
ROBUST AND TRANSFERABLE LOG

ANOMALY DETECTION



ROBUST AND TRANSFERABLE LOG ANOMALY DETECTION

By

SI TONG LIU,

M.A.Sc. (Electrical and Computer Engineering)

A THESIS

SUBMITTED TO THE ELECTRICAL & COMPUTER

ENGINEERING DEPARTMENT

AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

McMaster University

© Copyright by Si Tong Liu, July 2023

http://www.mcmaster.ca/


Master of Applied Science (2023)

Electrical and Computer Engineering

McMaster University

Hamilton, Ontario, Canada

TITLE: Robust and Transferable Log Anomaly Detection

AUTHOR: Si Tong Liu

M.A.Sc(Electrical and Computer Engineering)

SUPERVISOR: Jun Chen

Professor, Department or Electrical and Computer Engineering,

McMaster University, ON, Canada

NUMBER OF PAGES: xiii, 52

ii

https://www.eng.mcmaster.ca/ece
http://www.mcmaster.ca/


To my dear parents, who love and support me,

To my dear mentors, who guide and encourage me.

iii



Abstract

Maintaining the stability and performance of software and computer system has al-

ways been an ongoing question. As system logs are present in almost all computer

systems and software, log anomaly detection has become a major method towards

troubleshooting system failures and conducting in-depth analysis to identify the un-

derlying causes. In recent years, even though there has been lots of research done on

log anomaly detection, most of them ignored two major problems: the presence of

noise when acquiring and processing logs, and the cold-start problem when handling

a newly onboarded system. These are two practical problems that usually coexist

in a real-world scenario and hasn’t been addressed together effectively yet. There

were a few works proposed to apply transfer learning in log anomaly detection so

that knowledge from a source log dataset can be transferred to a target log dataset,

thus alleviating the cold-start problem when handling new systems being onboarded.

However, without first solving the noise issue within the log dataset, these methods

become impractical in real-world settings. The existence of noise within the source

system can greatly impair feature extraction process from the log dataset, leading

to a decreased performance of model when detecting anomalies in the target system

dataset which might contain noise as well. In this paper, we propose a novel robust

and transfer-learning-based method, called LogRT. LogRT utilizes an Attention-based

iv



Bidirectional-Long-Short-Term-Memory model during the feature extraction process

to extract the contextual information in log sequences where importance of different

log events can be learned by the model automatically even if there are noises present

in the dataset. Through combining this robust module with a state-of-the-art trans-

fer learning method, domain adaptation, LogRT can apply the valuable information

learned from a noisy source system into a target system and provide high performance

on detecting anomalies in logs even with the presence of multiple types of noise in

both source and target systems. Extensive experimental evaluations demonstrate

that LogRT has competitive performance in real-world scenarios.
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Chapter 1

Introduction

With the wide adoption of microservices [1] and cloud technologies, there has been

a growing emphasis on the security, stability, and reliability of systems and software.

One intuitive approach is to analyze the log data [19, 20, 22, 41, 40] generated by the

systems and software during operation time. Log data typically appears in the form of

semi-structured text strings and record noteworthy activities about status of systems,

thus providing developers with valuable information. In the current stage, a signif-

icant number of computer systems and software use log data to provide developers

feedback [44, 27] on performance and stability.

However, as the volume of data and the scale of systems continue to grow rapidly,

manual observation of logs has become increasingly inefficient and unpractical, with

millions of lines of log messages being generated within one system on a daily basis

[22, 4]. Therefore, machine learning methods have been introduced to the field of log

anomaly detection [14, 42, 25, 8, 28, 29, 26, 43], with the hope of reducing required

labor on this task. These machine learning approaches primarily involve identifying

shared patterns within normal executing logs and leveraging these patterns to train

1
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their models. Subsequently, if the observed patterns in log data deviate from these

established normal patterns, the logs will be classified as anomalous.

While machine learning methods have been widely employed to aid in log anomaly

detection, there are always new systems being deployed constantly [4, 22]. Despite

most of these systems have urgent needs for conducting anomaly detection, it takes

a lot of time to gather enough log data so that the neural networks can learn normal

executing patterns. Most existing methods do not address this cold-start problem of

handling newly onboarded systems. Yet with the widespread strategy of Continuous

Integration and Continuous Delivery in the software industry, new applications are

being developed and deployed on companies’ ecosystems in a much faster rate than

they used to [4].

In recent years, some methods for addressing the cold-start problem has been

proposed [39, 13, 5], and a few of them have achieved good performance. However,

all of those methods are conducted under a closed-world assumption as proposed by

Zhang et al. [43]: log patterns are always static and won’t be modified for a long

period of time. This is unlikely since there are always updates on how log data present

themselves, and unstable log data are likely to be gathered in real-world scenarios

as it is quite common to introduce noise due to network issues, parsing problems

and adversarial attacks. We have demonstrated in Figure 1.1 some of the instability

and noise within log datasets that we have simulated and investigated in our work.

According to Kabinna, et al [22]. about 20% to 45% of the logging statements they

researched on are modified during their lifetime, with 75% of the changes took place

with in 145 days after applying those logs to the system. Huo, et al. [19] has also

demonstrated how logs can experience massive modifications in their work.

2
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(a) Example of log instability after experiencing packet loss and parsing errors

(b) Example of log instability after experiencing network latency, collection and
transportation of logs and distributed logging errors

Figure 1.1: Examples of log instability and noise simulated in our experimental stage

3
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In view of the aforementioned issues, our study adopts an Attention-based Bi-

LSTM architecture inspired by Zhang et al. [43] to cope with the presence of up-

dated log statement and noise among log data. Our neural network structure enables

the network to focus more effectively on log data with important information, thus

enhancing the performance of log anomaly detection even within noisy environments.

Then, we employ a domain adaptation approach proposed by Han et al. [13] to ad-

dress the cold-start problem. By utilizing this approach, we can train our network

on an existing labelled source log dataset and then apply it to new unlabelled target

log datasets, thereby overcoming the challenge of performing log anomaly detection

in the absence of labelled log data for new systems.

We have conducted our study in a cross-dataset setting and introduced noise into

log data proportionally to simulate real-world settings. Our network exhibited robust

and competitive performance.

The main contributions of this paper can be summarized as the following three

points:

• We propose a novel approach, LogRT, which can address the noise issue during

log anomaly detection in a cross-system scenario. Our model can effectively

focus on important information within existing log data regardless of the pres-

ence of noise from the source system, then transfer valuable information into

the target system, thus yield competitive performance in log anomaly detection.

• We propose noise-controlled log datasets based on the original Thunderbid and

BlueGene/L log datasets, where they contain certain ratios of noise in different

forms. We will elaborate on the algorithm of simulating these noise in Chapter

3.

4
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• We perform thorough experiments on multiple log datasets with simulated noise

under the cross-system environment to demonstrate the effectiveness of our

network. The results show that our network achieves competitive performance

in real-world scenarios.

The structure of this thesis is as follows: In Chapter 2, we introduce the research

background and discuss works that are closely related to the topic under considera-

tion. In Chapter 3, we present the framework of our network and elaborate on the

approaches we apply in this work. Chapter 4 contains our experimental results under

simulated real-world scenarios and cross-system settings. Future improvements on

our method are discussed in Chapter 5, and conclusion for this study is in Chapter 6.

5
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Chapter 2

Research Background and Related

works

2.1 Log Anomaly Detection Preliminaries

In this section, we will give an overview regarding the workflow of log anomaly detec-

tion and discuss each process in depth. A typical log anomaly detection procedure is

shown in Figure 2.1:

Figure 2.1: Flowchart containing the major processes when performing log anomaly
detection, including log parsing, log embedding, feature extraction and anomaly

detection

6
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2.1.1 Log Parsing

In order to perform log anomaly detection, our network model must first learn the

normal executing log patterns from the log dataset. Subsequently, we need to ex-

tract not only valid but also effective information from log datasets before proceeding

into further steps. Log data contains comprehensive records on the operation of soft-

ware and systems, including timestamps, runtime, and most importantly EventIDs.

Despite of their crucial role in the task, log datasets don’t usually come in a well-

structured fashion. Most of the logs are generated as chunks of words that contain

valuable information. Without structuralizing them, these valuable information will

remain inaccessible to any form of machine learning techniques. As a result, log

parsing [15, 7, 14, 45, 23, 6] has become an important step in log anomaly detection

with its ability to structuralize chaotic log data into well-organized templates and

parameters. There are two predominant methods for parsing log data, Spell [7] and

Drain [15].

2.1.2 Log Sequence Representation

With structured log datasets, we look for trends within these datasets so normal

executing log patterns can be inferred and later be learned by our deep learning model.

However, most of the log data are not stand-alone message lines. For example, when

developing a software in microservice architecture, a downtime on a single service

would not only induce logs recording the downtime of the service itself, but also

multiple failed requests from other services that are connected to it. Thus, it is

crucial for logs to be grouped in a way such that contextual information can be

captured and packaged for the deep learning model to extract features.

7
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Since machine learning models cannot extract features directly from log data in the

form of texts and numbers, we must transform them into vectors. This is equivalent

to the word embedding step [30, 32, 3, 21] in natural language processing.

2.1.3 Anomaly Detection

There have been many machine learning methods [27, 42] trying to address the log

anomaly detection problem. They can be divided into two major categories: Recon-

struction of Normal Logs and Log Patterns Invariance Mining. While these methods

are effective and showing good performance, deep learning [43, 8, 5, 23, 26, 29, 28]

has become the driving force behind the continually-improved performance of log

anomaly detection.

One thing to note is that log anomaly detection poses a unique challenge due

to its nature: As systems and software generate an enormous amount of log data

on a daily basis, it is very expensive to have them all labelled and classified. Since

most of the anomalous log data are generated by unreproducible scenarios, such as a

fatal disruption to a running server or sudden power outage during system operation,

we typically don’t have labelled anomalous log data when performing log anomaly

detection. As a result, most works in the field of log anomaly detection is based on

unsupervised learning.

2.2 Empirical methods on Log Anomaly Detection

In this section, we will go through some foundational methods in the field of log

anomaly detection that are closely related to the topics of our work.

8
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Four representative works are discussed in this section. The first work is DeepLog

[8], which is one of the first approaches that brings deep learning to bear upon the

subject of log anomaly detection. The second work LogRobust [43] tries to address

the noise issue within log datasets, while the third and fourth works LogTransfer [5]

and LogTAD [13] attempt to resolve the cross-system log anomaly detection problem.

Table 2.1 lists the aforementioned methods [8, 43, 5, 13]. In addition, we also

point out in this table the specific issues these works are trying to address:

Name Noise and Instability Cross-system

DeepLog No No

LogRobust Yes No

LogTransfer No Yes

LogTAD No Yes

Table 2.1: Summary of empirical methods DeepLog [8], LogRobust [43],
LogTransfer [5] and LogTAD [13]. The two columns on the right are the topics our

work relates to and whether they have been resolved by previous works.

DeepLog: Du et al.’s [8] work on log anomaly detection was one of the earli-

est attempts in introducing natural language processing and deep learning into the

field of log anomaly detection. They proposed using the prevalent technique in nat-

ural language processing, Long-Short-Term-Memory(LSTM), to capture underlying

normal executing log patterns. After learning this underlying pattern, their model

then ranks the log events in a top-k likelihood depending on whether they follow the

existing log events. If the incoming log event lies outside of these top-k candidates,

the model would raise alert and label this new event as an anomaly. Figures 2.2a

and 2.2b demonstrate the structure of the DeepLog model and the LSTM mechanism

9
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within their model.

(a) DeepLog (images sourced from [8]) structure utilizing LSTM module

(b) LSTM model (images sourced from [8]) within the DeepLog structure

Figure 2.2: Demonstration of DeepLog structure (images sourced from [8]) and
LSTM mechanism applied

LogRobust: Introduced by Zhang et al. [5], LogRobust is one of the first models

that effectively addresses the issue of log data instability in log anomaly detection.

This work highlights noise and instability of log datasets as a major obstacle when

10
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performing log anomaly detection in real-world settings, which in fact has not yet

received enough attention. As demonstrated in Figures 2.3a and 2.3b, reference [5]

investigated multiple sources of log instability and discussed them in depth.

(a) Demonstration of how logs tend to be updated during their life cycle
(images sourced from [5]).

(b) Demonstration of the parsing errors that could occur during log
processing (images sourced from [5]).

Figure 2.3: Noise and instability investigated in LogRobust (images sourced from
[5])

With the help of the FastText [21] algorithm, LogRobust pre-trains their word

embedding model and inputs word vectors into the deep learning network. It is

one of the few models that explicitly address the noise and instability in log datasets.

Specifically, utilizing an Attention-based Bi-LSTM as shown in Figures 2.4a and 2.4b,

11
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the model has the ability to assign different weights to individual log sequences, thus

prioritizing valuable log sequences that contain important information over ones that

mainly contain noise. This measure effectively mitigates the impact of noise in log

data on the log anomaly detection task.

(a) LogRobust structure utilizing Attention-based Bi-LSTM
(images sourced from [5])

(b) Demonstration of the Attention-Based Bi-LSTM
mechanism in LogRobust structure (images sourced from [5])

Figure 2.4: LogRobust structure and Attention-based Bi-LSTM module applied
(images sourced from [5])

12
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LogTransfer: LogTransfer [5], proposed by Chen et al., presents a novel solu-

tion in transferring execution patterns of log events from a source system to a target

system using transfer learning. According to Figure 2.5b, the LogTransfer model

is composed of two key components: construction of representation and knowledge

transferring between source and target systems. In order to construct the represen-

tation of log events, a robust word embedding method, Glove [32], is employed to

convert log messages from words into vectors which can be processed by the deep

learning model. Then as demonstrated in Figure 2.5a, by training the Long-Short-

Term-Memory(LSTM) network [18] together with fully connected layers on normal

and anomaly log events obtained from the source system, the LogTransfer model

can capture the patterns needed to discriminate normal and anomalous logs in the

source system. Then, through fine-tuning on log sequences from the target system

and post-processing by the fully connected layers, the LSTM network eventually gains

the ability to detect log anomalies in the target system. Through these two steps,

LogTransfer can effectively transfer the knowledge on log events from a source system

to a target system, enabling high accuracy in log anomaly detection in cross-system

settings.

13
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(a) Workflow of the transfer learning component in LogTransfer (Image
sourced from [5]).

(b) LogTransfer structure (Image sourced from [5]).

Figure 2.5: LogTransfer structure and transfer learning flow (Images sourced from
[5])

LogTAD: Han et al. introduced LogTAD [13] as a cross-system log anomaly

detection approach, which is enabled by domain adaptation, an important subfield

of transfer learning. With a unique domain adaptation structure as shown in Figure

2.6b, LogTAD only requires the normal executing logs from source system and a small

amount of normal executing logs from target system for the model to understand how

normal patterns of log events are like in both source and target systems. LogTAD

leverages a word2vec model [30] during the log embedding process followed by a

LSTM model in the feature extraction process. Domain adversarial training [10,

9], as demonstrated in Figure 2.6a, is then used to create a generator-discriminator

14

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. – Si Tong Liu; McMaster University – Electrical and Computer Engineering

mechanism where the model’s prediction will serve as generated data while ground-

truth data will serve as real data so that data from both source and target domains

cannot be distinguished by the discriminator. The trained model is then capable of

performing log anomaly detection on both the source and target systems. LogTAD

has significantly reduced the need for labelled anomalous log data, which is challenging

to obtain in real-world scenarios, and thus lowering the barriers on data requirements

for log anomaly detection.

(a) Demonstration of data distribution after domain adversarial training
in LogTAD structure (Image sourced from [13])

(b) LogTAD workflow (Image sourced from [13])

Figure 2.6: LogTAD’s domain adversarial training mechanism and workflow (Images
sourced from [13])

15
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Chapter 3

Research Methodologies

In this chapter, we will introduce the framework of LogRT and take a deep dive into

how each component in our network contributes to the competitive performance in

the experimental stage. We will discuss how the application of Attention-based Bi-

LSTM mechanism contributes to an improved performance on the task of log anomaly

detection in a cross-system setting.

3.1 Overall Framework

Our work aims to resolve the challenge of instability and presence of noise in log

datasets during feature extraction phase when performing log anomaly detection in

a cross-system scenario.

We first perform feature extraction on normal execution logs with an Attention-

based Bi-LSTM module inspired by LogRobust [43], which was applied in single

system log anomaly detection. Through this Attention-based Bi-LSTM module, we

can direct more attention to the log sequences which contain valuable information of

16
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underlying execution patterns of the log datasets instead of noisy log sequences that

contain irrelevant information. Consequently, our model has the ability to reduce

the impact of noise and instability in log datasets and extract features in a robust

manner. Then, we leverage a domain adversarial training approach, first proposed

by Han et al. [13], to map log data points from both source and target datasets into

the same domain, thus enabling our model to operate in a cross-system setting. After

the feature extraction and transfer learning phases, we empower our network’s ability

in performing anomaly detection through utilizing the Deep Support Vector Data

Description [33] approach. Figure 3.1 provides an overview of our network model.

Figure 3.1: LogRT Architecture

17

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. – Si Tong Liu; McMaster University – Electrical and Computer Engineering

3.2 Log Parsing and Log Representation

To begin with, we process the log datasets and embed them into word vectors. In this

work, we apply Drain to parse our raw logs into structured log lines and word2vec

[30] for log embedding.

Log Parsing and Dimension Reduction: The features we want to extract

from log datasets are those that carry the information regarding normal executing

patterns of systems and software so the model can learn and distinguish anomalous

log sequences if the input pattern starts to deviate. Figure 3.2 provides a comparison

of our dataset and the original logs after using Drain [15]. Columns of parsed log

from left to right are LineId, Label, Timestamp, Date, Node, Time, NodeRepeat,

Type, Component, Level, Content, EventId, EventTemplate, and ParameterList. As

demonstrated, the raw chunk of logs have been parsed into well-structured log se-

quences.

We use EventTemplate to extract information from each line of log events. As

shown in Figure 3.2, there is also a column named Content, which is similar to Event-

Template and contains the specific parameters for each line of log. The reason we

don’t use Content to conduct feature extraction is because the information in Content

is noisy and volatile with more dimensions than we need. For example, if we compare

the same software when it has only one user to a scenario where it is globally deployed

with millions of users, their log data might share the same pattern yet the parameters

within them will differ greatly. The model will have to understand that even though

the software’s log under these two scenarios have a huge difference in parameters, they

are essentially the same pattern-wise. Thus, compared to using EventTemplate, using

the Content column of log dataset would only increase the dimension and complexity
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of the data input to our model while adding little benefit to our model’s learning

process.

(a) Caption of
BlueGene/L [24] log

dataset before parsing.

(b) Caption of
BlueGene/L [24] log

dataset after
parsing.

Figure 3.2: Demonstration of our BlueGene/L [24] log dataset after utilizing Drain
[15] as log parser
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Log Embedding: With the logs being parsed into structured datasets, we embed

them into word vectors utilizing word2vec [30]. This is a crucial step in which we

transform log dataset into the form that semantic and contextual information can be

captured by the LogRT model to yield prediction results.

3.3 Noise Simulation

Since we want our network to be applicable in real-world scenarios, after researching

on different types of noise that tend to exist in log dataset, we choose to simulate

three types of noise within our datasets which are also investigated in [43].

Table 3.1: Source of log instability and noise in real-world environments and our
equivalent simulations

Sources from real-world scenarios Simulations

Packet loss, updated log templates, pre-

processing errors

Removal of words within log lines

Packet loss, updated log templates, pre-

processing errors

Removal of log lines within log sequence

Network latency, collection and trans-

portation, distributed logging

Shuffle log lines of different timestamps

In order for the noise to be as realistic as possible, we divide the log datasets into

windows with certain length, where we modify a specific percentage of the log events

in the window to inject noise under our desired percentages. Below is the pseudo

code for the noise construction functions.
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Algorithm 1: Removal of words within log line

Input : df : log dataset, window: size of each window, percentage: deletion
percentage

Output: df with words deleted
1 delete word index = [ ];
2 total rows = length of df ;
3 iterations = total rows//window;
4 for i in range(iterations) do
5 start = i× window;
6 end = start + window;
7 number of lines to delete from = integer value of (window × percentage);
8 indices of line to delete words = randomly select (number of lines to

delete from) unique indices from the range [start, end);
9 for j in indices of line to delete words do

10 curr sentence = ’EventTemplate’ at index j in df;
11 word list = split curr sentence into list of words;
12 if length of word list > 1 then
13 num words to remove = random integer between 1 and length of

word list − 1;
14 words to remove = randomly select num words to remove indices

from the range [0, length of word list);
15 new word list = [word list [j] after deleting words to remove];
16 new sentence = join the words in new word list with space;
17 replace ’EventTemplate’ at index j with new sentence;

18 else
19 continue

20 return df
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Algorithm 2: Removal of log lines within log sequences(df , window,
percentage)

Input : df : log dataset, window: size of each window, percentage: deletion
percentage

Output: df with lines deleted
1 delete line index = [ ];
2 total rows = length of df ;
3 iterations = total rows//window;
4 for i in range(iterations) do
5 start = i× window;
6 end = start + window;
7 number of lines to delete = integer value of (window × percentage);
8 indices of deleted lines = randomly select (number of lines to delete)

unique indices from the range [start, end);
9 df = df exclude indices of deleted lines;

10 reset the index of df ;
11 return df

Algorithm 3: Shuffle log lines of different timestamps(df , window,
percentage)

Input : df : log dataset, window: size of each window, percentage: deletion
percentage

Output: df with lines shuffled
1 shuffle line index = [ ];
2 total rows = length of df ;
3 iterations = total rows//window;
4 for i in range(iterations) do
5 start = i× window;
6 end = start + window;
7 number of lines to shuffle = integer value of (window × percentage);
8 indices of shuffled lines = randomly select (number of lines to shuffle)

unique indices from the range [start, end);
9 while length of number of lines to shuffle >=2 do

10 randomly select (a line k) from the range number of lines to shuffle;
11 randomly select (a line l) from the range number of lines to shuffle;
12 shuffle the two lines k and l;

13 return df
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3.4 Feature Extraction

When performing log anomaly detection in real-world scenarios, we usually run into

noise simulated in Section 3.3. Regular running logs with such instability and noise

will lose contextual information since logs that yield normal execution patterns are

impaired or misplaced. We want to reduce the impact of instability and noise so the

model can still extract valuable features. Through the application of the Attention-

based Bi-LSTM mechanism, our model not only captures more contextual information

from the log dataset but can also focus on the logs within these data that contributes

more to the construction of normal executing logs instead of the noisy logs, thus

exhibiting competitive performance regardless of noise or instability.

LSTM: Because our network aims to capture the normal executing log patterns so

it can differentiate logs when they deviate from these normal patterns, it is essential to

extract informative features. Inspired by the work DeepLog [8], we look at underlying

patterns in log datasets as if they are grammatical rules in natural languages. Since

grammatical rules present very strong sequential patterns, LSTM is adopted in our

work as the basis for feature extraction due to the strong ability of Recurrent Neural

Network [18] in handling sequential data compared to other deep neural network

structures.

Bi-LSTM: As demonstrated above, instability and noise in log dataset will jeop-

ardize valuable contextual information and damage the integrity of log sequences.

Extracting features from log dataset under a given noisy environment is significantly

more difficult than under closed-world settings. The only way to yield satisfying

performance is to extract more information on a unit basis with the given dataset.

Through the application of the Bidirectional LSTM module [36, 11, 43], we are able
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to capture bidirectional contextual information from both future and past hidden

states, while traditional LSTM model could only use the information from the past

time states.

Figure 3.3: Bi-LSTM Architecture in LogRT

As shown in Figure 3.3, our Bi-LSTM module explores an extra direction of hidden

state and contextual information to enhance its representation power. The forward

process is able to carry dependencies and patterns from the past position to current

sequence, while the backward process can communicate dependencies and patterns

from the future sequence to the current position. With information from both past

and future, our Bi-LSTM model is able to capture more intricate and long-range fea-

tures compared to a regular LSTM model, thus enabling itself to provide a much more

robust and expressive representation of the log patterns. This will aid the log anomaly
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detection process under the real-world settings with an improved performance.

Attention Mechanism: Aside from the Bi-LSTM module for extracting bidi-

rectional contextual information, our model adds another mechanism into the feature

extraction process: Attention. Attention was first introduced by Bahdanau et al. [2]

and has become a robust and effective approach in the natural language processing

toolbox. By viewing our log dataset as a language with underlying grammatical pat-

terns, attention mechanism [38] leads to a performance boost when it comes to our

task. The attention mechanism employed in our design has a structure as in shown

Figure 3.4.

Figure 3.4: Architecture of Attention Mechanism in LogRT

Our attention mechanism’s formula of calculating attention weights is as shown

in Equation 3.4.1, in which Q, K, and V individually represents Query, Key and
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Value respectively [38]. We treat the output generated from our Bi-LSTM module

as the Key vector and Value vector, and the hidden state of the Bi-LSTM as the

Query vector.

Attention(Q,K, V ) = softmax(QKT )V (3.4.1)

Since the hidden state and output are generated by a Bi-LSTM module, we need

to concatenate the hidden state of both directions as shown in Equation 3.4.2 and

modify their dimensions first before feeding them into the attention mechanism.

hcurrent = concate[hforward, hbackward] (3.4.2)

Now with both directions of hidden state comprising a Query vector, we perform

matrix multiplication with the output as demonstrated in Equation 3.4.3. This step

is to obtain a measure of relevance and importance each Key vector has towards the

Query vector. The output is the attention weight that directly decides how much

attention should be allocated to each Key.

Attention Weight = hcurrent × outputBi-LSTM (3.4.3)

Next, we run the obtained attention weight through a softmax layer such that we

can normalize them into a probability distribution in the range of [0,1]. This process

is shown in Equation 3.4.4 and produces a soft attention weight assigned to each input

vector, indicating the contribution of each input vector towards the final attention

output. This probability distribution allows the model to put more attention on

the input log data that possess more importance and information, as higher weights
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indicate more importance and lower weights indicate less importance.

Softmax Attention = softmax(Attention Weight) (3.4.4)

With the soft attention weight as the Query vector to guide the decision on

which part of the log sequence to focus on, we multiply this weight with the output

of the Bi-LSTM module as the Value vector. We arrive at the weighted sum of the

Value vector as shown in Equation 3.4.5. Even if the log dataset has lost contextual

information and valuable patterns due to noise and instability, with the attention

weight, our model can still focus on the important log data regardless of the noise

and instability issue and yield competitive results.

Attention Output = Softmax Attention× outputBi-LSTM (3.4.5)

3.5 Domain Adaptation

With the robust feature extraction modules, we can now capture important contextual

information from noisy and unstable log dataset. Because we aim to provide a robust

log anomaly detection solution under cross-system settings, we need to have the

ability of transferring the learned log patterns from a source dataset to a target

dataset. Among many applications of transfer learning in the field of log anomaly

detection, domain adaptation has shown outstanding performance. Inspired by Han

et al. [13], we apply domain adversarial training in our work.

Gradient Reversal Layer: This is a layer that follows the attention output

directly. Since we want to learn the normal executing patterns of a source system log
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dataset and then apply them to the target system log dataset, we need the model to

extract features that can represent both source and target domains. However, as the

datasets might not share the same distribution, the patterns demonstrated during the

feature extraction stage might differ as well, leading to low performance of the model.

The employment of a gradient reversal layer [9] can force the model to enhance the

pattern similarity learned between those two datasets through reversing the sign of

the gradient and thus deliver good performance.

As we are using the same feature extractor for both datasets, the GRL reverses

the gradient of our feature extractor and makes the gradient computed within the

extractor to have opposite directions during the update of parameters. As a result,

the model is compelled to learn features that can optimally represent both the source

and target log datasets, consequently achieving good generalization and performance

in log anomaly detection on the target system.

Domain Adversarial Training: After extracting the feature and generalizing

them on both source and target domains, we use domain adversarial training inspired

by Han et al. [13] to map the feature representations of the two domains into the same

one as we demonstrate in Figure 3.5. This is achieved through utilizing the minmax

optimization function [10] shown in Equation 3.5.1, in which D is the discriminator

differentiating if data is from source or target domain. The feature extractor Attention

Bi-LSTM module acts as a generator G. Through minimizing the loss of the generator

G in producing samples similar to the ground-truth log dataset, the Attention Bi-

LSTM module gains the ability to effectively simulate samples resembling the ones

from the source domain. Then, through maximizing the loss of the discriminator in

differentiating data from source and target domains, we force the discriminator to
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discriminate effectively between results from the Attention Bi-LSTM model and the

target domain. After this training process, the Attention Bi-LSTM module will learn

shared patterns between source and target domains and facilitate the transfer of log

patterns from source to target domain.

Ladv = min
G

max
D

(EXS∼PSource
[logD(G(XS))]

+ EXT∼PTarget
[log(1−D(G(XT )))] (3.5.1)

Figure 3.5: Data distribution of both source and target domains after domain
adaptation

3.6 Anomaly Detection

As the feature extractor has captured valuable information to support the model

in formulating normal executing patterns, the model acquires through the domain

adaptation process the ability to map both source and target system domains into

the same distribution, which is demonstrated in Figure 3.5.
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Our training datasets consist of only normal execution logs from both source

and target systems, and we need our model to perform classifications of normal and

anomalous logs based only on this type of data. As a result, this task is a one-

class classification [35, 37, 17, 34]. In this work, we apply a predominant one-class

classification method that has been proven to be effective in log anomaly detection

by many other works [12, 13], the Deep Support Vector Data Description [33].

Figure 3.6: Data distribution of normal and anomalous logs after applying Deep
SVDD

By applying Deep SVDD [33], we aim to include all the normal log points inside

a single hypersphere while excluding the anomaly data points outside of the hyper-

sphere, in which the center c is derived from the normal log data representations and

the volume of the sphere is minimized as shown in Figure 3.6. The minimization of

the hypersphere forces the model to extract common factors of the log sequences.

The construction of the model is delicate since we need to prevent the hypersphere

from collapsing, which happens under many circumstances according to [33]. With

a log data point x, the distance between x and the center c is given by Equation
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3.6.1. Here d is the distance between log data point x and center c, L is the model

representation of LogRT for the given point x, and W is the weight within the model.

d = ‖L(x;W )− c‖2 (3.6.1)

In the testing stage where the dataset consists of both normal and anomalous log

data, the normal logs will be confined within the hypersphere while the anomalous log

data will have a further distance towards the center and lie outside of the boundary.
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Chapter 4

Experiments

In this section, we discuss the experimental details of LogRT. We start by introduc-

ing the datasets we experiment with, Thunderbird [31] and BlueGene/L [24] datasets.

Then, we move on to evaluation metrics of our study and simulation of the noisy and

unstable logs during the experiment. Our comparison and ablation studies demon-

strate the effectiveness of LogRT, with LogRT outperforming state-of-the-art network.

4.1 Dataset

The datasets we use to test our work are Thunderbird and BlueGene/L supercomputer

system datasets. The Thunderbird log dataset was obtained from a Thunderbird

supercomputer at the Sandia National Laboratory in Albuquerque [31]. It has 9,024

processors and a memory capacity of 27,072 GB. The BlueGene/L log dataset was

obtained from a BlueGene/L supercomputer at the Lawrence Livermore National

Laboratory in Livermore, California [24]. It has 131,072 processors and a memory

capacity of 32,768 GB. These two datasets are both from Loghub, a cornerstone work
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by He et al. [16] in which they collected and organized log datasets sourced from a

variety of systems for future studies in the field of log data analysis. The work of Han

et al. [13] provided statistics regarding these two log datasets as shown in Figure 4.1.

Figure 4.1: Number of normal and anomalous log sequences within Thunderbird
and BlueGene/L datasets (Image sourced from [13])

We can tell from Figure 4.1 that both of these datasets consist mainly of normal

log sequences together with a small proportion of anomalous log sequences. Their

distribution of normal and anomalous log data fits our research goal as our training

procedure is carried out using only normal log sequences.

4.2 Evaluation Metrics

The metrics we utilize to evaluate the performance of LogRT are F1-score and AUC

score. There are several other alternatives that we could have chosen, specifically

precision and accuracy. The reason we did not use them is that when performing

log anomaly detection, log dataset usually exhibits an imbalance between the normal

sequences and the anomalous sequences, with the former constituting the main part

of the dataset. This imbalance, illutrated in Figure 4.2, leads to less informative

results in terms of accuracy and precision produced by deep learning models, because

misclassification of anomalous logs will have minimal impact on the prediction result
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compared to the majority of normal sequences that are correctly classified.

Figure 4.2: Distribution of normal and anomalous log sequences in BlueGene/L and
Thunderbird datasets

On the other hand, we can see from Equation 4.2.1 that F1-score takes into account

both recall rate and precision, in which the recall rate can provide us with information

on the proportion of normal and anomalous log sequences that are correctly classified

into the classes they belong, thus giving a much more comprehensive insight into the

performance of our model.

F1 = 2 · precision× recall

precision + recall
(4.2.1)

AUC score measures the area under the Receiver Operating Characteristic curve,

which is drawn with true positive rate as the y axis and false positive rate as the

x axis. Equations 4.2.2 and 4.2.3 demonstrate the components of AUC score and
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provide a holistic assessment of the model even with an imbalanced distribution of

datasets.

True Positive Rate =
True Positives

True Positives + False Negatives
(4.2.2)

False Positive Rate =
False Positives

False Positives + True Negatives
(4.2.3)

4.3 Noise Simulation

Since the datasets we use do not contain the specific noise we want to investigate as

in most real-world scenarios, we choose to develop simulation algorithms to simulate

noisy environments with the relevant pseudo code given in Section 3.3. Three types

of noise are simulated, including: 1. Removal of words within log lines, 2. Removal

of log lines within log sequence, 3. Shuffle log lines of different timestamps. They

are then injected into the original log datasets of Thunderbird and BlueGene/L with

designated ratios of 5%, 10%, 15%, and 20%. The setup of these percentages and

noise is inspired by the work LogRobust [43].

4.4 Comparison

We demonstrate LogRT’s competitive performance through the comparison between

LogRT and LogTAD [13], as LogTAD utilizes a LSTM model as feature extractor

and addresses the cold-starting issue when handling newly onboarded systems with

domain adversarial training.

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. – Si Tong Liu; McMaster University – Electrical and Computer Engineering

4.4.1 Training Details

To make a fair comparison, we train LogRT and LogTAD on the same Thunderbird

and BlueGene/L datasets with the same ratios of simulated noise. We train both

models for 100 epochs with a training size of 100,000 and a testing size of 1,000. By

varying the learning rate between 0.001 to 0.0005, we settle at 0.001 as it provides the

best trade off between convergence rate and model performance. Same as LogTAD,

we use a batch size of 1024 and a weight decay of 1e-6 for the Adam optimizer.

4.4.2 Results

Table 4.1 shows the result of LogRT model compared to the LogTAD model on

the task of log anomaly detection transferring from BlueGene/L to Thunderbird.

Experiments are carried out on the various ratios of noise simulated respectively

within Thunderbird and BlueGene/L log datasets. A noteworthy point is, because

these noises are not simulated cumulatively, the model performance under increasing

ratios of the same type of noise might not degenerate monotonically. This is due to

the randomness in simulation of noise, which we will further discuss in Chapter 5.

We have also conducted our experiment on datasets with a mixture of the sim-

ulated noise. We simulated different types of noise with the same ratios on both

Thunderbird and BlueGene/L datasets. Table 4.2 shows the comparison result of

LogRT with the LogTAD model when performing on these mixed ratio of noise. It

can be seen that LogRT outperforms LogTAD when the noise ratio is above 5%.

According to both tables, our model LogRT presents better performance in most

cases compared to the state-of-the-art LogTAD model, thus confirming the efficacy

of our proposed robust transferring learning-based log anomaly detection approach.
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Dataset

Performance(AUC/F1) Models
LogTAD LogRT

Original 0.79716/0.75197 0.80945/0.76389

Remove words 5% 0.77165/0.73145 0.80692/0.76485

Remove words 10% 0.78743/0.74961 0.78506/0.74287

Remove words 15% 0.79301/0.75939 0.78703/0.75414

Remove words 20% 0.79020/0.75963 0.80180/0.77086

Delete lines 5% 0.80277/0.76135 0.81658/0.77477

Delete lines 10% 0.79706/0.76005 0.79639/0.75980

Delete lines 15% 0.78877/0.75647 0.79146/0.75925

Delete lines 20% 0.78673/0.75782 0.79019/0.76044

Shuffle lines 5% 0.78809/0.75112 0.81343/0.77565

Shuffle lines 10% 0.77379/0.74412 0.78421/0.75425

Shuffle lines 15% 0.75508/0.73219 0.77977/0.75545

Shuffle lines 20% 0.77499/0.75671 0.78276/0.76575

Table 4.1: Result of LogRT and LogTAD models transferring from BlueGene/L to
Thunderbird dataset with three types of noise and 4 noise ratios
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Dataset

Performance(AUC/F1) Models
LogTAD LogRT

5%of mixed noise 0.79008/0.76043 0.77900/0.74904

10%of mixed noise 0.76251/0.74576 0.78015/0.76230

15%of mixed noise 0.72926/0.72155 0.77543/0.76674

20%of mixed noise 0.76348/0.76287 0.77872/0.77479

Table 4.2: Result of LogRT and LogTAD models transferring from BlueGene/L to
Thunderbird dataset with a mixture of the three types of simulated noise

4.5 Ablation study

In this section, we conduct ablation studies regarding the factors that contribute to

the competitive performance of our proposed method.

4.5.1 Bidirectional LSTM

We verify the contribution of the Bi-LSTM mechanism to an increase in performance

of our model by testing three models on the same dataset. The first model is a regular

LogRT model, the second model is a LogRT model without the bidirectional LSTM

mechanism, and the third model is the LogTAD model using only traditional LSTM.

The dataset being used are BlueGene/L and Thunderbird with 20% removal of words.

Figure 4.3 shows the result.
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Figure 4.3: Result comparison of Bidirectional LSTM with other models

As demonstrated, the contribution of bidirectional LSTM mechanism to the com-

petitive performance of our model is significant and certain.

4.5.2 Attention Mechanism

In order to verify the effectiveness of Attention mechanism in our work, we compare

a regular LogRT model, a LogRT model without the Attention mechanism, and a

LogTAD model using only traditional LSTM together on the BlueGene/L and Thun-

derbird datasets with 20% removal of words. Comparison result is shown in Figure

4.4.
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Figure 4.4: Result comparison of Attention mechanism with other models

As illustrated, our Attention mechanism contributes significantly to the effective-

ness of our model LogRT.
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Chapter 5

Future Improvements

In this section, we discuss some of the potential improvements that can be made to

the design of our work.

5.1 Dataset Selection

The creation of a well-labelled log dataset is usually difficult, as for a log dataset to

be informative, the size of the dataset must be large enough. When we first explored

the field of log anomaly detection, we noticed that nearly all the existing works on

log analysis obtained their dataset from the work of Loghub [16], in which He et

al. collected and organized the log dataset that had been generated by other labs,

institutions, and corporations. Only a small portion of them is labelled normal and

anomalous as shown in Figure 5.1.
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Figure 5.1: Proportion of different type of log datasets in Loghub that are labelled

Some of these log datasets are more than 10 years of age. Log templates of these

system have been updated many times over the past decade, rendering a diminishing

utility in providing information for log analysis.

We tried generating our own log dataset, but due to the large amount of work

and resources required on domain knowledge, we decided to use existing datasets

eventually. For a more systemtaic investigation of the the log anomaly detection

task, it is favorable to construct datasets that are up to date and customized.

5.2 Injection of Noise

As mentioned in Section 4.4, the noise simulated within the BlueGene/L and Thun-

derbird datasets is not injected cumulatively. The reason we did not adopt the cu-

mulative injection approach is because it is error prone. Ensuring the simulations we
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have already performed not to be affected by the new simulations we conduct is much

more difficult than we first imagined, specifically due to the size of the dataset where

BlueGene/L has 1,212,150 lines and Thunderbird has 3,737,209 lines [13].

However, injecting noise cumulatively can potentially provide us with a more

straightforward demonstration of the efficacy of LogRT, in which the performance of

model under the same type of noise should degrade as the proportion of noise in-

creases. In the future, it is desirable to have a cumulative noise simulation algorithm.

5.3 Ability of Information Transfer

To demonstrate the robustness of our model in a cross-system setting, we have inves-

tigated both directions of transferring from BlueGene/L to Thunderbird dataset and

from Thunderbird to BlueGene/L dataset. The result from BlueGene/L to Thunder-

bird has been demonstrated in Section 4.4, in which we observe LogRT outperforming

LogTAD in most cases. Normal log sequences of the Thunderbird dataset have 1,753

unique words while the BlueGene/L dataset only has 664 unique words as illustrated

in Figure 5.2. Transferring from Thunderbird to BlueGene/L should be an easier

task with the Thunderbird log dataset as the source domain providing a much larger

feature space and also volume of training samples according to Figure 4.1 and Fig-

ure 5.2. However, the performance of LogRT when transferring from Thunderbird to

BlueGene/L is not as good as the performance of LogTAD.
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Figure 5.2: Amount of shared words between BlueGene/L and Thunderbird log
datasets(Image source from [13])

It is counter-intuitive that LogRT can outperform SOTA models when transfer-

ring from a small domain to a large domain, which is a more difficult task compared

to transferring from a large domain to a small domain. Another thing to note is that

both LogRT and LogTAD exhibit a decrease of around 15% in F1-score when trans-

ferring from BlueGene/L to Thunderbird compared to the other direction. This might

be because LogRT’s Attention-based Bi-LSTM mechanism has a stronger ability in

focusing on informative word features, thus diffusing its attention when learning from

a larger domain and leading to a decrease in model performance. We think conduct-

ing feature selection on the Thunderbird dataset to extract features that are most

common between Thunderbird and BlueGene/L might help increase the performance

of model.

With that being said, LogRT still outperforms on this more difficult task than

LogTAD, further verifying the efficiency of our work.
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Chapter 6

Conclusion

We have proposed a robust approach named LogRT for cross-system log anomaly

detection. Utilizing an Attention-based Bi-LSTM mechanism, our model is able to

reduce the impact of noise within the log datasets and extract valuable features for the

anomaly detection process. We also have provided a systematic method for simulating

noise within log datasets which we hope can be of help to other researchers in the

future. With thorough experimental results and ablation studies, we have proven the

effectiveness of LogRT.
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