McMaster

University

TS

v

Analyzing the Evolution of the Low
Level Virtual Machine (LLVM)
ENGINEERING Compiler Infrastructure

Computing
& Software

Qg

McSCert

Ahmed Elzaria’, Jonah Alle Monne?, Sebastien Mosser PhD'

' Department of Computing and Software, McMaster University, Hamilton, Canada. 2 Department of Computer Science and Electronics, Université Grenoble Alpes, Grenoble, France

Introduction Subjects and Methods Results
= Computers do not understand user written code right Approach " LEGEND
away, Fig 1. = In theory, it is best to discover and analyze all o2) Q Program State
= High level code is what humans use to convey a possible pass combinations but impossible in practice. \\ Pass Applied
set of instructions to the computer. = Hence, analyzing and comparing sampled sections 3;’ % 'Y
= Low level machine code is what computers within the field (microscope effect) is the approach. y = o e
Y ; ¢ 54 ~ 2 P15
‘L;? 24 A 9 Al &y
understand. Acquiring Reference Benchmark of Programs "6y 7 ; , S,
= Computers utilize a set of complex programs i3 . &
P _ P _ prog = Utilizing the “Angha Project” [2] benchmark consisting @) J* =
called the compiler to translate high level code to o _ o ” y
, of 1 million clang compiled .c programs. e " o A
low level machine code , _ - o
_ , , , = After parsing each program and extracting structural ")
= LLVM provides a set of tools and libraries to build] , , & i
'] metrics (number of variables, functions, control flows, g) o el
compilers [1]. ¢ e " e :
Dur fh Iat - diat etc.), it was evident that the benchmark can be A)
= During the compilation process, an intermediate , _ _ | e :
J _ P P _ , downsized to 3600 random programs without bias S L g
representation of the user written code is generated, , , X R o A
_ since metrics revealed a homogenous benchmark. Ou VIR |
Fig 2. : B
= Using LLVM, passes are applied on this e o o/ M
25 - 00006006 00606060600060600 o o T~ S
representation to further optimize and generate $383sssssssssssss ¢ N ;;g/ Y-
efficient machine code, Fig 2. A e

= With over 70 available LLVM passes, there are over

[
w
!

: @
»V

Code Complexity
rF Y Y Y %

70 factorial possible pass combinations

""""""""""" Figure 5: Results obtained from pass microscope tool. Reveals
how passes are interconnected and their influence on a
programs fate during compilation.

=
o
!

available which is greater than number of atoms

in the universe ¢, ¢
®

wm
1
q{

= As aresult, an enormous field of pass interactions — = Developed a novel tool to visualize pass

Blanks

. _ Figure 3: Number of blanks vs code complexity of a program. interactions to analyze how different LLVM passes
computer program, remain undiscovered/analyzed. All graphs revealed a similar result, indicating a homogenous affect code transformations and performance.
benchmark.

and influences which can change the fate of a

= Nodes represent unique program states while edges

vaer-Loce Compiler Executable Building the Transition Graph (Pass Microscope) indicate the relationships between different program
s A 4-step process is executed on each program: states.
" > . Exga = Select passes (ex. loop-unroll, memZreg, etc.). = Able to generate the transition graph of any program
= LLVM IR is generated. with any set of LLVM passes.
= Apply each pass on IR: o : ']
Figure 1: Three main step process a computer takes to convert PP y. P] L _ -Exampl-e. refer””g t(? th-e top network of £ig 5, an
user code to machine code. = Using llvm-diff, determine if post-pass applied interesting result indicating the fate of the program
version of the program is identical to any other depends on the 2 passes in the middle, either trapping
wigh-Level o . Machine versions generated. you in the left cluster or right cluster revealing the
e Frontend | Middle-end | Backend e, . C
(lexing, parsing) (optimize) (link and compile) u If un|que, add ad hew nOde tO the gl’aph Slgnlflcance Of these 2 paSSeS
= Else, add an edge from parent node to identical
node. Conclusions
> Pass1 [pass 2 [%| Pass 3 [pass n [—> = Keep track of newly generated nodes to visit in a
queue = There are more pass combinations than visible atoms

PassManager

. : in the universe, hence a lot of information remains
= Repeat for all nodes in queue until empty.

Figure 2: Compilation Process. Passes are applied during undiscovered.
middle-end stage to further optimize code. Resulting in more , , _ , _
efficient machine code. = Developed a tool that visualizes pass interactions in

the LLVM compiler infrastructure.

Objectlves = Can lead to optimization strategies, developing

i llers, | interactions.
= Analyze and visualize the evolution of the passes and compilers, and understanding pass interactions

their dependencies.
» Study visualizations to reveal patterns, key traits,

‘s = Significant for industries such as Apple that utilize
SeniA LLVM, emphasizing the benefits of making programs

. 3 more efficient.
program behaviour, etc.) msaas

Figure 4: Demonstration of how transition graphs are built.

Future Work References
= Add a connected components/clustering feature for the pass microscope. [1] “The LLVM Compiler Infrastructure Project,” LIvm.org. [Online]. Available:
= Improving tool’s graph user interface. Some features include: https://llvm.org. [Accessed: 06-Aug-2023].

= Node sizing representing the level of optimization applied on the program state. [2] “PageAngha,” Ufmg.br. [Online]. Available:

= Pressing on an edge reveals the pass applied to state. http://cuda.dcc.ufmg.br/angha/home. [Accessed: 06-Aug-2023].

= Edge styles representing different groups of passes.
= Highlighting only selected passes impact on the graph.
= Developing an algorithm to study patterns, identify traits, and key information from the graph.

= Scaling this process across entire benchmark and comparing results.

Ahmed Elzaria McMaster University, Department of Computing and Email: elzariaa@mcmaster.ca B R I G H T E R WO R LD

Undergraduate Software Engineering Il Software, Faculty of Engineering LinkedIn: AhmedElzaria

