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Abstract

This dissertation consists of three chapters that generally focus on the design of welfare-maximizing
treatment assignment rules in heterogeneous populations with interactions. In the first two chapters,
I focus on an important pre-step in the design of treatment assignment rules: inference for heteroge-
neous treatment effects in populations with interactions. In the final chapter, I and my co-authors
study treatment assignment rules in the presence of social interaction in heterogeneous populations.

In chapter one, I argue that statistical inference of heterogeneous treatment effects (HTEs) across
predefined subgroups is complicated when economic units interact because treatment effects may
vary by pretreatment variables, post-treatment exposure variables (that measure the exposure to
other units’ treatment statuses), or both. It invalidates the standard hypothesis testing technique used
to infer HTEs. To address the problem, I develop statistical methods (asymptotic and bootstrap) to
infer HTEs and disentangle the drivers of treatment effects heterogeneity in populations where units
interact. Specifically, I incorporate clustered interference into the potential outcomes model and
propose kernel-based test statistics for the null hypotheses of (a) no HTEs by treatment assignment
(or post-treatment exposure variables) for all pretreatment variables values; and (b) no HTEs by pre-
treatment variables for all treatment assignment vectors. To disentangle the source of heterogeneity
in treatment effects, I recommend a multiple-testing algorithm. In addition, I prove the asymptotic
properties of the proposed test statistics via a modern poissonization technique.

As a robust alternative to the inferential methods I propose in chapter one, in chapter two, I
design randomization tests of heterogeneous treatment effects (HTEs) when units interact on a
single network. My modeling strategy allows network interference into the potential outcomes
framework using the concept of network exposure mapping. I consider three null hypotheses that
represent different notions of homogeneous treatment effects, but due to nuisance parameters and
the multiplicity of potential outcomes, the hypotheses are not sharp. To address the issue of multiple
potential outcomes, I propose a conditional randomization inference method that expands on existing
methods. Additionally, I consider two techniques that overcome the nuisance parameter issue. I
show that my conditional randomization inference method, combined with either of the proposed
techniques for handling nuisance parameters, produces asymptotically valid p-values.

Chapter three is based on a joint paper with Young Ki Shin and Seungjin Han. We study treatment
assignment rules in the presence of social interaction in heterogeneous populations. We construct
an analytical framework under the anonymous interaction assumption, where the decision problem
becomes choosing a treatment fraction. We propose a multinomial empirical success (MES) rule
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that includes the empirical success rule of Manski (2004) as a special case. We investigate the
non-asymptotic bounds of the expected utility based on the MES rule.
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Π = (0.3, 0.4, 0.5, 0.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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Chapter 1
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Treatment Effects under Interference
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1.1 Introduction

The literature on causal inference mainly focuses on the identification and estimation of aggregate
treatment effects. Such aggregate effect metrics provide a measure of social welfare but fail to
reveal the variations in treatment effects that are crucial for designing welfare-maximizing treatment
assignment rules. For instance, a job search assistance program may have positive aggregate effects
on income and welfare, yet create large income and welfare disparities in society because the effects
may vary across persons. This observation has motivated a growing inquiry into the estimation and
inference of heterogeneous treatment effects (HTEs). To infer HTEs, the classical approach involves
the estimation and comparison of conditional average treatment effects (CATEs) of predefined
subgroups in a population. The formal comparison of CATEs requires some hypothesis testing
procedure. Crump et al. (2006), Ding et al. (2016), Wager and Athey (2018), and Sant’Anna (2021)
are among the few existing HTEs testing papers.

This chapter proposes a pair of nonparametric tests to infer HTEs across subgroups while
accounting for interference among economic units. According to Cox (1958), interference exists
when the treatment of one unit affects the response of another unit. It may be due to physical,
virtual, or social ties among the members of a population. Several mechanisms could explain how
interference occurs, but regardless of the medium, it complicates the inference of HTEs across
subgroups. Due to interference, treatment effects may vary by pretreatment variables, post-treatment
exposure variables (that measure the exposure to other units’ treatment statuses), or both. For
instance, suppose we find that the effectiveness of a Covid-19 vaccine varies by city in Canada.
Note that the effectiveness of a Covid-19 vaccine for an individual depends on the vaccination rate
among her physical contacts. Therefore, it is crucial to verify if the observed variation is explained
by the natural differences in the populations across cities (e.g., genetic variation) or if it is due to
variations in the vaccination rate across cities. In this example, the Canadian city is a pretreatment
variable, and the vaccination rate is a post-treatment exposure variable. This example demonstrates
that the existing HTEs tests (developed under the assumption of no interference in the papers cited
above) will most likely lead to erroneous decisions when some form of interference is present.

I propose kernel-based test statistics for the null hypothesis of (a) constant treatment effects
(CTEs) by treatment assignment for all pretreatment variables values; and (b) CTEs by the pretreat-
ment variables for all treatment assignment vectors. Then, I recommend the Holm (1979) multiple
testing algorithm to jointly test the null hypotheses and disentangle the source of heterogeneity in the
treatment effects. The proposed test statistics are sums of the weighted L1-norm of the differences in
consistent kernel estimators of CATEs that characterize the null hypotheses. Although, it is possible
to construct the test statistics with the general Lp-norm for p ≥ 1, I use the L1-norm because it is the
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natural distance measure and also because it eases the complexity of the asymptotic theory (Lee and
Whang (2009)).

The motivation for this chapter is three-fold and closely tied to the null hypotheses mentioned
above. First, the test of the null hypothesis of CTEs by treatment assignment for all pretreatment
variables values in isolation informs policymakers whether to scale a program or not. If we fail to
reject the null hypothesis of CTEs across treatment assignments for all values of the pretreatment
variables, it implies that treatment spillover effects are absent and a program can be scaled without
any negative or positive externalities. Second, the null hypothesis of CTEs by the pretreatment
variables for all treatment assignment vectors in isolation helps to detect HTEs across subgroups
defined by pretreatment variables. Knowledge of a program’s treatment effect variation across
subgroups can guide its extension to other populations (external validation). Third, jointly testing
both null hypotheses helps to disentangle the source of variation in treatment effects. It is the
leading motivation of this chapter because finding the drivers of the variations in treatment effects
in an interconnected human society is a crucial step in designing welfare-maximizing treatment
assignment rules.

The main theoretical results show that the proposed test statistics have an asymptotically standard
normal null distribution. I prove these results using a modern poissonization technique due Giné
et al. (2003). To quote Lee and Whang (2009, p. 309), "the poissonization technique introduces
additional randomness by assuming that the sample size is a Poisson random variable." It enables
the use of techniques that exploit the independent increments and infinite divisibility properties
of Poisson processes. Also, I show that the test statistics have asymptotically valid sizes and are
consistent against fixed and sequences of local alternatives. Moreover, to better approximate the
null distributions of the proposed test statistics in small-sample settings, I propose and recommend
bootstrap methods of inference.

In summary, I contribute to the literature in different ways. This chapter is the first to propose a
pair of nonparametric tests for HTEs that (i) can accommodate several forms of clustered interference
and (ii) can disentangle the sources of heterogeneity in treatment effects under clustered interference.
To the best of my knowledge, this study is also the first to provide a bootstrap approach for testing
HTEs.

The organization of the rest of the chapter is as follows. I review existing related work in
the second part of this section. Section 1.2 describes the setup, the testing problem, and the test
statistics. In Section 1.3, I present the main asymptotic properties of the test statistics. I introduce
the bootstrap methods in Section 1.4. Monte Carlo simulation design and results are in Section 1.5.
My concluding remarks are in Section 1.6. All proofs, useful theorems, lemmas, and detailed results
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from simulation experiments are in the Appendix.

1.1.1 Related Literature

The nascent literature on the estimation and inference of HTEs continues to grow and spans multiple
fields. The chapter falls under the arm of the literature that studies the inference of HTEs using tests
based on average treatment effects (ATEs) of subgroups defined by pretreatment variables. Bitler,
Gelbach, and Hoynes (2006) provide an in-depth critique of this approach to testing for HTEs. They
argue that heterogeneity of CATEs across subgroups often does not imply individual treatment effect
variation unless one assumes constant subgroup treatment effect (CSTE). Nonetheless, this is the
approach of this current chapter because regardless of the CSTE assumption, variations in ATEs of
subgroups are crucial in the design of treatment assignment rules where pretreatment variables are
used to set eligibility conditions. In econometrics, tests to detect variation in ATEs across subgroups
have been studied by Crump et al. (2006) and Lee and Shaikh (2014). Both studies abstract from
interference and propose nonparametric tests to infer HTEs across predefined subgroups. In contrast,
I allow clustered interference and use kernel-based estimators to construct the test statistics. To my
knowledge, this is the first research to use kernel-based test statistics to test for HTEs.

On the theoretical side, Lee, Song, and Whang (2013) and Chang, Lee, and Whang (2015)
establish asymptotic null distributions for the Lp-type functions of kernel-based CATE estimators
using the poissonization technique of Giné, Mason, and Zaitsev (2003). Allowing for clustered
interference in the potential outcomes model requires a modification of the estimator of CATE to fit
the current framework. In addition, the proposed test statistics in this chapter are different, and the
theoretical results are mostly nontrivial extensions of those in the articles mentioned above.

Finally, the nonparametric bootstrap algorithms I propose are similar to existing algorithms
in the literature. For instance, Li, Maasoumi, and Racine (2009) use a bootstrap algorithm akin
to that described in Subsection 1.4.1 to test for the equality of two density or conditional density
functions. Also, Racine (1997) employs a residual bootstrap algorithm similar to that described in
Subsection 1.4.2 to test for the significance of pretreatment variables in regression models. Despite
the structural similarities, the bootstrap algorithms in this chapter are new constructs that have been
adapted to fit the current framework.

4
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1.2 Framework

1.2.1 Setup

Let N denote the sample size of a random sample drawn from a large population. The units
i ∈ {1, . . . ,N} interact on an undirected network. In addition, assume the network is clustered with
C large (but finite), identical1 and non-overlapping clusters having sample sizes Nc, c = 1, . . . ,C.
In other words, only units in the same cluster interact. However, the within group network is
unobservable. For example, clusters can be spatial like schools, villages, segregated labor markets,
etc, or virtual like Facebook groups, WhatsApp groups, etc. Therefore, the type of interference I
consider is the same as imposing the partial interference assumption in Sobel (2006). Furthermore,
let T ∈ {0, 1} be the binary treatment indicator assigned at the unit level. This implies that different
clusters may have different treatment assignment vectors2. The treatment vector of the sample in
cluster c is denoted as Tc. Finally, we observe Y ∈ R, the outcome variable, and a vector X ∈ X ⊂ R

d

of pretreatment variables. For notational simplicity, let S denote the support of (Y, X).
Applying the potential outcomes model of Neyman (1923) and Rubin (1974), let Yi(tc) represent

the potential outcome of unit i in cluster c when the cluster treatment assignment vector Tc= tc. This
indicates that the potential outcomes of a unit are indexed by her cluster treatment assignment vector.
Effectively, the number of potential outcomes of a unit in cluster c equals 2

Nc (i.e., the number of
all possible cluster treatment assignment vectors), which goes to infinity at an exponential rate as
the cluster sample size increases. Note that in the classical case of no interference, there are only
two potential outcomes for each unit. Hence, allowing for (clustered) interference aggravates the
missing data problem of causal inference, and as such a salient element of causal inference in the
presence of (clustered) interference is a mapping π(·) which summarizes how the (cluster) treatment
vectors affect the treatment response outcome. This is called exposure mapping in Aronow et al.
(2017). Formally, I define exposure mapping as

π : {0, 1}Nc 7→ Π (1.1)

that maps the cluster treatment vector Tc into an exposure variable Π := π(Tc) ∈ Π ⊂ R. Now,
given an exposure mapping, I assume that Yi(tc) = Yi(ti, π) is the potential outcome for unit i

if the cluster treatment vector tc is such that Ti = ti and π(tc) = π. Notice that this assumption

1Identical here implies that there are no cluster-specific shocks which affects the outcome of interest. The sizes of
the clusters can be different.

2A common experimental design to obtain different treatment vectors in different clusters is the two-stage random
saturation design in Baird et al. (2018).
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asserts that heterogeneity in treatment effects across treatment assignment vectors is analogous

to heterogeneity in treatment effects across the exposure variable’s values (henceforth exposure

values). It is also worth mentioning that the definition of exposure mapping in (1.1) requires no
knowledge of the links between economic units in the population (i.e., the adjacency matrix). This
is convenient because, in many applied settings in social science, it is difficult to obtain information
on links between economic units due to privacy concerns. For instance, Colpitts (2002) reveals that
a targeting program designed to use individual-level and network information to assign unemployed
workers to different labor market job activation programs in Canada was abandoned due to data
security concerns. The following example provides a plausible concrete specification of exposure
mapping defined in (1.1).

Example 1.2.1 (Distributional clustered interaction) Manski (2013) explains that distributional

clustered interaction occurs if the outcome of unit i does not depend on the sample size and it

is invariant to permutations of the treatments received by other units in the same cluster. That

is, distributional clustered interaction implies that π(tc) ∈ {0, 1/Nc, 2/Nc, . . . , 1} represents the

treatment ratio in cluster c. Hence, for any two cluster treatment vectors tc , t′c such that tc = (ti, tc)
and t′c = (ti, t′c), Yi(tc) = Yi(t′c) if π(tc) = π(t′c). See Manski (2013) for other specifications under

different scenarios.

Now, I formalize the assumptions that describe the network structure as follows.

Assumption 1.2.1 (Treatment-invariant neighborhoods) A unit’s cluster and treatment status

are independent.

In other words, Assumption 1.2.1 means that the network is a fixed characteristic of the population,
and units do not self-select into clusters after treatment assignment.

Assumption 1.2.2 ( Clustered Interference) Let π(·) be an exposure mapping function, i.e., π :
{0, 1}Nc 7→ Π, with Π = {π1, . . . , πK : K < C} being a discrete set of finite elements, ∀c = 1, . . . ,C,
∀i = 1, . . . ,Nc, and ∀t, t′ ∈ {0, 1}N such that ti = t′i and π(tc) = π(t′c) then Yi(t) = Yi(t′)

Assumption 1.2.2 implicitly restricts the network structure, i.e., it allows intra-cluster interference
but no inter-cluster interference. Also, this assumption restricts the range of the exposure variable to a
discrete finite set. It implies that the number of potential outcomes reduces significantly to 2 ·K. This
assumption ensures that there are "enough" units for each treatment, exposure value, and covariates
value to allow the precise estimation of the CATEs. Finally, assumption 1.2.2 implies that a unit’s
exposure to the treatment of other units in her cluster are in a "reduced form" and channels through
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which interference occurs in clusters are not distinguishable (Aronow et al. (2017)). Exploring
extensions that allow for other types of interference is a possible avenue for future research.

Without loss of generality, I assume that the exposure mapping π(·) is the cluster treatment ratio,
i.e., π(tc) = (

∑Nc
i=1 ti)/Nc. The results in this chapter hold for other definitions of π(·).

Next, realized outcomes can be written in terms of potential outcomes as:

Yi :=
K∑

k=1

(
Yi(0, πk) + [Yi(1, πk) − Yi(0, πk)] · Ti

)
· 1(Πi = πk), ∀i. (1.2)

where 1(·) is the indicator function.
I assume that independent and identically distributed (i.i.d) copies {(Yi,Ti, Xi,Πi) : i = 1, . . . ,N}

of (Y,T, X,Π) are available 3.
To proceed, for π ∈ Π and x ∈ X, I define the CATE as τ(x; π) := E[Y(1, π)|X = x] −

E[Y(0, π)|X = x]. The following assumptions are necessary for the identification of the CATEs.

Assumption 1.2.3 (Unconfoundedness) For all π ∈ Π,

(T,Π) ⊥⊥ (Y(0, π),Y(1, π))|X (1.3)

Assumption 1.2.4 (Overlap) For all π ∈ Π, x ∈ X and for some η > 0

η < P(T = 1,Π = π|X = x) < 1 − η (1.4)

Assumptions 1.2.3 and 1.2.4 are the extensions of the ignorability assumptions imposed on the
treatment assignment mechanism under no interference, see Imbens and Rubin (2015). Assumption
1.2.3 is a modification of the usual unconfoundedness assumption. This assumption asserts that
conditional on pretreatment variables, self-selection of effective treatment, (T,Π) is ruled out. Note
that this assumption holds when data is from a randomized experiment. Assumption 1.2.4 is a
modified version of the usual overlap or probabilistic assignment condition. It ensures a balance
between treated and control units in each subgroup. It is crucial because of the Hájek-type estimators
of CATE I employ in this chapter. Together, these assumptions are critical to identifying the CATEs,
i.e., if Assumption 1.2.3 and 1.2.4 holds, then

τ(x; π) :=E[Y(1, π)|X = x] −E[Y(0, π)|X = x]

=E[Y |T = 1,Π = π, X = x] −E[Y |T = 0,Π = π, X = x] (1.5)

3A necessary requirement of obtaining i.i.d observations is that the population must consist of a large number
of clusters. In particular, using the random saturation design, the sample size N must be less or equal to the number
of clusters C for us to obtain an i.i.d data. It implies a sampling design where we draw at most one unit from each
cluster after implementation of the experiment. This experimental-cum-sampling design merits further investigation as
it produces i.i.d data and simplifies causal analysis under partial interference.

7
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1.2.2 The Testing Problem

In this subsection, I provide a formal description of the testing problem. As mentioned above, in
the presence of interference, treatment effects may vary by either pretreatment variables or post-
treatment exposure variables. Figure 1.1 shows some possible cases in a simple setting where
Π = {π1, π2} and CATE is linear in a continuous X. Panels (a) shows CTEs by both classes of
variables. In contrast, Panels (b) and (c) show scenarios where there are HTEs by one class of
variable and CTEs by the other class. Panel (d) depicts the case where there is HTEs by both classes
of variables. These facts highlight that testing for HTEs in the presence of interference requires
testing for heterogeneity across the two classes of variables and the need for methods to disentangle
the source of the effect heterogeneity.

Figure 1.1: Treatment Effects Variation by a Continuous pretreatment Variable and a Binary Post-
treatment Exposure Variable

(a) CTEs by pretreatment variables and exposure vari-
able.

(b) CTEs by pretreatment variables and HTEs by ex-
posure variable.

(c) HTEs by pretreatment variables and CTEs by ex-
posure variable.

(d) HTEs by pretreatment variables and exposure vari-
able.

8
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To test for heterogeneity across one class of variables requires controlling for the other class of
variables. Formally, I consider the following null hypotheses. The first one is the null hypothesis
of constant treatment effects (CTEs) by treatment ratio (exposure variable) while controlling for
pretreatment variables:

HΠ0 : ∀x ∈ X, ∀π, π′ ∈ Π, τ(x; π) = τ(x; π′), (1.6)

against the alternative hypothesis of HTEs by treatment ratio:

HΠ1 : ∃x ∈ X, ∃ π, π′ ∈ Π, τ(x; π) , τ(x; π′). (1.7)

Null hypothesis (1.6) is important in answering a number of questions in program evaluation.
For example, testing (1.6) helps to determine whether a program can be scaled or not; rejecting the
null hypothesis implies treatment spillover effects exist and program effects may vary by the scale
of a program. Although (1.6) resembles Hypothesis 2 in Athey et al. (2018), they are not the same.
The null hypothesis (1.6) is a restriction on the treatment effect, in other words, this null says that
there are no indirect or spillover treatment effects, whereas, Hypothesis 2 in Athey et al. (2018) is a
restriction on the outcome that there is no spillovers or interference. Failure to reject Hypothesis 2
in Athey et al. (2018) implies that we fail to reject (1.6), however, the converse is not true.

The second hypothesis of interest concerns the null hypothesis of CTEs by pretreatment variables
while controlling for the post-treatment exposure variable:

HX
0 : ∀π ∈ Π,∀x, x′ ∈ X, τ(x; π) = τ(x′; π), (1.8)

against the alternative hypothesis of HTEs by pretreatment variables:

HX
1 : ∃π ∈ Π,∃ x, x′ ∈ X, τ(x; π) , τ(x′; π). (1.9)

Tests of the null hypothesis (1.8) and their importance exist in the literature under the no
interference assumption; see Crump et al. (2006). However, to my knowledge, this chapter provides
the first of its kind to allow some form of interference. Testing (1.8) is a critical step in extending
existing programs to new populations; rejecting this null hypothesis implies that treatment effects
vary across subgroups defined by the pretreatment variables. Therefore, a policymaker should not
expect the same aggregate effects if the program is extended to a new population that has a different
distribution of pretreatment variables.

It is worth discussing the importance of distinguishing between the exposure variable (i.e., Π)

9
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from the pretreatment variables in this framework. First, note that Π is a causal variable and, as
such, is used to index the potential outcomes. In contrast, the pretreatment variables are invariant to
treatment assignment i.e., they are a priori variables. Therefore, for identification, this distinction is
necessary in the potential outcome framework. Secondly, distinguishing between the pretreatment
variables and the treatment exposure variable is imperative to determine the drivers of the hetero-
geneity in treatment effects. It has interesting implications for policymakers. For instance, if the
heterogeneity is solely due to the treatment exposure variable, then policymakers may have complete
control over the distribution of treatment effects in the population via the treatment assignment.
See Han, Owusu, and Shin (2022) for a statistical treatment assignment rule for homogeneous and
heterogeneous populations in the presence of social interaction.

To sum, I emphasize that hypotheses (1.6) and (1.8) are critical to infer and disentangle treatment
effects heterogeneity in the presence of clustered interference. Specifically, under the assumption of
constant treatment effects within subgroups defined by pretreatment variables, rejecting both null
hypotheses simultaneously implies HTEs.

1.2.3 Test Statistics

I describe the test statistics for the null hypotheses (1.6) and (1.8). The test statistic for the null
hypothesis (1.6) is

T̂1 :=
∫
X

K∑
k=1

K∑
j=1

{√
N|τ̂(x; πk) − τ̂(x; π j)|

} ŵ(x, πk, π j)
2

dx, (1.10)

where τ̂(x; π) is a uniform consistent estimator of τ(x; π) and ŵ(x, π, π′) is the uniform consis-
tent estimator of the inverse standard error of τ̂(x; π) − τ̂(x; π′) which is defined as w(x, π, π′) :=
1/

√
ρ2(x, π) + ρ2(x, π′). Here, ρ2(x, π) represents the standard error of τ̂(x; π). Estimation of τ(x; π)

and w(x, π, π′) can be done in several ways, but I propose a kernel estimation technique. The kernel
estimator of τ(x; π) is defined as

τ̂(x; π) :=
1

Nhd

N∑
i=1

Yi · 1(Πi = π)ϕ̂(Ti, x, π)K
( x − Xi

h

)
,

where
ϕ̂(Ti, x, π) :=

Ti

P̂1(x; π)
−

(1 − Ti)
P̂0(x; π)

,

10
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with

P̂t(x; π) :=
1

Nhd

N∑
i=1

1(Πi = π)1(Ti = t)K
( x − Xi

h

)
, t = 0, 1.

On the other hand, the kernel estimator of w(x, π, π′) is defined as

ŵ(x, π, π′) :=
1√

ρ̂2(x, π) + ρ̂2(x, π′)
,

where ρ̂2(x, π) is the kernel estimator of ρ2(x, π) defined as

ρ̂2(x, π) := (µ̂1(x, π) − µ̂2(x, π)) ·
∫

K(ξ)2dξ,

with

µ̂1(x, π) :=
1

Nhd

∑
t∈{0,1}

N∑
i=1

Y2
i 1(Ti = t)1(Π = π)K( x−Xi

h )

P̂2
t (x; π)

,

and

µ̂2(x, π) :=
1

N2h2d

∑
t∈{0,1}

N∑
j=1

N∑
i=1

Y jYi1(T j = t)1(Ti = t)1(Π = π)K( x−X j

h )K( x−Xi
h )

P̂3
t (x; π)

.

Note that d is the dimension of X, K(·) is a d-dimensional kernel function and h is the bandwidth.

Remark 1.2.1 Rewriting T̂1 in the form T̂1 = 2−1 ∑K
k=1

∑K
j=1

∫
X

{
√

N |τ̂(x; πk)−τ̂(x; π j)|
}
·ŵ(x, πk, π j)dx,

the resemblance between T̂1 and the test statistic D̂ :=
∫
X

√
N |τ̂(x)|ŵ(x)dx4 by Chang, Lee, and

Whang (2015) is obvious. They show that a studentized version of D̂ converges to the standard normal

distribution under the null hypothesis of non-positive treatment effects. Compared to D̂, the proposed

test statistic is the sum of dependent random variables 2−1
∫
X

{√
N|τ̂(x; πk) − τ̂(x; π j)|

}
ŵ(x, πk, π j)dx,

for all π j, πk ∈ Π, hence it is not a straightforward extension to prove the asymptotic normality and

other asymptotic properties of T̂1 using the asymptotic results of D̂.

Remark 1.2.2 Failure to reject the null hypothesis HΠ0 using T̂1 or a suitable studentized version

implies either CTEs by treatment ratio and HTEs by pretreatment variables or CTEs by both

treatment ratio and pretreatment variables. Hence in isolation, failure to reject the null hypothesis

(1.6) using T̂1 does not help us disentangle the source of heterogeneity in the treatment effects.

4τ̂(x) and ŵ(x) are the CATE and inverse standard error estimators defined similar to τ̂(x; πk) and ŵ(x, πk, π j)
respectively.
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In a similar fashion, the test statistic for the null hypothesis (1.8) is defined as

T̂2 :=
∫
X

∫
X

K∑
k=1

{√
N|τ̂(x; πk) − τ̂(x′; πk)|

} ŵ(x, x′, πk)
2

dxdx′, (1.11)

where ŵ(x, x′, π) for all π ∈ Π, and x, x′ ∈ X2, is a consistent kernel estimator of the inverse standard
error of τ̂(x; π) − τ̂(x′; π). Define ρ0(q) :=

∫ 1

−1
K(ξ + q)K(ξ)dξ/

∫ 1

−1
K(ξ)2dξ, then the estimator of

the inverse standard error of τ̂(x; π) − τ̂(x′; π) is ŵ(x, x′, π) := 1/
√

2ρ̂2(x, π) · (1 − ρ0((x′ − x)/hd)).

Remark 1.2.3 Failure to reject the null hypothesis (1.8) using T̂2 or its studentized version implies

either CTEs by the pretreatment variables and HTEs by the treatment ratio or CTEs by both treat-

ment ratio and pretreatment variables. Therefore, in isolation, failure to reject the null hypothesis

(1.8) using T̂2 also does not help in disentangling the source of heterogeneity in the treatment effects.

Now, if we test the null hypotheses (1.6) and (1.8) simultaneously using a multiple testing procedure
(MTP), we can disentangle the source of treatment effects heterogeneity. If we fail to reject both
null hypotheses, it implies CTEs by both variable classes. If we reject the null hypothesis (1.6) but
fail to reject the second null hypothesis (1.8), it suggests HTEs by treatment ratio and CTEs by
pretreatment variables. In contrast, if we fail to reject the null hypothesis (1.6) but reject the second
null hypothesis (1.8), this implies CTEs by treatment ratio and HTEs by pretreatment variables.
Finally, if we reject both null hypotheses then it suggests HTEs by both variable classes. Hence,
implementing the tests using a multiple testing procedure is imperative to disentangling the source
of treatment effects heterogeneity.

To control the probability of rejecting at least one null hypothesis, given that they are both
true, often called the family-wise error rate (FWER), I recommend a step-wise multiple testing
procedure based on Holm’s algorithm (Holm (1979)). There are several similar adjustments for
multiple testing, but I opt for Holm’s procedure because it accounts for the dependency between the
two test statistics and it is computational simple.

Let the pd1 ≤ pd2 be the ordered p-values, with corresponding null hypotheses H0,d1 and H0,d2 .

Then the Holm step-down algorithm is as follows:

Algorithm 1.2.1 (Holm Procedure)

1. If pd1 > α/2 fail to reject both H0,d1 and H0,d2 and stop. If pd1 ≤ α/2 reject H0,d1 and test H0,d2

at level α.

2. If pd1 ≤ α/2 but pd2 > α, fail to reject H0,d2 and stop. If pd1 ≤ α/2 and pd2 ≤ α, reject H0,d2 .

12
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1.3 Main Asymptotic Results

This section discusses the asymptotic properties of the proposed test statistics T̂1 and T̂2 when the null
hypotheses are true and false. I use an asymptotic regime where the number of clusters grow large. I
show that appropriate studentized versions of the test statistics T̂1 and T̂2 have asymptotic standard
normal null distributions. To begin, I state the assumptions required to develop the asymptotic
theory.

Assumption 1.3.1 (a) The joint distribution of (Y, X) ∈ Y×X is absolutely continuous with respect

to the Lebesgue measure; (b) the probability density function f of X is continuously differentiable

almost everywhere; (c) ρ2(·, π) is strictly positive and continuous almost everywhere onWX,∀π ∈ Π,

whereWX is a compact subset of X; (d) K is a product kernel function, i.e., K(u) = Πd
j=1K j(u j), u =

(u1, . . . , ud), with each K j : R 7→ R, j = 1, . . . , d, satisfying that K j is an s-order kernel function

with support {u ∈ R : |u| ≤ 0.5}, symmetric around zero, bounded, and is of bounded variation, and

integrates to 1, where s is an integer that satisfies s > 1.5d; (e) as functions of x, E[Y |X = x,T =

t,Π = π], f (x), pt(x, π) for t = 0, 1 are s-times continuously differentiable almost everywhere for each

π ∈ Π with uniformly bounded derivatives; (f) supx∈WX
E[|Y |3|X = x,T = t,Π = π] < ∞ for t = 0, 1

and π ∈ Π; (g) the bandwidth satisfies Nh2s → 0, Nh3d → ∞ and (Nh2d)1/2/logN → ∞, where

s > 1.5d; (h) sup(x,x′,π)∈W2
X×Π
|ŵ(x, x′π) − w(x, x′π)| = sup(x,π,π′)∈WX×Π2 |ŵ(x, π, π′) − w(x, π, π′)| =

op(hd/2).

Even though these are standard regularity conditions in the literature (see Lee, Song, and Whang
(2013), and Chang, Lee, and Whang (2015, p. 315)), it is worthwhile to comment on them for
completeness. Assumptions 1.3.1(a) and (b) are unnecessary for the asymptotic results. They are
convenient assumptions imposing continuity on X and Y that help to present my main results. The
results in this chapter generalize to non-continuous X and Y. Assumption 1.3.1(c) ensures that the
inverse standard error weight function is continuous and well-defined within a compact subset of
X. Assumption 1.3.1(d) imposes conditions on the kernel function. Assumption 1.3.1(e) and (f)
imposes restrictions on the underlying true data-generating process to ensure smooth and finite
moments. Assumption 1.3.1(g) imposes standard restrictions on the choice of bandwidth. And
finally, Assumption 1.3.1(h) ensures that the estimated weight functions are uniformly consistent.

1.3.1 Asymptotic Null Distribution and Properties of the Test Statistics

I first provide a studentized version of the test statistics T̂1 and then derive its asymptotic null
distribution. To begin, note that there is a non-vanishing bias term of the kernel estimator τ̂(x; π) for
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each π ∈ Π and x ∈ X that affects the test statistics. Three common approaches to addressing this
issue are (i) explicit bias correction, (ii) the use of higher-order kernels, and (iii) the use of smaller
bandwidths (under-smoothing). See Racine (1997) for more details. I settle on the first remedy
because it is the theoretically sound approach. The asymptotic bias5 of T̂1 is

a1 :=h
−d
2 ·E|Z1| ·

K2

2
·

∫
X

dx, (1.12)

where Z1 is the standard normal distribution. The asymptotic bias only depends on the true data
generating process (DGP) through the bounds of X. Hence, we can compute it exactly without
estimation.

The other parameter required to studentized T̂1 is the asymptotic standard error of T̂1. Let
Γ̂(x; π, π′) = τ̂(x; π) − τ̂(x; π′), then define the asymptotic variance6 of T̂1 as

σ2
1 :=

1
4

∫
1

Cov
(∣∣∣∣∣ √1 − ρ(x, t, πi, π j, πk, πl)2Z1 + ρ(x, t, πi, π j, πk, πl)Z2

∣∣∣∣∣ , |Z2|

)
dxdt, (1.13)

where
∫

1
=

∫
Rd

∫
T0

∑K
i=1

∑K
j=1

∑K
k=1

∑K
l=1, T0 = [−1, 1]d and ρ(x, t, πi, π j, πk, πl) is the unknown corre-

lation between Γ̂(x; πi, π j)/
√
ρ̂2(x, πi, π j) and Γ̂(x; πk, πl)/

√
ρ̂2(x, πk, πl), (i.e., ρ(x, t, πi, π j, πk, πl) =

Corr(Γ̂(x; πi, π j)/
√
ρ̂2(x, πi, π j), Γ̂(x; πk, πl)/

√
ρ̂2(x, πk, πl))). Z1 and Z2 are mutually independent

standard normal random variables. A kernel estimator of ρ(x, t, πi, π j, πk, πl) is defined as

ρ̂(x, t, πi, π j, πk, πl) =



∫
K(ξ)K(ξ+t)dξ∫

K(ξ)2dξ
i = k & j = l

−ρ̂2(x,π j)√
ρ̂2(x,πi,π j)

√
ρ̂2(x,πk ,πl)

·

∫
K(ξ)K(ξ+t)dξ∫

K(ξ)2dξ
j = k & i , l

−ρ̂2(x,πi)√
ρ̂2(x,πi,π j)

√
ρ̂2(x,πk ,πl)

·

∫
K(ξ)K(ξ+t)dξ∫

K(ξ)2dξ
j , k & i = l

ρ̂2(x,π j)√
ρ̂2(x,πi,π j)

√
ρ̂2(x,πk ,πl)

·

∫
K(ξ)K(ξ+t)dξ∫

K(ξ)2dξ
j = l & i , k

ρ̂2(x,πi)√
ρ̂2(x,πi,π j)

√
ρ̂2(x,πk ,πl)

·

∫
K(ξ)K(ξ+t)dξ∫

K(ξ)2dξ
j , l & i = k

0 i , k & j , l,

(1.14)

where ρ̂2(x, π, π′) := ρ̂2(x, π) + ρ̂2(x, π′). Plug ρ̂(x, t, πi, π j, πk, πl) into the right hand side of (1.13),
and obtain the asymptotic variance estimator

σ̂2
1 :=

1
4

∫
1

Cov
(∣∣∣∣∣ √1 − ρ̂(x, t, πi, π j, πk, πl)2Z1 + ρ̂(x, t, πi, π j, πk, πl)Z2

∣∣∣∣∣ , |Z2|

)
dxdt. (1.15)

5See Appendix 1.7.3 for the derivation.
6See Appendix 1.7.3 for the derivation.
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Given the expressions for the estimated asymptotic variance and bias in (1.12) and (1.15), define
the studentized version of the test statistic T̂1 as

Ŝ 1 :=
T̂1 − a1

σ̂1
.

Similarly, define the studentized version of the test statistic T̂2 as

Ŝ 2 :=
T̂2 − a2

σ2
,

where

a2 :=h
−d
2 ·E|Z1| ·

K
2
·

∫
X

∫
X

dxdx′,

and

σ2
2 :=

h2d

4

∫
2

Cov
(∣∣∣∣∣ √1 − ρ∗1(x, q, r, s, πk)2Z1 + ρ

∗
1(x, q, r, s, πk)Z2

∣∣∣∣∣ , |Z2|

)
drdsdqdx, (1.16)

with
∫

2
B

∫
X

∫
T0

∫
T0

∫
T0

∑K
k=1, and

ρ∗1(x, q, r, s, π) :=
ρ1(x, r, π) − ρ1(x, s, π) − ρ1(x, q, r, π) + ρ1(x, q, s, π)

2
√

(ρ2(x, π) − ρ1(x, q, π))(ρ2(x, π) − ρ1(x, r, s, π))

which reduces to

ρ∗1(x, q, r, s, π) :=

∫
K(ξ + r)K(ξ) − K(ξ + s)K(ξ) − K(ξ + q)K(ξ + r) + K(ξ + q)K(ξ + s)dξ

2 ·
√

(
∫

K2(ξ) − K(ξ + q)K(ξ)dξ)(
∫

K2(ξ) − K(ξ + q)K(ξ + s)dξ)

since

ρ1(x, r, s, π) :=

 ∑
t∈{0,1}

E[Y2|X = x,T = t,Π = π] − (E[Y |X = x,T = t,Π = π])2

Pt(x, π)

 ·
∫

K(ξ + s)K(ξ + r)dξ.

Theorem 1.3.1 Let Assumptions 1.2.1 - 1.3.1 hold, then under the

(i) null hypothesis (1.6) Ŝ 1 converges to the standard normal distribution, i.e., Ŝ 1 → N(0, 1) ;

(ii) null hypothesis (1.8) Ŝ 2 converges to the standard normal distribution, i.e., Ŝ 2 → N(0, 1).

Theorem 1.3.1 implies that we can compute the critical values of the tests from the standard normal
distribution. This theorem forms an integral part of most of the asymptotic properties I discuss

15



PhD Dissertation — Julius Owusu McMaster University — Economics

below. First, I show that the tests have asymptotically valid sizes in the following theorem.

Theorem 1.3.2 Let Assumptions 1.2.1 - 1.3.1 hold, then under the

(i) null hypothesis (1.6)
lim

N→∞
Pr(Ŝ 1 > z1−α) = α;

(ii) null hypothesis (1.8)
lim

N→∞
Pr(Ŝ 2 > z1−α) = α

Theorem 1.3.2 shows that the test statistics Ŝ 1 and Ŝ 2 have correct sizes asymptotically under
HΠ0 and HX

0 respectively. Hence, the following decision rule suffices: For j = 1, 2 reject the null
hypothesis if Ŝ j > z1−α, where z1−α, α ∈ [0, 1] is the (1 − α)th quantile (critical value) obtained from
the standard normal distribution.

1.3.2 Power Properties of the Test statistics

In this subsection, I investigate the power properties of the test statistics against a fixed and a
sequence of local alternatives. First, I establish that Ŝ 1 and Ŝ 2 are consistent against the following
fixed alternatives

HΠ1 :
∫
X

K∑
k=1

K∑
j=1

{√
N|τ(x; πk) − τ(x; π j)|

} w(x, πk, π j)
2

dx > 0, (1.17)

HX
1 :

∫
X

∫
X

K∑
k=1

{√
N|τ(x; πk) − τ(x′; πk)|

} w(x, x′, πk)
2

dxdx′ > 0 (1.18)

respectively.

Theorem 1.3.3 Let Assumptions 1.2.1 - 1.3.1 hold, then

(i) under the fixed alternative hypothesis (1.17)

lim
N→∞

Pr(Ŝ 1 > z1−α) = 1, and

(ii) under the fixed alternative hypothesis (1.18),

lim
N→∞

Pr(Ŝ 2 > z1−α) = 1.
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Theorem 1.3.3 establishes that the proposed test statistics are powerful against a fixed alternative.
Next, I show that the proposed tests Ŝ 1 and Ŝ 2 can detect a sequence of local alternatives converging
to the null hypotheses at the rate N−1/2h−d/4. Specifically, consider the following sequences of local
alternatives

HΠa : τ(x, π) − τ(x, π′) = N−1/2h−d/4δ1(x, π, π′) ∀x ∈ X, π, π′ ∈ Π (1.19)

HX
a : τ(x, π) − τ(x′, π) = N−1/2h−d/4δ2(x, x′, π) ∀x, x′ ∈ X, π ∈ Π, (1.20)

converging to the null hypotheses HΠa and HX
a respectively where for j = 1, 2, δ j(·, ·, ·) is a real

bounded function satisfying∫
X

∑
π∈Π

∑
π′∈Π |δ1(x, π, π′)|w(x, π, π′)dx > 0, and

∫
X

∫
X

∑
π∈Π |δ2(x, x′, π)|w(x, x′, π)dxdx′ > 0.

Theorem 1.3.4 Let Assumptions 1.2.1 - 1.3.1 hold, then

(i) under the sequences of alternative hypotheses (1.19),

lim
N→∞

Pr(Ŝ 1 > z1−α) = 1 − Φ
(
z1−α −

1

2
√

2πσ1

∫
X

K∑
k=1

K∑
j=1

δ2(x, πk, π j)dx
)
,

and;

(ii) under the sequences of alternative hypotheses (1.20),

lim
N→∞

Pr(Ŝ 2 > z1−α) = 1 − Φ
(
z1−α −

1

2
√

2πσ2

∫
X

∫
X

K∑
j=1

δ2(x, x′, πk)dxdx′
)
,

where Φ denotes the cumulative distribution function (CDF) of the standard normal distribution.

Theorem 1.3.4 demonstrates that the test statistics have statistical power greater than zero against
local alternatives that converge to the null hypothesis at the rate N−1/2h−d/4.

1.4 Bootstrap Approach

I introduce bootstrap resampling methods to obtain the null distributions of Ŝ 1 and Ŝ 2 in this
section. Although Theorem 1.3.1 shows that Ŝ 1 and Ŝ 2 have asymptotic standard normal null
distributions, the simulation results in Appendix 1.7.1 suggest that these limiting distributions are
poor approximations of the finite sample null distributions when the sample size is small. Moreover,
decisions informed by the asymptotic inference approach may be sensitive to bandwidth choice.
This is because the null distributions of test statistics do not depend on the bandwidth, yet the values
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of the test statistics are directly affected by the bandwidth (Racine, 1997, p. 369). On the other hand,
the main demerit of bootstrap resampling techniques is their high computing cost. Nevertheless, for
small sample sizes, the gains in accurate decision-making could offset these costs. As a result, I
recommend the following bootstrap procedures for practitioners in settings where the sample size is
small (or when there exist clusters with small sample sizes).

1.4.1 The Bootstrap Resampling Algorithm for Ŝ 1

Let Wi = (Xi,Ti,Yi) denote the vector of variables for the ith unit. Therefore, the pooled sample
across all treatment ratios can be written as {Wi}

∑K
k=1 Nk

i=1 . The bootstrapping algorithm to generate the
null distribution of Ŝ 1 is as follows:

1. For k = 1 . . .K, randomly draw Nk observations from the pooled sample {Wi}
∑K

k=1 Nk

i=1 with
replacement and denote the resulting bootstrapped sample combined with a new variable
Π = πk as W∗(πk) := {W∗

i , πk}
Nk
i=1.

2. Compute the test statistic Ŝ ∗1 = T̂ ∗1 − a∗
1

using the pooled bootstrapped data {W∗(πk)}Kk=1,
where the definition of T̂ ∗1 and a∗

1
are the same as T̂1 and a1 respectively. Comparing Ŝ ∗1 to its

asymptotic counterpart, note that I omit the standard error term in the denominator. Simulation
results not reported show that omitting the scaling term has negligible impact on empirical
power and size. On the other hand, it reduces computation time.

3. Repeat 1 and 2 a large number of times (say B1 times) and use the empirical distribution of
the B1 bootstrapped test statistics {Ŝ ∗1,b}

B1
b=1 to approximate the null distribution of T̂1 − a1 .

4. Compute the empirical p-value as p̂∗ = B−1
1

∑B1
b=1 1(Ŝ ∗1,b > Ŝ o

1) where Ŝ o
1 is the test statistic

computed via the original data.

1.4.2 The Bootstrap Resampling Algorithm for Ŝ 2

Akin to Ŝ 1, I propose the following bootstrap algorithm for the null distribution of Ŝ 2:
1. Estimate a "restricted" conditional mean E(Y |X = x̄i,Π = πi,T = ti). Let the resulting

fitted values be M̂(x̄i, πi, ti), i = 1 . . .N. This restricted conditional mean does not vary by the
pretreatment variables X, because they are held constant at their average value x̄.

2. Obtain the residuals ε̂i = Yi − M̂(x̄i, πi, ti), i = 1 . . .N. Demean the residuals using the sample
average residual. Since we compute these residuals using the restricted conditional means,
they are residuals obtained under the null hypothesis HX

0 .

3. Draw a random sample of size N from the centered residuals with replacement and name it
the bootstrap residual sample {ε̂∗i }

N
i=1.
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4. Now generate a dependent variable Y∗i = M̂(x̄i, πi, ti) + ε̂∗i , i = 1 . . .N. With these depen-
dent variables (under HX

0 ), create a null bootstrap sample (Y∗i , Xi,Πi,Ti), i = 1 . . .N, where
(Xi,Πi,Ti), i = 1 . . .N are from the original sample.

5. Compute the test statistic Ŝ ∗2 = T̂ ∗2 − a∗
2

using the null bootstrap sample where I define T̂ ∗2 and
a∗

2
the same way as T̂2 and a2 respectively. Here also, I omit the denominator standard error

term based on the same argument used for Ŝ ∗1
6. Repeat 3–5 many times (say B2 times ) and use the empirical distribution of the B2 boot-

strapped test statistics {Ŝ ∗2,b}
B2
b=1 to approximate the null distribution of T̂1 − a2 .

7. Compute the empirical p-value as p̂∗ = B−1
2

∑B2
b=1 1(Ŝ ∗2,b > Ŝ o

2) where Ŝ o
2 is the test statistic

computed via the original data.
In Table 1.8, I compare the empirical sizes of the bootstrap-based test statistics with their asymptotic
counterparts when the sample size is small, specifically when N = 200 (Nk = 50). The result
shows that the empirical size computed using the bootstrapping algorithms is closer to the nominal
probabilities than their asymptotic counterparts. It confirms that the limiting distributions are poor
approximations of the finite sample null distributions when the sample size is small.

1.5 Monte Carlo Simulation

I present the design and results of two Monte Carlo experiments in this section. Other simulation
designs and results are deferred to Appendix 1.7.1. First, I numerically examine the empirical size
and power properties of the proposed test statistics. And secondly, I design a simulation exercise to
compare the proposed test statistics to their parametric counterparts.

1.5.1 Empirical Size and Statistical power

I design Monte Carlo experiments to examine the empirical rejection probabilities of the proposed
test statistics. All the rejection probabilities are computed using 1000 replications. In each ex-
periment, I consider a single pretreatment variable X7 drawn from the uniform [0, 1] distribution.
Each cluster is assigned one of four treatment indicator variables T (k), k = 1 . . . , 4. T (k) follows
a binomial distribution with probability πk where {π1, π2, π3, π4} = {0.3, 0.4, 0.5, 0.6} = Π. The
realized outcome Y is constructed by

Y = (τ(X,Π) + U1) × T + U0 × (1 − T ),
7I extend the experiment to the case with multivariate pretreatment variables in Appendix 1.7.2.
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where U1 and U0 are independent normals with a mean of zero and variance of 0.1. The general
specification of τ(x, π) is

τ(x, π) = β0x + β1π + β2 · (xπ).

In the experiments, I consider a uniform grid in the interval between the 10th and 90th percentiles
of X. This way, I avoid the boundary bias issue associated with the kernel estimators. Using the
uniform grid, I compute the integrals in the test statistics with the composite trapezoid rule.

I use the following kernel function that satisfies Assumption 1.3.1(d):

K(u) = 1.5(1 − (2u)2) · 1{|u| ≤ 0.5}, (1.21)

and a bandwidth
h = Ch ŝXN−2/7, (1.22)

where ŝX is the sample standard deviation of the X and Ch is a constant. Finally, the sample size is
N = 1200 with equal units in for each π (i.e., 300 units for each treatment ratio).

To obtain the empirical rejection probabilities of Ŝ 1, set β0 = 1 and β1 = 0. Therefore, τ(x, π) =
x + β2 · (xπ), and when β2 = 0, the null hypothesis (1.6) of CTEs by treatment ratio is true. As β2

deviates further from 0 in both directions, the null hypothesis deviates further away from the truth. I
report the empirical rejection probabilities for values of β2 in the range [−1, 1], with 0.1 increments.

Similarly, to obtain the empirical rejection probabilities of Ŝ 2, set β0 = 0, and β1 = 1. Therefore,
τ(x, π) = π+ β2 · (xπ), and when β2 = 0, the null hypothesis (1.8) of CTEs by pretreatment variables
is true. Here also, I report the empirical rejection probabilities for each β2 in the range [−0.5, 0.5],
with 0.1 increments.

Focusing on the asymptotic method of inference, I provide a summary of the empirical rejection
probabilities of the test statistics in Figure 1.2 (and in Tables 1.4–1.5 in Appendix 1.7.1). In each
panel, the three graphs represent the rejection probabilities at the 1%, 5%, and 10% nominal levels.
The left panel of Figure 1.2 reports the empirical rejection probabilities of Ŝ 1 and the right panel
of Figure 1.2 reports those of Ŝ 2. Note that when β2 = 0, the empirical rejection probabilities are
close to the nominal probabilities which confirms the theoretical results in Theorem 1.3.2. On the
contrary, as β2 deviates towards ±1, the rejection probabilities approaches 1 which is in line with
the consistency results in Theorem 1.3.3.

Similarly, using the bootstrap method, I summarize the empirical rejection probabilities in
Figure 1.3 (and in Tables 1.6–1.7 in Appendix 1.7.1). The results are based on 399 bootstrap
resamples. Compared to the asymptotic-based empirical rejection probabilities, the differences in
the probabilities are negligible. It confirms that the bootstrap algorithm works and the test statistics
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under the null hypotheses "converges in bootstrap distribution" to the standard normal distribution
as the sample size increases.

Figure 1.2: Empirical Rejection Probabilities using Asymptotic Method.
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(a) Power curve for Ŝ 1 when β2 lies between -1 and 1.
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(b) Power curve for Ŝ 2 when β2 lies between -0.5 and
0.5.

Figure 1.3: Empirical Rejection Probabilities using the Bootstrap Method.
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(a) Power curve for Ŝ ∗1 when β2 lies between -1 and 1.
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(b) Power curve for Ŝ ∗2 when β2 lies between -0.5 and
0.5.

1.5.2 Parametric Testing and Misspecification

In this subsection, I design an experiment to show that parametric tests of the null hypotheses (1.6)
and (1.8) may be misleading because parametric models are always misspecified to a certain degree.
Here, I focus on asymptotic method of inference only. To begin, suppose the sample data at hand is
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{Yi, Xi,Ti,Πi} of size N=600, and Πi ∈ {0.3, 0.6}. Without knowledge of the true DGP, I estimate the
following linear regression model using the method of least squares:

Yi = β0 + β1Ti + β2Xi + β31(Πi = 0.3) + β4Ti · Xi + β5Ti · 1(Πi = 0.3) + εi. (1.23)

The summary results in Tables 1.2 and 1.3 show that the parameters of interest β4 and β5 are
insignificant when we use either clustered or Heteroscedasticity and Autocorrelation Consistent
(HAC) standard errors. Hence, we conclude that treatment effects do not vary by treatment ratio
Π, and the pretreatment variable X. Now, I test hypotheses (1.6) and (1.8) using the proposed
nonparametric test statistics. I use the kernel function in (1.21) and the plug-in bandwidth selection
method in (1.22). Table 1.1 summarizes the results of the two tests at different bandwidth choices
(different Cs in the bandwidth formula in (1.22)). The results are unequivocal rejections of the null
hypotheses of CTEs by the treatment ratio Π, and the pretreatment variable X.

Now note that the true DGP for the sample data is

Y = (τ(X,Π) + U1) × T + U0 × (1 − T ),

where U1 and U0 are independent normal random variables with a mean of zero and variance of 0.1.
In addition, CATE has the following specification:

τ(x, π) = 30 · cos(2πx) · (π2 − π)

and it varies in a highly non-linear way in both X and Π. Therefore, this is a confirmation that
a misspecification of the functional form of the conditional mean function in parametric models
results in erroneous inference of HTEs.

Table 1.1: Summary of Test Results for Simulated DGP based on Proposed Nonparametric Test

Bandwidth (h)
HΠ0 : CTEs across Π HX

0 : CTEs across X

Ŝ 1 p-value Ŝ 2 p-value
0.143 9.510 0.00 133.77 0.00
0.167 7.895 <0.01 96.425 0.00
0.191 6.717 <0.01 72.494 0.00
0.214 5.854 <0.01 56.562 0.00
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Table 1.2: Summary of Test Results for Simulated DGP based on Parametric Tests using Clustered
Standard Errors

Estimates Std. Error t value p-value
Constant -0.020 0.004 -4.664 3.840e−6 ***

T -0.009 0.604 -0.016 0.988

X 0.031 0.008 3.930 9.485e−5 ***

1(Π = 0.3) 0.023 0.001 19.970 < 2.2e16 ***

T · X -0.674 1.704 -0.396 0.693

T · 1(Π = 0.3) 0.474 0.509 0.932 0.3517

Observations 600
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Std. Errors clustered by Π.

1.6 Conclusion

The nonparametric tests I develop here allow for valid asymptotic and bootstrap inference for
heterogeneous treatment effects in the presence of clustered interference. Importantly, the proposed
tests help to disentangle the source of variation in the treatment effects. The test statistics are sums of
weighted L1-norm differences in consistent nonparametric kernel estimators of conditional average
treatment effects. I show that the test statistics have correct sizes and (asymptotic) standard normal
null distributions. Moreover, they are consistent under fixed and sequences of local alternatives.

In addition, I propose a bootstrap method for small sample sizes, and I show numerically that
the bootstrap algorithm works for a given DGP. Monte Carlo simulation exercises corroborate the
theoretical findings.
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Table 1.3: Summary of Test Results for Simulated DGP based on Parametric Tests using Het-
eroscedasticity and Autocorrelation Consistent (HAC) Standard Errors

Estimates Std. Error t value p-value
Constant -0.020 0.021 -0.960 0.338

T -0.009 1.103 -0.009 0.993

X 0.031 0.018 1.687 0.092 *

1(Π = 0.3) 0.023 0.041 0.557 0.578

T · X -0.674 1.129 -0.597 0.551

T · 1(Π = 0.3) 0.474 2.115 0.224 0.823

Observations 600
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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1.7 Appendix

1.7.1 Simulation Results

1.7.1.1 Asymptotic-based Inference

Table 1.4: Empirical Rejection Probabilities: N = 1200, Bandwidth=Ch ŝXn−2/7 and Π =
(0.3, 0.4, 0.5, 0.6).

Nominal probabilities
Test statistic β 0.01 0.05 0.10

Ŝ 1 -1 1.000 1.000 1.000
-0.9 1.000 1.000 1.000
-0.8 0.995 0.998 1.000
-0.7 0.954 0.988 0.993
-0.6 0.849 0.946 0.981
-0.5 0.602 0.795 0.875
-0.4 0.324 0.554 0.680
-0.3 0.123 0.312 0.440
-0.2 0.032 0.121 0.200
-0.1 0.017 0.061 0.123
0.0 0.006 0.035 0.081
0.1 0.015 0.061 0.122
0.2 0.052 0.165 0.257
0.3 0.149 0.322 0.447
0.4 0.339 0.591 0.710
0.5 0.663 0.852 0.915
0.6 0.896 0.965 0.987
0.7 0.980 0.993 0.995
0.8 0.995 0.998 1.000
0.9 0.999 1.000 1.000
1 1.000 1.000 1.000
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Table 1.5: Empirical Rejection Probabilities: N = 1200, Bandwidth= Ch ŝXN−2/7 and Π =
(0.3, 0.4, 0.5, 0.6).

Nominal probabilities
Test statistic β 0.01 0.05 0.10

Ŝ 2 -0.5 0.999 1.000 1.000
-0.4 0.991 0.998 0.999
-0.3 0.765 0.926 0.968
-0.2 0.255 0.505 0.662
-0.1 0.056 0.158 0.260
0.0 0.017 0.068 0.137
0.1 0.047 0.147 0.273
0.2 0.287 0.520 0.657
0.3 0.788 0.916 0.963
0.4 0.986 0.998 1.000
0.5 1.000 1.000 1.000
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1.7.1.2 Bootstrap-based Inference

Table 1.6: Empirical Rejection Probabilities: N = 1200, Bandwidth=Ch ŝXn−2/7 and Π =
(0.3, 0.4, 0.5, 0.6).

Nominal probabilities
Test statistic β 0.01 0.05 0.1

Ŝ ∗1 -1 1.000 1.000 1.000
-0.9 1.000 1.000 1.000
-0.8 0.998 1.000 1.000
-0.7 0.980 0.996 0.999
-0.6 0.890 0.970 0.987
-0.5 0.692 0.861 0.914
-0.4 0.411 0.658 0.763
-0.3 0.172 0.372 0.518
-0.2 0.052 0.168 0.272
-0.1 0.020 0.073 0.139
0.0 0.011 0.043 0.105
0.1 0.017 0.064 0.139
0.2 0.050 0.176 0.287
0.3 0.168 0.399 0.522
0.4 0.426 0.668 0.781
0.5 0.722 0.880 0.942
0.6 0.910 0.975 0.999
0.7 0.982 0.998 0.999
0.8 0.998 1.000 1.000
0.9 1.000 1.000 1.000
1 1.000 1.000 1.000
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Table 1.7: Empirical Rejection Probabilities: N = 1200, Bandwidth=Ch ŝXN−2/7 and Π =
(0.3, 0.4, 0.5, 0.6).

Nominal probabilities
Test statistic β 0.01 0.05 0.10

Ŝ ∗2 -0.5 1.000 1.000 1.000
-0.4 0.986 0.997 0.999
-0.3 0.759 0.902 0.945
-0.2 0.283 0.516 0.617
-0.1 0.047 0.150 0.238
0.0 0.013 0.065 0.125
0.1 0.044 0.165 0.254
0.2 0.317 0.516 0.634
0.3 0.774 0.911 0.952
0.4 0.984 0.998 0.998
0.5 1.000 1.000 1.000

Table 1.8: Comparison of Empirical Size for the Bootstrap and Asymptotic-based Testing Approach
when Sample Size is Small: N = 200, bandwidth=3 · ŝXN−2/7 and Π = (0.3, 0.4, 0.5, 0.6).

Nominal probabilities
Test statistic for HΠ0 Test statistic for HX

0

Bootstrap-based Asymptotic-based Bootstrap-based Asymptotic-based
0.01 0.008 0.350 0.027 0.033
0.05 0.053 0.498 0.085 0.143
0.1 0.102 0.579 0.152 0.278

1.7.2 Extension of the Monte Carlo Simulation Experiment to Multivariate
Covariates

I extend the experiment in Section 1.5 to multivariate pretreatment variables. For both test statistics,
each pretreatment variable Xd, d ≥ 1 is drawn independently from the standard uniform distribution.
I have two clusters and the cluster treatment indicator variable Tk, k = 1, 2 is drawn independently
from a Bernoulli distribution with probability πk, k = 1, 2 where Π = {π1, π2} = {0.3, 0.4}. I use the
Monte Carlo integration technique to compute integrals in the test statistics. I consider the following
general functional forms of the CATE:

τ(x, π) = β0

d∑
l=1

xl + β1π − β2 ·

π d∑
l=1

xl

 . (1.24)
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Focusing on Ŝ 1, fix β0 = 1 and β1 = 0 and consider two specifications of β2: β2 = 0 ( i.e., the
null hypothesis of CTEs by Π is true); and β2 = 1, (which implies that the null hypothesis of CTEs
by Π is false). Naturally, due to the curse of dimensionality associated with kernel estimation, one
should expect a poor performance of the tests when the dimension of continuous variables increases.
As as result, in this simulation exercise, I consider two cases: d = 2 and 3. In Table 1.9, I report the
rejection probabilities of Ŝ 1 under the two β2 specifications, i.e., β2 = 0 and β2 = 1 which represents
the empirical size and power respectively.

Table 1.9: Empirical Size and Power of Ŝ 1 using Multivariate X. N = 600, Bandwidth=5 · ŝXN−2/7

and Π = (0.3, 0.4).

Nominal probabilities
d = 2 d = 3

Size Power Size Power
0.01 0.018 0.851 0.005 0.838
0.05 0.042 0.911 0.119 0.915
0.10 0.071 0.941 0.172 0.942

Next, I focus on Ŝ 2. Using the CATE in (1.24), fix β0 = 0 and β1 = 1 and consider two
specifications of β2: β2 = 0 ( i.e., the null hypothesis of CTEs by X is true); and β2 = 0.5,
(which implies that the null hypothesis of CTEs by X is false). In Table 1.10, I report the rejection
probabilities of Ŝ 2 under the two β2 specifications.

Table 1.10: Empirical Size and Power of Ŝ 2 using Multivariate X. N = 600, Bandwidth=5 · ŝXN−2/7

and Π = (0.3, 0.4).

Nominal probabilities
d = 2 d = 3

Size Power Size Power
0.01 0.000 0.968 0.000 0.999
0.05 0.002 0.990 0.019 1.000
0.10 0.008 0.994 0.069 1.000

The empirical size and power calculations in Tables 1.9 and 1.10 shows that the proposed test
statistics are consistent and valid for multivariate X.
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1.7.3 Asymptotic Variance and Bias Derivations

1.7.3.1 Test statistics T̂1

Define

Γ̂(x; πk, π j) :=τ̂(x; πk) − τ̂(x; π j)

=
1

Nhd

N∑
i=1

Yi

[
1(Πi = πk)ϕ̂(Ti, x, πk) − 1(Πi = π j)ϕ̂(Ti, x, π j)

]
K

( x − Xi

h

)
.

Under the null hypothesis, the bias of T̂1 can be defined as

Bias(T̂1) :=E[T̂1]

=E

∫
X

K∑
k=1

K∑
j=1

{√
N|Γ̂(x; πk, π j)|

} w(x, πk, π j)
2

dx


=

∫
X

K∑
k=1

K∑
j=1

E

[√
N|Γ̂(x; πk, π j)|

] w(x, πk, π j)
2

dx

=

∫
X

K∑
k=1

K∑
j=1

E
∣∣∣∣∣∣∣∣∣
√

N(Γ̂(x; πk, π j))

√
NVar(Γ̂(x; πk, π j))√
NVar(Γ̂(x; πk, π j))

∣∣∣∣∣∣∣∣∣
 w(x, πk, π j)

2
dx

=

∫
X

K∑
k=1

K∑
j=1


√

NVar(Γ̂(x; πk, π j))E

∣∣∣∣∣∣∣∣∣
√

N(Γ̂(x; πk, π j))√
NVar(Γ̂(x; πk, π j))

∣∣∣∣∣∣∣∣∣
 w(x, πk, π j)

2
dx

→

∫
X

K∑
k=1

K∑
j=1

{√
NVar(Γ̂(x; πk, π j))E |Z1|

}
w(x, πk, π j)

2
dx

=
E|Z1|

2
·

∫
X

K∑
k=1

K∑
j=1

√
NVar(Γ̂(x; πk, π j))w(x, πk, π j)dx

→h
−d
2 ·E|Z1| ·

K2

2
·

∫
X

dx

=a1.

On the other hand, the variance of T̂1 can be defined as

σ2
1 :=

N
4

∫
1

Cov(|Γ̂(x; πi, π j)|, |Γ̂(x′; πk, πl))|)w(x, πi, π j)w(x′, πk, πl)dxdx′
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=
1
4

∫
1

Cov


√

NVar(Γ̂(x; πi, π j))

∣∣∣∣∣∣∣∣∣
√

N · (Γ̂(x; πi, π j))√
NVar(Γ̂(x; πi, π j))

∣∣∣∣∣∣∣∣∣ ,
√

NVar(Γ̂(x′; πk, πl)))

∣∣∣∣∣∣∣∣∣
√

N · (Γ̂(x′; πk, πl))√
NVar(Γ̂(x′; πk, πl)))

∣∣∣∣∣∣∣∣∣


· w(x, πi, π j)w(x′, πk, πl)dxdx′

=
1
4

∫
1

Cov


∣∣∣∣∣∣∣∣∣
√

N · (Γ̂(x; πi, π j))√
NVar(Γ̂(x; πi, π j))

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
√

N · (Γ̂(x′; πk, πl))√
NVar(Γ̂(x′; πk, πl))

∣∣∣∣∣∣∣∣∣

√

NVar(Γ̂(x; πi, π j))
√

NVar(Γ̂(x′; πk, πl))

· w(x, πi, π j)w(x′, πk, πl)dxdx′

→
h−d

4

∫
1

Cov


∣∣∣∣∣∣∣∣∣
√

N · (Γ̂(x; πi, π j))√
NVar(Γ̂(x; πi, π j))

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
√

N · (Γ̂(x′; πk, πl))√
NVar(Γ̂(x′; πk, πl))

∣∣∣∣∣∣∣∣∣
 dxdx′

=

∫
Rd

∫
[−1,1]d

K∑
i=1

K∑
j=1

K∑
k=1

K∑
l=1

Cov
(∣∣∣∣∣ √1 − ρ(x, t, πi, π j, πk, πl)2Z1 + ρ(x, t, πi, π j, πk, πl)Z2

∣∣∣∣∣ , |Z2|

)
dxdt,

where
∫

1
B

∫
Rd

∫
Rd

∑K
i=1

∑K
j=1

∑K
k=1

∑K
l=1, and

ρ(x, t, πi, π j, πk, πl) =
Cov(Γ̂(x; πi, π j), Γ̂(x; πk, πl))√

Var(Γ̂(x; πi, π j))
√

Var(Γ̂(x; πk, πl))

=



∫
K(ξ)K(ξ+t)dξ∫

K(ξ)2dξ
i = k & j = l

−Var(τ̂(x,π j))
√

Var(Γ̂(x;πi,π j))
√

Var(Γ̂(x;πk ,πl))
·

∫
K(ξ)K(ξ+t)dξ∫

K(ξ)2dξ
j = k & i , l

−Var(τ̂(x,πi))√
Var(Γ̂(x;πi,π j))

√
Var(Γ̂(x;πk ,πl))

·

∫
K(ξ)K(ξ+t)dξ∫

K(ξ)2dξ
j , k & i = l

Var(τ̂(x,π j))
√

Var(Γ̂(x;πi,π j))
√

Var(Γ̂(x;πk ,πl))
·

∫
K(ξ)K(ξ+t)dξ∫

K(ξ)2dξ
j = l & i , k

Var(τ̂(x,πi))√
Var(Γ̂(x;πi,π j))

√
Var(Γ̂(x;πk ,πl))

·

∫
K(ξ)K(ξ+t)dξ∫

K(ξ)2dξ
j , l & i = k

0 i , k & j , l.

ρ2(x, π) := Var(τ̂(x, π)) is estimated nonparametrically by ρ̂2(x, π). Plugging in the ρ̂2(x, π)’s into
the formula for ρ(x, t, πi, π j, πk, πl), we obtain the plug-in estimator ρ̂(x, t, πi, π j, πk, πl). Hence a
consistent estimator of the asymptotic variance is

σ̂2
1 := 1

4

∫
Rd

∫
[−1,1]d

∑K
i=1

∑K
j=1

∑K
k=1

∑K
l=1 Cov

(∣∣∣ √1 − ρ̂(x, t, πi, π j, πk, πl)2Z1 + ρ̂(x, t, πi, π j, πk, πl)Z2

∣∣∣ , |Z2|
)

dxdt.
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1.7.3.2 Test statistics T̂2

Define

Γ̂(x; x′, π) :=τ̂(x; πk) − τ̂(x′; πk)

Now under the null hypothesis, the bias of T̂2 can be defined as

Bias(T̂2) :=E[T̂2]

=E

∫
X

∫
X

K∑
k=1

{√
N |Γ̂(x, x′, πk)|

} w(x, x′, πk)
2

dxdx′


=

∫
X

∫
X

K∑
k=1

E

[√
N |Γ̂(x, x′, πk)|

] w(x, x′, πk)
2

dx

=

∫
X

∫
X

K∑
k=1

E
∣∣∣∣∣∣∣∣∣
√

N(Γ̂(x, x′, πk))

√
NVar(Γ̂(x, x′, πk))√
NVar(Γ̂(x, x′, πk))

∣∣∣∣∣∣∣∣∣
 w(x, x′, πk)

2
dxdx′

=

∫
X

∫
X

K∑
k=1


√

NVar(Γ̂(x, x′, πk))E

∣∣∣∣∣∣∣∣∣
√

N(Γ̂(x, x′, πk))√
NVar(Γ̂(x, x′, πk))

∣∣∣∣∣∣∣∣∣
 w(x, x′, πk)

2
dxdx′

→

∫
X

∫
X

K∑
k=1

{√
NVar(Γ̂(x, x′, πk))E |Z1|

}
w(x, x′, πk)

2
dxdx′

=
E|Z1|

2
·

∫
X

∫
X

K∑
k=1

√
NVar(Γ̂(x, x′, πk))w(x, x′, πk)dxdx′

→h
−d
2 ·E|Z1| ·

K
2
·

∫
X

∫
X

dxdx′ = a2.

Also, the variance of T̂2 can be defined as

σ2
2 :=

N
4

∫
2

Cov(|Γ̂(x, x′, πk)|, |Γ̂(x′′, x′′′, π j))|)w(x, x′, πk)w(x′′, x′′′, π j)dxdx′dx′′dx′′′

=
1
4

∫
2

Cov


√

NVar(Γ̂(x, x′, πk))

∣∣∣∣∣∣∣∣∣
√

N · (Γ̂(x, x′, πk))√
NVar(Γ̂(x, x′, πk))

∣∣∣∣∣∣∣∣∣ ,
√

NVar(Γ̂(x′′, x′′′, π j)))

∣∣∣∣∣∣∣∣∣
√

N · (Γ̂(x′′, x′′′, π j))√
NVar(Γ̂(x′′, x′′′, π j)))

∣∣∣∣∣∣∣∣∣


· w(x, x′, πk)w(x′′, x′′′, π j)dxdx′dx′′dx′′′

=
1
4

∫
2

Cov


∣∣∣∣∣∣∣∣∣
√

N · (Γ̂(x, x′, πk))√
NVar(Γ̂(x, x′, πk))

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
√

N · (Γ̂(x′′, x′′′, π j))√
NVar(Γ̂(x′′, x′′′, π j))

∣∣∣∣∣∣∣∣∣

√

NVar(Γ̂(x, x′, πk))
√

NVar(Γ̂(x′′, x′′′, π j))
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· w(x, x′, πk)w(x′′, x′′′, π j)dxdx′dx′′dx′′′

→
h−d

4

∫
2

Cov


∣∣∣∣∣∣∣∣∣
√

N · (Γ̂(x, x′, πk))√
NVar(Γ̂(x, x′, πk))

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
√

N · (Γ̂(x′′, x′′′, π j))√
NVar(Γ̂(x′′, x′′′, π j))

∣∣∣∣∣∣∣∣∣
 dxdx′dx′′dx′′′

=
h2d

4

∫
B

∫
T0

∫
T0

∫
T0

K∑
k=1

Cov
(∣∣∣∣∣ √1 − ρ∗1(x, q, r, s, πk)2Z1 + ρ

∗
1(x, q, r, s, πk)Z2

∣∣∣∣∣ , |Z2|

)
drdsdqdx,

where
∫

2
B

∫
Rd

∫
Rd

∫
Rd

∫
Rd

∑K
k=1

∑K
j=1 and

ρ∗1(x, q, r, s, πk) :=
ρ1(x, r, πk) − ρ1(x, s, πk) − ρ1(x, q, r, πk) + ρ1(x, q, s, πk)

2
√

(ρ2(x, πk) − ρ1(x, q, πk))(ρ2(x, πk) − ρ1(x, r, s, πk))

which reduces to

ρ∗1(x, q, r, s, πk) :=

∫
K(ξ + r)K(ξ) − K(ξ + s)K(ξ) − K(ξ + q)K(ξ + r) + K(ξ + q)K(ξ + s)dξ

2 ·
√

(
∫

K2(ξ) − K(ξ + q)K(ξ)dξ)(
∫

K2(ξ) − K(ξ + q)K(ξ + s)dξ)
.

since

ρ1(x, r, s, π) :=

 ∑
t∈{0,1}

E[Y2|X = x,T = t,Π = π] − (E[Y |X = x,T = t,Π = π])2

Pt(x, π)

 ·
∫

K(ξ + s)K(ξ + r)dξ

Therefore,

σ2
2 =

h2d

4
· K · V

where V is a constant which depends on the kernel function and the support of X.

1.7.4 Proofs of Lemmas and Theorems

In this section, I provide a detailed proof of the asymptotic normality proof of Ŝ 1. The asymptotic
normality proof of Ŝ 2 is similar therefore I layout a sketch proof at the end of this section

1.7.4.1 Proof of the asymptotic normality Ŝ 1

Uniform asymptotic approximation of T̂1

Write

τ̂(x, π) = τ(x, π) + (τN0(x, π) −E(τN0(x, π))) + (E(τN0(x, π)) − τ(x, π)) + RN(x, π),
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where

τN0(x, π) :=
1

Nhd

N∑
i=1

Yi1(Πi = π)
[

Ti

P1(x; π)
−

(1 − Ti)
P0(x; π)

]
· K

( x − Xi

h

)
,

RN(x, π) :=
1

Nhd

N∑
i=1

Yi1(Πi = π)
[

Ti

P1(x; π)
−

(1 − Ti)
P0(x; π)

]
×

(
Ti

P1(x, π) − P̂1(x, π)
P̂1(x, π)

+ (1 − Ti)
P0(x, π) − P̂0(x, π)

P̂0(x, π)

)
· K

( x − Xi

h

)
.

Therefore,

Γ̂(x; πk, π j) =τ(x, πk) − τ(x, π j) + (τN0(x, πk) − τN0(x, π j) −E(τN0(x, πk) − τN0(x, π j)))

+ (E(τN0(x, πk) − τN0(x, π j)) − τ(x, πk) − τ(x, π j))) + RN(x, πk) − RN(x, π j).

Now, define

ζN (x, π) =E[Y |X = x,Π = π,T = 1] −E[Y |X = x,Π = π,T = 0]

−E[Y |X = x,Π = π,T = 1]
1

NhdP1(x, π)

N∑
i=1

Ti1(Π = π)K
( x − Xi

h

)
+E[Y |X = x,Π = π,T = 0]

1
NhdP0(x, π)

N∑
i=1

(1 − Ti)1(Π = π)K
( x − Xi

h

)
.

The following lemma shows that RN(x, π) can be approximated by ζN (x, π) uniformly over x at a
rate faster than N−1/2.

Lemma 1.7.1 Under the regularity conditions, we find that for πk, π j ∈ Π,

sup
x∈X
|(RN(x, πk) − RN(x, π j)) − (ζN (x, πk) − ζN (x, π j))| = op(N−1/2).

From, Lemma B.1 in Chang, Lee, and Whang (2015), for πk ∈ Π, we have

sup
x∈X
|RN(x, πk) − ζN (x, πk))| = op(N−1/2).
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Now,

sup
x∈X
|(RN(x, πk) − RN(x, π j)) − (ζN (x, πk) − ζN (x, π j))| ≤ sup

x∈X
{|RN(x, πk) − ζN (x, πk)| + |RN(x, π j) − ζN (x, π j)|}

= sup
x∈X
{|RN(x, πk) − ζN (x, πk)|} + sup

x∈X
{|RN(x, π j) − ζN (x, π j)|}

= op(N−1/2) + op(N−1/2) = op(N−1/2).

Lemma 1.7.2 Under the regularity conditions, we have

T̂1 − T ∗1N = op(1),

where

T ∗1N :=
∫
X

K∑
k=1

K∑
j=1

{√
N

∣∣∣Γ(x, πk, π j) + [τN(x, πk) − τN(x, π j)] −E[τN(x, πk) − τN(x, π j)]
∣∣∣} w(x, π j, πk)

2
dx

and

τN(x, π) = τN0(x, π) + ζN(x, π).

Hence, under the null hypothesis such that τ(x, πk) = τ(x, π j) on X × Π, we have

T̂1 = T1N + op(1),

where

T1N :=
∫
X

K∑
k=1

K∑
j=1

{√
N

∣∣∣[τN(x, πk) − τN(x, π j)] −E[τN(x, πk) − τN(x, π j)]
∣∣∣} w(x, π j, πk)

2
dx.8

and

τN(x, π) :=
1

Nhd

N∑
i=1

({Y −E[Y |X = x,Π = π,T = 1]}
Ti · 1(Π = π)

P1(x, πk)

− {Y −E[Y |X = x,Π = π,T = 0]}
(1 − Ti) · 1(Π = π)

P0(x, πk)
) · K

( x − Xi

h

)
.

Using the triangle inequality and the proof of Lemma B.2 in Chang, Lee, and Whang (2015),
the proof of this Lemma is straightforward.

8Here, I use the true weight rather than the estimated weight but all results hold using the estimated weight since
the estimator is uniformly consistent by assumption.
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Consistency of the estimators of asymptotic variance

Lemma 1.7.3 Under the regularity conditions, the following hold:

1. supx∈X |τ̂(x, π) − τ(x, π)| = Op((Nhd)−1/2 log N + hs) ∀π ∈ Π,

2. supx∈X |ρ̂2(x, π) − ρ2(x, π)| = Op((Nhd)−1/2 log N + hs) ∀π ∈ Π.

This Lemma corresponds to Lemma B.3 in Chang, Lee, and Whang (2015). Hence I omit the
proof.

Theorem 1.7.1 Under the regularity conditions, we have

σ̂2
1 = σ

2
1 + op(1).

Since Cov
(∣∣∣ √1 − ρ(x, t, πi, π j, πk, πl)2Z1 + ρ(x, t, πi, π j, πk, πl)Z2

∣∣∣ , |Z2|
)

is a continuous func-
tional of ρ on [−1, 1]d and ρ̂2(x, t, πi, π j, πk, πl) is uniformly consistent for ρ2(x, t, πi, π j, πk, πl) using
Lemma 1.7.3(2), Assumption 1.2.4 and Assumption 1.3.1(e). It is straightforward to show this
result.

Theorem 1.7.2 Under the regularity conditions, we have that

T1N − a1

σ1

d
→ N(0, 1).

The following fact which is Fact 6.1 in Giné, Mason, and Zaitsev (2003) and follows from
Theorem 1 of Sweeting (1977) will be necessary.

Fact 1.7.1 Let {(Wi,Vi)′ : i = 1, . . . ,N} be a sequence of iid random vectors in R2 such that

each component has mean zero and variance one and finite absolute moments of the third order.

Also, let (Z1,Z2)′ be a bivariate normal with E[Z1] = E[Z2] = 0, Var(Z1) = Var(Z2) = 1 and

Cov(Z1,Z2) = Cov(Wi,Vi) = ρ. Then there exist universal positive constants A1, A2 and A3 such

that ∣∣∣∣∣∣E
∣∣∣∣∣∣
∑N

i=1 Wi
√

N

∣∣∣∣∣∣ −E|Z1|

∣∣∣∣∣∣ ≤ A1
√

N
E|Wi|

3 (1.25)

and, whenever ρ2 < 1∣∣∣∣∣∣E
∣∣∣∣∣∣
∑N

i=1 Wi
√

N
·

∑N
i=1 Vi
√

N

∣∣∣∣∣∣ −E|Z1Z2|

∣∣∣∣∣∣ ≤ A2

(1 − ρ2)3/2
√

N
(E|Wi|

3 +E|Vi|
3) (1.26)
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and ∣∣∣∣∣∣E
[∑N

i=1 Wi
√

N
·

∣∣∣∣∣∣
∑N

i=1 Vi
√

N

∣∣∣∣∣∣
]
−E[Z1|Z2|]

∣∣∣∣∣∣ ≤ A3

(1 − ρ2)3/2
√

N
(E|Wi|

3 +E|Vi|
3) (1.27)

The following lemma is similar to lemma 6.1 in Giné, Mason, and Zaitsev (2003). To save space, I
omit the proof and refer readers to the proof of lemma 6.1 in Giné, Mason, and Zaitsev (2003).

Lemma 1.7.4 SupposeH is a finite class of uniformly bounded real-valued functions H, which are

equal to zero outside a known compact set. Further, let g(π, x) f (x) be continuously differentiable in

x with sup(π,x)∈Π×B

∣∣∣d(g(π,x) f (x))
dx

∣∣∣ < ∞ where B ⊂ Rd is a compact set. Then uniformly in H ∈ H

sup
(π,x)∈Π×B

∣∣∣∣∣ 1
hd

∫
Rd

g(π, z) f (z)H
( x − z

h

)
dz − g(π, x) f (x)

∫
Rd

H
( x − z

h

)
dz

∣∣∣∣∣→ 0 as h→ 0. (1.28)

Now I use the "Poissonization" technique used in Giné, Mason, and Zaitsev (2003), Lee et al.
(2013) and Chang, Lee, and Whang (2015). Let N denote a Poisson random variable with mean N

defined on the same probability space as the sequence {Wi : i ≥ 1} := {(Yi, Xi,Ti,Πi) : i ≥ 1} and
independent of this sequence. Define

χt,k :=
E[Y |X = x,Π = πk,T = t]

Pt(x, πk)
,

χ(πk, x,T ) := [χ1,k(πk, x) · T − χ0,k(πk, x) · (1 − T )] · 1(Π = πk),

and
ψ(Wi, x, πk) := [Yi · 1(Πi = πk)ϕ(x, πk,Ti) − χ(πk, x,Ti)]

1
hd K

( x − Xi

h

)
+ τ(x; πk).

Then

τN (x, πk) = τN0(x, πk) + ζN (x, πk) =
1
N

N∑
i=1

ψ(Wi, x, πk).

Hence define,

ΓN(x, πk, π j) :=τN (x, πk) − τN (x, π j)

=
1
N

N∑
i=1

ψ(Wi, x, πk) −
1
N

N∑
i=1

ψ(Wi, x, π j)

=
1
N

N∑
i=1

Θ(Wi, x, πk, π j),

40



McMaster University — Economics PhD Dissertation — Julius Owusu

where

Θ(Wi, x, πk, π j) :=
{

[Yi · [1(Πi = πk)ϕ(x,Ti, πk) − 1(Πi = π j)ϕ(x,Ti, π j)]

− [χ(πk, x,Ti) − χ(π j, x,Ti)]
}
·

1
hd K

( x − Xi

h

)
+ Γ(x, πk, π j).

Now we will poissonize ΓN(x, πk, π j). To do so, again define

ΓN (x, πk, π j) =
1
N

N∑
i=1

Θ(Wi, x, πk, π j)

where the sum is zero if N=0. Note that by the law of iterated expectation and variance,

EΓN (x, πk, π j) = EΓN(x, πk, π j) = E[ψ(W, x, πk)] −E[ψ(W, x, π j)], (1.29)

κτ,N(x, πk, π j) := NVar(ΓN (x, πk, π j)) = E[Θ2(W, x, πk, π j)], (1.30)

κτ,N(x, π) := NVar(τN (x, π)) (1.31)

and

NVar(ΓN(x, πk, π j)) = E[Θ2(W, x, πk, π j)] − {E[Θ(W, x, πk, π j)]}2. (1.32)

Let ϵ ∈
(
0,

∫
X

f (x)dx
)

be an arbitrary constant. For constant {Ml > 0 : l = 1, . . . , d}, let
B(M) = Πd

l=1[−Ml,Ml] ⊂ X denote a Borel set in Rd with nonempty interior with finite Lebesgue
measure λ(B(M)). For v > 0, define B(M, v) to be the v-contraction of B(M), i.e., B(M, v) = {x ∈
B(M) : infy∈Rd\B(M){||x − y||} ≥ v}, Choose M, v > 0 and a Borel set B such that

B ⊂ B(M, v), (1.33)

∫
Rd\B(M)

f (x)dx := α > 0, (1.34)
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X

f (x)dx −
∫

B
f (x)dx > ϵ. (1.35)

According to Chang, Lee, and Whang (2015), such M, v and B exist by the absolute continuity of
the density f . Lets define a poissonized version of T1N (restricted to B)- the uniform asymptotic
approximation of T̂1 under the null hypothesis- to be:

T P
1N(B) :=

∫
B

K∑
k=1

K∑
j=1

{√
N

∣∣∣[(ΓN (x, πk, π j)] −E[(ΓN (x, πk, π j)]
∣∣∣} w(x, π j, πk)

2
dx

−

∫
B

K∑
k=1

K∑
j=1

{√
NE

∣∣∣[(ΓN (x, πk, π j)] −E[(ΓN (x, πk, π j)]
∣∣∣} w(x, π j, πk)

2
dx.

Let
σ2

1N(B) = Var(T P
1N(B)).

The following lemma shows that the variance of the approximated and poissonized version of T̂1

under the null in B converges to the variance of the "un-approximated" and "un-poissonized" version
of T̂1 under the null in B

Lemma 1.7.5 If the regularity conditions holds and B satisfies (1.33)-(1.35), then

lim
N→∞

σ2
1N(B) = P(B) · Var(T̂1) = σ2

1,B, (1.36)

where

σ2
1,B :=

∫ 1

−1

∫
B

K∑
i=1

K∑
j=1

K∑
k=1

K∑
l=1

Cov(|
√

1 − ρ2(x, πi, π j, πk, πl, r)Z1 + ρ(x, πi, π j, πk, πl, r)Z2|, |Z2|)

·
√
ρ2(x, πi, π j)ρ2(x, πk, πl) · w(x, πi, π j)w(x′, πk, πl)dxdr. (1.37)

proof 1.7.1 Note that for each (x, πi, π j), (x′, πk, πl) ∈ Rd × Π2 such that ||x − x′|| > h, the random

variables ΓN(x, πi, π j) −E[ΓN(x, πi, π j)] and ΓN(x′, πk, πl) −E[ΓN(x′, πk, πl)] are independent be-

cause they are functions of independent increments of a Poisson process and the kernel K vanishes

outside of the closed rectangle [−1, 1]d. Therefore,

Var(T P
1N(B)) =

1
4

∫
1

Cov(
√

N|ΓN (x, πi, π j) −E[ΓN (x, πi, π j)]|,
√

N |ΓN (x′, πk, πl) −E[ΓN (x′, πk, πl)]|)

· w(x, πi, π j)w(x′, πk, πl)dxdx′
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=
1
4

∫
1

Cov(
√

N|ΓN (x, πi, π j) −E[ΓN (x, πi, π j)]|,
√

N |ΓN (x′, πk, πl) −E[ΓN (x′, πk, πl)]|)

· 1(h−1(x − x′) ∈ [−1, 1]d) · w(x, πi, π j)w(x′, πk, πl)dxdx′,

where
∫

1
B

∫
B

∫
B

∑
πi∈Π

∑
π j∈Π

∑
πk∈Π

∑
πl∈Π

.

Again, let

S τ,N (x, π, π′) =
√

N{ΓN (x, π, π′) −E[τN (x, π, π′)]}√
κΓ,N(x, π, π′)

=

√
N{τN (x, π) −E[τN (x, π)]}√

κΓ,N(x, π, π′)
+

√
N{τN (x, π′) −E[τN (x, π′)]}√

κΓ,N(x, π, π′)

≤

√
N{τN (x, π) −E[τN (x, π)]}√

κτ,N(x, π)
+

√
N{τN (x, π′) −E[τN (x, π′)]}√

κτ,N(x, π′)

:=S τ,N (x, π) + S τ,N (x, π′). (1.38)

Now, with K < ∞ and
∫

B
dx < ∞, by the Lemma 1.7.4, we can show that

sup
(x,π,π′)∈B×Π2

∣∣∣∣ √κΓ,N(x, π, π′) − h−d/2
√
ρ2(x, π, π′)

∣∣∣∣ = O(hd/2), (1.39)

where

ρ2(x, π, π′) =

 ∑
t∈{0,1}

∑
π0∈{π,π′}

E[Y2|X = x,T = t,Π = π0] − (E[Y |X = x,T = t,Π = π0])2

Pt(x, π0)

 ·
∫

K2(ξ)dξ

We also have that∫
B

∫
B

∑
πi∈Π

∑
π j∈Π

∑
πk∈Π

∑
πl∈Π

1(h−1(x − x′) ∈ [−1, 1]d) · w(x, πi, π j)w(x′, πk, πl)dxdx′ = O(hd). (1.40)

And finally, by the Cauchy Schwartz Inequality, we have

sup
{(x,πi,π j),(x′,πk ,πl)}∈(B×Π2)2

∣∣∣Cov(|S τ,N (x, πi, π j)|, |S τ,N (x′, πk, πl)|)
∣∣∣ = O(1). (1.41)

Therefore, we have

Var(T P
1N(B)) = σ̄2

1N + o(1),
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where

σ̄2
1N :=

1
4

∫
1
Cov(|S τ,N (x, πi, π j)|, |S τ,N (x′, πk, πl)|) ·

√
ρ2(x, πi, π j)ρ2(x′, πk, πl)

× h−d · 1(h−1(x − x′) ∈ [−1, 1]d) · w(x, πi, π j)w(x′, πk, πl)dxdx′

Now, for b ∈ {1, 2}, let Zbn(x, πi, π j) = Zbn(x, πi)+Zbn(x, π j) where (Z1n(x, πi), Z2n(x, πi), Z1n(x, π j),
Z2n(x, π j)) are mean zero pairwise independent Gaussian processes.

Then (Z1n(x, πi, π j),Z2n(x′, πk, πl)) for (x, πi, π j), (x′, πk, πl) ∈ Rd×Π2, is a mean zero bivariate Gaus-

sian process. Now for each (x, πi, π j) ∈ Rd×Π2, (x′, πk, πl) ∈ Rd×Π2, let (Z1n(x, πi, π j),Z2n(x′, πk, πl))
and (S τ,N (x, πi, π j), S τ,N (x′, πk, πl)) have the same covariance structure. That is,

(Z1n(x, πi, π j),Z2n(x, πk, πl))
d
=

(√
1 − ρ∗N(x, πi, π j, πk, πl)2Z1 + ρ

∗
N(x′, πi, π j, πk, πl)Z2,Z2

)
,

where Z1 and Z2 are independent standard normal random variables and

ρ∗N(x, x′, πi, π j, πk, πl) := E[S τ,N (x, πi, π j)S τ,N (x′, πk, πl)].

Let

τ̄2
N,0 =

∫
T0

∫
B

∑
πi∈Π

∑
π j∈Π

∑
πk∈Π

∑
πl∈Π

Cov(|Z1n(x, πi, π j)|, |Z2n(x′, πk, πl)|) ·
√
ρ2(x, πi, π j)ρ2(x′, πk, πl)

× h−d · 1(h−1(x − x′) ∈ [−1, 1]d) · w(x, πi, π j)w(x′, πk, πl)dxdx′.

By a change of variables x′ = x + th, we can write

τ̄2
N,0 =

∫
B

∫
B

∑
πi∈Π

∑
π j∈Π

∑
πk∈Π

∑
πl∈Π

Cov(|Z1n(x, πi, π j)|, |Z2n(x + th, πk, πl)|)

·

√
ρ2(x, πi, π j)ρ2(x + th, πk, πl) × 1(x ∈ B)1(x + th ∈ B)

· w(x, πi, π j)w(x + th, πk, πl)dxdt.

Note that

ρ∗N(x, x′, πi, π j, πk, πl) =NE

 {ΓN (x, πi, π j) −E[ΓN (x, πi, π j)]}√
κΓ,N(x, πi, π j)

{ΓN (x′, πk, πl) −E[ΓN (x′, πk, πl)]}√
κΓ,N(x′, πk, πl)
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=
E

[
Q(x, πi, π j)Q(x′, πi, π j)Q(x, πk, πl)Q(x′, πk, πl) · 1

hd K
(

x−X
h

)
1
hd K

(
x′−X

h

)]
√
κΓ,N(x, πi, π j)κΓ,N(x′, πk, πl)

,

where

Q(x, π, π′) :=
{
[Y · [1(Π = π)ϕ̂(x,T, π) − 1(Π = π′)ϕ̂(x,T, π′)] − [χ(π, x,T ) − χ(π′, x,T )]

}
.

By Lemma 1.7.4 and a change of variable x′ = x + th, we can show that

ρ∗N(x, x′, πi, π j, πk, πl)→

∫
K(ξ)K(ξ + t)dξ∫

K(ξ)dξ
.

Therefore, as in the proof of Lemma B.10 in Chang, Lee, and Whang (2015), by the bounded

convergence theorem, we have that

lim
N→∞

τ̄2
N,0 = σ

2
1,B.

Now, the desired result holds if

τ̄2
N,0 → σ̄2

N,0 as N → ∞. (1.42)

To prove (1.42), let ϵ0 ∈ (0, 1] and let c(ϵ0) = (1 + ϵ0)2 − 1. Let Q1 and Q2 be two independent

random variables that are independent of ({Yi, Xi}
∞
i=1,N), each having a two-point distribution

that gives two points, {
√

c(ϵ0)} and {−
√

c(ϵ0)}, the equal mass of 1/2, so that E[Q1] = E[Q2] = 0
and Var(Q1) = Var(Q2) = c(ϵ0). Let S Q

τ,N ,1(x, π, π′) = S τ,N (x,π,π′)+2Q1

1+ϵ0
=

S τ,N (x,π)+Q1+S τ,N (x,π′)+Q1

1+ϵ0
=:

S Q
τ,N ,1(x, π)+S Q

τ,N ,1(x, π′) and S Q
τ,N ,2(x, π, π′) = S τ,N (x,ππ′)+2Q2

1+ϵ0
=

S τ,N (x,π)+Q2+S τ,N (x,π′)+Q2

1+ϵ0
=: S Q

τ,N ,2(x, π)+
S Q
τ,N ,2(x, π′). Define

σ̄2
1N,Q :=

∫
1

Cov(|S Qτ,N ,1(x, πi, π j)|, |S Qτ,N ,2(x, πk, πl)|) ·
√
ρ2(x, πi, π j)ρ2(x′, πk, πl)

× h−d · 1(h−1(x − x′) ∈ [−1, 1]d) · w(x, πi, π j)w(x′, πk, πl)dxdx′, (1.43)

and let ZQ1,N(x, π, π′) = Z1,N (x,π)+Z1,N (x,π′)+2Q1

1+ϵ0
=: ZQ1,N(x, π)+ZQ1,N(x, π′) and ZQ2,N(x, π, π′) = Z2,N (x,π)+Z2,N (x,π′)+2Q2

1+ϵ0
=:

ZQ2,N(x, π) + ZQ2,N(x, π′). Then (ZQ1,N(x, πi, π j),ZQ2,N(x′, πk, πl)) is a mean zero multivariate Gaussian

process such that, for each (x, πi, π j) ∈ R×Π2 and (x, πk, πl) ∈ R×Π2, (ZQ1,N(x, πi, π j),ZQ2,N(x′, πk, πl))
and (S Q

τ,N ,1(x, πi, π j), S Qτ,N ,2(x′, πk, πl)) have the same covariance structure.

Also, define

τ̄2
N,Q =

∫
B

∫
B

∑
πi∈Π

∑
π j∈Π

∑
πk∈Π

∑
πl∈Π

Cov(|ZQ1,N(x, πi, π j)|, |ZQ2,N(x′, πk, πl)|)
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·
√
ρ2(x, πi, π j)ρ2(x′, πk, πl) × h−d · 1(h−1(x − x′) ∈ [−1, 1]d)

· w(x, πi, π j)w(x′, πk, πl)dxdx′.

Using the triangle inequality, we have

|τ̄2
N,Q − σ̄

2
N,Q| =

∣∣∣∣∣∣
∫

B

∫
B

∑
πi∈Π

∑
π j∈Π

∑
πk∈Π

∑
πl∈Π

(
Cov(|ZQ1,N(x, πi, π j)|, |ZQ2,N(x′, πk, πl)|)

− Cov(|S Qτ,N ,1(x, πi, π j)|, |S Qτ,N ,2(x, πk, πl)|)
)
·

√
ρ2(x, πi, π j)ρ2(x′, πk, πl)

× h−d · 1(h−1(x − x′) ∈ [−1, 1]d) · w(x, πi, π j)w(x′, πk, πl)dxdx′
∣∣∣∣∣∣

≤

∫
B

∫
B

∑
πi∈Π

∑
π j∈Π

∑
πk∈Π

∑
πl∈Π

∣∣∣∣∣∣
(
E|ZQ1,N(x, πi, π j)|E|ZQ2,N(x′, πk, πl)|

−E|S Qτ,N ,1(x, πi, π j)|E|S Qτ,N ,2(x, πk, πl)|
)
·

√
ρ2(x, πi, π j)ρ2(x′, πk, πl)

× h−d · 1(h−1(x − x′) ∈ [−1, 1]d) · w(x, πi, π j)w(x′, πk, πl)dxdx′
∣∣∣∣∣∣

+

∫
B

∫
B

∑
πi∈Π

∑
π j∈Π

∑
πk∈Π

∑
πl∈Π

∣∣∣∣∣∣
(
E|ZQ1,N(x, πi, π j)||ZQ2,N(x′, πk, πl)|

−E|S Qτ,N ,1(x, πi, π j)||S Qτ,N ,2(x, πk, πl)|
)
·

√
ρ2(x, πi, π j)ρ2(x′, πk, πl)

× h−d · 1(h−1(x − x′) ∈ [−1, 1]d) · w(x, πi, π j)w(x′, πk, πl)dxdx′
∣∣∣∣∣∣

≤

∫
B

∫
B

∑
πi∈Π

∑
π j∈Π

∑
πk∈Π

∑
πl∈Π

∣∣∣∣∣∣
(
E|ZQ1,N(x, πi)|E|ZQ2,N(x′, πk)| −E|S τ,N ,1(x, πi)|E|S τ,N ,2(x′, πk)|

+E|ZQ1,N(x, πi)|E|ZQ2,N(x′, πl)| −E|S τ,N ,1(x, πi)|E|S τ,N ,2(x′, πl)|

+E|ZQ1,N(x, π j)|E|ZQ2,N(x′, πk)| −E|S τ,N ,1(x, π j)|E|S τ,N ,2(x′, πk)|

+E|ZQ1,N(x, π j)|E|ZQ2,N(x′, πl)| −E|S τ,N ,1(x, π j)|E|S τ,N ,2(x′, πl)|
)
·

√
ρ2(x, πi, π j)ρ2(x′, πk, πl)

× h−d · 1(h−1(x − x′) ∈ [−1, 1]d) · w(x, πi, π j)w(x′, πk, πl)dxdx′
∣∣∣∣∣∣

+

∫
B

∫
B

∑
πi∈Π

∑
π j∈Π

∑
πk∈Π

∑
πl∈Π

∣∣∣∣∣∣
(
E|ZQ1,N(x, πi)||ZQ2,N(x′, πk)| −E|S τ,N ,1(x, πi)||S τ,N ,2(x′, πk)|

+E|ZQ1,N(x, πi)||ZQ2,N(x′, πl)| −E|S τ,N ,1(x, πi)||S τ,N ,2(x′, πl)|

+E|ZQ1,N(x, π j)||ZQ2,N(x′, πk)| −E|S τ,N ,1(x, π j)||S τ,N ,2(x′, πk)|

+E|ZQ1,N(x, π j)||ZQ2,N(x′, πl)| −E|S τ,N ,1(x, π j)||S τ,N ,2(x′, πl)|
)
·

√
ρ2(x, πi, π j)ρ2(x′, πk, πl)

× h−d · 1(h−1(x − x′) ∈ [−1, 1]d) · w(x, πi, π j)w(x′, πk, πl)dxdx′
∣∣∣∣∣∣
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:=∆1N,Q(πi, πk) + ∆1N,Q(πi, πl) + ∆1N,Q(π j, πk) + ∆1N,Q(π j, πl)

+ ∆2N,Q(πi, πk) + ∆2N,Q(πi, πl) + ∆2N,Q(π j, πk) + ∆2N,Q(π j, πl).

From the proof of Lemma B.10 in Chang, Lee, and Whang (2015), note that for all {π, π′} ∈ Π,

∆1NQ(π, π′) = o(1), and ∆2NQ(π, π′) = o(1). Using the infinite divisibility property of Poisson

processes, it is straightforward to verify that |σ̄2
N,Q − σ̄

2
N,0| → 0 and |τ̄2

N,Q − τ̄
2
N,0| → 0 as ϵ0 → 0.

Hence the triangle inequality establishes (1.42), and thus the lemma has been proved.

Let M be defined as in (1.33)-(1.35) and let

UN :=
1
√

N

 N∑
i=1

1[Xi ∈ B(M)] − N Pr(X ∈ B(M))


and

VN :=
1
√

N

 N∑
i=1

1[Xi ∈ R
d \ B(M)] − N Pr(X ∈ Rd \ B(M))


Also define

S N :=
T P

1N
(B)

σ1N(B)

Lemma 1.7.6 Under the regularity conditions, we have that

(S N ,UN)
d
→ (Z1,

√
1 − αZ2)

where Z1 and Z2 are independent N(0, 1) random variables and α is defined as in (1.34).

proof 1.7.2 Let

∆N(πk, π j, x) =
√

N
{ ∣∣∣ΓN (x, πk, π j) −E[ΓN (x, πk, π j)]

∣∣∣
−E

∣∣∣ΓN (x, πk, π j) −E[ΓN (x, πk, π j)]
∣∣∣ } · w(x, πk, π j)

Construct a partition of B(M). Consider a regular grid Gi = (i1h, (i1 + 1)h]× · · · × (idh, (id + 1)h]
where i = (i1, . . . , id), i1, . . . , id are integers. Define Ri = Gi∩B(M), Ii = {i ∈ Zd : (Gi∩B(M)) , ∅}.
Then, we see that {Ri : i ∈ Ii ⊂ Z

d} is a partition of B(M) with λ(Ri) ≤ A1hd, mN := #(Ii) ≤ A2h−d

for some positive constants A1 and A2.
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In addition, set

αi,N =

∫
Ri
1(x ∈ B) ·

∑K
k=1

∑K
j=1 ∆N(πk, π j, x)dx

σN(B)

and

ui,N =
1
√

N

 N∑
j=1

1(X j ∈ Ri) − N Pr(X ∈ Ri)

 .
Then, we have S N =

∑
i∈Ii

αi,N and UN =
∑

i∈Ii
ui,N . We can verify that Var(S N) = 1 and Var(UN) =

1 − α. For arbitrary λ1 and λ2 ∈ R, let

yi,N = λ1αi,N + λ2ui,N .

Notice that {yi,N : i ∈ Ii} is an array of mean zero one-dependent random fields.

We need to show that

Var

∑
i∈Ii

yi,N

 =Var(λ1S N + λ2UN)→ λ2
1 + λ

2
2(1 − α) (1.44)

and ∑
i∈Ii

E|yi,N |
r = o(1) for some 2 < r < 3. (1.45)

The results of the Lemma follows from the central limit theorem of Shergin (1993) and the Cramér-

Wold device. To show, (1.44), which holds if we have

Cov(S N ,UN) = O
(

1
√

Nh2d

)
, (1.46)

which implies that

Cov

∫
B

K∑
k=1

K∑
j=1

{√
N

∣∣∣[(ΓN (x, πk, π j)] −E[(ΓN (x, πk, π j)]
∣∣∣} w(x, π j, πk)dx,UN

 = O
(

1
√

Nh2d

)
.

(1.47)

For any (x, πk, π j) ∈ B × Π2 we have

(
S

τ,N
(x, πk, π j),

UN
√

Pr(X ∈ B(M))

)
d
=

 1
√

N

N∑
i=1

Q(i)
τ,N

(x, πk, π j),
1
√

N

N∑
i=1

U (i)

 (1.48)
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where (Q(i)
τ,N

(x, πk, π j),U (i)) for i = 1, . . . ,N are i.i.d. copies of (Q
τ,N (x, πk, π j),U) with Q

τ,N (x, πk, π j)
is defined as

Q
τ,N (x, πk, π j) =

 η∑
i=1

Θ(Wi, x, πk, π j) −E[Θ(W, x, πk, π j)]

 /√E[Θ2(Wi, x, πk, π j)]

and

U =

 η∑
i=1

1[Xi ∈ B(M)] − Pr(X ∈ B(M))

 /√Pr(X ∈ B(M)).

where η denote an independent Poisson random variable with mean 1 that is independent of

{Wi : n ≥ 1}. Let (Z1N(x, πk, π j),Z2N) for (x, πk, π j) ∈ R × Π2 be a mean zero Gaussian process

such that, for each (x, πk, π j) ∈ R × Π2, (Z1N(x, πk, π j),Z2N) and the left-hand side of (1.48) has the

same covariance structure. That is,

(Z1N(x, πk, π j),Z2N) d
= (

√
1 − (γ∗i (x, πk, π j))2Z1 + γ

∗
i (x, πk, π j))Z2,Z2),

where Z1 and Z2 are independent standard normal random variables and

γ∗i (x, πk, π j)) = E
[
S τ,N (x, πk, π j).

UN

Pr(X ∈ B(M))

]
.

We can show that

sup
Π×B

∣∣∣∣∣∣∣E
τN (x, πk) −E[τN (x, πk)]√

κΓ,N(x, πk, π j)
·

UN

Pr(X ∈ B(M))


∣∣∣∣∣∣∣ = O(hd/2),

Using the additive property of the Big-O notation, and the triangle inequality, notice that we

have

sup
B×Π2
|γ∗i (x, πk, π j))| = O(hd/2), (1.49)

which in turn is less than or equal to ϵ for all sufficiently large N and any 0 < ϵ < 1/2. This result

and (1.27) imply that

sup
B×Π2

∣∣∣∣∣∣Cov
(
|S τ,N (x, πk, π j)|,

UN

Pr(X ∈ B(M))

)
−E[|Z1N(x, πk, π j)|Z2N]

∣∣∣∣∣∣ ≤ O
(

1
√

N · h2d

)
(1.50)
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Using the additive property of the Big-O notation, and the triangle inequality, this implies that

sup
B

∣∣∣∣∣∣∣Cov


∣∣∣∣∣∣∣

K∑
k=1

K∑
j=1

S τ,N (x, πk, π j)

∣∣∣∣∣∣∣ , UN

Pr(X ∈ B(M))

 −E

∣∣∣∣∣∣∣

K∑
k=1

K∑
j=1

Z1N(x, πk, π j)

∣∣∣∣∣∣∣ Z2N


∣∣∣∣∣∣∣

≤ O
(

1
√

N · h2d

)
. (1.51)

On the other hand,

sup
B×Π2
|E[Z1N(x, πk, π j)|Z2N | = sup

B×Π2
|γ∗i (x, πk, π j)E[|Z1N(x, πk, π j)|Z1N(x, πk, π j)]

≤ sup
B×Π2
|γ∗i (x, πk, π j)|E[Z2

1N(x, πk, π j)]

= sup
B×Π2
|γ∗i (x, πk, π j)| = O(hd/2).

Using the law of iterated expectations and (1.49). This also implies that

sup
B

∣∣∣∣∣∣∣E

∣∣∣∣∣∣∣

K∑
k=1

K∑
j=1

Z1N(x, πk, π j)

∣∣∣∣∣∣∣ Z2N

∣∣∣∣∣∣∣
 = O(hd/2), (1.52)

using the additive property of the Big-O notation, and the triangle inequality.

Therefore, (1.51) and (1.52) imply that

sup
B
|Cov(

√
N |

K∑
k=1

K∑
j=1

[(ΓN (x, πk, π j)] −E[(ΓN (x, πk, π j)]|,UN)| ≤ O
(

1
Nh2d + hd/2

)

which when combined with λ(B) < ∞ yields (1.47) and hence (1.44) as desired.

Next we establish (1.45). Chang, Lee, and Whang (2015) shows that for any πk ∈ Π,

∑
i∈Ii

E

∣∣∣∣∣∣∣
∫

Ri
1(x ∈ B)

√
Nk{|τN (x, πk) −EτN (x, πk)| −E[|τN (x, πk) −EτN (x, πk)|]}w(x, πk)

σNk
(B)

∣∣∣∣∣∣∣
r

≤ O(Nk · hrd/2) = o(1) (1.53)

50



McMaster University — Economics PhD Dissertation — Julius Owusu

Notice that,

∑
i∈Ii

E|αi,N | =
∑
i∈Ii

E

∣∣∣∣∣∣∣
∫

Ri

1(x ∈ B) ·
K∑

k=1

K∑
j=1

∆i(πk, π j, x)dx

∣∣∣∣∣∣∣
r

=
∑
i∈Ii

E

∣∣∣∣∣∣∣
K∑

k=1

K∑
j=1

∫
Ri

1(x ∈ B) · ∆i(πk, π j, x)dx

∣∣∣∣∣∣∣
r

≤
∑
i∈Ii

K∑
k=1

K∑
j=1

E

∣∣∣∣∣∣
∫

Ri

1(x ∈ B) · ∆i(πk, π j, x)dx

∣∣∣∣∣∣r
=o(1)

(1.54)

using (1.53), the triangle inequality and the additive property of the Big-O notation.

Also, from existing results we can verify that∑
i∈Ii

E|ui,N |
r → 0 (1.55)

Therefore, combining (1.44) and (1.45), we have (1.45). This now completes the proof of the Lemma

We are now ready to prove asymptotic normality

Lemma 1.7.7 Under the regularity conditions, the following holds

lim
N→∞

∫
B

K∑
k=1

K∑
j=1, j,k

{
√

NE
[∣∣∣[(ΓN (x, πk, π j)] −E[(ΓN (x, πk, π j)]

∣∣∣]
−E|Z|

K(K − 1)
2

κ1/2
τ,N (x, πk, π j)

}
w(x, π j, πk)dx = 0

and

lim
N→∞

∫
B

K∑
k=1

K∑
j=1, j,k

{
√

NE
[∣∣∣[(ΓN (x, πk, π j)] −E[(ΓN (x, πk, π j)]

∣∣∣]
−E|Z1| ·

K(K − 1)
2

κ1/2
τ,N (x, πk, π j)

}
w(x, π j, πk)dx = 0,

where Z is a standard normal random variable.

Using Lemma 1.7.4, and similar arguments in the proof of Lemma 6.3 of Giné, Mason, and
Zaitsev (2003), the results are established.
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Define

LN(B) =
√

N
σN(B)

∫
B

K∑
k=1

K∑
j=1, j,k

{ ∣∣∣[(ΓN(x, πk, π j)] −E[(ΓN(x, πk, π j)]
∣∣∣

−E
∣∣∣[(ΓN(x, πk, π j)] −E[(ΓN(x, πk, π j)]

∣∣∣ }w(x, π j, πk)dx.

Lemma 1.7.8 Under the regularity conditions, we have

LN(B)
d
→ Z

as N → ∞, where Z is a standard normal random variable.

proof 1.7.3 Notice that

S N =

√
N

σN(B)

∫
B

K∑
k=1

K∑
j=1, j,k

{√
N

∣∣∣[(ΓN (x, πk, π j)] −E[(ΓN (x, πk, π j)]
∣∣∣} w(x, π j, πk)

−

√
N

σN(B)

∫
B

K∑
k=1

K∑
j=1, j,k

{√
NE

∣∣∣[(ΓN (x, πk, π j)] −E[(ΓN (x, πk, π j)]
∣∣∣} w(x, π j, πk)dx

By the de-poissonization arguments of Beirlant and Mason (1995), we have

(S N |N = N) d
=

√
N

σN(B)

∫
B

K∑
k=1

K∑
j=1, j,k

{√
N

∣∣∣[(ΓN(x, πk, π j)] −E[(ΓN(x, πk, π j)]
∣∣∣} w(x, π j, πk)

−

√
N

σN(B)

∫
B

K∑
k=1

K∑
j=1, j,k

{√
NE

∣∣∣[(ΓN(x, πk, π j)] −E[(ΓN(x, πk, π j)]
∣∣∣} w(x, π j, πk)dx

→Z

Now from Lemma 1.7.7, we know that

lim
N→∞

∫
B

K∑
k=1

K∑
j=1, j,k

{√
NE

∣∣∣[(ΓN (x, πk, π j)] −E[(ΓN (x, πk, π j)]
∣∣∣} w(x, π j, πk)dx

−

∫
B

K∑
k=1

K∑
j=1, j,k

{√
NE

∣∣∣[(ΓN (x, πk, π j)] −E[(ΓN (x, πk, π j)]
∣∣∣} w(x, π j, πk)dx = 0.
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Hence, we have

LN(B)
d
→ Z

as N → ∞, as required

We are now ready to prove Theorem 1.7.2. We can show that for any πk ∈ Π,

lim
Nk→∞

supE
√Nk

∫
Bc

l

{|τNk(x, πk) −EτNk(x, πk)| −E[|τNk(x, πk) −EτNk(x, πk)|]}w(x, πk)dx
2

≤ C2λ(X)
(
sup
x∈X
E[|Y2ϕ̂(πk, x,T )2||X = x] + E[|χ(πk, x,T )2|]

) ∫
Bc

l

f (x)dx,

(1.56)

where C2 is a positive constant and {Bl : l > 1} is a sequence of Borel sets in Rd that has a finite
Lebesgue measure λ(Bl) and satisfies (1.33)-(1.35) with Bl = B for each l and let

lim
l→∞

∫
Bc

l

f (x)dx = 0. (1.57)

Also, for each l ≥ 1, by Lemma 1.7.5, we have

lim
l→∞

σ2
1,Bl
= σ2

1. (1.58)

We can show that

lim
N→∞

supE
(
√

N
∫

Bc
l

K∑
k=1

K∑
j=1

{ ∣∣∣[(ΓN (x, πk, π j)] −E[(ΓN (x, πk, π j)]
∣∣∣−

E

∣∣∣[(ΓN (x, πk, π j)] −E[(ΓN (x, πk, π j)]
∣∣∣ }w(x, π j, πk)dx

)2

≤ lim
N→∞

supE
(
√

N
∫

Bc
l

K∑
k=1

K∑
j=1

{|τ
N k

(x, πk) −E[τik
(x, πk)]| −E|τ

N k
(x, πk) −E[τik

(x, πk)]|+

|τ
N j

(x, π j) −E[τi j
(x, π j)]| −E|τN j

(x, π j) −E[τi j
(x, π j)]|}w(x, π j, πk)dx

)2

≤ lim
N→∞

supE
(
N

∫
Bc

l

2
K∑

k=1

K∑
j=1

(
{|τ

N k
(x, πk) −E[τik

(x, πk)]| −E|τ
N k

(x, πk) −E[τik
(x, πk)]|+

|τ
N j

(x, π j) −E[τi j
(x, π j)]| −E|τN j

(x, π j) −E[τi j
(x, π j)]|}w(x, π j, πk)dx

)2)
≤ lim

N→∞
supE

(
N

∫
Bc

l

4
K∑

k=1

K∑
j=1

(
{|τ

N k
(x, πk) −E[τik

(x, πk)]| −E|τ
N k

(x, πk) −E[τik
(x, πk)]|

)2

+
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(
|τ
N j

(x, π j) −E[τi j
(x, π j)]| −E|τN j

(x, π j) −E[τi j
(x, π j)]|}w(x, π j, πk)dx

)2)
= lim

N→∞
sup

{
4NE

( ∫
Bc

l

K
K∑

k=1

(
|τ
N k

(x, πk) −E[τik
(x, πk)]| −E|τ

N k
(x, πk) −E[τik

(x, πk)]|w(x, π j, πk)dx
)2)
+

E

( ∫
Bc

l

K
K∑

j=1

(
|τ
N j

(x, π j) −E[τi j
(x, π j)]| −E|τN j

(x, π j) −E[τi j
(x, π j)]|w(x, π j, πk)dx

)2)}

= lim
N→∞

sup
{

4NK
∫

Bc
l

K∑
k=1

E

(
|τ
N k

(x, πk) −E[τik
(x, πk)]| −E|τ

N k
(x, πk) −E[τik

(x, πk)]|w(x, π j, πk)dx
)2

+

4NK
∫

Bc
l

K∑
j=1

E

(
|τ
N j

(x, π j) −E[τi j
(x, π j)]| −E|τN j

(x, π j) −E[τi j
(x, π j)]|w(x, π j, πk)dx

)2}

≤ lim
N→∞

sup
{

4K
K∑

k=1

E

(
√

N
∫

Bc
l

|τ
N k

(x, πk) −E[τik
(x, πk)]| −E|τ

N k
(x, πk) −E[τik

(x, πk)]|w(x, π j, πk)dx
)2}
+

lim
N→∞

sup
{

4K
K∑

j=1

E

(
√

N
∫

Bc
l

|τ
N j

(x, π j) −E[τi j
(x, π j)]| −E|τN j

(x, π j) −E[τi j
(x, π j)]|w(x, π j, πk)dx

)2}

≤ 4K
K∑

k=1

lim
N→∞

supE
(
√

N
∫

Bc
l

|τ
N k

(x, πk) −E[τik
(x, πk)]| −E|τ

N k
(x, πk) −E[τik

(x, πk)]|w(x, π j, πk)dx
)2

+

4K
K∑

j=1

lim
N→∞

supE
(
√

N
∫

Bc
l

|τ
N j

(x, π j) −E[τi j
(x, π j)]| −E|τN j

(x, π j) −E[τi j
(x, π j)]|w(x, π j, πk)dx

)2

≤ 4K
K∑

k=1

C2λ(X)
(
sup
x∈X

E[|Y2ϕ̂(πk, x,T )2||X = x] + E[|χ(πk, x,T )2|]
) ∫

Bc
l

f (x)dx+

4K
K∑

j=1

C2λ(X)
(
sup
x∈X

E[|Y2ϕ̂(πk, x,T )2||X = x] + E[|χ(πk, x,T )2|]
) ∫

Bc
l

f (x)dx

= 8KC2λ(X) ·
{ K∑

k=1

(
sup
x∈X

E[|Y2ϕ̂(πk, x,T )2||X = x] + E[|χ(πk, x,T )2|]
) }
·

∫
Bc

l

f (x)dx.

The first inequality is as a result of the triangle inequality. The second and third inequalities are as a
result of the of the fact that (

∑
i ai)2 ≤

∑
i a2

i . The fourth and fifth inequalities are as a result of the
linear properties of limsup. The sixth inequality is as a result of the the inequality in (1.56).

Using this result, with the results in (1.57)–(1.58) and Theorem 4.2 in Billingsley (1968), we
conclude that∫

X

K∑
k=1

K∑
j=1, j,k

{√
N

∣∣∣[τN(x, πk) − τN(x, π j)] −E[τN(x, πk) − τN(x, π j)]
∣∣∣} w(x, π j, πk)dx

d
→ σ0Z.
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The proof is complete because we can use Lemma (1.7.7) to show that

lim
N→∞

∫
B

K∑
k=1

K∑
j=1, j,k

{√
NE

[∣∣∣[(ΓN (x, πk, π j)]w(x, π j, πk) −E[(ΓN (x, πk, π j)]
∣∣∣] − ai

}
dx = 0.

1.7.4.2 Sketch Proof of Asymptotic normality of T̂2

Uniform Asymptotic approximation of T̂2

Write

τ̂(x, π) = τ(x, π) + (τN0(x, π) −E(τN0(x, π))) + (E(τN0(x, π)) − τ(x, π)) + RN(x, π)

where

τN0(x, π) :=
1

Nhd

N∑
i=1

Yi1(Πi = π)
[

Ti

P1(x; π)
−

(1 − Ti)
P0(x; π)

]
· K

( x − Xi

h

)
and

RN(x, π) :=
1

Nhd

N∑
i=1

Yi1(Πi = π)
[

Ti

P1(x; π)
−

(1 − Ti)
P0(x; π)

]
×

(
Ti

P1(x, π) − P̂1(x, π)
P̂1(x, π)

+ (1 − Ti)
P0(x, π) − P̂0(x, π)

P̂0(x, π)

)
· K

( x − Xi

h

)
.

Therefore,

Γ̂(x, x′, πk) =τ(x, πk) − τ(x′, πk) + (τN0(x, πk) − τN0(x′, πk) −E(τN0(x, πk) − τN0(x′, πk)))

+ (E(τN0(x, πk) − τN0(x′, πk)) − τ(x, πk) − τ(x′, πk))) + RN(x, πk) − RN(x′, πk)

Now, define

ζN (x, π) =E[Y |X = x,Π = π,T = 1] −E[Y |X = x,Π = π,T = 0]

−E[Y |X = x,Π = π,T = 1]
1

NhdP1(x, π)

N∑
i=1

Ti1(Π = π)K
( x − Xi

h

)
+E[Y |X = x,Π = π,T = 0]

1
NhdP0(x, π)

N∑
i=1

(1 − Ti)1(Π = π)K
( x − Xi

h

)
.

The following lemma shows that RN(x, π) can be approximated by ζN (x, π) uniformly over x at a
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rate faster than N−1/2.
Under the regularity conditions, we find that for πk ∈ Π,

sup
x∈X
|(RN(x, πk) − RN(x′, πk)) − (ζN (x, πk) − ζN (x′, πk))| = op(N−1/2).

From, Lemma B.1 in Chang, Lee, and Whang (2015) for πk ∈ Π, we have

sup
x∈X
|RN(x, πk) − ζN (x, πk))| = op(N−1/2).

Now,

sup
x,x′∈X×X

|(RN(x, πk) − RN(x′, πk)) − (ζN (x, πk) − ζN (x′, πk))|

≤ sup
x,x′∈X×X

{|RN(x, πk) − ζN (x, πk)| + |RN(x′, πk) − ζN (x′, πk)|}

≤ sup
x∈X
{|RN(x, πk) − ζN (x, πk)|} + sup

x′∈X
{|RN(x′, πk) − ζN (x′, πk)|}

=op(N−1/2) + op(N−1/2) = op(N−1/2).

Under the regularity conditions, we have

T̂2 − T ∗2N = op(1),

where

T ∗2N :=
∫
X

∫
X

K∑
k=1

{
√

N

∣∣∣∣∣∣Γ(x, x′, πk) + [τN(x, πk) − τN(x′, πk)]

−E[τN(x, πk) − τN(x′, πk)]

∣∣∣∣∣∣
}

w(x, x′, πk)
2

dxdx′

and
τN(x, π) = τN0(x, π) + ζN(x, π).

Hence, under the null hypothesis such that τ(x, πk) = τ(x′, πk) on X × Π, we have

T̂2 = T2N + op(1),
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where

T2N :=
∫
X

∫
X

K∑
k=1

{√
N |[τN(x, πk) − τN(x′, πk)] −E[τN(x, πk) − τN(x′, πk)]|

} w(x, x′, πk)
2

dxdx′

and

τN(x, π) :=
1

Nhd

N∑
i=1

(
{Y −E[Y |X = x,Π = π,T = 1]}

Ti · 1(Π = π)
P1(x, πk)

− {Y −E[Y |X = x,Π = π,T = 0]}
(1 − Ti) · 1(Π = π)

P0(x, πk)

)
· K

( x − Xi

h

)
.

Now, rewrite T2N as an average and poissonize. To begin, define

χt,k :=
E[Y |X = x,Π = πk,T = t]

Pt(x, πk)

χ(πk, x,T ) := [χ1,k(πk, x) · T − χ0,k(πk, x) · (1 − T )] · 1(Π = πk)

ψ(Wi, x, πk) := [Yi · 1(Πi = πk)ϕ(x, πk,Ti) − χ(πk, x,Ti)]
1
hd K

( x − Xi

h

)
+ τ(x; πk).

Then

τN (x, πk) = τN0(x, πk) + ζN (x, πk) =
1
N

N∑
i=1

ψ(Wi, x, πk)

Hence define,

ΓN(x, x′, πk) :=τN (x, πk) − τN (x′, πk)

=
1
N

N∑
i=1

ψ(Wi, x, πk) −
1
N

N∑
i=1

ψ(Wi, x′, πk)

=
1
N

N∑
i=1

Θ(Wi, x, x′, πk)

where

Θ(Wi, x, x′, πk) :=Yi1(Π = πk) · {ϕ(x, πk,Ti)Kh(x − Xi) − ϕ(x′, πk,Ti)Kh(x′ − Xi)}

−
[
χ(πk, x,Ti)Kh(x − Xi) − χ(πk, x′,Ti)Kh(x′ − Xi)

]
+ Γ(x, x′, πk).
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Next, we will poissonize ΓN(x, x′, πk). To do so, define

ΓN (x, πk, π j) =
1
N

N∑
i=1

Θ(Wi, x, x′, πk)

where the empty sum is defined to be zero. Note that by the laws of iterated expectation and variance,

EΓN (x, x′, πk) = EΓN(x, x′, πk) = E[ψ(W, x, πk)] −E[ψ(W, x′, πk)], (1.59)

κτ,N(x, x′, πk) := NVar(ΓN (x, x′, πk)) = E[Θ2(W, x, x′, πk)] (1.60)

and

NVar(ΓN(x, x′, πk)) = E[Θ2(W, x, x′, πk)] − {E[Θ(W, x, x′, πk)]}2. (1.61)

Lets define a poissonized version of T2N (restricted to B)- the uniform asymptotic approximation of
T̂2 under the null hypothesis- to be:

T P
2N(B) :=

∫
B

∫
B

K∑
k=1

{√
N |[(ΓN (x, x′, πk)] −E[(ΓN (x, x′, πk)]|

} w(x, x′, πk)
2

dx

−

∫
B

∫
B

K∑
k=1

{√
NE |[(ΓN (x, x′, πk)] −E[(ΓN (x, x′, πk)]|

} w(x, x′, πk)
2

dx.

Lets now prove the asymptotic variance of the poissonized test statistic. If the regularity condi-
tions holds and B satisfies (1.33)-(1.35), then

lim
N→∞

σ2
2N(B) = σ2

2,B, (1.62)

where

σ2
2,B :=

h2d

4

∫
B

∫
T0

∫
T0

∫
T0

K∑
k=1

Cov
(∣∣∣∣∣ √1 − ρ∗1(x, q, r, s, πk)2Z1 + ρ

∗
1(x, q, r, s, πk)Z2

∣∣∣∣∣ , |Z2|

)
drdsdqdx,

(1.63)

with
ρ∗1(x, q, r, s, π) :=

ρ1(x, r, πk) − ρ1(x, s, πk) − ρ1(x, q, r, πk) + ρ1(x, q, s, π)

2
√

(ρ2(x, πk) − ρ1(x, q, πk))(ρ2(x, πk) − ρ1(x, r, s, πk))
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which reduces to

ρ∗1(x, q, r, s, π) :=

∫
K(ξ + r)K(ξ) − K(ξ + s)K(ξ) − K(ξ + q)K(ξ + r) + K(ξ + q)K(ξ + s)dξ

2 ·
√

(
∫

K2(ξ) − K(ξ + q)K(ξ)dξ)(
∫

K2(ξ) − K(ξ + q)K(ξ + s)dξ)

since

ρ1(x, r, s, π) :=

 ∑
t∈{0,1}

E[Y2|X = x,T = t,Π = π] − (E[Y |X = x,T = t,Π = π])2

Pt(x, π)

 ·
∫

K(ξ + s)K(ξ + r)dξ.

Part 1
Note that for each (x, x′, πk), (x′′, x′′′, πk) ∈ Rd×Π2 such that ||x−x′′|| > h, ||x−x′′′|| > h, ||x′−x′′|| > h
and, ||x′ − x′′′|| > h, the random variables ΓN(x, x′, πk) − E[ΓN(x, x′, πk)] and ΓN(x′′, x′′′, πk) −
E[ΓN(x′′, x′′′, πk)] are independent because they are functions of independent increments of a
Poisson process and the kernel K vanishes outside of the closed rectangle [−1, 1]d. Therefore,

Var(T P
2N(B)) =

1
4

∫
2

Cov(
√

N |ΓN (x, x′, πk) −E[ΓN (x′, x, πk)]|,
√

N |ΓN (x′′, x′′′, πk) −E[ΓN (x′′, x′′′, πk)]|)

· w(x′, x, πk)w(x′′, x′′′, πk)dxdx′dx′′dx′′′

=
1
4

∫
2

Cov(
√

N |ΓN (x, x′, πk) −E[ΓN (x′, x, πk)]|,
√

N|ΓN (x′′, x′′′, πk) −E[ΓN (x′′, x′′′, πk)]|)

· 1(h−1(z − z′) ∈ [−1, 1]d, z ∈ {x, x′} and z′ ∈ {x′′, x′′′′})w(x′, x, πk)w(x′′, x′′′, πk)dxdx′dx′′dx′′′,

where
∫

2
B

∫
B

∫
B

∫
B

∫
B

∑K
k=1 . Furthermore, let

S τ,N (x, x′, π) =
√

N{ΓN (x, x′, π) −E[ΓN (x, x′, π)]}√
κτ,N(x, x′, π)

. (1.64)

Now, with λ(Π × B2) < ∞, by the Lemma (1.7.4), we can show that for any π ∈ Π

sup
(x,x′)∈B2

∣∣∣∣ √κτ,N(x, x′, π) − h−d/2
√

2ρ2(x, π) − 2ρ1(x, q, π)
∣∣∣∣ = O(hd/2), (1.65)

where

ρ2(x, π) =

 ∑
t∈{0,1}

E[Y2|X = x,T = t,Π = π] − (E[Y |X = x,T = t,Π = π])2

Pt(x, π)

 ·
∫

K2(ξ)dξ (1.66)

and

ρ1(x, q, π) =

 ∑
t∈{0,1}

E[Y2|X = x,T = t,Π = π] − (E[Y |X = x,T = t,Π = π])2

Pt(x, π)

 ·
∫

K(ξ)K(ξ + q)dξ. (1.67)
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This is becauseE[Θ2(W, x, x′, π)] = E[ψ2(W, x, π)]+E[ψ2(W, x′, π)]−2E[ψ(W, x, π)ψ(W, x′, π)] and
by change of variable x′ = x + qh. We also have that

∫
1
1(h−1(z − z′) ∈ [−1, 1]d, z ∈ {x, x′} and z′ ∈ {x′′, x′′′′})w(x′, x, πk)w(x′′, x′′′, πk)dxdx′dx′′dx′′′

=O(hd). (1.68)

And finally, by the Cauchy Schwartz Inequality, we have

sup
{(x,x′,πk),(x′′,x′′′,πk)}∈(B2×Π)2

∣∣∣Cov(|S τ,N (x, x′, πk)|, |S τ,N (x′′, x′′′, πk)|)
∣∣∣ = O(1). (1.69)

Therefore,
Var(T P

2N(B)) = σ̄2
2N + o(1),

where by change of variable x′ = x + qh, x′′ = x + rh and x′′′ = x + sh, we have

σ̄2
2N :=

1
4

∫
2

Cov(|S τ,N (x, x + qh, πk)|, |S τ,N (x + rh, x + sh, πk)|) · 1(h−1(z − z′) ∈ [−1, 1]d, z ∈ {x, x′} and z′ ∈ {x′′, x′′′})

h−d
√

[2ρ2(x, πk) − 2ρ1(x, q, πk)][2ρ2(x, πk) − 2ρ1(x, r, s, πk)]w(x′, x, πk)w(x′′, x′′′, πk)dxdx′dx′′dx′′′. (1.70)

Part 2

Now, let (Z1N(x, x′, πk),Z2N(x′′, x′′′, πk)) for (x, x′, πk), (x′′, x′′′, πk) ∈ Rd ×Rd × Π, be a mean
zero multivariate Gaussian process such that, for each (x, x′, π) ∈ Rd ×Rd × Π,

(Z1N(x, x′, πk),Z2N(x′′, x′′′, πk)) and (S τ,N(x, x′, πk), S τ,N(x′′, x′′′, πk)) have the same covariance
structure. That is,

Z1N(x, x′, πk),Z2N(x′′, x′′′, πk))
d
=

(√
1 − ρ∗N(x, x′, x′′, x′′′, πk)2Z1 + ρ

∗
N(x, x′, x′′, x′′′, πk)Z2,Z2

)
,

where Z1 and Z2 are independent standard normal random variables and

ρ∗N(x, x′, x′′, x′′′, πk) := E[S τ,N (x, x′, πk)S τ,N (x′′, x′′′, πk)].

Let

τ̄2
2N =

1
4

∫
1

Cov(|Z1n(x, x′, πk)|, |Z2n(x′′, x′′′, πk)|) · 1(h−1(z − z′) ∈ [−1, 1]d, z ∈ {x, x′} and z′ ∈ {x′′, x′′′})

h−d
√

[2ρ2(x, πk) − 2ρ1(x, q, πk)][2ρ2(x, πk) − 2ρ1(x, r, s, πk)]w(x′, x, πk)w(x′′, x′′′, πk)dxdx′dx′′dx′′′.
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Define

ρ1(x, q1, q2, π) =

 ∑
t∈{0,1}

E[Y2|X = x,T = t,Π = π] − (E[Y |X = x,T = t,Π = π])2

Pt(x, π)

 ·
∫

K(ξ + q1)K(ξ + q2)dξ (1.71)

By a change of variable x′ = x + qh, x′′ = x + rh and x′′′ = x + sh, we can show that

ρ∗N(x, x′, x′′, x′′′, πk)→ρ∗1(x, q, r, s, πk) :=
ρ1(x, r, πk) − ρ1(x, s, πk) − ρ1(x, q, r, πk) + ρ1(x, q, s, π)√

4 · (ρ2(x, πk) − ρ1(x, q, πk))(ρ2(x, πk) − ρ1(x, r, s, πk))
.

Using the bounded convergence theorem, we can show that

lim
N→∞

τ̄2
2N = σ

2
2,B

and, the desired result holds if
τ̄2

2N → σ̄2
2N as N → ∞. (1.72)

To prove (1.72), let ϵ0 ∈ (0, 1] and let c(ϵ0) = (1 + ϵ0)2 − 1. Let Q1 and Q2 be two independent
random variables that are independent of ({Yi, Xi}

∞
i=1,N), each having a two-point distribution that

gives two points, {
√

c(ϵ0)} and {−
√

c(ϵ0)}, the equal mass of 1/2, so that E[Q1] = E[Q2] = 0 and
Var(Q1) = Var(Q2) = c(ϵ0).

Let S Q
τ,N ,1(x, x′, π) := S τ,N (x,x′,π)+Q1

1+ϵ0
and S Q

τ,N ,2(x, x′, π) := S τ,N (x,x′,π)+Q2

1+ϵ0
, and define

σ̄2
2N,Q :=

1
4

∫
2
Cov(|S Qτ,N ,1(x, x + qh, πk)|, |S Qτ,N ,2(x + rh, x + sh, πk)|)·

1(h−1(z − z′) ∈ [−1, 1]d, z ∈ {x, x′} and z′ ∈ {x′′, x′′′})

h−d
√

[2ρ2(x, πk) − 2ρ1(x, q, πk)][2ρ2(x, πk) − 2ρ1(x, r, s, πk)]·

w(x′, x, πk)w(x′′, x′′′, πk)dxdx′dx′′dx′′′. (1.73)

Now, let ZQ1,N(x, x′, π) := Z1,N (x,x′,π)+Q1

1+ϵ0
and ZQ2,N(x, x′, π) := Z2,N (x,x′,π)+Q2

1+ϵ0
.

Then (ZQ1,N(x, x′, π),ZQ2,N(x′′, x′′′, π)) is a mean zero multivariate Gaussian process such that, for each
(x, x′, π) ∈ R × Π2 and (x′′, x′′′, π) ∈ R2 × Π, (ZQ1,N(x, x′, π),ZQ2,N(x′′, x′′′, π)) and
(S Q

τ,N ,1(x, x′, π), S Q
τ,N ,2(x′′, x′′′, π)) have the same covariance structure.

Also, define

τ̄2
2N,Q =

1
4

∫
2
Cov(|ZQ1n(x, x′, πk)|, |ZQ2n(x′′, x′′′, πk)|) · 1(h−1(z − z′) ∈ [−1, 1]d, z ∈ {x, x′} and z′ ∈ {x′′, x′′′})

h−d
√

[2ρ2(x, πk) − 2ρ1(x, q, πk)][2ρ2(x, πk) − 2ρ1(x, r, s, πk)]w(x′, x, πk)w(x′′, x′′′, πk)dxdx′dx′′dx′′′.
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Note that

∣∣∣σ̄2
2N,Q − τ̄

2
2N,Q

∣∣∣ =∣∣∣∣∣∣14
∫

B

∫
B

∫
B

∫
B

K∑
k=1

Cov(|ZQ1n(x, x′, πk)|, |ZQ2n(x′′, x′′′, πk)|)−

Cov(|S Qτ,N ,1(x, x′, πk)|, |S Qτ,N ,2(x′′, x′′′, πk)|)

·1(h−1(z − z′) ∈ [−1, 1]d, z ∈ {x, x′} and z′ ∈ {x′′, x′′′})dxdx′dx′′dx′′′
∣∣∣∣∣∣

≤
1
4

∫
B

∫
B

∫
B

∫
B

K∑
k=1

∣∣∣∣∣∣E[|ZQ1n(x, x′, πk)|]E[|ZQ2n(x′′, x′′′, πk)|]−

E[|S Qτ,N ,1(x, x′, πk)||S Qτ,N ,2(x′′, x′′′, πk)|]

∣∣∣∣∣∣
·1(h−1(z − z′) ∈ [−1, 1]d, z ∈ {x, x′} and z′ ∈ {x′′, x′′′})dxdx′dx′′dx′′′

+
1
4

∫
B

∫
B

∫
B

∫
B

K∑
k=1

∣∣∣∣∣∣E[|ZQ1n(x, x′, πk)||ZQ2n(x′′, x′′′, πk)|]−

E[|S Qτ,N ,1(x, x′, πk)||S Qτ,N ,2(x′′, x′′′, πk)|]

∣∣∣∣∣∣
·1(h−1(z − z′) ∈ [−1, 1]d, z ∈ {x, x′} and z′ ∈ {x′′, x′′′})dxdx′dx′′dx′′′

:=∆1N,Q + ∆2N,Q (1.74)

Adapting the proofs in Giné, Mason, and Zaitsev (2003), we have ∆1N,Q + ∆2N,Q = o(1) as required.

Lemma 1.7.9 Under the regularity conditions, for each πk ∈ Π, Cov(τ̂(x, πk), τ̂(x′, πk)) → 0, as

N → ∞.

proof 1.7.4

Cov(τ̂(x, πk), τ̂(x′, πk)) :=
1

N2h2d Cov
( N∑

i=1

Yi1(Πi = πk)ϕ̂(Ti, x, πk)K
( x − Xi

h

)
,

N∑
i=1

Yi1(Πi = π)ϕ̂(Ti, x′, πk)K
(

x′ − Xi

h

) )

=
1

N2h2d

N∑
i=1

Cov
(
Yi1(Πi = πk)ϕ̂(Ti, x, πk)K

( x − Xi

h

)
,

Yi1(Πi = πk)ϕ̂(Ti, x′, πk)K
(

x′ − Xi

h

) )
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=
1

Nh2d · Cov
(
Y1(Π = πk)ϕ̂(T, x, πk)K

( x − X
h

)
,

Y1(Π = πk)ϕ̂(T, x′, πk)K
(

x′ − X
h

) )
(1.75)

Therefore as N → ∞, Cov(τ̂(x, πk), τ̂(x′, πk))→ 0 as required.
Also note that for each πk ∈ Π and for all x ∈ X, τ̂(x, πk) is asymptotically normal. Therefore

using Lemma 1.7.9, it is obvious that {τ̂(x, πk)}x∈X is mutually independent asymptotically. With
this fact, we can prove the asymptotic normality of the test statistic Ŝ 2 using similar arguments used
to prove the asymptotic normality of the test statistic Ŝ 1.

1.7.5 Proof of Theorem 1.3.2

I prove the first part of Theorem 1.3.2. To save space, I omit the proof of the second part of Theorem
1.3.2 because it is similar to the first part.

Pr(Ŝ 1 > z1−α) =Pr(T̂1N > a1N + σ̂z1−α)

=Pr(T ∗1N > a1N + σ̂z1−α) + o(1)

=Pr(T1N > a1N + σ̂z1−α) + o(1)

→α.

(1.76)

The second equality holds by Lemma 1.7.2, the third equality holds because T1N = T ∗1N under the
null hypothesis. The convergence to α follows from Theorems 1.7.1 and 1.7.2.

1.7.6 Proof of Theorem 1.3.3

I prove the first part of Theorem 1.3.3. We can use similar arguments to prove the second part (ii).

Pr(Ŝ 1 > z1−α) =Pr(T̂1N > a1N + σ̂z1−α)

=Pr
(

T̂1N
√

N
>

a1N + σ̂z1−α
√

N

)
=Pr

(
T̂1N
√

N
> 0

)
− Pr

(
0 <

T̂1N
√

N
<

a1N + σ̂z1−α
√

N

)
=Pr

(
T̂1N
√

N
> 0

)
− o(1)

→1,
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where the third equality holds because (a1N + σ̂z1−α)/
√

N = o(1) and the last convergence to
one follows from the definition of the alternative hypothesis and the fact that |τ̂(x, π) − τ(x, π)| =
op(1) ∀x ∈ X, π ∈ Π.

1.7.7 Proof of Theorem 1.3.4

I prove the first part (i) of Theorem 1.3.4. We can use similar arguments to prove the second part
(ii). Under H1a, using similar arguments as in Theorem 1.7.2 we show that

T ∗1N − ãN1

σ1

d
→ N(0, 1), (1.77)

where ãN1 = 2−1
∫
X

∑K
k=1

∑K
j=1E[|Z1 · h−d/2

√
ρ2(x, πk, π j) + h−d/4δ(x, πk, π j)|] · w(x, πk, π j)dx. Also,

using same arguments as in the proof of Theorem 4.3 in Chang, Lee, and Whang (2015), we can
show that

lim
N→∞
{ãN1 − aN1} =

1

2
√

2π

∫ K∑
k=1

K∑
j=1

δ2(x, πk, π j)dx

Therefore,

Pr(Ŝ 1 > z1−α) =Pr(T̂N1 > â1N + σ̂1z1−α)

=Pr(T ∗
1N
> â1N + σ̂1z1−α) + o(1)

=Pr
(
T ∗

1N
− ãN1

σ1
>

â1N − aN1

σ1
+
σ̂1

σ1
z1−α −

aN1 − ãN1

σ1

)
→1 − Φ

(
z1−α −

1
√

2πσ1

∫ K∑
k=1

K∑
j=1

δ2(x, πk, π j)dx
)
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2.1 Introduction

The no interference assumption is a common assumption in causality studies, particularly in experi-
ments where individuals are randomly assigned to different treatments or interventions. It assumes
that an individual’s treatment assignment does not affect the outcomes of other individuals Cox
(1958). For example, in a clinical trial, the no interference assumption assumes that an individual’s
response to the treatment does not depend on whether or not other individuals received the treatment.

However, in reality, this assumption may not always hold. Modern society is inextricably
interconnected through social networks or other forms of interactions; interference can occur when
the treatment or intervention of one individual affects the outcomes of other individuals via social
connections. For example, if a treatment involves a group intervention, such as a community health
program, individuals will likely interact with each other, and the effects of the treatment may spread
beyond the immediate target population. In such cases, relaxing the no interference assumption can
provide a more accurate representation of the actual outcomes and help researchers better estimate
and infer the effects of the intervention.

Motivated by this fact, over the past decade, there has been increasing attention paid to the
incorporation of interference into standard models of causal inference, especially when analyzing
network data sets. For instance, Liu and Hudgens (2014) develop a framework for causal inference
that accounts for interference within groups. However, this can be an arduous task in complex
networks, and researchers often need to make simplifying assumptions about the interference
structure in causality studies.

One such simplifying assumption is the exposure mapping construct of Aronow et al. (2017),
which summarizes the impacts of other individuals’ treatments into lower dimensional sufficient
statistics. This may reduce the number of missing potential outcomes and makes it possible to
estimate causal effects in the presence of network interference. For example, Leung (2020) studies
the estimation of treatment effects in network populations by assuming that the fraction of treated
neighbors is the appropriate sufficient statistic of how the treatments of neighbors affect one’s out-
come. Therefore, an individual’s treatment and neighborhood treatment ratio are the causal variables
of interest. Different specifications of the exposure mapping may require different assumptions
about the nature of the network interference (see Manski (2013)).

In this chapter, we add to the growing stock of research papers that allow network interference
into the potential outcomes model. Our distinct goal is to provide statistical methods to credibly
infer heterogeneous treatment effects (HTEs) using experimental network data sets. The knowledge
of HTEs is useful in the design of welfare-maximizing policies as it allows for the targeting of
specific subgroups that would benefit the most from a particular intervention. For instance, a study
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by Viviano (2019) demonstrates how to use HTE estimates to improve a weather insurance policy
take-up among rice farmers in rural China. Similarly, Han et al. (2022) use HTE estimates to design
multinomial success rules in populations where interactions occur within non-overlapping groups.
To achieve our goal, we develop randomization testing methods that are valid asymptotically for
three useful notions of HTEs in the presence of network interference: (i) the null hypothesis of
constant treatment effects across the population; (ii) heterogeneous treatment effects across network
exposure values only; and (iii) heterogeneous treatment effects across network exposure values and
covariate-defined discrete groups only.

Our reliance on a randomization-based testing method for HTEs in the current chapter is
motivated by two main reasons. First, since units are linked through social networks, we cannot
assume that the variables of units are independent. Therefore, the traditional asymptotic-based
inferential methods are not directly applicable. The second advantage of the randomization-based
testing method is that it provides exact p-values without imposing restrictive conditions on the data
generating process (DGP) for sharp null hypotheses.1 Moreover, recent studies show that even for
non-sharp null hypotheses, there are conditional randomization-based methods that can generate
exact conditional p-values without any assumptions on the DGP.

The null hypotheses we consider in this chapter are not sharp due to two reasons. First, our null
hypotheses contain nuisance parameters which are unknown values in the science tables one will
construct under the null. Hence, one can only partially impute the potential outcomes that depend
on these nuisance parameters under the null hypotheses. The problem of nuisance parameters in
null hypotheses is not exclusive to network interference situations, but there may be more of these
parameters present in this setting. (See Ding et al. (2016) for a hypothesis of constant treatment
effects under no interference). Second, under network interference, the number of potential outcomes
depends on the exposure mapping one imposes. Therefore, without additional restrictions on the
underlying DGP, we cannot impute all missing potential outcomes under the null hypotheses. As a
result of these two reasons, the conventional randomization method of inference by Fisher (1925)
is not directly applicable to the null hypotheses we test in the current chapter without appropriate
modifications.

In the following sections, we thoroughly discuss our proposed approaches to "sharpen" the null
hypotheses. Here, we provide a summary. First, we propose two methods to deal with the presence
of the nuisance parameters. Additionally, we offer a conditional randomization method to handle the
issue of multiple potential outcomes. The idea behind the conditioning method is that by focusing on
a subset of treatment assignment vectors and a subset of units, a non-sharp null hypothesis becomes

1Under a sharp null hypothesis, all potential outcomes for each unit can be imputed.
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sharp. In Section 2.3.2, we show how the conditioning method in this chapter differs from those that
exist in the literature, particularly those of Athey et al. (2018) and Basse et al. (2019).

This chapter makes three main contributions. First, we introduce three new hypotheses of
constant treatment effects under network interference. By testing these null hypotheses individually,
researchers can infer HTEs in populations with network interferences. However, jointly testing all
three null hypotheses allows researchers to determine if treatment effect variations are driven by
pretreatment variables, network exposure variables, or are idiosyncratic. It can help policy-makers
better understand the underlying mechanisms driving heterogeneity in treatment effects.

Second, we propose a novel conditional randomization method that provides a reliable testing
procedure for our null hypotheses. It is a generalization of existing methods in the literature. We
show that the proposed method produces valid p-values in the limit.

Finally, we propose techniques for handling nuisance parameters in the null hypotheses. Specif-
ically, we offer practitioners two effective techniques and show that they produce valid p-values
for large samples when combined with our conditional randomization method. In other words, our
proposed conditioning method and the techniques to deal with the nuisance parameters make the
null hypotheses sharp and ensure that the randomization hypothesis in Lehmann and Romano (2022)
holds.

The organization of the rest of the chapter is as follows. We review existing related work in the
second part of this section. Section 2.2 describes the setup and the hypothesis testing problem. In
Section 2.3, we discuss the proposed testing procedure and our main results. Monte Carlo simulation
design and results are in Section 2.4. Our concluding remarks are in Section 2.5. All proofs, useful
theorems, and lemmas are in the Appendix.

2.1.1 Related Literature

The study of HTEs spans multiple fields and is often under the assumption of no interference.
Many existing papers focus on systematic HTEs explained by pretreatment variables (Crump et al.
(2008), Wager and Athey (2018), and Sant’Anna (2021)). In an influential paper, Bitler et al. (2006)
provide an in-depth critique of this approach to testing for HTEs. They argue that heterogeneity of
conditional average treatments across covariate-defined subgroups often does not imply individual
treatment effect variation unless one assumes constant subgroup treatment effect. Inspired by the
results in Bitler et al. (2006), Ding et al. (2016) study randomization inference for HTEs beyond
that which can be accounted for by pretreatment variables. They use a method in Berger and Boos
(1994) to deal with the nuisance parameters in their null hypothesis. They prove the validity of
their maximum p-value approach and acknowledge that it leads to the under-rejection of the null
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hypothesis. Similarly, more recently, Chung and Olivares (2021) propose a permutation test for HTEs
using the Doob-Meyer theorem (martingale transformation) to handle the nuisance parameters in the
null hypothesis. They show that their testing procedure is asymptotically valid as the Khmaladzation
of the empirical process that the null hypothesis characterizes will render the estimation errors of
the nuisance parameters asymptotically negligible.

Fisher’s method of randomization inference (Fisher (1925)) proposes and tests for the sharp
null hypothesis of zero treatment effect. While this method is innovative because it abstracts from
distributional assumptions and shows that physical randomization of treatment is the logical basis
of inference, many researchers criticize it for its limited scope of application. Motivated by this
criticism, Athey et al. (2018) propose an abstract concept of an artificial experiment that differs from
the original experiment to make a non-sharp null hypothesis sharp. In econometrics and statistics,
this method is now widely known as the conditional randomization method of inference. Several
subsequent studies, such as Basse et al. (2019) and Zhang and Zhao (2022), aim to generalize the
framework to construct conditioning events to "sharpen" non-sharp null hypotheses. These studies
investigate the calculations of exact p-values for a large class of null hypotheses about treatment
effects in settings where we have experimental network data. However, the null hypotheses we study
in the present chapter are different and contain nuisance parameters.

Among all the aforementioned references, the current work is most closely related to Ding
et al. (2016) and Chung and Olivares (2021), but there are some differences. First, we allow for
network interference which introduces dependencies among observations. In other words, the treated
sample is not independent of the control sample. This means that the unconditional asymptotic
null distribution of test statistics like the Kolmogorov-Smirnov, Cramer-Von-Mises, and ratio of
variances (F-test) is not trivial. Second, we provide a new method to handle the nuisance parameters.
Finally, due to multiple potential outcomes in the current framework, our null hypotheses are non-
sharp even if the nuisance parameters are known by the econometrician. Thus, in contrast to the
unconditional randomization procedure the authors employ in these papers, we propose a new
conditional randomization approach that "sharpens" our non-sharp hypotheses. Our method proves
to be effective in generating valid p-values in the limit.
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2.2 Framework

2.2.1 Setup

Following Athey et al. (2018), we consider the following framework. Suppose we have a population
of N units ( with i indexing the units) connected through a single network2 that we denote by a
symmetric N × N adjacency matrix A. The i jth element of the adjacency matrix, Ai j, equals one
if units i and j interact, and zero otherwise. Henceforth, we refer to units i and j as neighbors if
Ai j = 1. We assume there are no self-loops, i.e., Aii = 0 for all i.

Also, we assume that an experimenter randomly assigns each unit i to a binary treatment
Ti ∈ {0, 1}. Therefore, we have a vector T which denotes the N-component vector of treatments. The
experimenter assigns the treatments using the treatment assignment mechanism p : {0, 1}N 7→ [0, 1],
where p(t) is the probability of T = t, with p(t) ≥ 0 and

∑
t∈{0,1}N p(t) = 1. In addition, we let

Y : {0, 1}N 7→ Y
N represent the mapping of potential outcomes, where the ith element of Y is

Yi : {0, 1}N 7→ Y ⊂ R. Thus, Yi(t) denotes the potential outcome for unit i if T = t, and the ith

element of Y(t). If the observed value of the treatment assignment vector is tobs, then, we encode
the N-component vector of observed outcomes as Yobs = Y(tobs) with the ith element Yobs

i = Yi(tobs),
which represents the realized outcome of unit i. Alternatively, we can characterize the observed
outcomes as a function of the vector of treatments T and all the vector of potential outcomes Y(t),
with p(t) > 0.

Furthermore, for each unit, there is an L dimensional vector of pretreatment variables Xi ∈ X ⊂

R
L, with the N × L matrix of pretreatment variables denoted by X. Note that Xi includes the local

network characteristics of unit i. Therefore, (Yobs,T,A,X) is the data available to the researcher. The
current chapter assumes a design-based approach where A and X, as well as the potential outcome
mapping Y(·) are fixed, but Yobs is random due to the randomness of the treatment assignment.

2.2.2 Network Exposure Mapping

In this subsection, we introduce the concept of network exposure mapping and its usefulness in
incorporating network interference into the potential outcomes framework. Failure to account for
network interference in causal analyses may lead to misleading statistical results and economic
conclusions. However, allowing general network interference aggravates the missing data problem
of causal inference and could make the potential outcomes model intractable. As a result, a salient
element of causal inference in the presence of network interference is a network exposure mapping

2The network is exogenous, i.e., a fixed characteristic of the population and units are not strategically interacting.
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(Aronow et al. (2017)), which imposes testable restrictions on the nature of interactions. It is related
to the concept of level sets in Athey et al. (2018). Formally, we define our network exposure mapping
as

π : {1, . . . ,N} × {0, 1}N 7→ Π, (2.1)

that maps (i,T) into Π ∈ Π ⊂ R, where Π is an arbitrary set of possible treatment exposure values.
We assume that the functional form of π is arbitrary but known to the econometrician. In addition,
we suppose that the exposure mapping is the same for all units. However, for notational simplicity,
we let π(i,T) = πi(T). This should not be misconstrued for variations in exposure mapping across
units.

Given a network exposure mapping, a reasonable assumption that generalizes the standard stable
unit treatment value assumption (SUTVA) and imposes restrictions on the nature of interactions
is that, for any two treatment vectors t , t′ where t = (ti, t−i) ∈ {0, 1}N and t′ = (ti, t′−i) ∈ {0, 1}

N ,
Yi(t) = Yi(t′) if πi(t) = πi(t′). This assumption states that potential outcomes depend on treatment
and network exposure value. Therefore, borrowing terminology from Manski (2013), the tuples
(T,Π) ∈ {0, 1} ×Π represent the effective treatments. Thus, Yi(t) = Yi(t, π) is the potential outcome
for unit i if the treatment vector T = t is such that Ti = t and πi(t) = π. For example, if we define
network exposure mapping as the fraction of treated neighbors, then the potential outcomes depend
on the treatment assigned to a unit and the fraction of treated neighbors.

Let us formalize the assumptions that describe the network and the nature of interactions.

Assumption 2.2.1 (No Second and Higher-Order Spillovers) Let M(i, j) be length of the short-

est path between units i and j where, M(i, j) = ∞ if there is no path between i and j. Given the

definition of M(·, ·), Yi(t′) = Yi(t) for all i, and for all pairs of assignment vectors t, t′ ∈ {0, 1}N if

t j = t′j for all units j where M(i, j) < 2.

Assumption 2.2.2 (Uniformly Bounded Degrees) For each unit i, ∃ M < ∞ such that

lim
N→∞

N∑
j=1

Ai j ≤ M (2.2)

Assumption 2.2.1 is a testable restriction that permits spillover effects of the first order but no
higher-order spillovers. In other words, altering the treatment of direct neighbors may change one’s
outcome, but altering the treatment of neighbors-of-neighbors does not affect one’s outcome. It is a
convenient and testable restriction (Athey et al. (2018)) that ensures sparsity of the network. Note
that the testing procedures we propose are still valid if we impose other less restrictive network
sparsity conditions like no third order or more spillovers in Leung (2020).
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Assumption 2.2.2 is a crucial assumption that imposes a uniform upper bound on the asymptotic
degree of each node (the number of connections of each unit). It ensures that the number of treatment
exposure values converges to a finite number as the population size increases. For instance, if the
treatment exposure variable is the fraction of treated neighbors and M = 3, then this assumption
ensures that the set of exposure values converges to Π = {0, 1/3, 2/3, 1}. For our asymptotic results,
Assumption 2.2.2 ensures that the number of potential outcomes under consideration does not vary
with the population size. We acknowledge that for some network exposure mappings, an asymptotic
bound on the average degree of nodes - which is less restrictive than the condition in (2.2) - is
plausible. However, note that this assumption is the rule in most randomized experiments with
networks rather than the exception. For instance, in a randomized experiment on rice-producing
households, Cai et al. (2015) restricts the number of neighboring households to five. We highlight
in Section 2.3 that for improved statistical power, a small M is desirable because it ensures that we
have "sufficient" units with the different values of exposure, i.e., Pr(Π = π) > 0 for all π ∈ Π.

2.2.3 The Hypothesis Testing Problem

Let us formally describe the testing problem and clearly outline the disparities between our hy-
potheses and the conventional hypothesis testing problem that assumes no interference. Using an
arbitrary network exposure mapping, we consider three non-sharp null hypotheses that characterize
the notions of homogeneous treatment effects under network interference. First, we have the null
hypothesis

H0 :Yi(1, π) − Yi(0, π) = τ for some τ, ∀ π ∈ Π, for i = 1, . . . ,N. (2.3)

It is the null hypothesis of constant treatment effect across the population. In words, this hypothesis
asserts that there are no forms of variations in treatment effects, i.e., systematic and idiosyncratic
variations in treatment effects are absent. It is the strongest form of constant treatment effects
under network interference. Note that testing H0 is salient in the design of treatment assignment
rules that aim to maximize welfare. For instance, if we fail to reject this null hypothesis, then the
welfare maximizing rule does not depend on the exposure variable under consideration. Under the
no interference assumption, Ding et al. (2016) and Chung and Olivares (2021) respectively design
a randomization and permutation test for an analogous hypothesis which is not sharp due to the
presence of an unknown nuisance parameter. In contrast, our null hypothesis (2.3) is non-sharp
not only because τ is a nuisance parameter, but also due to the multiplicity of potential outcomes
induced by network interference.

72



McMaster University — Economics PhD Dissertation — Julius Owusu

Second, we consider the null hypothesis

HΠ0 :Yi(1, π) − Yi(0, π) = τ(π) for some τ(·), ∀ π ∈ Π, for i = 1, . . . ,N. (2.4)

In other words, this null hypothesis asserts that treatment effects may only vary systematically across

treatment exposure values. In simpler terms, the treatment effects for units with the same exposure
value are constant, but variations exist across exposure values. If one rejects HΠ0 , we may target
treatment using the exposure variable. It is important to note that HΠ0 is different from the null
hypothesis of no interference in Aronow (2012) and Athey et al. (2018), which is a restriction on the
treatment response or potential outcomes functions, whereas, HΠ0 is a restriction on treatment effects.
Moreover, there may be interference, yet treatment effects are constant across exposure values.

Finally, we consider the null hypothesis

HX,Π
0 :Yi(1, π; x) − Yi(0, π; x) = τ(π; x) ∀ x ∈ X, ∀ π ∈ Π, for i = 1, . . . ,N. (2.5)

Hypothesis HX,Π
0 implies that treatment effects may only vary systematically across pretreatment

and exposure values. In simpler terms, the treatment effects for units with the same pretreatment
and exposure value are constant. Here, we assume that the L pretreatment variables are either
discrete or can define an L-number of non-overlapping subgroups. Specifically, we suppose that the
pretreatment variables X can define L discrete subgroups. Hence, with a slight abuse of notations,
we have X = {x1 . . . , xL}. Thus, the pretreatment and exposure variables create an L × K-number
of non-overlapping subgroups. This hypothesis is also crucial in designing covariate-dependent
eligibility rules to maximize social welfare in practical settings where resources are scarce.

Since one cannot observe the individual level treatment effects Yi(1, π) − Yi(0, π) for π ∈ Π, we
rewrite the null hypotheses above as statements about the distributions of the treatment and control
groups for each exposure value. Let F1π and F0π denote the distributions of Y(1, π) and Y(0, π)
respectively for π ∈ Π. Then, for the null hypotheses (2.3)-(2.5), there is a corresponding testable
statement about the functional of distributions. For instance, H0 : Yi(1, π) = Yi(0, π) + τ, ∀π ∈ Π
implies that HCDF

0 : F1π(y) = F0π(y − τ) ∀π ∈ Π, ∀y ∈ Y. In addition, equal variances of Y(1, π)
and Y(0, π), for π ∈ Π is a testable implication of H0. Also, note that the unequal variances is
evidence against H0, although the converse may not be true (see Ding et al. (2016) for other testable
implications).

To complete the description of the testing problem, it is worthwhile to compare our null hy-
pothesis of constant treatment effects across the population in (2.3) to the hypothesis of constant
treatment effect under the SUTVA assumption in Chung and Olivares (2021) and Ding et al. (2016).
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In other words, does the rejection (non-rejection) of the null hypothesis of constant treatment effect
under no interference implies a rejection (non-rejection) of the null hypothesis of constant treatment
effect under network interference? A testable implication of the hypothesis of constant treatment
effects under no interference is H0

0 : F1(y) = F0(y − τ),∀y ∈ Y for some τ, where F1 and F0

denote the distributions of the traditional potential outcomes Y(1) and Y(0) respectively. Despite
the close resemblance between H0

0 and HCDF
0 , they are not equivalent because (Y(1),Y(0)) and

(Y(1, π),Y(0, π), π ∈ Π) are different vectors.

2.3 The Testing Procedure: Randomization Inference

We study reliable randomization testing procedures for the null hypotheses. In particular, we inves-
tigate the three elements of randomization inference (RI): (i) a randomized treatment assignment
mechanism, (ii) a test statistic, and (iii) a sharp null hypothesis. We assume that the treatment
assignment mechanism is known, and there exist data from a completely randomized experiment.3

We acknowledge that a completely randomized experiment design introduces dependencies between
treatment assigned to units. However, under Assumption 2.2.2, such dependencies occur with a
sufficiently low probability (Sävje et al. (2021)). In Subsections 2.3.1-2.3.2, we discuss the other
two ingredients of RI in relation to the null hypotheses (2.3)-(2.5).

2.3.1 Test Statistics

The choice of the test statistic has implications on the statistical power of the RI for the null
hypotheses (2.3)-(2.5). We propose test statistics that are functionals of estimated conditional
variances of outcomes of the treatment and control groups for each exposure value. For all three null
hypotheses, we look at two testing approaches: a multiple testing approach with many test statistics
and a single testing approach with one combined test statistic.

Let |Π| = K, where | · | denotes set cardinality. Focusing on the null hypotheses (2.3) and (2.4),
we propose K test statistics that corresponds to each π ∈ Π, i.e.,

TSk(Yobs,T,A) := max
{
σ̂2

1(πk)
σ̂2

0(πk)
,
σ̂2

0(πk)

σ̂2
1(πk)

}
, for k = {1, . . . ,K}, (2.6)

where σ̂2
t (πk) is an estimate of the conditional variance of observed outcome for units with treatment

3This is a convenient assumption. We can extend the results to other treatment assignments regimes like Bernoulli
assignments, stratified assignments, or the two-stage random saturation design of Baird et al. (2018).
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t and exposure value πk. Note that if a researcher knows that σ2
t (πk) > σ2

t′(πk) for t , t′ ∈ {0, 1}, for
all πk ∈ Π then a simpler test statistic σ̂2

1(πk)/σ̂2
0(πk) for all πk ∈ Π is attractive. To test (2.3) and

(2.4) using these test statistics, note that one can apply any multiple testing procedures that give
a decision for all πk ∈ Π. Alternatively, we can combine all the K test statistics into one using a
scalar-valued function, i.e.,

TS(Yobs,T,A) := f (TS1, . . . ,TSk, . . . ,TSK), (2.7)

where f (·, . . . , ·) is some known scalar-valued function.
For null hypothesis (2.5), we propose test statistics that correspond to each subgroup defined by

pretreatment variables and the exposure variable, i.e.,

TSk,l(Yobs,T,A,X) := max
{
σ̂2

1(πk, xl)
σ̂2

0(πk, xl)
,
σ̂2

0(πk, xl)

σ̂2
1(πk, xl)

}
, k = {1, . . . ,K}, l = {1, . . . , L}, (2.8)

where σ̂2
t (πk, xl) is an estimate of the conditional variance of observed outcome for units with treat-

ment t, exposure value πk and pretreatment value (or covariate defined subgroup) xl. Alternatively,
we can combine all the test statistics into one using a scalar-valued function, i.e.,

TSX,Π(Yobs,T,A,X) := f (TSk,l : xl ∈ X, k = 1, . . . ,K). (2.9)

For the two combined test statistics, we propose an equally-weighted average of the individual
test statistics. In other words, f (·) is the summation across individual test statistics.

2.3.2 Sharp Null Hypothesis and Conditional Randomization Inference

Let us examine the third component of randomization inference, sharp null hypotheses, and how
it connects to our proposed null hypotheses. As we mentioned in the introduction, for a given
treatment assignment mechanism p, our null hypotheses are not sharp because of the presence of
nuisance parameters and the multiplicity of potential outcomes. Therefore, we cannot impute all
potential outcomes for each unit under the null hypotheses (2.3)-(2.5). For the rest of this subsection,
we assume that the nuisance parameters are known4, and propose a solution to deal with the "non-
sharpness" stemming from the multiplicity of potential outcomes. We defer the proposed remedies
to the nuisance parameter(s) problem to Subsection 2.3.3.

4For instance, when the nuisance parameters are set to zero, the null hypotheses impose no treatment effects or
constant treatment effects of zero.
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Suppose the nuisance parameters τ, τ(π) and τ(π; x) in the null hypotheses (2.3)-(2.5) are known.
It is evident that unlike the null hypothesis H0

0 under no interference in Ding et al. (2016) and Chung
and Olivares (2021), (2.3)-(2.5) remain non-sharp due to multiple potential outcomes induced by
network interference.

We propose a novel conditional randomization inference (CRI) method, where we use subsets of
units in the population (often referred to as focal units (Athey et al. (2018))) and subsets of treatment
assignment vectors to estimate the conditional null distributions. See Zhang and Zhao (2022) for an
overview of the literature on CRI. We proceed to describe our proposed CRI method for the three
null hypotheses. For each of the hypotheses, we describe the CRI method given (a) the multiple test
statistics and (b) the combined test statistic.

2.3.2.1 H0: Constant Treatment effects across the population

We begin the description of the "non-sharpness" of H0 and its CRI method using the test statistics
TSk, k = 1, . . .K in (2.6). To distinguish between the treatments assigned by the experimenter and
permuted treatment vectors, we introduce additional notation. Let Λ(T) denote a permutation of T
that satisfies the treatment assignment mechanism. Thus, Λ(Ti) is the treatment of unit i under a
permutation of assigned treatment.

Under H0 with τ known, H0 is not sharp, and each TSk, k = 1, . . . ,K is not imputable.5 The
direct implication of the non-imputability is that, under H0, there exists a treatment vector Λ(T) =
t′ ∈ {0, 1}N where p(t′) > 0, but

∑N
i=1 I(Λ(Ti) = t, πi(t′) = π) = 0 for either t = 0 or t = 1, and π ∈ Π.

Here, I(·) is the indicator function. The following example illustrates the "non-sharpness" of H0.

Example 2.3.1 Assume there are N = 10 units in an undirected social network, shown in Figure

2.1. Given the data (Yobs
i ,Ti,Πi)N

i=1, where Πi = πi(T) := I(
∑N

j=1 T jAi j/
∑N

j=1 Ai j ≥ 0.5) ∈ {0, 1},
Table 2.1 shows that under H0 in (2.3), each unit has two missing potential outcomes which we

represent by question marks. For example, the potential outcomes Y1(1, 0) and Y1(0, 0) are missing

for unit 1. Thus, H0 is not sharp. Now, let us consider Λ(T) = t̃ = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0), a

permutation of the observed treatment values. Note that, t̃ produces a new vector of exposure

values (1, 1, 1, 1, 1, 1, 0, 0, 0, 0). Also, note that the test statistic TS 0 (i.e., TS k with π = 0) is not

imputable under H0 since there are no units with treatment equal to 1 and exposure value of 0 i.e.,∑N
i=1 I(Λ(Ti) = 1, πi(t̃) = 0) = 0.

5A test statistic is imputable if, under the null hypothesis, we can compute a value of the statistic for all treatment
vectors that is possible under a given assignment mechanism. See Basse et al. (2019) for a formal technical definition.
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Figure 2.1: Undirected Social Network. (Note: Grey nodes are the control units and black nodes are
treatment units)

Units Observed Variables Counterfactual Outcomes Permuted Variables
i Ti Πi Yobs

i Yi(1, 0) Yi(0, 0) Yi(1, 1) Yi(0, 1) Λ(Ti) πi(t̃) YP
i

1 0 1 y1 ? ? y1 + τ y1 1 1 y1 + τ
2 0 0 y2 y2 + τ y2 ? ? 1 1 ?
3 0 1 y3 ? ? y3 + τ y3 1 1 y3 + τ
4 1 0 y4 y4 y4 − τ ? ? 1 1 ?
5 1 0 y5 y5 y5 − τ ? ? 1 1 ?
6 1 0 y6 y6 y6 − τ ? ? 0 1 ?
7 0 1 y7 ? ? y7 + τ y7 0 0 ?
8 1 1 y8 ? ? y8 y8 − τ 0 0 ?
9 1 1 y9 ? ? y9 y9 − τ 0 0 ?

10 0 0 y10 y10 + τ y10 ? ? 0 0 y10

Table 2.1: A Science Table under H0, using Example 2.3.1. NB: YP
i represents the new outcome of

unit i under H0 for the new treatment vector t̃.

To "sharpen" H0 and obtain the null distributions of a test statistic TSk, for any k, we propose a
RI method that requires conditioning on a subset of treatment vectors and a subset of experimental
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units. First, let Tk represent the subset of treatment assignment vectors that imputes TSk. We define
it as

Tk := {t′ ∈ {0, 1}N : p(t′) > 0 and R(t, t′, πk) > ϵ, t = 0, 1, for some ϵ ∈ [0, 1)}, (2.10)

with,

R(t, t′, πk) :=
∑N

i=1 I{t
′
i = t, πi(t′) = πk, πi(tobs) = πk}∑N

i=1 I{πi(tobs) = πk}
, (2.11)

where, R(·, ·, ·) denotes the empirical probability or relative frequency. In other words, Tk is the
subset of treatment assignment vectors satisfying the treatment assignment mechanism p, and also
ensures that a "sufficient" number of units with the different treatments (t = 0, 1) have exposure
values fixed at πk. Note that ϵ controls the minimum number of units with an exposure value of πk

under the permuted treatment vector. Therefore, ϵ is a tuning parameter that affects the computation
time and statistical power of our CRI method. Higher values of ϵ make our test conservative and
increases computation time. If we let {0, 1} = {π0, π1} in Example 2.3.1, then t̃ < T0.

By construction, the sets Tk, for k = 1, . . .K, depend on the sample size and the exposure
mapping. For each k, the cardinality of Tk is more likely to be larger when the sample size is large.
Also, exposure mappings with a smaller range of values (e.g., threshold functions of the treatment
vectors of neighbors that produce binary exposure values as in Example 2.3.1) are more likely to
produce larger Tk sets. The power and size distortions of the test depend on |Tk|.

Second, let Fk(t) denote the indicator variable for the focal units we use to compute TSk when
the treatment assignment vector is t. Therefore, for unit i, we define

Fik(t′) := I(πi(t′) = πk, πi(tobs) = πk), ∀t′ ∈ Tk. (2.12)

In other words, the focal units (for a given treatment vector that belongs to the subset of treatment
assignment vectors) are the units whose exposure values remain the same as the exposure values
under the observed treatment assignment vector. By construction, for t′, t′′ ∈ Tk, where t′ , t′′,
it is possible that Fik(t′) , Fik(t′′), meaning unit i may be a focal unit to compute TSk(Yobs, t′,A)
but a non-focal unit to impute TSk(Yobs, t′′,A) and vice-versa. Therefore, the number of focal units∑N

i=1 Fik(t′) is random across t′ ∈ Tk. In particular, if Nk denotes the units in the population with
observed exposure value πk, then for t′ ∈ Tk,

N∑
i=1

Fik(t′) = Nk ·
∑

t∈{0,1}

R(t, t′, πk). (2.13)
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From (2.13), notice that we control the number of focal units when choosing the subset of treatment
assignment vectors Tk via the tuning parameter ϵ. Larger values of ϵ lead to a higher number of
focal units for each treatment assignment vector.

Using definitions (2.10) and (2.12), and a slight abuse of notation, the test statistics in (2.6)
conditional on the subsets of focal units and treatment assignment vectors can be technically written
as

TSk(Yobs,T,A;Tk, Fk) := TS(T|A,Yobs,T ∈ Tk, Fk(T) = 1).

Consequently, for each TSk, k = 1, . . . ,K, we can compute the conditional p-value (2.3) as

pvalk(T,Y
obs;Tk, Fk) = ETk[I{TSk(YFk(t

∗), t∗,A;Tk, Fk) ≥ TSk(Yobs,T,A;Tk, Fk)}|t∗ ∈ Tk,H0],
(2.14)

where YFk(t∗) denotes the component vector of outcomes for focal units (i.e., Fk(t∗) = 1) under H0.

Also, note that the expectation notation ETk is to emphasize that the probability is with respect to
t∗ ∈ Tk.

Now, we focus on the conditioning method for the combined test statistic of H0. Formally, we
write the combined test statistic as

TS(Yobs,T,A) := f (TS1, . . . ,TSk, . . . ,TSK) =
K∑

k=1

TSk. (2.15)

This test statistic is also not imputable for all treatment assignment vectors. In this instance, the
treatment assignment vectors that guarantee the "imputability" of the test statistic are those that
ensure that there are "sufficient" units to compute all the individual TSk, for k = 1, . . . ,K. It is a
more stringent requirement compared to the conditions for the individual test statistics. Hence, the
conditioning method depends on the choice of the test statistic. It is a novel insight that merits
further exploration in future research. Let T represent the subset of treatment assignment vectors
that impute TS, i.e.,

T :={t′ ∈ {0, 1}N : p(t′) > 0 and R(t, t′, πk) > ϵ, ∀t = 0, 1,∀k = 1, . . . ,K, ϵ ∈ [0, 1)}

= ∩K
k=1 Tk. (2.16)

In general, by construction, for all k = 1, . . . ,K, |T | ≤ |Tk|. Therefore, the sample size and the
exposure mapping requirements for this test statistic may be more demanding.

For the combined test statistic, the identity of focal units also depends on the treatment assign-
ment vector. If we let F(t) denote the indicator variable for the focal units that we use to compute
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the test statistic TS when the treatment assignment vector is t, then for each unit i, we have

Fi(t′) :=I(πi(t′) = π, πi(tobs) = π) ∀π = π1 , . . . , πK ∀t′ ∈ T . (2.17)

From the construction of F, note that the focal units are not fixed but vary with the treatment
assignment vector. In particular, the number of focal units for t′ ∈ Tk is

N∑
i=1

Fi(t′) =
K∑

k=1

(
Nk

∑
t∈{0,1}

R(t, t′, πk)
)
. (2.18)

Equation (2.18) also shows that we control the number of focal units when choosing T via the
tuning parameter.

Now, using (2.16), (2.17), and a slight abuse of notation, we rewrite the conditional combined
test statistics conditional on the focal units and T as

TS(Yobs,T,A;T , F) := TS(T|A,Yobs,T ∈ T , F(T) = 1),

and the conditional p-value as

pval(T,Yobs;T , F) = ET [I{TS(YF(t∗), t∗,A;T , F) ≥ TS(Yobs,Tobs,A;T , F)}|t∗ ∈ T ,H0],
(2.19)

where YF(t∗) is the vector of outcomes for the focal units (F(t∗) = 1) under the H0, and the
expectation notation ET is to emphasize that the probability is with respect t∗ ∈ T .

The drawback of our proposed CRI method is that, with a small sample size, Nk, k = 1, . . . ,K
may be small. Therefore, selecting focal units less than Nk may result in imprecise estimates that
lead to invalid p-values. Nevertheless, using the test statistics TSk and TS, we show the asymptotic
validity of the proposed CRI method when the nuisance parameter τ is known. We introduce new
notations to study the asymptotic properties of the testing procedure. Let N0 denote the number of
units in the control group, with N − N0 = N1, and N0k represents the number of units in the control
group that have exposure value πk, with Nk − N0k = N1k, for k = 1, . . . ,K.

Assumption 2.3.1 (i) There exist ρ ∈ (0, 1) such that limN→∞ N0/N = ρ. (ii) There exist ρk ∈ (0, 1)
such that limN→∞ N0k/Nk = ρk, where k = 1, . . . ,K.

Assumption 2.3.1 (i) is standard for asymptotic inference in causal studies under no interference.
Assumption 2.3.1 (ii) describes the behavior of the fraction of control units among units with a
specific exposure value in the limit. It is worthwhile to note that Assumption 2.2.2 is necessary for
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Assumption 2.3.1 (ii).
The following theorem states the asymptotic validity results for the proposed CRI method given

τ and the test statistics for H0.

Theorem 2.3.1 (Asymptotic validity CRI method with known nuisance parameters) Suppose As-

sumptions 2.2.1-2.3.1 holds, and the variation in potential outcomes is finite across the population.

i) Given that 0 ≤ ϵ < 1, under the null hypothesis H0 in (2.3), and for the true value of τ, the

conditional randomization test using the test statistic TSk is asymptotically valid at any significant

level α, i.e.,

lim
Nk→∞

Pr(pvalk(T,Y
obs;Tk, Fk) ≤ α) ≤ α for any α ∈ [0, 1]. (2.20)

ii) Given that 0 ≤ ϵ < 1, under the null hypothesis H0 in (2.3), and for the true value of τ, the

conditional randomization test using the test statistic TS is valid at any level α, i.e.,

lim
N→∞

Pr(pval(T,Yobs;T , F) ≤ α) ≤ α for any α ∈ [0, 1], (2.21)

where the probability is with respect to T.

The proof of Theorem 2.3.1(i) is in Appendix 2.6. Note that as the tuning parameter ϵ approaches
1, our CRI method attains finite sample validity. However, higher values of ϵ require a higher
computation time and may lead to low statistical power.

Finally, we can easily show that any multiple testing procedure that uses the marginal p-values
pvalk , k = 1, . . . ,K, is asymptotically valid. Hence we omit the formal proof.

Remark 2.3.1 For both test statistics, we acknowledge that it is impossible to credibly make an

inference about H0 if we do not observe all the exposure values given the treatment assigned by the

experimenter, i.e., if tobs < T and tobs < Tk, for k = 1, . . .K. In such scenarios, a natural refinement

is to test the null hypothesis at the observed exposure values.

2.3.2.2 HΠ0 : Constant treatment effect within exposure values

Let us revisit Example 2.3.1. Under HΠ0 , we have the corresponding science table in Table 2.2.
The only difference between Tables 2.1 and 2.2 is that we have two nuisance parameters τ(0) and

τ(1)6 in Table 2.2. Thus, in general, we require K nuisance parameters to test HΠ0 . If one knows these
nuisance parameters, then the same principles for choosing the subset of treatment assignments and
units, as well as the proposed test statistics for H0 in (2.3), are applicable in testing for HΠ0 as well.

6The definition of the network exposure mapping in this example produces two exposure values
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Units Observed Variables Counterfactual Outcomes Permuted Variables
i Ti Πi Yobs

i Yi(1, 0) Yi(0, 0) Yi(1, 1) Yi(0, 1) Λ(Ti) πi(t̃) YP
i

1 0 1 y1 ? ? y1 + τ(1) y1 1 1 y1 + τ(1)
2 0 0 y2 y2 + τ(0) y2 ? ? 1 1 ?
3 0 1 y3 ? ? y3 + τ(1) y3 1 1 y3 + τ(1)
4 1 0 y4 y4 y4 − τ(0) ? ? 1 1 ?
5 1 0 y5 y5 y5 − τ(0) ? ? 1 1 ?
6 1 0 y6 y6 y6 − τ(0) ? ? 0 1 ?
7 0 1 y7 ? ? y7 + τ(1) y7 0 0 ?
8 1 1 y8 ? ? y8 y8 − τ(1) 0 0 ?
9 1 1 y9 ? ? y9 y9 − τ(1) 0 0 ?

10 0 0 y10 y10 + τ(0) y10 ? ? 0 0 y10

Table 2.2: A Science Table under HΠ0 , using Example 2.3.1. NB: YP
i represents the new outcome of

unit i under HΠ0 for the new treatment vector t̃.

2.3.2.3 HX,Π
0 : Constant treatment effect across pretreatment variables and exposure values

We first describe the "non-sharpness" of HX,Π
0 and its CRI method using the test statistics TSk,l, k =

1, . . . ,K, and l = 1, . . . , L in (2.8). Based on arguments similar to those we employ for H0, note that
the test statistic TSk,l is not imputable. The following example builds on Example 2.3.1 and shows
the "non-sharpness" of HX,Π

0 .

Example 2.3.2 Assume there are N = 10 units in an undirected social network, as in Figure

2.2. Our realized data is (Yi,Ti,Πi, Xi)N
i=1, where Πi is defined in Example 2.3.1. Table 2.3 shows

that each unit has two missing potential outcomes. Hence, HX,Π
0 is also not sharp. Now, using

the permuted treatment vector t̃ = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0), we can deduce that none of the test

statistics TSk,l, k = 1, . . . ,K and l = 1, . . . , L is imputable under HX,Π
0 in (2.5). In other words, for

each π ∈ {0, 1}, and x ∈ { f ,m} there exist Λ(T) = t′ ∈ {0, 1}N where p(t′) > 0, but
∑N

i=1 I(Λ(Ti) =
t, πi(t′) = π, Xi = x) = 0 for either t = 0 or t = 1, and π ∈ Π.
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Units Observed Variables Counterfactual Outcomes Permuted Variables
i Ti Πi Xi Yobs

i Yi(1, 0) Yi(0, 0) Yi(1, 1) Yi(0, 1) Λ(Ti) πi(t̃) YP
i

1 0 1 m y1 ? ? y1 + τ(1; m) y1 1 1 y1 + τ(1; m)
2 0 0 m y2 y2 + τ(0; m) y2 ? ? 1 1 ?
3 0 1 m y3 ? ? y3 + τ(1; m) y3 1 1 y3 + τ(1; m)
4 1 0 f y4 y4 y4 − τ(0; f ) ? ? 1 1 ?
5 1 0 f y5 y5 y5 − τ(0; f ) ? ? 1 1 ?
6 1 0 m y6 y6 y6 − τ(0; m) ? ? 0 1 ?
7 0 1 f y7 ? ? y7 + τ(1; f ) y7 0 0 ?
8 1 1 m y8 ? ? y8 y8 − τ(1; m) 0 0 ?
9 1 1 f y9 ? ? y9 y9 − τ(1; f ) 0 0 ?

10 0 0 f y10 y10 + τ(0) y10 ? ? 0 0 y10

Table 2.3: A Science Table under HX,Π
0 , using Example 2.3.1. NB: YP

i represents the new outcome
of unit i under HX,Π

0 for the new treatment vector t̃.
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Figure 2.2: Undirected Social Network. (Note: Grey nodes are the control units and black nodes are
treatment units. Circle nodes are females and square nodes are males.)

To estimate the null distributions of any of the test statistics TSk,l, where the L × K nuisance
parameters in HX,Π

0 are known, we employ a CRI method characterized by the subset of treatment
assignment vectors and focal units. First, let Tk,l denote the subset of treatment assignment vectors
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that impute TSk,l. Formally, we define Tk,l as

Tk,l := {t′ ∈ {0, 1}N : p(t′) > 0 and R(t, t′, πk, xl) > ϵ, t = 0, 1, ϵ ∈ [0, 1)}, (2.22)

with

R(t, t′, πk, xl) :=
∑N

i=1 I{t
′
i = t, πi(t′) = πk, πi(tobs) = πk,Xi = xl}∑N

i=1 I{πi(tobs) = πk,Xi = xl}
, (2.23)

where the R(·, ·, ·, ·) is an empirical probability. In simpler terms, Tk,l is the subset of treatment
assignment vectors (that respect the assignment mechanism), where there is a "sufficient" number
of units in each of the arms of treatment that for a given pretreatment variable value xl, and the
exposure value remains fixed at πk.

By construction, the sets Tk,l, k = 1, . . . ,K and l = 1, . . . , L, depend on the sample size, the
number of pretreatment variables defined subgroups, and the number of exposure values. For each k

and l, the cardinality of Tk,l is bigger when we have a large sample and the number of covariate-
defined subgroups is small. Also, exposure mappings with a smaller range of values are more likely
to lead to a larger |Tk,l|.

Second, let Fk,l(t) represent the indicator variable for the focal units when the treatment assign-
ment vector is t. Therefore, for unit i, we have

Fik,l(t′) := I(πi(t′) = πk, πi(tobs) = πk,X = xl) ∀t′ ∈ Tk,l, (2.24)

Therefore, for t′ ∈ Tk,l, the number of focal units is

N∑
i=1

Fik,l(t′) = Nk,l ·
∑

t∈{0,1}

R(t, t′, πk, xl) (2.25)

where Nk,l represents the number of units with X = xl and has observed exposure value of πk.

Equation (2.25) also indicates that we control the expected number of focal units using the tuning
parameter ϵ. In addition, when we compare the equations (2.13) and (2.25), it is evident that the
number of focal units is smaller under the null HX,Π

0 for the single test statistics. It suggests that one
may require more data to test HX,Π

0 compared to H0 and HΠ0 .

Next, using definitions (2.22), (2.24), and slightly abusing notation, the conditional test statistics
can be written technically as

TSk,l(Yobs,T,A,X;Tk,l, Fk,l) := TS(T|A,Yobs,T ∈ Tk,l, Fk,l(T) = 1,X = xl).
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Therefore, for each TSk,l, we can also compute the conditional p-value as

pvalkl (T,Y
obs,X;Tk,l, Fk,l) = ETk,l [I{TSk,l(YFk,l

(t∗), t∗,A,X;Tk,l, Fk,l) ≥ TSk,l(Yobs,T,A,X;Tk,l, Fk,l)}|t∗ ∈ Tk,l,H
X,Π
0 ],

(2.26)

where YFk,l
(t∗) is the vector of outcomes for focal units (i.e., Fk,l(t∗) = 1) and the expectation

notation ETk,l is to emphasize that the probability is over the set Tk,l.

Let us now consider the combined test statistic for HX,Π
0 . Formally, we write the combined test

statistic as the sum of the single L × K test statistics, i.e.,

TSX,Π(Yobs,T,A,X) := f (TSk,l : xl ∈ X, k = 1, . . . ,K) =
K∑

k=1

L∑
l=1

TSk,l. (2.27)

This test statistic is also not imputable under HX,Π
0 . The treatment assignment vectors that guarantee

the imputability of TSX,Π are those that ensure that there are a "sufficient" number of units to
compute each TSk,l. Let T X,Π represent the subset of treatment assignment vectors that impute
TSX,Π. Formally,

T X,Π :={t′ ∈ {0, 1}N : p(t′) > 0 and R(t, t′, πk, xl) ≥ ϵ, ∀t = 0, 1,

∀k = 1, . . . ,K ∀l = 1, . . . , L and ϵ ∈ (0, 1) }

= ∩K
k=1 Tk,l (2.28)

For instance, in Example 2.3.2, we can deduce that t̃ < T X,Π. By construction, for all k = 1, . . . ,K,
and l = 1, . . . , L, |T X,Π| ≤ |Tk,l|. Therefore, the sample size and exposure mapping requirements for
the combined test statistic may be more demanding than those for each TSk,l.

The definition of the focal units, however, is the same as the one we define for the combined test
statistics of H0 in (2.17). It is because pretreatment variables are not causal but control variables.
Again, with a slight abuse of notation, the combined test statistics TSX,Π conditional on the subset
of treatment assignment vectors and the focal units can also be written as

TSX,Π(Yobs,T,X,A;T X,Π, F) := TS(T|A,Yobs,T ∈ T X,Π, F(T) = 1)

and the resulting conditional p-value is

pval(T,Yobs,X;T X,Π, F) = ET X,Π [I{TS(YF(t∗), t∗,X,A;T X,Π, F) ≥ TS(Yobs,T,X,A;T X,Π, F)}|t∗ ∈ Tk,l,H
X,Π
0 ]

(2.29)

where the expectation notationET X,Π is to emphasize that the probability is with respect to t∗ ∈ T X,Π.

Finally, note that in practice, the sets Tk, T , Tk,l and T X,Π may be large and one may have to
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approximate the p-values in (2.14), (2.19), (2.26), and (2.29). We recommend drawing a random
sample of elements of size B from these sets to compute the p-values. The following algorithm
summarizes our proposed CRI testing procedure with known nuisance parameters.

Algorithm 1: Conditional Randomization Algorithm for HTE with known nuisance
parameters

Data: (Yobs,T,A,X, {Πi}
N
i )

Result: the estimated p-values: e.g., p̂valk(T,Yobs;Tk, Fk)

1 Compute the appropriate test statistic using the observed data: e.g.,TSk(Yobs,T;Tk, Fk).

2 for {b = 1 to B} do
3 Choose ϵ and draw t(b) independently from the appropriate subset of treatment

assignment vectors , e.g.,Tk.
4 Compute the test statistic using t(b) and the focal units, e.g., TSk(YFk

(t(b)), t(b);Tk, Fk)

5 Compute the empirical p-value, e.g.,
p̂valk(T,Yobs;Tk, Fk) = B−1 ∑B

b=1 I{TSk(YFk
(t(b)), t(b);Tk, Fk) ≥ TSk(Yobs,T;Tk, Fk)}

Under any of the null hypotheses, we can show that the empirical p-values are also asymptotically
valid. For instance, we can show that limNk→∞ Pr(p̂valk(T,Yobs;Tk, Fk) ≤ α) ≤ α for any α ∈ [0, 1],
where the probability reflects variations in both treatment assignment and the sampling of treatment
vectors from Tk. In fact, this validity results hold for any B. However, the larger the value of B, the
less the approximation error, p̂valk − pval. Finally, note that we can easily extend Theorem 2.3.1 to
HΠ0 and HX,Π

0 .

It is worthwhile comparing the proposed CRI method to existing conditioning methods in the
literature. In general, our approach of choosing the subset of treatment assignments and focal unit
resembles the artificial experiment concept by Athey et al. (2018) and the conditioning mechanism

contrast by Basse et al. (2019). Nevertheless, there are three important distinctions. First, the choice
of the subset of treatment assignments vectors and the focal units are intertwined. Specifically,
we propose choosing the subset of treatment assignment vectors to maximize the number of focal
units, and we choose the set of focal units to maximize the cardinality of the subset of treatment
assignment vectors. In contrast, the approaches of the papers we cite above suggest a prior random or
non-random selection of focal units that do not depend on the subset of treatment assignment vectors.
Our procedure guarantees a larger subset of treatment assignment vectors leading to higher statistical
power for the hypotheses we consider. A further examination into which of these approaches works
better, in general, is open for future research.

Second and closely related, we allow focal units to vary across the elements in the subset of
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treatment assignment vectors. Simply put, the number of focal units can differ based on the treatment
assignment vectors, which sets it apart from previous methods. Specifically, the number of focal
units is a binomial random variable (across the subset of treatment assignment vectors), which
depends on the tuning parameter ϵ. Although allowing the focal units to vary across treatment
assignments may lead to invalid p-values in small samples, it increases the cardinality of the subset
of treatment assignment vectors leading to an improvement in asymptotic statistical power and size.
For example, suppose we have a population of four units with two of them treated, and paired into
two dyads. Then, testing the null hypothesis of no spillovers, the approaches of Athey et al. (2018)
and Basse et al. (2019) produce a subset of treatment assignments of size two. However, allowing
focal units to vary across treatment assignments leads to a subset of treatment assignments of size
four. Depending on the test statistic, all four treatment assignments may be useful in approximating
the null distribution of the test statistic, leading to improvement in statistical power and size. Again,
a generalization of our proposed conditioning method that allows for varying focal units is open for
future research.

Finally, the focal units in our proposed CRI approach indirectly depend on realized treatment
through network exposure. In contrast, the artificial experiment approach explicitly advocates
against using realized treatments or outcomes to select the focal units. Our results show that
the indirect use of realized treatments to pick the focal units does not affect the validity of the
conditional randomization method of inference, rather, it leads to improvements in statistical power
and computation.

In summary, our proposed CRI method is a methodological contribution of the current chapter.
It offers fresh perspectives on choosing focal units and the subset of treatment assignment vectors.
It is a generalization of the existing approaches. For instance, if we set R(t, t′, πk) in equation (2.10)
such that R(0, t′, πk) + R(1, t′, πk) = 1 for all t′ ∈ Tk, then Tk will coincide with the subset of
treatment assignment vectors one would obtain using the existing approaches. The focal units
become fixed and uniformly larger ( across the subset of treatment assignment vectors). However, it
is computationally expensive and may reduce the cardinality of the subset of treatment assignment
vectors leading to low statistical power and high size distortions.

2.3.3 Dealing with Unknown Nuisance Parameters

Knowledge of the parameters τ, τ(π), and τ(π; x) for all π ∈ Π and for all x ∈ X implies that
we can directly apply our proposed CRI method, and Theorem 2.3.1 hold. In practice, however,
these parameters are unknown. A natural but naive approach is to replace the unknown nuisance
parameters with their sample counterparts and proceed to apply the CRI method. Unfortunately,
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this leads to invalid p-values in finite samples and asymptotically. To develop intuition into why
the naive approach does not work, let us look at the definition of the randomization hypothesis

(Lehmann and Romano, 2022, p. 832).

Definition 2.3.1 (Randomization Hypothesis) Under the null hypotheses (2.3)-(2.5), the distribu-

tion of the original sample data (Yobs,T,Π,X) is the same as the distribution of the samples we

generate by replacing T with a new treatment vector Λ(T) that respects the treatment assignment

mechanism.

Definition 2.3.1 is a crucial assumption that guarantees the validity of randomization-based infer-
ential methods. The practical consequence of this definition is that, under the null hypotheses, the
distribution of the test statistic that we compute using the original data is the same as the distributions
of the test statistic we compute using data we generate with a new treatment vector that respects the
treatment assignment mechanism.

Unfortunately, estimated nuisance parameters lead to a breakdown of the randomization hypoth-
esis, and we illustrate this using the following example.

Example 2.3.3 Suppose our sample comprises four (N = 4) unconnected individuals with the

original sample data given as (Yobs = {y1, y2, y3, y4},T = {1, 1, 0, 0},Π = {π1, π1, π1, π1}). Consider

the null hypothesis H0 in (2.3) and estimate the nuisance parameter τ using the difference in

means estimator, i.e., τ̂ = (y1 + y2 − y3 − y4)/2. Now, substituting τ̂ for τ in (2.3), we can impute

all missing potential outcomes. If we choose a new treatment vector Λ(T) = t′′ = {0, 0, 1, 1}
and assume that the exposure values remain the same under t′′ , then our new sample data is

(Y′′

= {(y1 − y2 + y3 + y4)/2, (y2 − y1 + y3 + y4)/2, (y1 + y2 + y3 − y4)/2, (y1 + y2 − y3 + y4)/2},Λ(T) =
{0, 0, 1, 1},Π′′ = {π1, π1, π1, π1}). When we compare Yobs to Y′′

, it is obvious that under H0, the

distributions of the original sample and the new sample are not the same. Therefore, the distribution

of test statistics that inherit the underlying distributional properties of the two samples will also be

different even if the H0 is true.

The Example 2.3.3 highlights the ensuing problem of replacing nuisance parameters with their sam-
ple counterparts in the hypotheses we consider. It shows that the randomization tests with estimated
nuisance parameters are more likely to reject the null hypotheses, even if the null hypotheses are
true due to a breakdown of the randomization hypothesis. It is not only a finite sample problem.
Even asymptotically, the randomization hypothesis would not hold. Next, we propose two solutions
- sample splitting technique and confidence interval technique - to handle the unknown nuisance
parameters.
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2.3.3.1 Sample Splitting Technique

The sample splitting (SS) technique we propose overcomes the problem of estimating nuisance
parameters by randomly splitting the original data into two balanced sub-samples. We show that
the p-values from jointly using the SS technique and our proposed CRI method are asymptotically
valid. The SS technique comprises the following steps:

1. Randomly split the full sample into two equal and balanced sub-samples Uest and Uin f .
We use Uest for the estimation of the nuisance parameters and Uin f to test the hypothesis.
Therefore,Uest andUin f denote the estimation and inference sub-samples respectively.

2. Estimate the nuisance parameter(s) usingUest.

3. Randomize the full treatment vector while respecting the treatment assignment mechanism,
obtain the exposure values for the full sample, and compute the test statistics usingUin f .

Due to network interference, one must randomize the full treatment vector rather than the treatment
vector of the inference sub-sample. It is the notable difference between our sample splitting method
compared to other splitting schemes for different purposes in the econometrics, statistics, and
machine learning literature.

To understand why the proposed technique is effective, let us revisit Example 2.3.3. We es-
tablished that the randomization hypothesis fails in this example when we replace the nuisance
parameter with its sample counterpart.

Now, let us apply the SS technique. A possible balanced split of the original sample data into
two is Uest = (Yobs

est = {y1, y3},Test = {1, 0},Πest = {π1, π1}) and Uin f = (Yobs
in f = {y2, y4},Tin f =

{0, 1},Πin f = {π1, π1}). We compute the difference in means estimator of τ using Uest, i.e., τ̂est =

y1 − y3. Under H0, the new treatment vector Λ(T) = t′′ = {0, 0, 1, 1} produces a new inference
sub-sampleUin f

′′ = (Y′′

in f = {y2 − τ̂
est, y4 + τ̂

est}, t′′in f = {0, 1},Π
′′
in f = {π1, π1}) = (Y′′

in f = {(y2 − y1 +

y3), (y4 + y1 − y3)}, t′′in f = {0, 1},Π
′′
in f = {π1, π1}).

If we compareUin f toUin f
′′ , the distributions of the test statistic conditional onUin f (the original

inference sub-sample) and conditional onUin f
′′ are the same since τ̂est is non-stochastic in the new

inference sub-sample Uin f
′′ . Thus, the randomization hypothesis (which breaks down when we

use the full sample data for estimation and inference) holds when we apply the sample splitting
technique.

Under the null hypothesis H0 in (2.3), and for the test statistic TSk(Yobs,T,A;Tk, Fk), we denote
the p-value using the SS technique on the CRI method as pvalk(T,Yobs;Tk, Fk, τ̂

est). Similarly, for
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the combined test statistic TS(Yobs,T,A;T , F), we denote the p-values we obtain from applying
the SS technique on our CRI method as pval(T,Yobs;T , F, τ̂est).

The disadvantage of the SS technique is the loss of information due to sample splitting. Therefore,
applying the SS technique to our CRI method in small samples may result in invalid p-values.
However, we establish the asymptotic validity of the ensuing p-values when we apply the SS
technique to our proposed CRI method in the following theorem.

Theorem 2.3.2 (Asymptotic Validity of the SS technique on CRI method ) Suppose Assumptions

2.2.1-2.3.1 holds, and the variation in potential outcomes is finite across the population. i) Given

that 0 ≤ ϵ < 1, under the null hypothesis H0 in (2.3) , using the test statistic TSk(Yobs,T,A;Tk, Fk),
and given that τ̂est is a consistent estimate of τ conditional onUest, a balanced half sub-sample of

the full data. Then,

lim
N→∞

Pr(pvalk(T,Y
obs;Tk, Fk, τ̂

est) ≤ α) ≤ α for any α ∈ [0, 1] (2.30)

ii) Given that 0 ≤ ϵ < 1, under the null hypothesis H0 in (2.3), using the test statistic TS(Yobs,T,A;T , F),
and given that τ̂est is a consistent estimate of τ conditional onUest, a balanced half sub-sample of

the full data. Then,

lim
N→∞

Pr(pval(T,Yobs;T , F, τ̂est) ≤ α) ≤ α for any α ∈ [0, 1] (2.31)

where the probabilities are taken over T.

Note that we can easily extend Theorem 2.3.2 to HΠ0 and HX,Π
0 . We summarize the testing procedure

of applying the SS technique to the CRI method in Algorithm 2.

2.3.3.2 Confidence Interval Technique

This technique is an adaptation of the "confidence interval" (CI) technique of Berger and Boos
(1994), which is put into practice in the context of unconditional randomization inference by Ding
et al. (2016). We extend the technique to conditional randomization inference. The idea is to
compute the maximum p-value across a finite number of estimates of the nuisance parameter in a
given confidence interval. The pointwise computation of the p-values at each nuisance parameter(s)
in the confidence interval suggests that one can view the parameter(s) as constant(s); therefore, the
randomization hypothesis holds.

Before we state the validity results from jointly applying the CI technique and the CRI method,
let us formally describe the CI technique on our proposed CRI method in relation to H0. Suppose
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Algorithm 2: Conditional Randomization Algorithm for HTE with Estimated nuisance
parameters Using the SS technique

Data: (Yobs,T,A,X, {Πi}
N
i )

Result: the estimated p-values: e.g., p̂valk(T,Yobs)

1 Randomly split the data into two balanced sub-samples, i.e.,Uest andUin f .

2 Estimate the nuisance parameter(s) usingUest. e.g., τ̂est for τ

3 Compute the appropriate test statistic using the original sub-sampleUin f

e.g.,TSk(Yobs,T;Tk, Fk).

4 for {b = 1 to B} do
5 Choose ϵ and draw t(b) independently from the appropriate subset of treatment

assignment vectors of the full data e.g.,Tk.

6 Use t(b) to obtain the new exposure values.

7 Compute the test statistic using using t(b) and the focal units that are inUin f e.g.,
TSk(YFk

(t(b)), t(b);Tk, Fk)

8 Compute the empirical p-value, e.g.,
p̂val

k
(T,Yobs;Tk, Fk, τ̂

est) = B−1 ∑B
b=1 I{TSk(YFk

(t(b)), t(b);Tk, Fk) ≥ TSk(Yobs,T;Tk, Fk)}

CIγ is the (1− γ) confidence interval7 for the unknown τ in the null hypothesis (2.3), then according
to Berger and Boos (1994), for each k, the conditional p-value over CIγ using the test statistic TSk is

pvalk,γ(T,Yobs;Tk, Fk) := sup
τ′∈CIγ

pvalk(τ′) + γ,

where pvalk(τ′) is the p-value when τ = τ′. On the other hand, the conditional p-value over CIγ
using the combined test statistic TS is

pvalγ(T,Yobs;T , F) := sup
τ′∈CIγ

pval(τ′) + γ,

where pval(τ′) is the p-value when τ = τ′. We approximate the confidence intervals using the
Neyman variance estimator, which is valid under the proposed null hypotheses.

Although this technique is attractive, the resulting p-values are the "worst-case" p-values,
and they are conservative. However, the following theorem shows the asymptotic validity of the
procedure.

7For HΠ0 and HX,Π
0 , CIγ represents Bonferroni-corrected confidence region.
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Theorem 2.3.3 (Asymptotic Validity of the CI technique on CRI method ) Suppose Assumptions

2.2.1-2.3.1 holds, and the variation in potential outcomes is finite across the population. i) Given

that 0 ≤ ϵ < 1, under the null hypothesis H0 in (2.3) , using the test statistic TSk(Yobs,T,A;Tk, Fk),
and given that CIγ, γ ∈ (0, 1) is a (1 − γ) confidence interval for the nuisance parameter τ, then, for

all k = 1, . . . ,K, pvalk,γ is an asymptotically valid p-value at any level α ∈ [0, 1], i.e.,

lim
Nk→∞

Pr(pvalk,γ(T,Y
obs;Tk, Fk) ≤ α) ≤ α for any α ∈ [0, 1] (2.32)

ii) Given that 0 ≤ ϵ < 1, under the null hypothesis H0 in (2.3), using the test statistic TS(Yobs,T,A;T , F),
and given that CIγ, γ ∈ (0, 1) is a (1 − γ) confidence interval for the nuisance parameter τ, then

pvalγ is a valid p-value at any level α ∈ [0, 1], i.e.,

lim
N→∞

Pr(pval
γ
(T,Yobs;T , F) ≤ α) ≤ α for any α ∈ [0, 1] (2.33)

where the probabilities are taken over T.

We defer the proof of (i) to the Appendix 2.6. Theorem 2.3.3 shows the asymptotic validity of
applying the CI technique to the CRI approach. Additionally, from Theorems 2.3.2(i) and 2.3.3(i),
it is straightforward to show the validity of testing H0 using a multiple testing procedure which
jointly tests the K null hypotheses H(k)

0 : Yi(1, πk)−Yi(0, πk) = τ for some τ, for i = 1, . . . ,N where
k = 1 . . .K. In addition, Theorem 2.3.3 also applies to HΠ0 and HX,Π

0 .

Finally, it may be infeasible to compute the p-value at each point in the confidence interval.
Therefore, we calculate the p-values on a finite uniform grid in the estimated confidence interval.
Algorithm 3 summarizes how we implement the testing procedure when we apply the CI technique
to the CRI method.
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Algorithm 3: Conditional Randomization Algorithm for HTE with Estimated Nuisance
Parameters Using the CI technique

Data: (Yobs,T,A,X, {Πi}
N
i )

Result: the estimated p-values: e.g., p̂valk(T,Yobs)

1 Compute the appropriate test statistic using the observed data: e.g.,TSk(Yobs,T,A).

2 Select γ ∈ (0, 1), e.g. γ = 0.001

3 Estimate the confidence interval (region) of the nuisance parameter(s), (e.g., ĈIγ(τ)) and
obtain a finite uniform grid of points C = {τ1 . . . τM} in the confidence in interval.

4 for {τ′ = τ1 to τM} do
5 for {b = 1 to B} do
6 Draw t(b) independently from the appropriate subset of treatment assignment vectors,

e.g.,Tk.

7 Compute the test statistic using t(b) under the corresponding null hypothesis, e.g.,
TSk(YFk

(t(b)), t(b), τ′)

8 Compute the empirical p-value for each τ′, e.g.,
p̂valk(T,Yobs, τ′) = B−1 ∑B

b=1 I{TSk(YFk
(t(b)), t(b), τ′) ≥ TSk(Yobs,T, τ′)}

9 Obtain the maximum empirical p-value across the grid points and add γ. e.g.,
p̂k,γ(T,Yobs) := maxτ′∈C p̂valk(T,Yobs, τ′) + γ

2.4 Simulation

In this section, we present the Monte Carlo simulation design and results that assess the performance
of the proposed testing procedures. We build on the Monte Carlo experimental designs of Ding
et al. (2016). Specifically, we model network interference into their setup using a sparse adjacency
matrix A where the number of edges or degrees of each node is five. For each unit i = 1, . . . ,N, the
relationship between the potential outcomes is

Yi(1, π) = Yi(0, π) + τi(π, x)

Yi(0, π) = ui(π)

τi(π, x) = (1 + ψ0π + ψ1x) + στ · Yi(0, π) ∀π ∈ Π ∀x ∈ X, (2.34)
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where ψ0, ψ1 and στ controls the different types of treatment effects heterogeneity. For instance,
when ψ0 = ψ1 = στ = 0, H0 in (2.3) holds, i.e., there are no systematic and idiosyncratic variations
in treatment effects.

To assess the finite sample performance of the test statistics of H0 and HΠ0 , we can ignore the
pretreatment variables and let τi(π, x) = τi(π) = (1 + ψ0π) + στ · Yi(0, π). Also, for our simulation
exercise, we let ui(π), i = 1 . . .N be i.i.d random variables drawn from either the normal or the
log-normal distributions with variance 1, and mean π. Furthermore, we set B = 150, and the number
of replications to 1000 for all the Monte Carlo exercises. In all the experiments, we use the following
binary-valued exposure mapping

πi(T) := I
(∑N

j=1 T jAi j∑N
j=1 Ai j

> 0.5
)
.

Focusing on H0 in (2.3), we first set ψ0 = ψ1 = 0, N = 200 and ϵ = 0.20.We display the rejection
probabilities and FWER in Table 2.4 for the test statistics TSk when H0 is true and false using the
CI and SS techniques. In particular, to compute the individual rejection probability when H0 is true,
we also set στ = 0. We report the rejection probabilities and the FWER at a 5% significance level
for the normal and log-normal DGPs in the first rows of the two panels in Table 2.4. The other rows
of each of the panels in Table 2.4 report the rejection probabilities under fixed alternatives (or when
the null is false) by setting στ ∈ {0.5, 1.0, 1.5, 2.0}.

The results support the asymptotic validity of the CI and SS techniques on the CRI method under
both DGPs. In general, the p-values of the CI technique are lower, which supports our conjecture
that the CI technique produces conservative p-values. Note that, under both techniques, any multiple
testing procedures that control the FWER are valid at the 5% level since FWER≤ 0.097 when
στ = 0. The rejection probabilities also tend to one under fixed alternatives that move further away
from the null hypothesis. Therefore, the procedures are consistent and have non-negligible power.

In Table 2.5, we also report the rejection probabilities at a 5% significance level using the
combined test statistic TS in (2.15) for H0. We keep the same parameters we used for the individual
test statistics. Similar to Table 2.4, we observe that the resulting p-values are valid under both DGPs
for both techniques. In addition, both techniques are consistent and have non-negligible power.
Overall, comparing the p-values, both testing approaches are competitive.

Next, we focus on the null hypothesis HΠ0 in (2.4). Here, we first set ψ0 = 1, ψ1 = 0, N = 200,
and ϵ = 0.20. To compute the rejection probability under the null hypothesis, we also set στ = 0.
Again using the test statistics TSk defined in (2.6), we report the rejection probabilities at a 5%
significance level under the normal and log-normal DGPs in Table 2.6. As in Table 2.4, the p-
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Table 2.4: Empirical Rejection Probabilities using the Individual Test Statistics TSk’s when H0 is
True and False with α = 0.05

Normal Log-normal

Techniques στ Pr( p̂val0 < α) Pr(p̂val1 < α) FWER Pr( p̂val0 < α) Pr(p̂val0 < α) FWER
0.0 0.003 0.000 0.003 0.003 0.003 0.006
0.5 0.291 0.296 0.504 0.024 0.022 0.045

CI 1.0 0.892 0.886 0.990 0.095 0.094 0.182
1.5 0.994 0.996 1.000 0.224 0.192 0.371
2.0 1.000 0.999 1.000 0.397 0.342 0.603
0.0 0.008 0.016 0.024 0.061 0.008 0.068
0.5 0.246 0.254 0.425 0.216 0.035 0.240

SS 1.0 0.701 0.704 0.916 0.459 0.122 0.518
1.5 0.925 0.924 0.996 0.660 0.318 0.757
2.0 0.990 0.976 1.000 0.771 0.445 0.869

Estimates are based on 1000 replications, with a simulation standard error of 0.00689 under H0.

values using the CI techniques are valid but relatively lower under both DGPs. Both techniques
are consistent and have non-negligible power. In Table 2.7, we report the rejection probabilities
by applying the combined test statistic to HΠ0 . We set the same model parameters we used for the
individual test statistics. The results indicate the validity of the p-values under both DGPs and both
techniques. Also, the results show that under fixed alternatives, we have non-negligible statistical
power for both DGPs and both techniques.

Table 2.6: Empirical Rejection Probabilities using the Individual Test Statistics TSk’s when HΠ0 is
True and False with α = 0.05

Normal Log-normal

Techniques στ Pr( p̂val0 < α) Pr(p̂val1 < α) FWER Pr( p̂val0 < α) Pr(p̂val0 < α) FWER
0.0 0.003 0.000 0.003 0.003 0.003 0.006
0.5 0.281 0.286 0.488 0.024 0.022 0.045

CI 1.0 0.885 0.874 0.989 0.093 0.092 0.179
1.5 0.993 0.995 1.000 0.217 0.191 0.365
2.0 1.000 0.999 1.000 0.387 0.336 0.595
0.0 0.013 0.031 0.044 0.042 0.025 0.067
0.5 0.208 0.405 0.516 0.129 0.082 0.202

SS 1.0 0.596 0.886 0.955 0.312 0.264 0.492
1.5 0.864 0.989 0.999 0.525 0.449 0.747
2.0 0.944 0.997 1.000 0.670 0.640 0.884

Estimates are based on 1000 replications, with a simulation standard error of 0.00689 under HΠ0 .
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Table 2.5: Empirical Rejection Probabilities using the Combined Test Statistic TS when H0 is True
and False with α = 0.05

Techniques στ Normal Log-normal
0.0 0.003 0.001
0.5 0.516 0.012

CI 1.0 0.998 0.093
1.5 1.000 0.282
2.0 1.000 0.453
0.0 0.005 0.018
0.5 0.309 0.103

SS 1.0 0.896 0.328
1.5 0.997 0.566
2.0 0.999 0.739

Estimates are based on 1000 replications, with a simulation standard error of 0.00689 under H0.

Table 2.7: Empirical Rejection Probabilities using the Combined Test Statistic TS when HΠ0 is True
and False with α = 0.05

Techniques στ Normal Log-normal
0.0 0.001 0.001
0.5 0.509 0.014

CI 1.0 0.996 0.093
1.5 1.000 0.271
2.0 1.000 0.438
0.0 0.000 0.000
0.5 0.095 0.020

SS 1.0 0.620 0.090
1.5 0.933 0.236
2.0 0.988 0.407

Estimates are based on 1000 replications, with a simulation standard error of 0.00689 under HΠ0 .

Finally, we focus on the null hypothesis HX,Π
0 in (2.5). For this exercise, we set ψ0 = 1 ψ1 = 1,

and ϵ = 0.008. To compute the rejection probability when HX,Π
0 is true, we also set στ = 0. In

addition, we set N = 300 for the CI technique, and N = 600 8 for the SS technique. Using the test
statistics TSk,l, we report the rejection probabilities at a 5% significance level under the normal and
log-normal DGPs in Table 2.8. The tests are valid under both DGPs and for both techniques. Also,
in Table 2.9, we report the rejection probabilities using the combined test statistic TSX,Π in (2.8),

8Using N = 300 for the SS technique, we are unable to compute test statistics for each exposure value and arm of
pretreatment variable after splitting the sample.
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using the same parameters as in Table 2.8. The results indicate the validity of the resulting p-values.
Statistical power is non-negligible under fixed alternatives for both testing approaches.

Table 2.8: Empirical Rejection Probabilities using the Individual Test Statistics TSk,l’s when HX,Π
0 is

True and False with α = 0.05. NB: p̂valkl = p̂kl.

Normal Log-normal

Techniques στ Pr( p̂00 < α) Pr(p̂10 < α) Pr(p̂01 < α) Pr(p̂11 < α) FWER Pr( p̂00 < α) Pr(p̂10 < α) Pr(p̂01 < α) Pr(p̂11 < α) FWER
0.0 0.002 0.000 0.002 0.001 0.005 0.000 0.000 0.001 0.001 0.002
0.5 0.137 0.117 0.133 0.125 0.430 0.010 0.009 0.012 0.013 0.041

CI 1.0 0.649 0.613 0.626 0.632 0.984 0.064 0.060 0.055 0.033 0.202
1.5 0.922 0.893 0.926 0.918 1.000 0.145 0.133 0.128 0.119 0.440
2.0 0.992 0.982 0.992 0.984 1.000 0.250 0.215 0.251 0.209 0.657
0.0 0.005 0.003 0.003 0.002 0.013 0.003 0.004 0.004 0.004 0.015
0.5 0.227 0.219 0.213 0.241 0.646 0.034 0.036 0.026 0.029 0.119

SS 1.0 0.756 0.741 0.768 0.741 0.999 0.120 0.129 0.143 0.136 0.425
1.5 0.966 0.954 0.956 0.953 1.000 0.306 0.287 0.295 0.301 0.760
2.0 0.996 0.993 0.994 0.996 1.000 0.440 0.368 0.438 0.433 0.891

Estimates are based on 1000 replications, with a simulation standard error of 0.00689 under HX,Π
0 .

Table 2.9: Empirical Rejection Probabilities using the Combined Test Statistic TSX,Π when HX,Π
0 is

True and False with α = 0.05

Techniques στ Normal Log-normal
0.0 0.000 0.005
0.5 0.238 0.042

CI 1.0 0.951 0.115
1.5 0.999 0.273
2.0 1.000 0.375
0.0 0.000 0.000
0.5 0.319 0.003

SS 1.0 0.977 0.090
1.5 1.000 0.292
2.0 1.000 0.512

Estimates are based on 1000 replications, with a simulation standard error of 0.00689 under HX,Π
0 .

2.5 Conclusion

This chapter proposes randomization tests for heterogeneous treatment effects when units interact
on a single network. By incorporating the concept of network exposure mapping, we model network
interference in the potential outcomes framework and considers three non-sharp null hypotheses
representing different notions of homogeneous treatment effects. The chapter proposes a conditional
randomization inference method to deal with the presence of multiple potential outcomes and
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two procedures to overcome nuisance parameter issues. Overall, this chapter offers insights for
researchers seeking to analyze heterogeneous treatment effects in a networked environment.

We may consider a few possible extensions. It is interesting to investigate goodness-of-fit test
statistics like the Kolmogorov-Smirnov (KS) test statistic. In particular, can we extend the martingale
transformation method applied to the KS test statistic by Chung and Olivares (2021)? Our immediate
conjecture is that it is impossible without modifications due to the dependencies in network data
sets. It is also interesting to extend the sample splitting technique to control for the randomness
from sample splitting. A natural extension is a cross-fitting routine where we consider multiple
independent splits of the data to approximate the distribution. Finally, it is worthwhile to examine
the generalizability of the proposed conditioning method. In other words, can we apply the method
to other hypotheses? We leave these questions for our future research.
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2.6 Appendix

To prove Theorem 2.3.1, we need the following Lemmata.

Lemma 2.6.1 (The probability integral transform theorem) Assume a random variable A has

a continuous distribution for which the cumulative distribution function (CDF) is FA. Then the

random variable B defined as B = FA(A) has a standard uniform distribution.

The following lemma of Hájek (1960) states the central limit theorem in finite populations.

Lemma 2.6.2 (Central limit theorem in finite populations) Let ȳn be the average of a simple

random sample of size n from a finite population {y1, y2, . . . , yN}. As N → ∞, if

1
min(n,N − n)

·
max1≤i≤N(yi − N−1 ∑N

i=1 yi)2

(N − 1)−1 ∑N
i=1(yi − N−1 ∑N

i=1 yi)2
→ 0 (2.35)

then
(ȳn − N−1 ∑N

i=1 yi)
Var(ȳn)

→ N(0, 1)

Note that the finite population asymptotic results are obtained under the hypothetical concept that
there is an infinite sequence of finite populations with increasing sizes (Li and Ding, 2017). Finally,
note that assumption of finite second order moments of {y1, y2, . . . , yN} is sufficient for the condition
in (2.35).

2.6.1 Proof of Theorem 2.3.1

proof 2.6.1 For any k, if Gk denote the asymptotic null distribution of TSk(YFk(Λ(T)),Λ(T),A;Tk, Fk)
for any treatment vector Λ(T) ∈ Tk, then the p-value and its asymptotic counterpart are respectively,

pvalk(T,Y
obs;Tk, Fk) =Pr(TSk(YFk(Λ(T)),Λ(T),A;Tk, Fk) ≥ TSk(Yobs,T,A;Tk, Fk)|H0) and,

lim
Nk→∞

pvalk(T,Y
obs;Tk, Fk) =Gk(TSk(Yobs,Tobs,A;Tk, Fk)).

Under Assumptions 2.2.1-2.3.1 and finite conditional variances of the potential outcomes, we can

apply the central limit theorem in Lemma 2.6.2. Note that conditional on treatment and exposure

values, realized outcomes are the same as the potential outcomes hence they are fixed (and no

cross-sectional dependency exists).

Therefore, using Lemma 2.6.2, we can deduce that the sample mean for a given treatment and

exposure value converges to a normal distribution. The sample variance for a given treatment
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and exposure value will also weakly converge. Since the test statistic depend on the conditional

variances, note that the asymptotic distribution of TSk(YFk(Λ(T)),Λ(T),A;Tk, Fk) coincides with

that of the observed test statistic.

Hence, for a large sample size, the observed test statistic TSk(Yobs,Tobs,A;Tk, Fk) also has the

asymptotic null distribution Gk.

Now, from Lemma 2.6.1, pvalk(T,Yobs;Tk, Fk) has a standard uniform distribution in the limit

and as such,

limNk→∞ Pr(pvalk(T,Yobs;Tk, Fk) ≤ α) ≤ α for any α ∈ [0, 1] as required.

2.6.2 Proof of Theorem 2.3.2

proof 2.6.2 LetUest andUin f be a random equal split of the data into estimation and inference

sub-samples. Now, let τ̂est be an estimator of the sample average treatment effect conditional on the

sub-sampleUest. Assume that τ̂est is a consistent estimator9 of the unconditional sample average

treatment effect τ. Specifically,

|τ̂est − τ| = op(1) (2.36)

Next, for any k, let Gk|τ̂est denote the asymptotic distribution of TSk(YFk(Λ(T)),Λ(T),A;Tk, Fk, τ̂
est).

Note that this distribution is conditional on a given balanced sample split and the conditioning mech-

anism. Therefore, the probability is with respect to the randomness of Λ(T) ∈ TU
in f

k , where TU
in f

k is

the subset of treatment assignment vectors of the inference sub-sample that meet the conditioning

mechanism on the full sample.

Under the null hypothesis (2.3), as N → ∞ (which by assumption implies that Nk → ∞, for all

k), the randomization hypotheses also hold. From Theorem 2.3.1, the limit laws of the test statistics

are invariant to randomized treatments, i.e., TSk(Yobs,T,A;Tk, Fk, τ̂
est) also has an asymptotic

distribution Gk|τ̂est since by assumption, T ∈ TUin f

k . Therefore, the p-value can be written as

pvalk(T,Y
obs;Tk, Fk, τ̂

est) =Pr(TSk(YFk(Λ(T)),Λ(T),A;Tk, Fk, τ̂
est) ≥ TSk(Yobs,T,A;Tk, Fk, τ̂

est)|H0)

pvalk(T,Y
obs;Tk, Fk, τ̂

est) =Gk|τ̂est(TSk(Yobs,Tobs,A;Tk, Fk, τ̂
est))

From Lemma 2.6.1, pvalk(T,Yobs;Tk, Fk, τ̂
est) has a standard uniform distribution in the limit.

Combining this fact with the consistency assumption in (2.36), we have limN→∞ Pr(pvalk(T,Yobs;Tk, Fk, τ̂
est) ≤

α) ≤ α for any α ∈ [0, 1] as required.
9We can show that the difference-in-means estimator is consistent in a design-based setting.
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2.6.3 Proof of Theorem 2.3.3

proof 2.6.3 Let τ0 be the true value of the nuisance parameter τ, and let Nk be the subset of units

in the population with observed exposure value equal to πk. Then

lim
Nk→∞

Pr(pvalk,γ(T,Y
obs;Tk, Fk) ≤ α|H0) = lim

Nk→∞
Pr(pvalk,γ(T,Y

obs;Tk, Fk) ≤ α, τ0 ∈ CIγ|H0)

+ lim
Nk→∞

Pr(pvalk,γ(T,Y
obs;Tk, Fk) ≤ α, τ0 < CIγ|H0)

≤ lim
Nk→∞

Pr
(

sup
τ′∈CIγ

pvalk(τ′) + γ ≤ α, τ0 ∈ CIγ|H0

)
+ lim

Nk→∞
Pr(τ0 < CIγ|H0)

≤ lim
Nk→∞

Pr(pvalk(τ0) ≤ α − γ, τ0 ∈ CIγ|H0)

+ lim
Nk→∞

Pr(τ0 < CIγ|H0)

≤α − γ + γ = α

Note that a large Nk is only a requirement for the randomization hypothesis. In other words, by

construction, as Nk → ∞, the number of focal units uniformly increases for each treatment vector

which implies that the randomization hypothesis will hold. The first equality is an application

of the law of total probability. The first inequality (second line) is also a straightforward use

of the relationship between marginal and joint probabilities for the second term. The second

inequality (third line) uses the fact that supτ′∈CIγ pvalk(τ′) stochastically dominates pvalk(τ0). The

last inequality uses Theorem 2.3.1 and the fact that CIγ is a valid confidence interval.
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3.1 Introduction

One of the most crucial questions for a policy maker is how to assign a treatment to an individual
or a group. For example, during the COVID-19 pandemic, each government has tried to find an
effective order of vaccination. Recently, statistical treatment rules based on the decision theoretic
framework have received much attention in treatment evaluation studies (for a general review, see
Manski (2004, 2021) and Hirano and Porter (2020)). Compared to the conventional approaches
based on the point estimation and inference procedures, statistical treatment rules make it possible
to evaluate a broader range of treatment rules, which includes a direct map from data to an action.
Despite active research in this area, most studies focus on the individualistic treatment response and
we have limited results for the case where treatment outcomes depend on each other. As we can
see from the vaccination example, it is important in many empirical settings to consider dependent
treatment outcomes

In this chapter, we study a treatment assignment rule in the presence of treatment outcome
dependency. In addition to the problem of vaccination, there are many applications that a policy
maker has to weigh dependent treatment outcomes. Heckman, Lochner, and Taber (1999) evaluate
the effect of a tuition reduction policy in the UK in a general equilibrium framework. They show that
ignoring the outcome dependency over-estimates the effect of the policy on college enrollment more
than 10 times. Duflo (2004) also argues that even a randomized control trial faces a challenge in
scaling up to a larger level because of the general equilibrium effects or, more generally, dependent
treatment outcomes. Using Danish data on a large job assistance program, Gautier et al. (2018) show
that the unemployed who are not selected in the program spend more time in job search than those
who look for a job in provinces without such a program. Thus, the outcome of the untreated depends
on that of the treated, and the treatment evaluations assuming independent treatment outcomes can
mislead a policy maker.1

We investigate this problem in the framework of the statistical decision theory. Treatment
outcomes are allowed to depend on each other in a flexible way. We aim to construct a treatment
assignment rule under the minimax regret approach and to characterize it. Thus, a treatment choice
using sample data, i.e. a statistical decision rule, is the main object of interest in this chapter. Having
in mind a large-scale policy implementation, we assume that the links between individuals (network
information) is unknown. Instead, we impose a shape restriction on treatment response functions
following Manski (2013). Specifically, we assume anonymous interactions, which implies that the
treatment response of an individual does depend on the treatment status of others but is invariant of

1See also Beaman (2012), Bursztyn et al. (2014), and Duflo and Saez (2003) for additional examples.
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the identity of other individuals. In other words, it is independent of the permutation of the treatment
assignments on others. In the job assistance program above, for instance, this condition implies
that the negative effect of the policy on the untreated only depends on the total size of people who
receive the benefit of the job assistance program. This assumption provides a good approximation
of the world with a large-scale policy implementation, and it makes both theoretical and empirical
analyses feasible by reducing the domain of the response function substantially.

We define the sampling process carefully following the statistical decision theory framework. It
contrasts to the standard individualistic treatment effect model in that our process represents both
the treatment status variable and the outcome variables as a vector. The dimension of the vector is
the same as the number of different treatment ratios in the target population. We adopt the minimax
regret approach to handle the underlying ambiguity of the data generating process. We propose
an intuitive decision rule called the multinomial empirical success (MES) rule that extends the
empirical success rule in Manski (2004) to the current setup. We investigate the properties of the
MES rule followed by the possible applications.

The main contributions of this chapter are summarized as follows. First, we prove that the MES
rule achieves the asymptotic optimality for the minimax regret criterion. Using the structure of the
finite action problem in statistics literature, it extends the seminal optimality result in Hirano and
Porter (2009) to multiple treatments. Second, we derive the non-asymptotic bounds of the expected
welfare and the maximum regret under the MES rule. We also provide two applications on how
these bounds can be used: (i) designing an optimal sampling procedure, and (ii) computing the
sufficient sample size to allow additional covariates in the treatment rule.

The rest of the chapter is organized as follows. We finish this section by reviewing related
literature. In section 3.2 we provide the main framework of the analysis. In section 3.3 we define the
MES rule and derive the upper bounds of the maximum regret. We also provide two applications of
these bounds. We provide some concluding remarks in section 3.4. All proofs and technical details
are deferred to the appendix.

3.1.1 Related Literature

In the seminal work of Manski (2004), he considers the statistical decision theory in the context
of heterogeneous treatment rules. He proposes the empirical success rule and derives the finite
sample bounds of the minimax regret. Stoye (2009) characterizes the minimax regret rule using the
game theoretic approach and shows that the empirical success rule is a good approximation of the
minimax regret rule under certain sampling processes. Hirano and Porter (2009) apply the limit
experiment framework to develop large sample approximations to the statistical treatment rules.
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Kitagawa and Tetenov (2018) propose the empirical welfare maximization (EWM) method that
selects the treatment rule maximizing the sample analogue of the social average welfare. Athey and
Wager (2021) propose a doubly robust estimation procedure for the EWM problem and show the
rate-optimal regret bounds. Mbakop and Tabord-Meehan (2021) consider a large class of admissible
rules and propose a penalized EWM method that chooses the optimal size of the policy class.
Manski and Tetenov (2016, 2019) argue to design clinical trials based on the goal of statistical
treatment rules rather than on the statistical power of a hypothesis test. Motivated by a risk-averse
policy maker, Manski and Tetenov (2007) and Kitagawa, Lee, and Qiu (2022) propose nonlinear
transformations of welfare and regret.

Manski (2013) studies identification of treatment effects with social interaction. To make the
problem feasible, he proposes possible approximation methods including anonymous interaction,
which will be explained in detail later. Manski (2009) analyzes statistical treatment rules under
the anonymous interaction assumption and the shape restriction on the mean welfare function.
Viviano (2019) proposes the network empirical welfare maximization method under the anonymous
interaction assumption among those in the first-degree neighbor. However, our approach is different
from his since it does not require heavy computation to solve an empirical optimization problem.

3.2 Framework

We consider the following framework based on Manski (2004) and Stoye (2009). Consider a
social planner who assigns a binary treatment T ∈ {0, 1} to each individual j in a heterogeneous
population J. The population is divided into mutually exclusive and exhaustive groups based on
observed characteristics (e.g. high school graduate vs. college graduate). Let g ∈ {1, 2, . . . ,G} be
the index of a group and ng be the (population) size of group g. Individual j in group g has a
response function y jg : {0, 1} × {0, 1}ng−1 7→ [0, 1] that maps each possible group treatment vector
t = (t1, . . . , tng) ∈ {0, 1}

ng into an outcome in [0, 1]. Thus, we can write y jg(t) = y jg(t j, t− j), where
t j is the treatment assigned to individual j and t− j represents the treatment vector for individuals
in the same group excluding person j’s treatment assignment. This response function generalizes
the individualistic treatment in a way that the spillover effect is allowed inside the same group (e.g.
segmented labor markets). Note that the model allows the most flexible interactions when the whole
population is categorized as a single group. The range of [0, 1] is a simple normalization and any
bounded outcome space can be allowed. For notational simplicity, we consider a single group from
now on and drop the subscript g unless it causes any confusion.

We consider a probability space (J,Σ, PJ). The population J is dense in the sense that PJ({ j}) = 0,
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for all j ∈ J. The social planner cannot distinguish members of J. Therefore, we can consider the
model as an induced random process, Y(t), which is a potential outcome depending not only on
individual treatment status, t j, but on possible treatments of other members, t− j. Given the large size
of the population J, this random process in the most general structure is intractable. Following the
social interaction literature, we impose the following assumption.

Assumption 3.2.1 (Anonymous Interactions, Manski (2013)) The outcome of individual j is in-

variant with respect to permutations of the treatments received by other members of the group.

Assumption 3.2.1 implies that a treatment ratio is a sufficient statistic for t− j. Let π(t) be a treatment
ratio of treatment vector t. Then, for two treatment vectors t , t′ such that t = (t j, t− j) and
t′ = (t j, t′− j), Assumption 3.2.1 implies that

y j(t) = y j(t′) if π(t) = π(t′).

Therefore, the outcome of a treatment t depends on individual’s treatment status t j and π(t), and we
can rewrite the response function y j(t) as y j(t j, π(t− j)) : {0, 1} × Π 7→ [0, 1], where Π := [0, 1]. The
potential outcome processes now become (Y0(π),Y1(π)) whose distribution is PY(Y0(π),Y1(π)). Note
that the distribution PY can be constructed from PJ given the response function y j(·).

The distribution PY is identified with a state of the world θ ∈ Θ that is unknown to the policy
maker. Note that {PY,θ(Y0(π),Y1(π)) : θ ∈ Θ} is composed of all possible distributions on the outcome
space [0, 1]2 for each π ∈ Π. To make the main arguments clear, we impose an additional assumption
that the set Π is discrete.

Assumption 3.2.2 (Discrete Choice Set) Let π be the fraction of treated individuals in a group.

The support of π denoted by Π is a discrete set of finite elements.

Assumption 3.2.2 is suitable to many applied settings since the treatment ratio set may be constrained
exogenously for ethical, budgetary, equity, legislative or political reasons. In addition, this is a
practical assumption when experiments are costly to implement at all feasible treatment ratios. The
assumption could also provide a good approximation if Π is a continuous interval, but outcome
function y j is smooth in π

We provide the following examples.

Example 3.2.1 (Job placement assistantship program) Crépon et al. (2013) design a two-stage

randomized experiment to evaluate the direct and displacement impacts of job placement assistance

(JPA) on the labor market outcomes of young, educated job seekers in France. Individuals are
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organized in segmented labor markets (e.g. cities) and five treatment ratios (0%, 25%, 50%, 75%,

and 100%) are considered. An individual’s labor market outcome depends not only on his/her

treatment status but on the treatment ratio (fraction of individuals who received the JPA in their

labor market).

Example 3.2.2 (Cholera vaccine coverage) Root et al. (2011) analyze data from a field trial in

Bangladesh to assess the evidence of indirect protection from cholera vaccines when vaccination

coverage rates varies according to the social network. Households are organized into independent

groups using kinship connections. Vaccine coverage rate is discretized into the following ranges:

(0, 27.2%], (27.2, 40.0%], (40.0 − 50.0%], (50.0% − 62.5%], and (62.5%, 100%].

We now turn our attention to a random sample that helps the policy maker infer the state of the
world θ. Let Π = {π1, π2, . . . , πK}. The experiment generates a sample space Ω := ({0, 1} × [0, 1])N ,
where N :=

∑K
k=1 Nk and Nk is the subgroup size of an experiment with a treatment ratio πk. A

typical element of Ω is represented by

ωn := {(tn1(π1), yn1(π1))N1
n1=1, (tn2(π2), yn2(π2))N2

n2=1, . . . , (tnK (πK), ynK (πK))NK
nK=1}.

Conditional on the treatment realization tnk(πk), ynk(πk) is an independent realization of Yt(πk) for
t = 0, 1. Therefore, it helps a policy maker to infer the state of the world θ. To make notation simple,
we assume the equal subgroup size, N1 = · · · = NK = N/K, and ωn is composed with N/K-copies
of ωi := {(ti(π1), yi(π1)), . . . , (ti(πK), yi(πK))}.

The policy maker constructs a statistical treatment rule δ : Ω 7→ Π that maps a sample realization
ωn onto a treatment assignment ratio π ∈ Π. Recall that we restrict our attention to a single group
in this framework but the statistical treatment rule can be group-specific when there are multiple
groups.

The expected outcome (or social welfare) given the statistical treatment rule δ and the state θ is

u(δ, θ) :=
∫

U(δ(ωn), θ)dQn
θ (3.1)

=

K∑
k=1

U(πk, θ) Pr(δ(ωn) = πk; θ), (3.2)

where Qθ is a distribution of ωn given state θ, U(π, θ) := (1 − π) · Eθ[Y0(π)] + π · Eθ[Y1(π)] is the
expected outcome (or social welfare) for any given treatment ratio π in state θ, and Eθ[Yt(π)] is the
mean potential outcome of treatment status t given θ and π. Note that the potential outcome variable
Yt(π) depends on the treatment of others through π. This point becomes clearer if we compare the
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expected outcome in (3.1) with that of the individualistic treatment model (e.g. Stoye (2009)). When
there is no social interaction, the mean potential outcome is independent of the group treatment
ratio π, i.e. Eθ[Yt(π)] = Eθ[Yt]. Then, the expected outcome in (3.1) becomes∫

U(δ(ωn), θ)dQn
θ =

∫
{(1 − δ(ωn))Eθ[Y0] + δ(ωn)Eθ[Y1]} dQn

θ

= Eθ[Y0]
(
1 −

∫
δ(ωn)dQn

θ

)
+ Eθ[Y1]

∫
δ(ωn)dQn

θ

≡ µ0(1 − Eθ[δ(ω)]) + µ1Eθ[δ(ω)],

where the last line is equal to the expected outcome in Stoye (2009) using his notation.
It is interesting to compare our framework to the individualistic multiple-treatment design.

Given the finite number of treatment ratios, one might want to interpret the framework in terms
of K different individual treatments without any social interaction: e.g. define Y1 := Y1(π1),Y2 :=
Y1(π2), . . . ,YK := Y1(πK) and set (Y0,Y1, . . . ,YK) as a vector of potential outcomes. However, this
multiple-treatment design does not capture the feedback effect of the social interaction for any
non-treated individual. Note that Y0(π) still depends on the treatment ratio π in our framework, which
is not embedded in the potential outcome vector (Y0,Y1, . . . ,YK) of the standard multiple-treatment
design.

The decision problem is to find a statistical treatment rule that maximizes the expected outcome
function u(δ, θ). However, there exists ambiguity about the state of the world, and we need some
decision criteria for unknown θ. In this chapter we adopt the minimax regret rule following Manski
(2004) and Stoye (2009). The regret function of δ given state θ is defined as

R(δ, θ) := max
d∈D

u(d, θ) − u(δ, θ), (3.3)

where D is a set of all possible statistical treatment rule. The minimax regret solution of the decision
problem is defined as

δ∗ := arg min
δ∈D

sup
θ∈Θ

R(δ, θ). (3.4)

3.3 Multinomial Empirical Success Rule

In this section we propose a feasible statistical decision rule and characterize it by the non-asymptotic
bounds on the maximum regret. To show the main idea, we keep focusing on a homogeneous
population in a single group. The results are extended into the heterogeneous population in a single
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group case in section 3.3.2 and we show how they can be used to determine the proper conditioning
variables set.

It is difficult to attain the optimal statistical treatment rule by solving (3.4) directly since R(δ, θ)
involves integration over finite sample distributions. As an alternative, researchers may propose
possible statistical treatment rules and analyze whether they achieve the optimal regret level. One
of the popular rules is an empirical success rule, which substitutes empirical success rates for the
population counterparts.

We propose such an empirical success rule suitable for the proposed setup. To focus on our
main arguments, we restrict our attention to continuous outcomes which implies a strict ordering of
the estimates for U(π, s) for all π ∈ Π. We define our multinomial empirical success (MES) rule as
follows:

δMES (ω) :=
K∑

k=1

πk · 1

(
Û(πk) > max

π∈Π−k
Û(π)

)
, (3.5)

where Π−k := Π \ {πk} and

Û(πk) := (1 − πk) · ÊPθ[Y0(πk)] + πk · ÊPθ[Y1(πk)]

= (1 − πk) ·

∑Nk
nk=1 Ynk(πk) · 1(Tnk(πk) = 0)∑Nk

nk=1 1(Tnk(πk) = 0)
+ πk ·

∑Nk
nk=1 Ynk(πk) · 1(Tnk(πk) = 1)∑Nk

nk=1 1(Tnk(πk) = 1)
. (3.6)

Note that, using the convention 0 ·∞ = 0, we define Û(0) = N−1
1

∑N1
n1=1 Yn1(0) when π1 = 0. Similarly,

Û(1) = N−1
K

∑NK
nK=1 Yn1(1) when πK = 1.

We have a few remarks on the proposed statistical decision rule. First, we call the rule in (3.5) as
a Multinomial Empirical Success (MES) rule to emphasize the multinomial choice set in the setting.
Second, we estimate EPθ[Yt(π)] by using the empirical measure that depends on the unknown state θ
of the world. Thus, both Û(πk) and the outcome of δMES (·) depend on θ although it is not included
as an argument explicitly. Third, the MES rule encompasses the (unconditional) empirical success
rule in Manski (2004). Let Π = {0, 1} with π1 = 0 and π2 = 1. Then, the MES rule becomes

δMES (ω) = 0 · 1
(
Û(0, θ) > Û(1, θ)

)
+ 1 · 1

(
Û(0, θ) < Û(1, θ)

)
= 1

 1
N1

N1∑
n1=1

Yn1(0) <
1

N2

N2∑
n2=1

Yn1(1)

 ,
which is the empirical success rule in Manski (2004).
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We next evaluate the expected outcome in (3.2) using the MES rule in (3.5):

u(δMES , θ) =
K∑

k=1

Pr(δMES (ωn) = πk) · U(πk, θ)

=

K∑
k=1

Pr
(
Û(πk) > max

π∈Π−k
Û(π)

)
· U(πk, θ)

=

K∑
k=1

Pr

 K⋂
j=1, j,k

{Û(πk) > Û(π j)}

 · U(πk, θ).

As we discussed above, u(δMES , θ) is intractable since it involves all possible finite sample distribu-
tions. However, building on Manski (2004), we can construct bounds for the expected outcome with
the MES rule as follows.

Theorem 3.3.1 Fix θ ∈ Θ. Let Π = {π1, . . . , πK}, ∆kl := |U(πk, θ) − U(πl, θ)| for k, l = 1, . . . ,K, and

πM∗ := arg maxπ∈ΠU(π, θ). Then, the following inequality holds:

U(πM∗ , θ) −
K∑

k=1

exp
[
− 2∆2

M∗k{Ak + AM∗}
−1

]
· ∆M∗k ≤ u(δMES , θ) ≤ U(πM∗ , θ), (3.7)

where Ak := (1 − πk)2N−1
k0 + π

2
kN−1

k1 , AM∗ := (1 − πM∗)2N−1
M∗0 + π

2
M∗N

−1
M∗1, and Nkt denotes the number

of individuals in the sample with π = πk and T = t.

It is worth comparing these bounds with those in Proposition 1 of Manski (2004). Note that both
frameworks allow the potential outcome distributions to vary across some indexing variables. For
example, the potential outcomes in Manski (2004) depend on exogenous conditioning variables
X, i.e. heterogeneous treatment effects over X. However, we focus on the dependence of the
potential outcomes on the choice variable π. They look similar from the mathematical perspective,
but the implications are quite different since the result in this chapter allows the effect of social
interaction. This point becomes clearer when we extend the model to the case that includes additional
conditioning variables.

We further investigate the finite sample penalty of the lower bound in (3.7), which measures the
possible difference of u(δMES , θ) from the ideal solution U(ππM∗ , θ). First, the penalty converges to
zero at the exponential rate as Ntk increases uniformly for all t ∈ {0, 1} and k ∈ {1, . . . ,K}. Second,
the penalty is maximized when ∆M∗k = {Ak + AM∗}

1/2/2 for each k , M∗. Thus, we can compute the
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upper bound of the penalty as follows:

K∑
k=1

exp
[
− 2∆2

M∗k{Ak + AM∗}
−1

]
· ∆M∗k ≤

1
2
· e−

1
2

K∑
k=1,k,M∗

{Ak + AM∗}
1
2 . (3.8)

Third, it is interesting to investigate the relationship between the cardinality of Π denoted by K and
the penalty size. Consider the following example of two possible choice sets Π1 and Π2 such that
Π1 ⊂ Π2. Let πM∗ be the optimal solution of Π1. If πM∗ is also the optimal solution of Π2, then Π2

has a larger penalty than Π1. However, if the optimal solution of Π2 denoted by πM∗∗ is different
from πM∗ , then Π2 may have a smaller penalty than Π1. Note that ∆M∗∗k > ∆M∗k for all k ∈ Π1 and
that there may exits some k ∈ Π1 such that exp[−2∆2

M∗∗k{Ak + AM∗∗}
−1] < exp[−2∆2

M∗k{Ak + AM∗}
−1].

Therefore, a larger choice set may improve the finite sample lower bound only if it contains a better
welfare outcome. Finally, we investigate the uniform bound of the regret function over θ. The upper
bounds of the regret function with δMES is represented in terms of the penalty:

0 ≤ sup
θ∈Θ

R(δMES , θ) ≤ sup
θ∈Θ

 K∑
k=1

exp
[
− 2∆2

M∗k{Ak + AM∗}
−1

]
· ∆M∗k


≤ sup

θ∈Θ

1
2
· e−

1
2

K∑
k=1,k,M∗

{Ak + AM∗}
1
2

 .
Different from the result in Manski (2004), AM∗ in the right hand side depends on θ since πM∗ is
defined in terms of U(π, θ). Therefore, we need an additional step to achieve the uniform bound. Let
A := maxk∈{1,...,K} Ak. Note that A ≥ AM∗ and that A is independent of θ. Then, the desired uniform
bound is achieved as follows:

0 ≤ sup
θ∈Θ

R(δMES , θ) ≤
1
2
· e−

1
2

K∑
k=1,Ak,A

{Ak + A}
1
2 . (3.9)

These finite sample bounds give us two useful applications. First, we apply this bound to solve
the quasi-optimal experiment design problem. Second, we can extend the bound to the covariate
dependent treatment rule and determine the minimum sample size to adopt a finer covariate set as in
Manski (2004). We provide these applications in the following two subsections.
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3.3.1 Application 1: Quasi-optimal Experiment Design

We study the optimal experiment design problem under interference using the upper bound of the
maximum regret. Specifically, we focus on the randomized saturation design which is composed of
two-stage randomized experiments (for example, see Baird et al. (2018)). Suppose that we are given
many clusters. In the first stage, we assign different treatment ratios in Π to each cluster randomly

according to a probability distribution f . In the second stage, a binary treatment is assigned to each
member of a cluster according to a treatment ratio assigned in the previous stage. Therefore, the
randomized saturation design is fully characterized by a pair (Π, f ) and it encompasses other designs
like clustered, block, and partial population designs commonly employed under interference.

We now consider an experiment design problem that minimizes the maximum regret. We cannot
compute the exact regret function because of the ambiguity in θ. Instead, we reformulate the problem
as minimizing the feasible upper bound of the regret in (3.9).

Recall that N denotes the total sample size over all clusters and Π = {π1, π2, · · · , πK} be a finite
set of treatment ratios. Since Π is a finite set, we can write f = {(α1, α2, · · ·αK) :

∑K
k=1 αk = 1},

where αk is a probability mass of assigning πk. The subsample sizes can be written in terms of the
treatment ratios and their corresponding probabilities: Nk0 = (1 − πk)αkN and Nk1 = πkαkN for all
k = 1, 2, . . . ,K. Then, for each Ak, we have

Ak =
(1 − πk)2

Nk0
+
π2

k

Nk1

=
(1 − πk)
αkN

+
πk

αkN

=
1
αkN

,

which makes the optimization problem simple. Without loss of generality, let A = A1. We substitute
Ak in (3.9) and drop all irrelevant variables to get

min
{αk}

K
k=1

K∑
k=2

(
1
α1N

+
1
αkN

)1/2

subject to
K∑

k=1

αk = 1

α1 ≤ αk for k = 2, . . . ,K.

Solving this optimization problem, we derive the quasi-optimal design of equal α∗k (α∗k = 1/K)
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only when K = 2. It is worthwhile to note that Baird et al. (2018) derive the optimal randomized
saturation design based on the statistical power but we focus on the maximum regret directly (see
Manski and Tetenov (2016) for further discussion).

3.3.2 Application 2: Covariate-dependent Treatment Rules

In this section, we extend the model and consider covariate-dependent treatment rules. We first
introduce new notation. Let X be a vector of covariates. In the similar spirit of Assumption 3.2.2, we
restrict our attention to discrete and finite covariates. Then, we can vectorize the possible outcomes
of X and partition the population into L different subsets denoted by X := {x1, . . . , xL}. To make
notation simple, we assume a common domain of treatment ratios Π for each xl

2. We define a
statistical treatment rule as δ(x, ωn) : X × Ω 7→ Π. Let π := (π1, . . . , πL)′ be a vector of treatment
assignment ratios, where πl is applied to subgroup xl ∈ X. Let p be a vector of population subgroup
proportions. Then, π̄ := p′π becomes the unconditional treatment ratio. Under Assumption 3.2.1,
the response function can be rewritten as y j(t j, π̄).

Given π and θ, the outcome of the subgroup with covariate xl is

Ul(π, θ) := (1 − πl) · Eθ [Y0(π̄)|X = xl] + πl · Eθ [Y1(π̄)|X = xl] . (3.10)

Note that Ul is affected by the treatment ratios of other covariate types through π̄ as well as its
own ratio πl. Let δ(ωn) := (δ(x1, ω

n), . . . , δ(xL, ω
n)) be a vector of statistical treatment rules over X

when sample ωn is realized, i.e. δ(ωn) : Ω 7→ ΠL. The expected outcome of the whole population is
defined by the weighted sum of Ul:

u(δ, θ) :=
L∑

l=1

[∫
Ul(δ(ωn), θ)dQn

θ

]
Pr(X = xl). (3.11)

If Pr(X = xl; θ) = 1 for some l, then πl = π̄ ≡ π, L = 1 and u(δ, θ) =
∫

U(δ(ωn), θ)dQn
θ . Therefore,

the expected outcome becomes equation (3.1), where there exists a single type of population.
Similar to (3.4), we can define the minimax regret solution of the decision problem as

δ∗ := arg min
δ∈D

sup
θ∈Θ

R(δ, θ),

where R(δ, θ) := maxd∈D u(d, θ) − u(δ, θ) is a regret function. Since the expected welfare with

2We can allow different assignment ratio sets at the cost of extra notation, e.g. Π := ∪L
l=1Πl, whereΠl := {π1, . . . , πKl }

is the set of assignment ratios for xl.
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covariate xl is affected by the treatment assignment ratios of other covariates xm , xl, we need
to find the decision rule simultaneously over all elements in X, i.e. the decision rule vector δ. It
is worth noting that, when we consider xl as a single group, this extension can be interpreted as
multiple groups with interaction between groups via π̄.

We now construct the multinomial empirical success rule conditional on covariate xl. Note that
ΠL contains at most KL elements, |ΠL| = KL < ∞. Let πk be a generic element of ΠL. Then, the
population (unconditional) treatment ratio is π̄k = p′πk. The empirical mean of Yt(π̄k) conditional
on xl is

Êθ[Yt(π̄k)|X = xl] :=

∑Nk
nk=1 Ynk(π̄k) · 1(Tnk(π̄k) = t, X = xl)∑Nk

nk=1 1(Tnk(π̄k) = t, X = xl)
for k = 1, . . . ,KL and t = 0, 1.

Finally, the conditional multinomial empirical success rule (CMES) is defined as follows:

δCMES (ωn) :=
KL∑
k=1

πk · 1[Û(πk) > max
π∈ΠL

−k

Û(π)] (3.12)

where ΠL
−k := ΠL \ {πk} and

Û(πk) :=
L∑

l=1

Pr(X = xl) · Ûl(πk)

=

L∑
l=1

Pr(X = xl)
[
(1 − πkl) · Êθ[Y0(π̄k)|X = xl] + πkl · Êθ[Y1(π̄k)|X = xl]

]
,

where πkl is the l-th element of the L-dimensional vector πk. The CMES rule δCMES (ω) in (3.12)
looks similar to the (unconditional) MES rule in Section 3.3. However, πk is now an L-dimensional
vector and the rule itself is an L-dimensional vector-valued function. Let U(πk, θ) be the population
counterpart of Û(π) by replacing Êθ with Eθ. Then, we can define the expected outcome given the
CMES rule δCMES as follows:

u(δCMES , θ) =
KL∑
k=1

Pr(δCMES (ωn) = πk; θ) · U(πk, θ)

=

KL∑
k=1

Pr

 KL⋂
j=1, j,k

{Û(πk) > Û(π j)}; θ

 · U(πk, θ).

We are now ready to extend the bounds of the expected outcome in (3.7) to the CMES rule.
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Theorem 3.3.2 Fix θ ∈ Θ. Let ΠL = {π1, . . . ,πKL}, ∆k j := |U(πk, θ) − U(π j, θ)| for k, j = 1 . . . ,KL,

and πM∗ := arg maxπ∈ΠL U(π, θ). Then, the following inequality holds:

U(πM∗ , θ) −
KL∑
k=1

exp

−2∆2
M∗k ·

 L∑
l=1

Pr(X = xl)2(Akl + AM∗l)


−1 · ∆M∗k

≤ u(δCMES , θ) ≤ U(πM∗ , θ),

where Akl := (1 − πkl)2N−1
k0l + π

2
klN
−1
k1l and AM∗l := (1 − πM∗l)2N−1

M∗0l + π
2
l1N−1

M∗1l, with Nktl representing

the number of individuals with πk, T = t, and X = xl.

Using the similar arguments in Section 3.3, we define the non-negative finite sample penalty:

D(δCMES , θ) :=
KL∑
k=1

exp

−2∆2
M∗k ·

 L∑
l=1

Pr(X = xl)2(Akl + AM∗l)


−1 · ∆M∗k,

and derive the following inequality:

D(δCMES , θ) ≤
1
2
· e−

1
2

KL∑
k=1,k,M∗

 L∑
l=1

Pr(X = xl)2(Akl + AM∗l)


1
2

. (3.13)

Then, we can derive the uniform bound of the regret function, which can be recovered from the
observable:

0 ≤ sup
θ∈Θ

R(δCMES , θ) ≤
1
2
· e−

1
2

K∑
k=1,Akl,Āl

 L∑
l=1

Pr(X = xl)2(Akl + Āl)


1
2

, (3.14)

where Āl D maxk∈{1,...,KL} Akl ∀l ∈ L.

We next investigate the relationship between the sample size and the proper conditioning level
of covariates. Recall that given a fixed sample size using all available covariates may reduce the
statistical precision in practice. LetZ := {z1, . . . zL′} be a partitioning of the covariate space that is
coarser than X. Thus L′ < L and there exists a mapping z(·) : X 7→ Z. Slightly abusing notation, we
use the same π and p for assignment ratios and proportions whose dimension is L′. Finally, if πk′ is
a generic element of ΠL′ and δCMES

Z is the MES rule conditional on Z, then the population expected
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outcome becomes:

u(δCMES
Z , θ) =

KL′∑
k′=1

Pr

 KL′⋂
j=1, j,k′

{Û(πk′) > Û(π j)}

 · U(πk′ , θ),

where U(πk′ , θ) :=
∑L′

l′=1 Pr(Z = zl′ ) · Ul′(πk′ , θ) ≡
∑L′

l′=1 Pr(Z = zl′ ) · [(1 − πk′l′) · EPθ[Y0(π̄k′)|Z =
zl′ ] + πk′l′ · EPθ[Y1(π̄k′)|Z = zl′ ]] and π̄k′ := p′πk′ , k′ ∈ {1, . . . ,KL′} and l′ ∈ {1, . . . , L′}.

Similar to the results in Theorem 3.3.2, we can bound the expected outcome in the following
corollary.

Corollary 3.3.1 Fix θ ∈ Θ. Let ΠL′ = {π1, . . . ,πKL′ }, ∆k′ j := |U(πk′ , θ) − U(π j, θ)| for k′, j ∈

1, . . . ,KL′ and πM∗∗ := arg maxπ∈ΠL′ U(π, θ). Then, the following inequality holds:

L′∑
l′=1

Pr(Z = zl′ ) · Ul′(πM∗∗ , θ) −
KL′∑
k′=1

exp

−2∆2
M∗∗k′ ·

 L′∑
l′=1

Pr(Z = zl′ )
2(Ak′l′ + AM∗∗l′)


−1 · ∆M∗∗k′

≤ u(δCMES
Z , θ) ≤

L′∑
l′=1

Pr(Z = zl′ ) · Ul′(πM∗∗ , θ) (3.15)

where Ak′l′ := (1 − πk′l′)2N−1
k′0l′ + π

2
k′l′N

−1
k′1l′ and AM∗∗l′ := (1 − πl1)2N−1

M∗∗0l′ + π
2
l1N−1

M∗∗1l′ , with Nk′tl′

representing the number of individuals with πk′ , Z = zl′ , and T = t.

We now suppose that the decision maker need to choose the conditioning level between X and Z.
The idealized bounds for the regret function is as follows.

L∑
l=1

Pr(X = xl) · Ul(πM∗ , θ) −
L′∑

l′=1

Pr(Z = zl′ ) · Ul′(πM∗∗ , θ) ≤ R(δCMES
Z , θ)

≤

L∑
l′=1

Pr(X = xl) · Ul(πM∗ , θ) −
L′∑

l′=1

Pr(Z = zl′ ) · Ul′(πM∗∗ , θ) + D(θ). (3.16)

where

D(θ) :=
K′∑

k′=1

exp

−2∆2
M∗∗k′ ·

 L′∑
l′=1

Pr(Z = zl′ )
2(Ak′l′ + AM∗∗l′)


−1 · ∆M∗∗k′ .

Finally, we achieve a uniform bound on the maximum regret function as follow.

L ≤ sup
θ∈Θ

R(δCMES
Z , θ) ≤ H, (3.17)
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where

L D sup
θ∈Θ

 L∑
l=1

Pr(X = xl) · Ul(πM∗ , θ) −
L′∑

l′=1

Pr(Z = zl′ ) · Ul′(πM∗∗ , θ)

 ,
and

H D sup
θ∈Θ

 L∑
l=1

Pr(X = xl) · Ul(πM∗ , θ) −
L′∑

l′=1

Pr(Z = zl′ ) · Ul′(πM∗∗ , θ) + D(θ)

 .
Using these bounds, we can compute the minimum sample size to test the proper level of conditioning
variables. Let NKT L := (Nktl : k = 1, . . . ,K, t = 0, 1, and l = 1, . . . , L) be a 3-dimensional array of
stratum sample sizes. Recall that the upper bound of the maximum regret conditional on X decreases
as each Nktl increases. Therefore, we can find a sufficient sample size that justifies conditioning on
X rather than conditioning on Z:

min NKT L

subject to L >
1
2
· e−

1
2

K∑
k=1,Akl,Āl

 L∑
l=1

Pr(X = xl)2(Akl + Āl)


1
2

,

where we minimize each component of vector NKT L. Similar to the results in Manski (2004), it
requires additional bound conditions on Ul(πM∗ , θ) and Ul′(πM∗∗ , θ) to solve for NKT L. Note also that
the solution may not be unique since NKT L is a tensor.

3.3.3 Numerical Experiments

In this subsection, we conduct some numerical experiments, where we determine a sufficient
sample size to use covariate-dependent treatment rules. Suppose that we have a binary covariate
X = {low, high} available in a sample. We now construct a treatment rule with or without the
covariate. The sufficient sample size guarantees that the maximum regret from a covariate-dependent
rule is smaller than that from a rule without considering any covariate. Thus, we can focus on
covariate-dependent rules if the sample size is bigger than the sufficient one.

In this experiment, a sample is partitioned into 2 groups (X = low, X = high), and L = |X| = 2.
Therefore, covariate-dependent rules π also becomes a 2-dimensional vector π = (πlow, πhigh). Sup-
pose that we consider two possible treatment rules, {π1 = (0.5, 0.5),π2 = (0.7, 0.3)}. Unconditional
treatment ratios for them becomes:

π̄1 = Pr(X = low) · 0.50 + Pr(X = high) · 0.50,

π̄2 = Pr(X = low) · 0.70 + Pr(X = high) · 0.30.
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We set that Pr(X = low) varies in {0.1, 0.5, 0.9, 0.99} and that Pr(X = high) := 1 − Pr(X = low)
varies in {0.9, 0.5, 0.1, 0.01}. Recall that (Nktx : k = 1, 2, t = 0, 1, and x = low, high) denotes the
sample size of each partition separated by treatment rule k, treatment status t, and covariate x. In
addition, N denote the total sample size. N1 and N2 denote the sample sizes of each cluster, where
we apply π1 and π2, respectively. Assuming that all states of the nature are feasible, we compute the
lower bound of maximum regret for the MES rule that does not depend on covariate X. We also
compute the upper bounds of maximum regret for the covariate-dependent MES rule as the sample
size increases. We then check when this upper bound with covariates becomes smaller than the
lower bound without covariates.

In Tables 3.1–3.4, we summarize the experiment results. We denote the upper bound with X

in bold when it becomes smaller than the lower bound without X. The sufficient sample size is
as low as N = 21 when Pr(X = low) = 0.1, N = 18 when Pr(X = low) = 0.5, N = 68 when
Pr(X = low) = 0.9, and N = 5875 when Pr(X = low) = 0.99. In each table, We also provide
a breakdown of the sample sizes in each partition. This numerical study shows that covariate-
dependent treatment rules can be justified with relatively small sample sizes unless the sizes of
heterogeneous groups are quite uneven, e.g. Pr(X = low) = 0.99.

Table 3.1: Sufficient Sample Sizes: Pr(X = low) = 0.10

N N1 N2 N10low N11low N20low N21low N10high N11high N20high N21high
Upper bound Lower bound

with X without X
21 10 11 1 1 1 1 4 4 6 3 0.144 0.450
37 18 19 1 1 1 2 8 8 11 5 0.100 0.450
52 26 26 2 2 1 2 11 11 16 7 0.085 0.450
68 34 34 2 2 1 3 15 15 21 9 0.074 0.450
82 40 42 2 2 2 3 18 18 26 11 0.067 0.450

100 50 50 3 3 2 4 22 22 31 13 0.061 0.450
116 58 58 3 3 2 4 26 26 36 16 0.056 0.450
132 66 66 4 4 2 5 29 29 41 18 0.053 0.450
149 74 75 4 4 3 6 33 33 46 20 0.050 0.450
162 80 82 4 4 3 6 36 36 51 22 0.048 0.450
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Table 3.2: Sufficient Sample Sizes: Pr(X = low) = 0.50

N N1 N2 N10low N11low N20low N21low N10high N11high N20high N21high
Upper bound Lower bound

with X without X
18 8 10 2 2 2 3 2 2 3 2 0.145 0.250
34 16 18 4 4 3 6 4 4 6 3 0.104 0.250
50 24 26 6 6 4 9 6 6 9 4 0.086 0.250
66 32 34 8 8 5 12 8 8 12 5 0.075 0.250
81 40 41 10 10 7 14 10 10 14 6 0.067 0.250
98 48 50 12 12 8 17 12 12 17 8 0.061 0.250

114 56 58 14 14 9 20 14 14 20 9 0.057 0.250
130 64 66 16 16 10 23 16 16 23 10 0.053 0.250
146 72 74 18 18 11 26 18 18 26 11 0.050 0.250
161 80 81 20 20 13 28 20 20 28 12 0.048 0.250

Table 3.3: Sufficient Sample Sizes: Pr(X = low) = 0.90

N N1 N2 N10low N11low N20low N21low N10high N11high N20high N21high
Upper bound Lower bound

with X without X
21 10 11 4 4 3 6 1 1 1 1 0.136 0.072
37 18 19 8 8 5 11 1 1 2 1 0.100 0.072
52 26 26 11 11 7 16 2 2 2 1 0.085 0.072
68 34 34 15 15 9 21 2 2 3 1 0.074 0.072
82 40 42 18 18 11 26 2 2 3 2 0.067 0.072

100 50 50 22 22 13 31 3 3 4 2 0.061 0.072
116 58 58 26 26 16 36 3 3 4 2 0.056 0.072
132 66 66 29 29 18 41 4 4 5 2 0.053 0.072
149 74 75 33 33 20 46 4 4 6 3 0.050 0.072
162 80 82 36 36 22 51 4 4 6 3 0.048 0.072
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Table 3.4: Sufficient Sample Sizes: Pr(X = low) = 0.99

N N1 N2 N10low N11low N20low N21low N10high N11high N20high N21high
Upper bound Lower bound

with X without X
21 10 11 4 4 3 6 1 1 1 1 0.14609 0.00792
37 18 19 8 8 5 12 1 1 1 1 0.10463 0.00792
53 26 27 12 12 8 17 1 1 1 1 0.08590 0.00792
69 34 35 16 16 10 23 1 1 1 1 0.07455 0.00792
84 42 42 20 20 12 28 1 1 1 1 0.06721 0.00792

5764 2882 2882 1426 1426 856 1996 15 15 21 9 0.00799 0.00792
5780 2890 2890 1430 1430 858 2002 15 15 21 9 0.00798 0.00792
5796 2898 2898 1434 1434 861 2007 15 15 21 9 0.00797 0.00792
5812 2906 2906 1438 1438 863 2013 15 15 21 9 0.00796 0.00792
5828 2914 2914 1442 1442 865 2019 15 15 21 9 0.00795 0.00792
5844 2922 2922 1446 1446 868 2024 15 15 21 9 0.00793 0.00792
5860 2930 2930 1450 1450 870 2030 15 15 21 9 0.00792 0.00792
5875 2938 2937 1454 1454 872 2035 15 15 21 9 0.00791 0.00792
5892 2946 2946 1458 1458 875 2041 15 15 21 9 0.00790 0.00792
5907 2954 2953 1462 1462 877 2046 15 15 21 9 0.00789 0.00792
5924 2962 2962 1466 1466 880 2052 15 15 21 9 0.00788 0.00792

3.4 Conclusion

In this chapter we study statistical treatment rules under social interaction. We impose the anonymous
interaction assumption, and consider a treatment decision problem, where we choose the treatment
ratio for each cluster. We propose a simple but intuitive rule called the multinomial empirical success
(MES) rule. We construct the finite sample regret bound of the MES rule and show how it can be
applied in the treatment decision problems.

We may consider a few possible extensions. It is interesting to investigate the finite sample
optimality of the MES rule. The solution does not follow immediately if we apply the finite action
problem framework, which we adopt in the asymptotic optimality analysis, and the game theoretic
approach in Stoye (2009) in the finite sample case. It is also interesting to relax the anonymous
interaction assumption. Then, we have to ask what kind of additional information can help reduce
the dimension of the action space. The network information can be such an example. We leave these
questions for our future research.
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3.5 Appendix

3.5.1 Proof of Theorem 3.3.1

We first show the bounds in the main text. Without loss of generality, suppose maxπ∈ΠU(π, θ) =
U(π1, θ). By definition, the upper bound of u(δMES , θ) is U(π1, θ). We now restate the expected
welfare under the MES rule as

u(δMES , θ) = Pr
(
Û(π1, θ) > max

π∈Π−1
Û(π, θ)

)
· U(π1, θ) +

K∑
k=2

Pr
(
Û(πk, θ) > max

π∈Π−k
Û(π, θ)

)
· U(πk, θ)

=

[
1 −

K∑
k=2

Pr
(
Û(πk, θ) > max

π∈Π−k
Û(π, θ)

) ]
· U(π1, θ)

+

K∑
k=2

Pr
(
Û(πk, θ) > max

π∈Π−k
Û(π, θ)

)
· U(πk, θ) (3.18)

Define

w(δMES , θ) := u(δMES , θ) −
{ 1 − K∑

k=2

Pr(Û(πk, θ) − Û(π1, θ) > 0)

 · U(π1, θ)

+

K∑
k=2

[
Pr(Û(πk, θ) − Û(π1, θ) > 0)

]
· U(πk, θ)

}
.

Plugging in (3.18) into w, we have

w(δMEG, θ) =
{[

1 −
K∑

k=2

Pr
(
Û(πk, θ) > max

π∈Π−k
Û(π, θ)

) ]
−

[
1 −

K∑
k=2

Pr
(
Û(πk, θ) − Û(π1, θ) > 0

) ]}
· U(π1, θ)

+

K∑
k=2

[
Pr

(
Û(πk, θ) > max

π∈Π−k
Û(π, θ)

)
− Pr

(
Û(πk, θ) − Û(π1, θ) > 0

) ]
· U(πk, θ)

=

K∑
k=2

[
Pr

(
Û(πk, θ) − Û(π1, θ) > 0

)
− Pr

(
Û(πk, θ) > max

π∈Π−k
Û(π, θ)

) ]
· U(π1, θ)

+

K∑
k=2

[
Pr

(
Û(πk, θ) > max

π∈Π−k
Û(π, θ)

)
− Pr

(
Û(πk, θ) − Û(π1, θ) > 0

) ]
· U(πk, θ)

=

K∑
k=2

[
Pr

(
Û(πk, θ) − Û(π1, θ) > 0

)
− Pr

(
Û(πk, θ) > max

π∈Π−k
Û(π, θ)

) ]
· U(π1, θ)

127



PhD Dissertation — Julius Owusu McMaster University — Economics

−

K∑
k=2

[
Pr

(
Û(πk, θ) − Û(π1, θ) > 0

)
− Pr

(
Û(πk, θ) > max

π∈Π−k
Û(π, θ)

) ]
· U(πk, θ)

=

K∑
k=2

[
Pr

(
Û(πk, θ) − Û(π1, θ) > 0

)
− Pr

(
Û(πk, θ) > max

π∈Π−k
Û(π, θ)

) ]
· (U(π1, θ) − U(πk, θ))

≥ 0.

Note that the last inequality holds since

Pr
(
Û(πk, θ) − Û(π1, θ) ≥ 0

)
≥ Pr

(
Û(πk, θ) > max

π∈Π−k
Û(π, θ)

)
, ∀k.

Therefore, we have

u(δMEG, θ) ≥
[
1 −

K∑
k=2

Pr(Û(πk, θ) − Û(π1, θ) ≥ 0)
]
· U(π1, θ)

+

K∑
k=2

[
Pr(Û(πk, θ) − Û(π1, θ) ≥ 0)

]
· U(πk, θ) (3.19)

To proceed, we use the Hoeffding inequality to derive bounds for the probabilities in (3.19). For
k = 2, . . . ,K,

Û(πk, θ) − Û(π1, θ) =
1

Nk + N1

{ ∑
n∈N(0,πk)

(1 − πk)yn
Nk + N1

Nk0
+

∑
n∈N(1,πk)

πkyn
Nk + N1

Nk1
+

∑
n∈N(0,π1)

−(1 − π1)yn
Nk + N1

N10
+

∑
n∈N(1,π1)

−π1yn
Nk + N1

N11

}

Thus, Û(πk, θ)− Û(π1, θ) is the average of (N1 +Nk) independent random variables whose ranges are
[0, (1−πk)(N1+Nk)/Nk0] , [0, πk(N1+Nk)/Nk1], [−(1−π1)(N1+Nk)/N10, 0], and [−π1(N1+Nk)/N11, 0].
Since maxπ∈ΠU(π, θ) = U(π1, θ), E[Û(πk, θ) − Û(π1, θ)] = −|U(πk, θ) −U(π1, θ)| = −∆1k. Applying
the Hoeffding inequality for all k , 1, we have

Pr(Û(πk, θ) − Û(π1, θ) ≥ 0)

= Pr(Û(πk, θ) − Û(π1, θ) + ∆k1 ≥ ∆k1)

≤ exp

−2∆2
k1 ·

{
(1 − πk)2N−1

k0 + π
2
kN−1

k1 + (1 − π1)2N−1
10 + π

2
1N−1

11

}−1
≡ exp

(
−2∆2

k1 · (Ak + A1)−1
)

(3.20)
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Substituting (3.20) into the last inequality of (3.19), we obtain;

u(δMEG, θ) ≥
(
1 −

K∑
k=2

exp
(
−2∆2

k1 · (Ak + A1)−1
) )
· U(π1, θ)

+

K∑
k=2

exp
(
−2∆2

k1 · (Ak + A1)−1
)
· U(πk, θ)

= U(π1, θ) −
K∑

k=1

exp
(
−2∆2

k1 · (Ak + A1)−1
)
· ∆1k (3.21)

as required when M∗ = 1.
□

3.5.2 Proof of Theorem 3.3.2

Without loss of generality, let maxπ∈ΠL
∑L

l=1 P(X = xl)Ul(π, θ) = U(π1, θ). The upper bound is
straightforward; the highest attainable outcome for the CMES rule which conditions on all covariates
is

max
π∈ΠL

L∑
l=1

P(X = xl)Ul(π, θ) = U(π1, θ)

Now, restate the expected outcome under the CMES rule as;

u(δCMES , θ) = Pr

Û(π1, θ) > max
π∈ΠL

−1

Û(π, θ)

 · U(π1, θ) +
K∑

k=2

Pr

Û(πk, θ) > max
π∈ΠL

−k

Û(π, θ)

 · U(πk, θ)

=

[
1 −

K∑
k=2

Pr

Û(πk, θ) > max
π∈ΠL

−k

Û(π, θ)

 ] · U(π1, θ)

+

K∑
k=2

Pr

Û(πk, θ) > max
π∈ΠL

−k

Û(π, θ)

 · U(πk, θ) (3.22)

Using the same arguments as in the proof of theorem 3.3.1, we can show that

u(δCMES , θ) ≥
[
1 −

K∑
k=2

Pr(Û(πk, θ) − Û(π1, θ) > 0)
]
· U(π1, θ)

+

K∑
k=2

[
Pr(Û(πk, θ) − Û(π1, θ) > 0)

]
· U(πk, θ) (3.23)
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Now, for k = 2, . . . ,K,

Û(πk, θ) − Û(π1, θ) =
L∑

l=1

P(X = xl)
Nk + N1

{ ∑
n∈N(0,πk ,xl)

(1 − πlk)yn
Nk + N1

Nk0l
+

∑
n∈N(1,πk ,xl)

πlkyn
Nk + N1

Nk1l
+

∑
n∈N(0,π1,xl)

(−(1 − πl1))yn
Nk + N1

N10l
+

∑
n∈N(1,π1,xl)

(−π1)yn
Nk + N1

N11l

}
.

Thus, Û(πk, θ) − Û(π1, θ) is the average of Nk + N1 independent random variables whose ranges are
[0, P(X = xl)(1 − πlk)(Nk + N1)/Nk0l] , [0, P(X = xl)πlk(Nk + N1)/Nk1l], [−P(X = xl)(1 − πl1)(Nk +

N1)/N10l, 0], and [−P(X = xl)πl1(Nk + N1)/N11l, 0].
For all k , 1, the Hoeffding inequality yields

Pr(Û(πk, θ) − Û(π1, s) ≥ 0) = Pr(Û(πk, θ) − Û(π1, θ) + ∆k1 ≥ ∆k1)

≤ exp

−2∆2
k1 ·

{ L∑
l=1

P(X = xl)2[(1 − πlk)2N−1
k0l + π

2
lkN−1

k1l + (1 − πl1)2N−1
10l + π

2
l1N−1

11l]
}−1

≡ exp

−2∆2
k1 ·

 L∑
l=1

P(X = xl)2(Akl + A1l)


−1 (3.24)

Plugging in (3.24) into (3.23), we obtain

u(δCMES , θ) ≥
[
1 −

K∑
k=2

exp

−2∆2
k1 ·

 L∑
l=1

P(X = xl)2(Akl + A1l)


−1

]
· U(π1, θ)

+

K∑
k=2

[
exp

−2∆2
k1 ·

 L∑
l=1

P(X = xl)2(Akl + A1l)


−1

]
· U(πk, θ)

= U(π1, θ) −
K∑

k=1

exp

−2∆2
k1 ·

 L∑
l=1

P(X = xl)2(Akl + A1l)


−1 · ∆1k

(3.25)

as required when M∗ = 1. □
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