
|

Analyzing the Evolution of the Low
Level Virtual Machine (LLVM)

Compiler Infrastructure

Ahmed Elzaria1, Jonah Alle Monne2, Sebastien Mosser PhD1

1 Department of Computing and Software, McMaster University, Hamilton, Canada. 2 Department of Computer Science and Electronics, Université Grenoble Alpes, Grenoble, France

Introduction

§ Computers do not understand user written code right
away, Fig 1.
§ High level code is what humans use to convey a

set of instructions to the computer.
§ Low level machine code is what computers

understand.
§ Computers utilize a set of complex programs

called the compiler to translate high level code to
low level machine code

§ LLVM provides a set of tools and libraries to build
compilers [1].

§ During the compilation process, an intermediate
representation of the user written code is generated,
Fig 2.
§ Using LLVM, passes are applied on this

representation to further optimize and generate
efficient machine code, Fig 2.

§ With over 70 available LLVM passes, there are over
70 factorial possible pass combinations
available which is greater than number of atoms
in the universe

§ As a result, an enormous field of pass interactions
and influences which can change the fate of a
computer program, remain undiscovered/analyzed.

Objectives

§ Analyze and visualize the evolution of the passes and
their dependencies.

§ Study visualizations to reveal patterns, key traits,
program behaviour, etc.

Subjects and Methods

§ In theory, it is best to discover and analyze all
possible pass combinations but impossible in practice.

§ Hence, analyzing and comparing sampled sections
within the field (microscope effect) is the approach.

Results

Conclusions

§ There are more pass combinations than visible atoms
in the universe, hence a lot of information remains
undiscovered.

§ Developed a tool that visualizes pass interactions in
the LLVM compiler infrastructure.

§ Can lead to optimization strategies, developing
compilers, and understanding pass interactions.

§ Significant for industries such as Apple that utilize
LLVM, emphasizing the benefits of making programs
more efficient.

Future Work

§ Add a connected components/clustering feature for the pass microscope.
§ Improving tool’s graph user interface. Some features include:

§ Node sizing representing the level of optimization applied on the program state.
§ Pressing on an edge reveals the pass applied to state.
§ Edge styles representing different groups of passes.
§ Highlighting only selected passes impact on the graph.

§ Developing an algorithm to study patterns, identify traits, and key information from the graph.
§ Scaling this process across entire benchmark and comparing results.

References

[1] “The LLVM Compiler Infrastructure Project,” Llvm.org. [Online]. Available:
https://llvm.org. [Accessed: 06-Aug-2023].
[2] “PageAngha,” Ufmg.br. [Online]. Available:
http://cuda.dcc.ufmg.br/angha/home. [Accessed: 06-Aug-2023].

Ahmed Elzaria
Undergraduate Software Engineering ll

McMaster University, Department of Computing and
Software, Faculty of Engineering

Email: elzariaa@mcmaster.ca
LinkedIn: AhmedElzaria

Figure 1: Three main step process a computer takes to convert
user code to machine code.

Figure 2: Compilation Process. Passes are applied during
middle-end stage to further optimize code. Resulting in more

efficient machine code.

Approach

Acquiring Reference Benchmark of Programs

§ Utilizing the “Angha Project” [2] benchmark consisting
of 1 million clang compiled .c programs.

§ After parsing each program and extracting structural
metrics (number of variables, functions, control flows,
etc.), it was evident that the benchmark can be
downsized to 3600 random programs without bias
since metrics revealed a homogenous benchmark.

Figure 3: Number of blanks vs code complexity of a program.
All graphs revealed a similar result, indicating a homogenous

benchmark.
Building the Transition Graph (Pass Microscope)

§ A 4-step process is executed on each program:
§ Select passes (ex. loop-unroll, mem2reg, etc.).
§ LLVM IR is generated.
§ Apply each pass on IR:

§ Using llvm-diff, determine if post-pass applied
version of the program is identical to any other
versions generated.

§ If unique, add a new node to the graph.
§ Else, add an edge from parent node to identical

node.
§ Keep track of newly generated nodes to visit in a

queue.
§ Repeat for all nodes in queue until empty.

Figure 4: Demonstration of how transition graphs are built.

Figure 5: Results obtained from pass microscope tool. Reveals
how passes are interconnected and their influence on a

programs fate during compilation.

§ Developed a novel tool to visualize pass
interactions to analyze how different LLVM passes
affect code transformations and performance.

§ Nodes represent unique program states while edges
indicate the relationships between different program
states.

§ Able to generate the transition graph of any program
with any set of LLVM passes.

§ Example: referring to the top network of Fig 5, an
interesting result indicating the fate of the program
depends on the 2 passes in the middle, either trapping
you in the left cluster or right cluster revealing the
significance of these 2 passes.

LEGEND
Program State
Pass Applied

