irrespective of n.
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Figure 2.5: Reduced per-phase current requirement in MPIs.

The significance of the reduction in per-phase requirements is twofold. Firstly,

it enables the use of smaller and lighter cables. The considerable reduction in cable

size outweighs the increase in number of cables rendering a lower cost overall. This is

demonstrated in Table 2.3, where AC cable sizing and pricing is calculated based on a

100 kW, 0.8 power factor (PF), and 230 V system for MPIs with n ≥ 3. Compared to

the conventional three-phase VSI, a six-phase VSI yields a 21% reduction in cabling

cost.

Secondly, the reduction in per-phase current mitigates the current limitation of the

employed power semiconductor devices, especially SiC MOSFET. As of this writing,

the maximum current rating of commercially available, automotive-grade discrete SiC

MOSFETs is around a 100 A (see Table 7 in [6]). This limitation renders paralleling of

multiple discrete devices in three-phase inverters inevitable. Tesla’s Model 3 (2018),

for example, employs four discrete SiC MOSFET devices per switch [22, 44]. Device

paralleling makes the design of gate drivers more challenging to ensure proper dynamic

and static current sharing among the paralleled devices [46–48]. Mismatches among

23



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

Table 2.3: AC cable sizing and cost for MPIs to deliver 100 kW at 230 VAC and 0.8
PF (length ≤ 10 m)

n
Per-Phase Cable Size Cable Unit Total Price

Current (A) (AWG)
†

Price (USD/m)
‡

(USD/m)

3 181 1 36.9 110.8
5 109 4 21.2 105.8
6 91 6 14.6 87.4
7 78 6 14.6 101.9
9 60 8 10.1 91.2
†
Calculated using the online tool in [66] based on IEC 60364-5-52

standard for Copper conductor
‡
Based on shielded single-core motor cables from Igus

®
[67]

the paralleled devices lead to current unbalance, which in turn causes localized over-

temperature [47]. According to [48], on-state resistance, RDS(ON), pinch-off voltage

(which determines at what gate voltage the device enters forward conduction mode),

reverse breakdown voltage of the gate, transconductance, and device placement on the

circuit are all factors that should be carefully monitored/designed to ensure proper

operation of the paralleled devices.

2.2.3 DC Capacitor Requirement Reduction

Multiphase VSIs offer reduced capacitor requirements in terms of capacitance

and physical volume [63]. The DC-bus capacitance, Cdc is determined based on

the allowable DC-voltage ripple (typically 5%) [68]. It was shown in [63] that the

required Cdc decreases with increasing phase number. A 50% capacitance reduction

can be achieved in six-phase VSI. Additionally, the DC-voltage ripple is inversely

proportional with Cdc and switching frequency. This means that the same voltage

ripple can be achieved with a lower Cdc and higher switching frequency using SiC
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Figure 2.6: Normalized DC-bus capacitor requirements for multiphase VSI with
different phase number, n in terms of capacitance and RMS current using

SPWM [63].

devices. The volume of the DC-bus capacitor, on the other hand, is dictated by the

DC-bus root mean square (RMS) current [52, 68–71], which depends on a couple of

factors including modulation technique, modulation index, and PF. Similarly, the

increased number of phases can decrease the DC-bus RMS current, but the reduction

is not as appealing. Yet, since the DC-bus capacitor can take up to two thirds of

the total volume of the traction inverter [29], even a small reduction is appreciated

nonetheless. A 10% reduction in the DC-bus RMS current for n ≥ 6 was demonstrated

in [63]. Figure 2.6 illustrates the reduction in the Cdc and DC-bus RMS current for

multiphase VSI with different n, with respect to three-phase VSI.

2.2.4 Modulation

The basic PWM modulation techniques of three-phase systems are extendable

to multiphase inverters. The majority of available techniques, irrespective of inverter

topology, can be classified into two groups: carrier-based PWM (CBPWM) and space

vector modulation (SVM) [72], which are discussed in this subsection. Figure 2.8
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Figure 2.8: Classification of modulation techniques for multiphase inverters.

depicts the classification of the most common modulation techniques for multiphase

VSI.
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CBPWM

CBPWM is the most favorable technique for multiphase inverters. This is due to

the high number of permissible states in SVM that incurs a heavy computational bur-

den. Furthermore, a comparison between CBPWM and SVM in 2L seven-phase VSI

in [73], in terms of voltage and current total harmonic distortion (THD), concluded

that both techniques exhibit a similar performance. Hence, CBPWM is deemed a

simpler yet effective technique for multiphase systems. Similar to three-phase in-

verters, the carrier is either a periodic triangular or sawtooth signal that control the

gating signals when compared to n number of modulating sinusoidal signals, for mul-

tiphase VSI with n-phases. The CBPWM with a single carrier is commonly known as

sinusoidal PWM (SPWM). Unlike three-phase VSIs, the additional legs in multiphase

inverters provide an additional degree of freedom to address PWM-associated issues.

For example, CBPWM techniques that reduce the common-mode voltage (CMV) in

five-phase VSI were suggested in [74,75].

Extension beyond the traditional SPWM to interleaved multi-carrier techniques

for multiphase inverters have been suggested for n multiples of three. In interleaved

multi-carrier PWM, the n phases are divided into p groups of m phases, n = p ⋅m.

A multiple of p carriers, shifted by δ degrees, can be used to modulate m = 3 signals

to generate the gate pulses for n switches, as shown in Figure 2.7a. This strategy

was implemented and reported in [76] on a 15-phase inverter. Implementation of

such interleaving technique in [77] resulted in a 60% volume reduction in the DC-

bus capacitor for a 55 kW six-phase inverter. However, this strategy is only limited

to a segmented MPD
1

and reduces the n-dimensional control to 3-dimensional. In

1
Motor drive segmentation is to segment inverter switches and motor windings to form multiple

parallel connected three-phase drive units
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other words, some degrees of freedom are lost. Alternatively, the same p carriers can

be used to modulate the n phases, as shown in Figure 2.7b. Furthermore, phase-

shifted PWM (PS-PWM) with n number of carriers, with δ phase shift between two

consecutive carriers, was proposed in [78] for five- and six-phase 2L VSI in order to

reduce the CMV. However, the high number of carriers increases the computational

time dramatically.

Despite its simple implementation, CBPWM suffers low DC-bus voltage utiliza-

tion. The maximum level of DC-bus utilization is determined by the modulation

index, M . The M is defined as the ratio of the peak fundamental-component of the

phase voltage, V̂1 to one half of Vdc:

M =
V̂1

0.5Vdc
(2.2.3)

In linear modulation region, the maximum output voltage is 0.5Vdc (i.e. Mmax =

1), regardless of the number of phases [73]. CBPWM techniques in conjunction

with zero-sequence injection (ZSI) were proposed for multiphase inverters in order

to improve the DC-bus utilization [79], increase the torque density [80], and reduce

output distortion [81]. Analogous to third-harmonic injection in three-phase VSI, n
th

harmonic injection for multiphase VSI with n odd phases was suggested in [79]. The

Mmax for n odd number of phases is defined as [82]:

Mmax =
1

cos (π/2n)
, n ∈ {3, 5, 7, . . . } (2.2.4)

For example, 5
th

harmonic injection in CBPWM for five-phase 2L VSI results in

5.15% increase in output fundamental voltage, making it equal to that of SVM. A
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Table 2.4: Percentage increase in maximum modulation index in multiphase
inverters using single and multiple zero sequence injections (ZSIs)

No. Phase Spatial Single Multiple
Phases Displacement ZSI ZSI

3 Symmetric 15.4 —

5 Symmetric 5.15 —

6
Symmetric —

15.4
Asymmetric 3.53

7 Symmetric 2.57 —

9
Symmetric

15.4 15.4
Asymmetric

special case is n = 6, where (2.2.4) is only applicable when the load has asymmetric

windings with a single neutral point [83]. Alternatively, multiple ZSIs can be applied

to achieve a 15.4% DC-bus voltage utilization, similar to SVM, when n is a multiple

of three and the neutral points are isolated [84]. For example, six-phase VSI with dual

ZSIs was demonstrated in [85]. Table 2.4 summarizes the maximum attainable Mmax

in multiphase inverters with single and multiple ZSI for symmetric and asymmetric

loads.

SVM

In spite of its complexity, SVM is yet attractive in multiphase traction inverters

owing to its improved DC-bus voltage utilization, lower harmonic components, and

improved fault tolerance owing to the redundant switching states for the same voltage

vectors. This redundancy also provides the designer with an additional degree of

freedom to optimize the performance based on a desired criterion.

Numerous SVM techniques have been proposed in the literature for MPIs. The
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Figure 2.10: All possible voltage vectors in six-phase 2L VSI and their projection on
(a) α–β subspace, (b) x–y subspace, and (c) 01–02 subspace.

different techniques vary in the applied vectors and/or switching sequence. Conse-

quently, different maximum modulation indices are derived. Nonetheless, many of

the proposed techniques are based on the VSD approach discussed in Section 2.1.1.

The α–β and x–y subspaces are commonly referred to as torque-producing sub-

space and harmonic-producing subspace, respectively. Put otherwise, the vectors in

α–β subspace contain the fundamental components of the machine that produce a

rotating magnetomotive force, while the vectors in x–y subspace only produce losses.
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Hence, modulation techniques usually focus on minimizing the x–y subspace contri-

bution. While completely eliminating its effect is impossible, using the volt–second

principle alternating vectors in x–y subspace can be chosen to produce a zero average

of those components. Note that for multiphase inverters with n > 6 there exist more

than one x–y subspaces (see Table 2.1).

VSD-based SVM for n = 5 decomposes the 5D space into two orthogonal sub-

spaces, α–β and x–y. In general, for any n odd number of phases, voltage and cur-

rent vectors are mapped into (n− 1)/2 orthogonal subspaces. Figure 2.9 depicts the

voltage vectors in 2L five-phase VSI, where the vectors form two concentric decagons.

In VSI, there exist 2
5
= 32 voltage vectors, of which 30 are active [86]. Those vectors

are categorized in three groups: large, medium, and small vectors. SVM techniques

for 2L five-phase VSI are normally classified, based on voltage vectors selection, as

near-two vectors and near-four vectors [87]. While the former techniques enjoy a

superior maximum modulation index, the latter techniques are preferred for their 3
rd

harmonic suppression capability.

VSD-based SVM for n = 6 can be classified as 12-sector based [53, 81, 88, 89] and

24-sector based techniques [90–92]. The latter is digitally easier to implement and

yields reduced current harmonic distortion. However, two transitions belonging to

two or more inverter legs occur at the same time during a sampling period [90]. As

a result, asymmetric PWM waveforms are expected. On the other hand, the digital

implementation of 12-sector modulation techniques is challenging since inverter legs

can switch more than once in a switching period. In both schemes, the vectors are

categorized in four groups: large, medium-large, medium, and small vectors, as shown

in Figure 2.10. The switching sequence and the applied zero vector yields continuous
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Figure 2.11: Common-mode voltage (CMV) waveform in 2-level multiphase VSIs as
a function of DC-bus voltage. (a) n = 3. (b) n = 5. (c) n = 6. (d) n = 7.

or discontinuous (DPWM) modulation [88, 92, 93]. In continuous modulation, all

switching legs change their on/off state within one switching period at least once,

whereas one (or more) leg(s) is clamped to +Vdc or −Vdc for at least one sector in

DPWM. Discontinuous SVM techniques can reduce the implementation complexity

at the cost of higher distortions [93,94].

Numerous VSD-based SVM techniques for MPIs are invested in the reduction

of CMV, induced by the high-frequency modulated inverters. The CMV excites a

common-mode current, which is detrimental for many applications including motor

drives and PV systems [95, 96]. The excited common-mode current contributes to

motor aging rate by causing a bearing damage, insulation breakdown and electro-

magnetic interference (EMI) [97]. For n-phase VSI, the CMV varies in the range

of ±0.5Vdc, regardless of n. However, the number of levels in CMV increases with

n. Figs. 2.11 demonstrates the CMV in 2L VSI with n ∈ {3, 5, 6, 7} when conven-

tional SVM is employed. Hence, the higher the phase count the higher the degrees

of freedom are to be exploited to reduce the CMV. CMV reduction based on SVM

techniques for five-phase VSI was investigated in [97–102]. The conventional SVM

technique for five-phase VSIs employs large, medium and zero vectors. The latter are
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responsible for the highest level of CVM (i.e. ±0.5Vdc). Hence, the suggested tech-

niques in [97–102] offer alternative switching techniques and patterns that eliminate

the need for zero vectors, thus reducing the CMV. However, the reduction of CMV

comes at the expense of performance deterioration in either voltage THD, current

THD, switching loss, modulation range, or a combination of them.

Utilization of only medium vectors or only large vectors were suggested in [100].

Such techniques yield a constant CMV (i.e. ∆CMV= 0). On the other hand, the

RMS value of the CMV was still high. A competitive technique using only a combi-

nation of large vectors was suggested in [98] and employed in [97] for motor drives

applications. This technique results in a CMV of ±0.1Vdc while maintaining an ade-

quate current THD. Its switching loss can also be improved when combined with the

method suggested in [101] at high M . A MPC controller was proposed in [103] to

improve the current performance while simultaneously reducing the CMV to ±0.1Vdc

and maintaining a full modulation range. This, however, is achieved at the expense

of increased switching frequency.

Similarly, CMV reduction by SVM for n = 6 [93,104,105] and n = 7 [106] have been

proposed. In [93, 105, 106], zero vectors are avoided to reduce, and even eliminate,

the variations in CMV at the expense of reduced modulation range. In [104], a phase

shifting strategy for the PWM signals of a six-phase VSI supplying a dual three-phase

asymmetric machine was proposed. The shifting strategy leads to two CMVs (from

each three-phase set) that are 180
◦

out of phase. As a result, the total CMV, which

is the sum of both, is zero.

Besides VSD, other SVM techniques have been investigated for 2L multiphase

VSIs such as group-based and vector classification. When n is a multiple of 3, the
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n-dimensional space can be treated as n/3 independent three-phase systems, given

that the load has n/3 isolated neutrals. Such an approach is known as a group-based

SVM. In [52,63], group-based SVM techniques were applied to 2L nine-phase VSI. An

improved performance, in terms of voltage and current harmonics, was reported when

compared to VSD-based SVM techniques. Additionally, it was demonstrated in [63]

that group-based SVM can reduce DC-bus capacitor requirements. More specifically,

it was found that Cdc in a nine-phase VSI with group-based SVM has to handle only

one third of the DC-bus RMS current when compared to a three-phase VSI modulated

via SPWM. Hence, the modulation technique can play a key role in achieving a higher

power density in multiphase inverters.

Vector classification (VC)-SVM was investigated in 2L six-phase VSI in [107–109].

The VC-SVM is based on the double d–q modeling theory for multiphase systems.

He et al. [109] compared VC-SVM to 12-sector VSD-based SVM techniques. They

concluded that VC-SVM achieves a higher DC-bus voltage utilization with a simpler

implementation, at the expense of higher output harmonics.

2.3 Nine-Switch Inverter

NSI is a special VSI topology. Originally conceived in the late 2000’s to indepen-

dently drive two three-phase machines with reduced switch count [110], NSI was later

adopted for six-phase machines [111–116]. This section reviews the NSI topology and

compares it to the six-phase VSI in terms of cost, control, and efficiency.
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Figure 2.12: Nine-switch inverter (NSI) topology for six-phase machines (Su, Sm,
and Sl are upper, middle, and lower switches, respectively).

Table 2.5: VA rating comparison between VSI and NSI

No.
Phases

Config.
VSI NSI / 12-Switch Inverter

Switch
Rating

Amount Total Switch
Rating

Amount Total

6
Symm. E×0.5I 12 6EI E ×

0.87I
9 8EI

Asymm. E×0.5I 12 6EI E ×
0.97I

9 9EI

9
Symm. E×0.3I 18 6EI E ×

0.63I
12 8EI

Asymm. E×0.3I 18 6EI E ×
0.66I

12 8EI

2.3.1 Topology

The NSI topology is depicted in Figure 2.12, where a six-phase inverter is realized

by three legs only, each comprising three switches. Instead of the twelve switches

needed for six-phase machines in the traditional 2L VSI topology (Figure 2.4), NSI
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utilizes only nine switches. The middle switches of the NSI, Sm are controlled via

an exclusive OR (XOR) logic gate to prevent a leg short-circuit, as detailed in the

next subsection. The NSI topology is also extendable to any (3n+ 3)-switch inverter,

where n is the number of three-phase sets [110]. For example, a 12-switch inverter

can be developed for nine-phase applications with four switches per leg, in contrast

to the 18 switches in nine-phase VSI.

While NSI employs reduced switch count, the current rating of its switches is

relatively larger than their counterparts in six-phase VSI. Figure 2.13 depicts the

relationship between input leg current and output phase currents of the NSI for leg

A, when connected to an asymmetric load (i.e. δ = 30
◦
). The input leg current is the

vector summation of the two output phase currents as illustrated in Figure 2.14. Its

magnitude for an arbitrary δ, defined in Figure 2.2, can be generally defined as:

IA =
√

2(1 + cos δ) ⋅ IA1 (2.3.1)

where IA and IA1 are the magnitude of leg and phase currents, respectively, as depicted

in Figure 2.12.

A fair comparison of inverter cost can be evaluated using the VA rating of the

inverter, as discussed in Section 2.2. Table 2.5 compares the inverter VA ratings of

the NSI and VSI for the different load configurations. The values in Table 2.5 assumes

three-phase VSI for base values. Since the discussion is limited to 2L inverters, the

switches in both, VSI and NSI, are rated at E, irrespective of number of phases.

The per-unit current rating, I of the switches in VSI for n phases is given in (2.2.1),
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Figure 2.13: Current waveforms of leg A, ilegA and associated phase currents, iA1

and iA2 of the NSI in Figure 2.12 for asymmetric six-phase load (switching
frequency: 30 kHz).

whereas for NSI it is defined as:

I = (3/n) ⋅ IA/IA1 (2.3.2)

= (3/n) ⋅
√

2(1 + cos δ), n = {6, 9, . . . }

From the VA rating comparison, it is evident that NSI has a higher cost compared

to six-phase VSI. The total VA rating for VSI is always 6 p.u., as discussed in the

previous section. Considering six-phase asymmetric machine as a load, the cost ratio

of NSI to VSI is three to two. Power semiconductors dictate around 40% and 70%

of the total cost of traction inverters in the case of Si IGBT and SiC MOSFET,

respectively [8, 117]. Hence, the NSI topology could be more expensive than VSI. It

also follows that the reduced switch count in NSI does not necessarily mean reduced

cost.

At the expense of increased cost, NSI has the potential for higher power density

owing to its reduced switch count and associated gate drivers. Furthermore, because

the commutation time of the inverter legs is relatively larger, to supply two phase
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Figure 2.14: Input and output current vectors of leg A in six-phase NSI. (a)
Symmetric. (b) Asymmetric.

currents, the stress on the DC-bus capacitor is alleviated. In other words, there exists

a current path from the switching pole to the load for a longer time within one switch-

ing cycle, when compared to VSI. Therefore, less commutation spikes are experienced

by the DC-capacitor in NSI. Figure 2.15 compares the normalized maximum stress

on the DC-bus capacitor in VSI and NSI topologies. Judging by the maximum cur-

rent stress, NSI can achieve DC-capacitor size reduction by approximately 16% when

compared to its six-phase VSI counterpart, or 26% with respect to the conventional

three-phase VSI.

One of the main drawbacks of the NSI, however, is the low DC-bus voltage uti-

lization by the established modulation techniques [29]. The NSI requires 20% or 33%

higher input voltage with respect to its VSI counterpart in order to produce the same

output power when the winding of the load machine is asymmetric or symmetric,

respectively [111]. A NSI topology with a boosting feature has been recently pro-

posed in [118] to overcome this issue. With the help of input inductor and diodes the

boosting NSI yields a higher DC-bus voltage utilization.
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Figure 2.15: Normalized DC-bus capacitor requirements for NSI compared to
six-phase VSI for symmetric and asymmetric load configurations.

2.3.2 Modulation

Similar to the VSI topology, the modulation techniques of the NSI can generally

be categorized into CBPWM and SVM techniques. Additionally, the operation of

the NSI can be divided into common-frequency (CF) and different-frequency (DF)

modes [119]. In CF mode, both three-phase sets (upper and lower sets in Figure 2.12)

operate at the same frequency, whereas in DF mode each of the two sets is operated

at different frequency. Again, when the NSI is utilized to drive a six-phase machine,

it is desired to have all sets operating at the same frequency, thus only CF mode is

considered for multiphase drives applications. The CBPWM and SVM techniques of

the CF mode of the NSI are reviewed in this subsection.

CBPWM

Similar to the VSI, the reference voltages of the NSI are compared with a carrier

waveform to produce the gating signals of the switches in CBPWM [111–113, 115].
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Figure 2.16: CBPWM scheme for NSI. mu and ml denote the modulation index for
the upper and lower three-phase sets, respectively.

However, there are three distinct differences in CBPWM for the NSI. Firstly, each

three-phase set can be controlled independently, and as such, has its own modulation

index. Secondly, to guarantee that each of the two three-phase sets supply the same

power, the modulating signals of the two sets must not overlap. Consequently, a

vertical offset in the positive and negative directions is added to the upper and lower

three-phase sets, respectively. While the modulation index and the offset values can

be different for each three-phase set, they are chosen to be the same when supplying

a single six-phase machine [111]. Thirdly, as mentioned earlier, the gate signals of the

middle switches are generated by XOR-ing the gate signals of the upper and lower

switches to prevent a short-circuit. Figure 2.16 depicts the CBPWM technique for

the NSI.

As mentioned in the previous subsection, the modulation index of the NSI in

CBPWM is influenced by the winding configuration of the six-phase machine. The
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Table 2.6: Comparison between modulation schemes for the NSI topology

Modulation

Technique
Ref.

Voltage

THD

Max Modulation Index Thermal Distribution

Among Switches

Switching

Loss

Complexity

Symm. Asymm.

CBPWM

[110] High 0.6667 0.7944 Not balanced High Low

[113] Medium 0.7694 0.9167 Not balanced High Low

[119] Medium 0.7694 0.9167 Top and bottom Medium Medium

[120] Low 0.6667 0.7944 All switches Low High

SVM

[121] Medium 0.7694 0.9167 Not balanced High High

[122] Low 0.7694 0.9167 Not balanced High High

[123] Low 0.7694 0.9167 Not balanced Medium High

maximum modulation index for the NSI topology, as a function of the spatial dis-

placement between the two three-phase sets, δ is defined as [115]:

Mmax =
1

1 + sin δ/2
(2.3.3)

Using (2.3.3), the Mmax is 0.667 and 0.794 for symmetric (δ = π/3) and asymmet-

ric (δ = π/6) machines, respectively. Therefore, the NSI topology is deemed more

competitive when utilized in asymmetric six-phase drives. Sinusoidal modulating sig-

nals with proper offsets are used in [110]. Although the method is simple, it suffers

from uneven thermal distribution among the three switches of the same leg and high

switching loss. Additionally, shifting the modulating signals vertically leads to un-

symmetrical switching profiles of the positive and negative half cycles, which in return

increases the voltage THD. Modifying the modulating signals by ZSI is investigated

in [113]. The addition of the third order harmonic increases Mmax by 15.4%, similar

to SVM technique [121]. However, the method in [113] could not reduce the switching

loss.

In order to reduce the switching loss of NSI, DPWM was in [119], where one

modulating signal is shifted vertically and the other one remains symmetric along

the time axis, which is the modulating signal of higher magnitude. The method
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in [119] reduces the THD and the switching loss of the top and bottom switches.

This method is extended in [120] to include the middle switch as well, achieving a

minimum switching loss at the expense of complexity. Table 2.6 summarizes the

comparison between those different modulation techniques.

SVM

Based on the surveyed literature, SVM techniques are not as common when com-

pared to CBPWM techniques, although they enjoy the potential of improved DC-bus

voltage utilization and reduced switching commutation [112, 121]. This is mainly

attributed to the simplicity of the CBPWM. Conversely, the SVM scheme for NSI

is not as involved as its six-phase VSI counterpart. For the NSI, the SVM scheme

is found upon the hexagon of the conventional 2L three-phase VSI. However, each

voltage vector of the hexagon can be generated by two redundant switching states in

the NSI [114]. Hence, there are a total of 14 switching states in the SVM of the NSI.

Nevertheless, X. Li et al. [114] argue that not all switching states are necessary to gen-

erate the desired output. In [114], a six-mode SVM switching sequence was proposed,

which resulted in improved efficiency at the expense of slightly higher output voltage

harmonics. Authors in [122] and [123] developed an SVM that provides a decoupled

control for the NSI similarly as it is two 2-level 6-switch VSIs. The decoupled control

in [122] and [123] eliminates the need for XOR gate to generate the PWM signals for

the middle switches. In [123], the selection of voltage vectors to reduce the switching

loss is considered which was not in [122].
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2.3.3 Inverter Losses

Based on the foregoing relative VA ratings of VSI and NSI, the efficiency of both

multi-phase inverter topologies can be evaluated by comparing the power losses in-

curred by the switches. For this analysis, the considered switch is SiC MOSFET

(1200V/115A) by Cree (C3M0016120D). Also, the modulators used for both topolo-

gies is SPWM.

The device switching loss is determined by the rated voltage and current stress

and switching frequency, while the conduction loss is determined by the average cur-

rent and RDS(ON), from the datasheet. All operating conditions including junction

temperature, gate resistance and switching frequency, along with modulation index,

are assumed the same. Normalized power loss with respect to the switching loss is

adopted to yield a generalized comparison. Put otherwise, the rated switching loss of

the SiC MOSFET is set to 1 p.u. It follows that the total per-leg switching loss for

six-phase VSI is 2 p.u. The switching loss of the upper and lower switches (Su and

Sl) in NSI is similar to that of the VSI, i.e. 1 p.u. However, the switching frequency

for the middle switch (Sm) is twice as that of Su/Sl. Thus, the total per-leg switching

loss of NSI is 4 p.u.

The conduction loss of the SiC MOSFET can be determined by the average current

and RDS(ON) from the datasheet. For a duty cycle D = 0.6, the conduction loss is

found to be 0.6 p.u. per switch, or 1.2 p.u. per-leg in six-phase VSI. In NSI, the

average current is higher than that of the VSI and can be determined by using (2.3.2).

For n = 6, I = 1.73 and 1.93 for symmetric and asymmetric loads, respectively.

Therefore, the conduction loss ratio between Su and Sl to that of the VSI is I
2
. The

difference in duty cycle for Su and Sl due to the modulation offset in Figure 2.16
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Table 2.7: Per-unit inverter loss comparison between six-phase VSI and NSI using
SiC MOSFET

Type of Losses 6-phase VSI Symm. NSI Asymm. NSI

Inverter VA Rating 6EI 8EI 9EI
Switching Loss 12.0 12.0 12.0
Conduction Loss 7.1 12.0 14.7

Total Loss (p.u.) 19.1 24.0 26.7

balance out when considering per-leg losses. It follows that the conduction loss for

(Su + Sl) is (0.6 p.u. × 2I
2
) or 3.6 p.u. and 4.5 p.u. for symmetric and asymmetric

loads, respectively. Lastly, Sm is only on for a fraction of D equal to the modulation

offset value, which is considered 0.2 herein. It follows that the conduction loss of Sm

is (0.6 p.u. × 0.2 × I2
). Thus, the total per-leg conduction loss in NSI is 4 p.u. and

4.9 p.u. for symmetric and asymmetric loads, respectively.

Table 2.7 summarizes the total inverter loss of NSI and VSI based on the respective

VA rating of each topology. Based on this analysis, NSI is inferior to VSI in terms of

inverter efficiency, and it is at its worst when supplying an asymmetric load/machine

due to high I rating. VSI enjoys approximately 25% and 40% higher efficiency when

compared to NSI with symmetric and asymmetric loads, respectively. The same

analysis was verified numerically using the thermal model of the SiC MOSFET in

PLECS by Plexim. Figure 2.17 depicts the normalized losses of VSI and NSI, which

are in line with those tabulated in Table 2.7.

44



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

6-ph VSI Symm NSI Asymm NSI
0

0.5

1

1.5

2

2.5

N
o
rm

a
li
ze

d
p
ow

er
lo
ss

(p
.u
.)

Conduction Switching Total

Figure 2.17: Normalized power losses of six-phase VSI and NSI using SiC MOSFET
for symmetric and asymmetric loads (Vdc = 800 V, f1 = 50 Hz, fs = 10 kHz,

M = 0.6, PF = 1).

2.4 Future Trends

To further advance the viability and commercial feasibility of MPIs, some recent

research trends have been noticed in literature. Such trends focus on improving

efficiency, power density, and reliability of the MPIs. This section reviews such trends

and highlights the challenges that must be addressed prior to their adoption, which

are summarized in Table 2.8.

2.4.1 Topologies

Multiphase Current Source Inverter

By principle of duality, the current source inverter (CSI), shown in Figure 2.18,

constitute an alternative family of inverter topologies [147]. The CSI offers inherent

advantages that are unavailable in VSI, such as a voltage boosting capability which

enables an extended range of operation [124–126]. Additionally, the bulky and volatile
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Table 2.8: Future trends on multiphase inverters and the challenges associated with
them

Trend Sub-category Potential Challenges

Multiphase
Topologies

Current source
inverters

• Boosting capability • Conduction loss by
• Improved reliability prestage converter
• High operating temp. • Control complexity

Multilevel
Inverters

• Higher voltage • Higher complexity
• Improved EMC • Increased cost

WBG
Devices

SiC MOSFET
• Miniaturization • High EMI
• High efficiency • Oxide layer failures

GaN HEMT
• High operating temp. • Low breakdown
• High efficiency voltage

• Gate driver design

Multiphase Integrated
Motor Drives

• Higher power density • Complex cooling
• Reduced cost • Mechanical stress
• Improved EMC on electronics

• Limited space

Table 2.9: Recent studies on CSI topology from different perspectives

Topic Reference Highlights

Inverter
[124–126]

Basic CSI topology and control for
topology traction applications
Advanced

[127–131]
Inclusion of additional switches

topologies and resonant circuits
Control schemes [124,125,132–134] Control schemes for CSI drives
WBG devices [135–137] Employment of SiC and GaN devices
Machine design [138,139] CSI-specific machine design

Over-lap time [140,141]
New techniques to compensate
over-lap time effects

Multiphase CSI [142–146]
Modulation and control of
multiphase CSI (predominantly 5-phase)

DC-bus capacitor in the VSI is replaced with a choke input inductor, which can

improve the power density of the inverter and reduce maintenance cost. Unlike the
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Figure 2.18: Multiphase current source inverter (CSI) topology with prestage buck
converter for voltage-to-current source conversion.

DC-bus capacitor, the input inductor is not temperature-limited and its size can be

reduced by increasing the switching frequency [148]. This in turn gives way for wider

operating temperatures and higher power density. Last but not least, the CSI output

is PWM currents and not voltages as in VSI. Therefore, the high dv/dt issue associated

with VSI is non-existent in CSI [138]. The CSI requires switches with reverse blocking

(RB) capability, which has conventionally been realized using Si controlled rectifiers

(SCRs) or Si IGBT with a diode in series.

On the other hand, CSI suffers a relatively low efficiency and increased control

complexity. Consequently, it has traditionally been considered inferior to VSI. How-

ever, with the emergence of WBG devices, as will be discussed in the next subsection,

the employment of CSI drives for automotive and MEA applications has been revis-

ited [135–138]. WBG devices with RB or bidiretional (BD) capabilities, such as SiC

MOSFET and GaN high electron mobility transistors (HEMT), yield superior ef-

ficiency performance and reduce the size of the input inductor, thus improving the

power density. An efficiency of 97.2% was reported in [135] for a three-phase CSI with

RB SiC MOSFETs. Further efficiency improvement using BD GaN HEMT devices
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over RB SiC MOSFET was demonstrated in [136,137]. Extension to multiphase CSI

has been reported in literature, albeit limited to five phases. In [142–146], five-phase

CSI-fed drive operation, modulation, and fault tolerance techniques were investigated.

Nevertheless, the bottleneck for CSI in battery-powered applications is the need

for a prestage converter to be installed between the battery and the CSI to provide

a controlled DC-current [130], as shown in Figure 2.18. The prestage is normally

set to operate in continuous conduction mode, thus incurring high conduction loss

[138]. The future of CSI traction inverter is promising, yet its commercialization

is contingent upon overcoming its inherent drawbacks. For example, inclusion of a

seventh switch (in addition to the six switches in three-phase systems), in different

topologies, was proposed in [127, 128, 131] to reduce CMV. In [129], an LC resonant

circuit across the input inductor was proposed to enable soft-switching, and therefore,

improve the inverter efficiency. A summary of recent research related to CSI from

various perspectives is listed in Table 2.9.

Multiphase Multilevel Inverter (MPMLI)

As mentioned in earlier, MLIs have been proposed for higher efficiency, reduced

harmonic distortion, lower electromagnetic compatibility (EMC) requirements, and

improved fault tolerance [42]. With the trend in the automotive industry to upgrade

powertrains from 400 V to 800 V and beyond [41, 149], MLI is expected to compete

with the dominant 2L VSI, let alone supersede it.

Multiphase MLIs (MPMLIs) have been studies in [150–154]. Five-, six- and seven-

phase 3L neutral-point-clamped (NPC) inverters were investigated in [153], [151,154]

and [155], respectively. The 3L T-type was examined in [150–152] for asymmetric
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six-phase drives.

Currently, the high complexity and cost associated with the high part count, make

MPMLIs feasible only for medium voltage (MV) and high voltage (HV) applications.

However, as the market share of 800 V powertrains is expected to grow [156, 157],

MPMLIs will become more feasible.

2.4.2 WBG Devices

A paradigm shift from conventional Si IGBT to WBG devices has been noticed

over the past decade, thanks to their superior material properties [14, 19, 158]. Nor-

mally, the term WBG is synonym to SiC MOSFET and GaN HEMT semiconductor

switches as they dominate the market share of WBG devices. However, other devices

such SiC junction field effect transistor (JFET) [159] and vertical GaN [158] are under

development.

In terms of technology, GaN semiconductors are considered superior to SiC as

they enjoy higher breakdown field, higher switching frequency, and lower RDS(ON)

[21, 158]. In contrast, device packaging, gate driver design, and EMC are deemed

more challenging for GaN HEMT due to gate and parasitics ringing arising from

ultra-fast switching [6]. Yet the main shortcoming of GaN HEMT is its low voltage

rating (≤ 650 V). Hence, GaN devices are not applicable in traction inverters, but

rather limited to on-board chargers and DC-DC converters. Figure 2.19 shows the

power–frequency envelope of the most famous Si, SiC and GaN power semiconductor

devices, highlighting the suitability for traction inverters and on-board chargers in

the automotive industry.

SiC MOSFETs enjoy a multitude of features that can be exploited to produce
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traction inverters with a significantly higher power density [13]. Currently, the cost

premium associated with SiC is challenging its wide adoption. Despite the compelling

advantages of SiC switching devices over Si counterparts, they suffer reliability issues

due to the thinner gate oxide layer (typically 50 nm for SiC versus 100 nm for Si)

[11, 160, 161]. The thinner oxide layer can introduce degradation to the gate and

body diode. Since SiC switching devices experience higher stress of electric field, it

has been concluded that applying positive gate voltage for a long time causes a change

in the threshold voltage (i.e. the minimum voltage required to turn on the device)

and vice-versa for applying a negative gate voltage. This can be explained by moving

the trapped electrons or holes when a gate voltage is applied causing a shift to the

threshold voltage [162]. Although this phenomenon has been reduced in the second

generation of the SiC MOSFETs, still 0.25 V variation is expected. This change can

be limited when applying positive and negative gate voltages [161]. The gate leakage

current is another concern for SiC switching devices. MOSFETs should be capable

of withstanding a short-circuit current for small periods, where these currents are

usually tenfold the rated value. When MOSFET experiences short-circuit current,

the entire DC-bus voltage is applied across the MOSFET terminals. This introduces

a high electric field that causes a leakage current from the gate to the source of the

MOSFET, depending on the thickness of the gate oxide layer (which is relatively thin

in SiC compared to the Si devices) and the applied electric field. This leakage current

causes degradation to the gate oxide layer [163].
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Figure 2.19: Power–frequency envelope of power semiconductor devices and
application to the automotive industry [21].

2.4.3 Multiphase Integrated Motor Drives

The integrated motor drive (IMD) is a structural integration of the electric motor

and the driving power electronics in a single unit. As a result of the physical inte-

gration, cost cutting is possible by the elimination of shielded cables and separate

inverter housing [164–166]. The elimination of such components leads to 20%–40%

volume reduction [167]. Furthermore, enhanced EMC is achieved, thanks to the di-

rect connection between the two components. Researchers have been interested in

combining the merits of IMDs with the merits of multiphase drives, such as higher

torque density, lower torque ripple and improved fault tolerance, to yield a highly

competitive motor drive for traction applications [23,76,168,169]. A five-phase IMD

with a disk-shaped, air-cooled inverter was proposed in [168]. The authors reported a

reduced volume when compared to its three-phase counterpart, thanks to the reduc-

tion in the DC-bus capacitor. Another disk-shaped, nine-phase inverter in an IMD
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structure was reported in [23]. A high power density of 35 kW/L was achieved by ex-

ploiting the reduced per-phase power handling of the MPI. In [169], a six-phase IMD

drive for 48 V belt starter-generators (BSGs) was suggested for mild hybrid vehicles.

The six phases were divided into three direct bonded copper (DBC) modules with

air-cooling.

On the contrary, thermal management and mechanical design of IMD is very chal-

lenging [165]. Such challenges are compounded in multiphase IMD due to increased

electronic components, such as sensors and gate drivers [164]. A potential solution

for thermal management is the employment of WBG devices that can intrinsically

operate at higher temperatures when compared to Si-based counterparts. The em-

ployment of GaN HEMT in IMD is currently a hot topic of research as reported

in [136,137,165,166].

2.5 Summary

This chapter reviewed the state-of-the-art of multiphase (beyond three) inverters

and their application in transportation electrification. Two main topologies were re-

viewed: voltage source inverter and nine-switch inverter. While the former is extend-

able to any number of phases the latter is only limited to multiples of three phases.

The benefits reaped from multiphase inverters in terms of improved per-phase current

handling, reduced cabling cost, DC-capacitor sizing, control flexibility were reviewed

in detail and benchmarked against the conventional three-phase inverter. Comparing

six-phase to three-phase inverters for example, the former employs lighter AC cables

whose total cost is lower than that of the latter. Also, the volume of the DC-bus ca-

pacitor can be reduced by up to 10% or 25% when utilizing a voltage source inverter
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or a nine-switch inverter, respectively. Furthermore, while multiphase voltage source

inverters employ a higher number of switches when compared to three-phase coun-

terparts, both systems have the same volt-ampere rating, thus incurring similar cost

in terms of power semiconductors. Such benefits make multiphase inverters suitable

for high-power traction and aerospace applications.

It was found in this chapter that voltage source inverter is more competitive than

nine-switch inverter in terms of efficiency, fault tolerance, DC-bus voltage utilization,

and cost. Although the latter employs a fewer number of switches (nine versus twelve

for six-phase systems), it exhibits a higher volt-ampere rating due to the reduced

number of legs, which in turn increases the current stress on the switches.

Despite the foregoing merits of multiphase inverters, they require increased num-

ber of sensors and gate driver circuitry. Additionally, design for electromagnetic

compatibility can be more complex. This is due to the higher switch count, which

means more sources of electromagnetic noise.

53



Chapter 3

Silicon Carbide (SiC)-Based

Multiphase Traction Inverters

The utilization of WBG devices as an alternative to Si devices is a promising

area [13]. WBG devices, such as SiC, have attracted a lot of attention in the last

decade because of their superior electrical and thermal properties. The wider band

gap energy enhances resilience to electric fields, thereby increasing the ability to

sustain higher voltages. It also offers a lower thermal resistance and subsequently

improved power dissipation. These features facilitate the development of smaller

devices with higher power density [19]. The high cost of SiC devices is currently a

barrier to its mass acceptance. Aside from the cost, SiC devices have low current

ratings and require several devices to be connected in parallel to tolerate the rated

current of typical traction inverters.

Another frontier of innovation is the use of multiphase inverters (beyond three

phases) [38]. This technology is drawing the attention of many original equipment

manufacturers.
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Existing studies have profusely discussed the merits reaped from the deployment

of SiC devices in traction inverters [13,19] and the benefits that multiphase machines

enable [29, 38], each quite exclusively. The application in [13] is three-phase electric

drives, whereas the application in [19] is even more generic. Also, the recent survey

papers [29, 38] focus on the multiphase drives, including modeling and control, irre-

spective of device technology. However, the assessment and feasibility of SiC-based

multiphase inverters are lacking from the literature. To this end, the objective of the

present chapter is to analyze the use of SiC-based multiphase inverters. This chapter

provides quantitative and qualitative analysis of SiC-based multiphase traction in-

verters when benchmarked to conventional three-phase counterparts. The presented

analysis is designed for 100 kW traction inverters in 400 V and 800 V EV power-

trains. It contributes to existing knowledge with analyses related to the number of

devices used in each SiC-based multiphase inverter topology, the potential for DC-bus

capacitor reduction, efficiency, power density, and cost.

The remainder of the chapter is organized as follows. The characteristics of SiC

devices is discussed in Section 3.1. The power loss calculation of power semiconductors

is reviewed in Section 3.2. In Section 3.3, a case study that showcases the feasibility

of SiC-based multiphase inverters when compared to the conventional three-phase

inverter is presented. Finally, Section 3.4 summarizes this chapter.

3.1 SiC Devices

The switching device constitutes the heart of any power converter. Conventional

traction inverters, of any topology, normally use Si IGBT rated in the range of 600-

1700 V. The highest voltage rating of a commercial Si IGBT has been 6.5 kV with a
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highest operating junction temperature of 175 °C and a limited switching capability

[9, 18]. SiC based devices offer supervisor performance from all foregoing aspects.

Figure 3.1 illustrates the main material properties of SiC compared to Si. Advantages

of SiC can be summarized as follows [9, 10, 12–15,17,18,20,170]:

1. Higher breakdown voltage ratings. Compared to highest 6.5 kV Si IGBT, SiC

IGBT commercial devices are currently in excess of 20 kV [171]. Higher voltage

rating yields increased inverter power density.

2. Higher switching frequency. While there is no theoretical limit on switching

frequency, the maximum allowable frequency is normally dictated by switching

losses due to turn-on and turn-off delays. Consequently, Si IGBTs are limited

to a few kilo hertz. SiC devices enjoy very fast switching performance allowing

switching frequencies as high as 100 kHz [172]. Higher switching performance

results in improved bandwidth and reduces the size of parasitic components.

3. Higher operating temperature. SiC devices has a theoretical junction temper-

ature limit of 600
◦
C compared to 200

◦
C for Si devices [13]. The ability to

operate at higher temperatures relaxes cooling requirements and leads to pack-

aging miniaturization.

4. Higher thermal conductivity. SiC features at least twice the thermal conductiv-

ity of Si. Such a feature enables a higher thermal loading and reduces the risk

of thermal runaway [173], thus, higher reliability.

All aforementioned features lay the foundation for dense traction inverters with

higher efficiency. Nonetheless, the reliability of SiC devices and EMI issues that stem

from operating at very high switching frequencies are still under investigation.
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Figure 3.1: Material properties of SiC versus Si.

SiC devices can exist in various crystal structures, called polytypes. Each polytype

has different semiconductor properties, including impact ionization rate, charge car-

rier mobility, and field/velocity characteristics. Among over 170 existing polytypes

of SiC, only a few are commonly acceptable for use in electronic semiconductors.

Currently, the most commonly known polytypes are the cubic (C) 3C-SiC and the

hexagonal (H) 4H-SiC and 6H-SiC, where the number preceding the structure type

(geometry) is inherent from the periodicity of the stacking sequence of atoms in the

lattice structure. The first commonly used polytype was 3C [10], which was shortly

supplanted by 6H as manufacturing techniques matured. By the mid-1990s, the

growth of 4H had surpassed 6H and become the dominant polytype for SiC in almost

all devices. Table 3.1 lists the electrical and thermal properties of the most famous

SiC polytypes in comparison with Si. It is noteworthy to mention that, when com-

pared to Si, SiC is deficient in terms of electron mobility due to low inversion layer

mobility, irrespective of the polytype. In fact, this is the reason why 4H-SiC is the
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dominant polytype nowadays, as it exhibits the highest electron mobility among all

SiC polytypes.

SiC offers a multitude of devices. In addition to the commonly used Si devices,

Table 3.1: Electrical and thermal properties of Si and SiC polytypes at 300 K*.

Property Si 3C-SiC 4H-SiC 6H-SiC

Bandgap (eV) 1.1 2.3 3.2 3.0

Electron effective mass (m0)
†

1.06 0.67
∥c-axis 0.33 2.0
⊥ c-axis 0.42 0.48

Hole effective mass (m0)
†

0.59 ∼1.5
∥c-axis 1.75 1.85
⊥ c-axis 0.66 0.66
Intrinsic carrier

10
10

∼10 ∼10
-10

10
-5

concentration (cm
-3

)
Breakdown field (MV/cm)

0.6 1.8
at ND = 10

17
cm

-3

∥c-axis 3.0 3.2
⊥ c-axis 2.5 >1
Electron mobility (cm/V-s)

1200 750
at ND = 10

16
cm

-3

∥c-axis 800 60
⊥ c-axis 800 400
Hole mobility (cm/V-s)

420 40 115 90
at NA = 10

16
cm

-3

Saturated electron
1.2 2.5 2.0 2.0

velocity (×10
7

cm/s)
Thermal conductivity

1.5 3.3–4.9 3.3–4.9 3.3–4.9
(W/cm-K)
Thermal expansion

2.2 2.9 – 4.2
‡

coefficient (×10
-6

K
-1

)
Debye Temperature (K) 600 1200 1200 1300

*Data compiled from [174–176] and the references therein.
†
m0 = 9.11 × 10

−31
kg

‡
Measured at 700 K
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Figure 3.2: Cross-sectional view of cell structures of SiC devices. (a) SBD. (b) JBD.
(c) MOSFET. (d) JFET.

SiC makes it possible for unipolar devices to exist, such as MOSFET and JFET,

thanks to the high thermal conductivity and wide bandgap [173]. While SiC-based

devices have matured enough to reach beyond 10 kV, this section reviews viable device

options in the range of 600 V to 1700 V, which is the acceptable range for devices in

traction inverters. A comprehensive list of commercial, automotive-grade SiC devices

by major manufacturers can be found in [6], p. 11.

3.1.1 Diodes

There are three types of SiC power diodes: 1) Schottky barrier diode (SBD), 2)

junction barrier diode (JBD), and 3) PiN diode [177]. For low breakdown voltages

<1.7 kV, SBD is the most suitable diode [9,18,19]. Figure 3.2a shows the cell structure

of SiC SBD. SBDs enjoy an extremely high switching speed, thanks to the majority

carrier conduction mechanism that yields almost zero reverse recovery losses. Also, it

features a very low RON. On the other hand, SBDs are prone to high leakage current

that also increases as temperature increase due to the Schottky barrier effect [9,18,19].

For higher breakdown voltage >1.7 kV, JBD and PiN diode are preferred [18].
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In fact, PiN diodes are only feasible for voltages 2–3 kV or higher due to high PN

junction knee voltage, which results in high conduction losses. Additionally, PiN

diodes exhibit a large reverse recovery loss. Therefore, it is not typically employed

in automotive applications [6, 9]. JBD combines Schottky-like low on-state losses

and high switching characteristics, and PiN-like off-state behavior. Hence, JBDs

offer an excellent performance over the voltage range of 600 V–3 kV. Figure 3.2b

depicts the cell structure of the SiC JBS. Compared to SBD, JBD is inferior in terms

of static performance; the reason why the former is more applicable in low voltage

applications.

SiC diodes have been employed in traction inverter ever since the first commercial

SBD in 2001. Even before the commercialization of SiC switches, SiC diodes were

employed as free wheeling diodes with Si IGBT and Si MOSFET as a hybrid module,

instead of Si PiN diode [178]. Currently, SiC Schottky diodes for traction inverters

are available with voltages in the range of 600 V–1.7 kV and current ratings up to

50 A [6,9].

3.1.2 Switches

MOSFET

SiC MOSFET is, by far, the most famous and commonly-used SiC device, owing

to its superior characteristics and its market availability. Figure 3.2c shows the cell

structure of the SiC MOSFET. Normally, the characteristics of SiC MOSFET are

benchmarked against those of Si IGBT, and not Si MOSFET, owing to the popularity

rivalry. Switching frequency in Si IGBT is very limited owing to the fact that it is

a bipolar device with minority carriers. At turn-off, the minority carriers take
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time to re-combine and dissipate, a phenomenon known as tailing current. Such a

phenomenon is nonexistent in SiC MOSFET. Being a unipolar device with majority

carriers, it enjoys a much smaller turn-off time, which significantly reduces switching

losses and, in turn, enables higher switching frequencies [15,19,179]. While MOSFET

has generally a higher RON, it is the on-resistance per unit area that is relevant at

the device level [179]. Thanks to the higher bandgap energy, SiC MOSFET can

be manufactured with a considerably lower thickness, which in turn reduces RON.

Additionally, the lower thickness leads to a smaller gate charge, thus, shorter turn-

on time [180]. Nevertheless, for blocking voltages ≥1.7 kV, RON of the SiC MOSFET

becomes detrimental in terms of conduction losses, rendering it infeasible. Therefore,

IGBT is the device of choice for voltages ≥1.7 kV. Another interesting feature related

to the turn-on time of SiC MOSFET is its negative temperature coefficient (NTC)

[173]. In other words, the switching energy decreases when temperature increases,

making it favorable to operate SiC MOSFET at ambient temperatures as high as

105
◦
C. Furthermore, MOSFET is capable of operating in the third-quadrant as a

synchronous rectifier, which significantly reduce the conduction losses at nearly zero

reverse recovery current [19, 172]. Such a feature has triggered a trend lately to

exploit the intrinsic SiC MOSFET body diode for free-wheeling and concurrently

eliminate the external anti-parallel diode [6,18,19]. Unlike Si MOSFET, the lifetime

of the minority carriers of SiC MOSFET is short, and so is the reverse recovery

charge [18, 179]. Rohm Semiconductors and Wolfspeed have demonstrated that the

elimination of the anti-parallel SBD does not harm the efficiency. On the other hand,

this raises reliability concerns. As such, practitioners still recommend the installation

of anti-parallel diodes.
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Despite the many foregoing advantages SiC MOSFET has to offer, it suffers short-

comings in terms of EMI and reliability. The very high switching frequency comes

at the cost of EMI noise. When connected to the EM, especially via a long cable,

the switching time will increase twofold and lead to a 30% increase in switching

losses [181]. Hence, a switching frequency/loss tradeoff should be carefully evalu-

ated beforehand [182]. Also, most of the device failures are attributed to the oxide

layer in the MOS [11]. Furthermore, compared to its Si counterpart, the gate driver

requirements are more involved [19,183].

JFET

Although not as famous as SiC MOSFET, SiC JFET is theoretically more efficient

that MOSFET [20]. In fact, SiC JFET was commercialized before SiC MOSFET [15].

The cell structure of SiC JFET is shown in Figure 3.2d. JFET can be a suitable

alternative to MOSFET for blocking voltages ≥1.7 kV, owing to its ultra low RON

and high operating temperature capability [9,15,184]. Its ability to operate at as high

as 500
◦
C was reported in [185]. Moreover, SiC JFET promises improved reliability,

especially at high temperatures due to the absence of gate oxide [10]. In addition to

avoiding failures related to the gate oxide, the gate terminal is intrinsically isolated

from the body diode, thus, eliminating failures related to gate isolation material in

MOSFET [15]. The main drawback in employing SiC JFET in traction inverters,

however, is its normally-on behavior. This has an obvious fatal consequence on

the inverter in start up and shut down events due to a short circuit [15]. For this

reason, a JFET with Si MOSFET in cascode configuration is usually studied. The

resulting device in such a configuration is a normally-off JFET. Recently, 650 V

62



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

SiC cascode JFET was benchmarked against 650 V SiC tench MOSFET and 900 V

SiC planar MOSFET in [184]. The devices were employed in a two-level inverter and

the corresponding inverter efficiency was evaluated at the vehicle-level. It was found

that the SiC cascode JFET is only superior at low power operating points. This

is attributed to the higher conduction losses at high operating points (e.g. vehicle

acceleration) that superseded the lower switching losses at lower operating points.

Alternatively, the normally-on JFET can be exploited in the CSI, whereby in-

herent short circuit protection is available [147]. In CSI topology, the advantages of

JFET can leverage a highly efficient and power dense traction inverter [186]. The

CSI topology will be discussed in the next section.

Other Switches

Other SiC switches such as IGBT, bipolar junction transistor (BJT), and gate

turn-off thyristor (GTO) were also investigated in literature. SiC IGBT is the most

promising device among all SiC devices as it combines the advantages of SiC MOS-

FET and Si IGBT [6, 9]. The reduced gate charge and carrier lifetime of SiC and

reduced conduction losses of IGBT enable high voltage SiC IGBT (>10 kV) switch-

ing at high frequencies (beyond 10 kHz) and high temperatures (beyond 200
◦
C).

Nevertheless, as of this writing, there is no commercial SiC IGBT due to reliabil-

ity issues, predominantly related to forward voltage drift [6]. However, SiC IGBT

breakdown voltage range would be beyond traction applications. Figure 3.2e depicts

the cell structure of SiC IGBT. SiC BJT and SiC GTO are commercially available,

however, similar to IGBT, they are limited to high voltage (>10 kV) applications.
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3.2 Power Loss Evaluation

Power loss in semiconductors are classified as: conduction loss and switching loss.

The loss profile during the operation of a semiconductor is shown in Figure 3.3. The

total loss in a semiconductor, Ploss is the summation of conduction loss, Pcond and

switching loss, Psw as given in (3.2.1). From Figure 3.3, Ploss is the integration of the

area under the power curve.

Ploss = Pcond + Psw (3.2.1)

This section describes the evaluation of conduction and switching loss based on

the linear model of the MOSFET switch using the device’s characteristics that are

usually found in the datasheet. The dependency on junction temperature is tackled

by thermal curve fitting. The coefficient of such curve fittings are assumed to be

provided by the manufacturer. As such, power loss evaluation, in terms of junction

temperature, can be carried out in PLECS software using its thermal model.

3.2.1 Switch Conduction Loss

Conduction loss occurs when the semiconductor is on. In the on-state, the cur-

rent, Io passes through the switch with a voltage, Von is present across the switch.

In the case of a MOSFET, this is due to the equivalent resistance across the drain–

source terminals, RDS(ON). Figure 3.4a shows the equivalent conduction loss circuit

of a MOSFET. The conduction energy, Econd dissipated during the on-state is:

Econd = ∫
Ton

VonIo dt (3.2.2)

64



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

Switch control 
signal

ON

OFFOFF

TON TOFF

Ts=1/fs
vT, iT

Vd Vd

Io

0

t

t

t

VON

WON

Vd Io

pT(t) tc(ON) tc(OFF)

tri tfv

td(ON)

trv tfitd(OFF)

We(ON)=0.5 Vd Io tc(ON)

We(OFF)=0.5 Vd Io tc(OFF)

0

0

Figure 3.3: Electrical waveforms of the switch during one switching period and the
generated loss.

Assuming a constant Econd within Ton, the conduction loss in (3.2.2) can be ex-

pressed in terms of power as:

Pcond = VonIoD (3.2.3)

where Pcond is the power conduction loss in watts and D = Tonfs is the duty ratio.

Alternatively, (3.2.3) can be expressed in terms of RDS(ON) as:

Pcond = I
2
oRDS(ON)D (3.2.4)
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The datasheet of a device usually defines Von at two temperature values: T1 and

T2. A linear interpolation can be used to calculate Von at any Tj as [187]:

Von(Tj) = Von(T2)
T1 − Tj
T1 − T2

+ Von(T1)
Tj − T2

T1 − T2
(3.2.5)

3.2.2 Switch Switching Loss

The switching losses are produced at turn-on and turn-off events, as shown

in Figure 3.3. Switch current rises from zero to Io while voltage drops from Vd to

zero during turn-on, and vice-versa during turn-off. Thus, the switching energy

dissipated is the product of voltage and current during the switching events, defined

as:

Esw =
1

2
VdIo(tc(on) + tc(off)) (3.2.6)

Io RDS(ON)VON

+

−

(a)

Vd

Ideal Io

iT

vT

+

−

(b)

Figure 3.4: Equivalent circuit of (a) conduction loss and (b) switching loss.
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where tc(on) and tc(off) are the turn-on and turn-off times of the switch, respectively,

defined as:

tc(on) =tri + tfv

tc(off) =tfi + trv

(3.2.7)

where tri and tfi are the current rise and fall times, respectively, and trv and tfv the

voltage rise and fall times, respectively.

The Esw is different under various test conditions such as blocking voltage, junc-

tion temperature, and gate resistance. Therefore, the datasheet of a device provides

Esw at one or several given operating conditions in terms of a specified blocking volt-

age V1 and junction temperature T1. The Esw at any Tj and blocking voltage V2 can

be calculated as [187]:

Esw(Tj, V2) = β
Esw(T1, V2)V2

αV1
(3.2.8)

where

α =a1T
2
j + b1Tj + c1

β =a2T
2
j + b2Tj + c2

, (3.2.9)

α and β are the voltage and temperature coefficients, respectively, and a1, a2, b1,

b2, c1, and c2 are the quadratic curve fitting coefficients. Such coefficients can be

provided by the manufacturer or characterized experimentally. The Esw in (3.2.6)
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can be expressed in terms of power as:

Psw = Eswfs (3.2.10)

where Psw is the power switching loss in watts.

3.3 Inverter Level Evaluation

A case study is undertaken in this section to analyze the SiC-based multiphase

inverters in Section 2.2 and 2.3, quantitatively and qualitatively. The aim of this

study is to showcase the potential of such inverters when benchmarked against the

conventional three-phase counterpart in terms of device count, efficiency, power den-

sity, and cost. The investigated multiphase inverters in this study are rated at 100

kW, and designed for EVs with 400 V and 800 V powertrains.

All the studied topologies employ SiC MOSFET as the switching device. The

selected SiC MOSFETs for the 400 V and 800 V powertrains are 650V/97 (C3M-

0025065D) and 1200V/115A (C3M0016120K), respectively, both by Cree. Table 3.2

lists the test parameters used in this study.

3.3.1 Device Count

Table 3.3 tabulates the minimum per-leg current requirement for the 100 kW

three-, five-, six-, and nine-phase VSIs and six-phase NSI. Also, based on the chosen

SiC MOSFETs, the minimum number of paralleled devices required per switch posi-

tion is listed. From Table 3.3, five-phase VSI with 800 V battery requires a lower total

number of devices when compared with its three-phase counterpart. Therefore, cost

68



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

savings are attainable in multiphase VSI as SiC power switches dictate a significant

portion of the total cost of the traction inverter, as will be shown later. This is not

unique to the 800 V powertrain, but can rather be generalized for a given voltage

level. Figure 3.5 demonstrates a range of inverter output current, in terms of device

rated current, where five-phase VSI employs a lower number of total devices than

three-phase. The reduction in the total number of devices comes at the expense of

lower efficiency nonetheless.

Six-phase VSIs require the same number of devices when compared to three-phase,

since the number of inverter legs is doubled, but the per-phase current is halved. On

the other hand, the minimum number of devices needed for the NSI is 1.5 times

higher than that of the six-phase VSI. This is due to the higher current rating of

the NSI switches as given in (2.3.2). Generally, NSI employs a lower total number of

devices only when the rated current of the inverter is lower than that of the power

device [188].

Table 3.2: Parameters for Multiphase Inverter Topologies

Parameter Value Unit

Rated power 100 kW
Switching frequency 30 kHz
Output frequency 50 Hz
Load power factor 0.9 –
Modulation index 0.8 –
Junction temperature 80

◦
C

Gate resistance 5 Ω
Modulation technique Sinusoidal PWM
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3.3.2 Efficiency

Now that the inverters are sized to supply the same output power with adequate

current sharing for the SiC MOSFETs in all topologies, the inverters are built in the

PLECS environment. Figure 3.6 depicts the PLECS simulation schematic for the six-

phase VSI as an example. The employed load for all topologies is a 100 kW inductive

load with a 0.9 PF. The load is connected in asymmetrical configuration for six- and

nine-phase topologies, i.e. phase shift of δ = 30
◦

and 20
◦

between each three-phase

set, respectively.

Asymmetrical configuration is selected since, as mentioned in Section 2.3, NSI is

more competitive in such configuration, and therefore, rendering a fair comparison.
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Figure 3.5: Reduction in total number of devices in five-phase VSI when compared
to its three-phase counterpart in terms of device rated current, at a specific voltage
level. (a) Number of paralleled devices per one switch. (b) Total number of devices.
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Table 3.3: Comparison between different 100 kW multiphase inverters in terms of
number of devices

Vdc
Switch
Rating

Inverter
Topology

Current No. Paralleled Total
per Devices per No.

Leg (A) Switch Devices

400 V 650V/97A

3-ph VSI 375.0 4 24
5-ph VSI 225.0 3 30
6-ph VSI 187.5 2 24
6-ph NSI 375.0 4 36
9-ph VSI 125.0 2 36

800 V 1200V/115A

3-ph VSI 187.5 2 12
5-ph VSI 112.5 1 10
6-ph VSI 93.8 1 12
6-ph NSI 187.5 2 18
9-ph VSI 62.5 1 18

Table 3.4: Comparison between different 100 kW multiphase inverters in terms of
efficiency and cost

Vdc
Inverter
Topology

Efficiency Cost
†

400 V

3-ph VSI ⭑⭐⭐⭐⭐ $ $ $
5-ph VSI ⭑⭑⭑⭑⭐ $ $ $
6-ph VSI ⭑⭐⭐⭐⭐ $ $ $
6-ph NSI ⭑⭑⭑⭐⭐ $ $ $
9-ph VSI ⭑⭑⭑⭑⭑ $ $ $

800 V

3-ph VSI ⭑⭑⭑⭐⭐ $ $ $
5-ph VSI ⭑⭐⭐⭐⭐ $ $ $
6-ph VSI ⭑⭑⭑⭐⭐ $ $ $
6-ph NSI ⭑⭑⭑⭑⭐ $ $ $
9-ph VSI ⭑⭑⭑⭑⭑ $ $ $

†
Considering the cost of devices only.

All topologies are controlled using SPWM. Regardless of the number of phases, multi-

phase VSIs have the same maximum output voltage of 0.5Vdc in the linear region [189].

On the other hand, the maximum output voltage for the NSI with asymmetric load
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Figure 3.7: Conduction and switching loss for different multiphase topologies rated
at 100 kW. (a) 400 Vdc. (b) 800 Vdc.

is 0.794Vdc [188]. The conduction and switching losses of the power switches are com-

puted using the thermal model of the devices provided by the manufacturer. Figure

3.7 depicts the inverter losses for all the topologies listed in Table 3.3. In the case of

the 400 V powertrain (Figure 3.7a), five- and nine-phase VSIs and six-phase NSI all

yield reduced losses when compared to their three-phase counterpart, when using the

minimum number of devices. Nine-phase VSI yields the highest efficiency, followed
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by five-phase, and then six-phase NSI. Comparing three-phase VSI to six-phase VSI

and NSI, all three exhibit a similar conduction loss. On the other hand, six-phase

NSI enjoys a lower switching loss, rendering it more efficient.

In the case of the 800 V powertrain (Figure 3.7b), only six-phase NSI and nine-

phase VSI yield reduced losses, with the latter being superior when benchmarked

against the three-phase VSI. For both powertrains, the three- and six-phase VSIs have

the same efficiency. When comparing the results of both powertrains, the switching

loss is dominant in the 800 V powertrain and vice versa. While the showcased study

is not all inclusive (i.e. different testing parameters or devices can lead to different

results), it is nonetheless the potential that multiphase inverters can offer, in terms of

improved efficiency and reduced device count, that should be emphasized. Addition-

ally, some testing parameters scale linearly along all topologies. Switching frequency,

for instance, has a linear relationship with switching loss, and varying it while keeping

all other variables fixed will invariably lead to the same comparative findings.

3.3.3 Power Density

The power density of traction inverters is a complex problem that is dictated by

many variables including electrical components, thermal management, and mechan-

ical packaging [190, 191]. Figure 3.8a depicts a typical volumetric breakdown of a

liquid-cooled SiC-based inverter [117, 191,192]. Multiphase inverters are expected to

have a higher gate driver requirements and increased cabling and current sensors.

Nonetheless, such components do not consume a large portion from a volume per-

spective. From Figure 3.8a, gate drivers and cables constitute a meager 6% of the
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total inverter volume. Furthermore, with a proper design, increased gate driver re-

quirements can be accommodated on the existing printed circuit board (PCB) of the

three-phase inverter, especially when the total number of devices in the multiphase

inverter is equal to that of its three-phase counterpart (i.e. six-phase VSI). In other

words, a six-phase VSI traction inverter would use more electronic components for

the gate driver that will be placed on a single PCB whose dimensions are equivalent

to that of a three-phase inverter. Hence, the volume of the gate driver board can

be somewhat the same. Similarly, for cabling, a six-phase VSI would use double the

cables (AC output cables) used in three-phase counterparts, yet lighter ones as the

per-phase current is halved, for the same output power.

On the other hand, as mentioned earlier in Section 2.2, multiphase inverters offer a

reduced capacitor size, which occupies more than a quarter of the total volume of SiC-

based three-phase traction inverters. In the case of six-phase VSI, a 10% reduction in

the capacitor size can offset the additional volume incurred by phase current sensors

and cables.

Other components such as the DC-busbar, cold plate, and controller board are

expected to remain the same when upgrading from three-phase to multiphase inverter,

for the same output power. The volume of power modules in multiphase inverters

can either be higher, lower, or the same as in three-phase counterparts, depending

on the power level, per-phase current requirement and number of paralleled devices

as explained in the previous subsection. For instance, a five-phase SiC-based inverter

rated at 100 kW for 800 V powertrain would lead to a reduced volume of power SiC

semiconductors (see Table 3.3).

74



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

72%

1%

10%

3% 5%
9%

SiC Devices Thermal Management Capacitor (film)
Cabling Gate Driver Others

12%

32%

30%

2%
4%

20%

(a) (b)

Figure 3.8: Breakdown of liquid-cooled SiC-based traction inverter by (a) volume
and (b) cost.

3.3.4 Cost

The cost of SiC-based inverters, whether three-phase or multiphase, is mainly

dictated by the cost of the SiC power modules (or discrete devices) [117, 192]. For

instance, the cost breakdown of an air-cooled SiC-based three-phase inverter in [117]

indicated that 77% of the total inverter cost is attributed to the SiC power mod-

ules. A cost breakdown of liquid-cooled SiC-based inverter is shown in Figure 3.8b,

since liquid-cooling is, so far, the accepted industry practice for the automotive indus-

try [16]. From Figure 3.8b, the capacitor and power SiC devices constitute more than

80% of the total inverter cost. Therefore, the additional gate driver requirements and

higher sensors count in SiC-based multiphase inverters are not expected to affect the

overall inverter cost significantly. On the contrary, the SiC-based five-phase VSI can

lead to a reduced inverter cost, since it employs a lower total number of devices when

compared to its three-phase counterpart. This is true when the designed inverter

output current falls in the green regions in Figure 3.5. In this case, a 17% reduc-

tion in the total number of devices leads to a 12% reduction in total inverter cost.

Additionally, while the rightmost column in Table 3.4 compares the cost in terms of

75



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

3 5 6 7 9 12

Number of Phases

70

80

90

100

110

120

T
o
ta
l
A
C
C
a
b
li
n
g
C
o
st

(U
S
D
/
m
)

Figure 3.9: Total cost of AC cables of multiphase inverters rated at 100 kW and 0.8
PF (length ≤10 m).

SiC power devices only, it is deemed nonetheless representing the overall inverter cost

with adequate confidence, since more than 80% of the total cost is attributed to the

power devices and capacitor.

In terms of cabling, it was demonstrated in [38] that multiphase inverters can lead

to reduced total cost of AC cables. The reduction in the cable size outweighs the

increase in cable count in multiphase inverters. Figure 3.9 showcases the estimated

total cost of AC cables for multiphase inverters rated at 100 kW. Six-phase VSI

demonstrates the best tradeoff between cable count and size with a reduction of 21%

of AC cable cost when compared to the three-phase VSI.

3.3.5 Case Study Summary

The spider plot in Figure 3.10 summarizes the comparison between the different

multiphase topologies based on the foregoing quantitative analysis in addition to the

DC-bus capacitor requirement in Figure 2.6, maximum DC-bus utilization [84], and

fault tolerance capability. Benchmarked against the three-phase VSI, the nine-phase

VSI yields the best improvement in efficiency and reduced Cdc size at the expense
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Figure 3.10: Comparison plot between SiC-based multiphase inverter topologies
with different phase number for EV powertrains rated at 800 V.

of increased cost and control complexity. Six-phase VSI, however, offers a better

tradeoff, which can be summarized as follows:

• It is as efficient as its three-phase counterpart, while using the same total device

count which is lower compared to the six-phase NSI.

• Similar to the nine-phase VSI, it offers 10% volume reduction in Cdc when

compared to three-phase VSI.

• Modularity and fault tolerance is improved when compared to three-phase VSI.

• Voltage utilization of the DC-bus is superior in six-phase VSI when compared

to six-phase NSI and five-phase VSI.

• The greater reduction in AC cabling cost when opting for multiphase inverters

occurs in six-phase systems.

Hence, six-phase VSI is deemed the most competitive multiphase inverter topology

for traction applications. Additionally, from a qualitative perspective, features such
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as improved fault-tolerance and reduced torque pulsation raises its competitive edge

when compared to its three-phase counterpart.

3.4 Summary

This chapter reviewed the opportunities and challenges for SiC-based multiphase

(beyond three) traction inverters in EVs. Multiphase traction inverters can comple-

ment the limitation of low current ratings of SiC devices by providing lower per-phase

current requirements. Although they employ more switches in the additional phase

legs, the total number of semiconductor devices is not necessarily increased. It was

shown in this study that the total number of devices can be lower, which reduces

the cost pertaining to SiC devices. Moreover, MPIs enjoy a reduced DC-capacitor re-

quirement and reduced AC cabling cost, which can be exploited to improve the power

density. Nevertheless, additional cost is expected from the higher count of sensors

and gate drivers.

A case study pertaining to the efficiency and the total number of devices for SiC-

based multiphase (five-, six-, and nine-phase) traction inverters rated at 100 kW was

undertaken. Such inverters were benchmarked against the conventional three-phase

VSI in 400 V and 800 V powertrains. The analyses showed that SiC-based MPIs

can lead to improved efficiency. Special attention was given to the six-phase VSI

for its competitiveness when compared to the three-phase VSI. Employing the same

number of total devices of the latter, yielding the same efficiency, yet reducing the

capacitor volume by almost 10% and AC cabling by 21%, and improving modularity

and fault tolerance capability. Therefore, the remainder of this thesis will focus on

the application of six-phase traction inverters for EV applications.
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Chapter 4

Vehicle Level Comparative

Analysis of Si- and SiC-Based

Six-Phase Inverters

Vehicle level evaluation of traction inverters is a crucial aspect of EV development,

as it provides a comprehensive assessment of the performance of the inverters in real-

world conditions. This evaluation allows for the identification of valuable data for

comparison with other similar vehicles, such as mileage and fuel economy. By bench-

marking and analyzing such data, manufacturers and researchers can improve the

design and performance of future inverters, thereby enhancing the overall efficiency

and effectiveness of EVs.

However, limited studies evaluate the inverter efficiency at the vehicle level. To the

author’s best knowledge, efficiency evaluation of SiC-based MPIs for 800 V batteries

has not yet been reported. In [184], vehicle level comparison was reported for a

three-phase traction inverter using different types of Si and SiC devices. Vehicle
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level evaluations for MLI inverters was reported in [65,193,194] for different aspects.

The efficiency of asymmetrical 3L inverters for switched reluctance motor drives was

evaluated in [65]. Power loss comparison between 3L NPC and 3L T-type using

different modulation techniques was examined in [194] using Si IGBTs. SiC-base 3L

NPC and 3L T-type for three-phase traction inverters in 400 V and 800 V powertrains

was reported in [43].

The present study fills a gap in the literature by evaluating the efficiency of Si- and

SiC-based six-phase VSIs at the vehicle level, in 800 V powertrains. The efficiency of

the inverters is initially evaluated at the inverter and powertrain levels in Sections 4.1

and 4.2, respectively, using a permanent magnet synchronous motor (PMSM). Then,

an EV model for the Chevrolet Spark is developed in Matlab/Simulink in Section

4.3, and employed in Section 4.4 to evaluate the efficiency of the Si- and SiC-based

inverter topologies at the vehicle level. As a result, energy consumption and mileage

from the studied inverters are obtained.

4.1 Efficiency at Inverter Level

For the target inverter design ratings of 100 kW at 800 Vdc, the per-phase current

is below 100 A, as demonstrated in 3.3. Currently, many device manufacturers offer

SiC MOSFETs rated beyond 100 A. As such, discrete SiC MOSFET C3M0016120K

(1200 V/115 A) by Cree [195] is selected, eliminating the need for device paralleling.

Hence, the complexity of the design is reduced. Also, the selected device features a

low on-state resistance, RDS(ON) of 16 mΩ. A competitive Si IGBT discrete device

is sought to provide a fair comparison between the two technologies. Hence, the Si

IGBT IKY75N120CS6 (1200 V/75 A) from Infineon [196] was selected.
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The conduction and switching losses of the Si- and SiC-based inverters are then

evaluated by conducting a load current sweep using SPWM at multiple switching

frequencies. The losses are evaluated in PLECS using the thermal model of the

device provided by the manufacturer, as shown in Figure 3.6. Figure 4.1a shows the

efficiency curves of the inverters when considering the device losses, whereas Figure

4.1b shows the loss breakdown at an output power, Sout of 110 kVA. The efficiency

gain achieved by the SiC MOSFET is clearly noticeable in Figure 4.1a. Besides, the

use of SiC MOSFET is more justifiable at higher fs. While the conduction loss of

both devices is somewhat similar, the switching loss is significantly lower in the SiC

MOSFET, thanks to its low switching energy. At 50 KHz, the SiC-based inverter

enjoys, on average, a 3% higher efficiency when compared to the Si-based inverter.

Notably, the switching loss of the SiC MOSFET becomes more dominant than the

conduction loss beyond 30 kHz.

4.2 Efficiency at Powertrain Level

In vehicle level modeling and testing, the electric traction drive unit is usually

modeled by efficiency maps over the torque–speed envelope of the motor [184, 197].

Therefore, a powertrain level efficiency evaluation of the studied inverters is sought.

In this case, the six-phase traction inverter is driving a dual three-phase PMSM,

as depicted in Figure 4.2. The PMSM is chosen owing to its superiority in EV

applications. The parameters of the PMSM are dynamically modeled using finite

element analysis (FEA) that is verified experimentally in [30]. Note that the IPMSM

in [30] is rated at a 100 kW, 3 kRPM, 400 V. Thus, its parameters are scaled on

a per-unit basis to match the 800 V inverters in this study. A VSD-based field-
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Figure 4.1: Si IGBT (left column) and SiC MOSFET (right column) losses in a 100
kW six-phase inverter. (a) Efficiency vs. load current. (b) Loss breakdown at

Sout = 110 kVA.

oriented control (FOC) scheme is employed to control the inverter and drive the

motor at the desired torque and speed. The inverter controller requires the measured

stator current, is and rotor position, θr. Based on the desired torque and speed, the

reference currents in the d–q subspace are generated using look-up tables (LUTs).

The LUTs generate the reference currents based on the maximum torque per ampere

(MTPA) control and flux-weakening (FW) control at high-speed, using the dynamic

parameters of the motor model. As the name suggests, the MTPA control maximizes

the torque generation (or minimize stator current) in the constant-torque region of

the motor, whereas the FW control weakens the flux in the constant-power region of

the motor, where the maximum allowable voltage is reached, by reducing the d-axis

current. Motor controls will be studied further in Chapter 8. The reference currents

for the x–y subspace are always set to zero. The reference currents are fed to the
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Figure 4.2: Inverter powertrain model using a dynamic model of a dual three-phase
PMSM.

current controllers that generate the reference six-phase voltages. Such voltages are

then modulated to generate the gate signals. To this end, the red blocks in Figure 4.2

utilize the same PLECS simulation model shown in Figure 3.6 to yield the efficiency

information at the specified junction temperature, Tj.

Sweeping the reference torque and speed in the model shown in Figure 4.2 yields

a 2D efficiency map for the studied inverter. The testing conditions (fsw, Tj, etc.) for

this efficiency evaluation are the same as those in the previous chapter. Figure 4.3
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Figure 4.3: Six-phase traction inverters efficiency maps in a 100 kW PMSM drive.
(a) Si IGBT. (b) SiC MOSFET.

illustrates the efficiency maps of the Si- and SiC-based inverters. The SiC-based in-

verter (Figure 4.3b) achieves a higher efficiency overall with a peak efficiency of 99%

compared to a peak efficiency of 96% in the Si-based inverter. A more significant effi-

ciency difference is observed in the high-torque/low-speed and low-torque/high-speed

regions of the PMSM. The efficiency maps in Figure 4.3 are employed in Section 4.4

in order to evaluate the energy saving of each of the investigated inverter topologies

at the vehicle level.

4.3 Electric Vehicle Model

4.3.1 Model Design

Figure 4.4 illustrates the top-level block diagram of the developed vehicle model.

The model is divided into three subsystems: (i) the driver, (ii) the vehicle controller,
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and (iii) the vehicle plant. In the driver subsystem, the demanded torque is generated

using a PI speed controller, based on the instantaneous chassis speed and the reference

speed provided by the drive cycle input. The demanded torque is also adjusted to

compensate for vehicle losses incurred by rolling resistance, grade, and aerodynamic

drag forces. In the vehicle controller subsystem, the torque command, generated

by the driver subsystem, is adjusted based on propulsion/braking mode of operation.

The vehicle plant includes the model for the battery, electric traction drive system (i.e.

traction inverter and motor), final drive, wheels, chassis, and electrical accessories.

The current consumed by the electric drive and the electrical accessories are summed

and used to calculate the battery output voltage and state of charge (SOC). The

electric drive system is modeled by two cascaded efficiency maps for the inverter

and the motor. The final drive, wheels and chassis models are used to calculate

the instantaneous vehicle speed which is fed-back to the driver. All related modeling

equations for the vehicle model depicted in Figure 4.4 can be found in [197]. Table 4.1

lists the vehicle parameters of the Chevrolet Spark used in the developed EV model.

This reason for selecting this EV model is its publicly available vehicle parameters

and dynamometer performance.

4.3.2 Model Validation

The developed EV model for the Chevrolet Spark is validated by benchmarking its

battery data (i.e. voltage, current, and SOC) against the experimental dynamometer

data of the actual vehicle reported by Argonne National Laboratory (ANL) [198]. For

verification purposes, the electric drive system of the model is loaded with efficiency

maps (for the inverter and the motor) for the 2010 Toyota Prius available in [199],
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Figure 4.4: Top-level block diagram of the developed EV model built in Simulink.

since such maps are unavailable for the modeled vehicle, i.e. Chevrolet Spark. Never-

theless, the accuracy of the developed EV model is not compromised. To demonstrate

its validity, Figure 4.5 shows the simulation results of the EV model versus the ex-

perimental data recorded by ANL, for test ID#61508014 as an example. The drive

cycle depicted in Figure 4.5 is composed of a constant speed (at 65 mph) for the first

9 mins, followed by a US06 drive cycle. Figure 4.5 demonstrates a strong agreement

between the developed EV model and the experimental data.

The model was further validated against four other tests, reported by ANL, that

involve universal dynamometer driving schedule (UDDS), highway fuel economy test

(HWFET) and US06 drive cycles with different testing conditions, e.g. different grade

elevations. The resulting root mean square error (RMSE) between the simulated

battery SOC and the experimental ANL data is 0.92±0.44%. Therefore, the developed

Chevrolet Spark EV model is very accurate. After validating the EV model, the
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Table 4.1: Vehicle parameters of the Chevrolet Spark 2015

Parameter Value Parameter Value

Mass of vehicle 1300 kg Wheel radius 0.29 m

Vehicle frontal area 2.22 m
2

Wheel inertia 1 kg⋅m2

Coefficient of drag 0.32
Vehicle mass on

0.64
driven axle (ratio)

Final drive ratio 3.78
Effective wheel

0.95
radius (ratio)

Final drive inertia 0.01 kg⋅m2
Battery capacity 54 Ah

performance of the investigated inverter topologies is evaluated next at the vehicle

level.

4.4 Simulation Results and Discussions

Using the efficiency maps obtained in Figure 4.3 and the EV model developed in

the previous section, the EV performance is evaluated for the investigated Si- and

SiC-based six-phase inverters on different drive cycles. As mentioned in the previous

section, testing of the different inverter topologies entails replacing the efficiency

maps in the electric drive system of the EV model (Figure 4.4) with the corresponding

efficiency map in Figure 4.3. It is worth highlighting that the vehicle model is based on

a three-phase PMSM drive, whereas the current study focuses on six-phase traction

inverters. However, since the inverter is only modeled by an efficiency map, the

evaluation at the vehicle level remains independent.

Figure 4.6 presents the SOC performance of the EV using the Si- and SiC-based

six-phase inverters on a UDDS, HWFET, and US06 drive cycles, respectively. The

87



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

0

25

50

75

100

V
eh

ic
le

S
p
ee

d
(m

p
h
)

ANL Data
EV Model

320

340

360

380

400

B
a
tt
er

y
V
o
lt
a
g
e
(V

)

ANL Data
EV Model

-200

0

200

400

B
a
tt
er

y
C
u
rr

en
t
(A

)

ANL Data
EV Model

0 2 4 6 8 10 12 14 16 18 20

Time (min)

40

45

50

55

60

B
a
tt
er

y
S
O
C

(%
)

ANL Data
EV Model

Figure 4.5: EV Model verification by benchmarking its results to the reported data
by ANL for Chevrolet Spark, test ID#61508014, showing drive cycle speed, battery

voltage, current and SOC.

initial battery’s SOC in all tests is assumed 100%. By analyzing the final SOC

in Figure 4.6, the SiC-based inverter demonstrates the best utilization of battery

SOC. The variation in SOC between different inverter topologies is most pronounced

during the UDDS drive cycle and least noticeable during the HWFET drive cycle,

with a difference of 0.7% in the former compared to 0.4% in the latter. This is

due to repetitive acceleration and deceleration in the UDDS drive cycle, as shown in
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Figure 4.6: Battery SOC of the EV using Si- and SiC-based six-phase inverters.
Drive cycles: (a) UDDS, (b) US06, and (c) HWFET.

Figure 4.6a. This requires the electrical drive unit to operate at the corners of the

torque–speed envelope, where the efficiency difference between the studied inverters

is more apparent, as illustrated in Figure 4.3. In contrast, the HWFET drive cycle

emulates low-torque and high-speed driving conditions, where the efficiency difference

between the inverters is minimal.

To further analyze the energy consumption of the vehicle when using the different

studied inverters, the power drawn from the battery is studied. Table 4.2 lists the en-

ergy consumption (kWh/100 km) of the vehicle using the different inverter topologies.

The SiC-based inverter offers a 10% energy savings when compared to the Si-based

inverter in the UDDS drive cycle, and 4% in the US06 and HWFET drive cycles.

To determine the efficiency the studied traction inverters, vehicle mileage and fuel

economy are examined. Firstly, the range of the EV can be calculated as:

Range (km) = Battery Capacity (Ah) × Vdc
Energy Consumption (Wh/km) (4.4.1)
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Table 4.2: EV energy consumption using Si- and SiC-based six-phase traction
inverters

Six-Phase
Inverter

Energy Consumption (kWh/100 km)

UDDS US06 HWFET Combined
†

Si IGBT 11.86 18.31 12.01 11.93
SiC MOSFET 10.65 17.51 11.47 11.02
†

0.55 UDDS + 0.45 HWFET

For the particular case of this study (i.e. Chevrolet Spark), the battery capacity is

taken from Table 4.1. To determine the combined energy consumption for urban and

highway conditions, the US environmental protection agency (EPA) regulations re-

quire weighting factors of 55% and 45% for the UDDS and the HWFET drive cycles,

respectively [197]. Accordingly, the combined electrical energy consumption values

for the different inverter topologies are derived from Table 4.2, and then substituted

in (4.4.1) to calculate the mileage range. Secondly, the fuel economy of EVs is deter-

mined by the miles per gallon gasoline equivalent (MPGe) metric introduced by the

EPA, given as [197]:

MPGe =
EG

EM EE
(4.4.2)

where EG is the energy content per gallon of gasoline, EE is the energy content per

watt-hour of electricity, and EM is the wall-to-wheel electrical energy consumed per

mile (Wh/mi). The EG and EE are set by the DOE as 11,500 BTUs/gal and 3.412

BTUs/Wh, respectively. The EM is taken from Table 4.2 for the combined drive

cycles. The mileage and fuel economy of the vehicle when using a Si- and SiC-based

six-phase traction inverters are reported in Table 4.3. The results demonstrate an 8%

improvement in vehicle performance when using the SiC-based inverter.
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Table 4.3: Vehicle range and fuel economy using Si- and SiC-based six-phase
traction inverters

Six-Phase Inverter Range (km) MPGe (gal)

Si IGBT 362 127
SiC MOSFET 392 138

4.5 Summary

This chapter presented a comparative study between a Si- and SiC-based six-phase

traction inverter topologies for EV applications. The performance of such inverters

was assessed for an 800 V battery voltage. The efficiency of the examined inverter

topologies was assessed on the vehicle level in terms of battery SOC and electrical

energy consumption over standard drive cycles. It was found that the SiC-based six-

phase inverter yields an 8% improvement in vehicle mileage and fuel economy when

compared to its Si-based counterpart.
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Chapter 5

DC Ripples Analysis and Capacitor

Sizing for Six-Phase Inverters

The DC-bus capacitor is an indispensable component of VSI and accounts for one

to two thirds the volume of the inverter [117]. Hence, optimizing its size is imperative

to improving the power density of the inverter. Capacitor sizing is mainly dictated

by two metrics [200]: RMS current ripple and allowable DC-voltage ripple. The

current rating of the capacitor must withstand the inverter input current ripple, and

its capacitance must be high enough to allow only a small voltage ripple, typically

5%. Engineers and researchers alike depend on mathematical formulas to evaluate

those two metrics for a given inverter rating in order to design the capacitor [201].

However, such formulas have not been established for six-phase inverters.

Input voltage and current ripples for three-phase VSIs have been investigated

in [201–209]. The fundamentals of DC ripples analysis was outlined in [202] and [203]

for various modulation schemes, including SPWM, SVM, and third harmonic injection

(THI). It was found that SVM leads to reduced DC voltage ripples when compared to
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SPWM for three-phase VSIs. However, the DC current ripple was found to be almost

the same [205]. Evaluation of the DC current ripple for switched reluctance motor

(SRM) drives was explored in [209]. Spectral analysis of the DC current ripples using

double Fourier series was investigated in [204] and [206] for continuous and discontin-

uous modulation schemes in two-level and multilevel three-phase VSIs. DPWM was

observed to result in a higher DC current stress [207]. Multicarrier DPWM was re-

cently suggested in [210] to reduce the DC current ripple, at the expense of increased

output current THD. The DC ripples analysis in [202] was extended to unbalanced

loads in [208]. Segmentation of three-phase motor windings to from two three-phase

drives connected in parallel demonstrated a significant DC ripple current reduction

by about 50% [77]. An adaptive minimization modulation technique was proposed

in [211] to reduce the DC ripple current further in the segmented motor drive. Lastly,

the effect of the reverse recovery of the anti-parallel diodes on the DC voltage and

current stresses was studied in [201] and found to be negligible.

Evaluation of input voltage and current ripples for MPIs have been investigated in

literature for n odd number of phases. In this case, the spatial distribution of phases

is always symmetric with 2π/n radians between subsequent phases. In [212], the

input current ripple and voltage ripple analytical expressions for five-phase VSI were

derived and verified experimentally. Additionally, the authors found that SPWM

yields the minimum input voltage ripple. In [213–215], the peak-to-peak voltage rip-

ple amplitude was analytically derived for five- and seven-phase VSIs. The derived

peak-to-peak voltage ripple expressions enable visualizing the instantaneous ripple

envelope experienced by the DC-bus capacitor. The authors considered two modula-

tion schemes: SPWM and SVM, and their impact on voltage ripple was examined. In
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contrast to conventional three-phase VSI [202], the reported results showed no tan-

gible attenuation in voltage ripples when using SVM over SPWM. On the contrary,

at high modulation index, SPWM led to reduced voltage ripples in [213] in seven-

phase VSI when compared to SVM, which is in line with the findings in [212] for

five-phase VSIs. Numerical analysis of input and output current ripples of nine-phase

VSI was attempted in [216] using conventional SPWM and dual-carrier PWM. The

authors claimed a reduced input and output current ripple for asymmetric loads with

dual-carrier PWM.

For n = 6, fewer studies were reported. In [217], input current ripple for six-phase

VSI with arbitrary spatial displacement angle, δ between the two three-phase sets

was examined. It was found that the input current ripple is minimal when the load

is symmetric (i.e. δ = π/3). Therefore, unlike n-phase inverters with odd number of

phases, input current stress is a function of δ for six-phase VSI. Analytical expression

of the input current ripple for six-phase VSI with symmetric load was derived in [217].

In [218], the input current ripple analytical expressions were given for six-phase VSI

supplying split (δ = 0), asymmetric (δ = π/6), and open-end winding machines with

a single power source. However, mathematical derivations were not outlined for all

cases.

A generalized model for the DC-bus capacitor in MPIs with n > 3 phases was

reported in [63]. The modeling assumed symmetric and balanced loads operating

in the linear modulation region. Accordingly, a comparative analysis for the DC-

capacitor, in terms of input voltage and current ripples, was presented. Also, the

effects of modulation scheme (SPWM vs. SVM), carrier waveform (triangular vs.
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sawtooth) and interleaving techniques on voltage ripples were examined for nine-

phase VSI. The authors reported a potential for DC-bus capacitor size reduction in

nine-phase VSI of up to two-thirds when using SVM with three interleaving triangular

carriers. In interleaved multi-carrier PWM, the n phases are divided into p groups of

3-phases. A multiple of p carriers, shifted by δ degrees, can be used to modulate three

signals to generate the gate pulses for n switches. The same strategy was implemented

and reported in [76] for n = 15. However, the same did not apply to six-phase VSIs;

no improvement was observed with two interleaving triangular carriers [63].

To this end, there exists a gap in knowledge for input current and voltage ripples in

six-phase VSIs with different load configurations (i.e. different δ). More specifically,

input current ripple analysis was partially covered in [217] and [218] for symmetric and

asymmetric loads, respectively. Furthermore, to the best of the authors’ knowledge,

input voltage ripple for six-phase VSI was not examined for any load configuration,

and therefore, their analytical formulas have not been established yet. Subsequently,

this chapter fills in this gap by delivering:

1. A thorough analysis of input current ripple analysis for symmetric and asym-

metric six-phase loads, along with analytical formulas;

2. Mathematical formulas derivation of input voltage ripple for symmetric and

asymmetric six-phase VSIs;

3. Experimental validation of derived formulas at various PFs and modulation

indices;

4. Capacitor design rules for six-phase VSIs based on maximum DC voltage and

DC current stresses.
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The foregoing contributions enables the designer to properly size the DC-bus capac-

itor in six-phase VSIs in order to achieve the best power density. The remainder

of the chapter is organized as follows. Six-phase VSI modeling with symmetric and

asymmetric loads is reviewed in Section 5.1. Derivations of DC-capacitor current and

voltage ripples are investigated in Sections 5.2 and 5.3, respectively. DC-capacitor

design rules for six-phase inverters are derived in Section 5.4. Simulation and exper-

imental validations of derived analytical formulas and benchmarking against conven-

tional three-phase VSI are presented in Section 5.5. Finally, concluding remarks are

outlined in Section 5.6.

5.1 Six-Phase VSI Modeling

The schematic of the six-phase VSI is depicted in Figure 5.1. The DC supply is

assumed constant and is connected through a line impedance, Zdc = Rdc + jωsLdc,

where ωs is the switching angular frequency. The six-phase load/motor windings,

ABC1 and ABC2, can be configured as split (δ = 0), symmetric (δ = π/3), or

asymmetric (δ = π/6) manner. Asymmetric six-phase machines are the most popular

among the three configurations owing to reduced torque pulsation [36]. On the other

hand, symmetric six-phase machines have been finding application in EVs for their

superior fault-tolerance capability [219–221]. Split configuration is the least popular

as it exhibits the worst fault-tolerance capability. Moreover, no DC ripples reduction

over three-phase system is obtained using split configuration [217], and therefore was

not considered in this thesis. Figure 5.2 shows the symmetric and asymmetric six-

phase configurations. The modulating voltage signals and fundamental phase currents
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of the six-phase inverter are given in (5.1.1) and (5.1.2), respectively.

vA1 =M sin θ + v0

vB1 =M sin (θ − 2

3
π) + v0

vC1 =M sin (θ + 2

3
π) + v0

vA2 =M sin (θ − δ) + v0

vB2 =M sin (θ − 2

3
π − δ) + v0

vC2 =M sin (θ + 2

3
π − δ) + v0

(5.1.1)

iA1 =

√
2IL sin (θ − φ)

iB1 =

√
2IL sin (θ − 2

3
π − φ)

iC1 =

√
2IL sin (θ + 2

3
π − φ)

iA2 =

√
2IL sin (θ − φ − δ)

iB2 =

√
2IL sin (θ − 2

3
π − φ − δ)

iC2 =

√
2IL sin (θ + 2

3
π − φ − δ)

(5.1.2)

where θ = 2πf1t and f1 is the fundamental frequency, φ is the angle between the

phase voltage and phase current (i.e. PF angle), δ is the phase displacement angle

between the two three-phase sets (δ = π/3 and π/6 for symmetric and asymmetric

spatial displacements, respectively), IL is the RMS load current, M is the modulation

index, and v0 is an arbitrary zero-sequence voltage.

The DC-capacitor current, ic is obtained from Figure 5.1 and given in (5.1.3).

Decomposing ic, the input DC current, idc, and the inverter input current, iinv into
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P

N

Figure 5.1: Schematic diagram of a six-phase voltage source inverter (VSI).

average and ripple components, (5.1.3) can be re-written as given in (5.1.4) [202]. The

average current components are represented by capital letter and a ¯ accent, whereas

ripple components are represented by a ˜ accent. Moreover, by equating the right-

and left-hand sides of (5.1.4), it can be decomposed into average only and ripple only

expressions, as given in (5.1.5) and (5.1.6), respectively.

ic = idc − iinv (5.1.3)

Īc + ĩc = Īdc + ĩdc − Īinv − ĩinv (5.1.4)

Īc = Īdc − Īinv (5.1.5)

ĩc = ĩdc − ĩinv (5.1.6)

In steady-state, the average capacitor current is zero (i.e. Īc = 0). It follows that

Īdc = Īinv. Additionally, if the capacitance of the DC-bus capacitor, C is large enough

to filter most of the ripple of the DC input current, then ĩdc ≃ 0. It follows that
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A2
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A1

B1

C1

δ = 60° 

(a)

A2B2

C2

A1

B1

C1

δ = 30° 

(b)

Figure 5.2: Six-phase winding configurations. (a) Symmetric. (b) Asymmetric.

ĩc ≃ −ĩinv. Therefore, the DC-bus current ripple can be analyzed by analyzing iinv.

The iinv can be defined in terms of the output phase currents and the switching states

of the inverter legs as [63]:

iinv =∑
x

ix × Sx (5.1.7)

where x ∈ {A1, B1, C1, A2, B2, C2}, ix is the inverter output currents, and Sx is a

Boolean switching function that models the on/off state of the switch, and can be

expressed as:

Sx =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, top switch is on

0, bottom switch is on

(5.1.8)

Next, we develop the numerical expressions of iinv and its average and ripple

components for the symmetric and asymmetric spatial displacements in six-phase

VSI.
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Figure 5.3: Six-phase waveforms with corresponding modes of operation within one
fundamental period. (a) Symmetric load. (b) Asymmetric load.

5.2 DC-Bus Current Ripples

The derivations of the DC-bus current ripples herein assumes sinusoidal output

current, which is a valid assumption when the switching frequency, fs is very high.

This is typically the case in low to medium voltage applications. The current ripple

analysis in this section considers symmetric and asymmetric loads. Figure 5.3 shows

the output sinusoidal current waveforms for symmetric and asymmetric six-phase

configurations. Additionally, when the modulation frequency mf = fs/f1 is very

high, the reference voltages can be treated as constants within one switching period,

Ts [202]. Owing to its simplicity and wide application, the modulation technique

considered in the derivation is SPWM with a triangular carrier, vcr ∈ [−1, 1].
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5.2.1 Symmetric Configuration

When the six-phase VSI is connected to a load (machine) with symmetric spatial

displacement (windings), iinv has 12 unique modes of operation in one fundamental

cycle, as shown in Figure 5.3a. Those modes are evenly distributed with π/6 intervals.

Figure 5.4 shows the detailed PWM and switching states of the upper switches, along

with iinv and vc when the inverter is in Mode 3 (π/3 to π/2). From (5.1.7) and Figure

5.4, iinv can be expressed as given in (5.2.1). Also, from Figure 5.4, the relationship

between the dwell times, T0 to T6 and Ts can be defined as given in (5.2.2) [202].

iinv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for t0 ≤ t < t1

iA1, for t1 ≤ t < t2

iA1 + iC2, for t2 ≤ t < t3

iA1 − iB2, for t3 ≤ t < t4

−(iB1 + iB2), for t4 ≤ t < t5

−iB2, for t5 ≤ t < t6

0, for t6 ≤ t < t8

−iB2, for t8 ≤ t < t9

−(iB1 + iB2), for t9 ≤ t < t10

iA1 − iB2, for t10 ≤ t < t11

iA1 + iC2, for t11 ≤ t < t12

iA1, for t12 ≤ t < t13

0, for t13 ≤ t < t14

(5.2.1)
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t
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SC2

iinv

vA1
vC2
vA2
vC1
vB1
vB2

vcr

t0 t12

vc

T5T5

t13 t14

iA1

iA1+iC2 −(iB1+iB2)

−iB2

iA1−iB2

t7

T6 T6

Figure 5.4: Symmetric six-phase VSI: switching pulses of upper switches,
SABC1,ABC2, inverter input current, iinv, and capacitor voltage, vc during one

switching period in Mode 3.
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T0 =
Ts
4
(1 − vA1)

T1 =
Ts
4
(vA1 − vC2)

T2 =
Ts
4
(vC2 − vA2)

T3 =
Ts
4
(vA2 − vC1)

T4 =
Ts
4
(vC1 − vB1)

T5 =
Ts
4
(vB1 − vB2)

T6 =
Ts
4
(1 + vB2)

(5.2.2)

The mean square value of iinv is defined as [202]:

I
2
inv =

1

Ts
∫

t0+Ts

t0

i
2
inv dt

=
2T1

Ts
i
2
A1 +

2T2

Ts
(iA1 + iC2)

2

+
2T3

Ts
(iA2 − iB2)

2

+
2T4

Ts
(iB1 + iB2)

2

+
2T5

Ts
i
2
B2

(5.2.3)

Substituting (5.1.1)–(5.1.2) and (5.2.1)–(5.2.2) in (5.2.3), the average square value of

(5.2.3) can be computed as:

I
2
inv,avg =

6
π ∫

π/2

π/3

I
2
inv dθ (5.2.4)

Since the inverter is connected to a symmetric load, the average value over the other

eleven 60
◦

intervals (Figure 5.3a) is the same. The average inverter input current, Īinv

can be derived from the power balance between the AC and DC sides of the inverter,

neglecting power loss. Therefore:

Īinv =
3√
2
MIL cosφ (5.2.5)
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At last, the RMS value of the inverter input current ripple, Ĩinv is computed as:

Ĩinv =
√
I2
inv,avg − Ī

2
inv

= IL{
M
π [3 + 3

√
3 −

9π

4
M + (11

√
3 − 19)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
≈ 0

sin 2φ + (4 + 2
√

3 −
9π

4
M) cos 2φ]}

1/2

= IL{
M
π (3 + 3

√
3 −

9π

4
M + (4 + 2

√
3 −

9π

4
M) cos 2φ)}

1/2

(5.2.6)

5.2.2 Asymmetric Configuration

When the six-phase VSI is connected to a load (machine) with asymmetric spatial

displacement (windings), iinv has 18 unique modes of operation in one fundamental

cycle, as shown in Figure 5.3b. That is six additional modes when compared to the

symmetric case. Unlike symmetric loads, the modes are not evenly distributed. Six

out of the 18 modes span an interval of π/6 (Modes 1, 4, 7, 10, 13, and 16 in Figure

5.3b), whereas the other intervals span an interval of π/12. The former and later

modes are henceforth called large modes and small modes, respectively. In between

two consecutive large modes, there are two small modes. If large and small modes

were to be represented by ‘1’ and ‘0’, then the sequence of modes for asymmetric

currents would be ‘100100...’ In light of this breakdown of modes of operation, three

intervals are required to derive the DC-current ripple. In this analysis, Modes 3–5 are

considered, as shown in Figure 5.3b. Figure 5.5 shows the detailed PWM and switch-

ing states of the upper switches, along with iinv and vc when the inverter is in Mode

3 (π/4 to π/3) and Mode 4 (π/3 to π/2) for asymmetric spatial displacement. Note

that the vertical spacing between phase voltages in Figure 5.5 is due to asymmetry.
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Figure 5.5: Asymmetric six-phase VSI: switching pulses of upper switches,
SABC1,ABC2, inverter input current, iinv, and capacitor voltage, vc during one

switching period in (a) Mode 3 and (b) Mode 4.

The iinv and dwell times for Modes 3 and 4, can be deduced from Figure 5.5 in

the same manner discussed in the previous subsection. Let us start by analyzing the

operation in Mode 3. From Figure 5.5a, iinv is similar to that of the symmetric case in

Figure 5.4, with uneven dwell times in the former due to asymmetry. Nevertheless, the

mathematical derivations for the symmetric operation in Mode 3 in (5.2.1)–(5.2.3) are

equally applicable to the asymmetric case in the same mode. Hence, the derivations
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for Mode 3 for the asymmetric configuration are not given for brevity. Furthermore,

the I
2
inv,avg in (5.2.4) is also the same for small intervals.

Regarding Mode 4, from (5.1.7) and Figure 5.5a, the inverter input current in

Mode 4 can be expressed as given in (5.2.7), where the ‘4’ subscript in iinv4 denotes

operation in Mode 4, to distinguish it from that of Mode 3, denoted with ‘3’ subscript.

The dwell times in Mode 4, are defined in (5.2.8).

iinv4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for t0 ≤ t < t1

iA1, for t1 ≤ t < t2

iA1 + iA2, for t2 ≤ t < t3

iA1 − iB2, for t3 ≤ t < t4

−(iB1 + iB2), for t4 ≤ t < t5

−iB2, for t5 ≤ t < t6

0, for t6 ≤ t < t8

−iB2, for t8 ≤ t < t9

−(iB1 + iB2), for t9 ≤ t < t10

iA1 − iB2, for t10 ≤ t < t11

iA1 + iA2, for t11 ≤ t < t12

iA1, for t12 ≤ t < t13

0, for t13 ≤ t < t14

(5.2.7)
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T0 =
Ts
4
(1 − vA1)

T1 =
Ts
4
(vA1 − vA2)

T2 =
Ts
4
(vA2 − vC2)

T3 =
Ts
4
(vC2 − vC1)

T4 =
Ts
4
(vC1 − vB1)

T5 =
Ts
4
(vB1 − vB2)

T6 =
Ts
4
(1 + vB2)

(5.2.8)

Intermediate steps involving mean square value of iinv4 derivations are similar to those

in (5.2.3), and hence are not repeated. For Mode 5, the same derivations in Mode 3

apply, being another small mode, yet with different dwell times. For space limitation,

derivations of Mode 5 are not given.

The average square value of the inverter input current over one fundamental cycle

is computed using the weighted average of Modes 3–5 as:

I
2
inv,avg =

1

4
(I2
inv3,avg + 2I

2
inv4,avg + I

2
inv5,avg)

=
3
π ∫

π/3

π/4

I
2
inv3 dθ +

3
π ∫

π/2

π/3

I
2
inv4 dθ +

3
π ∫

7π/12

π/2

I
2
inv5 dθ (5.2.9)

The RMS value of the inverter input current ripple for the asymmetric six-phase

inverter is [218]:

Ĩinv = IL{
M

2π
[2(

√
3 −

√
2) +

√
6 + (4

√
2 + 8

√
3 + 4

√
6 − 9πM) cos

2
φ]}

1/2

(5.2.10)
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Note that v0 cancels out in Ĩinv in (5.2.6) and (5.2.10). Therefore, Ĩinv cannot be

made smaller using SVM, or any other zero-sequence injection technique. Also, Ĩinv

is independent of C and fs, but rather a function of IL, M , and PF only. Put

otherwise, Ĩinv cannot be reduced by increasing the switching frequency or enlarging

the DC-bus capacitor. This is not the case for voltage ripples, as will be shown next.

5.2.3 Harmonic Spectrum Comparison

Comparing the analytical expressions in (5.2.6) and (5.2.10), the behavior of Ĩinv is

obviously different for the symmetric and asymmetric six-phase loads. Further anal-

ysis, in terms of harmonic spectrum, is sought to identify the underlying reasons for

this difference. The analysis is conducted with respect to the conventional three-phase

VSI to provide a benchmark measure for the six-phase counterpart. Furthermore, the

following analysis can be generalized to any 3k-phase systems (k ∈ [1, 2, . . . ]).

Six-phase systems can be treated as dual three-phase systems with a phase dis-

placement δ between the two sets of three-phases. As such, (5.1.7) can be re-written

as:

iinv =∑
x1

ix1 × Sx1 +∑
x2

ix2 × Sx2

= iinv1 + iinv2 = iinv∠0 + iinv∠δ

(5.2.11)

where x1 ∈ {A1, B1, C1}, x2 ∈ {A2, B2, C2}, and iinv1,2 is the inverter input current

for each of the three-phase sets. Since the input DC current is the superposition sum-

mation of all phase-leg currents, the fundamental, the second harmonic, and all triplen

carrier-sidebands get cancelled for balanced three-phase loads [206]. Hence, ĩinv1 only

includes switching carrier harmonics and non-triplen sidebands. The presence of iinv2
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in six-phase systems affect the remaining harmonics. The harmonic content of the

input DC-current ripple in three-phase VSI (i.e. iinv1), shown in Figure5.6a, can be

categorized into three groups:

• Group 1: carrier harmonics, mfs with even m;

• Group 2: sideband harmonics, mfs ± nf1 with odd m and triplen n;

• Group 3: sideband harmonics, mfs ± nf1 with even m and n = 6k, k ∈ N.

For six-phase VSI, Group 1 harmonics are equal to those in the three-phase VSI,

irrespective of load configuration. This is because each three-phase set (i.e. ABC1 and

ABC2) produces harmonics of equal magnitude and zero phase shift (i.e. ĩinv1 = ĩinv2),

thus they sum up. Yet, the magnitude of each of them is half of that of the three-phase

VSI for the same VA rating.

For six-phase VSI with symmetric loads (Figure 5.6b), Group 2 harmonics get

eliminated. The magnitude of such harmonics from each three-phase set (i.e. ABC1

Table 5.1: Harmonic spectrum comparison between symmetric and asymmetric
six-phase VSI by harmonic groups

Harmonic
Group*

Three-Phase
System

Six-Phase Configuration

Symmetric Asymmetric

Group 1 iinv=1 p.u.⁓  φ  = 0°  iinv2
⁓  

iinv1
⁓  

iinv=1 p.u.⁓  
φ  = 0°  iinv2

⁓  

iinv1
⁓  

iinv=1 p.u.⁓  

Group 2
φ  = 90°  

iinv2
⁓  

iinv1
⁓  

iinv= 1/√2 p.u.⁓  
iinv=1 p.u.⁓  φ  = 180°  iinv2

⁓  iinv1
⁓  

iinv= 0⁓  

Group 3 iinv=1 p.u.⁓  φ  = 0°  iinv2
⁓  

iinv1
⁓  

iinv=1 p.u.⁓  φ  = 180°  iinv2
⁓  iinv1

⁓  

iinv= 0⁓  

*Normalized ĩinv per harmonic group to their three-phase equivalent
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Figure 5.6: Simulated harmonic spectra of input current ripple, Ĩinv for three- and
six-phase VSIs of the same VA rating (f1 = 50 Hz, fs = 2 kHz, PF = 0.6, M = 0.7).
(a) Three-phase VSI. Six-phase VSI with (b) symmetric load and (c) asymmetric

load.

and ABC2) is equal but 180
◦

out of phase (i.e. ĩinv1 = −ĩinv2). Hence, they cancel

out due to symmetry. This originates from δ = π/3 for symmetric six-phase loads.

So, Group 2 harmonics of the second three-phase set (i.e. ABC2) are phase shifted

by ϕ = nδ = nπ, for triplen n. On the other hand, Group 2 harmonics are 90
◦

out of phase for six-phase VSI with asymmetric loads. In this case, δ = π/6 and

ϕ = nδ = n(π/2), for triplen n. Thus, their per-unit magnitude sum is
√

2. But

since the phase current in six-phase systems is half of that of three-phase ones, the

resulting magnitude of such harmonics are reduced by a factor of 1/
√

2 (Figure 5.6c).

Group 3 harmonics in each of the three-phase sets of the six-phase VSI with
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symmetric loads are in-phase (i.e. ϕ = nδ = n2π for δ = π/3 and n = 6k), and thus

remain the same, for the same reason as Group 1 (i.e. the halves add up). However,

such harmonics are 180
◦

out of phase for six-phase VSI with asymmetric loads, hence

they cancel out (i.e. ϕ = nδ = nπ for δ = π/6 and n = 6k).

In summary, each of the different six-phase configurations contain only two out

of the three harmonic groups in three-phase VSI, with even multiples of carrier har-

monics being mutual in both six-phase loads. Yet the harmonics eliminated in the

six-phase symmetric load (i.e. Group 2) are more dominant than those eliminated in

the asymmetric load (i.e. Group 3). Therefore, six-phase VSI with symmetric loads

yields the lowest DC-capacitor RMS current.

Table 5.1 summarizes the vector diagrams of the different harmonic groups of

the input DC current ripple in the symmetric and asymmetric six-phase VSI. This

analysis is extended to nine-phase inverters in [222].

5.3 DC-Bus Voltage Ripples

After deriving numerical expressions for the DC-capacitor RMS current ripple in

the previous section (recall ĩc ≃ −ĩinv), numerical expressions for the DC-capacitor

voltage ripple, ṽc are now sought for symmetric and asymmetric six-phase configura-

tions. The ṽc can be defined as [202]:

ṽc =
1

C
∫ ĩc dt =

1

C
∫ (Īinv − iinv) dt (5.3.1)
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5.3.1 Symmetric Configuration

The ṽc can be obtained by substituting (5.2.1) in (5.3.1). This yields ṽc in (5.3.2),

with Ci = vi(ti), i ∈ {1, 2, ..., 5}.

ṽc =
Īinv
C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v0 = t − t0, for t0 ≤ t < t1

v1 = (1 − iA1

Īinv
)(t − t1) + C1, for t1 ≤ t < t2

v2 = (1 − iA1+iC2

Īinv
)(t − t2) + C2, for t2 ≤ t < t3

v3 = (1 − iA1−iB2

Īinv
)(t − t3) + C3, for t3 ≤ t < t4

v4 = (1 + iB1+iB2

Īinv
)(t − t4) + C4, for t4 ≤ t < t5

v5 = (1 + iB2

Īinv
)(t − t5) + C5, for t5 ≤ t < t6

v6 = t − t7, for t6 ≤ t < t8

(1 + iB2

Īinv
)(t − t5) − C5, for t8 ≤ t < t9

(1 + iB1+iB2

Īinv
)(t − t4) − C4, for t9 ≤ t < t10

(1 − iA1−iB2

Īinv
)(t − t3) − C3, for t10 ≤ t < t11

(1 − iA1+iC2

Īinv
)(t − t2) − C2, for t11 ≤ t < t12

(1 − iA1

Īinv
)(t − t1) − C1, for t12 ≤ t < t13

t − t14, for t13 ≤ t < t14

(5.3.2)

The Ci in (5.3.2) are the constants resulting from the integration operation in
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(5.3.1). Ci is obtained by evaluating v(i−1) at T(i−1). This yields:

C1 =T0

C2 =C1 + (1 −
iA1

Īinv
)T1

C3 =C2 + (1 −
iA1 − iC2

Īinv
)T2

C4 =C3 + (1 −
iA1 − iB2

Īinv
)T3

C5 =C4 + (1 +
iB1 − iB2

Īinv
)T4

(5.3.3)

The ṽc for symmetric six-phase VSI in Mode 3 is depicted in Figure 5.4. One

can note that ṽc is symmetric around t7. Hence, the mean square value of ṽc can be

calculated as:

Ṽ
2
c =

1

Ts
∫

t0+Ts

t0

ṽ
2
c dt =

2Ī
2
inv

C2Ts
[

6

∑
i=0

∫
Ti

0

v
2
i dt]

=
2Ī

2
inv

C2Ts
[∫

T0

0

t
2
dt + ∫

T1

0

(((1 − iA1

Īinv
)t + C1)

2

dt

+ ∫
T2

0

(((1 − iA1 + iC2

Īinv
)t + C2)

2

dt + ∫
T3

0

(((1 − iA1 − iB2

Īinv
)t + C3)

2

dt

+ ∫
T4

0

(((1 + iB1 + iB2

Īinv
)t + C4)

2

dt

+ ∫
T5

0

(((1 + iB2

Īinv
)t + C5)

2

dt + ∫
T6

0

t
2
dt] (5.3.4)

The RMS inverter DC-bus voltage ripple, Ṽc over Mode 3 is computed as:

Ṽc =

√
6
π ∫

π/2

π/3

Ṽ 2
c dθ (5.3.5)
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Substituting (5.1.2) and (5.2.2) in (5.3.4) and performing the integration in (5.3.4),

results in:

Ṽc = KvM

√
1

60
M + (6 −

65

2π
M +

9

2
M2 + 18v2

0) cos2 φ (5.3.6)

where Kv = IL/8Cfs. For symmetric balanced loads, the average value over the other

eleven 60
◦

intervals (Figure 5.3a) is the same.

5.3.2 Asymmetric Configuration

Similar to the methodology undertaken in Section 5.2.2, Modes 3–5 are analyzed

to derive Ṽc for six-phase VSI with asymmetric loads. Again, derivations for Ṽc in

Mode 3 are similar to those carried out in the previous subsection and hence are not

repeated. For Modes 4 and 5, ṽc is similar to that of Mode 3 defined in (5.3.1), but

using iinv4 and iinv5 instead of iinv3 in (5.2.1), respectively. Therefore, intermediate

steps pertaining to ṽc and Ṽ
2
c are not shown for brevity. The RMS inverter DC-bus

voltage ripple over one fundamental cycle is the weighted sum of Ṽ
2
c in Modes 3–5,

given as:

Ṽc = { 3
π ∫

π/3

π/4

Ṽ
2
c3 dθ +

3
π ∫

π/2

π/3

Ṽ
2
c4 dθ +

3
π ∫

7π/12

π/2

Ṽ
2
c5 dθ}

1/2

(5.3.7)

Performing the integration in (5.3.7) yields:

Ṽc = KvM{3 −
24

5
M +

9

4
M

2
+ 9v

2
0 −

16

5π
Mv0 sin 2φ + (3 −

21

4
M +

9

4
M

2) cos 2φ}
1/2

(5.3.8)

Note that some numerical approximations were conducted in (5.3.6) and (5.3.8) in

order to yield simple and closed-form formula. While this study is limited to SPWM

114



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

(i.e. v0 = 0), previous studies [212–215] suggested no improvement in input voltage

ripples for MPIs when using SVM. Nonetheless, the expressions are given in terms of

v0 for future work.

5.4 DC Capacitor Design

The DC-bus capacitor is designed to meet the requirements of the inverter system.

Among them, it must satisfy two criteria related to DC stresses: 1) a continuous

current rating higher than the maximum Ĩc, and 2) withstand an allowable voltage

ripple, typically below 10%. As such, the points at which the current and voltage

ripples are at their maximum must be defined. Using the derived expressions for

Ĩc and Ṽc in Section 5.2 and 5.3, the maximum DC stress points in six-phase VSI

are found in this section. Then, simple formulas for capacitor selection is provided,

considering symmetric and asymmetric loads.

Consider the variables affecting the current and voltage ripples in (5.2.6), (5.2.10),

(5.3.6), and (5.3.8). They can be classified as design-specific and operation-specific

variables. The former variables are IL, C, and fs, whereas the latter variables are

M and φ. The design-specific variables are irrelevant when determining the points of

maximum stress and rather act as scaling factors. Thus, they can be normalized when

solving for the maximum points. It follows that the normalized capacitor current and

voltage ripples are Îc = Ĩinv/IL and V̂c = Ṽc/Kv, respectively. The maximum stress

points can then be treated as an optimization problem defined as:

x
∗
= arg max

x
f(x) (5.4.1)
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Figure 5.7: Contour map of f(x) showing x
∗
. Normalized current ripple, Îc = Ĩc/IL

for (a) symmetric and (b) asymmetric loads, and normalized voltage ripple,
V̂c = Ṽc/Kv for (c) symmetric and (d) asymmetric six-phase loads.

subject to

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 2π
(5.4.2)

where f(x) is Îc and V̂c, and x = [x1 x2]T = [M φ]T . The two-dimensional

nonlinear f(x) can be solved using any of the classical optimization methods [223].

Figure 5.7 depicts the maximum stress points, x
∗

in the f(x) space. In terms of φ, the

maximum current and voltage stress occurs at the same point: φ
∗
= kπ, k ∈ {0, 1, 2...}

(i.e. unity PF), irrespective of load configuration. On the other hand, the maximum

stress points occur at different M : the maximum current stress occurs at M
∗
= 0.55

and 0.57 and the maximum voltage stress occurs at M
∗
= 0.59 and 0.65 for symmetric

and asymmetric loads, respectively.
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Evaluating Ĩinv in (5.2.6) and (5.2.10) at x
∗

yields:

ICAP ≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6/5 ⋅ IL, for symmetric loads

5/4 ⋅ IL, for asymmetric loads

(5.4.3)

where ICAP is the rated continuous current of the DC-capacitor. Similarly, the re-

quired capacitance, C to guarantee an acceptable DC voltage ripple can be found by

evaluating Ṽc in (5.3.6) and (5.3.8) at x
∗
. This yields:

C ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3
√

3IL
16fs∆Vpp

, for symmetric loads

4
√

3IL
21fs∆Vpp

, for asymmetric loads

(5.4.4)

where ∆Vpp is the allowable peak-to-peak voltage ripple. Note that ICAP and C for

asymmetric six-phase loads is higher than its symmetric counterpart by approximately

5%. Hence, if the six-phase inverter is designed to be suitable for both load configu-

rations, the formulas for asymmetric loads should be employed for the DC-capacitor

sizing.

The accuracy of the derived formulas for the DC-capacitor current and voltage

stresses is examined next.

5.5 Results and Discussions

The developed analytical formulas for the DC-bus capacitor RMS voltage and

current ripples are verified by numerical simulations and experimental testing. Fig-

ure 5.8 depicts the experimental setup a six-phase VSI connected to a passive RL
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Table 5.2: Experimental setup and simulation parameters

Parameter Symbol Value Unit

DC-bus voltage Vdc 100 V
DC-bus capacitor C 80 µF
DC-line resistance Rdc 30 mΩ
DC-line inductance Ldc 10 µH
Fundamental frequency f1 50 Hz
Switching frequency fs 10 kHz
Switching dead time td 2 µs

load. The passive load is chosen for its flexibility to be configured as symmetric and

asymmetric load by simply adjusting the angle δ of the virtual reference voltage in

the controller. Nevertheless, the following experimentation and analysis are equally

applicable to motor loads, if the load currents are balanced and almost sinusoidal.

Table 5.2 lists the experimental setup parameters. The VSI is made up of six Infi-

neon half-bridge 1200V/600A IGBT FF600R12IE4 modules connected via DC bus-

bars made of copper. The inverter is controlled via a 32-bit, dual-core, floating-point

Texas Instruments TMS320F28379D digital signal processor (DSP). The employed

DC-bus capacitor bank is two-paralleled 40 µF film capacitors. Note that the effect

of equivalent series resistance (ESR) and equivalent series inductance (ESL) of the

film capacitors on the voltage ripple estimation is negligible [215]. The DC voltage

is supplied from a Keysight N8932A DC source. The employed RL load is made

adjustable to facilitate testing at different PF points where industrial drives are typ-

ically operated (0.6–0.9), as tabulated in Table 5.3. The DC-line impedance, Zdc is

the impedance of the DC cable between the power source and the inverter, whose

resistance is Rdc = 30 mΩ and its inductance is estimated based on the cable’s length

and diameter to be Ldc = 10 µH.
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Figure 5.8: Experimental setup of a six-phase VSI with RL load.

Table 5.3: Per-phase RL load parameters

PF (f1 = 50 Hz) 0.6 0.8 0.9

R (Ω) 1.1 2.2 4.4
L (mH) 5.0 5.0 5.0

Experimental measurements are acquired using MDO4024C Tektronix oscilloscope

with THDP0200 differential voltage probe and SL261 current probes. A low-pass filter

(LPF) with a cut-off frequency of 100 kHz is applied to the measured signals (both

experimentally and in simulation) to eliminate high frequency spikes due to IGBT

switching. The remainder of the section discusses the experiments and simulations

by 1) comparing symmetric to asymmetric six-phase VSI, in terms of voltage and

current stress on the DC-capacitor, 2) validating the accuracy of the derived formulas,

3) comparing six-phase VSI to conventional three-phase counterpart, and 4) practical
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Figure 5.9: Experimental results for DC-bus capacitor voltage and current ripples in
six-phase VSI for symmetric (left column) and asymmetric (right column) loads
(f1 = 50 Hz, fs = 10 kHz, Vdc = 100 V, PF = 0.6). (a) M = 0.4. (b) M = 0.7. (c)

M = 0.9.

considerations on the employment of the derived formulas.

5.5.1 Symmetric vs. Asymmetric Six-Phase VSI

Figure 5.9 depicts the experimental measurements of the DC-capacitor voltage

and current stresses at PF = 0.6 for symmetric and asymmetric loads for M = 0.4,

0.7, and 0.9. It can be observed that the DC-capacitor experiences a higher voltage

and current stresses when the load is asymmetric, especially at low PFs. Therefore,
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Figure 5.10: Experimental harmonic spectra of DC-capacitor voltage and current
ripples in six-phase VSI with symmetric (left column) and asymmetric (right

column) loads (f1 = 50 Hz, fs = 10 kHz, Vdc = 100 V, PF = 0.6, M = 0.7). (a)–(b)
Ĩinv,n. (c)–(d) Ṽc,n.

the symmetric distribution leads to reduced voltage and current stress on the DC-

capacitor.

To further analyze the voltage and current stresses on the DC-capacitor for the

different load configurations, the experimentally-obtained harmonic spectra of ĩinv and

ṽc in Figure 5.9b are shown in Figure 5.10. The dominant harmonic of ĩinv and ṽc is at

2fs. This dominant harmonic is of the same magnitude for both load configurations,

symmetric and asymmetric, when the operating conditions are similar. However,

the harmonic distribution is different, which is why Ĩinv and Ṽc differ from one load

configuration to the other. Sideband harmonics, mfs±nf1 around mfs where m is an

even multiple exist only in the asymmetric load for Ĩinv and Ṽc (Figure 5.10b and d).

Put otherwise, even sideband harmonics are cancelled when supplying a symmetric

six-phase load. This confirms the harmonic analysis of the DC current ripple discussed

in Section 5.2.3. Furthermore, the harmonic spectra in Figs. 5.6b and 5.6c match the

experimentally measured spectra in Figs. 5.10a and 5.10b, respectively.

121



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

0

1

2

3

4

5

6

C
ap

a
ci

to
r

C
u

rr
en

t
R

ip
p

le
,

~ I c
(A

rm
s)

Simulation
Computed
Experiment

0

0.5

1

1.5

C
a
p

a
ci

to
r

V
o
lt

a
g
e

R
ip

p
le

,
~ V
c

(V
rm

s)

0

2

4

6

8

C
ap

a
ci

to
r

C
u

rr
en

t
R

ip
p

le
,

~ I c
(A

rm
s)

Symmetric Asymmetric

0

0.5

1

1.5

2

2.5

C
a
p

a
ci

to
r

V
o
lt

a
g
e

R
ip

p
le

,
~ V
c

(V
rm

s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Modulation index, M

0

2

4

6

8

C
ap

a
ci

to
r

C
u

rr
en

t
R

ip
p

le
,

~ I c
(A

rm
s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Modulation index, M

0

0.5

1

1.5

2

2.5

3

C
a
p

a
ci

to
r

V
o
lt

a
g
e

R
ip

p
le

,
~ V
c

(V
rm

s)

(b)

(a)

(c)

Figure 5.11: Experimental verification of Ĩinv formulas in (5.2.6) and (5.2.10) (left
column) and Ṽc formulas in (5.3.6) and (5.3.8) (right column) for symmetric and

asymmetric six-phase loads, respectively. (a) PF = 0.9. (b) PF = 0.8 (c) PF = 0.6.

5.5.2 Validity of the Derived formulas

For accuracy verification of the derived formulas of ĩinv and ṽc for symmetric and

asymmetric six-phase VSI, a modulation index sweep is conducted at PF =0.6, 0.8,

and 0.9. The measured RMS values of Ĩinv and Ṽc, both experimentally and in simula-

tion, are benchmarked against the computed values using the derived formulas. The

simulations are conducted in MATLAB/Simulink using the same parameters in Table
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Table 5.4: Root Mean Square Error (RMSE) between calculated and
experimentally-measured DC-capacitor RMS voltage and current ripples

Configuration Symbol Eq. PF RMSE Unit

Symmetric

Ĩinv (5.2.6)
0.9 0.15

A0.8 0.18
0.6 0.29

ṽc (5.3.6)
0.9 0.05

V0.8 0.09
0.6 0.15

Asymmetric

Ĩinv (5.2.10)
0.9 0.12

A0.8 0.23
0.6 0.19

ṽc (5.3.8)
0.9 0.09

V0.8 0.18
0.6 0.20

5.2, along with the IGBT module characteristics and DC-capacitor parasitics (series-

connected RLC model) found in the datasheets. Figure 5.11 show the measured and

computed values of Ĩinv and Ṽc at the different PF points. A very good agreement

between the measured, simulated, and computed Ĩinv and Ṽc is evident in Figure 5.11,

for both load configurations. Additionally, Figure 5.11 reiterate the findings in Figs.

5.9 and 5.10 that the DC-capacitor experiences a higher voltage and current stress

when supplying an asymmetric load. The RMSE between the calculated Ĩinv and Ṽc

using the derived formulas and the experimentally measured counterparts over the

range of M ∈ [0.1, 1] of Figure 5.11 is given in Table 5.4. A very high accuracy of the

derived formulas for Ĩinv and Ṽc is demonstrated with a RMSE below using the de-

rived formulas (5.2.6) and (5.2.10), for symmetric and asymmetric loads, respectively,

with a RMSE below 0.25 A and 0.20 V, respectively.
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5.5.3 Six-Phase vs. Three-Phase VSI

To summarize the harmonic content of Ic for the three inverters, the harmonic

content factor (HCF) is computed for each harmonic group. The HCF in this thesis

is defined as the ratio of the RMS square of the harmonics in a given group to the

RMS square of Ic, as:

HCF =

∑
m,n

I
2
c,mfs±nf1

I2
c

(5.5.1)

where the selection of m and n in the numerator is based on the aforementioned

harmonic group definition. Table 5.5 summarizes the HCF of each harmonic group

for the three inverters, computed to the 600th harmonic. Table 5.5 confirms the fact

that Group 2 harmonics are more dominant than Group 3 in three-phase VSI, with

a ratio of five to two. Thus, the elimination of Group 2 in the symmetric six-phase

VSI yields the smallest Ic.

The same harmonic content analysis applies to the DC-capacitor voltage ripple,

as demonstrated in Figs. 5.10c and 5.10d, since Ṽc,n = Ĩc,n/Zc,n, where Zc is the

impedance of the capacitor and the n subscript denotes frequency order. However,

the ratio of voltage harmonic to current harmonic (Vc,n/Ic,n) is not the same for all nth

harmonic in Figs. 5.10c and 5.10d as the reactance of the capacitor, Xc,n = 1/(ωnC)

decreases for higher frequencies.

To quantify the DC-capacitor requirement reduction in six-phase VSI, when com-

pared to its three-phase counterpart, the DC-capacitor voltage and current ripples

are evaluated over the entire operation envelop. Figure 5.12 depicts the normalized

Ĩc (i.e. Îc = Ĩc/IL) and Ṽc (i.e. V̂c = Ṽc/Kv) for three- and six-phase VSIs over M and

PF ∈ [0, 1]. The normalized Ĩc and Ṽc maps are in line with the previous findings:
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Figure 5.12: Normalized voltage and current stresses on the DC-bus capacitor in
three-phase and six-phase VSIs. (a) Current stress. (b) Voltage stress.

six-phase VSI achieves lower DC-capacitor voltage and current ripples, and they are

the lowest in the case of symmetric loads/machines. Since the DC-capacitor is always

designed to handle the maximum voltage and current stresses, the normalized maxi-

mum voltage and current stresses in Figure 5.12 are shown in Figure 5.13. Six-phase

VSI with symmetric loads/machines yields DC-capacitor voltage and current ripple

reduction by 24% and 10%, respectively compared to 20% and 7% for the asymmetric

case, respectively, when benchmarked against the three-phase VSI. It is to be high-

lighted that current ripple handling by the DC-capacitor are usually the bottleneck

Table 5.5: Harmonic content factor (HCF) of DC-capacitor current harmonic groups
in three- and six-phase VSIs

Harmonic Group 3-phase
6-phase

Symm. Asymm.

Group 1 36% 82% 70%
Group 2 46% 0% 29%
Group 3 18% 16% 0%
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Figure 5.13: Normalized maximum DC-capacitor voltage and current stress in
three-phase and six-phase VSIs with symmetric and asymmetric loads.

in capacitor design for inverters operating beyond 10 kHz, and hence dominate the

selection criteria.

5.5.4 Practical Considerations

The derived formulas for current and voltage ripples for the six-phase VSI were

obtained under two main assumptions: very high capacitance of the DC-bus capacitor

and very high switching frequency. The validity of such assumptions are assessed in

this subsection.

Input Filter

Ideally, where the DC-side impedance is zero, the current ripple is supplied entirely

by the source, and the capacitor voltage ripple is zero. However, some ripple exists in

idc due to the stray inductance of the cables and the DC source. This can also occur

when C is not large enough to sink all the ripples, as assumed earlier. In this case,

the effect of Ldc becomes significant and must be evaluated. Figure 5.14a depicts the

equivalent DC circuit of the inverter.
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Figure 5.14: Equivalent circuit of the DC-side of the inverter at the switching
frequency, fs. (a) Circuit diagram. (b) iinv waveform.

Assuming a symmetrical pulsating iinv with 50% duty cycle, as shown in Figure

5.14b, iinv can be written as a summation of the DC (average) component and the

high-frequency components as:

iinv = i0 −
4
πIp

∞

∑
n=1,3,5,...

1
n sin(2nωst) (5.5.2)

where i0 = Ip/2 is the average component passing through Ldc. By superposition and

after phasor calculations, idc can be expressed as:

idc =
Ip
2
−

4
πIp

∞

∑
n=1,3,5,...

1
n sin(2nωst) ⋅

»»»»»»»»
1/ωsC

ωsLdc − 1/ωsC
»»»»»»»»

(5.5.3)

Using (5.5.3), an inductance sweep code is run in MATLAB to investigate the change

in the current ripple with different Ldc values. The resulting idc waveform at fs = 10

kHz with Ip = 10 A and C = 80 µF is shown in Figure 5.15. The values of Ldc at

which idc spikes are the values where Ldc and C resonate with the switching frequency

and its odd multiples. However, practically, the series resistances of the DC cables
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Figure 5.15: DC input current, idc vs. DC line inductance, Ldc.

and the ESR of the DC-capacitor limit the spike value at the resonant frequency,

as demonstrated by the orange trace in Figure 5.15 when considering Rdc = 30 mΩ.

The maximum current ripple is suppressed at all operating conditions, especially at

resonant points. In this study, Ldc is assumed to be ≥ 2/(ω2
sC). In this region, the

DC-side current only supplies the DC current and almost all current ripple passes

through the capacitor, i.e. ĩdc = 0.

Modulation Frequency

The derived formulas for the DC current and voltage ripples assume mostly si-

nusoidal output currents. However, this assumption is only valid under certain cir-

cumstances for mf . In order to determine the validity of the analysis under different

values of mf and M , extensive simulations were performed over a range of values for

the two foregoing variables. The range for M is 0.1–0.9 with steps of 0.1. The range

for mf is 6–30, with steps of 1. The error in the values of calculated and measured

current and voltage are depicted in the Figure 5.16 for both symmetrical and asym-

metrical loads. The pink plane is the threshold for a 10% calculation error. The error

decreases with the increase in the values of mf and M .
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Figure 5.16: Calculation error of derived formulas for current ripple, Ĩc and voltage
ripples, Ṽc in six-phase symmetric (left column) and asymmetric (right column) load
configuration as a function of modulation frequency, mf and modulation index, M .

In summary, the following conditions must be met to yield a calculation error

below 10% using the derived formulas DC current and voltage ripple estimation in

six-phase inverters:

1. The switching frequency is higher than or equal to ten times the output funda-

mental frequency, i.e. fs ≥ 12f1 or mf ≥ 12.

2. The switching frequency is higher than or equal to the
√

2 of the resonant

frequency of the DC-side filter, fr = 1/(2π
√
LdcC), i.e. fs ≥

√
2fr. This can
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alternatively be expressed as Ldc ≥ 2/(ω2
sC).

3. The output AC currents are balanced, and their THD is ≤15%.

4. The modulation index, M is ≥ 0.3.

The foregoing conditions are normally fulfilled in motor drive applications employ-

ing high frequency switching devices, and therefore the derived formulas are applicable

over a wide range of operating conditions.

5.6 Summary

Detailed analyses of DC-bus voltage and current ripples in six-phase symmetric

and asymmetric VSIs were presented in this chapter. The analyses rendered, for the

first time, analytical formulas to evaluate the voltage and current stresses on the

DC-capacitor in six-phase VSI supplying symmetric and asymmetric loads. The ac-

curacy of the derived formulas was verified by simulation and experimental testing.

The derived formulas can evaluate the DC-capacitor voltage and current ripple over

a wide range of operating conditions. Subsequently, simple capacitor sizing rules for

symmetric and asymmetric six-phase VSIs were proposed for SPWM. Furthermore,

the harmonic spectra of the DC-capacitor current in six-phase VSI was analyzed and

benchmarked against its conventional three-phase counterpart. The spatial distri-

bution of the additional three-phases in six-phase VSI leads to cancellation of some

dominant carrier-sideband harmonics that renders reduced current stress on the DC-

capacitor. This in turn yields a reduced capacitor size in six-phase VSI when com-

pared to its three-phase counterpart, for the same VA rating. The current stress

is minimized when the supplied load/machine is of symmetric spatial distribution
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with 10% reduction when compared to three-phase VSI, or 3% lower than six-phase

asymmetric loads.

The derived formulas are beneficial for DC-capacitor selection in six-phase VSIs

based on voltage and current ripples ratings, and can be used for capacitor derating

and lifetime prediction.
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Chapter 6

Holistic Design and Development

of a 100 kW SiC-Based Six-Phase

Traction Inverter

As mentioned earlier in the previous chapter, a thorough design of a six-phase

inverter is not present in the literature. A thorough design should exploit the inherent

advantages of six-phase systems such as lower torque pulsation (in the case of an

asymmetric motor) [36], reduction of DC-capacitor requirements as discussed in the

previous chapter, and reduced cabling cost [38], and mitigate their drawbacks such

as higher number of sensors and gate drivers.

As mentioned earlier in Chapter 1, Dana TM4 offers commercial MPIs for traction

drives for light- to heavy-duty trucks [24]. The power density of those inverters is

smaller than 10 kW/L, which is not competitive when compared to state-of-the-

art three-phase traction inverters [16]. Recently, Koenigsegg has released David, a

700 kW SiC-based six-phase inverter for its limited production PHEV, the Gamera
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[39]. The technical and commercial details of the David are not disclosed.

This chapter presents the design and development of a 100 kW SiC-based six-

phase traction inverter. Similar designs of SiC-based three-phase traction inverters

have been investigated in [117,127,224–230]. All of the three-phase designs proposed

in [117,127,224–230] use power module packages (either half-bridge or six-pack) for the

switching devices. This stems from the high per-phase current requirement versus the

relatively low current rating of discrete power devices. Alternatively, discrete power

devices can be connected in parallel. A commercial example is the 2018 Tesla Model

3 inverter, which utilizes four parallel discrete SiC MOSFETs per switch [44]. Such

a requirement is alleviated in multiphase systems owing to the reduced per-phase

current requirement. For instance, an eleven-phase 50 kW traction system with a

single SiC MOSFET per switch was proposed in [49]. In the proposed design, a single

discrete SiC MOSFET is sufficient for the rated per-phase current, eliminating the

need for device paralleling altogether. In [224], a subsystem optimization approach is

investigated for a 250 kW SiC-based three-phase inverter, with a focus on the bus bar

design. The bus bar is designed to accommodate three half-bridge modules stacked

in a planar manner. Similar bus bar designs were discussed in [127, 225]. However,

stacking six half-bridge modules for a six-phase inverter significantly deteriorates the

power density. This challenge was addressed in [231] with a two-sided bus bar that

integrates six half-bridge power modules, three on each side. On the other hand, the

resultant design used two cold plates, one on each side, which further complicates the

cooling system design. An enhanced integration of six-pack SIC module with bus bar

was proposed in [230], achieving a remarkable power density of 43 kW/L. However,

the study did not showcase system-level integration involving mechanical housing,
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control card, and sensors. Thanks to the flexibility that discrete power devices offer,

the proposed design utilizes a printed circuit board (PCB) that integrates the power

devices and the DC-capacitor bank. Therefore, a simple, yet power dense design is

achieved. PCB-based bus bar designs were proposed in [226] and [228] with half-

bridge SiC modules. Given the large footprint of such modules, the PCB size is

subsequently made large to integrate the connection points of the modules. This

called for a thorough analysis and design precautions to ensure that the PCB design

is adequate in terms of stray inductance, current density, and voltage overshoot. A

combination of bus bar and PCB-based structures was proposed in [229] to connect the

power module to the DC-capacitor bank made of ceramic capacitors on three stacked

PCBs. While, the proposed DC-capacitor bank is claimed to improve the power

density compared to film capacitors, the addition of PCBs and bus bars increases the

cost of the inverter. Furthermore, on-board current sensors were proposed in [226]

using a shunt resistor with an isolated amplifier to eliminate the need for bulky hall-

effect current sensors. However, shunt resistors incur losses.

In the proposed inverter, the PCB-based design integrates discrete SiC MOSFETs

and, hence, offers flexibility and streamlines the design process. Besides, the DC-

capacitor is sized specifically for six-phase drives, exploiting the advantages of reduced

DC voltage and current ripples in six-phase systems [37]. A coreless monolithic hall-

effect current sensor integrated circuit (IC) is utilized to achieve a compact design

that mitigates the higher count of current sensors in six-phase systems. The inverter

housing encloses the electronics and integrates the coolant channel in a single body,

thus delivering a compact mechanical design. As such, the holistic electrical-thermal-

mechanical methodology proposed in this paper contributes to the existing literature
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by providing the first detailed design of a six-phase inverter. The proposed design

aims to facilitate the development of MPD for automotive applications.

The remainder of this chapter is organized as follows. Section 6.1 discusses the

characteristics of six-phase drives for traction applications. Sections 6.2–6.6 presents

the holistic design methodology of the electrical design for the SiC-based six-phase

traction inverter, whereas Sections 6.7 and 6.8 present the thermal and mechanical

designs, respectively. Section 6.9 benchmarks the main specifications of the proposed

design to commercial six-phase and three-phase counterparts. Finally, Section 6.10

outlines the concluding remarks.

6.1 Fundamental of Six-Phase Electric Drives

To effectively design a six-phase inverter, a basic knowledge on the machine’s

characteristics must be established first.

A six-phase motor can be configured based on the spatial displacement angle,

δ between the two sets of three-phases [232]: split (δ = 0), symmetric (δ = π/3),

or asymmetric (δ = π/6). The neutral of both three-phase sets can be common or

isolated. In the latter case, the six-phase motor is commonly referred to as dual

three-phase motor [30, 36]. Table 6.1 summarizes the performance characteristics of

such motor configurations. For EV applications, symmetric and asymmetric six-phase

motors have been investigated intensively [220]. The asymmetric configuration has

been the most popular among different configurations owing to its reduced torque

pulsation by the elimination of the sixth-harmonic [36]. Additionally, fault-tolerance

is at its best when considering asymmetric six-phase motors with isolated neutrals

[219]. On the other hand, symmetric motors offer a higher efficiency and lower DC-link
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Table 6.1: Six-phase motors comparison based on winding configuration

Property
Winding configuration

Split Symmetric Asymmetric

Spatial displacement 0 π/3 π/6
DC ripples Worst Best Medium
Fault-tolerance Worst Best Best
Torque pulsation Medium Medium Best
Efficiency Best Medium Worst

Based on [36,37,219,220,232,233]

voltage and current ripples when compared to the asymmetric motor. Applications of

split six-phase motors is limited due to poor fault tolerance capability [219]. Moreover,

there is no reduction in the DC-link voltage and current ripples that could lead to

reduced DC-capacitor size, as is the case in the other two configurations [37]. To

summarize, the six-phase motor configuration impacts the design criteria for the

traction inverter. Such criteria are usually distinguishable from the conventional

three-phase inverter.

As shown in Figure 3.8a, more than half of the total volume of a three-phase

traction inverter is consumed by the DC-link capacitor and the thermal management

system. As shown in Figure 3.8b, the most significant cost component is the power

semiconductors. As mentioned earlier in the previous section, multiple discrete de-

vices, connected in parallel per switch, are usually employed in three-phase traction

inverters to withstand the rated current. While a six-phase inverter has double the

number of switches when compared to a three-phase inverter, the per-phase current

is halved. Therefore, the total number of devices is equal to that of a three-phase,

distributed over six switching legs [234]. For instance, a three-phase inverter with a

per-phase rated current of 200 A requires two discrete C3M0016120K (1200 V/115
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A) MOSFETs in parallel for each of the six switches; a total of twelve devices. For

the same VA rating, the per-phase rated current of the six-phase inverter is 100 A. In

this case a single device per each of the twelve switches is sufficient. Therefore, there

is no increase in the discrete SiC devices cost. In contrast, six-phase inverters offer

up to 10% reduction in the ripple current rating of the DC-capacitor (in the case of

a symmetric motor), which, for a traction inverter, is the dominant factor in deter-

mining its volume [235]. With respect to Figure 3.8, a 10% reduction in the DC-link

capacitor leads to 3% reduction in the total volume of the inverter. Moreover, six-

phase systems use smaller and lighter AC outputput cables, which can provide up to

21% lower cost as compared to its three-phase counterpart [234]. On the other hand,

six-phase inverters require twice the number of gate drivers and current sensors.

The proposed inverter is designed for asymmetric drives. Nevertheless, since the

design for asymmetric drives poses higher constraints to the DC-link capacitor, the

proposed inverter is also applicable to symmetric six-phase drives.

A holistic design methodology is undertaken to devise the design of the SiC-based

six-phase inverter. Such a methodology involves the electrical, electromagnetic, ther-

mal, and mechanical packaging of the inverter. Figure 6.1 demonstrates the holistic

design flowchart of the present inverter. Based on the design specifications in Table

6.2 switching device and DC-bus capacitor selection is made. The resulting physical

dimensions are then used to design the power and gate driver PCBs. Consequently,

the mechanical housing encompassing all components, as well as an integrated coolant

channel, is designed. Finally, the electrical loss evaluation of the design and the me-

chanical constraints are used to design the thermal heat sink. All of foregoing steps

are repeated recursively until all design criteria are met. The remainder of this section
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Table 6.2: Six-phase traction inverter design specification

Parameter Symbol Value Unit

Nominal DC-bus voltage Vdc 800 V
Continuous (1 hr) power Pr 100 kW
Peak (10 s) power Pmax 175 kW
Rated output current Ir 66 Arms
Maximum output current Imax 115 Arms
Power factor PF 0.9 —
Efficiency η ≥97 %
Switching frequency fs 30 kHz

investigates the design methodology of these steps.

6.1.1 SiC Device Selection & Loss Evaluation

Considering SiC MOSFETs, packaging is available in discrete devices and power

modules. The latter is more popular in automotive applications, thanks to its high

power density and high current rating [236]. The former, on the other hand, gives
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Figure 6.1: Integrated inverter design flowchart.
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a higher flexibility in the design but suffers a relatively low current ratings. To

mitigate this drawback, discrete device paralleling is an industry-accepted solution.

For instance, Tesla’s Model 3 (2018) inverter employs four SiC discrete MOSFET

devices per switch, totaling 24 devices overall [44]. Device paralleling poses design

challenges pertaining to static and dynamic current sharing among the paralleled

devices [45,46]. This becomes more prominent as the switching frequency is increased,

which is desired for component miniaturization [10].

The foregoing reasons make six-phase inverters very appealing. Since per-phase

current is halved in in six-phase systems (when compared to three-phase counter-

parts), the per-phase current can be handled by a single discrete device, eliminating

the need for device paralleling altogether. For the proposed inverter design rated at

100 kW and 800 Vdc, the per-phase current is 66 Arms at 0.9 PF. Currently, most

device manufacturers offer SiC MOSFETs rated beyond 100 A. As such, discrete SiC

MOSFET C3M0016120K (1200 V/115 A) by Cree is selected for the proposed de-

sign owing to its low RDS(ON) of 16 mΩ. Figure 6.2 shows the efficiency map of the

SiC-based six-phase inverter when driving an eight-pole 100 kW PMSM using MAT-

LAB/Simulink and PLECS software packages. The losses considered are switching

and conduction losses from the twelve switches, which are evaluated using the ther-

mal model of the device provided by the manufacturer. The PMSM is dynamically

modeled with flux-linkage characteristics at different stator current magnitude and

rotor position. The dynamic model is obtained analytically via FEA and verified

experimentally in [30]. The efficiency of the inverter at rated power is 98.8% with a

peak efficiency of 99.3%.
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6.2 DC Capacitor Bank Sizing

There are three main types of capacitors considered for traction inverters, namely

electrolytic, ceramic, and film [117]. The latter is the most popular in automotive

applications owing to its high current conduction capability, which is a key factor

in sizing the DC-bus capacitor [200]. It also enjoys a relatively low ESR, immunity

against thermal runaway, and high reliability. On the other hand, film capacitors

suffer a low capacitance density when compared to ceramic and electrolytic. However,

ceramic capacitors have low capacitance per device and are costly, whereas electrolytic

capacitors are highly susceptible to temperature variations with high ESR. Figure 6.3

depicts the electric impedance characteristics of the three types considering the series

model of the capacitor considering its ESR and ESL, which is defined as:

ZC(ω) =
√
ESR2 + (ω ⋅ ESL − 1

ωC
)

2

(6.2.1)
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Figure 6.2: Efficiency map of the six-phase SiC-based inverter driving a 100 kW, 4
kRPM, 320 N⋅m permanent magnet synchronous machine (fs = 30 kHz, TJ = 80 °C,

Vdc = 800 V).
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where C is the capacitance and ZC is the impedance of the capacitor. It is notewor-

thy to highlight that film and ceramic capacitors are usually operate at a switching

frequency well below the resonant frequency of the capacitor (ωr = 1/
√
ESL ⋅ C)

in motor drive applications. In such region, the capacitive reactance is dominant,

and therefore, the parasitics of the capacitor are negligible [215]. Considering the

performance and cost tradeoff, film capacitors are selected for the proposed inverter

design.

As mentioned in Section 2.2, the DC-capacitor one of the largest component by

size (see Figure 3.8a). Therefore, minimizing the sizing of the capacitors can greatly

increase the power density of the inverter. Before the physical sizing of the capacitors

can be considered it is imperative to first ensure they meet the electrical requirements

of the design which are: (i) the capacitors’ current rating, I(CB) must be larger than

the input current ripple, IC,min and (ii) the total capacitance of the DC-capacitor
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Figure 6.3: Impedance comparison between different DC capacitor banks. Capacitor
bank sized for a 100 kW inverter with 5% allowable voltage ripple at 800 Vdc.
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bank, CB should be large enough to minimize the voltage ripple, ∆Vpp, typically

within 5%. The mathematical expressions for such design criteria are given in (5.4.3)

and (5.4.4) in Section 5.4 for an asymmetric six-phase drive are defined as [37]:

I(CB) ≥ IC,min = 5/4 ⋅ IL (6.2.2)

CB ≥ Cmin =
4
√

3IL
21fs∆Vpp

(6.2.3)

where Cmin is the capacitance required to maintain a certain voltage ripple. In addi-

tion to the electrical constraints, it is desirable to reduce the volume of the DC-bus

capacitor to improve the power density and decrease its impedance to improve the

efficiency. Hence, a multi-objective optimization problem arises with a Pareto opti-

mum solution [237]. To find the optimal DC-capacitor bank, a utility weighted-sum

objective function is defined as:

C
∗
B = arg min (w1V (CB) + w2Z(CB) + w3 ⋅ 1/I(CB)) (6.2.4)

subject to (6.2.2), (6.2.3), and

CB = (ns ⋅ np) ⋅ C, (6.2.5)

where

ns = max [Vdc
Vr
,
Vpk
Vs

], (6.2.6)

np = max [
IC,min
IC

,
nsCmin
C

], (6.2.7)
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Z(CB) is the impedance of CB as defined in (6.2.1). ns and np are the number

of DC-capacitor cells connected in series and/or in parallel, respectively. V (CB) =

nsnpV (C) and I(CB) = npIC are the volume and current rating of the DC-capacitor

bank calculated from the total number of capacitor cells in the bank, where V (C)

is the volume of a single capacitor cell in the bank. Vdc and Vpk are the rated and

peak DC-link voltages, respectively. Vr and Vs are the rated and surge capacitor

voltages, respectively. IC is the rated RMS current of the capacitor cell, and wi

are scalar weighting factors associated with the i
th

objective function. Note that
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Figure 6.4: Film capacitor candidates from Vishay (MKP1848 series) considering
minimum capacitance and current ripple rating: best candidate marked with an X.

(a) Volumetric capacitance density. (b) Impedance. (c) Current ripple.
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the minimization function considers the reciprocal of I(CB) since it is desirable to

maximize the power rating of the DC-capacitor bank. The optimization problem

is solved for the MKP1848 film DC-capacitors by Vishay [238] with a 20% safety

margin for I(CB). The values of the objective functions for the evaluated capacitors

are depicted in Figure 6.4, where the best candidate is marked with an ‘X.’ The

optimum DC-capacitor bank is C
∗
B = 52 µF built from thirteen MKP1848612704K2

capacitors (4 µF, 1200 V, 8 A) connected in parallel, and occupying a volume of 0.28

L. Note that this C
∗
B is one of the optimal Pareto points for the selected wi’s, where

volume minimization was given the highest priority to achieve the highest power

density possible. In other words, other Pareto optimal points can be found for a

different set of wi’s.

The designed DC-capacitor bank is a through-hole PCB mount package that is

integrated in the power PCB design as detailed next.

6.3 Power Board Design

A PCB design is selected to the power circuit owing to the low number of the power

SiC discrete MOSFETs, which provides a competitive edge when considering parasitic

inductance minimization. The power PCB is made of six layers of 113 g (4 oz) Copper

to handle the power ratings of the proposed inverter. The layer stack up considers the

forward and return current paths to be on opposing layers for flux cancellation, and

the DC-capacitors are placed as close as possible to the SiC MOSFETs to minimize

the commutation loops of the six half-bridge switching legs. Figure 6.5 depicts the

six layers stack up of the Power PCB. Copper width and weight in the PCB were
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Top Layer (Signal Layer)

Layer 2 (AC Out)

Layer 3 (AC Out)

Layer 4 (AC Out)

Layer 5 (DC−, AC Out)

Bottom Layer (DC+, AC Out)4 oz

Figure 6.5: Layer stack-up of the power PCB.

designed in accordance with the Institute for Printed Circuits (IPC) standard IPC-

2221A [239]. Low voltage signals are placed on the top layer to be as close as possible

to the gate driver board placed on top and to separate the low voltage signals from

the high voltage ones. However, in situations where separate layers were not feasible,

the guidelines outlined in the IPC-2221A standard were followed [239]. Specifically,

a minimum electrical clearance of 0.25 mm is maintained, with an additional 0.25

mm for every 100 V above 500 V. Considering Vdc = 800 V, a clearance of 1 mm was

established to prevent interference between high and low voltage nets.

As for component placement, the MOSFETs and DC-capacitors are placed on the

bottom layer to yield an almost flat top layer surface for gate driver board placement.

Also, the difference in height between the MOSFET and the DC-capacitor is occupied

effectively with the active thermal management system underneath the MOSFET, as

will be discussed in this chapter.

In addition to the discrete SiC MOSFETs and DC-capacitors, the power board

also includes on-board current sensors on the top layer. The top layer also includes

surface mount connectors to interface the MOSFETs to the gate driver board atop of

it as well as current sensor output and DC terminals for a DC-bus voltage sensor on
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the gate driver board. The schematic of the power board is included in Appendix A.

6.3.1 On-Board Current Sensors

The on-board current sensors are coreless, hall-effect monolithic IC chips from

Allegro Microsystems [240]. Employment of such sensors eliminates the need for

the bulky core-based hall effect sensors. For six-phase inverter applications, this

effectively mitigates the increased sensors drawback.

On the other hand, the current sensor ICs pose a design challenge pertaining to

the PCB trace whereby a notch design must be incorporated underneath the IC,

as shown in Figure 6.6. Therefore, the current density through the notch and the

resulting temperature rise must be carefully designed. An electrothermal analysis

was conducted using Ansys Q3D and Ansys Icepak FEA and computational fluid dy-

namics (CFD) software packages to yield a notch design that satisfies the maximum

operating temperature of the current sensor IC (150 °C) and the maximum allowable

temperature for the PCB material, which is 170 °C for FR4-TG170. The AC output

trace is made up of five layers and each layer is 0.14 mm thick. The width, length,

Notch angle

Notch width

Trace width

Notch 

length

Figure 6.6: Notch design for PCB trace underneath the on-board current sensor IC.
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and angle of the notch as well as the width of the trace are iteratively modified to

satisfy the thermal boundary conditions. Figs. 6.7a–6.7d present the electrothermal

simulation results for four design iterations of the power board section containing the

AC output trace, simulated at still air condition, continuous current of 100 A ≈ 1.5IL,

and an ambient temperature of 60 °C. In Iteration A, the maximum temperature con-

straint was violated. To address this issue, the notch width was doubled in Iteration

B, resulting in the satisfaction of the design constraints. In Iteration C, the physical

(a) (b)

(c) (d)

Temp. (°C)Temp. (°C)

150 30 (mm)150 30 (mm)

Top
switch

Bottom
switch

PCB

Current sensor IC

Copper trace

DC+

DC−

AC out stud
connector

Top
switch

Bottom
switch

PCB

Current sensor IC

Copper trace

DC+

DC−

AC out stud
connector

Figure 6.7: Electrothermal analysis for the AC output PCB trace in still air
condition at 60 °C ambient temperature. (a)–(d) Iterations A–D, respectively.
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dimensions were maintained as in Iteration B, but via stitching was introduced be-

tween the AC output layers. However, this modification only provided a negligible

thermal improvement at the notch, while causing a slight increase in the stray induc-

tance of the trace. Subsequently, via stitching was removed in Iteration D and the

trace width was doubled compared to Iterations B and C. As a result, a temperature

reduction of about 15 °C and a stray inductance reduction of 17% were achieved in

Iteration D compared to Iteration C. Iteration D exhibited a maximum temperature

of 119.4 °C, which is below the specified boundary conditions. Therefore, the design

configuration of Iteration D was adopted in the final PCB design. Table 6.3 lists the

notch and trace parameters used in the four iterations.

As for the physical size of the power board, the dimension bottlenecks were found

to be from the power circuit itself and the associated gate driver of the SiC MOSFETs.

The length was restricted by the length sum of the DC-capacitor bank, the AC output

trace, and a separation distance between the DC-capacitors and MOSFETs to allow

for heat sink walls; a total of 127 mm. In terms of width, the minimum gate driver

circuit width was around 20 mm. As such, the total width of the PCB is 240 mm for

the twelve SiC MOSFETs placed on a single row.

Table 6.3: Trace notch parameters and impedance for on-board current sensor

Design
Trace Notch Impedance

Width Length Thickness Angle [mΩ] [nH]

A 6 mm 8 mm 1 mm 90° 0.428 37.0
B 10 mm 5 mm 2 mm 45° 0.211 31.9

C
†

10 mm 5 mm 2 mm 45° 0.210 32.0
D 20 mm 5 mm 2 mm 45° 0.202 26.7

†
Same as Design B with via stitching
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Power board layout. (a)–(f) Layers 1–6, respectively.

6.3.2 Impedance Analysis

Stray inductance analysis of the power commutation loop is imperative to check

for design integrity and electromagnetic compatibility (EMC). Sources of stray induc-

tance in the present design are: MOSFET self-inductance, DC-bus capacitor ESL,

and inductance of PCB traces. Figure 6.10 depicts a single-phase equivalent circuit

of the inverter with the main stray inductances in the commutation loop. While the
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DC Input 
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AC Output Connectors AC Output ConnectorsOn-board 

Current 

Sensors

DC-Capacitor 

Bank

SiC MOSFETs
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Figure 6.9: Power board 3D view. (a) Top view. (b) Bottom view.

Table 6.4: Parameters for the commutation loop voltage overshoot analysis

Parameter Symbol Value Unit

DC-bus voltage Vdc 800 V
Rated switch voltage Vsw 1200 V

Max rated current Ir,max 130 Apk

Current falling time tfall 13 ns

C

S1

S2

LP

LN

LC

LS

LS

+

–
Vdc

iA1 +

–
Vsw

Figure 6.10: Equivalent circuit for the commutation loop on the Power PCB.
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Table 6.5: Commutation loop stray inductances

Category Parameter Symbol Value (nH)

Capacitor Bank DC-capacitor bank ESL LC 1.92
Switch Self-inductance LS 5.00

PCB Polygon
Pour

Top switch polygon inductance LP 7.28
Bottom switch polygon inductance LN 16.92

Mutual top-bottom inductance LPN 5.47

self-inductance of the MOSFET, LS is not reported in the datasheet, a 5 nH is esti-

mated for a typical SiC MOSFET of the same package. The DC-bus capacitor ESL,

LC is found based on the datasheet and the bank design in Section 6.2. Inductance

of the PCB traces are found using Ansys Q3D simulation. The voltage overshoot

across the switch can be found by applying Kirchhoff’s voltage law (KVL) to the

commutation loop in Figure 6.10 as:

Vsw = Vdc + (LC + 2LS + LP + LN − 2LPNÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Lloop

)
»»»»»»»»
diA1

dt

»»»»»»»»
(6.3.1)

where LP is the inductance of the PCB polygon pour between the DC-capacitor bank

positive terminal and the drain of the top switch, LN is the inductance of the PCB

polygon pour between the DC-capacitor bank negative terminal and the source of

the bottom switch, LPN is the mutual inductance between the positive and negative

polygon pours, and Lloop is the total loop inductance. The maximum loop inductance,

Lloop−max is found to be 40 nH, by using the maximum ratings of the inverter as listed

in Table 6.4. Based on the stray inductances in Table 6.5, Lloop of the inverter design

is 25.18 nH, 37% lower than Lloop−max. Put otherwise, the expected overshoot voltage

is 1,020 V, which is acceptable for the switch ratings. Therefore, a snubber-less design
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Figure 6.11: High-level schematic diagram of the gate driver circuit.

is achieved.

6.4 Gate Driver Board Design

A gate driver circuit is required to deliver the PWM signals that control the

switching of the SiC MOSFET device. The PWM signal must have high voltage

and high current capabilities that cannot be provided directly by the microcontroller,

whose about is at the transistor-transistor logic (TTL) level [72]. Hence, the gate

driver works as an interface between the microcontroller and the power semiconductor

devices, as shown in Figure 6.11.

6.4.1 Circuit Design

As for the SiC MOSFET, specific design criteria must be taken into considera-

tions that distinguishes it from Si MOSFET and Si IGBT [183, 241, 242]. Firstly, a

relatively higher gate drive voltage of 15–20 V is recommended to provide the low-

est on-resistance. However, the higher supply voltage does not necessarily mean a

higher power consumption since the capacitance (and hence the required charges) of
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SiC MOSFET are significantly lower when compared to its Si counterparts. Secondly,

SiC MOSFET should be pulled-down below ground level (typically −5 V) to ensure

a proper turn-off since gate threshold voltage, VTH can be <2 V. Thus, the gate

driver must facilitate an asymmetrical range of gate-to-source voltage, VGS. Thirdly,

VGS must have fast falling and rising edges, in the order of nanoseconds, to enable

the high switching capability. Such delicate features are mainly attributed to low

transconductance and higher gate resistance. Commercial off-the-shelf SiC MOSFET

gate drivers can be sourced from Analog devices (e.g. ADuM4135), Infineon (e.g.

1EDI60I12AF), Texas Instruments (e.g. ISO5852), etc. [241]. However, a custom-

made gate driver circuit, based on the device characteristics listed in Table 6.6, is

sought in this inverter design to specifically meet the overall design requirements and

to deliver the most compact solution, and thus, the highest power density. This is

also driven by the increased required number of gate drivers circuits for the six-phase

inverter. The schematic of the gate driver board is included in Appendix A.

Power Supply

In terms of power supply, there are multiple power supply solutions to facili-

tate the aforementioned power requirements of the SiC MOSFET, namely a boot-

strap circuit, flyback transformer, multitap transformer, and isolated DC/DC con-

verter [243]. The latter is selected for its design flexibility, simplicity, and adequate

regulation. The power supply circuit is designed to provide an asymmetric power

supply of VDD/VEE =15V/−4 V, as per the manufacturer’s recommendation for the

C3M0016120K. The selected isolated DC/DC converter is the MGJ2D121505SC by

Murata Power Solutions with a 2 W capability sufficient to drive the gate driver

153



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

Table 6.6: Gate driver design parameters for the C3M0016120K SiC MOSFET
using UCC21750-Q1 driver IC

Category Parameter Symbol Value Unit

SiC MOSFET

On-state gate voltage VGS(on) 15 V
Off-state gate voltage VGS(off) −4 V

On-time delay td(on) 34 ns
Off-time delay td(off) 65 ns

Rise time tr 33 ns
Fall time tf 13 ns

Internal gate resistance RG(int) 2.6 Ω
Gate charge (total) QG 211 nC

Gate
Driver IC

Internal turn-on resistance ROH 0.7 Ω
Internal turn-off resistance ROL 0.3 Ω
DESAT threshold voltage VDESAT 9 V

Internal blanking time tblk(int) 200 ns
Internal current charge current Ichg 500 µA

circuit.

Gate Driver IC

The selected driver IC is the UCC21750-Q1 from Texas Instruments owing to its

high current driving capability, eliminating the need for a and integrated protection

features such as short circuit and active miller clamp [244]. The key parameters of

the UCC21750-Q1 needed in the gate driver circuit design are listed in Table 6.6. The

driver IC is controlled via the microcontroller that sends the logic PWM signal and

the reset/enable (RST/EN) command. The microcontroller also receives information

about the status of the circuit through a ready (RDY ) and fault (FLT ) signals.
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Gate Driver IC

+
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Figure 6.12: Gate Driver Turn-on and Turn-off power dissipation circuit.

Gate Resistance Design

As shown in Table 6.6, the SiC MOSFET exhibits different turn-on and turn-off

characteristics. Therefore, different gate resistors are used for an improved perfor-

mance. Design criteria for such resistors include preventing switching spikes and

choosing low values to reduce power losses.

IG(on) =
VGS(on) − VGS(off)

RG(on) +ROH +RG(int)
=

QG

td(on) + tr
(6.4.1)

IG(off) =
VGS(on) − VGS(off)

RG(off) +ROL +RG(int)
=

QG

td(off) + tf
(6.4.2)

Iavg =
QG

fs
(6.4.3)

Substituting the parameters in Table 6.6 in (6.4.1) and (6.4.2), the IG(on) and IG(off)

are 3.15 A and 2.71, respectively. Therefore, the RG(on) and RG(off) are designed to

be 2.73 Ω and 4.12 Ω, respectively. Multiple resistors are placed in parallel to provide

such values and satisfy the power requirement through the resistors.
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Figure 6.13: Circuit diagram of the DESAT gate driver circuit.

Overcurrent and Short-Circuit Protection

The gate driver IC is equipped with a desaturation (DESAT) pin that enables

overcurrent and short circuit protection. Figure 6.13 shows the DESAT circuit design.

The protection is implemented by monitoring the VDS of the SiC MOSFET indirectly

using an RC circuit and a high voltage diode. In a fault condition, VDS increases such

that the DESAT diode is reverse bias. Consequently, the external DESAT capacitor,

Cblk is charged and its voltage rises above the DESAT threshold voltage, VDESAT .

This in turn is detected by the internal DESAT comparator, thus detecting a fault.

In this case, the gate signal is pulled down to VEE, and RDY and FLT outputs are

pulled down to 0 V. The blocking time for the DESAT protection is a function of the

driver IC charging current, Ichg, Cblk, forward voltage voltage of the DESAT diode,

Vf , and RDESAT . It can be designed based on the following relation:

tblk =
Cblk ⋅ [VDESAT − (Vf + Ichg ⋅RDESAT )]

Ichg
(6.4.4)

A 27 pF and 1 kΩ for Cblk and RDESAT were chosen to yield a tblk of 0.4 µs. Figure 6.14

shows the complete gate driver circuit design with its DC/DC power supply. A PCB

design is sought next to build this circuit for each of the twelve switches of the
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Figure 6.14: Schematic of isolated gate driver circuit design for SiC MOSFET.

six-phase inverter, along with general-purpose inputs/outputs (GPIOs) and sensors

interface to the control board.

6.4.2 PCB Design

The PCB components are placed on both sides of the PCB to reduce the physical

dimensions as much as possible as shown in Figure 6.15. Moreover, a slit of 2.54 mm is

placed under the transmitter/input and receiver/output sides of the driver IC/isolated

DC/DC converter for electromagnetic isolation. Similar to the power board, the layer

stack up of the gate driver PCB considers the forward and return current paths to

be on opposing layers as shown in Figure 6.16. The layer stack-up of the gate driver

board, shown in Figure 6.16, is made up of six 1 oz layers for better distribution

of isolated ground planes. The PCB also includes the DC-bus voltage measurement

using an isolated amplifier ISO224BDWV from Texas Instruments. Header connectors
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Figure 6.15: Assembled gate driver circuit for SiC MOSFET.
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Figure 6.16: Layer stack-up of the gate driver PCB.

are placed on the top layer to interface control signals to the gate driver ICs, current

sensors, and DC-bus voltage sensor. Figure 6.18 depicts the 3D view of the designed

gate driver board.

6.5 Control Interface Board Design

A control DSP-based board, comprising a TMS320F28379D chip, was planned to

be designed. Unfortunately, due to the COVID-19 pandemic and subsequently the
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(a) (b)

(c) (d)

(e) (f)

Figure 6.17: Gate driver board layout. (a)–(f) Layers 1–6, respectively.

(a) (b)

Figure 6.18: Gate driver board 3D view. (a) Top view. (b) Bottom view.
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shortage of electronic chips [245], a full control board was hard to realize in the time

frame allotted for this thesis. Instead, a Launchpad
TM

LAUNCHXL-F28379D [246]

development board, comprising of the TMS320F28379D chip and other peripheral

ICs, is used. However, to integrate the Launchpad in the designed inverter, an inter-

face control board is needed.

The interface control board, as the name suggests, interfaces the signals between

the gate driver board developed in the previous section and the Launchpad. The

signals interfaced from the gate driver board are the PWM, RST/EN , RDY , and

FLT . The interface of such signals is implemented using a 5 V to 3.3 V level-

shifter transceiver SN74LVC4245A from Texas Instruments. Additionally, the board

encompasses signal conditioning circuitry for the on-board current sensors and DC-

bus voltage sensor as well as general-purpose analog and digital inputs/outputs (IOs)

available externally for the user at the inverter housing. The interface board also

includes a low voltage (LV) power filter to eliminate high frequency noise before

supplying the power the LaunchPad, gate driver and power boards. Lastly, a resolver

interface circuit is designed for PMSM electric drive purposes using a resolver-to-

digital AD2S1210 from Analog Devices.

For the board design, a four layer PCB, with 1 oz thickness per layer, is designed

as shown in Figure 6.19. The board dimensions are 62 mm x 240 mm. Figure 6.20

depicts the 3D view of the designed control interface board. The schematic of the

control interface board is included in Appendix A.
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(a) (b)

(c) (d)

Figure 6.19: Control interface board layout. (a) Top signal layer. (b) Ground layer.
(c) Power layer. (d) Bottom signal layer.

(a) (b)

Figure 6.20: Control interface board 3D view. (a) Top view. (b) Bottom view.

6.6 High Voltage Cable Sizing

HV cable sizing should be designed properly. A cable that is too small will not

withstand the rated current and lead to a thermal event that cause serious failures.

On the other hand, a cable that is too big adds weight and cost to the design. Cable

sizing must satisfy two criteria: current-carrying capacity and allowable voltage drop.

The HV AC and DC cabling of the inverter are sized in accordance with the IEC

60364-5-52 standard [247]. The current-carrying capacity is defined as [247]:

Icapacity = a ⋅ S
m
− b ⋅ S

n
(6.6.1)
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where S is the cross-sectional area of the conductor in mm
2
, whereas a, b, m, and n

are coefficient related to the method of installation. Table 6.7 lists the parameters

used in (6.6.1) for a single-core >750 V cable installed on a floor. For AC cabling,

since a six-phase system with two isolated neutrals count as two three-phase circuits,

a reduction factor of 0.85 to the current-carrying capacity is applied [247]. Hence,

Icapacity ≥ Irated/0.85.

The voltage drop in in DC cables and AC cables in Y-connected three-phase

circuits can be determined as [247]:

u = c ⋅ (ρc
S

cosφ + λ sinφ) ⋅ L ⋅ Irated (6.6.2)

where u is the voltage drop in V, c is a coefficient equal to 1 for three-phase circuits

and 2 for DC circuits, ρc is the resistivity of the conductor at 1.25 times the resistivity

at 20 °C, L is the length of the cable, φ is the power factor angle, and λ is the reactance

per unit length of the conductor. The values for ρc and λ are also listed in Table 6.7.

Note that the voltage drop percentage for AC cables is with respect to the line-to-

neutral voltage. Based on the IEC 60364-5-52 standard [247], the voltage drop must

not exceed 5%. Based on the inverter specifications in Table 6.2, (6.6.1) is solved for

S and rounded to the nearest commercially-available nominal cross-sectional area of

the cable. Subsequently, u in (6.6.2) is checked whether it is less than 3% of the rated

AC and DC voltages. The obtained results are summarized in Table 6.8 along with

the sized cable glands.
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Table 6.7: Parameters used for high voltage cable sizing

Category Parameter Value Unit

Current-Carrying
Capacity

(6.6.1)

a 24 –
b 0 –
m 0.6 –
n 0 –

Voltage
Drop (6.6.2)

ρc 0.0225 Ω⋅mm
2
/m

λ 0.08 mΩ/m
c 1 or 2 –

Table 6.8: High voltage cable and cable gland sizing

Cable Required S Nearest S Equivalent Voltage Cable

(mm
2
) (mm

2
) AWG Drop Gland

AC 15 16 6 2% M20
DC 46 50 1 1% M25

6.7 Thermal Management System

The design of a thermal management system for traction inverters is deemed

challenging. This stems from the ever-increasing power demand yet with a compact

packaging. In the present 100 kW SiC-based six-phase inverter, a compact design for

heat sink is sought to achieve a high power density and lightweight while maintaining

a safe junction temperature. Active liquid cooling solution is sought for the proposed

design since it is the preferred type of thermal management system in the auto in-

dustry [248]. Table 6.9 lists the boundary conditions for the design. The coolant is

water/ethylene glycol mixture at 50% concentration. The inlet coolant temperature

is assumed to be maintained at Tc =65 °C at a flow rate of 10 L/min. A conventional

straight finned heat sink was designed to manage a heat loss, Q of 1.16 kW from

the twelve MOSFETs attached to it (obtained in Section 6.1.1). A thermal interface
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Table 6.9: Boundary conditions for heat sink design

Parameter Value Unit

Coolant type Glycol 50/50 —
Coolant flow rate 10 L/min
Coolant inlet temperature 65 °C
Maximum junction temperature 125 °C
Total power 1.16 kW

material (TIM), made of Silicone with a thickness of 1 mm, is inserted between the

MOSFETs and the heat sink to provide a galvanic isolation between the MOSFET

drain and the Aluminum (Al) body of the heat sink. The objective from the heat

sink is to keep the junction temperature of the MOSFETs below 125 °C.

Figure 6.21 depicts the thermal resistance model used in the design of the heat

sink to determine the junction temperature and the fin length, LF . From the equiv-

alent thermal circuit, the relationship between the heat loss and temperature can be

quantified as:

Q =
Tj − Tc

RTIM +RHS +RF +RJC
(6.7.1)

where Tj and Tc are the junction and coolant temperatures, respectively, and RTIM ,

RHS, and RF are the thermal resistance of the TIM, heat sink, and fins, respectively.

The thickness of the heat sink tp, below the MOSFETs, was set to 3 mm, similar

to commercial heat sinks. The pitch, s between the fins was set to 5 mm, with a

spacing of 1.5 mm for the cooling channels between the fins. Hence, the fin thickness,

tF is 3.5 mm. The heat sink is made of Al for lightweight to increase the specific

power of the inverter. The dimensions of the heat sink are listed in Table 6.10.

An analytical model is developed to empirically evaluate the junction tempera-

ture, Tj by calculating firstly the heat transfer coefficient, h of the coolant flow and
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Table 6.10: Heat sink design specifications

Parameter Symbol Value Unit

Heat sink thickness tp 3.0 mm
Fins pitch s 5.0 mm
Width of cooling channel Wp 30.0 mm
Length of cooling channel Lp 240.0 mm
Thickness of TIM tTIM 1.0 mm
TIM Thermal conductivity KTIM 14.5 W/m⋅K

Coolant

Heat sink

Thermal interface material

MOSFET case

•

RF

RHS

RTIM

RJC

Tc

Junction PL

TJ

Figure 6.21: Thermal dissipation path of the inverter.

the fin efficiency. The analytical model, which is solved using a numerical program, is

instrumental in the iterative design process in which recursive modifications evaluated

before CFD analysis. This streamlines the design process and reduces the compu-

tational burden. The empirical analytical model is governed by the physics of the

conducted heat transfer [249,250].

Solving the analytical model for boundary conditions in Table 6.9, a fin length

of 14 mm was selected to achieve a junction temperature of 102 °C. Moreover, the

outlet coolant temperature is found to be 2 °C higher than the inlet temperature. A
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Wp tp

Lfin

s

tfin
Lp

Figure 6.22: Finned base heat sink design.

CFD analysis was then conducted in Ansys Fluent to benchmark and verify the ther-

mal results obtained from the analytical model. Figure 6.23a illustrates the Ansys

CFD workflow for the thermal analysis. The number of mesh elements are 210,000

elements. The energy equation and continuity equations were activated for the nu-

merical simulations. The K–ω method was used for the turbulence flow. The residual

in the numerical solution for energy equation reached 1e–6, while for the continuity

equation reached to 3e–3. A great match was found between the thermal junction

temperature from the thermal model and the CFD model, as shown in Figure 6.23b.

The CFD model exhibits a maximum junction temperature of 103.5 °C, close to the

102 °C obtained from the analytical result. The estimated pressure drop from the

simulations was found to be 16.8 kPa, from inlet to outlet of the heat sink. The outlet

temperature of the coolant was found to be 67 °C. To this end, the design requirements

for the thermal management system are met, and the housing design is tackled next

where the heat sink is integrated within the housing body. The “as-built” drawing of

the heat sink is included in Appendix B.
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(a)

(b)

Figure 6.23: Ansys Fluent CFD analysis for the thermal management system. (a)
Workflow setup. (b) Simulation result at 10 L/min.

(a) (b)

Figure 6.24: Isometric views of the designed inverter housing. (a) Front. (b) Back.

167



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

1

3

2

6

7

8

5

4

Figure 6.25: Exploded view of the inverter model. (1) Low-voltage connector with
interface board. (2) heat sink. (3) Coolant channel. (4) Discrete MOSFETs. (5)
DC-capacitor bank. (6) Power board. (7) Gate driver board. (8) Control board.

6.8 Mechanical Packaging

The mechanical enclosure of the inverter must provide 1) electrical shielding of

the electrical components, 2) protection of electronic components against water and
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dust—i.e., ingress protection (IP), 3) terminal interface of electrical (high voltage

and low voltage) and cooling ports, and 4) harshness against vibration. The design of

the mechanical enclosure should also observe manufacturing limitations and facilitate

easy assembly and testing.

A comprehensive design process was undertaken to optimize power density while

considering the thermal management system, cable glands, PCBs, and capacitor

placement. The DC cable glands are sized for 1 AWG cables, whereas the AC ca-

ble glands are sized for 6 AWG cables, based on IEC 60364-5-52 standard [247] for

shielded single-core 1 kV cables. The low voltage connector is a sealed automotive-

grade one that encompasses control signals for DC-capacitor pre-charge, resolver in-

terface for motor control purposes, CAN communication, and peripheral IOs. The

detailed pin out of the LV connector is provided in Appendix C. The cooling ports

are designed for 3/8
′′

national pipe thread (NPT) size. The heat sink design in

Figure 6.23b was integrated at the bottom of the enclosure by a having a channel

of the same dimensions with a removable fin-base heatsink that is bolted inside in

the enclosure with o-ring sealing. Similarly, o-ring sealing design is employed at the

enclosure lid. Based on the lowest IP rating of the terminals, the IP rating of the de-

signed inverter enclosure is IP68, which is in line with ISO 26262 standard for vehicle

functional safety [251].

Figure 6.25 showcases an exploded view of the proposed MARC100 packaging.

The base dimensions of the enclosure are determined by the geometry and dimensions

of the PCBs, low voltage connector, and capacitors to be placed within it. The

housing went through multiple iterations, and in each, the fitting of these electrical

components was altered and optimized in an attempt to minimize the volume of
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the design. The length and width of the enclosure are dictated by the PCBs, as

discussed in Section 6.3. The height of the enclosure is constrained by the stacking

of the PCBs and the capacitors. From bottom to top, the enclosure is packaged as

follow: the capacitors and coolant channel, the power board, the gate driver board,

and the control board. Prior to manufacturing, the enclosure design was tested for

deformation due to vibration in FEA, as discussed in [252]. The maximum stress

experienced by the enclosure due to a 2.5g acceleration was found to be lower than

the yield strength of enclosure material. The “as-built” drawings of the enclosure and

its lid are included in Appendix B.

6.8.1 3D Printing

To verify the dimensions of the designed mechanical housing, plastic prototypes

were printed using a Modix Big-60 3D printer. The 3D printing parameters are listed

in Table 6.11. The inspected dimensions include, but not limited to, cable gland holes,

cooling ports, LV connector, O-ring grooves, and heat sink. Three iterations were

printed starting with a low fidelity print and ending up with a high fidelity print that

includes the small details like text engravings. Throughout the 3D printing process,

the mechanical housing design was revised iteratively to yield the final design shown

in Figure 6.24. Figure 6.26 depicts the final iteration of the 3D printed prototype

assembled with the actual exterior parts. To this end, the housing design is ready for

manufacturing.
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(a) (b) (c)

(d) (e)

Figure 6.26: 3D printed inverter housing. (a) Un-assembled interior. (b) Assembled
interior. (c) Side view. (d) Back isometric view. (e) Front isometric view.

6.9 Discussion and Benchmarking

The proposed MARC100 inverter features a peak output power of 175 kW with

a peak power densities of 70 kW/L, respectively. The continuous power density (40

kW/L) exceeds the current targets set by the US DOE by threefold [8]. Figure 6.27

shows the breakdown of the MARC100 in terms of mass, volume, and cost. In terms

of mass breakdown (Figure 6.27a), about half of the weight is attributed to the Al

body of the enclosure and heat sink. In terms of volumetric breakdown (Figure 6.27b),

Table 6.11: 3D Printing Parameters

Printer model Modix Big-60
Material PETG
Fill percentage 15%
Nozzle size 0.6 mm
Layer height 0.3 mm
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14%

67%

3%

Figure 6.27: Breakdown of the proposed MARC 100 inverter by (a) mass, (b)
volume, and (c) cost.

about three quarters the volume is occupied by the enclosure body and the air enclosed

in it. This high percentage is attributed to design for testing capability to allow easy

assembly and debugging. The DC-capacitor only occupies 11% of the total volume

in the proposed inverter. In terms of cost breakdown (Figure 6.27c), the biggest

contributor is the manufacturing cost of the power, gate driver, and control PCBs,

followed by the cost of the SiC MOSFET discrete devices. In commercial inverters,

the cost latter is usually prevails. However, since this the MARC100 is not yet in a

mass production stage, the PCBs cost is relatively much higher. The manufacturing

cost of the enclosure and heat sink amounts to 16%.

A second generation of the MARC100 has the potential to exhibit far higher power

densities, exceeding the 100 kW/L threshold set by the US DOE for 2025. This can

be achieved by reducing the spacing between the PCBs stack-up to minimize the free

space occupied by air in the present design. Furthermore, the rated current of the

MARC100 is at 60% of the SiC MOSFET, which can be increased to deliver more

power. Lastly, a more advanced heat sink design, like pin-fin base, can be employed
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Table 6.12: Comparison between commercial six-phase inverters and the proposed
inverter

Specification
Dana TM4,
CO200 [24]

Koenigsegg,
David [39]

Proposed,
MARC100

Overview

Year 2018 2023 2023
Power device Si SiC SiC
Continuous power 200 kW 525 kW 100 kW
Peak power 265 kW 700 kW 175 kW
DC-link voltage 600 V 850 V 800 V
Volume 40.6 L 10.0 L 2.5 L
Weight 26 kg 15 kg 3.76 kg
Peak power density 6.5 kW/L 70.0 kW/L 70.0 kW/L
Specific power 10.2 kW/kg 46.7 kW/kg 37.2 kW/kg

Cost —
†

—
† ¢3.44/W

†
Information not publicly available

to further reduce the mass and volume of the thermal management system.

The proposed MARC100 inverter is benchmarked against commercially available

six-phase inverters. The specifications of the MARC100 against those by Dana TM4

and Koenigsegg are listed in Table 6.12. Although the CO200 by Dana TM4 inverter

has a higher power output than the MARC100, its mass and volume are high ren-

dering in a low power density. A close competitor to the MARC100 is the David by

Koenigsegg. Both inverters showcase a peak power density of 70 kW/L. However,

the David inverter is designed for a limited production hybrid supercar. As a result,

it is not economically feasible for mass adoption. Whereas, the MARC100 cost is

¢3.44/W.
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The power density and cost metrics of the proposed inverters are also competi-

tive to three-phase counterparts. For example, the MARC100 is 29% cheaper than

the proposed inverter in [117] at threefold the power density. Had the same design

methodology for the MARC100 been used for a three-phase system, it would have

used the same number of discrete SiC MOSFETs. However, repeating the steps in

Section 6.2 for a three-phase inverter would have resulted in a DC-capacitor bank with

a 7% higher volume. Therefore, the six-phase system does not necessarily compromise

the cost nor the power density of the inverter design.

6.10 Summary

The design and development of a 100 kW SiC-based six-phase traction inverter

for automotive applications was presented in this chapter. The merits and challenges

associated with the six-phase two-level VSI topology were discussed and addressed

in a holistic inverter design methodology. The electrical-thermal-mechanical design

methodology delivered a SiC-based six-phase traction inverter prototype, named the

MARC100. Figure 6.28 presents the key performance indices of the MARC100 com-

pared to the conventional Si-based three-phase traction inverter. The MARC100 ex-

ploited the reduction in DC ripples in six-phase systems to achieve a capacitance and

size reductions by 20% and 7% in the DC-bus capacitor, respectively, when compared

to a three-phase counterpart of the same VA rating. The SiC discrete devices were

selected in such a way that there is no increase in the device count in a six-phase in-

verter; instead of paralleling two devices per switch in a three-phase inverter, a single

device was used for the twelve switches in six switching legs. Hence, no cost increase

was incurred from the SiC discrete devices, which usually dictates the majority of the
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Figure 6.28: MARC100 key performance indices compared to conventional Si-based
three-phase traction inverter.

overall cost of SiC-based traction inverters. Furthermore, lighter and smaller cabling

for the six-phase inverter yields a cost reduction by 21%. The employment of SiC

devices achieves an 8% higher fuel economy. The proposed design tackled the dis-

advantage of increased current sensors requirement by integrating on-board current

sensor chips, rendering a compact and cost-effective design. The validation of the

designed prototyped is presented in the next chapter.
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Chapter 7

Experimental Validation of the 100

kW SiC-Based Six-Phase Traction

Inverter

This chapter presents the experimental validation of the MARC100 inverter de-

signed in the previous section, including, inverter assembly, preliminary testing, test

setup, and high-power experimentation. Additionally, the challenges and lessons

learned from the experiments are outlined to facilitate future research and devel-

opment.

7.1 Manufactured Prototype and Assembly

The enclosure is manufactured of 6061 Al alloy using 4-axis computer numerical

control (CNC) machining. The volume and mass of the manufactured housing are

2.541 L and 3.763 kg, respectively. Figure 7.1 shows the manufactured parts of the
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Figure 7.1: Manufactured inverter housing and heat sink.

inverter. All parts were manufactured with acceptable tolerances. The holes for

cable glands, cooling ports, and LV connector were sized correctly, thanks to the 3D

printing examination reported in Section 6.8.1. Figs. 7.2 and 7.3 present the exterior

and interior of the assembled MARC100 inverter, respectively.

7.2 Preliminary Testing

Prior to high-power testing, the inverter must undergo preliminary tests to verify

the correctness of the assembly and the safety of the design. Two tests are discussed

in this section.
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(a)

(b)

Figure 7.2: Isometric views of the assembled 3D prototype of the MARC100. (a)
Front view. (b) Back view.

7.2.1 Insulation Resistance

Insulation resistance (IR), also known as Megger testing, is conducted to ensure

a proper galvanic isolation of the MOSFET drains from the inverter housing via the

TIM. A short-circuit from one or more MOSFETs to the housing body can lead to

catastrophic failures at high voltage. The test procedure is conducted in accordance

with the ANSI/NETA ATS-2017 standard [253], as detailed in Table 7.1. A LM2333
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Figure 7.3: Internal assembly of the MARC100 prototype.

Table 7.1: Insulation resistance testing specifications

Cable nominal Minimum test Minimum Test
voltage rating voltage IR duration

600 VDC / 1,000 VAC 1,000 VDC 100 MΩ 15 s

Insu 10 insulation meter was used to carry out the IR testing, as shown in Figure 7.4.

All twelve drains passed the IR testing with IRs above 500 MΩ. The IR test voltage

of 1 kV constitutes a 25% safety factor above the nominal DC-bus voltage of the

inverter.

7.2.2 Hydrostatic Test

The cold plate must be hermetically sealed to ensure a healthy inverter operation.

Internal leakage in the inverter can cause line-to-ground or line-to-line faults. There-

fore, a hydrotatic test is conducted. In a hydrostatic test, the system is pressurized
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Figure 7.4: IR test at 1 kV between MOSFET drain and housing body.

with an incompressible liquid to check for leaks or permanent change in the shape.

The pressure of the hydrostatic test is typically 150% of the operating pressure [254].

For liquid cooling systems in EVs, the pressure is typically 10–30 psi (70–200 kPA).

This pressure is provided by a pump that circulates the liquid coolant through the

various electronics, including the traction inverter, that requires liquid cooling. Fig-

ure 7.5 depicts the MARC100 inverter under a hydrostatic test at 300 kPa. A water-

glycol mixture, which is the acceptable coolant in the automotive industry, was used

in the test.

During the initial hydrostatic pressure test, multiple leaks were detected. After

performing a root cause analysis (RCA), it was determined that two factors con-

tributed to the leaks. Firstly, there were insufficient bolt fixtures on the heat sink’s

face area. Secondly, the practical guidelines for o-ring groove design were not ac-

curately implemented [255]. To address the first issue, four additional bolts were
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Figure 7.5: MARC100 under hydrostatic pressure for leakage test.

Figure 7.6: Assembled MOSFETs and heat sink showing additional bolt fixtures.

retrofitted in the heat sink and enclosure body, as shown in Figure 7.6. The second

factor was more challenging to resolve. Ideally, the o-ring groove would have been

re-machined, but this option would have resulted in downtime and associated costs.
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Instead, an alternate solution was implemented. The groove and surface area were

filled with gasket maker sealant, and the exterior edges were sealed with J-B Weld
TM

cold weld for additional sealing.

After implementing the foregoing solutions, the hydrostatic test was conduction,

and the cold plate passed the test successfully. From Figure 7.5, the pressure drop

across the cold plate is below 20 kPA, consistent with the FEA analysis reported in

Section 6.7.

7.3 Pre-Charge, Discharge and Safety Circuit

A pre-charge circuit between the EV battery and the inverter is needed to limit

the inrush current at start-up. The same applies to a laboratory setting where the

inverter is powered by a DC source.

The Pre-charge and discharge circuits are important components in an EV that

manage the flow of high-voltage electricity between the battery and the traction in-

verter. The pre-charge circuit is used to gradually charge the DC-capacitor. This

helps to avoid a sudden surge of current or voltage overshoot that can damage the

DC-capacitor. On the other hand, the discharge circuit is responsible for safely dis-

charging the DC-capacitor when the vehicle is turned off or during an emergency. The

need for such circuits is also applicable in a laboratory setting, where the inverter is

connected to a DC source, to avoid damaging the DC-capacitor and prevent any po-

tential hazard. The Society of Automotive (SAE) standard J2945/1 [256] specifies

the criteria that a pre-charge and discharge circuits must meet, which include:

• The pre-charge circuit must be properly sized to quickly charge the capacitor.
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• The pre-charge circuit must not dissipate too much power in a fault condition.

• The charging sequence must be completed with a short period of type (within

few seconds).

• The discharge circuit must bring the voltage of the traction system below 60 V

in less than 5 s.

• The discharge circuit must be able to handle the maximum discharge current

for 15 s.

The pre-charge(discharge) circuits are typically implemented with high-power re-

sistors connected in series(parallel) with the DC-capacitor of the inverter to form an

RC circuit, while the charging(discharging) sequences are controlled by contactors

or semiconductor switches. The charging resistor, Rch is sized based on the time

constant of the RC circuit defined as:

vch(t) = Vdc (1 − e
−t/τch) (7.3.1)

where vch and τch = RchCdc are the charging voltage and charging time constant,

respectively. The sizing of the Rch is based on a charging time of 3τch, i.e., when vch

reaches 95% of Vdc. The 3τch is set to 3 s. Accordingly, the Rch and the contactor

must be rated for rated charging power.

The sequence of the pre-charge circuit is controlled using two normally-open (NO)

HV contactors, namely a pre-charge contactor and a main contactor. The former is

sized based on the charging power ratings while the latter is sized based on the

rated power of the system. The contactors are driven by LV relays whose signals are

controlled by the inverter. The pre-charging sequence is as follows:
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1. Pre-charge contactor is engaged to start charging.

2. When 3τch is met and vch = 0.95Vdc, the main contactor is engaged.

3. Pre-charge contactor is turned off.

4. Main contactor remains on to supply power to the system.

Similarly, the discharge resistor Rdch is sized based on the aforementioned criteria

following the RC circuit voltage:

vdch(t) = Vdc e−t/τdch (7.3.2)

where vdch = 60 V and τdch = RdchCdc are the discharging voltage and time constant,

respectively. Then, the maximum Rdch is found based on τdch ≤ 5 s.

A normally-closed (NC) contactor is connected in series with Rdch. The discharge

contactor is only open when either the main or pre-charge contactors are engaged.

Else, the system is assumed off and the Cdc is discharged. Figure 7.7 illustrates a

simplified diagram of the pre-charge and discharge circuit.

In addition to pre-charge and discharge circuitry, the test setup is also facilitated

with safety feature, both hardware and software, to ensure the safety of the equipment

and personnel. The DC line is equipped with fuses to protect against over-current.

The enclosures where the inverter, the load and the safety circuit are housed are

equipped with limit switches. Such switches interrupt the main and the pre-charge

signals when the enclosure is open to cut the HV supply and activate the discharge

circuit. Also, an emergency stop (eSTOP) push button is installed to enable the user

to shutdown the power in the case of an emergency. In software, over-current and
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Figure 7.7: Pre-charge and discharge circuit diagram.
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Figure 7.8: Pre-charge, discharge, and safety enclosure.

over-voltage limits are set. The controller disables the PWM operation and shuts

down the system if those limits are violated. The assembled safety control panel is

shown in Figure 7.8. The detailed schematic of the safety circuit can be found in

Appendix A.
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7.4 Gate Driver Functionality Testing

Functionality testing is conducted to the gate driver circuit before fully assembling

the gate driver board. Figure 7.9 shows the experimental setup when testing the gate

driver circuitry with no MOSFET connected. Only a single gate driver circuit is

assembled on the board. The power supply is provided by a 12 V DC power source.

Firstly, the driver circuit is tested with no MOSFET connected to observe gate

driver IC input and output signals. To enable a proper testing of the gate driver

circuit in this case, the drain output is connected to COM. Otherwise, DESAT circuit

will trigger a FLT signal and gate output will be pulled to VEE. The (RST/EN),

(RDY ), and FLT were recorded as TTL high, as expected. The selected isolated

DC/DC power supply outputs are 15 V and −5 V. However, the MOSFET’s datasheet

specifies a VGS(off) of −4 V when the FET’s body diode is used, which is the case in

the proposed inverter design. Thus, a Zener diode circuit is used to deliver a −4 V,

as shown in Figure 6.14. The current consumption by the Zener circuit was found

Power Supply

Scope

DSP

(a)

Gate Driver Board

Drain

(b)

Figure 7.9: Gate driver functionality testing. (a) Setup. (b) Gate driver board.
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(a) Waveform.

(b) Rising edge. (c) Falling edge.

Figure 7.10: Gate output waveform at fs = 30 kHz.

to be 18 mA, which is below the maximum output current of −5 V output of the

DC/DC (i.e. 40 mA). Figure 7.10 demonstrates the gate output at fs = 30 kHz. The

rise and fall times are approximately 36.8 ns and 38.6 ns, respectively. The power

consumption of a single gate driver circuit was recorded as 620 mW, or 7.4 W for the

total twelve circuits.

Secondly, the gate driver circuit is connected a SiC MOSFET with a DC load

of 8.8 Ω at 30 V as shown in Figure 7.11a. The vDS and iDS at 30 kHz and 50%

duty cycle are shown in Figure 7.11b. Excessive noise and ringing are observed in

the voltage and current waveforms. This is due to the improper wiring of the circuit

shown in Figure 7.9b that uses unshielded and long jumper wires that introduce self

and mutual stray inductances. However, since the objective of this test is to establish
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Figure 7.11: Loaded gate driver circuit functionality test at fs = 30 kHz. (a) Test
circuit. (b) Test waveforms at 50% duty cycle.

the working conditions of the gate driver circuit, the functionality test is deemed

successful.

7.5 High Voltage Testing

Figure 7.12 shows the HV experimental setup for the MARC100 connected to a

passive 100 A, 1 mH inductive load. As discussed in Section 5.5, the load can be

configured as symmetric or asymmetric. The DC-bus voltage is supplied by a 20

kW, 2 kV Keysight RP7973A regenerative power system. The MARC100 and the

Si-based six-phase inverter used in Section 5.5 are housed in a finger-safe transparent

enclosure, along with cooling instruments, external sensors, and probes. Provisions

for the back-to-back connection of both inverters are incorporated into the setup for

future work. The complete computer aided design (CAD) of the setup is included

in Appendix B. The DSP controller of the MARC100 manages the setup operation.

The main and pre-charge contractors are controlled using the RLY1 and RLY2 pins
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MARC100

Safety box

Inductive Load

Figure 7.12: High voltage experimental setup for the MARC100.

available at the LV connector of the MARC100, respectively (see Appendices A and

C). Software-based safety protocols are programmed in the MARC100 to interrupt

the HV power supply in the case of gate driver faults, over-voltage, or over-current.

7.5.1 Double Pulse Test

The double pulse test (DPT) is a widely used method to evaluate the switching

characteristics of a power transistor. In this test, two VGS pulses with a short time

delay are applied to the device under test (DUT). Figure 7.13 depicts the circuit

diagram of the DPT. The first pulse is used to turn on the device and reach to

the test current, while the second pulse is used to evaluate the performance of the

DUT during conduction. By measuring the voltage and current waveforms during

the second pulse, important parameters such as the turn-on time, turn-off time,

voltage overshoot, and switching losses can be calculated. However, to maximize the
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power density of the MARC100, provisions to measure the device current were not

incorporated. So a typical DPT measuring switching losses cannot be conducted.

Nevertheless, measurement of vDS is still attainable, which is important to evaluate

the voltage overshoot.

The duration of the first pulse, τp1 is chosen based on the desired test current,

given as:

τp1 = L
Itest
Vdc

(7.5.1)

where L is the load inductor and Itest is the test current, which is set equal to the

rated current of the inverter. Between the two pulses, a short break period, τb is

given, where the DUT is turned off and the current flows through the freewheeling

or body diode, as shown in Figure 7.13. The duration of τb is chosen long enough such

that the switching transients have decayed before starting the second pulse. With

the second pulse, τp2, the DUT is again turned on. The duration of τp2 is carefully

chosen such that the current does not rise to an impermissible high value.

+DC

Cdc1

0 V
2

3

2

1
3

–DC

L
KS

KS

Figure 7.13: Circuit diagram of the DPT.

190



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

Before performing the DPT, the circuit components must be properly designed

to conduct a successful test. As given in (7.5.1), the duration of τp1 is a function of

the load inductor. A high value of L leads to a slower increase in the current, calling

for a longer τp1. However, the duration of τp1 should not exceed 100 µs to avoid self

heating of the DUT [257]. On the other hand, L should be high enough to minimize

the current drop, ∆I during the break period owing to the parasitic resistance of the

inductor and the forward voltage of the body diode. Therefore, the lower and upper

boundaries of L are defined as [257]:

−Rpτb

ln ( ∆I

Itest+vF /Rp
+ 1)

≤ L ≤ τp1
Vdc
Itest

(7.5.2)

where Rp is the parasitic resistance of the load inductor and vF is the forward voltage

drop of the body diode, which can be found in the datasheet of the DUT. Note that

∆I is typically chosen between 1% and 5% of Itest. To meet the constraint in (7.5.2),

three of the 1 mH load inductors are used in parallel.

The DC-capacitor used in the DPT should be sufficiently large to store enough

energy to maintain a constant voltage across the DUT throughout the DPT. During

the DPT, the stored electrical energy in the capacitor is converted into magnetic

energy in the load inductor. The minimum capacitance can be obtained based on the

energy balance in both components and the allowable voltage drop, ∆Vdc. Thus, the

minimum capacitance is defined as [257]:

Cdc ≥
LI

2
test

2Vdc∆Vdc −∆Vdc
(7.5.3)

Since the DC-capacitor of the MARC100 was optimized to yield the maximum power
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Additional

Capacitors

vGS

vDS

Figure 7.14: Double pulse test setup on phase C2.

density, as discussed in Section 6.2, its capacitance is insufficient to conduct the

DPT at the rated voltage and current. Therefore, additional film capacitors with a

capacitance of 120 µF are added to the DC-bus. The total DC-bus capacitance is,

therefore, 172 µF, resulting in ∆Vdc = 10 V, which is acceptable for conducting the

DPT.

Figure 7.14 depicts the experimental setup for the DPT. The measurement of vDS

and vGS are obtained via soldering twister cable pair on the power and gate boards,

respectively. The twister pair is shielded with an aluminum shield and drain wire that

is connected to the inverter chassis, to improve the noise immunity. The voltages are

measured using Tektronix P5200A 50 MHz isolated differential probes. The load

current is measured using a Tektronix TRCP0600 Rogowski coil. The measurements

are recorded on a Tektronics MDO3024 200 MHz, 2.5 Gs/s oscilloscope.

The DPT is performed first for phase C2 as per the parameters given in Table 7.2.
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Table 7.2: Double pulse test parameters

Parameter Symbol Value Unit

DC-bus voltage Vdc 800 V
Test current Itest 100 A
Load inductor L 333 mH
DC-bus capacitance Cdc 172 µF
First pulse duration τp1 40 µs
Second pulse duration τp2 10 µs
Break pulse duration τb 4 µs

phase C2 is the farthest from the top row capacitors (see Figure 6.9), thus it is

expected to yield the worst-case scenario. Figure 7.15 shows the DPT results on phase

C2. The recorded rise and fall times on of vDS are 48.1 ns and 20.4 ns, respectively.

The percentage overshoot of vDS at the first turn-off instant is 19.8%.

The DPT is then performed on all six phases to confirm their proper operation

and to compare their performance with respect to each others. Figure 7.16 presents

the first turn-off instant of vDS under the same DPT conditions in Table 7.2. The

maximum overshoot voltage in Figure 7.16 matches the theoretically calculated one

in (6.3.1), thus confirming the FEA analysis of the commutation loop inductance in

Section 6.3.2. The average percentage overshoot in vDS is 23.1% with a standard

deviation of 1.5%. A similar standard deviation is also observed in the rise. Hence,

a very uniform performance on all phases is demonstrated. As expected, a slightly

higher ringing on phase C2 is observed when compared to the other phases. After

verifying a safe voltage overshoot performance at rated conditions, six-phase VSI

operation is tested next.
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(a) Full waveform.

(b) Turn-off. (c) Turn-on.

Figure 7.15: DPT on phase C2 of the MARC100 as per the parameters in Table 7.2.

7.5.2 Six-Phase VSI Operation

For six-phase VSI operation, the inductive load is star-connected with two isolated

neutrals. A 30 kHz switching frequency is utilized with a 2 µs of dead-time. The

inverter is operated in open-loop mode with SPWM at a f1 = 200 Hz. It is important

to note that high base frequencies are necessary to increase the load impedance (ωL),

which helps to maintain the current within a safe limit.
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Figure 7.16: vDS waveform in the DPT at the first turn-off instant on all phases
of the MARC100 at 100 A load current.

Figures 7.17 and 7.18 illustrate the steady-state performance of the six-phase VSI

with a symmetric load at M = 0.6 and Vdc of 400 V and 800 V, respectively. These

figures show that there is a 14% current unbalance between the two sets of three-

phases. This unbalance is expected because of the 15% tolerance on the used load

inductors. Assuming a balanced load in each three-phase set, the output power in

Figures 7.17 and 7.18 is 11.4 kVA and 64.3 kVA, respectively. The harmonic spectra

of vAB1 and iA1 in Figures 7.17 and 7.18 are depicted in Figures 7.19 and 7.20,

respectively. At Vdc = 800 V, the line-to-line voltage THD is 138%, while the current

THD is 3%. The relatively low THD values is attributed to the high modulation

frequency, mf applied in these tests. In a perfectly balanced six-phase system with

two isolated neutrals, iA1 and vAB1 do not contain any triplen harmonics. However,

the 3rd harmonic appears in vAB1 and iA1 in Figures 7.19 and 7.20, albeit with minimal
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vAB1vAB2

iA1

iA2

Figure 7.17: Experimental six-phase VSI steady-state performance showing
line-to-line voltages and phase currents at Vdc = 400 V, Sout = 11.4 kVA,

f1 = 200 Hz, fs = 30 kHz, M = 0.6.

magnitudes of 4% and 1%, respectively, in the case of Vdc = 800 V.

Lastly, the dynamic performance of the six-phase VSI is tested at Vdc = 800 V.

Figure 7.21 presents the voltage and current waveforms under a step change in M

from 0.255 to 0.55. An adequate and stable performance is demonstrated.

7.6 Lessons Learned

During prototype assembly and experimentation, several lessons were learned that

can facilitate future work. These lessons are as follows:

1. As discussed in Section 7.2.2, the o-ring design must be carefully chosen to

withstand the rated pressure, thus avoiding leaks. Also, instead of having the
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vAB1vAB2 iA1 iA2

Figure 7.18: Experimental six-phase VSI steady-state performance showing
line-to-line voltages and phase currents at Vdc = 800 V, Sout = 64.3 kVA,

f1 = 200 Hz, fs = 30 kHz, M = 0.6.
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Figure 7.19: Experimental harmonic spectra of vAB1 and iA1 waveforms in
Figure 7.17.
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Figure 7.20: Experimental harmonic spectra of vAB1 and iA1 waveforms in
Figure 7.18
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Figure 7.21: Experimental six-phase VSI dynamic performance under a step change
in M from 0.255 to 0.55 showing line-to-line voltages and phase currents at

Vdc = 800 V, f1 = 200 Hz, fs = 30 kHz.
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removable part of the heat sink inside the mechanical housing, it could be made

external. This would improve the inverter servicing process and ensure any

potential leak is outside the housing, avoiding a short circuit.

2. The pad material of the TIM and its thickness must be carefully selected for the

inverter’s rated DC-bus voltage to avoid any short circuit between the MOSFET

drain and the inverter housing. During testing, the TIM silicon pads with a

thickness of 1 mm were replaced with 2 mm pads after a piercing was observed

in the former, which caused a MOSFET failure.

3. A bug in the VSI program caused the application of PWM overlap time, instead

of dead-time, to the PWM signals of the same phase leg. This resulted in a

shoot through issue that caused some of the MOSFETs to fail. The UCC21750-

Q1 [244] gate driver IC utilized in the design includes a PWM interlock feature

that could have prevented phase shoot through events. However, this feature

was not utilized in the gate driver PCB. To avoid similar issues in the future,

it is recommended to incorporate the PWM interlock feature in the gate driver

design.

4. After repetitive installation and dismantling of the power PCB, the bolt/nut

fixture wore away the surface material of the PCB. This led to arcing between

the power PCB’s DC-plane and the earthed inverter housing. Therefore, suf-

ficient clearance around the bolt fixture holes on the power PCB, which takes

into account the outer diameter of such fixtures, must be made to avoid arcing

or short circuiting to earth. The arcing issue was resolved by applying a layer

of silicone conformal coating on the PCB and the inverter housing’s internal
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walls.

5. Operating at 800 V generates excessive noise that can disrupt communication

with the control board and lead to false faults on the gate driver. This is-

sue is attributed to the high dv/dt on the SiC MOSFETs operating in hard

switching mode. To address this problem, deliberate EMI mitigation measures

are required. Incorporating a 1 mm-thick conductive metallic sheet between

the power and gate driver PCBs or between the gate driver and control PCBs

is recommended to enhance the isolation between HV and LV circuitry. It is

essential to earth the sheet by directly bonding it with the inverter housing.

7.7 Summary

The validation of the MARC100—a 100 kW SiC-based six-phase traction—was

demonstrated in this chapter. Firstly, the manufacturing and assembly process are

discussed. Secondly, the testing methodology for some of the preliminary and func-

tionality tests were discussed, and their results were presented. The gate driver

functionality test demonstrated a healthy performance in line with the design spec-

ifications outlined in the previous chapter. Thirdly, high power experimentation,

including a double pulse test and six-phase inverter operation was showcased. A

high degree of consistency in the double pulse test across all phases demonstrated

the uniformity of the design. The MARC100 was tested to 60% of its rated power,

demonstrating a healthy and stable performance. Lastly, the main challenges and

lessons learned were outlined, which can be used to guide future improvements. The

proposed MARC100 inverter features a compact design with a peak power density
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of 70 kW. Overall, the results of this chapter validate the design and performance

of the MARC100, showing that it is a viable solution for high-power applications in

electrified transportation.

201



Chapter 8

Control Aspects of Six-Phase

Electric Motor Drives

Dual three-phase (DTP) PMSM drives have been drawing the attention of re-

searchers and engineers alike. PMSMs are known for their high efficiency, ruggedness,

and high power density. DTP-PMSMs offer multitude of advantages when compared

to their single three-phase counterparts, namely halved per-phase current handling,

improved fault tolerance capability, and lower torque pulsations [29]. Their utiliza-

tion in different applications including automotive [29] and aerospace [258] has been

extensively investigated.

As mentioned in Section 6.1, DTP-PMSMs exist in three distinct winding config-

urations, depending on the separation angle of the back electromotive force (EMF)

between the two sets of three phases [30, 36, 233, 259]: split, symmetrical, and asym-

metrical. The DTP terminology is mostly associated with asymmetric configuration

with two isolated neutrals. Owing to the configuration comparison in Table 6.1, this

chapter focuses on the asymmetric motor configuration.
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The machine can be modeled using the VSD or double d–q, as explained in Sec-

tion 2.1. For the VSD merits summarized in Table 2.2, the scope of this chapter is

limited to VSD control techniques of DTP-PMSM. The torque-producing components

in VSD are mapped into the α–β subspace, the harmonic compo nents are mapped

into the x–y subspace, and the zero-sequence components are mapped into the 01–02

subspace. When the six-phase windings have two isolated neutrals, the zero-sequence

components are nullified. The suppression of harmonic components is desirable since

they contribute to losses and reduce the maximum attainable power of the motor.

Various control strategies have been proposed for the suppression of xy-currents,

including the quasi-proportional resonance controller (QPR) [260], offset-free predic-

tive current control based on virtual vectors [261], sliding mode controller (SMC)

[262], bi-subspace predictive current control strategy based on non-virtual vectors

[263], and model predictive direct torque control [264]. These methods provide sepa-

rate control to α–β subspace and x–y subspace to avoid current harmonics. Digital

SMC with disturbance rejection was proposed in [265]. Additionally, other meth-

ods such as multistage predictive current control based on Virtual Vectors [266] and

space vector optimized predictive control [267] have achieved satisfactory results with

respect to the xy-current suppression problem.

However, there are some inadequacies in the aforementioned methods. For in-

stance, the QPR method presented in [260] is effective in reducing the harmonics on

xy-currents, but it cannot filter the fundamental frequency component. Moreover,

offset-free predictive current control based on virtual vectors, model predictive direct

torque control method, and space vector optimized predictive control method are
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effective in limiting xy current, but these methods require complex designs and cal-

culations. Besides, the xy-current can be controlled in the stationary, synchronous,

or asynchronous reference frames. The digital SMC controller in [265] was only im-

plemented in the synchronous frame. The performance of the suggested control tech-

niques in the different control reference frame was not investigated [57]. As such, this

chapter focuses on analyzing the xy-current control using simple and well-known con-

trollers, yet in various modeling frames. More specifically, three controllers are con-

sidered, namely PI, PR, and SMC, in the stationary, synchronous, and asynchronous

reference frames. [268]

Beyond base speed, PMSM operation requires a flux-weakening (FW) controller

to prevent an increase in the EMF that may saturate current controllers, potentially

leading to an unstable system [61]. One of the earliest and widely used FW control

techniques is voltage regulation (VR-FW), which seamlessly integrates into the field

oriented control (FOC) and is applicable in both linear and overmodulation (OVM)

PWM regions [269].

While the VR-FW control strategy is well established for three-phase PMSM

drives [270], its performance for six-phase drives controlled using VSD modeling is

yet to be thoroughly investigated. Only a few studies are available in literature on

this topic. Early research extended the VR-FW control of conventional three-phase

drives to DTP-PMSM. For example, in [271], a split DTP-PMSM was treated as

two separate three-phase machines, where two VR-FW controllers were implemented

using different torque split ratios between the two three-phase sets. However, the use

of two controllers aggravates the tuning effort as the FW currents can be unbalanced

[272]. In [273], a switching function between zero id vector control and FW control
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was suggested for asymmetrical DTP-PMSM. In [59], a VSD-based VR-FW control

for asymmetrical DTP-PMSM drives was proposed, where a single PI controller for

FW control was employed in the torque-producing subspace of the VSD. Although

a superior, sixth-harmonic-free FW current was reported, the testing was limited to

40% above base speed.

In the deep FW region, the static-gain of the voltage control loop changes dra-

matically due to the nonlinear behavior of the dynamics that relate the current vector

to the voltage amplitude, under maximum current and voltage constraints [274–276].

This, in turn, reduces the stability margin of the control loop as speed increases [277].

Therefore, in addition to delicate tuning of the PI controller of the VR-FW control,

the proportional gain should also be decreased to counteract the increase in the static-

gain of the loop [278]. Gain adaptation has been proposed in [116,274–276,279], but

limited to three-phase drives. This chapter proposes an adaptive VR-FW controller

for DTP-PMSM drives to address this issue.

In addition to the field weakening controls for PMSM drive operation above the

base speed, OVM techniques are also employed to mitigate the chopping effect of

the VSI topology. OVM can increase the maximum output torque capability, the

maximum speed limit, and improve the utilization of the DC-link voltage [280–283].

Although OVM methods have been studied for two-level three-phase VSIs, research

on OVM for DTP-PMSMs supplied by six-phase VSIs is a new challenge. The imple-

mentation of OVM for DTP-PMSM drives can be divided into two categories: two

three-phase modulators and one six-phase modulator.

Six-phase modulation methods are mainly based on SVM techniques [284]. Using a

6×6 orthonormal transformation, the six-dimensional (6-D) space of the DTP-PMSM
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can be transformed into three 2-D orthogonal subspaces, namely α–β, x–y, and o1–

o2 [285–287]. In linear modulation methods, no average voltage is applied in the x–y

subspace, but harmonic voltage is added in the x–y subspace for OVM. Conventional

six-dimensional SVM techniques are complex and suffer from a circulating current

issue. In comparison, two three-phase modulator methods are easier to implement,

and therefore, they are studied in this thesis.

When using two three-phase modulators for DTP-PMSM drives, the conventional

OVM methods of the two-level three-phase VSI are also applicable. The conventional

OVM methods are minimum phase error (MPE), minimum distance error (MDE),

keeping switching state (KSS), and minimum magnitude error (MME) [288–291].

MPE has a limited modulation index range and cannot achieve six-step operation

[292]. Dong-Choon Lee et al. proposed a modified method to solve such problems

[293]. Moreover, a sector-based OVM method was proposed based on Fourier analysis

to extend the modulation to OVM [294]. Each method has its advantages, and

some of them were assessed in a generalized vector form. However, a single and

comprehensive study considering all the methods to establish a fair comparison is

lacking. Furthermore, the implementation of these methods based on the generalized

vector form is only partially covered in the literature. Therefore, this chapter presents

a comparative analysis of OVM methods based on four segmented formulas, and a

modified MPE (MMPE) is proposed for easy implementation with better performance

in terms of fundamental component and harmonic content.

The remainder of this chapter is organized as follows. DTP-PMSM modeling using

the VSD approach and FOC is presented in Section 8.1. The xy-current control using

different controllers is investigated in Section 8.2. The adaptive VR-FW control
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control for DTP-PMSM drives is proposed in Section 8.3. Section 8.4 investigates

the three-phase-based OVM techniques and their application to DTP-PMSM drives.

Finally, Section 8.5 outlines the concluding remarks of this chapter.

8.1 Motor Modeling and Control

The six-phase IPMSM can be modeled in the synchronous dq-frame as:

vs = Rsis + Ls

dis
dt
− ωrJLsis + ωrJψr (8.1.1a)

ψs = Lsis + JψPM (8.1.1b)

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.1.1c)

where Rs is the diagonal stator resistance matrix and

Ls =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ld 0 0 0

0 Lq 0 0

0 0 Ls 0

0 0 0 Ls

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.1.2)

where Ld,q are the inductances in the dq-frame and Ls is the leakage inductance

in the x–y frame. vs, is, and ψs are the voltage, current, and flux linkage vectors,

respectively, in the form of fs = [fd fq fx fy]
T

. The flux linkage at no load

condition is given by ψr = [ψPM 0 0 0]T .
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The electromagnetic torque of a DTP-PMSM machine is given as:

Te =
3

2
Np[ψriq + (Ld − Lq)idiq] (8.1.3)

where Np is the number of pole pairs and p is the differential (d/dt) operator.

Using the VSD transformation, it is possible to define a FOC scheme to control

the DTP-PMSM. Figure 8.1 illustrates the VSD-based FOC scheme employed in this

chapter with double three-phase space vector modulations (SVMs). In this case,

the advantages of the VSD transformation allow defining a FW control just as in

conventional three-phase motors. However, this assumes that the xy components are

properly regulated/minimized. For speeds below base speed (i.e. ωr ≤ ωb), the outer

speed loop provides the reference q-axis current, i
∗
q0, which in turn is used to find the
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Figure 8.1: VSI-fed DTP-PMSM drive in the FOC scheme using VSD
transformation.

208



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

reference d-axis current, i
∗
d0 using the MTPA control.

8.1.1 Experimental Implementation and Evaluation

To establish the baseline performance of the DTP-PMSM under FOC using the

VSD transformation Figure 8.1, a test bench encompassing a 100 kW, 3 kRPM, 400

V DTP-PMSM is constructed. The DTP-PMSM is mechanically coupled with a

three-phase PMSM of the same specifications in a back-to-back configuration. In this

configuration, the power is cycled between the DTP-PMSM, operating in motoring

(torque) mode, and the three-phase PMSM, operating in speed mode and functioning

as a generator. This helps reduce the power requirements from an external power

supply, which only needs to supply the power loss in the system [295].

Figure 8.2 shows the motor experimental setup. The same power supply used in

the previous chapter is utilized for this experimental setup. The three-phase PMSM

is driven by a CM200DX Cascadia Motion inverter [296]. Similar to the MARC100

test bench described in Section 7.5, the DC power supply is connected to a pre-charge

and safety circuitry before the power is passed to the motors. The motors are cooled

with Dexron VI oil, while the inverters are cooled with a 50/50 water-glycol mix-

ture. The entire system is controlled in dSPACE using the MicroLabBox hardware.

The CM200DX was equipped with current sensors and a resolver-to-digital converter

to handle inner current control. MicroLabBox communicates with the CM200DX

through the CAN bus to read the sensor data and send speed commands. On the

other hand, MicroLabBox generates the gating signals for the six-phase inverter. The

MicroLabBox is connected to a host PC using Ethernet. A graphical user interface

(GUI) is built in ControlDesk for real-time testing, as shown in Figure 8.3.
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Figure 8.2: High-power six-phase/three-phase motor/dynamometer setup. (a)
Top-level diagram. (b) Setup photograph.

The control diagram in Figure 8.1 is implemented in dSPACE and the motor is

tested at 30% the rated speed. Figure 8.4, depicts the phase current and line-to-

line waveforms of the DTP-PMSM as well as the phase current of the three-phase
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Figure 8.3: Graphical user interface (GUI) for the back-to-back
motor/dynamometer setup in ControlDesk.

dynamometer. Both motors are controlled at fs = 10 kHz. Since ωr ≤ ωb, the VR-

FW and OVM are not activated in this test. From Figure 8.4, it is observed that

the phase current of the dynamometer, iA is twice as large in amplitude compared to

the phase currents of the DTP-PMSM, iA1,A2. This is expected as the DTP-PMSM

enjoys half the per-phase current of a three-phase counterpart. However, comparing

the current quality, iA enjoys a superior quality with 6% THD compared to almost

13% THD in iA1,A2.

To further investigate the current quality of the DTP-PMSM, Figure 8.5 shows

the harmonic spectrum of iA and iA1 for the same test reported in Figure 8.4. It

can be seen that iA1 exhibits a significantly larger 5
th

and 7
th

harmonics compared

to iA. This is attributed to the asymmetry between the two three-phase sets of

the DTP-PMSM, which can be suppressed with proper xy-control. In this test, the

xy-currents were controlled in the stationary frame using a PI controller. The next

section investigates other xy-current controls.
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Figure 8.4: Experimental steady-state test of the back-to-back
six-phase/three-phase motor/dynamometer setup at 0.3 p.u. speed.
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Figure 8.5: Harmonic spectra of vAB1 and iA1 of the DTP-PMSM in Figure 8.4.

8.2 xy-Current Control

From Table 2.1, the xy-currents, ixy of a six-phase motor represent the 5
th

, 7
th

,

17
th

, etc... harmonics of the phase current. Such harmonic components do not con-

tribute to torque production, but rather generate losses. Therefore, their elimination
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is desirable (i.e., i
∗
xy = 0). The control of the ixy can be implemented in the station-

ary frame, synchronous frame, and asynchronous frame as shown in Figure 8.6. In

the stationary frame, as the name suggests, the xy components are not rotationally

transformed after the VSD transformation as shown in Figure 2.3a and Figure 8.6a.

Alternatively, the xy components can be rotationally transformed in the same di-

rection of the Park’s transformation applied for the dq components, as shown in

Figure 8.6b. In this case, the xy components are controlled in the synchronous frame.

If the rotation direction is opposite to that of the dq components, as illustrated in

Figure 8.6c, then the xy components are said to be controlled in the asynchronous

frame. Applying different transformations is expected to result in a shift in the low-

order harmonic, which can be utilized to improve the control performance, as will be

shown next.

To suppress ixy, a controller must be used, regardless of the reference frame.

However, different combinations of controllers and reference frames will yield differ-

ent results. The remainder of this section evaluates different controllers for the ixy

suppression.
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(b)
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Figure 8.6: Control frames of the xy-currents. (a) Stationary frame. (b)
Synchronous frame. (c) Asynchronous frame.
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8.2.1 Proportional Integral Controller

PI controller is the most commonly used controller owing to its simplicity and

well-known characteristics. The transfer function of the PI controller in the s-domain

is defined as:

CPI(s) = KP +KI

1
s (8.2.1)

where KP and KI are the proportional and integral gains, respectively. Tuning of

such gains can be conducted using any of the classical control methods, such as zero

placement [297,298].
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The PI controller is only effective in suppressing DC components, whereas AC

components will be suppressed to a small extent dictated by the controller’s band-

width [57]. Depending on the chosen reference frame in which the PI controller is

implemented for ixy, the performance is expected to improve if the frequencies in ixy

are shifted closer to DC.

8.2.2 Proportional Resonant Controller

Unlike the PI controller, the PR controller is effective in controlling AC compo-

nents [299, 300]. The transfer function of an ideal PR controller in the s-domain is

defined as:

CPR(s) = KP +KR

2s

s2 + ω2
rr

, (8.2.2)

where KP and KR are the proportional and resonant gains, and ωrr = αRωr is the res-

onant frequency where ωr is the synchronous frequency and αR is a frame-dependent

multiplier to be explained next. The resonance term in (8.2.2) has an infinite gain at

ωrr [300]. A more practical implementation of the PR controller includes a damping

term. Thus, (8.2.2) is re-written as [301]:

CPR(s) = KP +KR

2ωcrs

s2 + 2ωcrs + ω
2
rr

(8.2.3)

where ωcr is the damping term. CPR in (8.2.3) has a limited gain at ωrr but can

provide high gain at a relatively wide range of frequencies.

The selection of ωrr is dependent on the chosen reference frame in which the CPR is

implemented. Therefore, the two-integrator method is utilized to implement the PR

controller in the vector proportional-integral form [299], as shown in Figure 8.8. In
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Figure 8.8: Block diagram of the PR controller.

the stationary frame, the PR controller is set to eliminate the lowest order harmonic.

Therefore, ωrr is set at 5ωr. If the 5
th

harmonic is positive sequence, then it will appear

at 4ωr and 6ωr in the synchronous and asynchronous reference frames, respectively.

Therefore,

αR =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5, stationary frame

4, synchronous frame

6, asynchronous frame.

(8.2.4)

On the other hand, tuning of KP and KR is independent of the reference frame.

KP is selected to obtain the desired selectivity and transient response of the controller,

and KR is selected based on KP/KR = Ls/Rs. A large KP yields a quick transient re-

sponse but reduces selectivity. Additionally, ωcr should be negligibly small compared

to ωrr [301].
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8.2.3 Digital Sliding Mode Controller

The SMC is easy to implement since no complex functions are required. It breaks

down the high dimensional problem to several subproblems in lower dimension to

simplify the problem [302]. It also has a strong robustness characteristics which allows

the output to reach its desired value regardless the uncertainty in the system [303].

For the i
∗
xy = 0 regulation problem, the xy-current dynamic equation in the discrete-

time domain is expressed as

ixy[k + 1] = Aixy[k] +Bvxy[k] (8.2.5)

where A and B are the state transition and input matrices, respectively, obtained via

Euler’s first-order approximation as

A2×2 = diag{1 − TsRs/Ls}, B2×2 = diag{Ts/Ls}. (8.2.6)

The desired dynamic behavior of ixy is defined as

ixy[k + 1] = ζ ixy[k], (8.2.7)

where ζ < 1 is the desired rate of descend for ixy. Substituting the x–y subspace of

(8.1.1a) in (8.2.7), the equivalent control law is derived as

vxy[k] = −B
−1(A − diag{ζ}) ixy[k] (8.2.8)

The stability of (8.2.8) was proved in [265].
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Figure 8.9: Experimental iA1 with ixy control at 0.5 p.u. speed and 0.2 p.u. torque:
(a) stationary, (b) synchronous, and (c) asynchronous frames.
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Figure 8.10: Experimental polar plot of vαβXY and iαβXY controlled using different reference frames and different
controllers at 0.5 p.u. speed and 0.2 p.u. torque. Top to bottom row: PI controller, SMC, PR controller. Left to

right column: stationary, synchronous, and asynchronous frames.
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8.2.4 Experimental Results and Discussions

The effectiveness of the foregoing controllers for xy-current suppression is eval-

uated through experimental testing using the test bench presented in the previous

section. The tests for ixy control are conducted at 0.5 p.u. speed and 0.2 p.u. torque.

Figure 8.9 shows the phase current waveform and its respective harmonic spectrum

under different ixy controllers implemented in the different reference frames. From

Figure 8.9a, the 5
th

and 7
th

harmonics are present under PI and SMC. The SMC has

a superior suppression of the low-order harmonics compared to PI, thus achieving

a lower THD. On the other hand, the only dominant low-order harmonic with PR

controller is the 7
th

. This demonstrates effective elimination of the 5
th

harmonic when

the resonance component is set at 5ωr. As a result, the PR controller achieves a lower

THD compared to SMC.

Similar results are observed in the synchronous frame as shown in Figure 8.9b, yet

with a slightly improved THD with the PI controller. This means that the positive-

sequence low-order harmonics are brought closer to DC, so the PI controller is able to

further suppress such AC components with the same bandwidth. The PR controller

effectively eliminated the 5
th

is the synchronous frame with ωrr = 4ωr. Therefore, the

5
th

harmonic is positive-sequence.

In the asynchronous frame (Figure 8.9c), the phase current exhibits a slightly worse

THD with PI controller when compared to the stationary frame. On the contrary, PR

controller achieves a superior phase current THD below 3%, thanks to the elimination

of 5
th

and 7
th

harmonics. Therefore, the 7
th

harmonic is a negative-sequence harmonic

that is transformed to 6
th

harmonic in the asynchronous frame. The positive-sequence

5
th

harmonic is also transformed into 6
th

harmonic too in the asynchronous frame.

220



Ph.D. Thesis – W. Taha McMaster University – Electrical Engineering

As such, setting ωrr = 6ωr eliminates both harmonics.

To better visualize the suppression of ixy, and consequently vxy, Figure 8.10 depicts

the polar plot of iαβXY and vαβXY for the results shown in Figure 8.9. The better

the suppression of ixy and vxy, the closer they are to the origin. The ixy is closest to

the origin under PI controller in the asynchronous frame, as shown in Figure 8.10f.

Similarly the vxy, albeit vx > vy, which suggests an asymmetric dynamics of the x–y

space. In other words, Rs and Ls are not exactly the same in the x and y directions.

In conclusion, PR controller implemented in the asynchronous frame leads to the best

ixy suppression.

8.3 Flux-Weakening Control

Beyond base speed (i.e. ωr ≥ ωb), the operation is limited by Vlim. Substituting

(8.1.1a) in (8.3.1), and neglecting Rs, yields the voltage constraint:

(Vlimωr )
2

= L
2
d(
ψr
Ld
+ id)

2

+ (Lqiq)2
. (8.3.1)

It follows from (8.3.1) that increasing ωr beyond ωb is possible by reducing id. In

VR-FW techniques, the voltage magnitude is fed back to reduce id such that Vlim is

preserved. Reduction of id by means of voltage feedback is attainable by manipulating

id, iq, or the current phase angle, γ = atan(iq/id). While all behave similarly from a

dynamic perspective, γ adjustment enjoys a relatively lower controller gain variation

in deep FW region [274], and therefore is chosen in this study. The γ-command of

FW controller, ∆γ is the output of a PI controller. The ∆γ adjusts i
∗
dq based on

FW demand to obtain the reference idq, as shown in Figure 8.1. While gain variation
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is lowest when using the γ-command, it is still high enough that an adaptive gain

should be incorporated to maintain the stability margin of the voltage control loop.

The VR-FW control loop is first analyzed using a small-signal model, which pro-

vides a systematic tuning methodology of the PI controller based on linear control

theory. Then, an adaptive control law is devised to handle the varying stability

margin of the voltage control loop as will be shown herein.

8.3.1 Small-Signal Model

Figure 8.11 depicts the small-signal model of the VR-FW control loop. Henceforth,

small- and large-signal variables are denoted withˆand˜accents, respectively. Starting

with the FW PI regulator, its output, ∆γ is defined as

∆γ = KPγ(1 +
1

TIγs
)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
CPI(s)

ev, (8.3.2)

where ev = Vlim − v
∗
s , and KPγ, TIγ are the proportional gain and integral time

constant of the VR-FW PI controller, respectively. Then, the steady-state current

magnitude, Is and ∆γ are transformed from polar to Cartesian quantities:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i
∗
d

i
∗
q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Î
∗
d + ĩ

∗
d

Î
∗
q + ĩ

∗
q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Is cos(∆γ̂ +∆γ̃)

Is sin(∆γ̂ +∆γ̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Is cos ∆γ̂ cos ∆γ̃ − Is sin ∆γ̂ sin ∆γ̃

Is sin ∆γ̂ cos ∆γ̃ + Is cos ∆γ̂ sin ∆γ̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(8.3.3)
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Since ∣∆γ̃∣≪ 1, then
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cos ∆γ̃ ≅ 1

sin ∆γ̃ ≅ ∆γ̃

. (8.3.4)

So, (8.3.3) can be re-written as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Î
∗
d + ĩ

∗
d

Î
∗
q + ĩ

∗
q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Is cos ∆γ̂ − Is sin ∆γ̂ ⋅∆γ̃

Is sin ∆γ̂ + Is cos ∆γ̂ ⋅∆γ̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Î
∗
d − Î

∗
q ⋅∆γ̃

Î
∗
q + Î

∗
d ⋅∆γ̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.3.5)

Therefore, the small-signal reference currents, ĩ
∗
d,q are

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĩ
∗
d

ĩ
∗
q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Î∗q

Î
∗
d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
G(s)

∆γ̃. (8.3.6)

The ĩ
∗
d,q are, in turn, fed to the current loop. A linearized small-signal motor

model, assuming vxy = 0, is given as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṽd

ṽq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lds +Rs −Lqωr

Ldωr Lqs +Rs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Z(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĩd

ĩq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.3.7)

with [̃id ĩq]T = T (s)[̃i∗d ĩ
∗
q ]T where T (s) is the PI current regulators modeled

using complex vectors [304]. The model can be easily represented using state-space

notation as:

ẋ =Ax + bu

y =Cx + du
, (8.3.8)
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iq
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Figure 8.11: Block diagram of the small-signal model for the voltage control loop.

with x = [ψd ψq vd vq]T , u = [i∗d i
∗
q ]T , y = [id iq]T ,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(KPd +Rs)/Ld ωr 1 0

−ωr −(KPq +Rs)/Lq 0 1

−KId/Ld KPqωr/Lq 0 0

−KPdωr/Ld −KIq/Lq 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KPd 0

0 KPq

KId −KPqωr

KPdωr KIq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/Ld 0 0 0

0 1/Lq 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and d = 02×2, where KP and KI are the proportional and integral gains and the

d and q subscripts denote d- and q−currents, respectively. Thus, T (s) = C(sI −

A)−1
b+d, where I is the identity matrix. The resulting T (s) is a 2×2 transfer matrix

whose diagonal transfer functions are 2
nd

order. The PI parameters of the current

loop (T (s)Z(s)) are tuned based on zero-pole cancellation for a desired bandwidth

[298]. For the small-signal model, decoupling terms in steady-state are assumed zero,

and hence neglected. The output from the current control loop, i.e. reference dq-

axes voltages, v
∗
d,q from the current loop are then converted to voltage magnitude.
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Decomposing the voltage magnitude, v
∗
s into large- and small-signal components:

v
2
s = (v̂s + ṽs)2

= (v̂d + ṽd)2
+ (v̂q + ṽq)2

= V
2
s + 2(v̂dṽd + v̂qṽq) + ṽ2

d + ṽ
2
qÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

≪V 2
s

= V
2
s [1 + 2

v̂dṽd + v̂qṽq
V 2
s

].

(8.3.9)

Taking the square root of both sides of (8.3.9) yields

(v̂s + ṽs) = Vs +
v̂dṽd + v̂qṽq

Vs
. (8.3.10)

Therefore, the small-signal reference voltage, ṽ
∗
s is given as

ṽs =
1

Vs
(v̂dṽd + v̂qṽq) = [ v̂d

Vs

v̂q
Vs

]
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

H(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṽd

ṽq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.3.11)

8.3.2 Closed Loop Analysis

An acceptable tuning approach for the PI controller of the VR-FW is based on

zero-pole cancellation, with TIγ set equal to the time constant of the current loop [275].

The proportional gain can be set as

KPγ =
1

Is,nom
⋅
BWFW

BWC
, (8.3.12)
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Figure 8.12: Bode plot of FW controller bandwidth using small-signal model. (a)
Non-adaptive control. (b) Adaptive control.

where BWC and BWFW are the bandwidths of the current and FW control loops,

respectively, and Is,nom is the rated current of the motor. The reciprocal of Is,nom is

necessary to normalize the gain in G(s). The bandwidth of the voltage FW control

loop can be designed to yield a 1
st

order LPF response. This normally takes place

over the range of 0.3BWC to 0.6BWC .

Figure 8.12a presents the closed-loop Bode diagram of the small-signal model

in Figure 8.11, evaluated at various operating speeds. The controller tuning was

conducted at a base speed of ωb = 3 kRPM. Figure 8.12a exhibits the diminishing

stability margin of the voltage control loop at higher speeds. This calls for gain

adaptation to normalize the static gain of the loop throughout the speed range, which

is developed next.
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8.3.3 Adaptive Control

A simple and effective adaptive law can be deduced from simplifying the voltage

equation in (8.1.1a). When FW control is active, the voltage magnitude is in steady-

state and close to Vlim. Therefore, the derivative terms in (8.1.1a) can be dropped,

along with Rs. As a result, the steady-state relation between voltage and current

reduces to: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Vd ≈ −ωrLqIq ≈ −ωrLqIs sin γ

Vq ≈ ωr(LdId + ψr) ≈ ωr(LdIs cos γ + ψr)
. (8.3.13)

This assumption has been validated in [274]. Applying the small-signal approach

developed in the previous subsection, a steady-state relation between the voltage

magnitude, Vs to γ is sought. Assuming that the mechanical time constant is much

larger than the electrical one, ωr and Is can be treated as constants. As such, the

derivative of Vs with respect to γ yields the static gain in (8.3.14) that links the

small-signal voltage to γ [275]:

∂Vs
∂γ

=
−ωr
Vlim

[VdLqIs cos γ + VqLdIs sin γ]

=
−ωr
Vlim

[VdLqId + VqLdIq]
. (8.3.14)

The adaptive gain can then be expressed as a weighting factor of the static gain

(∂Vs/∂γ) at an operating point to its counterpart at the nominal point (where the

controller is tuned offline). Therefore, the adaptive gain, Kadapt is given as:

Kadapt =

(∂Vs/∂γ)γ=γnom

∂Vs/∂γ
, (8.3.15)
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Figure 8.13: Adaptive voltage regulation flux-weakening controller (with anti
wind-up) using gain adaptation in (8.3.15).

where γnom is the current phase angle at the nominal point. The nominal point can

be computed at ωb. The resulting closed-loop behavior with Kadapt is shown in Figure

8.12b. Therein, the effectiveness of Kadapt to maintain the loop bandwidth at different

speeds is demonstrated. In the VSD-based FOC, Kadapt is applied in cascade with

the gain of the PI controllers, as illustrated in Figure 8.13.

8.3.4 Simulation Results and Discussions

The proposed adaptive VR-FW technique, along with small-signal controller tun-

ing, is tested in Matlab/Simulink on a 100 kW, 3 kRPM DTP-PMSM. Machine mod-

eling was conducted using FEA. The model provides a high accuracy by considering

the nonlinear characteristics of Ld, Lq, and Ls using LUTs. The employed switching

frequency is 10 kHz. The DC-bus voltage is Vdc = 350 V. The effective voltage limit

is set at 92% of the theoretical limit (i.e. Vdc/
√

3) to account for voltage harmonics

and inverter dead-time.

System evaluation entails steady-state and dynamic testing as follows. Firstly, the
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Figure 8.14: Steady-state performance at rated torque and 0.83 p.u. speed: showing
phase currents, dq- and xy-currents, and phase voltage.

VSD-based control of the DTP-PMSM drive is tested at low speed, i.e. outside of FW

region to establish baseline performance. Figure 8.14 shows current and phase voltage

waveforms at 1.0 p.u. load torque and 0.83 p.u. speed. At this stage, FW controller

is not activated and ∆γ = 0. The ixy are circulating at 5 times the fundamental

frequency. The current THD is 8.2%.

Secondly, transition into FW region using non-adaptive and adaptive FW control

is studied. Figure 8.15 depicts a speed ramp from 0.97 p.u. to 1.03 p.u. at a rate of 1
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Figure 8.15: Dynamic performance at rated torque and speed ramp from 0.97 p.u.
to 1.03 p.u. (a) Non-adaptive FW control. (b) Adaptive FW control.

p.u./s, at rated torque. To this end, FW control is activated as the drive exceeds the

base speed (i.e. ∆γ ≠ 0). Comparing adaptive to non-adaptive FW control in Figure

8.15, the superiority is not evident; only a meager improvement is observed in idq.

This is, nonetheless, expected at the edge of the FW region as the bandwidth of the

voltage loop is almost similar to its nominal counterpart. Consequently, Kadapt ≈ 1

in this test.
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Thirdly, the change in VR-FW control loop is demonstrated in Figure 8.16, where

the speed is increased towards the capability limit of the DTP-PMSM drive. In Figure

8.16 the DTP-PMSM drive is essentially controlled using the proposed adaptive FW

control at rated torque and speeds between 1.27 p.u. and 1.28 p.u.. However, Kadapt is

switched off over some time to study the effectiveness of the adaptive control law. Over

the interval of 50 ≤ t ≤ 100 ms and 1.27 p.u. speed, non-adaptive VR-FW control

suffers higher oscillations in i
∗
dq and v

∗
s when compared to the adaptive controller. Far

worse, at 1.28 p.u. when Kadapt is turned off at 250 ≤ t ≤ 290 ms, the non-adaptive

VR-FW controller fails to maintain drive stability. Therefore, the adaptive controller

offers an extended speed-range by maintaining a viable voltage loop bandwidth.

8.4 Overmodulation

A comparative analysis of OVM methods based on four segmented formulas is

presented in this section [268]. Firstly, the generalized formula is defined for existing

methods and a specific average modulation voltage is shown to compare. Secondly,

analyses on the fundamental component, harmonic content, transition into six-step,

modulation linearization, and complexity of execution are investigated for the studied

OVM techniques. Lastly, simulation results are presented to verify the effectiveness

of all the methods on a DTP-PMSM platform.
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8.4.1 Generalized Form of SVM by Two Modulators

The modulation index, M definition in (2.2.3) is used when the modulation is

limited to the linear region. To enable OVM, the modulation index is redefined as:

MI =
V̂1

2Vdc/π
(8.4.1)

According to the definition provided in (8.4.1), the linear region is defined as 0 ≤

MI ≤ 0.907. When voltage reference, v
∗
s is applied, the corresponding MI reference,

MI
∗

can be calculated as MI
∗
= v

∗
s /(2Vdc/π). However, when considering the funda-

mental component, the actual MI can be obtained through Fourier analysis. In linear

modulation, MI
∗

and MI are equal, but in overmodulation, they differ. Therefore,

when analyzing overmodulation, two sets of quantities are required, as listed in Table

8.1. In the OVM algorithm, vs represents the output voltage magnitude, θ
∗
v is the

voltage vector reference angle, and θv is the output angle.

Table 8.1: Overmodulation inputs and outputs

Items of Voltage Vector Input Output

Magnitude v
∗
s vs

Angle θ
∗
v θv

Generalized Formulas

For a simplified analysis, the reference voltage vector is assumed to be located in

the first sector (0 ≤ θv < π/3). Irrespective of the modulation technique applied, the
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output voltage vector vs can be expressed as

vs = vse
jθv . (8.4.2)

For linear modulation, vs = v
∗
s and θv = θ

∗
v . For OVM, vs and θv are generated by an

auxiliary magnitude and angle, defined as:

vs = fv (θv) , (8.4.3)

θv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ
∗
1 θ

∗
v ∈ [0, θp]

θ
∗
2 θ

∗
v ∈ (θp, π/6)

θ
∗
3 θ

∗
v ∈ [π/6, π/3 − θp)

θ
∗
4 θ

∗
v ∈ [π/3 − θp, π/3]

. (8.4.4)

Table 8.2: Magnitude and angle in the different overmodulation techniques

– MPE MDE KSS
Mode – I II I II

vs vs θv vs θv vs θv vs θv vs θv
θ
∗
1 v

∗
s θ

∗
v v

∗
s θ

∗
v 2Vdc/3 0 v

∗
s θ

∗
v 2Vdc/3 0

θ
∗
2 v

∗
1 θ

∗
v v

∗
2 θ1 v

∗
2 θ1 v

∗
2 θ3 v

∗
2 θ3

θ
∗
3 v

∗
1 θ

∗
v v

∗
2 θ2 v

∗
2 θ2 v

∗
2 θ4 v

∗
2 θ4

θ
∗
4 v

∗
s θ

∗
v v

∗
s θ

∗
v 2Vdc/3 π/3 v

∗
s θ

∗
v 2Vdc/3 π/3

– MME LeeD LeeH MMPE
Mode – I II – II

vs vs θv vs θv vs θv vs θv vs θv
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The specific expression of fv (θv), θp, θ1, θ2, θ3 and θ4 is determined by the applied

OVM method. Table 8.2 summarizes the definition of such expression for the different

OVM methods considered in this thesis. The implementation of each OVM method

is discussed next.

Minimum Phase Error (MPE)

The objective of the MPE method is to minimize the angle difference between θ
∗
v

and θv. There is only one modulation mode in this technique. When the reference

voltage vector v
∗
s lies in the modulation hexagon, vs is kept the same as v

∗
s . When v

∗
s

is outside the modulation hexagon, vs is reduced to the modulation hexagon based

on θ
∗
v . This means that although vs is not always equal to v

∗
s , θv is always equal to

θ
∗
v . Hence, the phase error is 0. It follows that v

∗
1 and θp can be expressed as

v
∗
1 =

Vdc√
3 sin (2π

3
− θ∗v )

(8.4.5)

θp =
π

6
− cos

−1 ( Vdc√
3v∗s

) (8.4.6)

Minimum Distance Error (MDE)

The objective of the MDE method is to minimize the length between v
∗
s and

vs. There are two modulation modes in this technique. In Mode I, v
∗
s lies in the

modulation hexagon, and the modulation is applied in the same fashion as in the

MPE method. When v
∗
s is outside of the modulation hexagon, vs is computed as the

projection of v
∗
s on the hexagon boundary. In Mode II, vs is always generated as the

projection. Therefore, the distance error is min (∣v∗s − vs∣). It follows that v
∗
2 , θ1, θ2,
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and θp can be expressed as

v
∗
2 =

Vdc√
3 cos (∣π

6
− θv∣)

(8.4.7)

θ1 =
π

6
− tan

−1 (tan ∆θ − sin ∆θ (
√

3v
∗
s

Vdc
−

1

cos ∆θ
)) (8.4.8)

θ2 =
π

6
+ tan

−1 (tan ∆θ − sin ∆θ (
√

3v
∗
s

Vdc
−

1

cos ∆θ
)) (8.4.9)

where ∆θ = ∣ (π/6 − θ∗v ) ∣.

Mode I: θp can be obtained by (8.4.6)

Mode II:

θp =
π

6
− sin

−1 ( Vdc
3v∗s

) (8.4.10)

Keeping Switching State (KSS)

The objective of the KSS method is to hold on one active vector switching state.

There are two modulation modes in this method. In Mode I, v
∗
s lies in the modulation

hexagon, and its implementation is the same as the MPE method. When v
∗
s is outside

the modulation hexagon, vs is reduced to the modulation hexagon with no change on

the α- or β-components of v
∗
s . In Mode II, vs is always generated on the modulation

hexagon with no change on the α- or β-components of v
∗
s . The KSS holds on v

∗
α or

v
∗
β . θ3, θ4 and θp can be expressed as

θ3 =
π

6
− tan

−1 (tan ∆θ −

√
3 sin(π

3
− θ∗v )

2
(
√

3v
∗
s

Vdc
−

1

cos ∆θ
)) (8.4.11)
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θ4 =
π

6
+ tan

−1 (tan ∆θ −

√
3 sin θ

∗
v

2
(
√

3v
∗
s

Vdc
−

1

cos ∆θ
)) (8.4.12)

where ∆θ = ∣π/6 − θ∗v ∣.

Mode I: θp can be obtained by (8.4.6)

Mode II:

θp =
π

6
− sin

−1 ( Vdc√
3v∗s

) (8.4.13)

Minimum Magnitude Error (MME)

The objective of the MME method is to minimize the magnitude between v
∗
s

and vs. There is only one modulation mode in this method. When v
∗
s lies in the

modulation hexagon, vs is kept the same as v
∗
s . When v

∗
s is outside the modulation

hexagon, vs is held at the intersection of reference voltage circle and modulation

hexagon. This means that although θv is not always equal to θ
∗
v , vs is always equal

to v
∗
s . Therefore, the magnitude error is zero. It follows that θp can be obtained by

as defined in (8.4.6).

Dong-Choon Lee’s Method

Dong-Choon Lee’s method, labeled LeeD henceforth, is a modified version of the

MPE method. There are two modulation modes in this method. In Mode I, its

implementation is the same as the MPE method. In Mode II, vs is held at the

modulation vertex first, then it moves along the modulation side, and finally stays at

the next vertex. It follows that v
∗
3 and θ5 can be expressed as

v
∗
3 =

Vdc√
3 sin (2π

3
− θv)

(8.4.14)
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(a) MPE OVM. (b) MDE OVM.

(c) KSS OVM. (d) MME OVM.

(e) LeeD OVM. (f) LeeH OVM.

Figure 8.17: Modulation hexagon and average phase vA1 voltage.

θ5 =
π

π − 6θp
(θ∗v − θp) (8.4.15)

θp can be obtained by (8.4.6) in Mode I and (8.4.13) in Mode II.

Heekwang Lee’s Method

Heekwang Lee’s method, labeled LeeH henceforth, is a δ-based OVM. There is

only one modulation mode in this technique. This method can be considered as a

combination of the maximum linear modulation and the six-step operation. It follows

that θp can be obtained by (8.4.6).
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Average Voltage Modulation Waveforms

For an easy understanding and direct comparison of the six aforementioned OVM

methods, the modulation hexagon voltage trajectories and average vA1 waveforms are

shown in Figure 8.17. The comparison at the same MI
∗

is discussed in the next

section. For MPE in Figure 8.17a, the change in vs occurs at [θp, π/3 − θp] for

each sector and vs is reduced to hexagon side. For MDE OVM in Figure 8.17b, the

change on vs occurs in the whole sector and vs is reduced to hexagon boundary. For

KSS OVM in Figure 8.17c, there exists the voltage discontinuous problem around the

middle of hexagon side in each sector. For MME in Figure 8.17d, vs trajectory is

part of the v
∗
s circle and voltage discontinuous problem between [θp, π/3 − θp] is

worse. For LeeD in Figure 8.17e, it looks like MDE, but the LeeD points chosen on

hexagon side are different when compared to that in MDE. For LeeH in Figure 8.17e,

it is a combination of linear modulation in [θp, π/3 − θp] and six-step operation in

[0, θp] and [π/3 − θp, π/3].

Modified MPE (MMPE) Method

There are two main issues in the foregoing OVM methods. One is the voltage

discontinuity problem, and the other is the complexity of calculation. To achieve

a better performance on these two issues, the MMPE is proposed. There are two

modulation modes in this method. In Mode I, MMPE has the same implementation

as in the MPE method. In Mode II, MMPE is a combination of part of the hexagon

side and six-step operation. Based on the generalized formulas, the corresponding

magnitude and angle can be computed as given in Table 8.2. v
∗
1 and θp can be

obtained by (8.4.5) for Mode I and II, (8.4.6) for Mode I and (8.4.13) for Mode II,
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Figure 8.18: Control flowchart of the MMPE overmodulation technique.

respectively.

Although it seems to be complex to implement with two modes and calculation

of magnitude and angle in theory, there is rather a simple way for MMPE implemen-

tation in practice. This is demonstrated in Figure 8.18. T
∗
a and T

∗
b are generated

in the same way as that in the linear modulation by (8.4.16) and (8.4.17). Mode I

is implemented by the reduction part, and Mode II is implemented by the limitation

part. Thus, the calculation burden is light.

T
∗
a =

Ts
√

3v
∗
s

Vdc
sin (π/3 − θ

∗
v ) (8.4.16)

T
∗
b =

Ts
√

3v
∗
s

Vdc
sin θ

∗
v (8.4.17)

Based on Table 8.2 and Figure 8.18, the MMPE waveforms of Mode I, Mode
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(a) Mode I (b) Mode II

(c) Six-step operation

Figure 8.19: Modulation hexagon and average vA1 of MMPE.

II and six-step operation are shown in Figure 8.19. In Figure 8.19 (a), it is the

same as MPE, whereas only the magnitude is reduced in OVM when vs exceeds the

modulation hexagon. In Figure 8.19 (b), six vertex point are applied to extend MI

range. In Figure 8.19 (c), after the points on hexagon side are reduced to zero, phase

A1 voltage transits into six-step operation.

8.4.2 Comparative Analysis in Generalized Form

With the generalized form, aforementioned seven methods can be compared with

the aspects: output fundamental component and harmonic content, transition into

six-step operation, modulation index linearization, and complexity of execution.

Fundamental Component and Harmonic Content

With Fourier analysis, actual MI and voltage THD are shown in Figures 8.20 and

8.21, respectively. The MPE has a ceiling limit of MI = 0.952. The MI of MDE
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Figure 8.20: MI
∗

v.s. MI.

Table 8.3: v
∗
s , MI

∗
and MI range

Method Effective v
∗
s range Effective MI

∗
range MI range

MPE (Vdc/
√

3 2Vdc/3] (0.907 1.047] (0.907 0.952]
MDE (Vdc/

√
3 +∞) (0.907 +∞) (0.907 1)

KSS (Vdc/
√

3 2
√

3Vdc/3] (0.907 1.8138] (0.907 1]
LeeD (Vdc/

√
3 2

√
3Vdc/3] (0.907 1.8138] (0.907 1]

LeeH (Vdc/
√

3 2Vdc/3] (0.907 1.047] (0.907 1]
MMPE (Vdc/

√
3 2

√
3Vdc/3] (0.907 1.8138] (0.907 1]

can reach 1 at MI
∗
= ∞. The maximum MI of the other five methods is 1. The

relationship between MI
∗

and MI is summarized in Table 8.3. In Figure 8.21, the

voltage THD is increasing with MI
∗
. The closer the method to six-step operation,

the higher the voltage THD it yields. The performance of MME in terms of voltage

THD is the worst, but LeeD OVM and MMPE OVM have the best performance.

Transition into Six-Step Operation

Based on Figure 8.20 and Table 8.3, there is a gap between 0.952 and 1 for MPE.

If MPE is forced to transition into six-step operation, the discontinuity problem of

the voltage magnitude will result in a significant current overshoot. Therefore, MPE
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Figure 8.21: Voltage THD.

Figure 8.22: Control flow of modulation index linearization.

is unable to transition smoothly. For MDE, a large ceiling limit can be set for the

transition into six-step operation, such as MI
∗
= 10 or MI

∗
= 70. Although the

discontinuity problem of the voltage magnitude still exists, the current overshoot in

the transition is much smaller than that in MPE. For the other five methods, the

transition is smooth and continuous.

Modulation Index Linearization

In Figure 8.20, there is a non-linearity between MI
∗

and MI; MI is always smaller

than MI
∗
. With modulation index linearization (MIL) shown in Figure 8.22, MI

∗

can be boosted to MI
∗∗

. Using the MIL technique, MI can be made equal to MI
∗

with the input of OVM as MI
∗∗

. As a result, the modulation gain MI/MI
∗

can
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Figure 8.23: MI
∗

v.s. MI
∗∗

.

Figure 8.24: General execution flowchart of overmoulation.

be made equal to 1 for the entire modulation range. The data for MIL is obtained

from Figure 8.23, which is reversed from Figure 8.20. Polynomial curve or lookup

tables (LUTs) can be applied to implement MIL. From Figure 8.23, the slope of the

MME curve varies slightly, and second order polynomial curve fitting is deemed suffi-

cient. However, the slope of the other six methods varies dramatically over the entire

modulation range. If polynomial curve fitting is applied in this case, a satisfactory

performance is only achieved at the ninth order of polynomial curve fitting, which is

computationally cumbersome. Instead, linear LUTs are more suitable for the other

six methods. As such, MIL for MME is the simplest among the considered OVM

methods.
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Complexity of Execution

The general OVM execution process can be broken down into four steps, as shown

in Figure 8.24. The first step is to calculate auxiliary theta θp. Based on θp, one base

sector is divided into four segments. For each segment, vs is set in second step and

then θv is set by θ
∗
v or θ1 θ5 in third step. In the last step, Ta and Tb for the two

active vectors are calculated based on vs and θv. The main calculation burden is on

voltage magnitude and angle in Table 8.4. There is only one quantity to calculate in

MME and LeeH. The execution burden is heaviest for MDE and KSS. On the other

hand, MPE, LeeD and MMPE enjoy light execution burden. Considering Figure 8.18,

MMPE is the simplest method to implement in practice.

Based on MI range, voltage THD, transition into six-step operation and com-

plexity of execution, MMPE can be considered the best method.

8.4.3 Simulation Results and Discussion

The aforementioned OVM methods are validated using a 100 kW, 3 kRPM DTP-

PMSM. The machine is modeled using FEA and controlled using FOC and VSD [30].

Table 8.4: Execution burden in overmodulation

Method Voltage magnitude voltage angle

MPE v
∗
1 θp

MDE v
∗
2 θ1, θ2, θp

KSS v
∗
2 θ3, θ4, θp

MME — θp
LeeD v

∗
3 θ5, θp

LeeH — θp
MMPE v

∗
1 θp
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The control scheme is shown in Figure 8.25. The DC-bus voltage is 350 V, and the

simulation tests are conducted at a constant modulation frequency mf of 50. The

output of current controllers are d - and q-axis voltage reference v
∗
d,q, and x - and

y-axis voltage reference v
∗
x,y. After applying the VSD transformation, two three-

phase reference v
∗
A1,B1,C1 and v

∗
A2,B2,C2 are obtained. Two sets of αβ-axis voltage

references are calculated using Clarke’s transformation at the input of the two three-

phase modulators. Finally, six-phase pulses are generated by the PWM blocks based

on a duty ratio of one to six.

Open-Loop Performance

The vA1 waveform under the OVM techniques of MPE, MDE, KSS, MME, LeeD,

and LeeH are shown in Figures 8.26 and 8.27. All six methods can be applied for

DTP-PMSM drives as two modulators OVM. In order to show the difference on the

same inputs, MIL is not enabled for pulses comparison of six methods.

At MI
∗
= 0.98, it can be noticed in Figure 8.26 that the switching pattern of

MME and LeeH OVM is close to six-step operation, while the other four methods are

far from six-step operation. This is attributed to the low modulation gain MI/MI
∗

in Figure 8.20. When MI
∗

is 0.98, the actual MI of MME and LeeH is very close

Six Phase 
Inverter

vd
*

vq
*

vx
*

vy
*

 dq
xy

abc1

abc2 

 abc

αβ 

 abc

αβ 

vαβ1

vαβ2

*

*

vabc1

vabc2

*

*

OVM

OVM

Figure 8.25: Control scheme of two modulators overmodulation in DTP-PMSM
drives.
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(a) MPE OVM. (b) MDE OVM.

(c) KSS OVM. (d) MME OVM.

(e) LeeD OVM. (f) LeeH OVM.

Figure 8.26: Phase vA1 pulses at MI
∗
= 0.98.

to 1. For the other four methods, the difference between MI
∗

and actual MI is not

significant at MI
∗
= 0.98. Also, the pulse difference among the four methods is small.

Between [2π/3, 4π/3] and [−Vdc/3, 0], there are 9, 10, 11, and 12 small and narrow

pulses in MPE, KSS, MDE, and LeeD OVM methods, respectively.

At MI
∗
= 1.4, LeeH and MME operate in six-step mode because MI

∗
is larger

than the maximum effective limit of 1.047 in Table 8.3. The pulses of MPE are

fixed as depicted in Figure 8.27a when MI
∗

exceeds the ceiling limit. The switching

pattern of KSS and LeeD is close to six-step operation, while MDE is still far from

six-step operation.

The vA1 pulses of MMPE are shown in Figure 8.28. MMPE operates normally

for Mode I, Mode II and six-step operation. When MI
∗

is 0.98, Figure 8.28 a is
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(a) MPE OVM. (b) MDE OVM.

(c) KSS OVM. (d) MME OVM.

(e) LeeD OVM. (f) LeeH OVM.

Figure 8.27: Phase vA1 pulses at MI
∗
= 1.4.

(a) Mode I: MI
∗
= 0.98 (b) Mode II: MI

∗
= 1.4

(c) Six-step operation: MI
∗
= 1.8138

Figure 8.28: Phase vA1 pulses in MMPE.
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the same as Figure 8.26a. For MI
∗
= 1.4, MMPE (Figure 8.28b) is similar to LeeD

(Figure 8.27e), but the pulses between [Vdc/3, 2Vdc/3] and [−2Vdc/3, −Vdc/3] are

different. The performance of the DTP-PMSM drive, when using the different OVM

methods, is investigated next.

PMSM Drive Performance

The studied OVM methods are tested over the torque-speed envelope of the DTP-

PMSM drive to study their suitability for PMSM drive applications. Multiple points

of operation in the OVM and FW regions are selected for this evaluation, as depicted

in Figure 8.29. In OVM region in Figure 8.29, only MTPA control is applied and

MI
∗
∈ [0.907, 1). In FW region, only FW control is applied and MI

∗
≈ 1. The

VR-FW controller in Section 8.3 is adopted in this study for the DTP-PMSM drive.

Since different controls are applied in those two regions, the drive performance from

an OVM perspective is of a particular interest. Four metrics of drive performance

are considered, namely DC-bus voltage utilization, voltage THD, current THD, and

efficiency. Furthermore, the complexity of OVM methods is also considered.

The drive performance, in terms of the aforementioned metrics are recorded in

Speed

Torque

ωb

ωmax

MTPA FW

O
V

M

Test points

Figure 8.29: Torque-speed envelope of dual-three phase PMSM drive with OVM.
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DC-Bus Utilization

Current Quality

Voltage QualityE/ciency

Simplicity

MPE MDE KSS
MME LeeD LeeH
MMPE

Figure 8.30: DTP-PMSM drive performance using the different OVM methods in
OVM and FW regions.

steady-state for the test points highlighted in Figure 8.29. The overall performance of

the DTP-PMSM drive is showcased in Figure 8.30. The values depicted in Figure 8.30

are merely the sum of the metrics at all test points. It can be observed from Figure

8.30 that MME and MMPE methods yields the highest drive efficiency, while LeeH

method achieves the lowest voltage and current harmonics. Furthermore, the highest

DC-bus voltage utilization by the PMSM drive was achieved when employing MDE

and MPE methods. Due to the high degrees of freedom pertaining to performance

metrics, drive control regions and number of test points, a decision matrix is sought

to streamline the selection process of the optimum OVM method. A weighting factor

is assigned to the drive performance metrics, with efficiency given the heaviest weight

and DC-bus voltage utilization given the lightest weight. Voltage and current THD

are assigned equal weights. Note that weight assignment is solely dependent on

the designer and the desired drive performance. Based on the weighted-factor sum,
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in addition to OVM implementation complexity, MMPE is deemed the best OVM

method for the DTP-PMSM drive, followed by LeeD. On the other hand, MPE and

MDE scored the lowest.

8.5 Summary

This chapter tackled the control aspects related to six-phase electric motor drives.

Firstly, a comparative study for xy-current suppression, involving different controllers

implemented in different reference frames, was conducted. It was found that the PR

controller implemented in the asynchronous frame achieves the best suppression. Sec-

ondly, an adaptive voltage regulation flux-weakening controller that uses an adaptive

control law to maintain stable performance in the deep flux-weakening region was

proposed. The proposed controller was validated through simulations, and the ob-

tained results demonstrated its superior performance compared to the non-adaptive

flux-weakening controller. Thirdly, a comparative analysis of seven different overmod-

ulation methods for DTP-PMSM drives was carried out. A four segmented formulae

of the generalized form was presented based on the specific magnitude and angle

calculation of the reference voltage vector. The comparison of the different overmod-

ulation methods in terms of fundamental component and harmonic content, transition

into six-step operation, modulation index linearization, and complexity of execution

showed that MMPE yields the best DTP-PMSM drive performance. The preliminary

validation was carried out in simulation.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis focused on making the case for SiC-based six-phase traction inverters

for automotive applications. To achieve this goal, this thesis adopted a two-pronged

approach consisting of the theoretical and technological background covered in Chap-

ters 1–5 and the applied design and development presented in Chapters 6–8. By

integrating these two approaches, this thesis offers a well-rounded perspective on six-

phase traction inverters, with a robust theoretical foundation supported by practical

real-world applications.

The fundamentals of multiphase inverters, including modeling, topologies, switch

selection, DC-capacitor sizing, modulation strategies, and future trends, were re-

viewed. The advantages of multiphase inverters were benchmarked against those of

their conventional three-phase counterparts. It was found that multiphase inverters

can achieve reduced cabling costs and smaller DC capacitors with greater control and

fault-tolerant capabilities. However, they require an increased number of sensors and
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gate-driver circuitry. Six-phase inverters were found to have the best trade-off among

multiphase inverters in terms of per-phase power requirement and modularity as well

as complexity and cost premium.

The use of SiC devices in multiphase inverters represents the intersection of two

major trends in electrified powertrains. However, there has been a lack of thorough

technological assessments of SiC-based multiphase inverters. Therefore, this thesis

presents a case study of SiC-based multiphase inverters, which considers both quanti-

tative and qualitative aspects of these systems in comparison to SiC-based three-phase

traction inverters. The study found that multiphase traction inverters can comple-

ment the low current rating limitation of SiC devices, thanks to their lower per-phase

current requirements. Specifically, when sized based on the minimum per-leg cur-

rent handling, six-phase inverters employ the same total number of discrete devices

as three-phase inverters, while maintaining the same efficiency. Furthermore, they

reduce the capacitor volume and improve modularity and fault-tolerant capabilities.

Given the competitiveness of six-phase systems among all multiphase systems, the

scope of this thesis was narrowed to the former henceforth.

To further examine the benefits of using SiC devices in six-phase inverters com-

pared to conventional Si IGBTs, a vehicle-level assessment was conducted. The effi-

ciency of Si- and SiC-based 100 kW six-phase traction inverters in an 800 V powertrain

was analyzed across the torque–speed envelope of an automotive-grade motor. The

resulting data were then incorporated into the EV model. The analysis showed that

the SiC-based six-phase inverter offers an 8% improvement in vehicle mileage and fuel

economy compared to its Si-based counterpart.
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The final theoretical contribution of this thesis involved the analysis of the DC-

bus current and voltage ripples in six-phase inverters. For the first time, analytical

formulas were developed to evaluate the voltage and current stresses on the DC-

capacitor in six-phase inverters that supply both symmetric and asymmetric loads.

The accuracy of the derived formulas was validated through simulations and exper-

imental tests. Building upon these analytical formulas, this thesis proposed simple

capacitor-sizing rules for symmetric and asymmetric six-phase VSIs. Additionally,

the harmonic spectra of the DC-capacitor current in six-phase inverters were ana-

lyzed to identify the underlying reason for the reduction in the DC-bus current stress

when compared to three-phase systems. It was found that the spatial distribution

of the additional three phases in the six-phase inverters leads to the cancellation of

the dominant carrier-sideband harmonics, resulting in a reduced current stress on the

DC-capacitor.

Turning to the applied design and development aspect of this thesis, the foregoing

fundamentals and theory of six-phase inverter design and operation were utilized to

deliver a 100 kW/ 800 V SiC-based six-phase traction inverter, named MARC100.

The proposed holistic design addressed the advantages and disadvantages inherent in

a six-phase inverter. More specifically, a multi-objective optimization algorithm was

proposed to find the most suitable capacitor bank, achieving the maximum reduction

factor in the DC-capacitor size in six-phase systems. Similarly, cabling cost reduction

was achieved by careful sizing of the AC cables used in the design. On the other

hand, monolithic current sensor ICs were integrated into the power PCB to eliminate

the need for bulky current sensors, thus effectively mitigating the drawback of the

increased number of current sensors. The resultant inverter design from the proposed
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electrical-thermal-mechanical design methodology was prototyped and experimentally

tested. The peak power density of the prototype inverter is 70 kW/L, demonstrating

a compact design. The MARC100 was made suitable for symmetric and asymmetric

motor drives.

Finally, a traction inverter is used to power and control the electric drive mo-

tor. Accordingly, the control aspects of six-phase drives were investigated. Motor

modeling, current control, and operation in all regions of the torque–speed enve-

lope were analyzed. Special attention was given to operation at high speeds, where

flux-weakening and overmodulation techniques are usually required to maximize the

output power of the traction inverter. An adaptive flux-weakening technique was

proposed to improve the dynamic performance of an electric drive operating at high

speeds. The resulting increase in DC-bus voltage utilization was verified by simula-

tions. Additionally, a comparative analysis of six existing overmodulation techniques,

in addition to the proposed modified technique, is presented. The proposed MMPE

overmodulation strategy yielded the best drive performance.

Overall, this thesis aimed to contribute to the body of knowledge on SiC-based six-

phase traction inverters and provide a foundation for future research and development.

The combination of theoretical and practical components was essential in providing a

thorough and complete understanding of the topic, which can facilitate future research

and advancements in the field.
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9.2 Future Work

While this thesis has made significant contributions to the field of SiC-based six-

phase traction inverters for automotive applications, there are several potential direc-

tion for future research that can push the boundaries of this technology and expand

their potential benefits. Such directions include:

1. As the electrified powertrain field rapidly advances, scaling up the MARC100

design to 300 kW or 500 kW could increase the appeal of the SiC-based six-

phase traction inverter. The ability to operate at such power levels opens up

new opportunities for utilizing these inverters in light- to medium-duty trucks

and buses.

2. In addition to the inverter losses, the six-phase motor losses should be analyzed

as well. This will provide an overall powertrain efficiency benchmark against

the conventional three-phase electric motor drives.

3. The lessons learned from the first generation of the MARC100 can be leveraged

in developing a second generation that is more efficient and power dense. The

prototyped inverter had provisions to enable easy testing and debugging, such

as mating connector headers and receptacles between the PCBs. By directly

soldering the power and gate driver PCBs, an 11% power density increase can be

achieved. Besides, investigating the integration of the gate driver and control

boards in a single board can further improve the power density and reduce

manufacturing cost and moving parts.

4. More elaborate mechanical manufacturing and assembly techniques can be in-

corporated to improve the rugdness of the MARC100. For example, welding
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techniques for the heat sink can reduce the risk of leakage encountered in the

testing. Additionally, the investigation of more advanced heat sink designs, such

as the staggered fin pin design, could yield a more efficient mechanical design

and packaging of the MARC100.

5. The electromagnetic compatibility of the MARC100 was not explored given

the limited time and resources at hand. Investigation of common mode and

differential mode noises and their mitigation is imperative for commercial im-

plementation.

6. Exploring advanced control and modulation techniques, such as model predic-

tive control and space vector modulation, may further improve the performance

of the SiC-based six-phase traction inverter. Additionally, the implementa-

tion of these techniques in hardware using digital signal processors or field-

programmable gate arrays can be investigated to determine their feasibility and

practicality in real-world applications.

In conclusion, the suggested future work will pave the way for further advancements in

the field of electrified powertrains and contribute to the development of more efficient

and reliable powertrain systems.
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Appendix A

Schematic Diagrams

This appendix includes the schematic diagrams of the designed circuits as part of

the manufactured PCBs for the six-phase SiC-based inverter or as part of the built

testing rig. Specifically, it includes:

1. Power PCB

2. Gate driver PCB

3. Control interface PCB

4. Low voltage connector interface PCB

5. Pre-charge/discharge and safety circuit
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Appendix B

Engineering Drawings

This appendix includes the engineering drawings of the manufactured enclosure

and heat sink and the experimental setup. Specifically, it includes:

1. Inverter enclosure

2. Inverter lid

3. Heat sink

4. High-voltage testing rig
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Appendix C

MARC100 Low Voltage Connector

Pin Out

This appendix outlines the pin out of the low voltage AMPSEAL 1-776228-1 (23-

pin) header that is mounted on the inverter housing.

Pin # Pin Name Description Notes

1 BATT+ 12V Input

2 BATT+ 12V Input
Redundancy for increased

current capability

3 AIN1 Analog Input 1

Configurable range (0–5V or

10V) via jumper J3 on control

interface board

Continued on the next page
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Pin # Pin Name Description Notes

4 COS
Resolver COS

winding

5 /COS
Resolver COS

return

6 RLY1 High Side Driver
For pre-charge relay contactor

output

7 RLY2 High Side Driver
For main relay contactor

output

8 DGND Digital Ground
Ground reference for digital

inputs/outputs

9 R SH
Resolver cable

shield

10 BATT GND 12V Return

11 SIN
Resolver SIN

winding

12 /SIN
Resolver SIN

return

13 EXC Resolver excitation

Continued on the next page
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Pin # Pin Name Description Notes

14 /EXC
Resolver excitation

return

15 CAN SH CAN cable shield
Connection of CAN cable

shield

16 BATT GND 12V Return
Redundancy for increased

current capability

17 AIN2 Analog Input 2
Configurable range via jumper

J4 on control interface board

18 AIN3 Analog Input 3
Configurable range via jumper

J5 on control interface board

19 DAC1 Digital Output 1 0–3V

20 DAC2 Digital Output 2 0–3V

21 DAC3 Digital Output 3 0–3V

22 CAN H
CAN Channel

High
CAN communication channel

23 CAN L CAN Channel Low CAN communication channel
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