
Using Assurance Cases to Prevent Malicious
Behaviour from Targeting Safety Vulnerabilities

Victor Bandur(�) , Mark Lawford , Sébastien Mosser , Richard F. Paige ,
Vera Pantelic , and Alan Wassyng

McMaster Centre for Software Certification, McMaster University, Canada
{bandurvp, lawford, mossers, paigeri, pantelv, wassyng}@mcmaster.ca

Abstract. We discuss an approach to modifying a safety assurance case
to take into account malicious intent. We show how to analyze an existing
assurance case to reveal additions and modifications that need to be
made in order to deal with the effects of malicious intent aimed at safety
critical applications, and where to make them.

1 Overview

In 2018 researchers in the McMaster Centre for Software Certification (McSCert)
published a paper on safe and secure over-the-air software updates [2].

In the paper, we presented an assurance case (AC) we developed based on
ISO 26262 [4] for functional safety, and on SAE J3061 [9] for cybersecurity. We
were looking for a way to integrate safety and security. The top-level of that AC
is shown in Figure 1, in a GSN-like notation.

The approach was reasonably successful in that it helped us find a vulnerabil-
ity in the implementation of the Uptane framework (see [1]). Later, we began to
question our integration of safety and security as equals in the AC and in hazard
analyses. The reason we began to doubt that strategy is captured in Figure 2.

The figure shows how malicious acts, including cybersecurity threats, can
bypass safety mitigations built into a system.

From this grew the idea that we may be able to protect the safety of a system
from malicious intent without a general cybersecurity analysis and mitigation.
This is the first component of this research – explore using the safety argument
to identify security concerns. Future work will include comparison with a more
traditional approach that deals with safety and security as equals.

2 A Fast Food Coffee Cup Example

The following coffee cup example originated in McSCert, with an early version
of the top-level of the AC published in 2020 [3]. We explored ACs that did not
include software since we wanted to focus on safety (freedom from loss/harm),
irrespective of the nature of the system. Everything we had analyzed up till
then included software as a major component of the system. We chose this as

mailto:bandurvp@mcmaster.ca
https://orcid.org/0000-0002-5830-7924
https://orcid.org/0000-0003-3161-2176
https://orcid.org/0000-0001-9769-216X
https://orcid.org/0000-0002-1978-9852
https://orcid.org/0000-0003-1696-2768
https://orcid.org/0000-0003-4614-3421

2 Bandur, Lawford, Mosser, Paige, Pantelic, Wassyng

Fig. 1. Top-Level of an Assurance Case for Over-the-Air Software Updates - from [2]

Accident
because H1

was not
eliminated

Design to
eliminate H1

(did not work)
Design to
eliminate
Hazard H2

Hazard Eliminated
No Incident

Hazards

Design to
eliminate
Hazard H3

H1

H3

H2

Vulnerabilities
Hazard Eliminated

No Incident

Ultimate
Consequence is
Less Severe Due

to Mitigation

Design to
eliminate
Hazard H3

H1

Design to
eliminate H1

Design to
eliminate
Hazard H2

Hazards

H3

H2

Vulnerabilities

Safety Barriers to Protect Against Hazards

Safety Barriers to Protect Against Hazards
Affected by Malicious Exploitation

Malicious
behaviour

Fig. 2. Malicious Exploitation of Safety Vulnerabilities

Preventing Malicious Behaviour from Targeting Safety 3

the example to use for this analysis to highlight that we are interested in all
malicious activities and are not restricted to cybersecurity. Examples of such
cups are those deployed in fast food enterprises.

Figure 3 shows the top-level of the coffee cup AC. The top-level of the previ-

1 / 1

The coffee cup <CUP> is safe
in its intended environment and
in its intended uses

Top Claim

"safe" means the coffee
cup does not harm
people

Context1

Claim is decomposed into:

1) Requirements and specifications deliver desired functionality, behaviour, cost, and safety of <CUP> in
assumed environments
2) <CUP> design complies with requirements
3) <CUP> is manufactured to comply with its design and requirements

Reasoning:
R: All necessary safety specifications and behaviour are provided in requirements
D: All functionality and safety of the requirements are present in design of <CUP>
P: All functionality and safety of the design are present in the production (manufacturing) of <CUP>

How can <CUP> not be safe if all the above claims are true?
1) <CUP> not used as anticipated, so to mitigate, check usage assumptions are necessary & practical
2) <CUP> is damaged or altered before use

Add:
R: Assumptions concerning how <CUP> is used are necessary & practical
S: <CUP> is stored and deployed so that it is safe

Thus, [R & D & P & S] --> Top Claim

SR - Top

Context of "intended
environment"
described in ref {1}

Context2
Context of "intended
uses" described in ref
{2}

Context3

A

No toxic material
built into <CUP>
so can focus on
safety from burns

Assumption1

The requirements of
<CUP>, including all
regulations & safety
requirements, are
validated and non-
interfering. Assumptions
concerning how cup is
used are necessary &
practical

R
Design of <CUP>
complies with its
requirements, and any
new functionality and
properties introduced
are justified and shown
not to cause unwanted
interactions

D
Safety of <CUP>
is maintained
during
production

P

A

Temperature of coffee
can be high enough to
burn someone, in the
range [80, 100]
degrees celsius

Assumption2

<CUP> represents a
cup within a specific
set of coffee cups, as
described in ref {3}

Safe storage before
use and during
deployment of
<CUP> is planned
and will be effective
enough that unsafe
<CUP> will be
discarded before use

ST

Not valid in the face
of malicious intent

Mitigation necessary: Prevent
malicious intent from
distorting requirements,
design and production.

Primary mitigation required
in storage.

Fig. 3. Top-level in Safety AC of Coffee Cup

4 Bandur, Lawford, Mosser, Paige, Pantelic, Wassyng

ously developed safety AC is analyzed to determine which assumptions, claims
and evidence could be affected by malicious intent. The red notes in the figure
show the results of this initial analysis.

Most of the effects of malicious intent will be detected at lower levels of the
AC. However, even at the top-level, Figure 3, one of the items of interest, if we
consider security, is that the overall assumption that toxic material is not built
into the cup may not be valid in the face of malicious intent. This, and other
items, have implications for the analysis at the lower levels.

This is the first step in including the effects of malicious intent in the preser-
vation of safety. Obviously, the better the AC, the easier it is to perform this
analysis. In particular, relevant assumptions must be visible at this level, and
the subclaims need to have enough detail to determine whether or not they are
likely to be affected by malicious intent. However, even if we miss detecting a
potential impact, we have later opportunities to do so.

The next step is to analyze the next lower level in the AC. Again, this is
simply an exploration of which branches of the argument will be affected. Due to
space limitations, we will focus only on the “ST” branch, shown in Figure 4. This
was already determined to be of interest as highlighted in Figure 3. At this stage
it is clear that malicious intent could impact every one of the four subclaims in
ST. Storage is important in terms of safety, because weakened/damaged/altered
cups may no longer comply with requirements. However, the safety AC does not
consider malicious intent at all.

Further analysis at the child level of the argument reveals additions required
to the AC. An example is shown in Figure 5. In this figure we see that safety
considerations are not adequate to prevent against malicious action. Some of the
mitigation for malicious action could have been included in safety mitigation,
but it would be costly and was not thought to be necessary, based on risk. In
particular, the check on toxic substances when malicious intent was not included,
assumed that toxic substances could find their way into the cup material only
if the cup was stored in an environment in which this could happen. To protect
against malicious intent requires much more surveillance as to how the packages
of cups are stored and whether or not anyone interferes with a package.

The resulting modified AC is shown in Figure 6. Note that:
• The security argument can be appended to the safety argument on a local

level
• Localized like this, we can analyze the argument for potential interaction

between safety and security – this is not necessarily trivial or even easy, and
may require analysis completely separate from the AC itself

• We can construct patterns for these arguments (see below)

3 Patterns for Arguments that Add Security to Safety

3.1 Add Effect of Malicious Intent to Safety Argument

Since our plan in general is to develop a safety AC and then add security, an
obvious initial pattern for this is to simply add conjunctive security claims to

Preventing Malicious Behaviour from Targeting Safety 5

1 / 1

Safe storage before use and
during deployment of
<CUP> is planned and will
be effective enough that
unsafe <CUP> will be
discarded before use

ST

Safe storage can be decomposed into:
1) <CUP> is stored prior to deployment in a way that protects it from anything that could weaken or alter it
2) <CUP> is stored at & during deployment in a way that protects it from anything that could weaken or alter it
3) Instructions are packaged with <CUP> to inform users of <CUP> (companies and individuals) how to ensure
<CUP> is stored prior to use
4) Instructions are packaged with <CUP> to inform users of <CUP> (companies and individuals) how to
monitor the state of <CUP> so that if it is unsafe it can be discarded before use
Reasoning:
1) and 2) protect <CUP>. 3) relies on humans doing the right thing.
How can <CUP> not be safe if the above claims are valid?
1) Users do not adequately follow instructions

Argument

<CUP> is stored prior
to deployment such
that it is adequately
protected

ST SubClaim1
<CUP> is stored at &
during deployment
such that it is
adequately protected

ST SubClaim2
Instructions are
packaged with <CUP>
to inform users of
<CUP> (companies and
individuals) how to
ensure <CUP> should
be stored prior to use
to remain safe

ST SubClaim3
Instructions are packaged
with <CUP> to inform users
of <CUP> (companies and
individuals) how to
determine if <CUP> is safe
just prior to use, and discard
<CUP> if in doubt of safety

ST SubClaim4

Malicious intent must
be protected against

Malicious intent must
be protected against

Malicious intent must
be protected against

Malicious intent must
be protected against

Fig. 4. Storage Branch in Safety AC of Coffee Cup

the existing safety claims – as in Figure 6. This works in general, and it is
simple. However, there are serious drawbacks to this approach. The most critical
drawback is that this results in localized silos – one for safety and another for
security. Based on our previous experience, this is something we had decided to
avoid. First, there is obvious duplication in the different branches if we do this,
which impacts maintenance of the AC. More importantly, there is less chance of
analyzing interactions. Separating safety and security exacerbates the problems
that GSN-like notations have in coping with cross-cutting concerns.

To avoid this, we should explore alternatives. Readers will have noticed that
our Strategy nodes contain brief reasoning as to what subclaims and/or evidence
are necessary to support the parent claim (sometimes included in Justification
nodes in GSN). We believe the search for alternative claim structure starts here.

3.2 Re-analyze the Local Argument

In the example in Figure 6, the Default safety plus security argument is:

• <CUP> is stored so that moisture, pressure and toxic substances do not
harm it

6 Bandur, Lawford, Mosser, Paige, Pantelic, Wassyng

1 / 1

<CUP> is stored
prior to
deployment such
that it is
adequately
protected

ST SubClaim1

Safe storage prior to deployment requires:

1) <CUP> is stored so that moisture, pressure and toxic substances do not
harm it
2) Suitable Instructions are displayed on <CUP> packaging

Reasoning:
All of these rely on humans doing the right thing.
How can <CUP> not be safe if the above claims are valid?
i) Users do not adequately follow instructions
Mitigation: Add monitoring requirement:
3) Correct storage of <CUP> will be checked weekly and check recorded as
performed.

Argument

<CUP> is stored
prior to
deployment such
that it is
adequately
protected from
moisture,
pressure & toxic
substances

STPre SubClaim1
<CUP> is stored
prior to
deployment with
appropriate safe
storage
instructions
visible on each
package

STPre SubClaim2
<CUP> storage is
planned to be
checked weekly,
and result of
check recorded

STPre SubClaim3

To protect against malicious
actions requires
mechanisms to ensure
container is not opened or
breached, and inspected for
damage before deployment

Fig. 5. Storage Pre-Deployment Branch in Safety AC of Coffee Cup

• Suitable instructions are displayed on <CUP> packaging
• Correct storage of <CUP> will be checked weekly and check recorded as

performed
• Access to storage is restricted, and monitored
• Stored packages are protected from tampering
• People with access to storage are vetted

We notice immediately that there is a simple difference between the safety
and security arguments: safety clauses refer to <CUP> and a security clause
to packages of cups. The focus on packaging is vital to the security argument.
The focus on <CUP> was natural in the safety argument and did not raise any
concerns. However, the argument could easily have referred to packages of cups
if necessary. With this in mind, and looking for ways to integrate this better, an
improved argument may be:

Preventing Malicious Behaviour from Targeting Safety 7

1 / 1

<CUP> is stored prior to deployment
such that it is adequately protected

ST SubClaim1

Safe storage prior to deployment requires:
1) <CUP> is stored so that moisture, pressure and toxic substances do not
harm it
2) Suitable Instructions are displayed on <CUP> packaging
3) Correct storage of <CUP> will be checked weekly and check recorded as
performed.

Reasoning:
All of these rely on humans doing the right thing. For malicious intent that is
definitely not true.

Therefore add:
4) Access to storage is restricted, and monitored.
5) Stored packages are protected from tampering
6) People with access to storage are vetted
Note: Packages examined for signs of tampering at time of deployment is in
ST SubClaim2

Argument

<CUP> is stored
prior to
deployment such
that it is
adequately
protected from
moisture,
pressure & toxic
substances

STPre SubClaim1
People with
access to storage
are vetted & re-
evaluated at
determined time
intervals

STPre SubClaim4
<CUP> is stored
prior to
deployment with
appropriate safe
storage
instructions
visible on each
package

STPre SubClaim2
<CUP> storage is
planned to be
checked weekly,
and result of
check recorded

STPre SubClaim3

Modified from safety to take
into account malicious
intent

Access to storage
is restricted &
monitored &
records kept of
people who
accessed storage

STPre SubClaim5
Stored packages
are protected
from tampering

STPre SubClaim6

Fig. 6. Storage Pre-Deployment Branch in Safe & Secure AC of Coffee Cup

• Packages containing <CUP>s are stored in a restricted and monitored stor-
age area, in such a way that moisture, pressure, and toxic substances cannot
harm the <CUP>s by accident or malicious action

• People with access to the storage area are vetted for access
• Suitable instructions are displayed on packages containing <CUP>s and

cannot be removed or altered without leaving a noticeable trace
• Correct storage of packages containing <CUP>s will be checked for damage

and/or tampering weekly, by at least two people, and the check immutably
recorded as performed with names of the checkers (durations and number of
people are placeholders here in lieu of more detailed analysis).

This results in the modified claim structure shown in Figure 7.
This shows how we can integrate safety and security at a particular level in

the AC. A simple process view of it, for a particular claim decomposition, is:

1. Analyze the safety argument to identify where malicious intent affects safety,
and add that to the argument (in the example this is shown in Figures 3, 4,
5 and resulted in Figure 6)

8 Bandur, Lawford, Mosser, Paige, Pantelic, Wassyng

1 / 1

<CUP> is stored prior to deployment
such that it is adequately protected

ST SubClaim1

Packages containing <CUP>s
are stored in a restricted and
monitored storage area, in
such a way that moisture,
pressure & toxic substances
cannot harm the <CUP>s by
accident or malicious action

STPre SubClaim1
People with access to the
storage area are vetted for
access & re-evaluated
periodically

STPre SubClaim2
Suitable instructions for safe
storage are displayed on
packages containing <CUP>s
and cannot be removed or
altered without leaving a
noticeable trace

STPre SubClaim3
Correct storage of packages
containing <CUP>s will be
checked for damage and/or
tampering weekly, by at least
two people, and the check
immutably recorded as
performed with names of the
checkers

STPre SubClaim4

Fig. 7. Protecting Against Malicious Exploitation of Safety Vulnerabilities

2. Analyze wording in the reasoning clauses (the Default argument, above) to
facilitate integrating safety & security

3. Restructure argument based on revised argument (the Improved argument,
above)

3.3 Two Fundamental Assurance Patterns

There are two structural patterns that we feel are necessary at the lower levels of
the AC in all safety and security ACs. The first pattern is based on an old idea
that, for adequate safety (and security) assurance, we need a tripod of claims
supported by evidence. This tripod is based on 3-Ps, Product/Process/People,
as shown in Figure 8. For example, SubClaim1 in the right part of Figure 9
should be supported by claims that all relevant hazards, including mitigations
are documented, that the hazard analysis method was appropriate, and that the
team that performed the hazard analysis was competent to do so.

1 / 1

Claim about
properties in a
system

Parent Claim

Safety & Security
properties of the
product are shown to
hold for intended
use in intended
environment over
intended lifetime

PRODUCT SubClaim
Development and/or analysis
methods used in demonstrating
validity of the parent claim are
applicable, capable of producing
results with required confidence,
and if necessary, state of the
practice

PROCESS SubClaim
The people
performing the
methods/analysis/
reviews are qualified
and capable to
perform them

PEOPLE SubClaim

Fig. 8. Tripod Pattern of Product/Process/People

Preventing Malicious Behaviour from Targeting Safety 9

The second pattern is used to deal with a never-ending problem in assuring
safety and security – completeness. This pattern is simple, but difficult to im-
plement sufficiently well. It is shown in the left part of Figure 9 with an example
to its right. SubClaim2 is the added component of the argument.

1 / 1

Claim about
properties in a
system

Parent Claim

Requires Completeness

Subclaim to support
parent claim that
requires completeness
to attain required
confidence

SubClaim1
Confirming
Completeness

Subclaim that describes
effort made to confirm
sufficient completeness

SubClaim2

1 / 1

All hazards
have been
identified

Parent Claim

Requires Completeness

All hazards have been
identified using state of
the practice hazard
analysis, STPA,
performed by a team
that is expert in STPA

SubClaim1
Confirming
Completeness

An independent team of
experts looked for
additional hazards and
could not identify any

SubClaim2

Fig. 9. Completeness Pattern and Example Instantiation

4 Related Work

There has been some related work on providing integrated assurance of safety
and security. Some of this work focuses on considering security concerns within
specific safety analyses, e.g., security-aware HAZOPs [8] or secure FTA [7]. Other
approaches include security-aware STPA [11], or modeling approaches such as
UMLsec [6] or security profiles associated with SysML, or the security annexe for
AADL. Of additional note is SSAF [5], which attempts co-assurance of security
and safety with checkpoints for ensuring no conflicts.

5 Conclusion

We are advocating that an effective way of dealing with the effect of security on
the safety of a system, is to (surprisingly) first conduct the safety analysis and
develop a safety Assurance Case Template (see [10]), which is constructed prior
to system development. Then, by analyzing the safety AC for vulnerability to
malicious intent, it is possible to integrate security assurance into the AC. It is
important to note that the techniques we presented above apply equally well to
cybersecurity threats as they do to the software-free coffee cup, and that this is
not a full security analysis. It results in an AC that analyzes safety primarily,
but takes into account how malicious activity can adversely affect the safety of
the system. We believe the security “story” starts with a careful analysis of the
assumptions and reasoning at every level of the safety AC though this technique
does not apply to those argument segments in the AC that are confined to the

10 Bandur, Lawford, Mosser, Paige, Pantelic, Wassyng

application of a safety process, such as safety-only hazard analysis. We also
reuse patterns that were developed for safety ACs, that are just as useful when
malicious intent is introduced. Based on this initial security focused exploration
of the safety AC, we believe it is possible to develop a systematic approach,
based on an initial safety AC, to analyze the potential for malicious attacks on
safety critical systems. Again, this is planned future work.

We do not completely agree with the view that says malicious behaviour is
no different from inadvertent behaviour, and that if we cope with inadvertent
behaviour it will be sufficient. We believe there is a real difference. For instance,
we have a requirement that protects against inadvertently spilling the coffee.
One mitigation is to design a lid that has safeguards built in so that accidentally
knocking over the cup will not result in a spill. However, malicious behaviour
could potentially damage the safeguard mechanism and not be obvious to a user.
Inspecting the safety AC with respect to how malicious activity can adversely
affect the safety argument helps to identify this “security” concern.

References
1. Uptane: Securing Software Updates for Automobiles. https://uptane.github.io/,

accessed: 2023-04-25
2. Chowdhury, T., Lesiuta, E., Rikley, K., Lin, C.W., Kang, E., Kim, B., Shiraishi,

S., Lawford, M., Wassyng, A.: Safe and secure automotive over-the-air updates.
In: SAFECOMP 2018. pp. 172–187. Springer (2018)

3. Chowdhury, T., Wassyng, A., Paige, R.F., Lawford, M.: Systematic evaluation
of (safety) assurance cases. In: Computer Safety, Reliability, and Security: 39th
International Conference, SAFECOMP 2020, Lisbon, Portugal, September 16–18,
2020, Proceedings 39. pp. 18–33. Springer (2020)

4. ISO: 26262: Road vehicles-Functional safety. International Standard ISO/FDIS
(2018)

5. Johnson, N., Kelly, T.: Devil’s in the detail: Through-life safety and security co-
assurance using SSAF. In: Romanovsky, A.B., Troubitsyna, E., Bitsch, F. (eds.)
SAFECOMP 2019. LNCS, vol. 11698, pp. 299–314. Springer (2019)

6. Jürjens, J.: Umlsec: Extending UML for secure systems development. In: Jézéquel,
J., Hußmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer (2002)

7. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees. Comput. Sci. Rev. 13-14,
1–38 (2014)

8. Macher, G., Sporer, H., Berlach, R., Armengaud, E., Kreiner, C.: SAHARA: a
security-aware hazard and risk analysis method. In: Nebel, W., Atienza, D. (eds.)
DATE 2015. pp. 621–624. ACM (2015)

9. SAE Vehicle Electrical System Security Committee, et al.: SAE J3061-
Cybersecurity Guidebook for Cyber-Physical Automotive Systems. SAE-Society
of Automotive Engineers (2016)

10. Wassyng, A., Singh, N.K., Geven, M., Proscia, N., Wang, H., Lawford, M.,
Maibaum, T.: Can product-specific assurance case templates be used as medical
device standards? IEEE Design & Test 32(5), 45–55 (2015)

11. Young, W., Leveson, N.G.: Systems thinking for safety and security. In: Jr., C.N.P.
(ed.) ACSAC ’13. pp. 1–8. ACM (2013)

https://uptane.github.io/

	Using Assurance Cases to Prevent Malicious Behaviour from Targeting Safety Vulnerabilities

