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Introduction

Self-reflection is an important cognitive process that involves thinking back and reflecting
on one’s experiences, and their corresponding feelings. It promotes self-awareness and pro-
vides individuals with the opportunity to grow and develop. Although self-reflection can
be beneficial in forming adaptive behaviours, there are negative forms of self-reflection that
may hinder one’s behaviour. As per Mor and Winquist (2002), rumination was the form
of self-reflection that was most consistently and strongly associated with negative affect,
specifically depression, anxiety, and negative mood [1].

Defining Rumination

Rumination is rudimentarily defined as repetitive, persistent thoughts focused on oneself,
that are commonly associated with negative moods, most notably depression. Initially, early
researchers referred to rumination as a salient feature of depression involving negative au-
tomatic thoughts [2]. However, it was determined that rumination was more complex than
simply a symptom of depression; Martin and Tesser (1996) broadly defined rumination as a
”class of conscious thoughts” revolving around a common theme with a propensity to reoccur
in the absence of direct environmental demands [3]. They declared that ruminations are indi-
rectly cued by environmental needs and serve as an illustration of an individual’s persistence
and mental willpower for goal-related concepts [3]. Additionally, they determined that rumi-
native thoughts are not dependent on repeated cueing with an external environment. This
is supported by further data differentiating rumination from negative automatic thoughts as
it was previously defined by Beck et al. (1967) [2, 6]. Rumination has been characterized as
a style of thought rather than thoughts with negative content [6]. Although the content may
be similar to thoughts identified by earlier researchers, It was subsequently determined that
the style of repetitive thinking in ruminative processes has a unique construct, specifically
because rumination focuses on a negative emotional state rather than a negative event [6].
Consistent with this, in a study of survivors of the Loma Prieta earthquake those with a
pre-existing negative emotional state had prolonged ruminations [4, 6]. The notion that
rumination is a style of negative thoughts, rather than negative content itself has been used
and proven in theoretical and empirical research.

Response Styles Theory of Depression

Rumination has been conceptualized through a variety of theories, one being the Response
Styles Theory of Depression (1991). Here rumination is described as passive, repetitive
thinking about the causes, and consequences of one’s symptoms of depression [4]. According
to this theory, it was hypothesized that those who engage in ruminative thoughts and focus on
the causes, and consequences of their depression, will result in longer, more amplified periods
of depression [4]. Their reasoning was that rumination amplifies the effects of one’s negative
affect on their cognition, resulting in cognitive fixation, preventing them from critically
thinking and engaging in active problem-solving [4]. This is the basis of the Response
Styles Theory of Depression; an individual’s response to their negative affect impacts the
severity and length of their negative affect [4]. This was explicitly seen in the Loma Prieta
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Earthquake study (Nolen-Hoeksema and Morrow 1991). Students who had elevated levels
of depression prior to the earthquake had elevated stress levels and depression symptoms
for a prolonged period of time as they are hypothesized to be constrained by their cognitive
fixation [5]. Within the Response Styles Theory of Depression, it was also hypothesized
that distractions in response to negative mood, diminish one’s negative emotional state.
Both hypotheses were tested using the Ruminative Responses Scale (RRS) which assesses
rumination through symptom-based rumination, introspection, and self-blame. The scale has
been used in numerous studies thus far as a standardized quantitative measure of rumination
and has been adapted over time [5, 7].

Differences in Levels of Rumination

Using the Ruminative Responses Scale developed by Nolen-Hoeksema (1993) as well as re-
searcher observations, participants can be classified as ruminators and non-ruminators. Es-
sentially, if an individual self-reports that they do not engage in any ruminative responses,
they are classified as non-ruminators [7]. Further research investigated the differences be-
tween ruminators and non-ruminators by having participants engage in developing a plan to
improve the community [8]. The researchers were able to determine that ruminators were
more hesistant in comparison to non-ruminators when it came to devising a solution towards
the problem and taking action [8]. The researchers hypothesized that this was due to rumi-
nators exhibiting higher stress levels and diminished motivation, resulting in the increased
hesistancy and inhibition of problem-solving behaviour [8]. Additionally, it was determined
that ruminators exhibit dependency, neediness and assume responsibility for the well-being
of others [5]. These are hypothesized to contribute to the elevated stress levels and social
friction experienced by ruminators [5].

Rumination and Depression

Within literature, rumination has been shown to be connected to depression with many
studies even demonstrating that rumination predicts amplified depressive symptoms. In a
study researching how coping strategies used by bereaved men impact their depressive mood,
the researchers determined that there was a correlation between rumination and depression,
specifically with ruminative coping being associated with longer and more amplified depres-
sion levels [9]. This is consistent with the Response Styles Theory of Depression mentioned
earlier. Additionally, empirical research has shown that rumination manipulations through
the use of emotionally negative prompts significantly increases negative affect in depressive
participants, whereas it has limited effect on non-depressive participants [10]. This pro-
vides further evidence on a possible association between depression and rumination. Similar
findings were reported for patients after they underwent a distraction manipulation; it sig-
nificantly decreased negative affect in depressive participants, whereas it had limited effect
on non-depressive participants [10]. These findings not only support the Responses Styles
Theory of Depression, but also provide strong evidence of the connection between rumination
and depression.

Additionally, it was determined that rumination led to increased negative thinking about
the past, present and future within depressive individuals [11]. Specifically, the researchers
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determined that depressive participants tend to spontaneously recall more negative memo-
ries and events which could provide reasoning for the amplified and prolonged ruminative
response in depressive individuals [11].

Physiology of Rumination

As understanding of ruminative processes grew, researchers started to investigate the neu-
ral physiology of rumination in depressed and healthy individuals through medical imaging.
FMRI (Functional Magnetic Resonance Imaging) was used on depressed and healthy in-
dividuals, and the researchers found that during rumination, depressed participants had
increased activation in the subgenual anterior cingulate, orbitofrontal cortex, and dorsolat-
eral prefrontal cortex when compared to the healthy participants [12]. The researchers also
observed increased activation in the amygdala, medial prefrontal cortex, and the parahip-
pocampus for depressive participants during the rumination task [12]. Thus, there is an
association between rumination and the activation between limbic structures and regions
of the prefrontal cortex within depressive participants [12]. The findings by Cooney et al.
(2010) were further examined by Sin et al. (2018) where they found that the gray matter
of the anterior cingulate cortex, and the dorsal lateral prefrontal cortex increased in volume
within high ruminators compared to low ruminators suggesting the involvement of these
structures within the rumination process [13].

Hamilton et al. (2015) published a meta-analysis summarizing the findings regarding the
physiological networks involved in rumination. Earlier researchers determined that in depres-
sive individuals, there was a functional synchronization between the default mode network
and the subgenual prefrontal cortex [14]. The default mode network is a brain network that
is active when the brain is in a state of wakeful rest as well as during cognitive tasks that are
self-referential, as opposed to externally-driven,such as autobiographical memory retrieval,
spatial planning and navigation [15 - 17]. This would include activities such as daydream-
ing, reminiscing, and imagination. The posterior cingulate cortex, and the medial prefrontal
cortex has been shown to be associated with the default mode network [15]. Hamilton et
al. hypothesized that rumination within depressive individuals impairs the connection be-
tween the subgenual prefrontal cortex and the default mode network [14]. The connection
between rumination and the default mode network has been widely researched; Song et al.
(2022) conducted a meta-analysis that determined that 67.5% of rumination-activated vox-
els within fMRI imaging were distributed within the default mode network [18]. Using their
model, they were able to determine how activity between the subgenual prefrontal cortex
and the default mode network can predict rumination levels in depressive individuals [14].
They were able to determine that in depressive individuals, there is only increased activity
in the subgenual prefrontal cortex rather than the default mode, which was hypothesized to
result in persistent, cyclic rumination [14]. This provides evidence for the role of the default
mode network within depressive rumination, and the consistent cerebral circulation within
the default mode network in ruminating depressive individuals [14]. It also does beg the
question as to what strategies can be used to diminish the rumination cycle.

4



Rumination and Mindfulness

One such strategy that has been investigated to diminish ruminations within high and low ru-
minators is mindfulness. Given how mindfulness involves being present and having an active
mind, it is antithetical to rumination and thus could have potential in reducing rumination
processes among ruminators [19].

Mindfulness

Mindfulness refers to a process in which individuals maintain an open and active state of
mind where they engage in conscious thinking [20]. The main premise of mindfulness is to be
present and recognize concepts objectively, rather than fueled through emotions and feelings.
Through this, one can better understand themselves and their own consciousness, leading
to increased internal peace [20]. Evidence has shown that mindfulness results in temporary
changes in activation patters of the brain through neuroplasticity, while also resulting in
long-term personality changes [21].

The effect mindfulness has on the brain has been theorized and modelled throughout
literature. A two-component model of mindfulness was developed that hypothesizes that
mindfulness permits individuals to think comprehensively, enabling cognitive maintenance
and judgement [22]. It was later proposed that the cognitive model of mindfulness in hopes
of devising a generalized model describing the neural operations of mindfulness [23]. Their
model focuses on the cognitive processes behind mindfulness, and how it impacts attention
and working memory [23]. The researchers hypothesized that individuals that are proficient
in mindfulness maintain cognitive efficiency and flexibility by suppressing extraneous cog-
nitive processes which can include processes related to anxiety, depression and rumination
[23].

In recent studies, the adoption of mindfulness training as an intervention has been used to
observe differences in cognitive processes within-groups to confirm pre-developed theoretical
models. Mindfulness training focuses on providing clarity to individuals regarding their
thoughts and emotions [24]. Typically a mindfulness-based stress reduction (MBSR) or a
mindfulness-based cognitive therapy (MBCT) program is adopted. The MBSR typically
focuses on guided meditation in a large group setting to improve various cognitive and
physical conditions, whereas the MBCT is typically performed individually and is usually
applied to improve cognitive conditions [24]. The MBCT has been shown to effectively
prevent relapse in depression participants, possibly because the MBCT focuses on navigating
negative thoughts at the start of the program [24]. Given the empirical evidence supporting
the effectiveness of mindfulness, specifically an MBCT program on depression, the effects of
rumination on mindfulness can be questioned.

Relationship between Rumination and Mindfulness

In recent years, the relationship between rumination and mindfulness has been investigated
in detail. In fact, a meta-analysis determined that mindfulness interventions potentially
result in changes in one’s ruminative patterns [25]. Specifically, they found that mindfulness-
focused CBT resulted in a significant reduction in ruminative patterns when compared to
the usual standard of care with respect to both the length of ruminations and the severity
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[25]. When tested on high-ruminators and individuals with mood disorders, similar results
were obtained. An MBSR program was performed on individuals with ruminative tendencies
and mood disorders to determine if mindfulness training had an impact on their ruminations
(Ramel et al. 2004) [26]. The researchers determined that ruminative processes decreased
after the mindfulness program which aligns with the hypotheses and results from previous
studies [26].

These results corresponds with a study that suggested that mindfulness training can im-
prove one’s attentional control, thereby helping in reducing maladaptive cognitive processes
[27]. Teasdale et al. identified that these processes are primarily associated with ruminative
processes, thus showing the potential effect mindfulness training can have on rumination
[27].

Attentional control is a fundamental practice in mindfulnesss trained through focused
attention [28]. It has been previously been associated with enhanced synchronicity within the
frontoparietal control network, which indicates that focused attention training could lead to
increased cognitive control against ruminations [28]. It is hypothesized that the frontoparietal
control network develops connections with the default mode network and the salience network
in order to regulate one’s mental state which are further enhanced due to mindfulness training
[28]. Thus, it can be inferred that the frontoparietal control network, default mode network
and the salience network function together to improve cognitive control against maladaptive
cognitive processes, and therefore against ruminative processes. However, there has been
limited research into the specific neural structures within these networks that is impacted by
mindfulness in ruminators, thus the extent of the connection between these networks have
not been determined in-depth.

Biomedical Modeling

While researchers have begun to investigate the brain regions underlying rumination, mainly
using fMRI which has excellent spatial resolution, there has been much less attention devoted
to the neural dynamics of interacting brain regions underlying rumination. It is imperative
that the neural signals are analyzed to adopt a greater understanding of the physiological dy-
namics and activation patterns involved. Through the use of current technology, we are able
to obtain an abundance of signals that describe system and structural behaviour, biomedical
signals for example allow for a true understanding of one’s physiological behaviour. These
signals can be modelled in order to describe the signal with respect to its structure, ulti-
mately allowing for endless analysis and synthesis-related possibilities [29]. Analysis-focused
approaches involve fitting a model to a signal to provide intricate details from which deduc-
tions can be made. This includes a Fourier analysis which provides frequency information, a
Cosinor analysis which analyzes rhythmic behaviour, or a Fractal analysis to identify geomet-
ric characteristics within a signal. Conversely, synthesis-focused approaches involve original
creation by reconstructing a signal using analysis data. These include but are not limited
to machine learning models which are able to predict behaviour, and interface development
which can use signals to transduce an output.
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Modeling Brain Activity

Biomedical signals have endless possibilities given that they provide crucial insight on com-
plex processes that occur within the human body. One important biomedical signal is brain
activity which can be evaluated and and measured through an electroencephalogram (EEG).
An EEG system works by obtaining electrical potentials from the brain non-invasively
through an electrode cap, which typically has 64 to 256 electrodes [30]. These electrical
potentials primarily originate from the cerebral cortex, which has been shown to be associ-
ated with most of one’s emotions, thoughts and behaviour [30]. EEGs are commonly used
in healthcare and in research to identify disruptive cognitive processes and aid professionals
in understanding one’s behaviour [31]. However, their application in source-imaging within
healthcare has been limited.

When using an EEG, it primarily provides temporal data which can be used for to
supplement biomedical model development. This is because EEGs typically have a high
temporal resolution and a poor spatial resolution. Biomedical models can be modulated to
use EEG signals to determine spatial characteristics, however, they are typically accompanied
by an imaging modality such as an MRI or an fMRI. The size limitations of the electrodes, as
well as the interacting electrical fields within the brain contribute to the EEG’s low spatial
resolution, thus preventing an accurate spatial representation without an imaging modality.
However, using multiple electrodes in a dense electrode array, as well as a blind source
separation algorithm or beamforming scheme can be used to localize the source; a process
referred to as source localization.

Source Localization

Source localization is an avenue of biomedical signal processing that has been investigated
recently for its ability to accurately determine the contributions of deep brain structures in
cognitive processes via an EEG. Source localization using an EEG involves approximating the
original source of the signal within the brain based on the recorded electrical activity. Once
the signals from the electrodes are obtained, a spatial map is developed which allows for one
to mathematically compute an approximate location for the underlying source. However,
given the numerous concurrently active intracranial sources, there is a level of ambiguity
introduced which limits the accuracy of source localization [33]. In order to overcome this
challenge, a set of a priori assumptions are made in the model to approximate the density
distributions and sources such that accurate dipole moments can be calculated, and their
relation to an individual’s cognitive process can be determined [33]. These assumptions
allow the generated model to provide neurophysiological information on the signals, rather
than the model simply being fitted to the data and thus limiting the generalizability of the
conclusions [33]. In order to optimize the assumptions made, the integration of an EEG with
an imaging modality such as an fMRI or MRI has been researched as a possible avenue to
improve the a priori assumptions, and thereby improve the spatial resolution of the model
[34]. Additionally, numerous algorithms have been developed with the goal of maximizing
the number of dipoles fitted to the model, while minimizing the error contributed by noise
and other non-deterministic signals [34].
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Beamforming

Beamforming is a non-invasive technique that can be used to improve the spatial resolution
of signals, and thereby improve source localization modelling predictions [35]. Beamforming
works under the dipole source assumption, where electrical dipoles have three-dimensional
locations and moments. Using this, a dipole map can be created and beamforming can
improve the spatial resolution by amplifying the signals received from a certain area while
suppressing signals received from other areas via constraints [35, 36]. Typically, a spatial
filter matrix is created with weights attributed to each location; once applied, this filter
indicates an estimated source based on the signals obtained from the sensors [36]. This
ultimately results in improved model accuracy when determining the source of the signal.

Numerous different beamforming algorithms have been previously investigated, each with
its own set of benefits and limitations. The most commonly used algorithm is the delay-and-
sum beamforming algorithm which involves delaying certain signals received by a sensor,
such that their Fourier transforms are in-phase with one another [37, 38]. This results in
the signals received by the sensor to be possibly enhanced [37]. A similar approach can be
applied to signals that the researcher intends to suppress; delaying the signals such that
they are out of phase will result in destructive interference, attenuating the signal [37, 38].
Another common algorithm is the minimum variance distortionless response which involves
using a spatial filter influenced by the covariance matrix of all the signals obtained by the
sensor [37]. This has been determined to be effective in suppressing noise and eliminating
interference, yielding an optimal signal-to-noise ratio even with the involvement of non-
deterministic signals [39]. This algorithm is similar to a dynamical imaging of coherent
sources beamformer where a filter based on frequency estimates is applied to the signal [40].
This allows for the amount of activity (power) to be estimated from any location within the
brain [40].

Therefore, there are numerous different beamforming algorithms that can be imple-
mented, all with unique approaches. Depending on one’s signal, constraints, and a priori
assumptions, a specific algorithm can be chosen to best optimize their model. Additionally,
it has been commonly reported that an iterative approach may be required to optimize the
performance of the model, specifically once a dipole map has been created from the signal
[36].

Impact of Beamforming in Current Research

In the last few decades, beamforming has become a popular avenue of research, especially
within neuroimaging. One of the first instances was by Van Veen et al. (1997), where the
researchers analyzed the impact of using a weighted spatial filter to modulate brain electri-
cal activity recorded by the sensor. This allowed the researchers to constrain their model
to only pass activity from specific directions and attenuate other deterministic signals [41].
Specifically, they used a linearly constrained minimum variance beamformer which uses the
covariance matrix of the noise to minimize variance from the source signal [41]. From this, a
neural electrical activity map was created which estimates the source of the obtained signals,
however, the researchers noted that this method requires a thorough understanding of neural
schema such that directional constraints can be applied [41]. Additionally, the researchers
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determined that the results of this technique are heavily dependent on assumptions, filter
estimations, and references, thereby limiting this technique’s efficacy [41]. However, different
post-processing methods have been proposed to improve the performance of models includ-
ing modifying the resolution matrix [42]. Beamforming algorithms have been thoroughly
optimized to the point where they have been applied towards brain computer interfaces.
Specifically, a dissertation by Mousapour et al. examines how beamforming is a potential
future approach in classifying mental commands, thereby opening the possibility for more
extensive brain-computer interfaces [43].

This study will investigate the effect of mindfulness on ruminative patterns in high and
low ruminators via a source imaging approach. A beamforming algorithm will be applied in
order to obtain a detailed understanding of the neural schema and brain networks involved in
rumination. Additionally, the researchers aim to determine whether mindfulness influences
the brain networks and physiological structures involved in rumination.
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Methodology

Participant Recruitment

The study aimed to recruit 20 low-ruminating participants and 60 high-ruminating par-
ticipants. Of the 60 high-ruminating participants, 30 of them were administered into a
wait-listed control group for a duration of at least four weeks prior to participating in a
mindfulness intervention. Whereas, the other 30 participants were administered the mind-
fulness intervention immediately. The proposed sample size was determined based on past
similar intervention studies conducted by the researchers; a sample size of approximately 20
participants is required per group to account for the possibility of dropouts, and loss of data
for various reasons. For the purpose of this paper, 17 participants were included: 9 from
the low-ruminating group and 8 from the high-ruminating group. Data from the remaining
participants will be collected and analyzed for a future publication.

Participants were recruited from McMaster University and the Hamilton area via poster
advertisements on the McMaster University campus. From there, participants were navi-
gated to enroll in the study via SONA, a participant recruitment and study management
system organized by McMaster University. This system was used exclusively for participant
recruitment for the study. Once recruited, the participants were enrolled into either the low-
ruminating or high-ruminating group based on a pre-screening questionnaire administered
through SONA. The pre-screening questionnaire consists of the following questions:

1. Thinking about your mood over the past month, how often did you feel down, sad, or
depressed?

• Participants would describe their feeling using a 4-point Likert scale consisting of
the following ratings: almost never, sometimes, often, almost always.

2. People think and do many different things when they feel depressed. Please read each
of the items below and indicate whether you almost never, sometimes, often, or almost
always think or do each one when you feel down, sad, or depressed. Please indicate
what you generally do, not what you think you should do.

(a) I think about how only I feel this way.

(b) I wonder why I have these problems and others don’t.

(c) I think about how sad I feel.

(d) I think about my failures.

(e) I try to understand my depressed feelings.

• Similar to the previous question, participants would describe their feeling using
the same 4-point Likert scale.
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In addition to the aforementioned pre-screening questionnaires, participants were asked a
set of general questions to determine their eligibility within the study. The inclusion criteria
for the study are as follows:

1. High and Low ruminators, based on Question 2 in the SONA pre-screening question-
naire.

2. McMaster undergraduate students who have a SONA account.

3. Normal or corrected-to-normal vision

A set of exclusion criteria were also developed to ensure that the results from the study
are generalizable. The exclusion criteria include characteristics that can interfere with the
outcomes of the study and thereby impact the reliability of the results. For this study, the
following set of exclusion criteria were developed:

1. Current or previous head injury.

2. Current or previous diagnosis of Major Depressive Disorder, Post Traumatic Stress
Disorder, Generalized Anxiety Disorder, or Bipolar Disorder.

3. If participants answer ”almost always” to Question 1 of the SONA pre-screening ques-
tionnaire. This indicates a risk of a mood disorder.

4. Currently engaged in more than 5 minutes a week of meditation and/or mindfulness
practice.

After administering the pre-screening questionnaire, the researchers evaluated their re-
sponses prior to proceeding further with the screening process. Specifically, participants who
respond ”almost always” to Question 1 were excluded. Once they have been approved, the
participants were emailed a brief screening questionnaire by the researchers and asked to
confirm that they meet the aforementioned inclusion and exclusion criteria before further
participating in the study. The questions that participants were asked are as follows:

1. Are you currently engaging in a mindfulness/meditation practice for more than 5 min-
utes per week?

2. Do you have a previous history of head injury/trauma, or a previous or current diag-
nosis of major depressive disorder, generalized anxiety disorder, bipolar disorder, or
post-traumatic stress disorder?

3. Do you have a visual impairment such that you do NOT have a normal or corrected-
to-normal vision?

If a participant answered no to all of the above questions, they would have be cleared to
participate in the study.
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Data Collection

During the first in-lab testing session, all participants were provided with a letter of in-
formation and consent form, and a COVID letter of information by one of the student
investigators. Once eligibility and participation have been confirmed, the participant was
placed into either a low-ruminating or high-ruminating group based on their pre-screening
responses. Participants with low rumination scores completed one in-lab testing session
and a task-home questionnaire, whereas the participants with high-ruminating scores com-
pleted two in-person sessions with a four-week interval between them, and have two sets of
take-home questionnaires after each session. The high-ruminating participants assigned to
the intervention group completed meditation sessions during the four-week interval between
testing sessions, while the wait-listed control group completed the meditation sessions after
their second in-lab testing session. The first in-lab testing session lasted approximately 2
hours, and the second testing session lasted approximately 1 hour in duration.

First In-Lab Testing Session

Prior to recording the participant’s brain activity, they were required to complete 2 comput-
erized questionnaires that assess mindfulness and rumination, and 1 computerized cognitive
test (Stroop color naming task). The first questionnaire used is the Five Facet Mindful-
ness Questionnaire (FFMQ) which measures trait mindfulness by asking participants how
a mindfulness-related phrase aligns with their experiences. The second questionnaire is the
Rumination Response Scale (RRS) which measures trait rumination by asking participants
if they have experienced rumination-related thoughts. The score obtained through the RRS
would determine which group the participant would be classified in. For this study, a median
split of the RRS scores was used to classify participants. Essentially, the median was calcu-
lated and if an individual had an RRS score above the median, they would be classified as a
part of the high-ruminating group, otherwise, they would be classified as a part of the low-
ruminating group. Both questionnaires will be completed digitally via the McMaster secure
LimeSurvey interface to ensure that the data is secure. After the questionnaires, the partic-
ipants completed a Stroop test to assess their inhibitory control. The Stroop test requires
participants to name the ink colors of words where the word and the ink color do not match.
This creates interference which can help indicate attentional and inhibitory control within
participants. This task was completed using an interface developed by the researchers. Once
those were completed, the participant was asked to describe past ruminations and autobio-
graphical memories that they have had in detail. These were recorded by the participants
on a secure interface and was to be used during the data collection tasks.

Within this study, brain activity was measured and transduced into an electrical signal
via an electroencephalogram (EEG). As mentioned, it is the standard method for measuring
brain activity in neuroscience research [28]. EEGs operate by non-invasively recording the
electrical activity within the brain attributed to post-synaptic potentials, and thus inform
one of the activity and activation of structures within the brain. These signals are recorded
via electrodes attached to an electrode cap in a systemic array.

Within this study, 128 electrodes were used in a 10-20 system to standardize the place-
ment of the electrodes, ensuring replicability. Once the electrode cap was applied to the
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participant, a water-based conductive gel was inserted at each electrode site to reduce noise
and improve signal quality. In order to accurately represent the neural activity through an
electrical signal, a feedback loop exists between the Common Mode Sense (CMS) electrode
and the Driven Right Leg (DRL) electrode. The CMS electrode serves as a reference for the
common mode voltage collected through the measuring electrodes, resulting in a partially
pre-processed signal file. Specifically, the signals from the measuring electrode and the CMS
electrode are compared and subtracted, thereby aiding in the removal of non-deterministic
noise such as power line frequency, and electrode irregularities. The DRL electrode simply
reduces the impedance of the circuit, resulting in an increased common mode rejection ra-
tio, thereby increasing the signal-to-noise ratio of the system, and yielding improved signal
quality.

Initially, a measure of resting-state brain activity was measured for 5 minutes; the resting-
state brain activity was the primary data used for this thesis. During the resting-state data
collection, the participants were asked to close their eyes and relax; this was to minimize the
effects of blink artifacts and lateral eye movements within the data. The participants were
asked to do this until they heard an auditory tone indicating that 5 minutes has passed. This
was followed by a task-switching paradigm; the participant was presented with 10 blocks of
cued rumination (CR), autobiographical memory (AM) and working memory (WM) trials.
During the CR and AM trials, the participant was then presented with cue words based
on their self-reported ruminations and autobiographical memories and asked to imagine
the rumination or memory they represent. For the WM block, a “2-word-back” task was
implemented. The participant will be presented with a series of neutral words and will be
asked to identify the word shown two words before.

Once the task-switching paradigm is complete, high-ruminating participants were given
a brief tutorial of a FitBit device and the Calm mindfulness app, both of which was provided
to them and used to deliver the mindfulness intervention. The data was accessible to the
researchers and was secured safely on a McMaster research data server.

Take-Home Questionnaire #1

After completing the first in-lab testing session, the participant was emailed a link to a
McMaster-hosted LimeSurvey. The Limesurvey consisted of several questionnaires that as-
sess depression/stress/anxiety, interoceptive awareness, sleep quality, handedness, dissocia-
tion, and emotional regulation. The included questionnaires are as follows:

• Depression Anxiety Stress Scales (DASS) - Measures three interrelated emotional
states: depression, anxiety and tension/stress

• Multidimensional Assessment of Interoceptive Awareness (MAIA) - Measures intero-
ceptive awareness

• Sleep Quality Scale (SQS) - Measures sleep quality

• Edinburgh Handedness Inventory (EHI) - Measures handedness

• Dissociative Experiences Scale (DES) - Measures dissociation
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• Difficulties in emotional regulation scale (DERS) - Measures an individual’s awareness
of their emotions and their self-reported ability to regulate them

Mindfulness Intervention

If participants were recruited into the high-ruminating intervention group, they were re-
quired to complete 60 minutes of mindfulness meditation per week which was tracked via
the Calm mindfulness app. Their progress was monitored by the researchers on a weekly ba-
sis. Additionally, participants were asked to constantly wear their FitBit devices during the
intervention such that activity and sleep data can be collected. At the end of the four-week
intervention period, the second in-lab testing session was organized.

Second In-Lab Testing Session

If a participant were part of a high-ruminator group, they would be required to participate in
a second session. During the second testing session, participants first repeated the rumination
and mindfulness questionnaires and cognitive test performed during the first testing session.
This was followed up by data collection where the participants were set up with the EEG,
identically to the first testing session. The participants were administered a 10-minute
resting-state EEG data collection period where participants were again asked to close their
eyes and relax in order to minimize artifacts within the data.

After the EEG session, the participants in the wait-listed control group were given a brief
tutorial on FitBit devices and the Calm mindfulness app that was provided to them. They
were to engage in mindfulness training for 60 minutes for the next four weeks, similar to the
intervention group.

At the end of the four weeks, the participants were to meet with the researchers. They
were debriefed on the study and were provided with a copy of the study debriefing sheet.
The FitBits were also returned to the researchers at this time.

Take-Home Questionnaire #2

Finally, participants were emailed a LimeSurvey link to the same set of online questionnaires
that were previously administered after the first in-lab testing session. The results between
both sets of questionnaires were compared along with the EEG data collected during the
two in-lab testing sessions.

Measured Outcomes

Using the study protocol, the primary aim is to measure EEG correlates of rumination.
Specifically, the EEG data during the resting-state period of the in-lab testing sessions will
be used to determine the structures involved in the rumination process via visually plotted
activation patterns through beamforming. However, prior to using beamforming, the EEG
data must be pre-processed in order to improve the signal-to-noise ratio and yield more
reliable results.
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Data Pre-Processing

The EEG data that was collected during the in-lab testing sessions were through the BIOSEMI
ActiveTWO system. Essentially, this system allows for the collection of high-resolution EEG
signals with an increased sample rate, thereby minimizing the chance of aliasing. The col-
lected EEG signals contain 128 channels collected from each of the electrode sites on the
electrode cap. However, these signals are considered raw data as they were directly collected
from the participant without any pre-processing performed as seen from Figure 1. This
results in the presence of numerous artifacts and instances of noise. Some of these artifacts
include blinks and lateral eye movement, all of which can impair the post-processing anal-
yses and their results. Additionally, noise can be present due to input impedance, muscle
artifacts, and other stochastic sources of noise. Thus, the data must be cleaned and modified
such that the signal-to-noise ratio is improved, making it more optimal for post-processing
analyses.

Figure 1: Raw EEG Data of channels A1 - A32

From the BIOSEMI system, the raw data is exported as a .gdf file and saved onto a secure
server. Afterwards, the data is imported into EEGLAB (Figure 2) via MATLAB where the
data is converted to a Brain Vision Exchange Format File which produces a .dat file.
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Figure 2: EEGLAB Interface

The files were converted to a .dat file via EEGLAB so that the data could be pre-processed
using the program Brain Vision Analyzer 2.1 as seen from Figure 3. Brain Vision Analyzer
2.1 is a program by Brain Products GmbH that allows EEG data to be thoroughly cleaned
and primed for post-processing analyses. Within this study, the raw data was filtered and
manually inspected for artifacts and noisy channels. In the event of persistent stochastic noise
from a specific channel, a topographic spherical spline interpolation was performed. This
method of interpolation reduces the effects of noise within a channel by approximating values
based on other channels, thereby preventing the noisy channel from potentially altering the
findings of the study. Following this, an Ocular Correction ICA was performed in order to
identify and remove the components possessing activity related to blink artifacts and lateral
eye movement. Once this was performed, the data was exported as a .dat file so that it could
be imported into MATLAB and used within the post-processing analyses.
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Figure 3: Brain Vision Analyzer 2.1 Interface

Data Post-Processing

In order to analyze the EEG data, the FieldTrip toolbox was installed and the EEG data
from all of the participants were converted into a FieldTrip-suitable format. FieldTrip is a
MATLAB software toolbox that is typically used for EEG analysis and was the main software
involved in the analyses conducted within this paper. Firstly, the data was segmented to
ensure that they are all of the same length as this ensures that the signal obtained during
the task-switching paradigm or from the experimental setup was used in the analyses. As
there was a slight buffer before the resting state EEG data was collected in the trials,
the data was segmented from 0:45 to 5:45 minutes. The data from each participant were
then concatenated into a matrix for each group (low-ruminating group and high-ruminating
group). These matrices would be used when performing beamforming to identify differences
in activation patterns between the two populations.

Once the data matrices were properly formatted for both populations, the electrode
location file for our experimental setup was loaded into our workspace [44]. For this study,
a 128-channel electrode cap was used with an ABC labeling scheme. The electrode location
file allows one to associate a coordinate position with each of the 128 channels in the EEG
signal and subsequently apply beamforming algorithms to it plot the spatial coordinates. It is
imperative that the electrode location file is accurate and appropriately aligned as otherwise
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there would be a disconnect between the activated brain regions in real life and the activated
regions determined through beamforming.

Afterward, an EEG head model and an ICBM512 MRI brain model were loaded into
the workspace. The EEG head model allows us to map our electrode locations to an actual
human head model [45, 46]. Essentially, the electrode locations are warped from a 2D map
and fitted to a 3D head model, allowing one to accurately determine where the signal was
originating from on the participant’s scalp. A plot with the electrodes warped on the EEG
head model can be seen in Figure 4.

(a) Frontal View of the EEG Head model
aligned with the Electrode locations

(b) Top View of the EEG Head model aligned
with the Electrode locations

(c) Side View of the EEG Head model aligned
with the Electrode locations

Figure 4: EEG Head Model Views with the Electrodes Aligned

The ICBM512 MRI brain model is a high-resolution template based on an average of
152 T1-weighted MRI scans created by the International Consortium for Brain Mapping
[46]. The MRI model allows one to map activation patterns within the brain and visually
associate them with different cranial structures. Using the EEG head model and the MRI
model, a source model can be configured. This model essentially shows where the sources
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originate from as well as the entire volume matrix. Ideally, one should see that the sources
should all originate from within the brain as seen in Figure 5.

(a) Frontal View of the Source Model (b) Top View of the Source Model

(c) Side View of the Source Model

Figure 5: Source Model Views with the volume matrix in black and the source signals in red

From the figure, it can be observed that the sources in red do all in fact originate from the
brain, thus the EEG head model and the electrode locations have been mapped appropriately.
It is also important to notice that the volume matrix (black dots in Figure 5) covers a volume
greater than the brain, this is because the EEG can measure signals within the indicated
matrix and is not localized to the brain.

Additionally, a lead field can be created to show how the sources and sensors connect
with one another. It is imperative to ensure that the topography of the lead field is smooth
and that the lead field magnitude is appropriate for your analysis. Plots of the lead field
used within this study can be seen in Figures 6, 7 along with the lead field vectors in Figure
8.
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Figure 6: Lead Field Topographical Map

Figure 7: Lead Field Magnitude Distribution
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Figure 8: Lead Field Vectors; The magnitude of the vectors was increased for visual purposes

It can be seen from Figures 6 & 7 that the lead field has a smooth topography in all
three planes and that the lead field magnitude is around 20 microvolts which is ideal for an
EEG study. Additionally, it can be observed that the lead field vectors are normal to the
scalp surface which shows that they have been configured correctly. It is important to note
that the magnitude of the vectors in Figure 8 were increased to visually show the angle of
the vectors.

Once the models and electrode placement have been confirmed, an LCMV (Linearly
Constrained Minimum Variance) filter can be applied. The LCMV filter is a beamforming
method that maps EEG power values to their sources within the brain, with the goal of
minimizing the output variance. The power of an EEG signal is essentially the area under the
raw signal (Figure 1 which can be determined through integration. In MATLAB, the power
was calculated using Simpson’s rule which allows for an approximation of definite integrals,
allowing one to calculate the area under the EEG signal for each of the 128 channels. Power
is essentially the magnitude of the EEG signal across a time period and helps one determine
the strength of signals in different EEG channels. With the LCMV filter, the cumulative
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power over the entire frequency range was obtained and used for the analyses. Using the
calculated power as well as our lead field and source field model, we can estimate the power
throughout each voxel of our volume matrix. It is expected that many voxels in our volume
matrix are empty as many of them exist outside of the brain, however, the voxels within the
brain should have power attributed to them. The power for each voxel was then averaged
over the recorded time span to determine the average power from each voxel of the volume
matrix.

The average power from each voxel was plotted on MRI slices using our MRI model to
see activation patterns on various axial MRI slices of the brain. This was performed for both
the low-ruminating group and the high-ruminating group. When comparing the regions in
the low-ruminating and high-ruminating group, it is expected that there will be many areas
that are active in both groups, thus a contrast plot was also created. The contrast plots
essentially subtract the high-ruminating activity from the low-ruminating activity and vice
versa to determine the cranial structures that are associated with each group.

Given that the rumination scores from each participant’s Rumination Response Scale
questionnaire vary and that an individual within the low-ruminating group could potentially
still have high-ruminating activity that could alter the results, an additional comparison
was performed between the highest-rated individual in the high-ruminating group and the
lowest-rated individual in the low-ruminating group. Individual axial MRI plots with the
LCMV beamforming filter applied were created along with the contrast plots. The results
for the individual plots are hypothesized to be in agreement with the group plots.
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Results

Participant Rumination Response Scale Scores

As previously mentioned, the groups that each participant was enrolled in were based on
their rumination scores from the Rumination Response Scale (RRS) questionnaire. The
summed scores from the seventeen participants included in this study are displayed in Table
1 below. Aside from the RRS scores, there were no notable confounding differences between
the participants in each group. Thus it can be assumed that the participants in each group
are similar and there are no confounding variables that need to be controlled for.

Participant ID Score Group
1116 44 Low
1117 64 High
1118 45 Low
1119 50 High
1120 58 High
1121 35 Low
1122 65 High
1123 38 Low
1124 42 Low
1125 49 Low
1126 41 Low
1127 62 High
1128 44 Low
1129 54 High
1132 37 Low
1133 65 High
1134 74 High

Table 1: Rumination Response Scale Scores of all of the participants included within the
study.

As seen from Table 1, there are 9 participants classified as part of the low-ruminating
group and 8 participants classified as part of the high-ruminating group with RRS scores
ranging from 37 to 74. Based on the rumination scores compared to the median, the EEG
data from the participants were separated into their respective groups vis median split.
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Rumination Group MRI Plots

Once the participants were separated into their groups, an LCMV beamforming filter was
applied. The filter remained constant for all participants within both groups to ensure that
all comparisons made using the MRI plots were not subject to different sets of assumptions
and constraints. Based on the beamforming algorithm, the MRI plots in Figures 9 & 10
were developed for the low and high-ruminating groups respectively.

Figure 9: MRI Plot developed from the Low-Ruminator’s EEG Data with an LCMV beam-
former applied to map the activation of the brain in spatial coordinates. Within this plot,
the areas in yellow indicate higher activation and the areas in red indicate lower activation.
This plot includes 20 MRI slices of the brain taken axially to show activation patterns in a
3D space.
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Figure 10: MRI Plot developed from the High-Ruminator’s EEG Data with an LCMV beam-
former applied to map the activation of the brain in spatial coordinates. Within this plot,
the areas in yellow indicate higher activation and the areas in red indicate lower activation.
This plot includes 20 MRI slices of the brain taken axially to show activation patterns in a
3D space.

It can be clearly seen that the signal is spread throughout the brain and there is significant
overlap between the two figures. However, it can be noticed that the level of activation differs
in some areas such as the left-side of the brain; the low-ruminating group seems to have higher
activation in this region. It can also be observed that there is increased activation in the
posterior aspect of the brain with the Low-Rumination MRI plot. This could be due to
contributions from the posterior cingulate cortex or the occipital lobe; it is fairly unclear
from this plot alone. Given that the comparisons are difficult to determine via this plot, a
contrast plot was developed as well as seen in Figures 11 & 12.
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Figure 11: MRI Contrast Plot developed by subtracting the high ruminating group’s average
power from the low ruminating group’s average power to determine the areas specific to low
ruminators. Within this plot, the areas in yellow indicate higher activation and the areas in
red indicate lower activation.

From the contrast plot in Figure 11, it can be determined that there are visually noticeable
differences in the EEG signals between the two groups when processed through beamforming
and plotted on an MRI. It can be observed that with the low ruminating group, there is
some activation in the top left portion of the brain which is hypothesized to be due to the
ventromedial prefrontal cortex (vmPFC) which is a part of the prefrontal cortex that has
been shown to be involved in emotional processing and regulation. There also seems to be a
high level of activation in the posterior of the brain. Based on Figure 9, the position of the
activation indicates that the highlighted activation is most likely due to the occipital lobe.

26



Figure 12: MRI Contrast Plot developed by subtracting the low ruminating group’s average
power from the high ruminating group’s average power to determine the areas specific to low
ruminators. Within this plot, the areas in yellow indicate higher activation and the areas in
red indicate lower activation.

Similarly with the contrast plot in Figure 12, there are some visually noticeable differ-
ences. It can be observed that with the high ruminating group, there is more activation on
the right side of the brain when compared with the low ruminating group. The activation
pattern seems quite dispersed rather than being localized to one region. It is hypothesized
that there was general activation in the limbic structures within the brain, specifically hip-
pocampal and parahippocampal activity as those structures would be present in that area
of the brain at that depth.
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Individual MRI Plots of the Highest and Lowest Ruminators

In addition to observing differences between both populations, the individuals with the
highest and lowest RRS scores were compared against each other to investigate whether the
differences observed are consistent with the group-wise comparisons. Based on Table 1, it can
be determined that Participant #1134 and Participant #1132 have the highest and lowest
RRS scores respectively, thus they were used for this comparison. Participant #1134’s MRI
plot with the LCMV beamformer applied can be seen in Figure 13.

Figure 13: MRI Plot of the participant with the highest RRS Score (Participant #1134).
Within this plot, the areas in yellow indicate higher activation and the areas in red indicate
lower activation.

From Figure 13, it can be observed from row 4 that there is increased activation on the
left-posterior aspect of the brain. This is hypothesized to be due to contributing factors from
the occipital lobe and cerebellum which would be present in that area at that depth. When
comparing this figure to Figure 10 & Figure 12, it can be observed that the high activation
areas determined when comparing the high-ruminators group as a whole are not consistent
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with the individual results of Participant #1134. Specifically in Figure 12, it was determined
that an increased level of activation was present on the right side of the brain, however, the
results from Figure 13 seem to only have increased activation in left-posterior portion of the
brain.

The results for Participant #1132 - the individual with the lowest RRS score, can be
observed in Figure 14.

Figure 14: MRI Plot of the participant with the highest RRS Score (Participant #1132).
Within this plot, the areas in yellow indicate higher activation and the areas in red indicate
lower activation.

From Figure 14, it can be observed that the activation pattern is fairly dispersed and there
are no specific areas in which there is an increased level of activation. When comparing this
figure to Figure 9 & Figure 11, it can be observed that the high activation areas determined
when comparing the low-ruminators group as a whole are consistent with the individual
results of Participant #1132. Specifically with the activation of an area in the top-left
portion of the brain. In Figure 14, it can be observed that this high activation is present in
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the images in Row 3. As previously mentioned, this is hypothesized to be due to the vmPFC
which has been shown to be critical in emotional regulation.

With both Participant #1134 and Participant #1132’s results, comparisons were difficult
to determine, thus a contrast plot was also developed to highlight the differences between
them and to determine whether they align with the differences observed in the group-wise
comparisons. The contrast plots can be seen in Figures 15 & 16.

Figure 15: MRI Contrast Plot developed by subtracting the highest ruminating participant’s
(Participant #1134) average power from the lowest ruminating participant’s (Participant
#1132) average power to determine the areas specific to low ruminators. Within this plot,
the areas in yellow indicate higher activation and the areas in red indicate lower activation.

From the contrast plot in figure 15, it can be seen that the areas that have increased
activation in the low ruminating individual are fairly dispersed. They are spread throughout
the brain, however, there is a noticeable increase in activation at the top-left portion of the
brain. When comparing this nodule of activation with Figure 11, it can be seen that the
position of this activation pattern is similar. Thus, it is hypothesized that this also is due
to increased activity within the vmPFC.
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Figure 16: MRI Contrast Plot developed by subtracting the lowest ruminating participant’s
(Participant #1132) average power from the highest ruminating participant’s (Participant
#1134) average power to determine the areas specific to low ruminators. Within this plot,
the areas in yellow indicate higher activation and the areas in red indicate lower activation.

From the contrast plot in figure 16, it can be seen that the areas that have increased
activation in the high ruminating individual are fairly localized to the left posterior region
of the brain. When comparing this area of activation with Figure 12, it can be seen that the
activation patterns are in fact different. The dispersed activation pattern on the right side
of the brain is not present in the contrast plot in Figure 16. Additionally, the group-wise
contrast plot doesn’t have any activation in the left posterior of the brain that is present in
Figure 16.
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Discussion

Based on the results obtained from this study, it can be determined that the low-ruminating
group had higher activation in the top left portion of the brain when compared to the
high-ruminating group as seen in Figure 11. As previously mentioned, this is hypothesized
to be representing activity in the ventromedial prefrontal cortex (vmPFC). The vmPFC
has been shown to play a significant role in emotional regulation and the modulation of
ruminative patterns [47, 48]. Therefore, the higher activation of the vmPFC in the low-
ruminating group coincides with the literature. The low-ruminating group is hypothesized
to be better suited at regulating their emotions and controlling the level of ruminations
that they experience when compared to the high-ruminating group, thus they would have
increased activation in the vmPFC [49]. It is also important to note that the low-ruminating
group had increased activation in the posterior portion of the brain. This was hypothesized
to be due to participants engaging in visual imagery during the resting-state EEG data
collection phase. Visual imagery is defined as the process of creating mental representations
in the absence of sensory input [50, 51]. Individuals that engage in visual imagery have been
shown to have an increased level of activation in the primary visual cortex (V1), highlighting
the possible role that V1 has in generating these mental representations [50, 51]. The primary
visual cortex is part of the occipital lobe which is located in the posterior region of the brain
[50]. This coincides with the region of high activation depicted in Figure 11. Therefore, it
is plausible to hypothesize that the high activation present in the low-ruminating group was
due to the participants engaging in visual imagery. Apart from these two regions, there are
no other regions of increased activation in Figure 11.

Additionally, our contrast shown in Figure 12 demonstrates that the high-ruminating
group had higher activation of right hemispheric areas than the low-rumination group. As
previously mentioned, this is hypothesized to be representing the general activation of the
limbic structures within the brain. Specifically, the activation regions are hypothesized
to be due to increased activity in the hippocampal and parahippocampal regions of the
brain. Using an atlas provided by IMAIOS, a visual representation of the hippocampus
labeled on an axial MRI plot can be seen in Figure 17 [52]. From the figure, it can be
seen that the high activation regions present in Figure 12 coincide with the pinned region
in Figure 17, thereby illustrating a possible connection between hippocampal activation and
high rumination activity. Based on scientific literature from a study using an MRI, it has
been shown that increased hippocampal activity has been associated with increased levels of
depressive rumination which coincides with the findings of this study [53]. Thus, based on
our results, we hypothesize that the regions with increased activation are due to increased
activity in general limbic structures, specifically the hippocampus.
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Figure 17: Axial MRI Plot with the Hippocampus Pinned. [52]

Additionally, we hypothesize that the dispersed activation in the right hemisphere of the
brain present in Figure 12 is also due to emotional lateralization. This refers to the lateral-
ization of the neural correlates of emotion, where activation within the right hemisphere of
the brain is generally associated with negative mood, and activation within the left hemi-
sphere of the brain is generally associated with positive mood [54]. This theory of emotional
lateralization has been supported within scientific literature, with numerous studies sup-
porting the assumption that the right hemisphere is more involved with negative emotional
processing [55]. Thus, given that rumination involves persistent, negative emotions, it can
be hypothesized that the right hemispherical activation is due to negative emotions as per
the theory of emotional lateralization. This coincides with the results shown in Figure 12.
Additionally, it has been well-researched that right-handed individuals possess a right hemi-
spherical dominance for emotion [56]. Given that all of the participants in the study were
right-handed, the right hemisphere of their brain would be involved in emotional processing
and expression. This supports the results shown in Figure 12, as activation regions can be
seen dispersed throughout the right hemisphere of the brain.

When analyzing the results from the individual with the lowest RRS score (Figure 15), it
was observed that there were key differences when compared to the general trends in the low-
ruminating group shown in Figure 11. Specifically, the areas with increased activation in the
MRI of the individual with the lowest RRS score were fairly dispersed. There seemed to be a
higher level of activation on the right side of the brain as well as within the prefrontal cortex.
These findings do not coincide with the results from the low-ruminating group in Figure 11,
however, this could also be due to the fact that the results from Figure 15 are only from
one participant. It is important to note that there are similarities between the two figures,
most notably the activation in the top-left region of the brain. This region of activation is
present in both contrast plots and is hypothesized to be due to increased activation in the
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vmPFC. The increased activation within this region by the individual with the lowest RRS
score supports the theory that low ruminators have increased emotional regulation.

In addition, the results from the individual with the highest RRS score (Figure 16),
showed differences when compared to the general trends in Figure 12 as well. Specifically,
there were no regions with higher activation on the right side of the brain in the MRI plot
from the individual with the highest RRS score. This begs the question as to whether the
increased activation within the regions presented in Figure 12 is statistically significant.
Additionally, it can be observed that Figure 16 shows high activation in the left-posterior
aspect of the brain. This is fairly different when compared to Figure 12. It is hypothesized
that this activation could be due to activity in the cerebellum. This could be due to the fact
that the participant might have been attempting to maintain their posture or balance during
the EEG recording session. This region of activation could also signify the large amounts of
variability between the participants. However, more research and statistical analyses would
be needed in order to determine the cause for the increased activity in the left-posterior
aspect of the brain.

Limitations

Although the results obtained from this study coincide with the findings reported in scientific
literature, there are limitations with the study design. EEGs are known for their high
temporal resolution; they are able to accurately measure neural activity with respect to time.
However, they have limited spatial resolution; EEGs are not able to visually represent neural
activity sharply and accurately. Although beamforming algorithms can increase the spatial
resolution of signals collected using an EEG, this approach is unmatched when compared to
imaging modalities such as fMRI and MRI. The limited spatial resolution may negatively
influence one’s ability to determine the specific regions and structures that have increased
activation between the low-ruminating and high-ruminating groups. An example is the
highlighted regions in Figure 12, it is unclear as to which limbic structures are responsible
for the increased activation within this plot.

The second limitation is the use of head models within the study. The adoption of a
electrode digitization to map the coordinates of each electrode such as DIPFIT; a dipole
fitting algorithm, would potentially result in reduced source estimation uncertainty [57].
Currently, the use of a head model template in source localization yields an accuracy of
50% in the identification of Broadmann areas, whereas using an electrode digitization method
has been shown to yield an accuracy greater than 80% [57]. Thus, the adoption of electrode
digitization may reduce source localization error and could potentially even improve the
spatial resolution of the resultant MRI plots.

The third limitation is that the participants were split into high and low-ruminating
groups based on a median split of their RRS scores. This can be unfavorable as it can limit
the true contrast seen between individuals from two different groups due to how close their
RRS scores are to one another. For example, Participant #1125 had an RRS score of 49,
and Participant #1119 had an RRS Score of 50 yet they were both enrolled in different
groups. It is hypothesized that the results between these two individuals would be fairly
similar, however, the addition of their data to the group-wise comparisons can limit the
differences observed. Within literature, standardized clasification cut-offs for ”high” and
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”low” ruminators based on RRS scores do not seem to exist, however, the use of a large
meta-analysis of RRS scores would help with determining appropriate cut-offs for each group.
In the future, it may be better to increase the overall number of participants as there would
be in theory a better separation between the high and low-ruminating groups. This would
provide more confidence that the high and low ruminators, as determined by our median split
technique, come from different populations. Additionally, statistical tests could be employed
to determine if there was variability within each group.

The last limitation is the relatively small sample size in both the low and high-ruminating
groups. It is unclear as to whether these results can be generalized to a larger population as
the limited sample size increases the margin of error with the reported findings.

Future Research

The results obtained from this study qualitatively demonstrate that there may be differ-
ences in the neural activaiton patterns of low and high-ruminating individuals, which opens
avenues for future research. Firstly, the results from this study do not make any statistical
comparisons between the two populations nor does it indicate if a high activation region is
statistically significant. The inclusion of both of these statistical analyses would improve
the validity of the findings from this paper. It would allow for quantitative, precise de-
scriptions of the potential differences in activation patterns between the low-ruminating and
high-ruminating groups. Additionally, including more participants within both the low-
ruminating and high-ruminating groups would yield more generalizable results. For this
study, 17 participants were used thereby limiting the validity of the results, however, a fu-
ture study is in progress with the goal of 40 participants, 20 per group. Lastly, the MRI
plots produced do not have comparisons between different Broadmann regions thereby rely-
ing on visual analysis and approximation to determine which structures had a higher level
of activity. In the future, including power comparisons may yield increased validity within
the results. Additionally, the MRI slices are solely from the axial plane. If visualization
used all three dimensions, it would help in identifying areas with higher activation via visual
inspection.
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Conclusion

Overall, this study adopted a source-imaging approach to determine the structures involved
in rumination. Using a Linearly Constrained Minimal Variance (LCMV) beamformer, the
participant’s EEG data was analyzed within spatial coordinates to determine regions of in-
creased neural activation while at resting-state. The findings determine that there were
visual differences between the low-ruminating and the high-ruminating group, most notably
the increased activation of the ventromedial prefrontal cortex (vmPFC) in the low-ruminating
group and the increased activation of limbic structures in the high-ruminating group. Al-
though differences are shown through visual inspection, the validity of the study can be
improved with the inclusion of statistical analyses comparing the high activation regions be-
tween both the low-ruminating and high-ruminating group. This study was able to provide
evidence that beamforming can be used to determine the structures involved in rumination
and opens avenues for future research within this field.
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