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SECTION ONE

INTRODUCTION TO SIMULATION AND OPTIMIZATION
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INTRODUCTION B

In order to set the stage for concepts and techniques to be considered
later, some typical problems in the optimal computer-aided design-of networks
and systems will be discussed brigfly. Only the essence of the problems is
emphasized. As a first step in solving them, appropriate objective functions
to be optimized are suggested and the variable parameters are identified.
Some of the implications of the objective function formulations are also
discussed. It is hoped that the electrical engineering student will be
sufficiently motivated by this introduction to pursue the somewhat more mathe-

matical material which will follow.

The Optimization Problem

Minimize U where

U 2 uce)
4"
and where .
%
7]
¢ é . ]
- :
o

U is a scalar objective function of k independent variables or parameters

¢1, ¢2, e e ey ¢k. Put another way, the objective is to adjust the variables

to obtain an optimal set é such that
U(e) < U(9)
4" N

for all pemmissible sets of £ in the neighbourhood of $. The point é defines
N

a local minimum of U in the k-dimensional parameter space.




Approximation of a time response

A frequently occuring problem in system design is the approximation

of a desired response in the time domain.

O system — O,
with
vl(t) parameters vz(t)
o $ —0

Let f(t) = v2(t) be the response to the input vl(t). It is desired to approxi-

mate S(t) in a least squares sense.

S(t)

We can set up the objective function

t
£ 2
U= I {f(g,t) - S(t)}° dt
0

to be minimized.



Active filter design

Consider the design of an active (inductorless) filter.

Vg T

- R, C O+
b
Vl(jm) controlled Vz(jw)
o sources
O *—O-

Suppose the problem is to obtain values for the R and C components which result

in a gain G(w), where
v, (jw)

Vl(jmi

G(w) 4 20 log,,

as close, in some sense, as possible to the desired low pass gain characteristic

S(w) shown.

S (w)

gain

0 w
Let us form the objective function

U= [G(¢,w,) - S|P
wd g Qd n’d d

where Qd is a discrete set of frequencies selected from the interval [O,ws],

and p > 1. Here

0731
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e
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Since G is usually a nonlinear function cof ¢ we can expect, for
N
particular fixed values of p, several minima of U and hence several candidates

for a "best'" response. The question of which value of p to choose must also

be settled.
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Nonlinear network d.c. analysis

Consider the nonlinear resistive two-port shown connected to linear

resistors and batteries.

i i R
BQ/\, o—3t _34;——c»—4€/\,——-
+ nonlinear +
E1 e "1 two-port V2 '::'Ez
1— -0 P
N/ \J

The problem is to determine the values of il, vy, iz and vy which define the -
operating or equilibrium point.
Two mesh equations give
vy = El - 11R1

2 = By - 1R,

V.

where El, Ez, R1 and R2 are constants. Let the network be current controlled.

Then

vy rl(il,iz)

vz = T(i5,15)
where L and r, are specified functions. We have four equations, two of them

nonlinear, to solve in four unknowns.

Our first thought might be to let

W —

But vy and v, are dependent variables. So let
—

and solve

~b-



fé(z) = E2 - iZRZ - rz(il,lz) =0
Consider

U= f2 + fz .

1 2

Obviously, if U= 0 then £ = 0 and £2 = 0 so that £1(8) = £,() = 0.

The solution of equations problem has been reformulated as an
optimization problem. In general, there may be many local minima. If
min U = 0 we have a solution to the equations; if min U # 0 we have no
solution. Conditions for the existence and uniqueness of the solution
depend on the properties of the nonlinear functions, which in turn affect

the form of the objective function U.

-5-



Minimization of overshoot

Suppose it is desired to minimize the overshoot in the step response

of a linear, time-invariant RLC network. Let vl(t) = u(t), the unit step.

0+

v (8) R, L, C V()

—.__O-

The problem is to adjust the values of the R, L and C components, often within

specific upper and lower bounds, so as to minimize

U= max v2(¢,t)
4
te [O,tf]
where tf is some final value of time. In this case
R1
Ly
£ |
1




Approximation by a rational function

Consider the problem of approximating a specified continuous function

S(x) by the rational approximating function

n .
( aix1
_ P(x) _ i=0
F(x) = Q(x) ~ m . '
1+ Z bix1
i=1
|
|
S(x) |
‘ |
| |
| I
; b= X

To obtain an approximation in the Chebyshev or equal-ripple sense one needs to
minimize

max |F(¢,x) - S(x) |
x ¢ [a,b]

where

o6
]
=

This problem falls into a class called minimax approximation, since we attempt

to minimize the maximum deviation between the approximating function and the

desired function.

-7



The transfer function of a linear system

Vv, (s)

v,(s)

T(s) -

\' T(s)

can be optimized by such a formulation.

-8—



Finding Response Maxima

A common problem is the determination of the peak in a response or
the maximum error between a response and a specification. Consider, for example,
the problem of finding the peak gain of an amplifier for a specified set of

parameter values,

amplifier

We require to maximize

U= G(¢)

where

for



Matching Coefficients of Rational Functions

Suppose we have a rational function
T
) a;s
i=0
S(S) = "'!f———-l—
b.s
i=0 1

with known (presumably, optimal) coefficients. Suppose we also have a network
transfer function

n .
'

Y aj(e)st

. 1 Th,
=0
T($,s) = =

- ! bi(e)st
i=0 * "V
describing a network of the proper configuration. The coefficients are of course,
in general, nonlinear functions of the network elements, as indicated. It is
desired to adjust the element values so that, hopefully, T(s) can be made
identical to S(s).

Thus, we have to solve the nonlinear equations

B fl— ra(') ( 3)— rao ]
5 2, ($) 2
. a;(ii ;n
- N TSN B TS U R
by (8) 0y
ey 28] |

where £ is a vector of functions, 0 is a null vector and ¢k+1 is an unknown
n

multiplicative constant.

One possible objective function to be minimized could be
m+§+2
us= (9,90, 1)
je1 LA k+1
where U=0 is the desired solution. Note that, in general,
m+n+2 # k+1
-10-



Sensitivity Analysis

A most important practical problem is the investigation of the effect
on a.nominally optimal response of the circuit or system parameters. A complete
study of the subject would be rather involved. Let us illustrate the idea by

means of the following example.

Oo—

p(zxjm) ->
o———

v
We have an optimal set of parameters, say 2 for the solution

v
U=min max |o(¢,jw)]
ek weR v

that is to say, we have found the value of 2 within a feasible region R which
minimizes the maximum magnitude of the input reflection coefficient over a
region of frequencies Q.

One problem might be to find

max Ip(g,jw)l
¢eT, wef
N

v
where T defines a region of tolerances on the components of 2 around 2. In this
case we would be trying to find the worst value of |p| in the frequency band

of interest.

-11-



v
Suppose we can tolerate a deviation € from the optimum U. The

problem of finding a region Ra of acceptable parameters, i.e., where
A v
R, 2 {3 fp(i,)m)l-u < &, weh}

is by no means a trivial one. The region would be described by its boundary,

v
on which [p(g,jw)l-u = €. P2

I{’l \///u+ €/ ///!,P"
N~ N\7Y

0. e () ——i

A > ¢

A reason for wanting the region of acceptability is that one might be
able to immediately predict the acceptability of any given design. Another
that the nominal design may be more suitably located inside the region. Worst
case tolerances can be evaluated.

The above considerations hold equally for large change sensitivities
as for first-order sensitivities.

For first-order sensitivities, one could simplify the problem.
Suppose we are considering a function f(g). We wish to obtain

max f(¢)
¢eT 7V
4"

using a linear approximation to f(g). The problem becomes that of finding
max {f(¢ ) + v {¢) ) Aqs}
¢eT

where

-12-



Note that f(go) and Zf(so) are constant. Suppose, as is usually the case,

A _ 49 i o=
TA s |65 -0l <5, i=1,2,...,k

where e; is a (positive) prescribed tolerance limit on the parameter ¢, -
v

Obviously the solution is given by
Teg2y
i=1 i
A region of acceptability with respect to f(g)'is given by
T.. 0 o] o]
(817 £(7)(9-9") < %} .
If, as in the problem stated at the beginning of this séction, we are dealing

with lp(_%,jm)l then

R. A (o] |o(s,5w)| + 9 [0(,ju)|(6-8) - U <e, weal
a = ‘2 p N’J n P N’J =9 <eg, .

Thus, any set of parameters g which satisfies the above linear
inequality at all values of w in the band of interest lies in a region of

acceptability defined by first-order sensitivities.

-13-
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SECTION TWO

COLLECTED PROBLEMS IN
COMPUTATIONAL METHODS, DESIGN
AND OPTIMIZATION
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Collected Problems in Computational Methods J.W. Bandler

Question 1 Develop an algorithm to efficiently calculate the value of

a 8523
ot %5 * 3

3 m
b1s + b3s + a0 + bms

4 n
S + ... + as
n

given m, n, the coefficients and s. Test m and n. State the number of
multiplications and divisions and the number of additions and

subtractions,

Question 2 Develop an algorithm to efficiently calculate the value of
ZL + JZO tané

YA :
? Z0 + JZL tané

given real ZO y 0<6 <7 and complex ZL' Avoid 6 = % . State the
of multiplications and divisions, the number of additions and
subtractions and the number of calls to a trigonometric function

evaluation routine.

Question 3 Develop an algorithm to efficiently calculate the value of
a sinh x + b tanh x

given a, b and ex. State the number of multiplications and divisions,

the number of additions and subtractions and the number of calls to

function subprograms.

Question 4 State Horner's rule for polynomial evaluation. Explain its

advantages compared with the direct method of evaluating a polynomial.
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Question 5 Develop an algorithm to calculate as efficiently as possible
the value of
a, sin 6 + a3 sin 36 + a5 sin 56

1

given a1, a3, a5 and 6. State the number of multiplications and
divisions, the number of additions and subtractions and the number of

calls to a trigonometric function evaluation routine.

Question 6 Write an efficient algorithm for converting binary numbers

to decimal numbers. Test it on the numbers 1101, 10111 and 1010101.

Question 7 Write and test on 44 an efficient algorithm for converting

decimal numbers to binary numbers.

Question 8 Write an algorithm to efficiently evaluate VF and 3F/3s

where
n i
F(g,s) = I a.s
i=0 !
and
r = r h
aO aF/aaO
a 9F/3a,
¢ = . Py VF = . .
a dF/3a
L " L nJ
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Question 9 Write an algorithm to efficiently calculate the value of the

objective function

a 2
U@ = I (F(g,t) - S(t))

i=1

and the gradient vector ZU(Q) m times for different 9, where

. 3=t 1 -5t _1 -2t .
S(t) = 0 e  + 5> e s e. (3sin 2t + 11cos 2t)

is the specified function of time t (system response)

t
F(¢,t) = § e " sin gt

is the approximating function of time (model response),

~
3 h

e

- -
Question 10 Write an algorithm to efficiently calculate the fréquency
response V2(jm)/V1(jw) for the circuit of Fig. 1. Use the algorithm to
calculate the response when L1 = L. = 2 C, = C2 = 0.5F, and w = 2

2 1
rad/s.

Question 11 Write an algorithm to efficiently evaluate EF where

2 i
z a;s
i=0
F(¢ ,S) =

~ m i
I b.s
iz0 *

and ¢ = [a. a, ... a@a b_b, ... Db ]T.
0 1 n 0 1 m
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Question 12 Write an algorithm to efficiently evaluate VT where

1

T(¢,s) =

2
R1R2C1C25 + (R1C1 + R1C2 + R2C2)s + 1
and
~ -
R1
C
_ 1
2 R
2
o C2J

T(s) = V2(s)/V1(s) for the circuit of Fig. 2.

Question 13 Show how the errors propagate in the calculation of

a
‘2 b o’
a
(®) e - @
(e) 2y,
u - v

What is the relative error? Assuming all results are subject to the
same roundoff errors, develop an expression yielding the maximum

possible error.

Question 14 Derive an expression for the relative error in the

computation of x/y. Neglect terms involving products of errors.

Question 15 Calculate and state the maximum number of multiplications

and divisions in the efficient solution for x of the linear system
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-
[ X X X x ) x17 r-x h
X X X X X X
2
= ’
b4 X X X X X
3
X b4 X X X X
- _JbuJL- J
A T
where x = [x, X x_ X .
~ [ 1 23 4]

Question 16. Write an efficient Fortran program to calculate all the

branch voltages and currents in the resistive ladder network of Fig. 3,

allowing up to 100 resistors. Essential data: V , R1, R2, csey Rn.
g
t = R. = R = R = R_ = R. =R = R = R_ = 1Q.
et n = 8 Ry =Ry =R =R =3 R, =R =R =R
Calculate the voltages and currents for V8 = 1V using the program
written.

Question 17 Write a program to calculate the input resistance of the
circuit of Question 16. Use the program written to calculate the input

resistance for the numerical example in Question 16.

Question 18 Write an efficient Fortran program using LU factorization
to calculate and print out all the branch voltages and currents of the
resistive ladder network of Fig. 4, allowing up to 99 resistors. Take
account of symmetry and the tridiagonal nature of the admittance matrix.
Essential data: Vg, R., R, «ooy R .

1 2 n

Let = = = = = = = = .
et n T, R2 Ru R6 1/3%, R1 R3 R5 R7 10 Calculate

the voltages and currents for Vg = 1V using the program.
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Question 19 Write a program to calculate the input conductance of the
circuit of Question 18. Use the program written to calculate the input

conductance for the numerical example in Question 18.

Question 20 Consider the ladder network of Fig. 5.
(a) Showing clearly all major steps, calculate the node voltages by
(i) matrix inversion,
(ii) LU factorization. )
(b) What is the computationalvef‘fort involved in (a)?
(¢) Set the right-hand source to zero and recalculate the node

voltages. In general, what would the computational effort be for

different excitations?

Question 21 1Is the inverse of a tridiagonal matrix (in general) sparse,
dense or tridiagonal? Justify your answer by a physically meaningful

example.

Question 22 Define the term "relaxation method".

Question 23 State the Gauss-Seidel iterative formula for the solution
of the 1linear system A x = b, defining precisely any new symbcls

introduced.

Question 24 Factorize the following matrix into LU form utilizing

available storage locations as much as possible:
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r 7
5 -1 0 0
-1 6 -1 0
0 -1 6 -1
0 0 -1 5

§ J

Question 25 Consider the resistive network in Fig. 6. Take G1 = 2 and
G3 = 1 mho. Showing clearly all major steps, calculate the node

voltages by LU factorization.

Question 26 Apply the Gauss-Seidel (relaxation) method to the circuit
of Question 25. Take the initial node voltages as zero and use two

iterations. Repeat with an overrelaxation factor of 1.5.

Question 27 Consider the resistive network shown in Fig. 7. Take G1 =
G3 = G5 = 1 mho and R2 = R)4 = 0.5 ohm. Apply the Gauss-Seidel
(relaxation) method to this network. Take the initial node voltages as

zero and use two iterations. Repeat with an overrelaxation factor of

1.5.

Question 28 Consider the resistive network shown in Fig. 8. Let G1 =1
and G2 = 2. Showing clearly all major steps, apply two iterations of

the Gauss-Seidel relaxation method starting with v1 = 1, v2 = 0.5, v3 =
0. Continue the solution process with two iterations using an over-
relaxation factor of 1.75. Expressing the nodal equations as error

functions, calculate the Euclidean norm of the errors for each

iteration.
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Question 29 Consider the circuit shown in Fig. 9, which is operating in

the sinusoidal steady state. Find V3/V1 for this circuit at w = 2 rad/s
in the following ways, comparing the effort required. Take R1 = R2 = R3
= X, C = C = C_. = 1F, Show clearly all the steps in your

1 2 3
calculations,

(a) From an analytical expression of V3(s)/V1(s) derived by the Gauss
elimination method.

(b) By actual numerical inversion of the nodal admittance matrix.

(e) By LU factorization of the nodal admittance matrix.

(d) By assuming V_ and working backwards.

3
(e) By ABCD or chain matrix analysis.

Question 30 Consider the circuit shown in Fig. 10, which is operating

in the sinusoidal steady state. Find V3/V1 for this network at w = 1

rad/s in the following ways. Take R1 = R2 = R3 = 18, C1 = C2 = C3 = 2F.

Show clearly all the steps in your calculations.

(a) From an analytical expression of V3(s)/V1(s). Use the Gauss
elimination method.

(b) By actual numerical inversion of the nodal admittance matrix.

(e) By LU factorization of the nodal admittance matrix.

(d) By network reduction.

(e) By assuming a value for V3 and working back through the ladder.

Question 31 Apply the Gauss-Seidel (relaxation) method to the circuit
of Question 30, Take the initial node voltages to be zero and use two

iterations. Repeat over with an overrelaxation factor of 1.5.
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Question 32 Calculate and plot the reflection coefficient of the
circuit shown in Fig. 11, where C, = 1.0F, C, = 0.125F, L = 2.0H, 0 < w
£ U4 rad/s.

Question 33 Consider the iterative scheme

xl+1 = Aixi, i = 1, 29 XX n

where the y vectors are of dimension 2 and the A matrices are 2 x 2 with
known values. Given the terminating conditions

n+1

1 =

y

1 11
Y1 = CY2)

1. . : . .
where ¢ 1is known, derive an analogous iterative scheme culminating in

the evaluation of 31.

Question 34 Consider the iterative scheme described in Question 33.

Given the terminating condition

1 11
Y1=0y29

where 01 is known, develop a computational scheme to evaluate

n n, n
c = y1/y2.

Question 35 Assume that each matrix él in Question 33 is a function of
a single variable xi. Derive from first principles an approach to
calculating 3y1/35, where x is a column vector containing the Xy i=1,

2, eo ey n.
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Question 36 Consider the system described by the iterative schemes

yi+1

~

i+1

N

the equation

o)

L

=£1y,

vy

j+1

Y

m+ 1
24

the terminating conditions

~

7

J

i

i

= 1, 2, coey n, iijo
=1, 29 eeey My,
ro§ o0

..y2

j+1

2

m+ 1
L—z2 .

1 1
215 %o

11
y1 - YZ ?
yn+1 -1,

where the y and z vectors are of dimension 2 and the 4 and B matrices

are 2 x 2 with known values and C is a given 3 x 3 matrix.

n+1

Carefully describe and explain an algorithm for evaluating y2

efficiently.

Question 37 Use the multi-dimensional Taylor series expansion to show

that a turning point of a convex differentiable function is a global

minimum. Justify all assumptions.

Question 38 Given a differentiable function f of many variables X and a

corresponding direction vector s,

10
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f(x+ A s) - f(x) -
lim X = 4 s s s+ s+ o (please state) ?
A0

Explain in a few words the meaning of the above expression.

Question 39 Use the method of Lagrange multipliers to prove that the
greatest first-order change in a function of many variables occurs, for
a given step size, in the direction of the gradient vector w.r.t. the

variables,

Question 40 Use the method of Lagrange multipliers to minimize w.r.t.

¢, and ¢2 the function

1

subject to

Sketch a diagram to illustrate the problem and its solution w.r.t. ¢1
and ¢2. Verify your answer by substituting the constraint into the

function.

Question 41 If g(¢) is concave, verify that g(¢) > 0 describes a convex

feasible region.

Question 42 Under what conditions could equality constraints be

included in convex programming?

Question 43 Comment on each of the following concepts independently.

(a) The minimum of (¢ - a)2 and the maximum of b - (¢ - a)2, where a

and b are constants.

11
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(b) The minimum of U, where

U = {-2¢ + 2,

¢ <1
¢ -1, ¢ > 1
and the minimum of U subject to 0 £ ¢ < 3.
(¢) The minimum of a¢2 + b contrasted with the minimum of a¢2 + b
subject to ¢ > 0, where a, b are constants.
(d) The number of equality constraints in a nonlinear program will

generally be less than the number of independent variables.

Question 44 Find suitable transformations for the following constraints
so that we can use an unconstrained optimization algorithm.
< LI ) L N .
(@) 09, <9 < e S0 & een S0
(b) 0< &K ¢2/¢1 £ u, ¢1 > 0, ¢2 > Q.

Question 45 Write the following constraints in the form gi(g) >0, 1=
1, 2, LI AN mo
(a) 2 <¢ _SU, i= 1, 2, cc ey ko

-<-b, i: 1, 2, s ey k-10

Question 46 Discuss the scaling effects of the transformation ¢i = exp
]

b

1

Question 47 Use an appropriate transformation to create the

minimization of an unconstrained objective function for the problems

(a) minimize U = b¢ + c subject to ¢ > O with b > 0.
¢

12
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(b) minimize U = a ¢2 + a ¢2 subject to 1 < ¢, < 2, i =1, 2 with a ,
4 11 22 - i~ 1

a_ > 0.
2

Question 48 Derive the gradient vector of U(g) weret. ¢ for the

objective functions

"")u
U=/ 1 e, I”av
Ve
and
n
U= 21 e(p) 1P,
i=1 1t

where the appropriate error functions are complex.

Question 49 For the linear function (a polynomial is a special case)
k
z

i=1
(a) Formulate the discrete minimax approximation of S(y) by F(g,w) as a
linear programming problem, assuming ¢ to be unconstrained.

(b) Assuming an objective function of the form of

[end
u

n
I fe (91

i=1

derive the gradient vector of U and the Hessian matrix w.r.t. 9.

Question 50 Derive and compare the Newton methods for (a) minimization
of a nonlinear differentiable objective function of many variables (as

required in design), and (b) solving systems of nonlinear simultaneous

13
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equations (as required in nonlinear d.c. network analysis). Sketch
carefully each process for a- single nonlinear function of a single
variable indicating the various iterations. Under what conditions would

you expect divergence from the solution?

Question 51 Derive from first principles Newton's method for function
minimization w.r.t. many variables. Define all symbols introduced.
Under what conditions would you expect convergence to a minimum? Prove
that the direction of search is downhill if the Hessian matrix is
positive definite. Sketch diagrams w.r.t. one variable showing

(a) convergence to a minimum,

(b) convergence to a maximum, and

(e¢) oscillatory behaviour.

Describe and explain the "damped" Newton method.

Question 52 Derive carefully from first principles a numerical approach
to finding the gradient vector af/ai subject to the system of equations
h(x,y) = Q given values for x, where f = f(y(x), x) is a scalar function
and where the vector h is nonlinear both in x and in y. Assume that h
and y have the same dimensions and that the Jacobian of h w.r.t. y is
nonsingular. Define all symbols used, and exhibit the structure of all
matrices employed. Summarize the main steps of the computational

procedure you would employ to solve a large problem.

Question 53 Define the term "positive definite" as it relates to a

square symmetric matrix.

14
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Question 54 Provide and discuss a link between the Hessian matrix of a
differentiable function U(g), where ¢ is a k-vector, with the Jacobian

matrix of f(¢), where f is a k-vector of functions of ¢.

Question 55 For the resistor-diode network shown in Fig. 12,
illustrate with the aid of an i-v diagram an iterative method of finding
v at d.c. State Newton's method for solving this problem and derive the
network model corresponding to the situation at the jth iteration. What

is the significance of this model?

Question 56 We wish.to calculate 3f/3x subject to h(x,y) = Q where f =
£f(y(x), X) given values for Xx.

Explain fully the formula

T
af| B s ar
aih:g x ~ l{,'
where y is the solution to
o' .
(_:_ _.__f
ay ' X %%y ¢

Describe the computational and analytical effort required in any given

problem.
Let
2.2
4x1y1 -3 Y, = 2 =0,
XV v 2, V¥, -3 =0,
2 2
f = .
y1+y2+2x2

15
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Set up all the matrices and vectors required both for the solution of

the nonlinear equations and also for the evaluation of 3f/9x s.t. h = 0.

Question 57 Write down and define the first three terms of the
multidimensional Taylor series expansion of a scalar function U of many

variables ¢, defining any expressions used appropriately.

Question 58 Show that a step in the negative gradient direction reduces
the function (neglecting second and higher-order terms) unless the

gradient vector is zero.

Question 59 Derive a formula to approximately calculate all first

partial derivatives of a function of k variables by perturbation, using

2k function evaluations.

Question 60 What are the implication of a positive-semidefinite Hessian

matrix in minimization problems?

Question 61 Derive Newton's method for function minimization. Explain
under what conditions you would expect convergence, Sketch the
algorithm for a function of one variable showing

(i) a convergent process, and

(ii) a divergent process.
Question 62 Write down a quadratic function of many variables and
express its gradient vector and Hessian matrix in terms of constants

involved in the function,.
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Question 63 Write down an objective function which can be minimized in

an effort to solve the system of nonlinear equations f =

0

Differentiate it w.r.t. the variables and express the gradient vector in

compact form.

Question 64 What is the implication of a negative first-order term in
the multidimensional Taylor expansion of a differentiable function of

many variables? Sketch your answer w.r.t. a function of two variables.

Question 65 State the principle behind the steepest descent approach to

minimizing functions and sketch carefully the path taken on a contour

diagram w.r.t. two variables.

Question 66 Write a simple Fortran program to implement steepest
descent in the minimization of a scalar differentiable function of many

variables and test it on suitable examples.

Question 67 Write a simple program to implement the one-at-a-time
method of direct search for the minimization without derivatives of a

function of many variables and test it on suitable examples.

Question 68 Describe the pattern search algorithm. Illustrate it on
two-dimensional sketches of contours of a function to be minimized,

noting exploratory moves, pattern moves and base points. Discuss any

advantages enjoyed by this search method.
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Question 69 Contrast the method of steepest descent with the method of
changing one variable at a time to minimize an unconstrained function.

Provide algorithms for both methods.

Question 70 Describe pitfalls in attempting the solution of constrained

optimization problems using the algoritims of Question 69.

Question 71 Explain the concept norm. Give examples in (a) the
continuous, (b) the discrete, approximation of a specified function of
an indepepdent variable by an appropriate function of many variables on
a given interval of the independent variable. Use diagrams to

illustrate your answer.

Question 72 For an electrical circuit design problem with upper and
lower response specifications, explain the role of relative differences
in the weighting factor(s) in the error functions. Distinguish the

cases of specifications violated and specifications satisfied.

Question 73 Sketch contour and vector diagrams relating to constrained
optimization problems illustrating the application of Kuhn-Tucker (KT)
necessary conditions and showing

(a) Points satisfying the KT conditions for minimization.

(b) Points satisfying the KT conditions for maximization.

(c) Points not satisfying the KT conditions for either maximization or

minimization.
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Question 74
(a) What is a convex function?
(b) What is a convex region?

(¢) How are these concepts related to a nonlinear optimization problem?

Question 75 Discuss the necessary conditions for an unconstrained

optimum of a differentiable function. Derive them from
(a) Conditions for a minimax optimum.

(b) Conditions for a constrained minimum.

Question 76 Sketch contours and vector diagrams to illustrate the
application of the Kuhn-Tucker (KT) conditions for a point satisfying

the KT conditions for maximization of a constrained function.

0
Question 77 Sketch curves of |x - x 'p against x for p = 0.5, 1, 2, 4

and ®, Discuss the differentiability and convexity of these curves.

Question 78 Sketch in two dimensions the unit spheres centered at zo
defined by
g - 2011 <1
p =

for p= 1, 2, 4 and @, Comment on the convexity of these regions and

the corresponding one for p = 0.5.

Question 79 Derive the necessary conditions (NC) for a minimax optimum
for a set of nonlinear differentiable functions from the Kuhn-Tucker
conditions (necessary conditions for a constrained minimum). Illustrate

the results for the special cases of
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(a) a single function satisfying NC,
(b) two active functions satisfying NC,
(e) three active functions satisfying NC,

(d) two active functions not satisfying NC.

Question 80 Draw a diagram for violated specifications that would
illustrate the situation of multiple optimization of the frequency
response and time response of an electrical circuit. Write down error
functions in a form sﬁitable for minimax optimization.

Question 81 Set up as a minimization problem the solution of the
complex nodal equations of a 1linear analog circuit, required
simultaneously for a number of frequencies. Identify clearly and
compactly the objective function, the variables and any necessary

gradient vectors required by the optimization program.

Question 82 Consider the problem of minimizing

U

2
0508, + 9

subject to

2
8, = ¢, - 9,20, 8 ¢22_0'h-(¢1+¢2>¢3-1=0.

2
Is this a convex programming problem? Formulate it for solution by the
sequential unconstrained minimization method. Starting with a feasible
point, show how the constrained minimum is approached as the parameter r

+ 0. Draw a contour sketch to illustrate the process, Are the

conditions for a constrained minimum satisfied?
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Question 83 Apply the Fletcher-Powell-Davidon updating formula to the
minimization of

2 2

¢1 + 2¢2 + ¢1¢2 + 2¢1 + 1
and ¢2 starting at ¢1 = 0, ¢, = 0, showing all steps

1 2
explicitly and commenting on the results obtained.

w.ar.t. ¢

Question 84 Apply the conjugate gradient algorithm for minimizing a
differentiable function of many variables to the minimization of

2 2
w.r.t. ¢1 and ¢2 starting at ¢1 = 0, ¢2 = 0, showing all steps
explicitly and commenting on the results obtained.

Question 85 Apply the conjugate gradient algorithm for minimizing a

differentiable function of many variables to the following data.

1 1 q
o] [4]) (8] [s.n
Point: ’ ’ ’ y oo
0 0 2 2.45
J J J L
b 9 N\ r
Gradient: ’ , ’ 9 eee
o| |-2| |-2 | |-0.5
J J J U

Sketch contours of a reasonable function that might have produced these

numbers and plot the path taken by the algorithm.

Question 86 Consider the linear programming problem

minimize ¢1 + 0.5 ¢2 -1
Ww.r.t. ¢1, ¢2 subject to ¢1 >0, ¢2 >0, ¢1 + ¢2 > 1. Starting at ¢1 =
2, ¢, = 0, solve this analytically by steepest descent. Show how two

2
one-dimensional searches yield the exact solution. Verify that the
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Kuhn-Tucker relations (the necessary conditions for an optimum) are

satisfied only at the solution.

Question 87 Minimize w.r.t. ¢

2 2
U= ¢1 + 4¢2
subject to
¢1+2¢2—1=0
The function has a minimum value of 0.5 at ¢1 = 0.5, ¢2 = 0.25.

Suggested starting point: ¢1 = ¢2 = 1.

[Source: Fletcher (1970). See also Charalambous (1973).]

Question 88 Sketch contours of the function

V = max[U, U + a¢h, U - ah]
w.rit. g for U = 62 + 462 and h = b, + 20, - 1 in the vicinity of the
solution stated in Question 87 for a = 0.1, 1.0 and 100, taking care to

indicate points of discontinuous derivatives.

[Source: Bandler and Charalambous (1974).]

Question 89 Minimize w.r.t. ¢

==ty 65 &
subject to
4’12_091:19 2, 3,
20 - ¢1 >0, 11 - ¢2 > 0, 42 - ¢3 > 0,
2 - -2¢_ - > 0.
7 ¢1 ¢2 2¢3 >0
The function has a minimum of -3300 at ¢1 = 20, ¢2 = 11, ¢3 = 15. This

problem is referred to as the Post Office Parcel problem.

[Source: Rosenbrock (1960). See also Bandler and Charalambous (1974).]
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Question 90 Minimize w.r.t. g
2
3

_ 2 2 2
f'¢1+¢2+2¢+¢u-5¢1-5¢2-21¢3+7¢u
subject to
2 2 2 2
0y = by T b= by = b 0, -G v 0+ 820,
2 2 2 2
- ¢1 - 2¢2 - ¢3 - 2¢4 + ¢1 + ¢4 + 10 > 0,
2 2 2
=247 = ¢, - ¢3 - 2¢1 * 0, % ¢, + 520,
The function has a minimum of =44 at ¢1 = 0, ¢2 = 1, ¢3 = 2, ¢4 = ~1.

Suggested starting point: ¢1 = 0, ¢2 = 0, ¢3 = 0, ¢H = 0. This probiem
is referred to as the Rosen-Suzuki problem.

[Source: Rosen and Suzuki (1965). See also Kowalik and Osborne (1968).]

Question 91 Mihimize w.r.t. 3

£=9 - 80, - 60, - U, + 207 + 205 + 45 + 20,0, + 20,45

subject to
¢i Z.O, i=1, 2 3
- - - > 0.
3 ¢1 ¢2 2¢3 2
The function has a minimum of 1/9 at ¢1 = 4/3, ¢2 = 7/9, ¢3 = 4/9.

Suggested starting points: (a) ¢1 = 1, ¢2 = 2, ¢3 = 13 (b)"¢1 = ¢2 = ¢3

= 1; (e) ¢1 = ¢2 = ¢3 = 0.5; (d) ¢1 = ¢

referred to as the Beale problem.

5 ¢3 = 0.1. This problem is

[Source: Beale (1967). See also Kowalik and Osborne (1968).]

Question 92 Minimize w.r.t. ¢ the maximum of

42
f] = ¢1 + ¢2)

2 2
f2 = (2-¢1) + (2-¢2) ’
f3 = 2exp(-¢1+¢2).
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The minimax solution occurs at ¢1 = ¢2 = 1, where f1 = f = f_ = 2.

Suggested starting point: ¢, = ¢, = 2.

1 2

[Source: Charalambous (1973).]

Quest

The m

where

Sugge

[Sour

ion 93 Minimize w.r.t. ¢ the maximum of
2 4
fp = 0q + &

2 2
f2 = (2-¢1) + (2-¢2) ’
f3 = 2exp(-¢1+¢2).

inimax solution occurs at
¢1 = 1.13904, ¢2 = 0.89956,
f‘1 = f2 = 1.95222,
f = 1.57408.
3
sted starting point: ¢1 = ¢2 = 2.

ce: Charalambous (1973).]

Question 94

(a)

(b)

(e)

Formulate the design of a notch filter in terms of inequality

constraints, given the following requirements. The attentuation
should not exceed A1 dB over the range 0 to w1, and A2 dB over the

range w2 to w3, with 0 < w1 < w2 < w3. At wo, where w1 < wo < w2,
the attenuation must exceed Ao dB.

Describe very briefly and illustrate the Sequential Unconstrained
Minimization Technique (Fiacco-McCormick method) for constrained
optimization.

Set up a suitable objective function for the optimization of the

notch filter of (a).
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Question 95 Write down explicitly the generalized least pth objective
function comprising real functions fi (not necessarily positive) of ¢,
level &, maximum M, multipliers ui and any other necessary symbols;

Ensure that M > 0, M = 0 and M < 0 are included in your description.

Question 96 Derive the gradient vector of the generalized least pth

objective of Question 95 and discuss its features.

Question 97 Derive necessary conditions for a minimax optimum from the
gradient vector of the least pth objective of Question 96, where the fi

are assumed differentiable functions of g.

Question 98 Fit f = ¢ ¢ + ¢ to S(y), where y = 1, y 2, V.= 3, ¥
—_— 1 2 1 y

2 © 3

= 4, S(¢1) = 1, S(wz) =1, S(y,) = 1.5, S(wu) = 1, using a program for

3
least pth approximation. Consider p= 1, 2 and « with uniform weighting

to all errors.

Question 99 Solve analyﬁically the problems described in Question 98

invoking optimality conditions.

Question 100 Consider the functions e1 and e2 of one variable ¢ shown
in Fig. 13. Explain the implications of least pth approximation with p
= 1 and 2, minimax approximation and simultaneous minimization of le1l

and le2| w.r.t. ¢.
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Question 101 Consider the functions f1 and f, of one variable ¢ shown

2
in Fig. 14, Explain the implications of generalized least pth

optimization of f‘1 and f_ w.r.t. ¢ for p > 0.

2

Question 102 Consider the two functions of one variable

e2 = ¢/3
Expose and explain the distinctive features and implications of
(a) the least pth approximation with p = 1 and p = 2 of |e1| and |e2|
w.r.t. ¢,
(b) the minimax optimization of |e1l and lezl w.r.t. ¢,

(e) the simultaneous minimization of |e1l and Ie2| W.arot. 6.

Question 103 Consider a transfer function of a filter as

1

(Jw - a1)(Jw - az)(Jw - a3)

H(jw) =

All ai are real variables which are adjusted to satisfy given
specifications for the filter gain and j = Y=1. Filter gain G(w) is
defined by

G(w)

- 20 loglH(jw) i
and specifications S(w) are
S(w) < 1 dB for 0 < w< 1
S(w) > 40 dB for w > 5
Formulate the optimization problem in a form suitable for programming

with specific relevance to an available package you are familiar with.
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Question 104 Suppose that the following table has been derived from

impedance measurements at four frequencies.

frequency real part imaginary part
(rad/s) () ()
1 1.9 1.6
2 2.1 2.9
3 4.5 2.0
y . 2.0 6.0

Obtain a uniformly weighted least pth approximation based on real
approximating functions for (a) p= 1, (b) p= 2, and (2) p = ®, for a
proposed series RL circuit model with resistance R and inductance L as
independent unknowns. Consider error functions of the form |R - SRI, IL

- SLI. Comment on the data in the table and on your solutions.

Question 105 Set up as a nonlinear program the problem of least pth

optimization with p = 1 given by

n
min I

'e(¢)| ’
g =1 T

1

where the ei are real functions of ¢. State necessary conditions for
optimality of the problem and discuss them. Apply these ideas to
(a) min ¢ - 1] + 1o} ,

¢

(b) min |<1>1 + ¢2 - 1] + M>1I + |4>2I-
¢1’¢2
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Question 106 Optimize the LC lowpass filter shown in Fig. 15. Write
all necessary subprograms to calculate the response and its sensi-

tivities. Verify your results with an available analysis program.

Specifications
Frequency Range Insertion Loss
(rad/s) (dB)
> 2.5 > 25

Question 107 Consider the following specification for a transient

response of a linear system:
5t, 0<t<0.2
3(t) =( =1.25t + 1.25, 0.2< t <1
0, t>1

Optimize the impulse response of the LC circuit of Question 106 to fit

this specification in the least squares sense.

Question 108 Consider the linear circuit shown in Fig. 16, which is

assumed to be in the sinusoidal steady state. Let R= 20, C= 1F, w= 2

rad/s.
3VR BVR
(a) Obtain by direct differentiation simplified formulas for I IR
av
and o *

(b) Obtain the formulas of (a) by the adjoint network method from first

principles.
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Question 109 Consider the linear circuit shown in Fig. 17, which is

assumed to be in the sinusoidal steady state. Let Vg = 1V, Rg = 0.5Q, C
=2F, R=1Q, w = 10 rad/s.
Use the adjoint network approach to evaluate BVR/SC, BVR/BR‘and

BVR/Bm. Estimate the change in V_ when both C and R decrease by 5%

R
using these partial derivatives and compare with the exact change. How

would you conduct a worst-case tolerance analysis, in general?

Question 110 Consider the circuit shown in Fig. 18, which is assumed to

be in the sinusoidal steady state.

Derive .from first principles the adjoint network and sensitivity
expressions for all the elements of the circuit. Derive the adjoint
excitaﬁions appropriate for calculating the first-order sensitivities of
V., w.r.t. all the parameters.

Co

Question 111 Derive the first-order sensitivity expression

-yt y

~

for linear time-invariant networks in the frequency domain, where Y is

the s.c. admittance matrix of an element, V the voltage vector in the

original network and V the corresponding vector in the adjoint network

of the element under consideration.

Question 112 Derive from first principles an approach to finding

3yi/35, where A y = b is a linear system in y, A is a square matrix
whose coefficients are nonlinear functions of x, the term A is the ith
component of the column vector Y and Byi/ag represents a column vector
containing partial derivatives of yi w.r.t. corresponding elements of

the column vector Xx. Discuss the computational effort involved.
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Question 113 Derive from first principles an approach to finding

avi/am, where w is frequency, Vi is an ith nodal voltage in the nodal
equation of a linear, time-invariant circuit in the frequency domain,

namely,

U<
i<
"
W

assuning I is independent of w.

Question 114 Consider the system of complex linear equations

Yy=1,
where Y is a square nodal admittance matrix of constant, complex
coefficients, and I is a specified excitation vector. Set up the

appropriate objective function for the least squares solution of this

system of equations and derive the gradient vector w.r.t. the real and

imaginary parts of the components of V.

Question 115 Derive an approach to calculating ay/axi, where 5 y = E is

a linear system in ¥ 5 is a square matrix whose coefficients are
nonlinear functions of x and xi is the ith component of x. Discuss the

computational effort involved.

Question 116 Derive from first principles an approach to calculating

2
9 yi

ijaxk

for the system described in Question 112, where xj and xk are elements

of the vector X.
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Question 117 Derive from first principles an approach to finding ax/ai,

where A is an eigenvalue of the square matrix A whose coefficients are
(in general) nonlinear functions of X, i.e.,

ﬂl = Ay.
The expression BA/Bi is a colunn vector containing all first partial
derivatives of A w.r.t. corresponding elements of the column vector X.
Discuss the computational effort involved. Give interpretations of any

new symbols introduced. [Hint: A is also an eigenvalue of AT.]

Question 118 Derive an approach to calculating

BZA

ij Bxk

for the system described in Question 117, where x _  and xk are elements
J

of the vector X.

Question 119 Consider the quadratic approximation to a response

A a Q b
AN HSEINEY

where A is a symmetric square matrix of the dimensions of the column

function given by

|-

f(g,\p) =

vector ¢; a and b are column vectors of constants of the same dimension
as g; and a, b and ¢ are constants. Develop a compact expression for

£f(¢,9) subjected to the condition

Question 120 Develop from first principles a computationally attractive

method of obtaining the Thevenin equivalent of an arbitrary 1linear,
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time-invariant circuit in the frequency domain using only one analysis
of a suitable circuit. [Hint: Show that this circuit is the adjoint of
the given circuit and derive the appropriate terminations and all

necessary formulas.]
Question 121 Derive from first principles the sensitivity expression
and adjoint element corresponding to a voltage controlled current

source. Draw circuit diagrams to fully illustrate your results.

Question 122 Derive from first principles the first-order sensitivity

expressions relating to:

(a) a voltage controlled voltage source,

(b) a current controlled voltage source,

(¢) an open-circuited uniformly distributed line,

(d) a uniform RC line.

Question 123 Derive from first principles the adjoint element equation

and sensitivity expression for a two-port characterized by

Apply the result to the element shown in Fig. 19.

Question 124 Verify that the adjoint network may be characterized by

the hybrid matrix description
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-
<
k

<

é_< >
.
W
T

where the corresponding description for the’;riginal network is

I Y A v
~a = ~ ~ ~a .
w2 (&

Question 125 Verify that, for a network excited by a set of independent

voltages Jv and a set of independent currents JI,

G = I V., VI - I I, VW,

where

<
up

‘e -

implies differentiation w.r.t. k parameters 917 ¢2, ooy ¢k and G is a

vector of corresponding sensitivity expressions associated with elements
~

of the network. The remaining variables Vi' Ii’ Vi and Ii are
associated with excitations and responses in the original network and

ad joint network as implied by Fig. 20.
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Question 126 Consider the linear circuit shown in Fig. 21 excited by a

unit step u(t). Obtain 3v/3R and 3v/3C using the adjoint network method

and verify the resulting formulas by directly differentiating v(t).

Question 127 Evaluate at 0.5 rad/s the partial derivatives of the input

impedance (see Fig. 22) w.r.t. the inductors and capacitors of the

filter of Question 32.

Question 128 Consider the circuit of Question 106 at w = 1 rad/s. Let

"

L =L = C
1 2" 2H,

insertion loss in dB of the filter between the terminating resistors

1F. Obtain the partial derivative values of the

with respect to L1, C and L2 using the adjoint network method. If L1
changes by +5%, L2 by -5% and C by +10%, estimate the change in
insertion loss at w = 1 rad/s. Check your results by calculating the

change in loss directly and explain any discrepancies.

Question 129 Derive from first principles an approach to finding the

exact large change Ayi due to the large change Aajj’ where A y = b is a
linear system in y, A is a square matrix, the term yi is the ith
component of the column vector y and ajj represents the jth diagonal

element of A. Discuss the computational effort involved. [Hint: First

find Ay .1
J

Question 130 Consider the resistive network of Fig. 23.

(a) Calculate the node voltages by LU factorization of the nodal

admittance matrix showing all major steps. Verify that
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3 0 0
L= -2 11/3 0 ’
0 -2 21/11
-
~
1 -2/3 0
U= 0 1 -6/11] .
0 0 1
(b) Draw the adjoint circuit appropriately excited with a unit current
for finding the first-order sensitivities of the voltage V across
G.. |
3
(e) Calculate the node voltages of the adjoint circuit using the LU
factors already obtained above.
(d) Calculate VV, where
(373G )
1
3/8R2
V= 9/ 3G
~ 3
a/BRu
3/ 9G
L5
using sensitivity formulas shown in the table.
Element Branch Equation Sensitivity Parameters
Original Ad joint
V = RI V = RI II R
Resistor - ~ -
I =GV I =GV -VV G
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Question 131 Consider the resistive network of Question 27.

(a)
(b)

(e)

(d)

(e)

Calculate the LU factors of the nodal admittance matrix.

Calculate using Tellegen's theorem (unperturbed) the Thevenin
equivalent of the network as seen by the element G3. Proceed as
follows. You need

(1) the open circuit voltage VTH seen by G_,

3

(ii) the impedance Z_  seen by G3 with Ig = 0.

TH
Prove that one adjoint network analysis can be used for both
quantities, draw the appropriate excited adjoint network, and solve
it using the LU factors of (a).

Calculate using your Thevenin equivalent the change in voltage
across G3 when G3 increases from 1 mho to 2 mho. Now represent
this change by an independent current source applied across G3.
Hence, find the voltage across G5 due to the specified change in 63

using the LU factors obtained in (a).

Check by a direct method that your result in (d) is correct.

Question 132 Draw the adjoint network for the active circuit shown in

Fig.

24, which is assumed to be in the sinusoidal steady state. Include

excitations appropriate to calculating the sensitivities of Vz(jm)

w.r.t. all parameters, clearly identifying zero and nonzero excitations.

Develop an expression for the gradient vector of the following objective

function to be minimized:

n
U= £

G(w,) - SN2,
i 1 1

1

where
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Vz(jw)
G = v Gw
0
and S(w) is a given specification.
Equation
Element Sensitivity Parameters
Original Ad joint
Resistor V = RI V = RI 11 R
Capacitor I = jwCV I = jwcv -juwyv c
Voltage I 0 0 V' I 0 -u v1 ~
Controlled ' = LI ~ v.I, "
Voltage V2 u 0 I2 v2 0 0 12
Source

Question 133

Consider the circuit

of Question 29, which is assumed to

be in the sinusoidal steady state.

(a)

(b)

(e)

Let V1 = 1V, w = 2 rad/s, R1 = R2 = R3 = 29, C1 = C2 ='C3 = 1F.
Write down the nodal equations for the circuit, using the component
values and frequency indicated. .

Apply Gauss-Seidel (relaxation) method to find the node voltages,
assuning the initial node voltages to be zero. Use two iterations.
Repeat with an overrelaxation factor of 1.5.
Factorize the nodal admittance matrix into upper and lower

triangular form.

(d) Calculate 8V3/3C2 and 3V3/8R1 by the adjoint network method using
the above LU factorization results in conjunction with the nodal
admittance matrix of the adjoint circuit.

(e)

Estimate AV3 (the total change in V3) when C2 changes by +3% and R1
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v v

by -5%. Use AV, = —3 AC_ + —3 AR.. Check the results by direct
37 3C, T2 TER T

perturbation.
Question 134 Compare the computational effort in the ABCD or chain
matrix analysis of a network and an efficient method based on a

tridiagonal nodal admittance matrix.

Question 135 Discuss carefully the computational effort required in

general for each approach used in Question 133.

Question 136 Write an efficient Fortran program using LU factorization

in conjunction with Newton's method for solving nonlinear equations to

find the node voltages of the resistor-diode network shown in Fig. 25
[Source: Chua and Lin (1975)], where

AV

-12
Ig= 10 mh,

A= 1A = 1/0.026 VO,

Use the results to calculate
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subject to satisfying the nonlinear equations.

By running the program again with small perturbations in R1 and R2,
check these derivatives. Solve the equations for a number of'starting
points and comment on the results. Also use

v, = 5.75 v, = 0.75 v3 = 5.0
as a test starting point.

Question 137 What is the companion network method of solving nonlinear
networks? How does it take advantage of existing linear network

simulation methods? Provide an illustrative example.

Question 138 Consider the resistor-diode network shown in Question 136.

Draw the corresponding companion network at the jth iteration for its

d.c. solution. Write down the nodal equations at this iteration.

Question 139 Consider the resistor-diode network shown in Question 136.
Develop the system of linear equations derived from the nodal equations
at the jth iteration for solution by the Newton method. Write down

explicitly the Jacobian at the jth iteration.

Question 140 Consider the nonlinear circuit shown in Fig. 26, where ia

3 . 3

= 2Va, lb = Vb + 10vbn

(a) Express the nodal equations in the linearized form required at the
jth iteration of the Newton algorithm.

(b) Apply two iterations of the Newton method, starting at v. = 2, v_ =

1.
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(e¢) Draw the companion network at the jth iteration and state the
corresponding nodal equations.
(d) Continue with two iterations of the companion network method.

[Source: Chua and Lin (1975).]

Question 141 Consider least pth optimization with both upper and lower

response specifications, where the specifications might be violated or
satisfied. Discuss in as much detail as possible the role of the value

of p and the effects of different weightings on the solution.

Question 142 Show, using the generalized least pth objective, that if
specifications cannot be satisfied with a given value of p > 1, then

they cannot be satisfied for any other value, e.g., p = =.

Question 143 Set up and discuss a suitable least pth objective funection
for approximate minimization of

max fi(g)
iel

where 9 contains the adjustable parameters and I denotes an index set
relating to the differentiable nonlinear functions fi, which are not

necessarily positive.

Question 144 Relate the problem formulation of Question 143 to filter

design, taking care to discuss upper and lower response specifications,

errors and weighting functions.

Question 145 Derive the Golden Section search method for functions of

one variable from first principles. Explain all the concepts involved.
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Under what conditions would you expect a global solution?

Question 146 Apply 3 iterations of the Golden Section search method to
the function of one variable given shown in Fig. 27. Show clearly all
steps and label the diagrams appropriately. Fit a quadratic function to
3 points corresponding to the lowest function values observed and find

its minimum. Estimate function values and points from the graph.

Question 147 Starting with the interval [0,6], apply 4 iterations of
the Golden Section search method to the minimization w.r.t. ¢ of a
function described by

U==9¢+5 ¢ <1

U o.5(¢-3)2+1 1T<¢ <t

U=3-(-62%3 ¢>u

What 1is the solution obtained? By how much has the interval of

uncertainty been reduced?

Question 148 Devise an algorithm for finding the extrema of a well-

~

behaved multimodal function of one variable.

Question 149 Discuss mathematically and physically the concept of

steepest descent for max f_ (¢), where the fi(g) are n real, nonlinear,
1<in

differentiable functions of ¢.

Question 150 Suppose we have to minimize

_ 1/p
() lL(wi) - S(wi)lp) , p> 1.

wj €y

(a) U
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() U = ) [L(wi) - S(wi)]p , p even > 0.

where the L(wi) is the insertion loss in dB of a filter between Rg and
RL’ S(wi) is the desired insertion loss between Rg and RL and Qd is a
set of discrete frequencies mi. Obtain expressions relating ZU to
g(jwi), where the elements of G are appropriate adjoint sensitivity

expressions. Assume convenient values for the excitations of the

original and adjoint networks.

Question 151 The complex impedance of a body has been measured at a set

of frequencies. A linear circuit model to represent this impedance is
proposed. Explain the steps you would take to optimize the model,
assuming you were to use an available unconstrained optimization program

requiring first derivatives.

Question 152 Describe the aims of the project you are carrying out for

this course. Explain in detail the steps you are taking to meet these
aims. What results have you obtained thus far and are they what you

expected?

Question 153 Consider the circuit shown in Fig. 28, which is a linear

time-invariant network with parameters ¢. It is desired to obtain the
best impedance match between the complex, frequency-dependent load ZL
and the constant source resistance Rg.

Formulate a least squares objective function U of the parameter
vector ¢, the optimum of which represents a good match over a band of

frequencies Q. Explain carefully and in detail how the adjoint network
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method may be used to calculate the gradient vector VU(9).

Question 154 Consider the voltage divider shown in Fig. 29. The

specifications are as follows.

Assuming R1 20, R2 2> 0, derive the worst vertices of a tolerance region
for independent tolerance assigmment on these two components.

[Reference: Karafin, BSTJ, vol. 50, 1971, pp. 1225-1242.]

Question 155 Consider the problem defined in Question 154. Optimize

the tolerances 81 and 82 on R1 and R, given the cost function

2

RO RO
C:-—i+—2-

&1 &2

assuning an envirommental (uncontrollable) parameter T common to both

resistors such that

0 0
R1 (R1 + 11151) (T + utet) ’

=]
1]

0 0
(R2 + u282) (T + utet) ’

where

‘1£ll1r 112: l-lt£1 ’
T =1, et = O.QS .

[The independent designable variables include R?, Rg, 51 and 82.]

43



Collected Problems in Computational Methods J.W. Bandler

Question 156 Consider the problem defined in Question 154. Optimize

the tolerance 81 on R1 given the cost function

Ry
C =—
&
assuming that R2 is tunable by +10% of its nominal value. [The
independent designable variables include Ro € and RO.]

17 71 2

Question 157 Consider the voltage divider shown in Fig. 30 with a

nonideal source and load.

It is desired to maintain

0.47 <V < 0.53,
.85 <R < 2.15 ,
for all possible
Rg < 0.01,
R > 100,
with
R? = Rg ’
€1 % %2
and max imum tolerances. Find the optimal values for R?, Rg, 81 and 32.

Question 158 Consider the voltage divider shown in Question 154.

Formulate as precisely as possible the functions involved (objective and
constraints) and their first partial derivatives required to optimize
the tolerances on R1 and RZ’ allowing the nominal point to move, subject
to lower and upper limits on the transer function and input resistance.

Assume a worst-case solution is desired, and suggest cost functions.
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Question 159 Consider the voltage divider shown in Question 154.

Deriving all formulas from first principles, use the adjoint network

method to calculate 3T/3R1 and BT/'aR2 given:

ne

\F
v—-, R.=1.14Q, R2=0.9Q.

T
1 1

Show both original and adjoint networks appropriately excited and verify

your result by direct differentiation.

Question 160 Consider the voltage divider of Question 154 expressed as

a minimax problem. Determine suitable active functions when

R
1

R_= 1.14
2

and calculate the steepest descent direction from first principles.

1.01

Assume that if |M = fil < 0.01 for any fi, then the corresponding fi is

active, where M 2 max fi. Show all steps in your calculations.
i

Question 161 Consider an acceptable region given by

2 + 2¢1 - 4)2 2_ 09
U3 - 1 -1 >0
- u .
60 + ¢, * 15¢2 >0
Determine optimally centered, optimally toleranced solutions using the

following cost functions:

1 1
(@ T+ o

1 2
0
¢1 ¢2
(b) loge '5'1"* 108e g ’

where 51 and 52 are tolerances and ¢? and ¢g are nominal values,
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Formulate the problem as a nonlinear programming problem and give

expressions for derivatives.

Question 162 Consider the voltage divider shown in Question 154 subject

to the same specifications. Optimize the tolerances 21 and 82 on R1 and

R2, respectively, and find the best corresponding nominal values R? and

Rg, using the following cost functions:

- O

ml:u
+

m| =
N

(a) C1 =

—_
n

1 1
(b) Co=—+— .
2 51 €2

[Source: Karafin, BSTJ, vol. 50, 1971, pp. 1225-1242.]

Question 163 Find the number of state variables and indicate a possible

choice of these states for the circuit shown in Fig. 31.

Question 164 The circuit shown in Fig. 32 has the state eduations

dvD XvD
CD 3% ° -Is(e —1)+(E1-E2—VD)/R1+(VO-E2—VD)/R2
dvo
CO a—t—- = (52+VD—VO)/R2
The parameters are
R, =R_ = kQ
1 2 1
AV
D -1 -10
ID = Is(e -1), A= 40V , IS = 10
C1 = 1 yF, 02 = 10 pF
E5=1V
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Perform two steps of fourth-order Runge-Kutta integration starting at
t=0, vD(O) = vO(O) = 0 and using a time step of 10 ns.

[Source: Chua and Lin (1975).]1

Question 165 Describe briefly the principle behind the Runge-Kutta
algoritims for solving a differential equation with a given initial
value. Consider the following initial value problem

X = (cos x) +# t x0 =1, t ¢ [0, 0.3]
A solution is required for a step-size of 0.1.

(a) Use Heun's algorithm.

(b) Use the fourth-order Runge-Kutta method.

Question 166 Approximate in a uniformly weighted minimax sense
2

f(x) = x
by
F = x + a_ exp(x)
(x) a, X+ a, exp
on the interval [0,2].
[Source: Curtis and Powell (1965). See also Popovic, Bandler and

Charalambous (1974).]

Question 167 Approximate in a uniformly weighted minimax sense

[(8x - 1)2 + 1]0'5 tan’1(8x)

f(x) = 8%
by
a, + a,Xx + a.x
F(x) = 0 1 22
1 + b1x + b2x
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on the interval [-1,1].

[Reference: Popovie, Bandler and Charalambous (1974).]

Question 168 Consider a lumped-element LC transformer (Fig. 33) to

match a 1 ohm load to a 3 ohm generator over the range 0.5 = 1.179
rad/s. A minimax approximation should be carried out on the modulus of
the reflection coefficient using all six reactive components as

variables. The solution is

I..1 = 1.041,
C2 = 0.979,
L3 = 2.341,
Cu = 0.781,
L5 = 2.937,
C6 = 0.347,

at which max [p} = 0.075820. Use 21 uniformly spaced sample points in
the band. Suggested starting point:

= = = =L = = 1.
L1 C2 L3 Cu 5 C6
[Source: Hatley (1967). See also Srinivasan (1973). See Example 4 of

Repcrt S0S-78-14-U for hints in setting up the subprograms.]

Question 169 Consider the RC active equalizer shown in Fig. 34. The

specified linear gain response in dB over the band 1 MHz to 2 MHz is
given by G = 5 + 5f, where f is in MHz. Find optimal solutions using
least pth approximation with p = 2, 4, 8, ..., = taking as variables C1,

C R, and R_. Twenty-one uniformly distributed sample points are

2" 2
suggested with starting values
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and
C,=C_=R_=R_=0.5.
1 2 1 2 >
Comment on the results. 7oke R=/.

Reconsider the problem using only C1 and R1 as variables.

[Source: Temes and Zai (1969).]

Question 170 Consider the problem of finding a second-order model of a
fourth-order system, when the input to the system is an impulse, in the
minimax sense. The transfer function of the system is

(s+4)
(5+1)(s°+45+8)(s+5)

G(s)

and of the model is

b3

H(s) =z —————
( S+¢1 )2+¢§

The problem is, therefore, equivalent to making the function

¢
F(g,t) = $§- exp (-¢1t) sin ¢2t
2

best approximate

S(t) = 3 exp(-t) + L exp(=5t) — exp(-2t)

i t
20 52 65 (3sin2t+11cos2t)

in the minimax sense. The problem may be discretized in the time
interval 0 to 10 seconds and the function to be minimized is

max le ()| , I = {1, 2, ..., 51} ,

. i

iel
where

= - S(t .
e, (9) = F(g,t) = 5(t)

The solution is
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-©
|

= 0.68442,

©
1]

i‘_ 0-95“09’

= 0.12286,

and the maximum error is 7.9471 x 10-3. Suggested starting point: ¢

©-
1

by = 4y = 1.

[See, for example, Bandler (1977).]

Question 171 Develop a program to calculate and plot insertion loss of

the circuit shown in Fig. 35 (elliptic low-pass filter).

Data for the circuit is

C, = 0.89318 F
C,=0.1022 F
C3 = 1.57677 F L2 = 1.26033 H
C, = 0.29139 F
Cg = 0.THITT F L, = 1.03950 H

0 < w < U4 rad/s.
What specifications does the circuit meet? Suggest ways of meeting
these specifications by optimization assuming the solution was not

known .

Question 172 Consider the LC filter of Question 106. The minimax

solution corresponding to the specifications of Question 106, taking the
passband sample points as 0.45, 0.5, 0.55, 1.0 and the stopband as 2.5,
is

L

1 L2 = 1.6280, C = 1.0897.
Using appropriate optimization programs verify the worst-case

tolerance solutions shown in the following table for the objective
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0 0
Ly Ly 0
T te T,
1 2 c
Continuous Solution Discrete Solution

Parameters Fixed Nominal Variable Nominal from [1,2,5,10,15}%

e /LS 3.5% 9.9% 54 10%  10%
e/ 3.2% 7.6% 0% 5%  10%
ey /Ly 3.5% 9.9% 104  10% 5%
L? 1.628 1.999 1.999
¢ 1.000 0.906 0.906
Lg 1.628 1.999 1.999

[Source: Bandler, Liu and Chen (1975).]

Question 173 For the circuit of Question 172 verify numerically that
the active worst-case vertices of the tolerance region are identified as

in the table shown.

Vertex Frequency
6 0.45, 0.50, 0.55
8 1.0
1 2.5

[Source: Bandler, Liu and Tromp (1976).]
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Question 174 Consider the 10:1 impedance ratio, lossless two-section

transmission-line transformer shown in Fig. 36. The lengths of the
sections are 21 and 22. The corresponding characteristic impedances are
Z1 and 22. Minimize the maximum of the modulus of the reflection

coefficient p over 100 percent relative bandwidth w.r.t. lengths and/or

characteristic impedances. The known quarter-wave solution is given by

21 = 12 = Zq (the quarter wavelength at centre frequency),
Z1 = 2.2361,
22 = U4,4721,

where 2q = T7.49481 cm for 1 GHz centre. The corresponding max |p| =
0.42857.

Use 11 uniformly distributed (normalized frequency) sample points,
namely 0.5, 0.6, ..., 1.5. Seven suggested starting points and problems

are tabulated, namely, a, b, ..., g.

Problem starting points

Parameters a b c d e f g

21/£q fixed (optimal) 0.8 1.2 1.2
Z1 1.0 3.5 1.0 3.5 * 3.5 3.5
22/£q fixed (optimal) 1.2 * 0.8
22 3.0 3.0 6.0 6.0 *® * 3.0

¥ Parameter is fixed at optimal value.

A suggested specification, if appropriate to the method, is |p| <

0.5. A variation to the problem is to minimize the maximum of 0.5 IDIZ.

Suggested termination criterion: max |p! within 0.01 percent of the
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optimal value.

[Source: Bandler and Macdonald (1969).]

Question 175 Consider the problem described in Question 174. Using a
computer plotting routine plot the contours

{max i{pi} = {0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80}

for the following situations:

(a) 1¢2 <35 3<2,26,
() 0.8< 8,/8, 2,/8 < 1.2,
(e) 0.8<82 /% < 1.2, 1<2Z < 3.5.

Parameters not specified are held fixed at optimal values.

[Source: Bandler and Macdonald (1969).]

Question 176 Consider the problems described in Questions 174 and 175.
Use a computer plotting routine to plot contours of a generalized least
pth objective funetion for p = 1, 2, 10, =, taking I|p| as the
approximating function and 0.5 as the upper specification.

[Source: Bandler and Charalambous (1972).]

Question 177 Consider the same circuits, terminations and specifica-

tions as in Question 174. Let 81 and €_ be the tolerances on Z1 and 22,

2
respectively. Starting at the known minimax solution with e1 = 0.2 and
R 0 .0
€5 = 0.4 minimize w.r.t. Z1, 22, 81 and 82

1 1
(a) C1=E—+E-,

1 2
2 20

() C, =z—+—,
2 €1 52
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for a worst-case design (yield = 100%).

[Source: Bandler, Liu and Chen (1975). See also Abdel-Malek (1977).1]

Question 178 Consider the same circuit and terminations as in Question
174 but with three sections. The known quarter-wave solution is given

by (see Question 174 for definition and value of 2q)

Z1 = 1.63471,
22 = 3.16228’
Z = 6011 2 .

3 729

The corresponding max |pl = 0.19729.
Use the 11 (normalized frequency) sample points 0.5, 0.6, 0.7,
0.77, 0.9, 1.0, 1.1, 1.23, 1.3, 1.4, 1.5, Three suggested starting

points are tabulated, namely, a, b and c.

Problem starting points

Parameters
a b c
L./% * ** 0.8
1 q
Z1 1.0 1.0 1.5
I * *% .
2/£q 1.2
7z %% *% .0
5 3
L_./% * *x 0.8
3 q
Z3 10.0 10.0 6.0

* Parameter is fixed at optimal value.
#% Parameter varies, starting at optimal value.
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A variation to the problem is to minimize the maximum of 0.5 Ip|2.

Suggested termination criterion: max |p| agrees with the optimal value
to 5 significant figures.

[Source: Bandler and Macdonald (1969).]

Question 179 Design a recursive digital lowpass filter of the cascade
form to best approximate a magnitude response of 1 in the passband,
normalized frequency ¢ of 0-0.09, and 0 in the stopband above ¢ = 0.11.

Take the transfer function as

where K is the number of second-order sections,

z = exp( jymw) ,
2f
¢=}—',
s

f is frequency and fs is the sampling frequency.
Analytical derivatives w.r.t. the coefficients ak, bk, ck and d
are readily derived.
Suggested sample points y are
0.0 to 0.8 1in steps of 0.01,
0.0801 to 0.09 in steps of 0.00045,
0.1 to 0.2 1in steps of 0.01,
0.3 to 1.0 in steps of 0.1.

Use one section and a starting point of
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a1 = 0,

b1 = 0,

c1 = 0,

d1 = -0.25,
A =0.1,

for least pth approximation with p = 2, 10, 100, 1000, 10000 and minimax
approximation, each optimization starting at the solution to the
previous one,

[See Bandler and Bardakjian (1973).]

Question 180 Grow a second section at the solution to Question 179 and

reoptimize appropriately.

[See Bandler and Bardakjian (1973).]

Question 181 Optimize the coefficients of a recursive digital lowpass

filter of the cascade form (see Question 179) to meet the following
specifications:
0.9 < IH}| £ 1.1 in the passband,
[H} < 0.1 in the stopband,
where the passband sample points ¢ are
0.0 to 0.18 in steps of 0.02,
and the stopband sample points vy are
0.24,
0.3 to 1.0 in steps of 0. 1.

Begin optimizing with one section starting at
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a1=0,
b1=1,
c1=-1,
d1 = 0.5,
A =0.1,

for least pth approximation with p = 2, 10, 1000, 10000 and minimax
approximation, each optimization starting at the solution to the
previous one,

[See Bandler and Bardakjian (1973).]

Question 182 Grow a second section at the solution to Question 181 and
reoptimize appropriately.

[See Bandler and Bardakjian (1973).]

Question 183 For the five-section, lossless, transmission-line filter
shown in Fig. 37, the following objectives provide two distinct
problems, each of which is subjected to a passband insertion loss of no
more than 0.01 dB over the band 0 - 1 GHz.

(a) Maximize the stopband loss at 5 GHz.

(b) Maximize the minimum stopband loss over the range 2.5 - 10 GHz.

The characteristic impedances are to be fixed at the values
Z.=2_=121_ = 0,2

1 3 5
Z =7 =
2 4 >
and the section lengths (normalized to £q as the quarter-wavelength at 1
GHz) as variables. Suggested sample points are: 21 uniformly

distributed in the passband, 16 for the stopband in problem (b). A

suggested starting point is
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L./2 = 2_/2 = 0.0
1% 57 % T,
L. /% = 0.15

3 "q ’

22/2q = Zu/f,q = 0.15.

[Source for Problem (a): Brancher, Maffioli and Premoli (1970). See

also Bandler and Charalambous (1972).]

Question 184 Solve Question 183(a) with normalized lengths fixed at 0.2

and impedances variable,

[See Levy (1965).]

Question 185 Consider the circuit of Question 183. Let the passband be

0 - 1 GHz. Consider a single stopband frequency of 3 GHz. The attenua-
tion in the passband should not exceed 0.4 dB, while the attenuation at
3 GHz should be as high as possible, subject to the following
constraints:

£, =2 , 052, 2.0, i=1,2, ¢euey 5,
where

£q = 2.5 cm (quarterwave at 3 GHz).
It is suggested that 21 uniformly spaced frequencies are chosen in the

passband.

[See Srinivasan (1973) and Carlin (1971).]

Question 186 Reoptimize the example of Question 185 subject to the

constraints
02 /2 X2,

1 4q i=1,2, ., 5
0.4416 < Z. < 4419 ,
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where lengths li and impedances Zi are allowed to vary.

[See Srinivasan and Bandler (1975).]

Question 187
filter as shown in Fig. 38.
1.415 - « rad/s.
results.

(a)

Consider a third-order lumped-distributed-active lowpass

The passband is 0 - 0.7 rad/s, the stopband

Three design problems are to be solved for minimax

An attenuation and ripple in the passband of less than 1 dB, with

the attenuation in the stopband at least 30 dB (second amplifier

removed) .
(b)
stopband response.

(e

An attenuation and ripple of 1 dB in the passband with the best

A minimum attenuation and ripple in the passband subject to at

least 30 dB attenuation in the stopband.

The nodal equations for the circuit are

~ : _ Ty 0 o
Yoo+3ue, SPPLPY 0 i Y125
-(y_ . +y +é—) V.. Y __+Y. _+Y o 0 V.| = [(y,. +y. )V
22 "12 RO 11 722 12 " 21 RO 2 11 712°°'S
A 1
- - 0 —+jwC v 0
_ R1 R‘] 2_, - 3_4 - -~
where y11, y12, y21 and y22 are the y parameters of the uniform

distributed RC line given by

-

coth © -csch 6
Y

-csch 6 coth ©
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where Y = -gg and 8 = ¥YsRC .

Suggested passband sample points are
{o, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7} rad/s.
Suggested stopband sample points are
{1.m15, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6,
2.7, 2.8, 2.9, 3.0} rad/s.

Let C2R1 be one variable with C2 fixed at 2.62. Variables to be

used for problem (a) are A, R, C, Ro, R1

(e) the variables are 4, C, R1 and C1 with Ro =1and R = 17.786. It is

suggested that the transformation

and C1. For problems (b) and

1
¢i = exp ¢i

1
is used so that the variables ¢i are unconstrained while the ¢i are

positive,

[Source: Charalambous (1974).]

Question 1838 A sevén-section, cascaded, lossless, transmission-line
filter with frequency-dependent terminations is depicted in Fig. 39.
The frequency dependence of the terminations is given by

R, = R = 377//1-(£ /D%,

g

where

fc = 2.077 GHz.
The section lengths are to be kept fixed at 1.5 em. The problem is to
optimize the 7 characteristic impedances such that a passband

specification of 0.4 dB insertion loss is met in the range 2.16 to 3 GHz

while the loss at 5 GHz is maximized. Suggested passband sample points
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are 22 uniformly spaced frequencies including band edges.

[Reference: Bandler, Srinivasan and Charalambous (1972).]

Question 189 Consider the active filter shown in Fig. 40.
2, R = 75 Q. Take a model of the amplifier as
A w
0 a
A(s) = S+ ’
a

where s is the complex frequency variable, AO

127 rad/s.

of nodal analysis.

Let R
g

is the d.c. gain and wa

J.W. Bandler

50

Use the equivalent circuit shown in Fig. 41 for the purpose

The ideal transfer function, i.e., for AO + ® and R3 +> ® is
\'
2 _ g ¢
Ve T 71520 ¢ 45G.(C+C)+G (G 4G )
S + +
g 17 ¥ SRty eI+t
and the nodal equations for the nonideal filter are
9 ' ~ = r
G1+Gg 0 -G1 0 V1 vag
0 C -
G2+G3+s 2+A2G3 sC2 -G2+A1AZG3 V2 i 0
- - C - 0
G1 SC2 G1+Gu+SC1+S 5 sC1 V3
L 0 -62 -sC1 G2+sC1 -VuJ L 0

Let F

F < 1/72 for f < 90 Hz,

= IV2/VgI. The specifications are w.r.t. frequency f:

F

F

F
F

Find an optimum solution in the minimax sense for components R

and Ru, given

L

v

v

1.1 for 90 < f < 110 Hz,
1//2 for £ > 110 Hz,
1//2 for 92 < f < 108 Hz,

1 for £ = 100 Hz.

17 71 T2
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5

Ao=2x10 ,
i}
R_= 2.65 x 10 & ,
2
Cc = = C.
1 C2

Question 190 Describe in detail and explain all the information to be

supplied by a user to run the optimization package you are currently

using or are familiar with,

Question 191 Describe all necessary steps required to access the

optimization package described in Question 190 to execute an

optimization problem in conjunction with user-supplied programs.

Question 192 What is the effect on the number of function evaluations

or iterations of changing starting points in the minimization problems

you have tested using the package of Question 190.

Question 193 Each student should familiarize himself with the optimiza-

tion package under study by running the examples in the user's manual.
Run each example from starting points different to the ones given and

compare the results with those in the manual.

Question 194 For the resistive network of Question 27, solve the nodal

equations by an unconstrained minimization package. Take G1 = G3 = G5 =

1 mho, R2 = Ru = 0.5 onm. Write all necessary subprograms.

Question 195 For the voltage divider of Question 154, the

specifications
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B

0.4 € —=——
R1 +R2

< 0.53

1
must be met in the minimax sense using an available package. Write all

1.85 < R, + R2 < 2.15

necessary subprograms.



Fig. 1 LC ladder network (Question 10).

R, R,
O—AAA—
R — A\ NN/ o
VQ(S) ::::C1 --CZ. Vé(ﬂ
- o o -

Fig. 2 RC ladder network (Question 12).
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Fig. 3 Resistive ladder network (Question 16).
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Fig. 4 Resistive ladder network (Question 18).
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Fig. 5 Three-node fesiétiﬁé4ladder network (Question 20).

Fig. 6 Three-node resistive ladder network (Question 25).
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Fig. 7 Resistive ladder network (Question 27).
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Fig. 8 Resistive network (Question 28).
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Fig. 9 CR ladder network
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(Question 29).

=C,

=—C,

—N\WW——0

+

V3

-0

Fig. 10 RC ladder network (Question 30).
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Fig. 11 LC filter network (Question 32).
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Fig. 12 Resistor-diode network (Question 55).
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Fig. 13 Error functions (Question 100).

Fig. 14 Two functions of one variable (Question 101).
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'Fig. 15 .LC lowpass filter (Question 106).
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Fig. 16 RC circuit (Question 108).
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Fig. 17 RC circuit (Question 109).

Fig. 18 Active circuit (Question 110).
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Fig. 19 Example of two-port (Question 123).
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Fig. 20 Excitations and responses in the original and adjoint networks
(Question 125).
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Fig. 21 RC circuit (Question 126).
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Fig. 22 Source for input impedance calculation
(Question 127).

Fig. 23 Three-node resistive network (Question 130).
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Fig. 24 Active circuit example (Question
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132).
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Fig. 25 Resistor-diode network (Question 136).
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Fig. 26 Nonlinear circuit example (Question 140).
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Fig. 28 Impedance matching example (Question 153).
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Fig. 29 Voltage divider circuit (Question 154).
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Fig. 30 Nonideal voltage divider circuit (Question 157).
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Fig. 31 Arbitrary network (Question 163).
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Fig. 32 Time domain circuit example (Question 164).
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Fig. 33 Lumped element LC transformer (Question 168).
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Fig. 35 Elliptic low-pass filter (Question 171).
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Fig. 36 Two-section transmission-line transformer example
(Question 174).
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Fig. 37 Five-section transmission-line filter (Question 183).
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Fig. 38 Third-order lumped-distributed-active lowpass filter. (Question 187)
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SECTION THREE

NOTES ON VECTORS, MATRICES
AND SENSITIVITIES

© J.W. Bandler and Q.J. Zhang 1986

This document originally appeared as Report SOS-86-8-R, September 1986. No
part of this document may be copied, translated, transcribed or entered in
any form into any machine without written permission. Address enquiries in
this regard to Dr. J.W. Bandler. Excerpts may be quoted for scholarly
purposes with full acknowledgement of source.






Matrix A

Let
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This mxn matrix has m rows and n columns.

Transpose of A

»
-
e

11 21

12

This nxm matrix has n rows and m columns.

Symmetric Matrix A

A square matrix A<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>