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Lay Abstract 

This research aims to develop an AI-based functional integrated with a heuristic 

algorithm that optimizes parameters to meet desired mechanical properties and cost for 

steels. The developed algorithm generates new alloys which meet desired mechanical 

property targets by considering alloy composition and heat treatment condition inputs. 

Used in combination with machine learning models for the mechanical property and 

microstructure prediction of new alloys, the algorithm successfully demonstrates its ability 

to meet specified targets while achieving cost savings. The approach presented has 

significant implications for the steel industry as it offers a quick method of optimizing steel 

production, which can reduce overall costs and improve efficiency. The integration of 

machine learning within the algorithm offers a different way of designing new steel alloys 

which has the potential to improve manufactured products by ultimately improving their 

performance and quality. 
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Abstract 

Steel is an important engineering material used in a variety of applications due to 

its mechanical properties and durability. With increasing demand for higher performance, 

complex structures, and the need for cost reduction within manufacturing processes, there 

are numerous challenges with traditional steel design options and production methods with 

manufacturing cost being the most significant. In this research, this challenge is addressed 

by developing a micro-genetic algorithm to minimize the manufacturing cost while 

designing steel with the desired mechanical properties. The algorithm was integrated with 

machine learning models to predict the mechanical properties and microstructure for the 

generated alloys based on their chemical compositions and heat treatment conditions. 

Through this, it was demonstrated that new steel alloys with specific mechanical property 

targets could be generated at an optimal cost. 

The research’s contribution lies in the development of a different approach to 

optimize steel production that combines the advantages of machine learning and 

evolutionary algorithms while increasing the number of input parameters. Additionally, it 

uses a small dataset illustrating that it can be used in applications where data is lacking. 

This approach has significant implications for the steel industry as it provides a more 

efficient way to design and produce new steel alloys. It also contributes to the overall 

material science field by demonstrating its ability in a material’s design and optimization. 

Overall, the proposed framework highlights the potential of utilizing machine learning and 

evolutionary algorithms in material design and optimization.  



 

 v  

 

 

 

 

Dedicated to my support system for their unwavering love and encouragement. 

  



 

 vi  

Acknowledgments 

I would like to thank my supervisor, Dr Seshasai Srinivasan, for his support, 

guidance, and expertise that have been a driving force behind the success of this research. 

His mentorship and willingness to take me on as a student have been instrumental in 

bringing my thesis to where it stands today. I would also like to extend my thanks to Dr. 

Mohamed Elbestawi for his input and suggestions which have helped shape and strengthen 

this research. 

My deepest appreciation goes to my family: my loving parents Tom and Grace 

Wanyama, whose unwavering love, support, and encouragement have been instrumental 

throughout my academic journey. I am also grateful to my siblings Tom M. Wanyama, Paul 

Barasa, and Elizabeth Anyango for their constant motivation and belief in my abilities. 

Special thanks go to my best friend and partner, Alexandru Barsan, who has been a constant 

source of strength and inspiration on this adventure. Without this support system, this 

achievement would not have been possible.  

  



 

 vii  

Table of Contents 

Lay Abstract .......................................................................................................... iii 

Abstract ................................................................................................................. iv 

Acknowledgments ................................................................................................. vi 

Table of Contents ................................................................................................. vii 

List of Figures ....................................................................................................... xi 

List of Tables ........................................................................................................ xv 

Abbreviations and Symbols .............................................................................. xvii 

Declaration of Academic Achievement .............................................................. xx 

Chapter 1 Introduction ....................................................................................... 1 

1.1 Background Overview ............................................................................. 1 

1.2 Research Motivation and Objective ........................................................ 2 

1.3 Research Contributions and Novelty ....................................................... 3 

1.4 Thesis Structure ....................................................................................... 4 

Chapter 2 Literature Review .............................................................................. 6 

2.1 Steel Optimization Overview .................................................................. 6 



 

 viii  

2.2 Steel Composition and Microstructure Effects on Mechanical Properties

 7 

2.2.1 Effects of Chemical Compositions on Mechanical Properties .................................. 8 

2.2.2 Effects of Microstructure on Mechanical Properties ................................................. 9 

2.3 Mechanical Property Prediction using Machine Learning .................... 11 

2.4 Genetic Algorithms Overview ............................................................... 13 

2.4.1 Application of Genetic Algorithms in Steel Optimization ...................................... 14 

2.4.2 Comparison of Genetic Algorithms with Other Optimization Techniques ............. 16 

2.4.3 Advantages and Limitations of using Genetic Algorithms in Steel Optimization ... 18 

Chapter 3 Methodology ..................................................................................... 20 

3.1 Problem Formulation ............................................................................. 20 

3.2 Objective Cost Function ........................................................................ 20 

3.3 Development of Reduced Order Models ............................................... 22 

3.3.1 Hardness Model ....................................................................................................... 22 

3.3.2 Tensile Strength Model ............................................................................................ 23 

3.3.3 Elongation Model ..................................................................................................... 24 

3.4 Genetic Algorithms Optimization Solver .............................................. 25 

3.5 Computational Cases ............................................................................. 31 

Chapter 4 Results and Discussions ................................................................... 33 

4.1 Methodology Validation ........................................................................ 33 

4.1.1 Microstructure Prediction Model ............................................................................. 33 



 

 ix  

4.1.2 Genetic Algorithm Validation .................................................................................. 34 

4.2 Optimizing for Mechanical Property Results ........................................ 37 

4.2.1 Optimization Results for Low Strength Steels ......................................................... 38 

4.2.2 Optimization Results for Medium Strength Steels .................................................. 50 

4.2.3 Optimization Results for High Strength Steels ........................................................ 61 

4.3 Optimizing for Cost Results .................................................................. 72 

4.4 Limitations and Future Work ................................................................ 79 

Chapter 5 Conclusions ....................................................................................... 81 

5.1 Key Outcomes ....................................................................................... 81 

5.2 Implications for Practical Applications ................................................. 83 

5.3 Recommendations for Future Research ................................................. 84 

Appendix A Neural Network ............................................................................. 86 

A.1 Hyperparameters .................................................................................... 86 

A.2 Training and Testing .............................................................................. 86 

Appendix B Pseudo Code ................................................................................... 90 

B.1 ROH Prediction Model .......................................................................... 90 

B.2 Microstructure Prediction Model ........................................................... 91 

B.3 Genetic Algorithm ................................................................................. 92 

Appendix C General Information ..................................................................... 93 



 

 x  

C.1 Cost of Electricity .................................................................................. 93 

C.2 Cost of Alloying Elements .................................................................... 94 

C.3 Software and Hardware Information ..................................................... 95 

References ............................................................................................................. 96 

 

 

  



 

 xi  

List of Figures 

Figure 3-1: Reduced Order Hardness Model Neural Network Schematic ........................ 23 

Figure 3-2: Elongation as a function of Tensile Strength used to Develop the Correlation 

Equation  as Extracted from Bhattacharya [30] ................................................................. 24 

Figure 3-3: Correlation between Tensile Strength (TS) and Elongation (TE) as Extracted 

from Data Reported by Bhattacharya [30] ........................................................................ 25 

Figure 3-4: Illustration of the µGA’s Procedure ............................................................... 30 

Figure 4-1: Microstructure prediction Model Neural Network Schematic ....................... 34 

Figure 4-2: Standard Test Functions used to Test the µGA’s Performance. (a) McCormick 

Standard Test Function [33], (b) Easom Standard Test Function [34], (c) Ackley Standard 

Test Function [35] ............................................................................................................. 36 

Figure 4-3: Results of the µGA for the Baseline Case for AISI 8620. (a – c) The Mechanical 

Properties – Hardness, Tensile Strength, Elongation, (d) the Cooling profile, (e) the Penalty 

Parameter, and (f) the Cost Function ................................................................................. 42 

Figure 4-4: Results of the µGA for Cases H1 and H2 for AISI 8620. (a - f) The Mechanical 

Properties – Hardness, Tensile Strength, and Elongation, (g, h) the Penalty parameters, (i, 

j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations ............... 44 

Figure 4-5: Results of the µGA for Cases S1 and S2 for AISI 8620. (a - f) The Mechanical 

Properties – Hardness, Tensile Strength, and Elongation, (g, h) the Penalty parameters, (i, 

j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations ............... 46 



 

 xii  

Figure 4-6: Results of the µGA for Cases E1 and E2 for AISI 8620. (a - f) The Mechanical 

Properties – Hardness, Tensile Strength, and Elongation, (g, h) the Penalty parameters, (i, 

j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations ............... 48 

Figure 4-7: Resulting Cooling Profiles from the µGA for Cases H1, H2, S1, S2, E1 and E2 

Respectively for AISI 8620 ............................................................................................... 49 

Figure 4-8: Results of the µGA for the Baseline Case for AISI 4130. (a – c) The Mechanical 

Properties – Hardness, Tensile Strength, Elongation, (d) the Cooling profile, (e) the Penalty 

Parameter, and (f) the Cost Function ................................................................................. 53 

Figure 4-9: Results of the µGA for Cases H1 and H2 for AISI 4130. (a - f) The Mechanical 

Properties – Hardness, Tensile Strength, and Elongation, (g, h) the Penalty parameters, (i, 

j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations ............... 55 

Figure 4-10: Results of the µGA for Cases S1 and S2 for AISI 4130. (a - f) The Mechanical 

Properties – Hardness, Tensile Strength, and Elongation, (g, h) the Penalty parameters, (i, 

j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations ............... 57 

Figure 4-11: Results of the µGA for Cases E1 and E2 for AISI 4130. (a - f) The Mechanical 

Properties – Hardness, Tensile Strength, and Elongation, (g, h) the Penalty parameters, (i, 

j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations ............... 59 

Figure 4-12: Resulting Cooling Profiles from the µGA for Cases H1, H2, S1, S2, E1 and 

E2 Respectively for AISI 4130 .......................................................................................... 60 

Figure 4-13: Results of the µGA for the Baseline Case for 420 Stainless Steel. (a – c) The 

Mechanical Properties – Hardness, Tensile Strength, Elongation, (d) the Cooling profile, 

(e) the Penalty Parameter, and (f) the Cost Function ........................................................ 64 



 

 xiii  

Figure 4-14: Results of the µGA for Cases H1 and H2 for 420 Stainless Steel. (a - f) The 

Mechanical Properties – Hardness, Tensile Strength, and Elongation, (g, h) the Penalty 

parameters, (i, j) the Cost Functions, for the Two Cases Respectively Over 2500 

Generations ........................................................................................................................ 66 

Figure 4-15: Results of the µGA for Cases S1 and S2 for 420 Stainless Steel. (a - f) The 

Mechanical Properties – Hardness, Tensile Strength, and Elongation, (g, h) the Penalty 

parameters, (i, j) the Cost Functions, for the Two Cases Respectively Over 2500 

Generations ........................................................................................................................ 68 

Figure 4-16: Results of the µGA for Cases E1 and E2 for 420 Stainless Steel. (a - f) The 

Mechanical Properties – Hardness, Tensile Strength, and Elongation, (g, h) the Penalty 

parameters, (i, j) the Cost Functions, for the Two Cases Respectively Over 2500 

Generations ........................................................................................................................ 70 

Figure 4-17: Resulting Cooling Profiles from the µGA for Cases H1, H2, S1, S2, E1 and 

E2 Respectively for 420 Stainless Steel ............................................................................ 71 

Figure 4-18: Cooling Profiles for the Optimization Test Cases. (a – c) Runs 1 – 3 for AISI 

8620 Targets, (d – f) Runs 1 – 3 for AISI 4130 Targets, and (g – i) Runs 1- 3 for 420 

Stainless Steel Targets, respectively. ................................................................................. 73 

 
Figure A-1: Actual and Predicted Hardness Values as Predicted by the ROH Model: (a) 

Normalized Results and (b) Rescaled Results ................................................................... 88 



 

 xiv  

Figure A-2: Actual and Predicted Microstructure Values as Predicted by the Microstructure 

Prediction Model: (a) Austenite Predicted Results, (b) Ferrite Predicted Results, (c) Pearlite 

Predicted Results, (d) Bainite Predicted Results, and (e) Martensite Predicted Results ... 89 

 

  



 

 xv  

List of Tables  

Table 3-1:  Summary of the Input Parameters Search Space ............................................ 27 

Table 3-2: Summary of the Values of the Weights and Exponents used in Equation ( 2 ) for 

the Different Cases ............................................................................................................ 32 

Table 4-1: µGA Results Tested on Standard Test Functions ............................................ 37 

Table 4-2: Mechanical Properties of Selected Representative Steels used in the Analysis

 ........................................................................................................................................... 38 

Table 4-3: Algorithm Results for AISI 8620 for the Different Computational Cases ...... 39 

Table 4-4: Microstructure Predictions for AISI 8620 for the Different Cases .................. 40 

Table 4-5: Algorithm Results for AISI 4130 for the Different Computational Cases ...... 50 

Table 4-6: Microstructure Predictions for AISI 4130 for the Different Cases .................. 51 

Table 4-7: Algorithm Results for 420 Stainless Steel for the Different Computational Cases

 ........................................................................................................................................... 61 

Table 4-8: Microstructure Predictions for 420 Stainless Steel for the Different Cases .... 62 

Table 4-9: Results of the µGA for the Optimal Cases with Cost Optimization (i.e., for C = 

00, s = 10, e = 10) for AISI 8620 Target ........................................................................... 74 

Table 4-10: Results of the µGA for the Optimal Cases with Cost Optimization (i.e., for C 

= 10, s = 10, e = 10) for AISI 4130 Target ........................................................................ 76 

Table 4-11: Results of the µGA for the Optimal Cases with Cost Optimization (i.e., for C 

= 10, s = 10, e = 10) for 420 Stainless Steel Target .......................................................... 78 

 



 

 xvi  

Table A-1: Hardness Model Hyperparameters .................................................................. 86 

Table A-2: Cross Validation Results for the ROH model ................................................. 87 

Table A-3: MSE Results from the Microstructure Prediction Model for Austenite, Ferrite, 

Pearlite, Bainite, and Martensite. ....................................................................................... 88 

Table C-1: TOU prices as outlined by the OEB ................................................................ 93 

Table C-2: Cost of Alloying Elements (Retrieved from [41]) ........................................... 94 

 

  



 

 xvii  

Abbreviations and Symbols 

Below is a list of all the abbreviations and symbols used within. 

List of Abbreviations 

ANN Artificial Neural Network 

C Celsius 

CR Cooling Rate 

GA Genetic Algorithm 

HSLA High Strength Low Alloy 

HV Vicker’s Hardness 

IOSO Indirect Optimization Self-Organization 

K Kelvin 

MC Manufacturing Cost 

MLP Multi-layer Perceptron 

MSE Mean Squared Error 

OEB Ontario Energy Board 

ROH Reduce Order Hardness 

ROM Reduced Order Model 

s Seconds 

SA Simulated Annealing 

STD Standard Deviation 

TE Tensile Elongation 



 

 xviii  

TMCP Thermomechanical Controlled Processing 

TMP Thermomechanical Processing 

TS Tensile Strength 

TTT Time-Temperature-Transformation 

UTS Ultimate Tensile Strength 

YS Yield Strength 

 

List of Symbols 

co Cost Exponent 

f Cost Function 

Co Cost Weight 

e Elongation Exponent 

E Elongation Weight 

h Hardness Exponent 

H Hardness Weight 

x Input Parameters 

μ Micro 

ϛ Penalty Parameters 

0 Target Values 



 

 xix  

s Tensile Strength Exponent 

S Tensile Strength Weight 

  



 

 xx  

Declaration of Academic Achievement 

I, Martha Kafuko, declare that the contents written herein, submitted in partial fulfillment 

of the requirements for the degree of Master of Applied Science, at McMaster University, 

are a record of my original work performed solely by me with the guidance of my 

supervisor Dr. Seshasai Srinivasan. This is the true copy of the thesis which includes final 

revisions, as accepted by the reviewers. Further, I understand that this thesis shall be made 

available to the public via MacSphere. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Chapter 1 Introduction 

1.1 Background Overview 

Used in a variety of industries, steel is a crucial material due to its combination of 

strength, toughness, and durability. In fact, due to its malleability, it is typically used in 

most construction and automotive projects with roughly 55% of the weight of passenger 

cars being made of it. Further, it is used in the creation of shipping containers, various 

appliances, and machinery [1]. Therefore, it is important that the design of steel achieves 

the desired mechanical properties, based on its application, at a reasonable cost.   To ensure 

this, the production process must be optimized. As such, in recent years, there has been an 

increased focus on using various computational methods to optimize this process, resulting 

in more efficient, and importantly cost-effective, steel production. 

Since traditional optimization techniques are usually computationally expensive 

and require extensive experimentation, the development of optimization techniques such 

as genetic algorithms (GAs), have become an efficient way to find optimal solutions to 

steel optimization problems by designing new alloys with desired properties. To 

accomplish this, GAs take on a natural selection and genetic inspired approach to search 

for optimal combinations. In the case of this research, these combinations are of alloying 

elements and heat treatment conditions. To improve the algorithms performance, the use of 

machine learning models was also applied. These models were used for the prediction of 

the mechanical properties and microstructure of the new alloys. With this, GAs 
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demonstrated their ability to design new materials that meet specified targets with cost 

savings. 

While GAs have shown to be promising in the optimization of steel, they typically 

also require many evaluations, which is time consuming and ultimately computationally 

expensive. To address this, micro-genetic algorithms (𝜇GA) have been proposed as a more 

efficient technique. As a subset of GAs, these algorithms use smaller populations and fewer 

iterations applied to a local search procedure resulting in faster convergence towards an 

optimal solution. As such, they are effective for use in the steel optimization problem. 

1.2 Research Motivation and Objective 

An increased demand for cost effective steels that meet desired mechanical 

properties has driven the need for the optimization of steel production. Since traditional 

experimental methods – trial and error – are both time consuming and require a significant 

number of resources, new methods that are more practical in the current market are being 

researched. Therefore, the development of new techniques that are efficient and effective 

are necessary to meet current demand. Techniques utilizing machine learning such as 

Neural Networks (NNs), support vector machines etc. have been used to predict the 

mechanical properties of steel. However, such techniques do not consider or provide cost 

optimization capabilities. On the other hand, although the use of GAs has proved to be 

beneficial in the cost optimization of steel alloys, they are computationally resource 

intensive. 

Therefore, the objective of this research is to develop a 𝜇GA that can overcome the 

limitations of traditional GAs. It combines the advantages of utilizing machine learning 
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techniques for prediction and optimization techniques for generation. The 𝜇GA shall be 

used to optimize parameters for mechanical properties. Further, it shall also be used to 

optimize for the cost of steel production while ensuring that desired mechanical property 

targets are still met. As such, its success will provide a means for the industry to optimize 

for steel products more efficiently and at a reduced cost. 

1.3 Research Contributions and Novelty 

The main contributions of this research are summarized as follows: 

1. The development of a 𝜇GA for steel optimization: This research develops a 

𝜇GA for the optimization of steel mechanical properties and cost by 

considering the chemical composition (alloying elements) and heat 

treatment conditions. It increases the number of inputs parameters by 

including more alloying elements and utilizes continuous cooling profiles 

rather than isothermal condition to get the optimal cost. 

2. The development of Reduced Order Models (ROMs) for mechanical 

property prediction: ROMs for the prediction of three mechanical properties 

namely, hardness, tensile strength, and elongation were developed using 

machine learning and existing correlation equations. This research expands 

on existing work that usually focuses on one or two properties and 

incorporates machine learning for more accurate results. 

3. The use of Artificial Neural Networks (ANNs) to obtain the mechanical 

properties and microstructure phase fractions: ANNs are used to predict the 

mechanical properties and microstructures of the new alloys. This is 
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accurately achieved with a relatively small training dataset. As such these 

models enable the optimization algorithm to predict properties of new alloys 

without the need of experimental tests which could be costly. 

4. The optimization of steel for mechanical properties and cost: The developed 

algorithms and machine learning models provide an alternative to costly 

experimental testing that would be required to determine suitable 

parameters to obtain steels with desired mechanical properties. As such they 

improve efficiency while reducing cost that is needed in the steel industry. 

Overall, the novelty of this research is through the development of a 𝜇GA that 

incorporates machine learning techniques to design steels with desired mechanical property 

at the least manufacturing cost. The approach presented in this thesis offers a different and 

effective way to optimize for steel that can potentially reduce the cost of its production and 

provide efficiencies. 

1.4 Thesis Structure 

The thesis is organized as follows: Chapter 1 provides an overview of the research 

topic, its motivation and objectives, and contributions. Chapter 2 provides an in-depth 

review of the relevant literature on steel optimization. This includes the effects of chemical 

compositions and microstructure on mechanical properties, how machine learning is used 

for mechanical property predictions, as well as an overview on the use of GAs in steel 

optimization. Chapter 3 outlines the methodology used for creating the algorithm and its 

analysis. The algorithm’s validation, and results and discussion are presented in Chapter 4. 

This chapter also focuses on the method’s limitations and proposed future work. Lastly, 
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Chapter 5 summarizes the overall findings, outlines the implication for practical 

applications, and provides recommendations for future research. The appendices provide 

an outline of the hardness and microstructure NN model design, any relevant pseudo code, 

and general information required in the optimization analysis such as cost, and software 

used. 
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Chapter 2 Literature Review 

2.1 Steel Optimization Overview 

Optimizing the properties of steel is an essential task that aims to improve its 

mechanical and physical properties. This is often accomplished by manipulating its 

chemical composition, microstructure, and/or Thermomechanical Processing (TMP) 

conditions – also known as heat treatment conditions –, utilizing a combination of 

experimental and computational techniques with a goal of creating new materials that 

exhibit desired mechanical properties. As such, there has been a growing body of research 

specifically dedicated to studying the optimization of steel through the modification of its 

chemical composition and heat treatment conditions, with the goal of enhancing its 

performance in various industrial applications. 

Numerous approaches, including empirical and mathematical modelling methods, 

have been taken to optimize a steel’s properties. Empirical methods use trial-and-error 

experiments to determine properties that produce optimal solutions whereas mathematical 

modelling approaches are employed to predict these same properties. Recently however, 

new studies have explored the use of complex computational algorithms and machine 

learning to target these problems with genetic algorithms gaining popularity due to their 

ability to quickly find optimal solutions [2]. According to Adeli et al. [3], there are three 

major strategies that can be used for the cost optimization of steel structures namely, fuzzy 

logic, genetic algorithms, and parallel computing. Fuzzy logic and genetic algorithms can 

be used to optimize cost and other target parameters, while parallel computing is used to 
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accelerate the optimization process. The selection of the method typically depends on the 

application. For example, fuzzy logic was shown to be more advantageous in applications 

such as the optimization of steel in seismic design applications and in the optimization of 

composite floors among others. On the other hand, GAs have shown to be successful in the 

design of steel not only for seismic design applications and other structures but for the 

design of bolts and plates. 

Overall, there are several methods that can be used for steel optimization – each 

with its own advantages, disadvantages, and limitations. Ultimately, the approach used 

depends on the specific goals that need to be met taking into consideration the constraints 

of the optimization problem. In this research, the approach taken focuses on achieving 

target properties while minimizing cost using a genetic algorithm. Therefore, the rest of the 

sections will focus on steel optimization using this optimization strategy. 

2.2 Steel Composition and Microstructure Effects on Mechanical Properties 

Steel composition and microstructure play an important role in determining its 

mechanical properties. Since, properties such as strength, toughness, ductility, elongation 

etc., are all crucial in determining the suitability of steel in various applications, it is 

imperative that appropriate alloys are added to steel to ensure that the desired 

microstructures and therefore properties are exhibited. As such, the effects of steel chemical 

composition and microstructure, the two key factors, on mechanical properties has been 

significantly studied in material science and engineering practices. In fact, studies have 

shown that a material’s chemical composition, along with its heat treatment conditions, 

impact its microstructure [4]. 
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2.2.1 Effects of Chemical Compositions on Mechanical Properties 

There are many advantages of adding various alloys to steel to augment its 

characteristics and behaviors. In general, the addition of copper and nickel to steel has 

shown to improve corrosion resistance in the alloy; the addition of manganese, silicon, 

nickel, and copper has improved steel’s strength; molybdenum improves hardenability and 

the addition of calcium, cerium, and zirconium have all shown to improve the alloy’s 

toughness [1], [5]. This is further illustrated by studies that show how modifying chemical 

compositions independently in a steel mixture through the addition or reduction of specific 

alloying elements enhances steel’s mechanical properties. For example, in the study carried 

out to determine how annealing temperatures influence mechanical properties and 

microstructure of high manganese austenitic steels, Yuan et al. [6] proved that carbon and 

manganese contents play an important role in the improvement of steel’s toughness, tensile 

properties and wear resistance. Generally, carbon and manganese influence the mechanical 

properties of high manganese steels [7]. Moreover, Gürol et al. [8] showed that increasing 

a steel’s carbon content decreased its impact toughness by increasing the proportion of 

carbide in the metal. In other words, decreasing carbon content shows toughness and 

weldability improvements [8], [9]. Furthermore, increasing carbon and manganese contents 

also increased the hardness and Yield Strength (YS) of the metal due to the carbide 

precipitation and solid solution strengthening that occurs because of their presence [8]. 

Lastly, the addition of manganese in steels showed an increase the Ultimate Tensile 

Strength (UTS) and wear resistance of a steel according to Torabi et al. [10].  
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Combining various alloying elements has also resulted in unique effects on 

mechanical properties. In a study examining the effects of composition, specifically the 

addition of chromium and boron, and the Thermomechanical Controlled Processing 

(TMCP) on the structure and ageing characteristics of cooper bearing High Strength Low 

Alloy (HSLA) steels, Banerjee et al. [9] found that a combination of boron and chromium 

was essential in creating steels with high UTS and YS. Alternatively, samples that 

contained only boron typically resulted in lower UTS and YS. Additionally, the 

hardenability of steels was found to be influenced by boron composition along with the 

addition of other alloying elements. Lastly, the addition of copper to steels with boron and 

chromium contents showed improved strength and “weld-heat zone-cracking resistance” 

which reduced or eliminated the requirement of welding preheat. Ultimately, these results 

showed that combining various alloying elements positively augmented steels depending 

on the desired properties. 

2.2.2 Effects of Microstructure on Mechanical Properties 

The microstructural characteristics of steel, including the size and distribution of 

the grain, and the type of microstructure present, such as martensite or bainite, play a 

significant role in determining the mechanical properties it exhibits. For instance, grain size 

impacts the strength and toughness of steel with finer grain having higher strength and 

toughness, while the presence of different microstructure also affects these properties. One 

of the main elements that affects a material’s microstructure is its TMP.  
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2.2.2.1 Effects of TMP on Microstructure and Mechanical Properties 

TMP, a process that involves simultaneously applying heat and mechanical 

deformations to a material, significantly affects a steels microstructure. Conditions such as 

the austenitizing temperature, cooling rate, holding time, deformation, tempering 

temperatures, and tempering times, all affect the type of microstructures, and their changes, 

that are present in steel.  As such, since microstructures are closely related to the mechanical 

properties a steel exhibits, it is imperative to study its effects. In a study investigating the 

structural and phase transformations during the continuous cooling of railroad wheels, 

Kushnarev et al. [11] found that an intermediate mechanism resulted in the formation of 

bainitic structures when exposed to cooling rates between 10 and 60 °C/s. This study also 

found that martensitic structures formed when cooling rates were increased up to 90 °C/s.  

Similar findings were found in a study that examined the effects of cooling rate on 

a low carbon, low alloyed steel microstructure and mechanical properties. Performing tests 

on thick plates, Wang et al. [12] found that the rate of cooling a metal is exposed to greatly 

affected its hardness. As the cooling rate increased from 0.5 K/s to 10 K/s, hardness 

increased correspondingly by a factor of two due to a decrease in soft ferrite. Furthermore, 

when the cooling rate reached 90 K/s, the reported hardness was nearly three times higher 

compared to that of a steel cooled at a rate of 0.5 K/s. This increase was attributed to the 

increase of degenerated upper bainite structures that formed during the TMP. Alternatively, 

when cooling rates were slower, between 0.5 to 1 K/s, the final microstructure consisted of 

ferrite with degenerated pearlite and upper bainite resulting in a decrease in hardness. 
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However, when these rates were increased to 5 K/s or more, the final microstructure 

consisted only of degenerated upper bainite resulting in an increase in the overall hardness. 

Overall, ferrite-pearlite microstructures, which are softer, are present in samples 

that are slow cooled. These slower cooling rates result in lower hardness values. As the 

cooling rates increase, these microstructures decrease or change shape resulting in 

increased hardness. Bainitic phase, which occur at rates near 10 °C, and martensitic 

formation form with further rate increases which led to even higher hardness results [13]. 

Ultimately, regardless of the samples thickness, an increase in the cooling rate also 

increased YS, UTS, and hardness. 

2.3 Mechanical Property Prediction using Machine Learning 

Due to the availability of large datasets from years of collection, the training of 

algorithms to predict properties of steel is emerging in research. By obtaining this data, 

which is typically empirical data from text or through experimentation, robust machine 

learning models can be used to learn patterns and relationships from complex non-linear 

variables (inputs) allowing for accurate predictions. 

Recently, numerous studies have focused on the use of various machine learning 

techniques to predict the mechanical properties of steel. For example, Ganguly et al. [14] 

supplement the development of their genetic algorithm for the optimization of strength and 

ductility in low carbon steels by implementing an Artificial Neural Network (ANN) to 

generate the objective functions used in their research. Through this, they found that these 

NNs could develop objective functions used in solving non-linear optimization problems 

with multiple variables. Moreover, Das et al. [15] explored the use of statistical and NN 
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models to explore the non-linearity in empirical modeling of a steel system. In their 

research, the developed models looked at the relationship between the physical properties 

of the metal, and its chemistry and rolling parameters. From that, they found that statistical 

models, especially linear regression models did not accurately predict suitable properties 

and compositions of metals as those characteristics were complex and non-linear. Although 

stepwise regression and projection pursuit regression models were better at these 

predictions, the use of ANNs, especially ones with back propagations, produced the best 

prediction capabilities. Put simply, ANNs were beneficial as they were able to fit non-

linear, difficult data without making assumptions of the properties or distributions of input 

data. These findings were echoed by Patra et al. and Sidhu et al. [16], [17]. In Patra’s work, 

a neural-network-biased genetic algorithm was proposed for material design. From this, 

they found that with a large pre-existing dataset, ANNs were beneficial in material design 

due to their ability to build non-linear heuristic models from the relationships between input 

and output variables. Sidhu on the other hand focused on the development and experimental 

validation of a NN model used for the prediction and analysis of the strength of bainitic 

steels. In this work, it was found that ANNs could be used to accurately predict hardness 

and therefore strength in these steels, while using inputs from a small database. 

Overall, these studies demonstrated that using machine learning, specifically 

ANNs, has the great potential in predicting mechanical properties in steel and as such 

illustrate the importance of using computational techniques to optimize the design of new 

steels. 
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2.4 Genetic Algorithms Overview 

Used in a wide range of engineering and scientific applications, GAs are an 

optimization technique that mimic the process of natural evolution to find optimal 

solutions. Based on Darwin’s theory of evolution and his principles on survival of the 

fittest, this search method finds optimal solutions by altering populations using procedures 

that include reproduction crossovers and mutations [18]. 

Over the past few decades, research has used GAs in a variety of applications such 

as machine learning and optimization applications. As an adaptive search method, that can 

trace the genetic variation within a population of individuals [19], [20], these algorithms 

are typically domain independent search methods that do not require a priori knowledge 

about the search space [19]. They operate in a “highly-parallel” manner by finding, 

enhancing, and reassembling solution components to find the optimal solution to a problem 

[20]. Although there is no guarantee that GAs are capable of only finding global optimum 

solutions for a given problem, they typically find an acceptable solution quickly. 

Furthermore, due to their robustness, parameter setting is not critical, and solutions can be 

found even when provided with wide margins [2]. 

As pointed out by Adeli et al. [3], GAs have emerged as an attractive optimization 

technique for solving problems with large search spaces. This is due to three fundamental 

features that make them appealing. These are: first, the guarantee of fast convergence to 

optimal or near optimal solutions due to a group of different starting points, i.e., the pupils; 

second, they require simple operations to evaluate the functions; and third, they allow for 

faster computing due to concurrent computing since each variable in the pupils is 
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independent of each other. The features, among others, make them capable of handling 

complex search spaces with a high degree of efficiency. 

In the field of steel optimization, the use of GAs has gained prominence as a tool to 

select appropriate chemical composition and heat treatment condition parameters. These 

optimization problems often involve the evaluation of multiple objectives, such as 

mechanical properties and cost. In such cases, the use of GAs has shown favourable results 

highlighting their potential in the development of new steel materials. In the subsequent 

sections, studies that implements a GA for steel applications will be reviewed and their 

contributions and limitations shall be discussed. 

2.4.1 Application of Genetic Algorithms in Steel Optimization 

Various studies utilizing GAs in steel optimization problems have been carried out 

in recent years due to their ability to handle complex, multi-objective problems. These 

studies have targeted multiple aspects of steel design focussing on improving material 

properties such as strength, toughness, and corrosion resistance while minimizing overall 

cost. In fact, not only can they be used in a variety of applications such as in the atomistic 

material design, powder compaction, metal rolling, cutting, and welding of steel, they are 

also used in the development of new material for specified applications [21]. 

A major area of steel optimization that has immensely implemented the use of GAs 

is alloy design. In this approach, a GA is used to search for the optimal chemical 

composition, i.e., alloying element composition, that will produce target mechanical 

properties of steel. In research carried out by Ganguly et al. [14] the use of GAs in the 

optimization of strength and ductility in low carbon steels was proposed. Through this 
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study, it was found that GAs could successfully manipulate a potential steel’s alloying 

element composition to meet specified targets efficiently and accurately. This was echoed 

in research carried out by Mahfouf et al. [22]. In the optimal design of alloy steels, the 

authors used a multi-objective optimization GA to predict the chemical compositions also 

successfully meeting their target mechanical properties – tensile strength, reduction area, 

and elongation. 

Another area that GAs are used for steel optimization is in the optimization of heat 

processing treatment. In this area, the GA is used to determine the optimal heat treatment 

conditions that will result in desired mechanical properties of steel. For example, Srinivasan 

et al. [23] utilized GAs in the optimal design of high carbon bainitic steels by concurrently 

optimizing the alloying elements and the heat treatment parameters. This approach was also 

taken by Ganguly et al. [14]. In their approach, deformation above and below 

recrystallization temperatures, cooling rates, slab reheating temperatures and finish rolling 

temperatures, were used in conjunction with chemical compositions to determine suitable 

configurations that optimize for strength and ductility in low carbon steels. In both these 

applications, it was found that GAs could find accurate solutions in the complicated 

optimization problem. 

Lastly, GAs have also been used in microstructure optimization. In this area of steel 

optimization, they determine optimal microstructures that a steel needs to meet target 

mechanical properties. Chua et al. [24] for example, used this approach to predict the 

complex structure of interfaces found in multicomponent systems, specifically SrTiO3, a 

complex oxide. Unlike in traditional searches where the optimization target is to meet a 
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global minimum, the authors opted to bias their GA away from this minimum. Nonetheless, 

it was demonstrated that GAs can be used to accurately determine the complex structures 

of interfaces of multicomponent systems. 

Overall, the application of GAs in steel optimization has shown improvements in 

mechanical properties of steel while minimizing cost and the studies highlighted in this 

section demonstrate this. 

2.4.2 Comparison of Genetic Algorithms with Other Optimization Techniques 

Although GAs have been successful in optimizing multiple objectives for target 

mechanical properties and cost, hence their popularity, there are numerous other 

optimization techniques available that can also solve steel optimization problems. These 

techniques include NNs, random search methods, gradient search methods, iterative search 

methods, and simulated annealing. All these methods have their advantages and 

disadvantages; as such, it is important to compare these techniques to determine their 

effectiveness in comparison to the use of GAs. 

 One example of an optimization technique that has notably been used for steel 

optimization is the NN method with Fuzzy logic being the most common type. First 

explored by Zadeh in Fuzzy Sets [25], the use of fuzzy set theory showed that it could deal 

with imprecise data that contained large uncertainties. This allowed for optimization 

algorithms to find the true optimal solution as they were not constrained to targets with 

small tolerances [3]. Due to this ability, it was found that fuzzy logic was beneficial for 

problems that involved structural loads. Although it was found to be a useful tool, there are 

several factors that make it inadequate for use for a material property and cost optimization 
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problem. The main one being the sensitivity to noise that may be present in the input data. 

This is a main disadvantage since real word data is usually noisy. 

 Another example of an optimization technique that is used in steel optimization is 

Simulated Annealing (SA). A stochastic optimization technique, SA iteratively adjusts 

input parameters by randomly selecting parameters, calculating the objective function, and 

accepting results that lead to improvement in that function. This approach has been shown 

to be beneficial in large search spaces when the objective function is non-linear and non-

differentiable. With that being said, Chakraborti et al. [21] found that GAs ultimately 

performed better than the traditional SA methods. 

 Alternatively, Dulikravich et al. [26] explored the use of an Indirect 

Optimization based upon Self-Organization (IOSO) algorithm to select alloying elements 

in the optimization of a few mechanical properties. In this work, the authors showed that 

this methodology was highly reliable as it was able to avoid local minimums. Further, it 

could accomplish this with faster computing times, and with a small dataset. In fact, this 

methodology was selected over more popular methodologies such as the use of NNs since 

they found that the use of ANNs alone were not reliable for developing search algorithms 

in optimization problems as that was not their originally intended design leading to 

inefficient and inaccurate results. 

Overall, while there are numerous optimization techniques available for steel 

optimization, each one has its own advantages and limitations. GAs and NNs approaches 

for instance are robust and flexible methods that can deal with non-linear and noisy data 

making them the optimal solution for most application specific problems [2]. Moreover, 
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they are typically capable of evaluating designs with discrete and continuous variables [3]. 

Random search methods on the other hand, are inefficient as they take a brute force 

approach to finding solutions and gradient methods are ineffective in multi-modal functions 

where the local maximum will be selected as the optimal solution. Lastly, iterated and 

simulated annealing search methods, although simple, tend to overlook the overall pictures 

of the search space [2]. Ultimately, the choice of the technique to use depends on the 

application, however, through comparison of the different methods for the steel 

optimization problem, the use of GAs has proven to be the most efficient and accurate. 

2.4.3 Advantages and Limitations of using Genetic Algorithms in Steel Optimization 

As an optimization technique, GAs have their own sets of advantages and 

limitations that must be considered to ensure that they are effective for steel optimization. 

One of the significant advantages of using GAs is its ability to handle complex, non-linear 

optimization problems. Moreover, they are robust and flexible allowing for fast 

convergence even with simple operations to evaluate the objective function [2], [3]. These 

characteristics are beneficial for multi-variable, multi-objective problems making them 

suitable for steel optimization. For the case of the optimization of mechanical properties 

such as strength, ductility and toughness, GAs can evaluate targets with multiple parameter 

inputs such as chemical composition and heat treatment conditions. 

However, GAs have some limitations depending on the application. The main 

limitation being that the GAs success depends on the diversity of the initial population. 

This means that if this population is not diverse, suboptimal solutions may dominate the 

generated populations causing a convergence to a local minimum. This would ultimately 
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result in incorrect solutions [2], [3]. The main reason this occurs is due to the improper 

selection crossover and mutation parameters when finding a solution. Lastly, GAs typically 

require many evaluations to find the optimal. This is not feasible during some optimization 

applications due to cost and time restrictions.  

Overall, there are several advantages for the use of GAs in steel optimization. The 

main advantage of using this method is its ability to handle complex discrete or continuous 

data, with multiple specified targets. However, they also have limitations such as a 

tendency to incorrectly select local optima when improper starting parameters are selected. 

Ultimately, considering these advantages and limitations is imperative in effectively using 

these algorithms for steel optimization. 
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Chapter 3 Methodology 

3.1 Problem Formulation 

The problem formulated in this research is an unconstrained optimization problem 

defined by the objective function with a penalty term for the target material properties. The 

objective function, which is the subject to be minimized, is the manufacturing cost (MC). 

Initially formulated as the constrained optimization problem MC: 𝑋 ⊂ ℝ! constrained to 

𝑔(𝑥) = 0 for 𝑚 = 3 where, X represents the input parameters i.e., alloying elements, and 

the 8 points (time and temperature) from the cooling profiles, and m represents the number 

of target mechanical properties (HV, TS, and TE). The equivalent unconstrained problem 

is shown in Equation ( 1 ) as proposed by Tanner and Srinivasan [27]. 

min
"∈$

𝑓(𝑥: ς) = min
"∈$

[𝑠(𝑥) + 	ςg(x)%𝐷𝑔(𝑠)]	  ( 1 ) 
 

In this equation, 𝑔&𝐷𝑔 is the introduced penalty term used to reformulate the 

constrained problem. D is a diagonal positive definite matrix, and T represents a transpose. 

ς > 0 is a penalty parameter such that if 𝑥∗ =	min
"∈$

𝑓(𝑥: ς) then lim
"→)

𝑥*∗ =	𝑥∗. The original 

solution to the constrained optimization problem is 𝑥∗, and the solution to the unconstrained 

optimization is 𝑥*∗. This means that a solution 𝑥*∗ close to the optimum 𝑥∗ depends on the 

choice of the penalty term,  ς. 

3.2 Objective Cost Function 

The objective cost function (f) used for the analysis is based on the formulation that 

was proposed by Srinivasan et al. and Tanner and Srinivasan [23], [27] and is summarized 
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in Equation ( 2 ). This formulation consists of the MC, which comprises of the cost of the 

alloying elements and the energy required for TMP (shown in Appendix C), and the penalty 

term which is represented by three mechanical properties – hardness (HV), tensile strength 

(TS), and tensile elongation (TE). This function is formulated as follows: 

𝑓(𝑥, ϛ) =
𝐶𝑜
2 B

𝑀𝐶
𝑀𝐶+

D
,-

+
ϛ
2 E𝐻 G

𝐻𝑉 − 𝐻𝑉+
𝐻𝑉+

G
.

+ 	𝑆 G
𝑇𝑆 − 𝑇𝑆+
𝑇𝑆+

G
/

+ 𝐸 G
𝑇𝐸 − 𝑇𝐸+
𝑇𝐸+

G
0

M ( 2 ) 

Where, x represents the input parameters, ϛ the penalty parameters, Co, H, S, and 

E, are the positive weights, and co, h, s, and e, are the positive exponents. The weights and 

exponents are used to determine each term’s importance. Lastly, the target values are 

denoted by the 0 subscripts. 

 Different cost function formulations were explored to analyze the functionality of 

the developed optimization algorithm. This was accomplished by varying the weights and 

exponents in the formula giving preference to specific variables and therefore targets. 

According to Srinivasan et al. [23], the dependence between the outputs and the material 

properties, HV, TS, and TE, are not known and therefore an iterative process is required to 

search the parameters and update the penalty parameter. Updating the penalty parameters 

uses the formulation outlined by Srinivasan et al. [23] and is shown in Equation ( 3 ). 

ϛ123 =
𝐶𝑜 B𝑀𝐶

4

𝑀𝐶+
D
,-

𝐻 G𝐻𝑉
4 − 𝐻𝑉+
𝐻𝑉+

G
.
+ 	𝑆 G𝑇𝑆

4 − 𝑇𝑆+
𝑇𝑆+

G
/
+ 𝐸 G𝑇𝐸

4 − 𝑇𝐸+
𝑇𝐸+

G
0 ( 3 ) 

ϛ123 = max	(ϛ1, ϛ123) ( 4 ) 
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k and k+1 are the values from the current and next iterations during the solving process. 

During this process, the maximum of the two is selected for the next iteration as shown in 

Equation ( 4 ). This gives the penalty parameters more weights as the iteration continue 

thus constraining the optimization parameter, MC, to a minimum.  

3.3 Development of Reduced Order Models 

To predicts a steel’s mechanical properties, ROMs were developed. These models 

aimed at predicting these mechanical properties based on certain input parameters. To 

accomplish this, NN or correlation equations were used to develop these models. In this 

research, three ROMs were considered and are: 

(1) Reduced Order Hardness (ROH) model 

(2) Tensile Strength Model 

(3) Elongation Model 

These models are summarized below. 

3.3.1 Hardness Model 

A Multilayer Perceptron (MLP) ANN model was used to develop the ROH 

model for the hardness prediction within the µGA due to its ability to solve non-linear 

problems [14]. This model consisted of an input layer with 33 inputs, 2 hidden layers 

containing 64 neurons each, and an output layer for hardness prediction as illustrated 

by Figure 3-1. The model was trained using the selected input parameters namely; the 

average cooling rates, austenitizing temperatures, 8 points from a cooling profile, 

chemical compositions, and hardness values retrieved from the ATLAS [28]. Table 

3-1 summarizes these input parameters. This model is represented by Equation ( 5 ) 
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where, n is the number of inputs (33), m is the number of neurons in each hidden layer 

(64), x is the input, w is the coefficients, b is the bias, and a is the activation function 

represented by the ReLU function, 𝑎 = max	(0, 𝑥5). Additional details on the model’s 

hyperparameters and testing results can be found in Appendix A. 

 

Figure 3-1: Reduced Order Hardness Model Neural Network Schematic 

 

𝐻𝑉 = 	𝑎 PQ𝑤5
(7)P𝑎SQ𝑤5

(9) S𝑎 TQ𝑤5
(3)𝑥5 + 𝑏(3)

!

5:3

VW + 𝑏(9)
!

5:3

WX+ 𝑏(7)
;

5:3

X ( 5 ) 

3.3.2 Tensile Strength Model 

The tensile strength model was obtained using the correlation equation 

developed by Pavlina et al. [29]. This equation outlined in Equation ( 6 ). 

𝑇𝑆 = 3.734 × 	𝐻𝑉 − 99.8  ( 6 ) 
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3.3.3 Elongation Model 

The elongation model was similarly calculated using the correlation equation 

obtained from data reported by Bhattacharya [30] and Matlock [31] shown in Figure 

3-2. The extracted points are shown in Figure 3-3 and the correlation equation is 

summarized by the Equation ( 7 ). 

 

Figure 3-2: Elongation as a function of Tensile Strength used to Develop the Correlation Equation  as 
Extracted from Bhattacharya [30] 
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Figure 3-3: Correlation between Tensile Strength (TS) and Elongation (TE) as Extracted from Data 
Reported by Bhattacharya [30] 

𝑇𝐸 = 3236.4 × 𝑇𝑆<+.>+3  ( 7 ) 

3.4 Genetic Algorithms Optimization Solver 

A µGA, which is a subset of the traditional GA, was chosen as the optimization 

solver in this research. This was done to improve the overall optimization process because, 

µGAs have the advantage of being able to converge quickly and efficiently – similar to the 

traditional GAs [2], [18], [20], [23] – but with the added benefit of needing fewer iterations 

and smaller population sizes [23]. Therefore, they were selected as the optimization method 

to effectively optimize the steel parameters required to meet specified material property 

and cost targets. 

A µGA is predominately made up of two elements – populations and pupils – and 

it undergoes a series of iterations or generations to find the optimal target. In this case, a 
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pupil represents the input parameters, and a population represents the number of pupils in 

each generation. The pupils were represented by the 33 inputs that were used to train the 

ROH and microstructure prediction models. These inputs are the average cooling rate, the 

austenitizing temperature, 8 points from the cooling profiles, and the alloying element 

compositions. The range of these parameters is summarized in Table 3-1. Unlike traditional 

GAs that are typically comprised of approximately 500 – 1000 pupils [19], 5 pupils were 

selected for the µGA. 
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Table 3-1:  Summary of the Input Parameters Search Space 

Parameters Range 

t (s) 0.10 – 1.88 x 105 

T (F) 140 – 1775 
Taus (F) 1433 – 1950 

CRave (F/s) 0 – 5153 
C (wt. %) 0.10 – 2.19 

Mn (wt. %) 0.20 – 1.98 
P (wt. %) 0 – 0.44 

S (wt. %) 0 – 0.29 
Si (wt. %) 0 – 1.05 

Ni (wt. %) 0 – 3.03 
Cr (wt. %) 0 – 13.12 

Mo (wt. %) 0 – 0.56 
Cu (wt. %) 0 – 0.91 

Al (wt. %) 0 – 0.06 
V (wt. %) 0 – 0.31 
B (wt. %) 0 – 0.05 

N (wt. %) 0 – 3.00 x 10-3 
Ti (wt. %) 0 – 0.18 

W (wt. %) 0 – 1.15 
 

To determine the optimal solution for a specific target, HV0, TS0 and TE0, the 

algorithm randomly generated 5 different pupils. These pupils consisted of the input 

parameters outlined in Table 3-1. The 15 alloying elements were generated within the 

allocated ranges. A Lagrange polynomial formulation was used in this study to define the 

cooling profile. The specific quartic polynomial that was employed is given by: 
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𝑇(𝑡) = 	𝑎𝑡? + 𝑏𝑡7 + 𝑐𝑡9 + 𝑑𝑡 + 𝑒  ( 8 ) 

where T is the temperature, t is the time, and a, b, c, d, and e, are the calculated coefficients 

or constants. To obtain these coefficients or constants and generate a new cooling profile 

for each pupil, the algorithm generated an initial set of 5 time-temperature input 

combinations within the specified range, with increasing time and decreasing temperatures. 

These values were used to construct a quartic Lagrange interpolating polynomial from the 

following form: 𝐿(𝑡) = 	∑ 𝑇@𝑙@(𝑡)4
@:+ , where L is the interpolating polynomial, j is the 

index, k is the total number of nodes (4 for quartic), and l is the basis polynomial. The 

remaining 3 time-inputs were then selected to lie between the other points on the curve and 

the corresponding temperatures calculated from the profile’s equation ensuring that the 

resulting polynomial function provided a smooth and continuous representation of the 

cooling profile. This process was repeated for every pupil generation, ensuring that each 

new generation had its own unique cooling profile. 

The manufacturing cost of each pupil was calculated and their corresponding HV, 

TS, and TE, predicted. The fitness of these pupils was evaluated using the cost function 

outlined in Equation ( 1 ). Once the cost function was evaluated, the penalty parameter for 

the next iteration was determined. This new parameter was calculated as per Equations ( 3 

), and ( 4 ). In the first iteration, a start penalty of 1 × 109 was arbitrarily assigned for each 

pupil. Moving into the next iterations, the pupil that generated the minimum cost function 

was kept, and the remaining 4 pupils discarded prior to the start of the next iterations. In 

the new iterations, 4 new pupils were generated and along with the best pupil of the 

previous iteration, the evaluation was repeated. This was done for 2500 iterations. Figure 
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3-4 illustrates the developed algorithm’s procedure. Appendix B shows the corresponding 

pseudo code. 
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Figure 3-4: Illustration of the µGA’s Procedure 
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3.5 Computational Cases 

The computation cases summarized in Table 3-2 were developed to test the 

algorithm’s ability to find the optimal solution that meets the required targets while 

minimizing the cost by evaluating the cost function equation. To accomplish this, a baseline 

and six different cases were considered in this study. 

In the baseline case, all constants (weights and exponents) in Equation ( 2 ) were 

set to 1. For the remaining cases, specific constants were set to an arbitrary value of 10 to 

change the impact each target has during the search process. For example, in Case H1, the 

weight H was set to 10, and the rest of the constants were 1. Alternatively, for Case H2, the 

exponents s, and e, were set to 10 and the rest of the constants were set to 1. By increasing 

specific exponent values, their corresponding properties are deemphasized. Consequently, 

increasing a specific weight emphasized its corresponding property. For example, in Case 

T2, an increase of h, and e, by 10 deemphasized the hardness and elongation properties thus 

emphasized tensile strength. Similarly, increasing T by 10 in Case T1, also emphasized 

tensile strength but without drastically deemphasizing hardness and elongation. 

For each of the computation cases, the algorithm was set to terminate after 2500 

generations, which is the maximum number of generations allowed in the study. The 

termination criterion was set such that each run would stop if a steel with a cost lower than 

$0.05/100g was generated.  
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Table 3-2: Summary of the Values of the Weights and Exponents used in Equation ( 2 ) for the Different 
Cases 

Case 
Weight Constants Exponent Constants 

H S E h s e 

Baseline 1 1 1 1 1 1 

H1 10 1 1 1 1 1 

H2 1 1 1 1 10 10 

S1 1 10 1 1 1 1 

S2 1 1 1 10 1 10 

E1 1 1 10 1 1 1 

E2 1 1 1 10 10 1 
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Chapter 4 Results and Discussions 

4.1 Methodology Validation 

To validate the methodology of the developed µGA two methods were used. These 

included a developed microstructure prediction model and the validation of the GA using 

standard functions. The microstructure model was used to assess whether the generated 

population yield suitable microstructure based on literature. Validating the genetic 

algorithm with standard functions evaluated its capability to generate results that were 

accurate. The subsections below provide further detail on these two methods. 

4.1.1 Microstructure Prediction Model 

A NN model that predicts a steel’s microstructure based on alloying elements and 

heat treatment conditions was developed. This model served as secondary approach to 

validate whether the generated population from the optimization algorithm yielded 

reasonable outcomes. This was accomplished by comparing the predicted microstructure 

with expected theoretical outcomes outlined in literature. For example, ferrite-pearlite 

microstructures are typically present in samples that are slow cooled [13]; therefore, if the 

resulting population had heat treatments conditions exhibiting slow cooled behaviors, they 

will most likely contain such microstructures. Alternatively, degenerated upper bainite final 

structures are expected in samples treated with higher cooling rates while quenched and 

tempered steels typically comprise of tempered martensitic structures [11], [12], [32]. 

Like the ROH model, the designed NN for this prediction model is an MLP that 

takes 33 inputs in the input layer. These inputs correspond to the average cooling rates, 
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austenitizing temperatures, chemical compositions, and 8 points from the Time-

Temperature-Transformation (TTT) diagrams. It also contains 2 hidden layers with 10 and 

5 neurons respectively, and an output layer with 5 outputs. These outputs are the austenite, 

ferrite, pearlite, bainite and martensite percentages. The developed model is illustrated in 

Figure 4-1. Further information on the model’s hyperparameters and testing results are 

shown in Appendix A. 

 

Figure 4-1: Microstructure prediction Model Neural Network Schematic 

4.1.2 Genetic Algorithm Validation 

To evaluate the effectiveness of the designed µGA, which has no mutations and 

utilizes fewer iterations and a smaller population size, its performance was tested against 

three standard test functions within the two-dimensional search space. The considered 

testing algorithms, their formulations, illustrations (Figure 4-2), and their results are 

summarized below. 
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1) McCormick Function 
𝑓(𝑥, 𝑦) = sin(𝑥 + 𝑦) + (𝑥 − 𝑦)9 − 1.5𝑥 + 2.5𝑦 + 1  ( 9 ) 

Where 𝑥 ∈ [−1.5,4] and  𝑦 ∈ [−3, 4] 

2) Easom Function 
𝑓(𝑥, 𝑦) = − cos(𝑥) cos(𝑦) exp(−(𝑥 − 𝜋)9 − (𝑦 − 𝜋)9)  ( 10 ) 

Where 𝑥 ∈ [−100,100] and  𝑦 ∈ [−100, 100] 

3) Ackley Function 

𝑓(𝑥, 𝑦) = 	−20 exp/−0.21
1
2
(𝑥! + 𝑦!)4 − exp5

1
2
(𝑐𝑜𝑠(2𝜋𝑥) + 𝑐𝑜𝑠(2𝜋𝑦)): + 20 + exp(1)  ( 11 ) 

Where 𝑥 ∈ [−32.8, 32.8] and  𝑦 ∈ [−32.8, 32.8] 
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(a) 

 

(b) 

 

(c) 

Figure 4-2: Standard Test Functions used to Test the µGA’s Performance. (a) McCormick Standard Test 
Function [33], (b) Easom Standard Test Function [34], (c) Ackley Standard Test Function [35] 

McCormick, Easom, and Ackley’s functions were selected due to their diverse 

topographies and varying degrees of complexity. McCormick’s Function, represented by 

Equation ( 9 ) was selected as a simple function to test due to its smooth surface and easy 

to find global minimum. Further, selecting a function with a more defined, but smooth, 

minimum, such as Easom’s function represented by Equation ( 10 ), further reinforced the 

robustness of the designed algorithm. Lastly, to test its ability to handle a complex search, 
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the algorithm was also tested with Ackley’s Function (Equation ( 11 )) due to its multiple 

local optimums. It is easy to see from Figure 4-2 that a gradient based algorithm would be 

able to find the global minimum only if one starts the search very close to the global 

minimum. Thus, the ability of our algorithm to determine the global optimum in all three 

cases would establish the validity of the algorithm.  

The results of using this algorithm on these functions are summarized in Table 4-1. 

As shown, the µGA was fairly accurate in predicting the global minimums of all the 

functions, irrespective of the random starting population. The typical number of function 

evaluations needed for the three test functions are 111, 1370 and 1345 for the McCormick, 

Easom and Ackley’s functions, respectively. Moreover, the cost for each function was also 

accurately predicted for all three test functions at a significantly lower number of iterations. 

With these results, it is safe to conclude that the µGA algorithm proposed in this work is 

suitable for solving the steel optimization problem. 

Table 4-1: µGA Results Tested on Standard Test Functions 

Function 
Global Minimum (x, y) Optimal Cost 

Theory µGA Theory µGA 

McCormick (-0.54719, -1.54719) (-0.55506, -1.53218) - 1.913 -1.9127 

Easom (p, p) (3.12756, 3.14902) -1 -0.9996 

Ackley (0, 0) (0.01086,0.01171) 0 0.0520 

4.2 Optimizing for Mechanical Property Results 

To optimize for the mechanical properties (hardness, tensile strength, and 

elongation), three representative steels were chosen to represent low, medium, and high 
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strength steels. These steels are AISI 8620, 4130, and 420 Stainless Steel respectively. 

Their corresponding properties are shown Table 4-2. The results of the GAs performance 

based on its ability to meet specified targets are discussed in the subsequent sections. 

Table 4-2: Mechanical Properties of Selected Representative Steels used in the Analysis 

Steel Name 

Mechanical Properties 

Hardness (V) 
Tensile Strength 

(MPa) 
Elongation (%) 

AISI 8620 Steel 178 565 28.5 

AISI 4130 Steel 286 917 19 

420 Stainless Steel 525 1705 13.5 

 

4.2.1 Optimization Results for Low Strength Steels 

Table 4-3 shows the algorithm results for generated steels with AISI 8620 

mechanical property targets for the different computational cases. Table 4-4 shows the 

corresponding microstructure predictions.  
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Table 4-3: Algorithm Results for AISI 8620 for the Different Computational Cases 

Cases Baseline H1 H2 S1 S2 E1 E2 

Key parameters 

Taus (F) 1521 1636 1742 1520 1552 1552 1788 

CRave (F/s) 130 133 122 158 185 191 2 

C (wt. %) 0.11 0.40 0.31 0.34 0.14 0.17 0.10 

Mn (wt. %) 0.94 0.88 0.30 0.82 0.92 0.36 0.23 

P (wt. %) 0.02 0.01 0.03 0.01 0.00 0.02 0.03 

S (wt. %) 0.02 0.02 0.01 0.02 0.01 0.01 0.00 

Si (wt. %) 0.16 0.17 0.25 0.15 0.22 0.26 0.28 

Ni (wt. %) 0.33 0.28 0.36 0.31 0.15 0.35 0.05 

Cr (wt. %) 1.00 0.90 0.14 1.42 0.92 0.22 0.10 

Mo (wt. %) 0.03 0.03 0.00 0.03 0.01 0.02 0.02 

Cu (wt. %) 0.05 0.02 0.25 0.20 0.24 0.13 0.00 

Al (wt. %) 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

V (wt. %) 0.01 0.01 0.00 0.01 0.01 0.01 0.01 

B (wt. %) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N (wt. %) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ti (wt. %) 0.01 0.01 0.01 0.00 0.01 0.00 0.01 

W (wt. %) 0.05 0.01 0.05 0.05 0.00 0.06 0.03 

Mechanical Properties and Cost 

HV 177.9 178.2 178.0 178.0 178.5 124.8 124.8 
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Cases Baseline H1 H2 S1 S2 E1 E2 

TS (MPa) 564.5 565.5 564.8 565.0 566.6 366.1 366.2 

TE (%) 20.2 20.2 20.2 20.2 20.2 28.6 28.6 

Optimal Cost 

($/100g) 
0.35 0.87 0.20 0.45 0.27 0.23 0.26 

 

Table 4-4: Microstructure Predictions for AISI 8620 for the Different Cases 

Cases 
Microstructure (%) 

Austenite Ferrite Pearlite Bainite Martensite Error 

Baseline 0 47 29 16 4 4 

H1 0 8 92 0 0 0 

H2 0 36 58 3 0 3 

S1 0 12 87 0 0 1 

S2 0 71 21 2 0 6 

E1 0 82 11 1 0 6 

E2 0 79 15 0 0 6 

 

For the baseline case, the weights and exponents in the cost objective function are 

set to 1. In this case, a low alloy, medium carbon content steel was generated from the 

algorithm. This yielded accuracies of 100% for HV and TS, and 71% for TE. Figure 4-3 (a 

– c) show the change of these properties over 2500 generations. The values stabilized after 

750 iterations allowing for an exhaustive search within the search space. This resulted in 
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accurate results with an optimized cost of $0.35/100 g. Notably, the generated steel has 

high manganese and chromium contents. Both these alloys significantly contribute to its 

hardness [1], [6], [8]–[10], [36]. The corresponding cooling profile for the generated steel 

is shown in Figure 4-3 (d). Taking over 2000 seconds for the heat treatment process to 

complete, the steel is slow cooled indicating a likely presence of ferrite-pearlite 

microstructures [13]. This was proved by utilizing the developed microstructure prediction 

model. From this model, the microstructure was predicted to consist of mainly ferrite and 

pearlite with a total percentage of about 76%, and the remainder being bainite and 

martensite. This is further consistent with results documented in the Classification and 

Designation of Carbon and Low-Alloy Steels ASM Handbook [37]. The penalty parameter 

as shown by Figure 4-3 (e) remained unchanged as a high initial penalty was chosen. As 

expected, the cost function decreased over the iterations as shown in Figure 4-3 (f). 
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(a) 
 

(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4-3: Results of the µGA for the Baseline Case for AISI 8620. (a – c) The Mechanical Properties – 
Hardness, Tensile Strength, Elongation, (d) the Cooling profile, (e) the Penalty Parameter, and (f) the Cost 

Function 
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To emphasize for the hardness property, the weight H or the exponents s and e, were 

raised to a value of 10. For case H1, where the weight H was raised to 10 and the remainder 

of the weights and exponents remained 1, accuracies of approximately 100% for HV and 

TS, and 71% were produced like in the baseline case. However, the predicted cost was 

much higher at $ 0.87 / 100 g. Since the generated compositions were comparable to that 

of the baseline case except for the carbon content where a low carbon content steel was 

produced for the baseline and a medium carbon content steel for H1, the main contributor 

to this significant increase in cost was the heat treatment time. It took more than 20 times 

longer for this process in the case of H1 in comparison to the baseline case. Due to this 

slow cooling process, the steels microstructure was made up of ferrite and pearlite as 

expected. 

 In the case of H2, where exponents s, and e, were raised by a factor of 10, a medium 

carbon content steel with manganese and chromium contents lower than in the H1 case was 

generated. However, its corresponding cooling profile was significantly shorter than that 

of H1 resulting in cheaper steel alternative. In fact, this generation was the lowest in all 

cases for the low strength steel trial as the cooling time took less than 60 s. At this higher 

cooling rate, some bainitic or martensitic microstructures were expected as there is a 

decrease in the ferrite-pearlite structures [13]. In this case, the steel’s microstructure 

contained ferrite-pearlite structures along with some bainite as expected. Figure 4-4 shows 

the results of the mechanical properties, penalty parameters and cost function over 2500 

generations for both cases, H1 and H2, and Figure 4-7 (a, b) shows the corresponding 

cooling profiles.
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Figure 4-4: Results of the µGA for Cases H1 and H2 for AISI 8620. (a - f) The Mechanical Properties – Hardness, Tensile Strength, and Elongation, (g, 
h) the Penalty parameters, (i, j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations 
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For cases S1 and S2, emphasis was placed on the tensile strength, TS, where the weight S 

was increased by a factor of 10 for S1, and the exponents h and e, were increased by a 

factor of 10 for S2 while all other weights and exponents remained as 1. Regardless of the 

shift in emphasis, the algorithm produced steels that met the target HV and TS values with 

accuracies of 100%. However, the elongation’s, TE, accuracy was lower at 71%. This is 

consistent with the results in the previous cases (baseline, H1 and H2). In both cases, a high 

chromium content steel was generated, with S1 producing a medium carbon content steel 

and S2 producing a low carbon content steel. Both these steels had predominantly ferrite-

pearlite microstructures, like the baseline, H1 and H2 cases since they had similar chemical 

compositions and heat treatment conditions. However, some bainite microstructures were 

predicted in the case of S2 due to the rapid cooling it experienced. This rapid cooling also 

resulted in a cheaper steel, with a cost of $0.27 / 100g in comparison to S1 which 

experienced a much slower cooling process. The resulting mechanical properties, penalty 

parameters, and cost functions, over 2500 iterations are shown in Figure 4-5. The 

corresponding cooling profiles are shown in Figure 4-7 (c, d). Overall, the algorithm 

stabilized faster for case S1 compared to S2.
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Figure 4-5: Results of the µGA for Cases S1 and S2 for AISI 8620. (a - f) The Mechanical Properties – Hardness, Tensile Strength, and Elongation, (g, 
h) the Penalty parameters, (i, j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations 
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For an emphasis on elongation, TE, the weight E or the exponents h and s were increased 

by a factor of 10 for cases E1 and E2 respectively. Focussing on the elongation resulted in 

accuracies of 70%, 65% and 100% for HV, TS, and TE respectively. Overall, lower 

accuracies were calculated for hardness and tensile strength due to the correlation equation 

that was used. Although lower accuracies were received in these cases, highlighting the 

limitations of the TS-TE correlation equation, the predicted microstructure were consistent 

as is expected of a low carbon content steel with heat treatment conditions like for the cases 

S1 and S2. Like for S2, E1 exhibited a small percentage of bainite microstructure with the 

predominant structures being ferrite-pearlite due to its rapid cooling. E2 on the other hand 

had predominately ferrite-pearlite microstructures like S1 due to its slower cooling rate. 

Since E1 had lower chromium than in case S1, the ferrite microstructure was more 

dominant. Both these cases produced results that were cheaper than the baseline. This was 

due to the faster cooling profile for E1 and lower chromium content. For E2, it was mainly 

due to the lower chromium and Manganese contents as the cooling time was slightly longer 

for E2 in comparison to the baseline. These results are illustrated in Figure 4-6 for the 

mechanical property, penalty parameters and cost functions, and Figure 4-7 (e, f) for the 

cooling profile.
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Figure 4-6: Results of the µGA for Cases E1 and E2 for AISI 8620. (a - f) The Mechanical Properties – Hardness, Tensile Strength, and Elongation, (g, 
h) the Penalty parameters, (i, j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations 
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Figure 4-7: Resulting Cooling Profiles from the µGA for Cases H1, H2, S1, S2, E1 and E2 Respectively for 
AISI 8620 
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4.2.2 Optimization Results for Medium Strength Steels  

The results based on the cases outlined in Section 3.5 are shown in Table 4-5 with 

their corresponding microstructure predictions in Table 4-6 for generated steels with AISI 

4130 mechanical property targets. 

Table 4-5: Algorithm Results for AISI 4130 for the Different Computational Cases 

Cases Baseline H1 H2 S1 S2 E1 E2 

Key parameters 

Taus (F) 1807 1713 1816 1799 1670 1719 1555 

CRave (F/s) 1719 1692 182 2 1717 46 14 

C (wt. %) 0.44 0.27 0.25 0.19 0.47 0.54 0.32 

Mn (wt. %) 0.65 0.98 0.70 0.97 0.89 0.63 0.22 

P (wt. %) 0.03 0.01 0.01 0.01 0.01 0.00 0.01 

S (wt. %) 0.02 0.02 0.01 0.01 0.00 0.01 0.02 

Si (wt. %) 0.15 0.14 0.20 0.26 0.16 0.24 0.17 

Ni (wt. %) 0.23 0.31 0.36 0.11 0.27 0.16 0.21 

Cr (wt. %) 1.41 0.41 1.17 0.13 0.72 1.29 0.44 

Mo (wt. %) 0.02 0.02 0.03 0.02 0.03 0.01 0.00 

Cu (wt. %) 0.25 0.03 0.22 0.06 0.24 0.20 0.16 

Al (wt. %) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

V (wt. %) 0.00 0.01 0.01 0.00 0.01 0.00 0.00 

B (wt. %) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N (wt. %) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Cases Baseline H1 H2 S1 S2 E1 E2 

Ti (wt. %) 0.00 0.01 0.01 0.00 0.00 0.01 0.00 

W (wt. %) 0.04 0.03 0.02 0.06 0.03 0.06 0.02 

Mechanical Properties and Cost 

HV 272.3 286.0 286.1 272.6 272.3 190.2 190.1 

TS (MPa) 916.9 968.1 968.4 918.1 916.9 610.4 610.1 

TE (%) 13.7 13.1 13.1 13.7 13.7 19.0 19.0 

Optimal Cost 

($/100g) 
0.34 0.25 0.32 0.33 0.24 0.30 0.17 

 

Table 4-6: Microstructure Predictions for AISI 4130 for the Different Cases 

Cases 
Microstructure (%) 

Austenite Ferrite Pearlite Bainite Martensite Error 

Baseline 0 3 95 2 0 0 

H1 0 49 35 11 1 4 

H2 0 17 41 37 5 0 

S1 0 19 77 3 0 1 

S2 0 12 75 13 0 0 

E1 0 3 92 5 0 0 

E2 0 40 55 2 0 3 

  



M.A.Sc. Thesis – Martha Kafuko         McMaster University - Mechanical Engineering 

 52  

For the baseline case, the weights and exponents in the cost objective function were 

equal to 1. In this case, a low alloy steel with a medium carbon content was generated from 

the algorithm producing accuracies of 95%, 100% and 72% for HV, TS, and TE 

respectively. Figure 4-8 (a – c) show the change of these properties over 2500 iterations. 

Figure 4-8 (d) shows the generated cooling profile. The values stabilize at around 250 

iterations allowing for a more exhaustive search within the space for the remainder of the 

iterations. The cost function shows a similar trajectory to the mechanical property 

predictions as shown in Figure 4-8 (f). The penalty parameter in this case remained 

unchanged as a high starting penalty was chosen. This is shown in Figure 4-8 (e). The 

microstructure for the generated population was predicted to predominately consist of 

ferrite and pearlite as expected. This is supported with the expected results documented in 

the ASM Handbook [37]. 
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Figure 4-8: Results of the µGA for the Baseline Case for AISI 4130. (a – c) The Mechanical Properties – 
Hardness, Tensile Strength, Elongation, (d) the Cooling profile, (e) the Penalty Parameter, and (f) the Cost 

Function 
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To emphasize hardness, the weight H or the exponents s and e, were raised to the 

value of 10. In the case of H1, H was raised to 10 leaving the remaining weights and 

exponents equal to 1. In the case of H2, s and e, were raised to 10 leaving the remaining 

weights and exponents at 1. Both these cases produced similar results in terms of accuracy 

with values being 100%, 94% and 69% for HV, TS, and TE respectively. Figure 4-9 (a – f) 

shows these mechanical properties. Unlike the baseline case, it took around 1250 iterations 

in H1 and around 1500 iterations in H2, for the mechanical property predictions to stabilize. 

Moreover, both these cases produced low alloy steels with a medium carbon content. 

Overall, the contents were similar, only differing in manganese and chromium contents. 

For H1, the higher manganese decreased brittleness and therefore increased strength [38]. 

For H2, the increase in hardness and therefore strength was accomplished with the higher 

chromium [36]. Although the cooling profiles, shown in Figure 4-12 (a, b), of both these 

cases significantly vary in duration, with H2 heat treatment conditions lasting significantly 

longer, both cases generally produced similar microstructures. This is because their 

chemical composition was generally the same. As expected, the microstructure also 

predominately contained ferrite and pearlite as outlined in the ASM handbook [37] since it 

is a low alloy steel. Bainite was also present due to the combination of increased cooling 

rates and the presence of higher manganese or chromium. The optimal cost decreased from 

the baseline for case H1 due to the lower chromium content and is similar for H2 which 

has a similar chromium content to the baseline. The change of the penalty parameters for 

each case are shown in Figure 4-9 (g, h) and the cost functions are shown in Figure 4-9 (i, 

j).
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Figure 4-9: Results of the µGA for Cases H1 and H2 for AISI 4130. (a - f) The Mechanical Properties – Hardness, Tensile Strength, and Elongation, (g, 
h) the Penalty parameters, (i, j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations 
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In both S1 and S2 cases, the focus was shifted to the mechanical property TS, 

leading to an increased accuracy in this area. As such, the runs yielded accuracies of 95%, 

100% and 72% for HV, TS, and TE respectively in both cases. With the increased emphasis 

on TS however, a slightly lower accuracy for the HV property was produced compared to 

the previous case. Nevertheless, the results remained consistent with those of the baseline 

case.  However, unlike this baseline, case S1 stabilized after 1250 iterations, while S2 

required 1500 iterations. Moreover, the 𝜇GA produced a low alloy steel with a low carbon 

content for S1 and a medium carbon content for S2. S2 had higher levels of chromium, 

nickel, and copper which improved hardenability and overall mechanical properties [36]. 

S1 had a lower average cooling rate than S2 as shown in Table 4-5 resulting in longer TMP 

times and a predominately ferrite-pearlite microstructure. Conversely, S2 had a higher 

average cooling rate resulting in an increased amount of bainite in its microstructure. The 

predicted microstructure for these cases is shown in Table 4-6, and the cooling profiles in 

Figure 4-12 (c, d). The change of the penalty parameters for each case is shown in Figure 

4-10 (g, h). There was a step change in penalty parameters for case S2 while case S1 

remained constant. The corresponding cost functions are shown in Figure 4-10 (i, j).
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Figure 4-10: Results of the µGA for Cases S1 and S2 for AISI 4130. (a - f) The Mechanical Properties – Hardness, Tensile Strength, and Elongation, (g, 
h) the Penalty parameters, (i, j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations 
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Finally, to emphasize TE, either the weight E or the exponents h and s could be 

increased. In E1, only the weight E was increased, whereas in E2, the exponents h and s 

were increased. Both cases yielded comparable results, with E2 having a slightly lower 

accuracy for HV. More precisely, the results were 67%, 67%, and 100% for HV, TS, and 

TE, respectively in case E1, and 66%, 67%, and 100% for HV, TS, and TE, respectively in 

case E2. Figure 4-11 (a – f) shows the evolution of these properties over 2500 iterations, 

where optimal solution was achieved at around 125 iterations. Although it took fewer 

iterations to find an optimal solution compared to the other cases, the HV and TS accuracies 

were very low due to the correlation equation used. Ultimately, meeting the target 

elongation was at the expense of HV and TS. For these cases, a low alloy steel with a high 

carbon content was generated for E1 and a medium carbon steel was obtained for E2. E1 

had a higher Cr content, thus increasing hardenability and resulting in a slightly higher HV. 

However, neither case had the appropriate composition to meet HV and TS targets, 

reflecting in the poor accuracy values for these properties. Additionally, E2 had a slower 

cooling rate than E1 as shown in Table 4-5 and Figure 4-12 (e, f) indicating a slightly longer 

TMP time. This processing time, in combination with the predicted HV results, led to a 

predominately ferrite-pearlite microstructure. The penalty parameters for both cases are 

shown in Figure 4-11 (g, h). Like the previous two cases, the penalty parameter for case E2 

changed with the iterations before stabilizing, while the penalty parameter for case E1 

remained constant. The corresponding cost functions for the cases are shown in Figure 4-11 

(i, j).
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Figure 4-11: Results of the µGA for Cases E1 and E2 for AISI 4130. (a - f) The Mechanical Properties – Hardness, Tensile Strength, and Elongation, (g, 
h) the Penalty parameters, (i, j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations 
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Figure 4-12: Resulting Cooling Profiles from the µGA for Cases H1, H2, S1, S2, E1 and E2 Respectively 
for AISI 4130 
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4.2.3 Optimization Results for High Strength Steels 

Table 4-7 shows the algorithm results for generated steels with 420 Stainless Steel 

mechanical property targets. Table 4-4 shows the corresponding microstructure 

predictions. 

Table 4-7: Algorithm Results for 420 Stainless Steel for the Different Computational Cases 

Cases Baseline H1 H2 S1 S2 E1 E2 

Key parameters 

Taus (F) 1695 1549 1737 1743 1531 1715 1578 

CRave (F/s) 1894 2382 197 196 399 301 18 

C (wt. %) 0.13 0.21 0.27 0.13 0.49 0.51 0.22 

Mn (wt. %) 0.88 1.22 0.78 0.77 0.98 1.23 1.19 

P (wt. %) 0.02 0.00 0.00 0.00 0.01 0.00 0.03 

S (wt. %) 0.02 0.01 0.01 0.01 0.01 0.01 0.02 

Si (wt. %) 0.34 0.17 0.20 0.24 0.32 0.16 0.38 

Ni (wt. %) 0.30 0.18 0.03 0.11 0.03 0.03 0.04 

Cr (wt. %) 0.93 1.35 0.21 1.19 0.71 0.39 1.08 

Mo (wt. %) 0.02 0.01 0.03 0.03 0.02 0.01 0.02 

Cu (wt. %) 0.09 0.15 0.16 0.15 0.20 0.26 0.13 

Al (wt. %) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

V (wt. %) 0.01 0.02 0.01 0.01 0.00 0.01 0.00 

B (wt. %) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N (wt. %) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Cases Baseline H1 H2 S1 S2 E1 E2 

Ti (wt. %) 0.00 0.00 0.00 0.01 0.01 0.00 0.00 

W (wt. %) 0.06 0.07 0.03 0.04 0.06 0.01 0.07 

Mechanical Properties and Cost 

HV 483.4 525.0 525.0 483.4 483.4 277.2 277.4 

TS (MPa) 1705.4 1860.7 1860.4 1705.4 1705.4 935.1 935.8 

TE (%) 8.3 7.8 7.8 8.3 8.3 13.5 13.5 

Optimal Cost 

($/100g) 0.35 0.32 0.18 0.30 0.28 0.19 0.36 

 

Table 4-8: Microstructure Predictions for 420 Stainless Steel for the Different Cases 

Cases 
Microstructure (%) 

Austenite Ferrite Pearlite Bainite Martensite Error 

Baseline 0 0 0 6 94 0 

H1 0 0 0 0 100 0 

H2 0 0 0 0 100 0 

S1 0 0 0 0 100 0 

S2 0 0 0 0 100 0 

E1 0 0 0 24 76 0 

E2 0 0 0 33 66 1 
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In the baseline case where all the weights and exponents were set to 1, the algorithm 

successfully generated a medium carbon content steel with high manganese and chromium 

contents. These chemical compositions improved the steel’s strength and consequently its 

hardness. Mechanical property prediction showed that the generated steel exhibited high 

accuracy for hardness (HV) and tensile strength (TS) properties, with results of 92% and 

100% respectively. However, there is room for improvement for the elongation property, 

which, showed a lower accuracy at 62%, largely due to the tensile strength, elongation, 

correlation equation used. These results are illustrated in Figure 4-13. Although it took 750 

for the results to stabilize, there were still enough iterations left to explore the search space 

more exhaustively with the remaining 1750 iterations. 

In this case, the steel was rapidly cooled for about two and half minutes resulting in a 

predominantly martensitic microstructure as shown in Table 4-8 and as expected according 

to previous literature [11], [13], [32]. This rapid cooling and generally mid-range chemical 

compositions with higher chromium content contributed to the steel’s overall cost of $0.35 

/ 100g. 

  



M.A.Sc. Thesis – Martha Kafuko         McMaster University - Mechanical Engineering 

 64  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4-13: Results of the µGA for the Baseline Case for 420 Stainless Steel. (a – c) The Mechanical 
Properties – Hardness, Tensile Strength, Elongation, (d) the Cooling profile, (e) the Penalty Parameter, 

and (f) the Cost Function 
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For cases H1 and H2, the algorithm optimized for the hardness mechanical property. 

This optimization was achieved by either increasing H by a factor of 10 or the coefficients 

s and e, by a factor of 10 while keeping the other weights and coefficients as 1. In both 

cases, a medium carbon content steel was generated with H2 having a significantly higher 

chromium content and slightly higher manganese content than H1. These alloys increased 

the steels hardness allowing for the target to be met. 

Overall, the algorithm produced accurate results for HV and TS with 100% and 91% 

accuracies respectively. Lower accuracies were produced for TE with 58% accuracy. The 

lower accuracy in TS was attributed to the correlation equation used between HV and TS 

as this diverged at higher tensile strength targets. Similarly, lower accuracies for TE was 

also be attributed to the correlation equation used between TS and TE. Regardless of these 

results, the cost per 100 g of the generated steels was less than the baseline. This was mainly 

attributed to the rapid cooling that was generated. Due to this heat treatment profile as 

shown in Figure 4-17, a martensitic microstructure was expected and was predicted by the 

microstructure prediction model. The microstructure was predicted to be 100% martensitic 

in both cases. This prediction is shown in Table 4-8, and the mechanical property, penalty 

parameters, and cost functions outcomes, for 2500 iterations are shown in Figure 4-14.
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Figure 4-14: Results of the µGA for Cases H1 and H2 for 420 Stainless Steel. (a - f) The Mechanical Properties – Hardness, Tensile Strength, and 
Elongation, (g, h) the Penalty parameters, (i, j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations 
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In the case of S1 and S2, the weight S or the exponents h and e, were raised by a factor 

of 10 respectively, leaving the remainder of the constants as 1 with the objective of 

optimizing for tensile strength. The populations generated met the target with 92%, 100%, 

and 62% accuracy for HV, TS, and TE respectively. For S1, the cost was comparable to all 

previous cases for this target especially the baseline. However, the results for this case had 

a lower carbon content, and shorter heat treatment time. As such, the microstructure present 

was also martensitic, with some percentage of bainite being predicted. Similar results were 

seen for case S2 with comparable cost to cases S1 and H1. For this generation a rapidly 

cooled medium carbon content steel with similar levels of manganese and chromium to the 

baseline was generated. Due to this rapid cooling a presence of martensite was expected, 

and it was confirmed with the microstructure prediction shown in Table 4-8. The 

corresponding cooling profiles are shown in Figure 4-17. The mechanical property 

outcomes, penalty parameters and cost functions for the 2500 iterations are shown in Figure 

4-15.
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Figure 4-15: Results of the µGA for Cases S1 and S2 for 420 Stainless Steel. (a - f) The Mechanical Properties – Hardness, Tensile Strength, and 

Elongation, (g, h) the Penalty parameters, (i, j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations 
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For E1 and E2, the weights and exponents were modified with the objective of 

optimizing for the material’s elongation. The weight E was increased by a factor of 10 in 

the case of E1 and the exponents h and s were increased by a factor of 10 in the case of E2. 

The remainder of the weights and exponents were left as 1. Through this, the generated 

populations met the target for elongation at the detriment of the other two properties due to 

the correlation equations used. Results were 53%, and 55% for HV and TS respectively to 

achieve 100% accuracy for TE. Since the hardness and tensile properties were 

underestimated, the overall cost for E1 was amongst the cheapest for the specified targets. 

The cost for E2 was more comparable to the baseline due to the slower cooling and higher 

chromium content. This higher chromium content and relatively fast heat treatment times, 

coupled with the low predicted hardness produced steels with a large percentage of 

martensite within the microstructure, with a small percentage of bainite also present. Figure 

4-16 shows the predicted material properties, penalty parameters and cost functions over 

2500 iterations. The corresponding microstructure predictions are shown in Table 4-8 and 

their cooling profiles in Figure 4-17.
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Figure 4-16: Results of the µGA for Cases E1 and E2 for 420 Stainless Steel. (a - f) The Mechanical Properties – Hardness, Tensile Strength, and 
Elongation, (g, h) the Penalty parameters, (i, j) the Cost Functions, for the Two Cases Respectively Over 2500 Generations 
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Figure 4-17: Resulting Cooling Profiles from the µGA for Cases H1, H2, S1, S2, E1 and E2 Respectively 
for 420 Stainless Steel 
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4.3 Optimizing for Cost Results 

To assess whether the algorithm could generate more cost-effective results than a standard 

steel with chemical compositions and TMP retrieved from the ATLAS [28], three different 

runs were performed for each specific target. The theoretical costs selected from the 

ATLAS [28] were calculated. For the algorithm to be successful, a cost lower than the 

theoretical costs must be generated. For these runs, HV was emphasized by increasing the 

exponent s and e by a factor of 10, since the results from the previous test cases consistently 

showed relatively low costs when those exponents were modified. To ensure that the cost 

was further minimized, the cost weight, C, was also changed to an arbitrary value of 10. 

The results of the three runs are shown in Table 4-9, Table 4-10, and Table 4-11 for the 

low, medium, and high strength steel respectively. Figure 4-18 shows the corresponding 

cooling profiles for all the target cases.
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Figure 4-18: Cooling Profiles for the Optimization Test Cases. (a – c) Runs 1 – 3 for AISI 8620 Targets, (d – f) Runs 1 – 3 for AISI 4130 Targets, and (g 
– i) Runs 1- 3 for 420 Stainless Steel Targets, respectively. 
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For the AISI 8620 target, which is a low alloy low carbon content steel, the three 

runs generated low and medium carbon content steels. These generated steels had a 

predominantly pearlite-ferrite microstructure, as expected for a low strength steel with a 

mid-range carbon content. All runs achieved 100% accuracy for HV and were more cost 

effective than the theoretical alloy which cost $0.31 / 100g resulting in savings of more 

than $0.15 / 100g. Overall, runs 1 and 2 were the cheapest of the three making them the 

best option for the cost optimization; however, all three runs successfully applied the 

algorithm to optimize for the cost while still meeting the hardness and tensile strength 

target. 

Table 4-9: Results of the µGA for the Optimal Cases with Cost Optimization (i.e., for C = 10, s = 10, e = 
10) for AISI 8620 Target 

 Theoretical Run 1 Run 2 Run 3 

Chemical Composition (wt. %)  

C 0.21 0.34 0.46 0.15 

Mn 0.71 0.54 0.25 0.68 

P 0.00 0.02 0.03 0.00 

S 0.01 0.02 0.01 0.01 

Si 0.30 0.15 0.18 0.18 

Ni 0.63 0.35 0.04 0.13 

Cr 0.49 0.09 0.00 0.34 

Mo 0.17 0.02 0.02 0.02 

Cu 0.01 0.10 0.25 0.16 
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 Theoretical Run 1 Run 2 Run 3 

Al 0.01 0.00 0.00 0.00 

V 0.00 0.00 0.01 0.01 

B 0.00 0.00 0.00 0.00 

N 0.00 0.00 0.00 0.00 

Ti 0.00 0.01 0.01 0.00 

W 0.00 0.06 0.07 0.03 

Mechanical Properties, Phase Composition, and Cost 

HV 178.0 178.1 178.5 178.0 

Cost ($/100g) 0.31 0.15 0.15 0.18 

Austenite 0 0 0 0 

Ferrite 52 52 2 66 

Pearlite 48 42 91 26 

Bainite 0 2 6 3 

Martensite 0 0 1 0 

Microstructure Error 0 4 0 5 

  

 This success was further proved in the cost optimization for the AISI 4130 

mechanical property targets. In contrast to the previous targets that produced low-medium 

carbon content steels, this trial generated results that spanned the entire low to high carbon 

content spectrum. Significantly, all runs had lower chromium contents than the theoretical 

steel, contributing to the cost savings. While some of the generated steels were close in cost 
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to the theoretical steel, they were all still cheaper to produce, with the third run being the 

most cost effective. In this run, the cost of producing a steel with 100% accuracy for the 

hardness mechanical property, was more than halved. In line with the theoretical steel, all 

the runs had a combination of a predominantly ferrite, pearlite, and bainite microstructure, 

with a small percentage of martensite. 

Table 4-10: Results of the µGA for the Optimal Cases with Cost Optimization (i.e., for C = 10, s = 10, e = 
10) for AISI 4130 Target 

 Theoretical Run 1 Run 2 Run 3 

Chemical Composition (wt. %)  

C 0.30 0.47 0.19 0.53 

Mn 0.64 0.72 0.90 0.63 

P 0.01 0.03 0.03 0.03 

S 0.01 0.02 0.01 0.00 

Si 0.22 0.21 0.28 0.15 

Ni 0.11 0.14 0.36 0.05 

Cr 1.01 0.24 0.04 0.27 

Mo 0.24 0.02 0.00 0.02 

Cu 0.19 0.26 0.19 0.25 

Al 0.00 0.00 0.00 0.00 

V 0.01 0.01 0.01 0.00 

B 0.00 0.00 0.00 0.00 

N 0.00 0.00 0.00 0.00 
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 Theoretical Run 1 Run 2 Run 3 

Ti 0.00 0.00 0.01 0.00 

W 0.00 0.00 0.04 0.01 

Mechanical Properties, Phase Composition, and Cost 

HV 286.0 286.1 286.0 286.2 

Cost ($/100g) 0.33 0.20 0.23 0.14 

Austenite 0 0 0 0 

Ferrite 10 6 12 4 

Pearlite 0 45 7 75 

Bainite 80 40 53 19 

Martensite 10 9 28 2 

Microstructure Error - - - - 

 

In addition to the successful results for AISI 8620 and AISI 4130 mechanical 

property targets, similar runs were conducted for the 420 stainless steel mechanical 

property target case. In this case, all three runs generated a medium carbon content steel, 

like the theoretical steel. However, the generated steels had a significantly lower chromium 

content compensated for by higher manganese contents and faster heat processing times. 

Consequently, the overall cost of the generated steels was approximately seven times less 

expensive than the theoretical steel. Also, as expected, these steels had a martensitic 

microstructure. This demonstrated the effectiveness of the algorithm in the optimization of 

cost without comprising the mechanical property targets. 
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Table 4-11: Results of the µGA for the Optimal Cases with Cost Optimization (i.e., for C = 10, s = 10, e = 
10) for 420 Stainless Steel Target 

 Theoretical Run 1 Run 2 Run 3 

Chemical Composition (wt. %)  

C 0.44 0.49 0.20 0.34 

Mn 0.20 1.04 0.89 0.76 

P 0.03 0.03 0.03 0.02 

S 0.01 0.01 0.01 0.00 

Si 0.30 0.18 0.18 0.15 

Ni 0.31 0.13 0.31 0.26 

Cr 13.12 0.59 0.10 0.45 

Mo 0.01 0.01 0.00 0.02 

Cu 0.09 0.25 0.07 0.04 

Al 0.00 0.00 0.00 0.00 

V 0.02 0.00 0.00 0.01 

B 0.00 0.00 0.00 0.00 

N 0.00 0.00 0.00 0.00 

Ti 0.00 0.00 0.01 0.00 

W 0.00 0.02 0.01 0.07 

Mechanical Properties, Phase Composition, and Cost 

HV 525.0 524.9 525.4 522.9 

Cost ($/100g) 1.75 0.2 0.15 0.21 
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 Theoretical Run 1 Run 2 Run 3 

Austenite 0 0 0 0 

Ferrite 0 0 0 0 

Pearlite 5 0 0 0 

Bainite 0 0 1 0 

Martensite 95 100 99 100 

Microstructure Error - - - - 

 

Ultimately, the application of the developed algorithm demonstrated its 

effectiveness in optimizing for cost while preserving the desired mechanical properties, 

specifically hardness. The results from the AISI 8620, AISI 4130, 420 Stainless Steel runs, 

proved the versatility of the algorithm in producing steels of various alloying element 

contents to meet the different targets while reducing production cost to up to seven times. 

4.4 Limitations and Future Work 

The presented work has successfully developed an algorithm that optimizes for 

desired mechanical properties and cost. However, there are some limitations that must be 

considered. First, the accuracy of the algorithm decreases as the strength of the steel 

increases. As a result, it produces results with higher accuracies for lower strength steels 

compared to higher strength steels. Another limitation is related to the correlation equations 

used in its development. Although the equations were accurate for lower strength steels, 

except for the elongation equation, they do not fully represent the properties at higher 

strengths. This is because at lower strengths, the correlation between the alloy’s hardness 
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and tensile strength converged. However, with increasing strength, the correlation 

diverged, resulting in the lower accuracies. As such, the type of equation used heavily 

influences the accuracy of the results. Lastly, the range of the dataset constrains the ranges 

of alloying elements and heat treatment conditions that the algorithm can generate. As most 

of the input data had lower to medium carbon contents, the probability of generating results 

with such contents was higher than producing results with higher carbon contents. This 

highlights the need for a more diverse dataset that can encompass a wider range of alloying 

elements and heat treatment conditions for better optimization results. 

While this algorithm has shown promising results in the optimization of mechanical 

properties and cost, addressing the limitations can lead to further improvements in accuracy 

and reliability. As such, future research can focus on the following: 

• Increasing the dataset to retrain the hardness and microstructure models and fine-

tuning the search space for the algorithm to improve accuracy. 

• Exploring the use of different correlation equations for hardness and tensile strength 

as these diverged at higher strengths. 

• Obtaining more accurate correlation equations for tensile strength and elongation 

as the utilized equations led to lower accuracies for predicted elongation. 

• Lastly, experimenting with different combinations of cost optimization and other 

mechanical property optimization weights and exponents to find the best balance. 
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Chapter 5 Conclusions 

5.1 Key Outcomes 

This work presented a 𝜇GA for cost and mechanical property optimization. Three 

representative steels were selected to get appropriate target mechanical properties and cost 

based on standard practice. From this, the algorithm was able to successfully generate steel 

compositions that met these specifications while minimizing cost production. Ultimately, 

the following conclusions can be drawn: 

• The neural network based computational framework can be successfully employed 

to obtain optimal combinations of chemical composition and TMP schedules of 

steels to obtain steels with desired mechanical properties. Additionally, ANNs can 

also be used to accurately estimate the composition of the microstructure. 

• Unlike the traditional GAs, the 𝜇GA proposed in this work is less complex to 

implement and can obtain feasible solutions over much fewer iterations. In other 

words, the computational cost, mirrored by the number of function evaluations, is 

much smaller in the 𝜇GA framework proposed here.  This makes it an excellent tool 

for a thorough exploration of such a high dimensional search space.  

• The cost function formulation allows for an adjustment of the emphasis of the 

various target values through pre-constant weights, and exponents. For the problem 

investigated here, an adjustment of exponents resulted in more function evaluations 

before equilibrium was reached, and the penalty parameters also varied through the 



M.A.Sc. Thesis – Martha Kafuko         McMaster University - Mechanical Engineering 

 82  

iterations. In other words, the exponents in the cost function formulation are more 

sensitive and impactful in emphasizing on a target property. 

• The range of the input parameters utilized by the algorithm impacts the predictions, 

regardless of the mechanical property being emphasized. Additionally, in general, 

the algorithm significantly reduces heat treatment time, leading to overall cost 

savings. 

• Except for E2, the optimal solutions had similar costs. This was mainly due to the 

correlation equation used to relate TS to TE. Results can be impacted by changing 

the cost function formulations.  

The success of this work has many implications for practical applications, including 

the development of cost effective and high performing steels. While there are some 

limitations in the work, such as the accuracy limitations that occur due to the dataset ranges, 

and correlation equations not accurately representing the properties at higher strength 

levels, the algorithm presents a promising solution to the mechanical property and cost 

optimization problem. Through future research, the listed limitations can be solved for 

more accurate and reliable results.  

Overall, this 𝜇GA in conjunction with the principles of neural networks provides a 

novel approach to steel composition design. It offers a cost effective and efficient solution 

that has numerous applications in research and industry. As such, it has the potential to 

provide new means of optimization. 
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5.2 Implications for Practical Applications 

Given that the developed algorithm showed high potential for mechanical property 

and cost optimization in new steels, there are several implications in the field of material 

science and engineering both at the research level within laboratories, and application level 

within industry. The 𝜇GA developed in this research provides an approach to the 

optimization of steel alloy compositions and heat treatment conditions that meet desired 

mechanical properties while minimizing the overall cost. This provides an efficient means 

of quickly searching a large range of possible compositions to identify optimal solutions 

that result in significant time and cost savings for steel manufacturers as experimental trials 

for the development of new materials are minimized. Furthermore, these newly developed 

materials ensure that a more comprehensive database can be stored which could enhance 

the predictive power of machine learning algorithms used in steel design and optimization 

and ultimately improving their accuracies allowing for accelerated material discovery. 

Furthermore, the amount of waste generated during material production could potentially 

decrease as the algorithm is used as a tool to design material with specific material property 

target rather than through trial and error. This would lead to improved sustainability 

through the decrease in waste production as well as the reduction of energy consumption 

as the design of new materials is more streamlined. 

Moreover, further avenues for research and development in this area are opened 

with this implementation. For example, the use of this algorithm can be extended to 

optimize for other mechanical properties such as toughness, corrosion, ductility etc. with 

either more data or with the implementation of correlation equations. Or this approach 
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could also be applied to other material systems such as polymers and ceramics, allowing 

for its benefits to be passed on to these applications. It could also be adapted to include 

other alloying elements or heat treatment conditions for more accuracy. 

Ultimately, the successful application of the developed 𝜇GA allows for the 

significant reduction of time and cost required for material development and the potential 

to extend beyond the steel industry into other applications. Further, by combining machine 

learning with this optimization, the development of new materials is accelerated, therefore 

improving the manufacturing process while reducing its environmental impact. 

5.3 Recommendations for Future Research 

While the implementation of the 𝜇GA within this research achieved its objectives, 

there are still areas that require research to improve the results. Below are some 

recommendations for future research that could enhance the performance of the developed 

𝜇GA and potentially allow for more applicability in industry. 

1. As this methodology relies heavily on the type of data used for training the 

developed NN models for prediction, future research could explore how an increase 

in the input dataset would affect the predictions for low, medium, and high strength 

steels. Moreover, studies could also focus on determining the minimum required 

data that would produce accurate results in cases when a large dataset is not readily 

available. 

2. The impact on expanding the search space by including additional alloying elements 

or getting steels with varying compositions of alloys such as phosphorus, sulfur, 

aluminium, titanium, could be studied. 
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3. The results from the 𝜇GA could be compared to other optimization techniques such 

as gradient descent methods or hybrid optimization methods discussed within such 

that their strengths and weakness are outlined and their effectiveness, based on input 

parameters, examined. 

4. Additionally, physical experiments could be conducted to validate the suggest input 

characteristics retrieved from the 𝜇GAs. This could potentially involve fabricating 

and testing the samples to confirm that they exhibit the predicted mechanical 

properties and microstructure. 

5. Finally, the developed algorithms could also be applied to available current 

industrial dataset to further confirm its optimization ability. 
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Appendix A Neural Network 

A.1 Hyperparameters 

This section outlines the parameters used to train both the ROH and microstructure 

prediction models. To better handle outliers during the analysis, Huber’s loss was selected 

over the Mean Squared Error (MSE) loss [39]. The results obtained from implementing 

these parameters are presented in Section A.2. The selected hyperparameters for both 

models are shown in Table A-1. 

Table A-1: Hardness Model Hyperparameters 

Parameter ROH Model Values Microstructure Prediction 
Model Values 

Batch Size 256 32 

Epoch 5000 100 

Learning Rate 0.003 

Optimizer RMSProp 

Loss Huber 

A.2 Training and Testing 

The development of the hardness and microstructure prediction models involved 

training using 80% of the randomized and normalized input data. The remaining 20% was 

used for testing the created models. To verify the consistency of these models, a cross 

validation approach was performed on the ROH model. This cross validation was carried 

out for five folds and the results are shown in Table A-2. Overall, this resulted in a mean 
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R2 score of 0.97 validating the model and giving confidence to incorporate it into the 

optimization algorithm.  

 Table A-2: Cross Validation Results for the ROH model 

Cross Validation Folds R2 Score 

1 0.98 

2 0.97 

3 0.98 

4 0.97 

5 0.97 

Overall 0.97 Mean (0.00 STD) 

Demonstrating a high level of accuracy in predicting hardness values based on a 

population input, the resulting R2 score for the testing set was 0.99. This indicated that the 

model could consistently and reliably predict hardness values. This accuracy is illustrated 

in Figure A-1, which presents a comparison between the predicted hardness values versus 

the actual values. 
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(a) 

 
(b) 

 Figure A-1: Actual and Predicted Hardness Values as Predicted by the ROH Model: (a) Normalized 
Results and (b) Rescaled Results 

For the microstructure prediction model, a MSE rather than an R2 score was used 

to show its accuracy since this model predicted more than 1 outcome. These results, shown 

in Table A-3 and Figure A-2, show that all MSE values were near zero, indicating a high 

level of accuracy in the model’s predictions. However, it should be noted that 

characterizing the austenite microstructure was challenging due to the limited diversity in 

the original dataset. 

Table A-3: MSE Results from the Microstructure Prediction Model for Austenite, Ferrite, Pearlite, Bainite, 
and Martensite. 

Microstructure MSE Value1 

Austenite 0.003 

Ferrite 0.005 

Pearlite 0.005 

Bainite 0.008 

Martensite 0.007 

 

1 This value was based on the normalized results. Meaning, the values had not been scaled back to 
their original values. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure A-2: Actual and Predicted Microstructure Values as Predicted by the Microstructure Prediction 
Model: (a) Austenite Predicted Results, (b) Ferrite Predicted Results, (c) Pearlite Predicted Results, (d) 

Bainite Predicted Results, and (e) Martensite Predicted Results 
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Appendix B Pseudo Code 

This section provides an overview of the code used in this research to develop the 

ROH models, the microstructure prediction model, and the µGA. The code serves as a 

reference to illustrate the basic steps and functions used in each algorithm to outline the 

underlying logic and methodology.  

B.1 ROH Prediction Model 

Import relevant libraries 
Import sample data 
 
Randomize the imported data 
Normalize the data 
Split data with 80% training and 20% testing 
 
Initialize Hyperparameters 
 
DEF hardness model () { 
 Initialize Sequential Model 
 Add dense layer 
 Add dense layer 
 Apply a Huber loss 
 Add Dense Layer 
 Compile Model 
} 
 
Fit hardness model using training data 
Predict from the microstructure model using testing data 
 
Report the predicted hardness, maximum error, and r2 score 
Plot the results  
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B.2 Microstructure Prediction Model 

Import relevant libraries 
Import sample data 
 
Randomize the imported data 
Normalize the data 
Split data with 80% training and 20% testing 
 
Initialize Hyperparameters 
 
DEF microstructure model () { 
 Initialize Sequential Model 
 Add dense layer 
 Add dense layer 
 Apply a Huber loss 
 Add Dense Layer 
 Compile Model 
} 
 
Fit microstructure model using training data 
Predict from the microstructure model using testing data 
 
Report the predicted microstructures, maximum error, and r2 score 
Plot the results 
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B.3 Genetic Algorithm 

Import relevant libraries 
Import trained ROMs 
Variable initialization 
 
DEF Genetic Algorithm () { 
 Iterations = 0 
 IF first iteration 
  Generate N = 5 pupils 
  Append the pupils to an empty list 

ELSE 
  Generate N = 4 pupils 
  Append to list with best pupil from last iterations 
  

FOR loop over number of pupils 
  Evaluate MC for the pupil 
 
 Obtain the predicted hardness using the ROH model 
 Calculate TS from the correlation equation 
 Calculate TE from the correlation equation 
  
 IF first iteration 
  N = 5 
 ELSE 
  N = 4 
  

FOR loop over N number of pupils 
  Evaluate the objective function for N pupils 
  Append the function to a list 
  Evaluate and update the penalty parameter 
  

Obtain the MIN objective function 
keep the MIN objective function’s pupil 

 Discard the remainder of the pupil from the list 
} 
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Appendix C General Information 

C.1 Cost of Electricity 

The cost estimation for electricity consumption was calculated to be approximately 

0.14 $/kWh. This was computed based on a usage period between 7 am – 5 pm during the 

winter months (November 1 – April 30). This calculation is shown below. Pricing 

information based on time of day were obtained from the Ontario Energy Board (OEB) 

Time-of-Use (TOU) prices [40]. A breakdown of these prices is shown in Table C-1. 

𝐶𝑜𝑠𝑡AB0CAD0 =
∑ℎ𝑜𝑢𝑟𝑠	 × 𝑐𝑜𝑠𝑡

𝑘𝑊ℎ
𝑇𝑜𝑡𝑎𝑙	#	𝑜𝑓	ℎ𝑜𝑢𝑟𝑠 

  

𝑐𝑜𝑠𝑡AB0CAD0 =
B4	ℎ	 × $0.17𝑘𝑊ℎ D + B6	ℎ	 ×

$0.113
𝑘𝑊ℎ D

10	ℎ =
$0.1358
𝑘𝑊ℎ = $0.14/𝑘𝑊ℎ 

  

Table C-1: TOU prices as outlined by the OEB 

TOU Prices Period Description of Time TOU Prices (¢/kWh) 

Off-Peak 
Weekdays 7 pm – 7 am 

All day weekends and holidays 
8.2 

Mid-Peak Weekdays 11 am – 5 pm. 11.3 

On-Peak Weekdays 7 – 11 am and 5 – 7 pm.  17.0 
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C.2 Cost of Alloying Elements 

The cost associated with each alloying elements used within this research was 

retrieved from material-properties.org [41] and is presented below. 

Table C-2: Cost of Alloying Elements (Retrieved from [41]) 

Element (wt. %) Cost ($/100 g) 

C 2.40 
Mn 1.70 

P 4.00 
S 24.00 

Si 50.00 
Ni 7.70 

Cr 10.00 
Mo 11.00 

Cu 2.70 
Al 1.80 

V 220.00 
B 250.00 

N 0.40 
Ti 6.10 

W 11.00 
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C.3 Software and Hardware Information 

Below is a summary of the key platforms and libraries used for the creation of the 

ANN and the development of the genetic algorithm along with their versions and the 

hardware it ran on. 

Software: 

§ Python: 3.8.7 

§ TensorFlow: 2.9.2 

§ Keras: 2.9.0 

SciKit-Learn: 1.0.2 
§ Pandas: 1.3.5 

§ Numpy:1.21.6 

Hardware: 

§ ANN 

o Google Colab GPU: Intel Xeon CPU @2.20 GHz 

o System RAM: 12.7 GB 

§ Genetic Algorithm 

o CPU: 2.3 GHz Quad-Core Intel Core i7 

o System RAM: 32 GB  
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