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Abstract 

The unprecedented growth in participation in collegiate athletics has been accompanied by an 

increase in injury burden. The complex and multifactorial nature of sports injuries highlights the 

importance of monitoring athletes prospectively using a novel and holistic biopsychosocial 

approach, as opposed to contemporary practices that silo these facets of health. Data collected over 

two competitive, basketball seasons were used in a principal component analysis (PCA) model with 

the following objectives: i) Determine if on-court, sensor-derived and force-plate-derived 

countermovement jump (CMJ) biomechanics were correlated, ii) determine the reliability of the 

biomechanical principal components (PCs) and psychological state metrics (e.g., self-reported pain, 

etc.) across five preseason weeks, iii) investigate whether biomechanical PCs were correlated with 

psychological state across a season, and iv) explore whether subject-specific meaningful 

fluctuations could be detected using minimum detectable change statistics. Weekly CMJ (force 

plates) and on-court data (inertial measurement units), as well as psychological state (questionnaire) 

data were collected on the women’s basketball team at McMaster University for two seasons. It 

was found that on-court and CMJ biomechanics were correlated both between and within systems 

(r = |0.10, 0.94|; p < 0.05), suggesting that PCA would be an effective method to summarize data. 

The derived PCs displayed excellent reliability (ICC > 0.9), while psychological state metrics 

displayed moderate-to-good reliability (ICC = 0.71 – 0.89). While many relationships (n = 27) were 

identified between biomechanical PCs and psychological state metrics, no overarching associations 

were identified at the group level. However, subject-specific relationships were identified in case-

studies, highlighting the potential utility of “red-flagging” meaningful fluctuations from normative 

biomechanical and psychological patterns. Overall, this work demonstrates the potential of 

advanced analytical modeling to characterize components of student-athlete performance, health, 

and well-being, and the need for more tailored and patient-centered athletic monitoring practices. 
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Chapter 1: Introduction 

 Collegiate-level athletics have demonstrated an unprecedented growth in participation 

over the past two to three decades (1–3). Unfortunately, this increase in participation has been noted 

to be accompanied by an increase in injury burden (4,5), which ultimately reduces the ability of an 

individual and a team to perform optimally during competition. Interestingly, female athletes have 

displayed increased injury susceptibility for severe lower-extremity injuries (6–9), which may be 

partially attributed to biomechanical differences (i.e., greater dynamic knee valgus as measured by 

the knee abduction moment, greater knee abduction loading during the impact phase of jump-

landing tasks, and at times, greater frontal plane knee kinematic asymmetry) (10–12). Despite the 

increased risk of sustaining lower-extremity injuries in females relative to their male counterparts, 

this population has been vastly understudied (13–15).  Additionally, basketball has been reported 

to have one the highest frequency of injuries amongst all college sports (16,17), with lower 

extremity injuries being the most severe and prevalent (1,9,18).  

 Many of these sports-induced injuries are non-contact (1,6,7) and may be related to the 

exceedance of musculoskeletal (MSK) structure load tolerance from repeated bouts of vertical 

jumping, cutting, and pivoting tasks experienced during training and competition (1,19–21). 

Additionally, it has been demonstrated that between-limb differences (e.g., biomechanical 

deficiencies in strength, range of motion, ability to dissipate external load, etc.) are crucial to 

monitor during rehabilitation and return-to-sport protocols (5,22–28). Moreover, these between-

limb differences can continue throughout a seemingly successful rehabilitation and persist well after 

athletes have returned-to-sport (5,29–32). While the importance of between-limb differences in 

rehabilitative settings is well-established, more limited evidence suggests that asymmetry may also 

be related to sports performance (15,33–39) and injury risk (34,40–43) in healthy, competitive 

athletic populations.  

Fortunately, given that these MSK injuries are overuse in nature, some of which may be 

preventable by prospectively monitoring athletic workload, intensity, and biomechanical 

deficiencies (e.g., asymmetry) (13,18,44,45). However, biomechanics are often assessed in-

laboratory settings using proxies of sports performance, such as vertical jump testing (46–48), 

which might not necessarily be indicative of the biomechanical patterns that individuals exhibit in 

their sporting environments due to the principle of specificity (49–52). Additionally, these 
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traditional in-laboratory biomechanical assessments are both costly and cumbersome, which limits 

the practicality of employing these methodologies in regular, longitudinal athletic monitoring 

practices. Luckily, biomechanics has seen tremendous growth in the availability of accessible and 

more cost-effective modalities that can be seamlessly applied in sport-specific settings (53). 

Specifically, the advent of wearable technology, such as inertial measurement units (IMUs) and 

portable force plate systems, have enabled researchers and clinicians to monitor individualized 

biomechanical patterns and fluctuations in real-world settings (53–56). In doing so, this provides a 

more complete understanding of biomechanical profiles (e.g., on- and off-court), which might lead 

to a more comprehensive picture of contributory factors for sports performance and for injury 

susceptibility.  

Nevertheless, assessing sports performance and injury susceptibility through a purely 

biomechanical lens fails to represent the athlete’s readiness to perform on a given day (57). 

Psychological stressors may be modifiable risk factors for injury and reinjury in and of themselves 

(58–65) or may add to the demands of a task in conjunction with the biomechanical stressors 

experienced (58,66). Remarkably, there is very limited research to date that has directly examined 

the link between biomechanical outcomes and psychological state as it relates to sports performance 

and risk of injury, with even fewer research studies doing so longitudinally throughout several 

competitive seasons (67). 

The complex and multifactorial nature of sports injuries (1,7,68–70) highlights the 

importance of monitoring basketball athletes prospectively using a novel and holistic 

biopsychosocial approach. Specifically, defining a more comprehensive biomechanical profile 

consisting of on- and off-court patterns and contextualizing biomechanical changes with concurrent 

changes in psychological state might improve our understanding of specific underlying domains or 

facets that lead to such injuries. However, in taking this approach, an issue that may arise with 

identifying modifiable risk factors for sports performance and injury is how best to summarize and 

interpret the multiple and diverse forms of data being collected (57,71,72). Typically, key 

performance indicators are identified via evidence-based research and utilized in athletic 

monitoring (13,44,45,48,58), but this technique often involves oversimplifications and omitting 

potentially important variables (71,73). As such, statistical techniques such as principal component 

analysis (PCA) that retain discriminatory information from many variables while reducing 

dimensionality through grouping interrelated metrics (71–76) have been gaining interest to 
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highlight changes or trends in athlete readiness or performance. However, to our knowledge, there 

have yet to be any PCA investigations using more holistic biomechanical profiles consisting of both 

on- and off-court patterns and fluctuations. Therefore, there is a need to establish a more complete 

and comprehensive biomechanical profile, whereby multiple facets of sports performance and 

injury risk are considered and contextualized with concurrent changes in psychological state. In 

doing so, sports biomechanists, physicians, and other practitioners within the healthcare system of 

these athletes may be able to prospectively identify whether there has been true change outside of 

the measurement error (i.e., greater than the minimum detectable change (MDC)) for these variables 

(34,59,77), which can help them determine whether an intervention is necessary to prevent injuries 

and optimize sports performance. 

Therefore, the overarching aim of this project was to improve athletic monitoring practices 

by examining the utility of integrating on- and off-court biomechanical data into more holistic 

biomechanical metrics (e.g., principal components; PCs), with concurrent longitudinal monitoring 

of psychological state to contextualize these subject-specific biomechanical fluctuations. 

Specifically, data collected over two competitive collegiate female basketball seasons were used in 

a PCA model to support the following research questions: 

(i) Correlations Between On-Court and Vertical Jump Biomechanics: Are on-court, 

sensor-derived metrics and force-plate-derived vertical jump metrics significantly 

correlated throughout the 2021-2022 and 2022-2023 competitive collegiate female 

basketball seasons? 

(ii) Reliability of Biomechanical Principal Components and Introspective, Psychological 

State: What is the reliability of the biomechanical PCs (i.e., on-court and 

countermovement jump (CMJ) biomechanics) and introspective, psychological state 

metrics across the 2022-2023 competitive, collegiate female basketball preseason? 

(iii) Longitudinal PCA Application & Association Between Biomechanical and 

Introspective, Psychological State: 

(A) Are PC scores derived from a biomechanical model (i.e., on-court and vertical 

jump data) significantly correlated with introspective, psychological state (e.g., 

self-reported pain, sleep quality, sleep quantity, etc.) across the 2022-2023 regular 

season?  
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(B) Can we detect subject-specific meaningful changes in these measures using PCs 

and associated MDC statistics? 

The remainder of this document is comprised of a Literature Review (Chapter 2), followed 

by further definition of the Thesis Research Questions (Chapter 3), Research Methodology (Chapter 

4), Results (Chapter 5), Discussion (Chapter 6), and the Conclusion and Significance of this study 

(Chapter 7). The Literature Review will first look at the use of biomechanical and psychological 

data in athletic monitoring as they relate to sports performance and risk of injury, which will be 

followed by a summary of those studies that have used advanced analytical models (i.e., PCA) to 

monitor sports performance or injury susceptibility in basketball athletes. The Methods, Results, 

and Discussion outline the sample, study design, protocol, and key findings from the thesis 

“Longitudinal Monitoring of Biomechanical and Psychological Stress in Collegiate Female 

Basketball Athletes: Implications to Sports Performance and Injury Susceptibility.” 
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Chapter 2: Literature Review 

 Given that the proposed research utilizes a holistic and biopsychosocial model of sports 

performance and injury risk, this literature review will first provide a brief overview of the 

individual research landscapes that will be integrated in the proposed study. This will begin with a 

subsection on biomechanical and between-limb difference metrics obtained via traditional CMJ 

testing and during sport-specific on-court assessments related to sports performance and injury 

outcomes (Chapter 2.1 and Chapter 2.2, respectively). The relationship between psychological state 

and sports performance and injury will be discussed, along with a brief review of research that has 

integrated biomechanical and psychological state assessments in competitive athletic populations 

(Chapter 2.3). Finally, and most importantly, an in-depth review and critical appraisal of 

investigations utilizing advanced analytical models (i.e., PCA) of sports performance and injury 

susceptibility will be presented (Chapter 2.4). In doing so, this review will highlight the paucity of 

research conducted in this area, ultimately demonstrating the necessity and the rationale for the 

present research project.  

2.1: Traditional Lab-based Assessments of CMJ Biomechanical and Between-limb 

Difference Metrics Obtained from Force-Time Waveforms in Athletic Monitoring 

The CMJ and the associated kinetic force-time waveform data captured are the most 

frequent assessment of lower extremity force and power production in team sport athletes (46–48). 

This vertical jump assessment and the biomechanical data outputted from force plates become 

increasingly more pertinent and important to examine in team sport athletes that undergo high 

volume of jumping and cutting in competition, such as volleyball and basketball athletes, as these 

absorptive loads may place these athletes at a heightened risk of injury (1,19–21). As depicted in 

Figure 1, the CMJ consists of several successive key phases of movement, paralleled in the kinetic 

force plate tracing. The waveform generated from the dual force plate system provides a visual 

assessment of the external forces generated by participants (78). These forces are often measured 

simultaneously in the three planes of motion: vertical (Fz), anterior-posterior (Fy), and medial-

lateral force (Fx) production (78), with the vertical force production often being the vector of 

interest during vertical jump assessment. Furthermore, these initial kinetic variables outputted by 

the force plates can be used to calculate several other kinetic or kinematic variables during the 

movement and for different phases of movement during the CMJ (78). The stratification of 
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biomechanical data into such phases of movement enables researchers and practitioners to discern 

whether overarching movement patterns are (dis)advantageous for vertical jump performance (79–

82). 

 

Figure 1. Phases of the CMJ and direct comparison to a kinetic force-time waveform (83). 

In a practical sense, these key phases of CMJs can be used to monitor training adaptations 

using key performance indicators longitudinally. Specifically, jump height (JH), which occurs 

during the flight phase of movement in Figure 1, appears to be the most standard biomechanical 

variable utilized to monitor explosive power and athlete responsiveness to a training regimen. 

Additionally, JH has been deemed highly reliable as an indicator of neuromuscular performance 

and readiness when baseline values are established (33,46–48,78,84,85). However, it should be 

noted that in isolation, this variable is not sensitive enough to detect alterations indicative of 

potential injury and exceedance of tolerable training volume (46,48,78,86).  

Fortunately, the eccentric rate of force development and the modified reactive strength 

index (RSI mod) may indicate the physical capacity to effectively utilize a stretch-shortening cycle, 

which is essential in vertical jumping performance and for elite basketball players (47,87–91). The 

RSI mod offers a reliable means of monitoring an athlete’s stretch-load tolerance, quickness and 

reactivity, all essential qualities in an explosive athlete (46–48,85,87,88). Moreover, RSI mod 

assesses the athlete’s ability to rapidly change from an eccentric to concentric muscle action, 

utilizing a stretch-shortening cycle, which is said to underpin optimal jumping and sprinting 
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performance (88). In elite basketball athletes, incorporating RSI mod may provide a heightened 

dimension and understanding of the athlete’s neuromuscular performance and fatigue when used in 

conjunction with JH. 

Moreover, biomechanical variables captured by the force plate can identify potential 

injuries compared to individualized baseline values, especially if comparing bilateral values and 

between-limb differences (i.e., increased inter-limb asymmetry) (33). For those athletes that have 

sustained injuries and are progressing through rehabilitation toward return-to-play, these 

biomechanical variables may serve as a benchmark for normative pre-injury performance and a 

threshold for an effective return-to-play protocol.  

Cumulatively, the widespread integration of CMJ and force plate analysis could aid in 

informing coaching staff, athletes, sports scientists, and sports medicine practitioners of individual 

and team neuromuscular readiness, performance, and potential indicators of injury, consequently 

improving athletic success and reducing injury incidence.  

However, an inherent limitation of force plate analysis and interpretation is the multitude 

of biomechanical variables captured (78), as shown in Figure 1. The rationale behind companies 

like Hawkin Dynamics and other industry leaders is that this comprehensive approach will allow 

training staff to identify the variables they deem relevant and necessary for monitoring their 

athletes. However, without diving into the literature or the direct support of sports scientists, it can 

be difficult to determine relevant, reliable, and valid variables to longitudinally assess individual 

athletes and teams. Another limitation to the practical use of the CMJ and associated force-time 

waveform analyses for monitoring sports performance and injury susceptibility is the principal of 

task specificity (49–51), which dictates that these proxies for sports performance might not be 

telling of what on-court performance in a truly dynamic and unpredictable in-game or on-court 

scenario might be. Additionally, asymmetry has been influenced highly by the motor task at play, 

the associated participating muscular groups, and whether the task is unilateral or bilateral (50,51). 

Therefore, it might be necessary to concurrently capture and measure the between-limb differences 

in traditional laboratory settings and expand these assessments to the field. 

 Fortunately, the advent of innovative technology, such as the IMU, permits biomechanists, 

researchers, and even practitioners to monitor kinetic and kinematic variables in a truly sport-
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specific setting, which in theory, would be most telling of sports performance and injury risk for 

competitive athletic populations.  

2.2: Expanding Biomechanical Assessments to the Field and into Sport-Specific Settings 

Using Wearable Sensors 

 Recent efforts have been made to better understand whether wearable sensor-derived 

biomechanical information provides a plausible indication of injury susceptibility and sports 

performance. Benson and colleagues (53) conducted a comprehensive scoping review, which 

summarized the use of wearable sensors and the associated metrics used to monitor workload and 

assess injury risk over the last two decades. This scoping review included 407 studies which used 

wearable sensors to monitor team-sport athletes, 41 (10%) of which reported injuries across the 

monitoring period, with 36 (8.8%) studies statistically evaluating the association between workload 

and injury. Some concerning results pertaining to the lack of diversity and generalizability in this 

research landscape were highlighted by Benson and colleagues: 1) Male participants were 

disproportionately selected in research, such that 81% of all studies included males; 2) 

Approximately ¾ of included studies were conducted using a sample of elite or professional 

athletes, highlighting that the feasibility of using wearable sensors might be limited and favour 

organizations who can afford such innovative technology; 3) Most studies (58%) possessed small 

sample sizes (i.e., <25 participants) and assessed athletes sparingly (<25 testing sessions per 

participant (51%)) despite trying to assess changes over time; 4) The majority of studies 

investigating the workload-injury relationship were in soccer, rugby, or Australian football (81% 

of the 36 studies which analyzed the workload-injury relationship), which were primarily conducted 

in Europe and the Oceania, demonstrating the lack of diversity in sports and the continents in which 

these studies were conducted; and 5) While 40 (10%) studies monitored athletes over multiple 

seasons, only two of these were in collegiate athletes, which is concerning given that this athletic 

population is exposed to additional stress (i.e., academic workload) than other athletes which may 

impact sports performance and injury susceptibility.  

Focussing specifically on basketball, and as seen in Figure 2, there were only four (<1%) 

included studies that analyzed the relationship between workload and sports performance, and no 

included studies analyzed the workload-injury relationship in basketball athletes (53). This paucity 

of data is extremely concerning, as basketball has been deemed one of the sports with the highest 

injury incidence of all collegiate sports (16,17). Cumulatively, and unfortunately, there was 
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inconclusive evidence regarding the workload-injury relationship in team sport athletes using 

wearable sensors as seen in the thorough review conducted by Benson and colleagues (53), which 

was attributed to the variety of injury definitions and workload metrics reported and the inability to 

draw definitive comparisons between studies. These researchers have stressed the importance of 

increasing the representation of different sports, competitive levels, and female athletes in future 

wearable sensor research.  

 

Figure 2. As obtained and described by Benson and colleagues (53), part a) represents the growth 
in literature that utilizes wearable sensors to monitor athletic workload, part b) indicates the 

workload analyses conducted by such studies, and part c) indicates the proportion of such studies 

stratified by continent. These studies are further categorized by sport, as seen by the colour-coded 

system used by Benson and colleagues (53). 
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Since the review conducted by Benson and colleagues, there have been two other reviews 

of similar nature in this space which were conducted by Alanen and colleagues (92) and Cheng and 

Bergmann (93). The former study comprised 49 primary research articles that focused on the 

reliability and/or the validity of IMUs when analyzing changes of direction movement in sport. The 

latter review included 252 studies that used wearable sensors and physiological data in sport-

specific settings to monitor team-sport athletes to improve health and well-being.  

In the review conducted by Cheng and Bergmann (93), 200 of the 252 included studies 

monitored athlete workload in on-field settings, while the remaining studies monitored the effect of 

impacts or workload and impacts concurrently on athlete health and wellness. Similar to the reviews 

conducted by both Benson and colleagues (53) and Alanen and colleagues (92), there was a 

disproportionate inclusion of male athletes in high-level competition, again highlighting the need 

for increased diversity and representation in this research landscape. Rate of perceived exertion and 

heart rate were the most frequent assessments of subjective and objective internal load, respectively. 

In the included studies in the review, the general trends that emerged where that studies tracked 

workload to optimize training and prevent overtraining/overuse injury. In contrast, impact 

monitoring was completed to discern traumatic injuries and potential causal factors for these 

injuries. The most common external load variables measured using wearable sensors included total 

distance covered, velocity, and acceleration, with many of the included studies also stratifying such 

data into distinct zones (e.g., high-speed distance covered, binning acceleration intensity, etc.).  

The review conducted by Alanen and colleagues (92) found that while IMU-derived 

biomechanical data displayed moderate-to-high reliability, there was no standard placement or 

number of IMUs across studies, making cross comparisons difficult. Furthermore, kinetic, and 

kinematic data obtained from IMUs were over-estimations of the same data obtained from the 

traditional in-lab gold standards (i.e., optical motion capture and force plates). It is important to 

note that while these IMUs may provide over-estimations of kinetic and kinematic biomechanical 

variables and that current practices are not standard across different research studies, this out-of-

lab collection method permits researchers and practitioners to collect large amounts of data in real-

world settings and to more easily monitor changes over time, which would not be practical or 

feasible in traditional lab-based settings due to the time requirements of data collection.  

To elaborate on the feasibility and practicality of incorporating IMUs into routine athletic 

monitoring practices, an overview of the composition and biomechanical data obtained from IMUs 
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will be noted. IMUs are comprised of an accelerometer, a gyroscope, and a magnetometer, which 

together provide valuable insight and complementary information to one another regarding out-of-

lab movement.  

 

Figure 3. Inertial Measurement Unit which is composed of: i) an accelerometer which measures 

linear acceleration in the mediolateral (y-axis), anteroposterior (x-axis), and vertical (z-axis) 

directions; ii) a gyroscope which measures angular rotation termed Roll about the x-axis, Pitch 
about the y-axis, and Yaw about the z-axis; and iii) a magnetometer which can measure spatial 

orientation (94). It is important to note that the orientation of the x-, y-, and z-axes can change 

depending on the convention used by researchers and practitioners. The Inertial Measurement Units 
used in the present investigation utilized the resultant of these three component parts of the 

accelerometer (i.e., mediolateral, anteroposterior, and vertical acceleration). 

Specifically, these component parts of IMUs unveil and depict acceleration, rotation, and 

orientation, respectively (Figure 3). Furthermore, given that IMUs can be worn bilaterally, the 

kinematic, spatiotemporal, and kinetic data obtained or estimated from these wearable sensors can 

be stratified by limb to yield inter-limb asymmetry metrics in sport-specific settings. Interestingly, 

and in support of the notion that IMUs may be a useful tool to capture ecologically valid 

biomechanical data, some studies (54–56) have demonstrated and highlighted a poor association 

between recognizing specific biomechanical deficiencies, such as kinetic and kinematic information 

derived from traditional in-lab jump testing, and future injuries. This was believed to be due to the 

poor relation of in-lab biomechanical data to sport-specific movement, which is highly variant, 

unanticipated, and spontaneous compared to the highly standardized and controlled environments 

for athlete testing in-lab. Therefore, it is plausible that the incorporation of IMUs which detail and 

output kinematic and spatiotemporal metrics (i.e., acceleration, rotation, and orientation), which 
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can also be used to estimate kinetic metrics using inverse dynamics, may aid in sports performance 

and injury prevention research by bridging the gap between traditional lab-based measurement and 

sport-specific assessment of human movement.  

However, while incorporating sport-specific assessments of human movement using IMUs 

is crucial in determining ecologically valid biomechanical factors associated with sports 

performance and injury risk, a purely biomechanical lens does not adequately represent the global 

state of these competitive athletic populations. In concordance with the holistic athletic assessment 

model in the present investigation, Cheng and Bergmann (93) concluded that the adoption of 

analytical models that integrate measures of internal and external load are necessary to better 

monitor athletic populations, and that the incorporation of extraneous factors related to generalized 

athlete wellness (e.g., sleep and stress) should also be taken into consideration. However, these 

authors did not collect or report on extraneous factors, such as markers of psychological state, that 

might be underpinning determinants of performance and aid in the global representation of the 

current state of athletes. Therefore, while their conclusions are important and are in-line with the 

notions of the present investigation, these authors failed to provide evidence of why this relationship 

between physical/biomechanical and psychological state may be worth investigating and how a 

biopsychosocial approach to athlete monitoring would enhance the ability to detect injury and 

optimize sports performance.  

2.3: The Importance of Incorporating Psychological State and Well-being into Athletic 

Monitoring 

 Several recent review papers and consensus statements have highlighted the need for 

incorporating a biopsychosocial and more holistic approach to athlete monitoring. For example, 

Meeusen and colleagues (95) put forth a joint consensus statement on behalf of the European 

College of Sport Science and the American College of Sports Medicine, which addressed best 

practices for preventing, diagnosing and treating overtraining syndrome. These authors stated that 

overtraining syndrome in athletes, which results from an inadequate balance between progressive 

overload and recovery, presents with symptomatology characteristic of fatigue, mood disturbances, 

and a resultant decline in sports performance (95). Particularly, these authors highlighted a dose-

response relationship in the literature about elevated negative moods and reductions in positive 

mood states of athletes when training was overtly and abruptly intensified (95). Furthermore, this 

dose-response relationship to training has also been noted using other psychosocial factors other 
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than mood state, such as sleep, muscle soreness, and perception of effort, which suggests that these 

negative effects of overtraining may by systemic (95). This consensus statement highlights that 

non-training and/or non-competition-related stressors may be warranted in athletic monitoring 

practices to provide a more holistic and global representation of athlete health and well-being.  

 A similar notion was put forward by Bourdon and colleagues (44), who provided a 

consensus statement regarding monitoring athletic training loads. Specifically, these authors 

defined training loads as the cumulative biological, inclusive of both physiological and 

psychological stress, placed on the athlete during training and competition. Interestingly, and 

important to note, there are times when the external load (i.e., work performed) remains the same 

between sessions. At the same time, the internal load (i.e., impact of the work performed on the 

athlete) may differ substantially, partly attributed to neuromuscular fatigue and emotional/mental 

state (44). Thus, like the consensus statement provided for overtraining syndrome (95), the 

consensus statement by Bourdon and colleagues (44) concludes by stressing the importance of 

considering and integrating non-training and/or non-competition-related factors that may contribute 

to sports performance and risk of injury, which includes psychological state.  

This sentiment regarding the necessity of incorporating subjective internal training load 

measures, a subsection of psychological state, was reiterated in a recent narrative review (59) and 

two recent systematic reviews (13,58). The narrative review by Thorpe and colleagues (59) notes 

that fatigue is multifactorial. Thus, a combination of subjective and objective measures is necessary 

to adequately monitor the fatigue status of team-sport athletes and the implications of this fatigue 

status to injury. The systematic review conducted by Saw, Main, and Gastin (58) summarized 

articles that concurrently utilized objective and subjective measures of athlete well-being to monitor 

actively training athletes. It was found that subjective measures (specifically, mood disturbances, 

perceived stress and recovery, and symptoms of stress) were superior in both their sensitivity and 

consistency to reflect changes in athlete health status due to acute and chronic training loads. The 

systematic review of longitudinal studies conducted by Jones, Griffiths, and Mellalieu (13) that 

evaluated the relationship between training load and fatigue to injury and illness concluded by 

stating that future longitudinal studies should investigate individualized athlete characteristics as 

they relate to internal training load, due to the significant relationship of internal training load to 

injury and illness. Moreover, these authors advocated for the continued implementation of 

subjective markers of training load and fatigue with traditional objective markers so that researchers 
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and practitioners can better understand athletes’ health status and changes over time (13). Another 

recent publication by Montull and colleagues (57) proposes an integrated approach to athletic 

monitoring, by which healthcare professionals within the immediate care team of competitive 

athletes should adopt a biopsychosocial approach, as the human body is a complex adaptive system 

with higher-order perceptual processes that respond distinctively as compared to objective (i.e., 

physiological and biomechanical) mechanisms, and may contribute to both sports performance and 

risk of injury.  

In light of the notion of monitoring athletes using a biopsychosocial approach, Keogh and 

colleagues (67) conducted a scoping review and identified 51 primary research articles that 

concurrently assessed the biomechanical and psychological state of healthy, actively training 

competitive athletes (96–146). It was found that nearly half of the research published in this field 

(i.e., 24/51 [47%]) were from the last three years alone. Twenty-two included articles in the review 

conducted by Keogh and colleagues (67) found a significant relationship between lower-limb 

biomechanics and introspective psychological state 

(97,100,105,108,113,114,117,122,124,126,128,129,131–134,137,139–143), while 17 articles 

found a significant relationship between lower-limb asymmetry and introspective psychological 

state (96,100,101,108,110,114,122,124,126,128,131–133,137,139,140,146), as seen in Figure 4. 

However, only 9/22 studies reported a significant relationship between lower-limb biomechanics 

and psychological state (97,100,113,122,124,134,137,141,142), and 5/17 reported a significant 

relationship between lower-limb asymmetry and psychological state (100,110,122,124,137) 

utilized a repeated-measures study design. Therefore, most of the relationships reported thus far in 

this domain are hypothesis-generating at most, with only a few studies reporting on the 

interconnectivity of time course changes between biomechanical and psychological states. More 

importantly, only four of the included studies longitudinally monitored athletes using a 

biopsychosocial model throughout one or more competitive season(s) (106,120,123,124), and only 

one of these reported a significant relationship between both lower-limb biomechanics and lower-

limb asymmetry vs. psychological state (124).  Another noteworthy point of concern is that only 
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one of the four longitudinal studies monitored basketball athletes in particular (124), and none of 

these longitudinal studies monitored competitive student-athletes.  

Figure 4. Network graph that depicts studies that have concurrently assessed lower limb 

biomechanics (including asymmetry) and introspective psychological state in healthy, actively 

participating competitive athletes. The maroon nodes represent lower limb biomechanical and/or 
asymmetry assessments conducted in the literature, while the grey nodes represent the introspective, 

psychological state assessments, with those of increasing size indicating a greater usage rate. The 

lines that intersect these nodes represent which assessments were conducted concurrently, with the 
width of such lines representing the proportion of assessments conducted concurrently. The lines 

are colour coded such that: 1) dark blue represents the relationships that were found for both lower 

limb biomechanics and asymmetry with an introspective, psychological state measure; 2) teal 

represents that a relationship was found between lower limb biomechanics and introspective, 
psychological state; 3) orange represents that a relationship was found between lower limb 

asymmetry and introspective, psychological state; and 4) grey indicates that there were no 

statistically significant relationships found between either lower limb biomechanics or asymmetry 

and introspective, psychological state. 

Overall, it is apparent that previous research studies that have taken a purely biomechanical 

or physiological approach to better understand sports performance and injury susceptibility in 

athletes are missing key information on athlete health status. Unfortunately, although it seems 

intuitive and has been suggested that a biopsychosocial model would be the most adept and 

adequate to capture the global health state of competitive athletes, such research is scarce, especially 

those that use longitudinal study designs to monitor changes over time attributable to modifiable 

risk factors for injury and indicators of sports performance. Expanding our understanding of 
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biomechanical patterns and fluctuations by providing context to these changes with respect to 

concurrent changes in psychological state may provide a more comprehensive and holistic 

representation of athlete health status.  

2.4: Holistic and Multidisciplinary Athletic Monitoring - Integrating Biomechanical and 

Psychological State Assessments 

2.4.1: Using a PCA Model as an Advanced Analytic Tool for Athletic Monitoring – Plausibility of 

Enhancing Sports Performance and Mitigating Injury Burden  

 Fortunately, the incorporation of an advanced analytical model, such as PCA, that reduces 

the dimensionality and in turn, summarizes and enhances the interpretability of large datasets (71) 

provides the unique opportunity to seamlessly monitor competitive student-athletes over time using 

a holistic and biopsychosocial model with a multitude of variables related to athlete health status.  

Briefly, PCA is a method utilized to convert interrelated variables into orthogonal and 

statistically linearly independent variables (i.e., PCs) while improving the outcome/variable ratio 

to ensure we are not overfitting our statistical model (71). This dimensionality reduction process is 

achieved by either feature elimination or feature extraction (71). Feature elimination involves 

dropping all variables except those believed to be most predictive of the outcomes of interest, which 

is advantageous for simplicity and interpretability’s sake, but it also means we neglect information 

from those eliminated features. Feature extraction involves the creation of new and independent 

variables (PCs), which are a combination of previously correlated independent variables, and the 

resultant PCs are ordered based on how predictive they are of the outcomes (dependent variables) 

based on the percentage of the variance explained in the data. When using the feature extraction 

method for PCA models, there are three ways of determining the cut-off of this dimensionality 

reduction method: 1) arbitrarily selecting which dimensions to retain, 2) determine the percentage 

of the variance explained in the data that you hope to be explained by your newly formed PCs and 

retain only those PCs that explain this threshold of variance in your data, or 3) plotting a cumulative 

proportion of the variance explained with successive PCs and a cut-off that exists once a large 

decrease in variance explained with successive PCs is identified visually (71). Together, a PCA 

model provides insight into the association between variables using a covariance matrix, the 

directionality of dispersion in the data using Eigenvectors, and the importance of this directionality 

with the use of Eigenvalues (71). In doing so, this analytical model offers the unique ability to 
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summarize correlated variables into resultant PCs that together describe overarching components 

of the data.  

PCA and other advanced analytical models, such as factor analysis, have been used 

previously to improve the interpretation of jump (73–75,147–154), change of direction and sprint 

speed (74,147,153–156), strength (74,147,154), and on-court or other sport-specific assessments of 

performance in basketball and other team-sports (153,157–161). Additionally, PCA has been used 

to determine modifiable risk factors for injury in basketball (162). Unfortunately, there have yet to 

be any longitudinal studies that have utilized these advanced analytical techniques and a holistic 

biopsychosocial approach in models of sports performance and injury susceptibility, especially in 

competitive student-athletes. Despite the paucity of longitudinal studies employing a 

biopsychosocial approach in models of sports performance and injury risk, it should be noted that 

there has been substantial work as of late using PCA in models of either sports performance or 

injury risk in basketball athletes.  

2.4.2: An Overview of Research that has used Principal Component or Factorial Analysis for 

Models of Sports Performance and Injury Susceptibility in Basketball Athletes 

 The preceding sections have provided brief overviews of the utility and pitfalls of the 

individualized domains of vertical jump testing (CMJ biomechanical analyses), sport-specific 

monitoring using IMUs, the importance of incorporating psychological state into routine athletic 

monitoring, and the ability to summarize large and multidisciplinary datasets using PCA. The 

purpose of this subsection of the literature review is to describe and critique the literature that has 

used PCA for models of sports performance and injury susceptibility in competitive basketball 

athletes. In doing so, this section should highlight the current research landscape for studies that 

have used advanced analytics to assess sports performance and injury risk in basketball athletes, 

whether any of these studies have employed a multidisciplinary and holistic biopsychosocial 

approach, and the gaps in the literature that necessitate the present investigation. 

 A recent systematic review conducted by Pino-Ortega and colleagues (163) highlighted 

studies that have utilized PCA in either soccer, basketball, or rugby for talent identification, analysis 

of performance related to the sport, and identifying how training design may be optimized to best 

serve the sport-specific and positional demands of these athletes. This systematic review found 34 

such studies, which cumulatively retained 3.9 ± 2.5 PCs, which explained 80 ± 0.1% of the total 
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variance in the data relating to any of the three aforementioned review study aims. Of these 34 

studies, 11 PCA studies possessed a sample of basketball athletes. For simplicity’s sake, the authors 

of this review clustered PCs into one of five overarching domains: technical, tactical, 

biomechanical, physical/physiological, and anthropometrics. In the subset of basketball studies 

analyzed, technical and physical or physiological PCs were the most studied (n = 5 for both), whilst 

biomechanical PCs were claimed to be evaluated in one of the 11 included studies. However, this 

study comprised judoka, handball, and soccer athletes alone. Thus, while kinetic and kinematic 

measures were incorporated in several studies, there were no PCs pertaining to the biomechanical 

status of basketball athletes in this systematic review. Furthermore, there was no mention of 

psychological state as a determinant of performance throughout this review. While a rating of 

perceived exertion was used in four of the 11 included studies, it was used as a measure of internal 

load, with no overt mention of the connection to psychological state or other measures of 

psychological state used in the literature. Another point of concern identified from the included 

studies in this systematic review is that while a handful of these monitored collegiate or professional 

male basketball athletes longitudinally throughout one or more competitive season(s), none did so 

with female basketball athletes, and none used a holistic or biopsychosocial approach.  

 In addition to the previously highlighted systematic review, several recent articles have 

employed PCA to analyze the performance of basketball athletes in traditional tasks such as 

jumping, change of direction and sprint speed, and musculoskeletal strength. 

 Laffaye and colleagues conducted three studies (150–152) which utilized a PCA model to 

determine kinetic and kinematic variables that contribute to vertical jumping performance and 

whether these jump profiles differed depending on the sporting background of athletes. The first of 

these studies (150) investigated whether jumping expertise impacted leg stiffness, defined as the 

ratio of the maximal ground reaction force during the active peak to leg shortening (i.e., change in 

leg length, which is defined as the distance from the body’s center of mass to the ball of the foot, 

or countermovement depth) at the time of maximal leg shortening, and jump profiles as determined 

through impulse parameters which were obtained from the force-time waveform. The sample 

comprised 18 male athletes (basketball: n = 5; volleyball: n = 5; high jump: n = 4; and handball: n 

= 4) and 5 male subjects naïve to jumping-based sports. The PCA model resulted in 2 PCs related 

to vertical force production, stiffness, and contact time (PC1), and leg shortening and jump height 

(PC2). Interestingly, the jump profiles of athletes from different sporting backgrounds were found 
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to differ when plotting PC scores, such that volleyball athletes demonstrated temporally driven 

jumping profiles (i.e., long impulse, low vertical ground reaction force, and small leg stiffness value 

(i.e., low maximal vertical ground reaction force relative to a high level of leg shortening)), while 

basketball athletes demonstrated heterogenous jumping profiles. The neutrality (i.e., no prevailing 

dominance of temporal or force-related vertical jump characteristics) of the basketball athletes’ 

jump profile is indicative and suggestive of the necessity for these athletes to be highly adaptable 

based upon the demands of in game-scenarios. These results were supported by the second study 

by this group (151), whereby basketball athletes again presented with a heterogenous jumping 

profile, which this time consisted of a temporal (i.e., impulse time, eccentric time, and vertical 

displacement of the center of mass/countermovement depth) and force-related (i.e., peak relative 

force and power production, and rate of force development) PC. In both studies, male subjects naïve 

to jumping demonstrated either ineffective utilization of the force component or poor jump 

performance as determined by jump height, which highlights the impact of training experience on 

these models of jumping performance. The last study conducted by Laffaye and colleagues (152) 

used a PCA model to determine jump profiles of collegiate and professional team-sport athletes and 

to ascertain whether these differed based on biological sex. Like the previous work by this group, 

there was a temporal (i.e., total duration of the jump, time spent in the eccentric phase, and the ratio 

of the time spent in the eccentric phase relative to the total jump duration) and force-driven 

(eccentric rate of force development and concentric vertical force production) PC that accounted 

for most of the variance (i.e., 77%) in jumping performance. It was found that basketball athletes 

displayed a weak force component with a temporally prevailing jump structure indicated by a large 

ratio between eccentric to total contact time. Regarding sex-based differences in jumping profiles, 

it was found that temporal patterns were comparable between male and female athletes. At the same 

time, the force component was substantially greater in male athletes (specifically, jump height, 

eccentric rate of force development, and concentric force production). 

 The authors postulated that these sex-based differences might be attributed to differences 

in muscle architecture and dimensions between male and female athletes, particularly differences 

in muscle thickness, size, and even pennation angle, which may be the underpinning factors which 

allow male athletes to produce greater levels of force and attain higher jump heights. However, 

without the concurrent physiological assessment of these cohorts of athletes, these underpinning 

factors are speculative based on previously defined differences identified in work outside the scope 

of this review. Additionally, while this group presents interesting findings on variance in jump 
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strategy between team-sport athletes, all three of these studies were cross-sectional, and athletes' 

vertical jump performance was assessed during one stand-alone testing session. Therefore, these 

results may not necessarily be indicative of between sport variations from a normative basis, as 

various extraneous factors may have negatively affected their ability to carry out these tests at a 

maximal level (e.g., pain, inadequate sleep, acute and chronic training loads, etc.). Furthermore, the 

variations in jump strategy may not represent what would be observed during different stages of 

competition across a competitive season and provide no information regarding the time course 

changes of these jump profiles and how these sport-related differences pertain to sports performance 

in game situations and injury risk.  

 Various other groups have conducted similar work pertaining to analyzing jump 

performance in basketball athletes. Floría and colleagues (73) followed a cohort of women’s 

basketball athletes through a randomized control trial to improve vertical jumping performance. 

The PCA demonstrated that the intervention group displayed positive and significant adaptations 

compared to the control group, which were characterized by a faster and deeper counter movement 

with greater propulsive force production, increasing impulse and jump height. Floría and colleagues 

computed their PCA models separately for the respective waveforms' force, displacement, and 

velocity data. This was done to identify how the intervention and control groups differed regarding 

their force production, displacement, and velocity characteristics throughout the vertical jump. 

While these researchers contributed some valuable results regarding the effect of a training 

intervention on jump performance as measured by force, displacement, and velocity-based 

biomechanical metrics using PCA, the application to sports performance during competition and 

injury risk were not explored, nor was a biopsychosocial model employed. 

 Rodríguez-Rosell and colleagues (149) assessed the correlation of various traditional and 

more sport-specific jumping tasks in basketball athletes using PCA. One PC relating to explosive 

power explained a minimum of 90% of the variance in jumping performance across all jumping 

tasks for basketball athletes, which all had high interrelationships to the PC (r = 0.79-0.99) and 

redundancy to one another. While these authors assessed a variety of jumping tasks, with some of 

which having enhanced specificty to basketball movements that would be seen in-game (i.e., one- 

or two-legged takeoff for a vertical jump with a running leadup), the assessment was cross-sectional 

and conducted during one testing session. Additionally, the testing methodology used to quantify 

jump-related data was the Optojump system. This system quantifies interruptions in communication 



MSc. Thesis – Joshua A.J. Keogh; McMaster University – Science, Kinesiology  

21 

 

between the units and, thus, uses these intervals to derive contact time and flight time, with the 

latter of these metrics used to extrapolate jump height. In doing so, these researchers limited their 

results and the cross-comparisons between jumping tests and sprint speed and leg strength to jump 

height while neglecting any kinematic or kinetic data that provides pertinent information about 

jump strategy (164).  

 The results of Rodríguez-Rosell and colleagues were paralleled in a study conducted by 

Markovic and colleagues (148), who also found one significant PC relating to explosive power, 

which was highly correlated to seven different jumping tests (r = 0.76-0.87). However, this study 

was completed using a sample of college students enrolled in exercise science who were not 

competitive athletes that were well-versed in jumping. Furthermore, this study was cross-sectional, 

and all subjects performed each of the different jumping tests during only one of the four testing 

sessions conducted. As such, not only were these subjects naïve to maximal vertical jumping 

protocols, but they were also not provided with a familiarization period in an attempt to mitigate 

the effects of such naivety. Given the work conducted by Laffaye and colleagues (150,151), which 

highlighted the importance of training expereince when using these PCA models for jumping 

performance, it is not possible to compare and extrapolate these vertical jump PCA makeup results 

to other PCA studies that assessed vertical jump performance in basketball athletes, as there was no 

comparator group with training experience in jumping sports in this investigation. 

 Lachlan and colleagues (75) presented interesting results that indicate that jump 

performance may be able to be characterized by principal components that relate to output (i.e., 

velocities and displacements), causal (i.e., forces and impulses), and timing metrics (i.e., proxies 

for underlying jump strategy). Unfortunately, this study did not incorporate basketball athletes, and 

given that previous work has identified that these jump profiles vary substantially based upon 

sporting background, it cannot be inferred that these results hold for basketball athletes. Moreover, 

this study assessed biomechanics explicitly using jump testing, and there was no incorporation of 

biomechanical assessment in a sport-specific context to bridge the gap between lab-based and in-

field assessments. 

 Another study which was conducted by Gómez-Carmona and colleagues (153) used a PCA 

model to characterize physical fitness profiles of semiprofessional basketball athletes (n = 13 

females and n = 13 males) and distinguish whether these were influenced by both biological sex 

and positional roles. Various field-based tests (e.g., jumping, sprinting, agility tasks) and simulated 
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on-court performance were assessed to develop profiles for these athletes. There were four PCs 

identified for both male and female basketball athletes, with two divergent and two common PCs 

between the sexes. The two PCs that were similar between the sexes related to aerobic capacity and 

in-game physical conditioning (PC1 for both) and unilateral jumping performance (PC4 for male 

and PC3 for female athletes). The two divergent PCs were as follows: bilateral jumping capacity 

and acceleration and curvilinear displacement for male athletes (PC2 and PC3, respectively), and 

bilateral jumping capacity and curvilinear displacement, and deceleration for female basketball 

athletes (PC2 and PC4, respectively). Similar to the work conducted by Laffaye and colleagues 

(152), it appears that physical fitness and jumping profiles differ between male and female 

basketball athletes, which suggests that models built out for one should not be universally used for 

the other.   

In the context of psychological state inclusion in basketball PCA literature, it is important 

to note that only 4/11 included studies in the previously mentioned systematic review conducted by 

Pino-Ortega and colleagues (163) utilized the rating of perceived exertion, a measure commonly 

employed for assessing psychological state in the context of neuromuscular fatigue. However, this 

was categorized as physical or physiological; thus, no connection was drawn to the psychological 

aspect inherent in the readiness to perform for athletes. Two other studies (161,162) not included 

in this systematic review used rate of perceived exertion while monitoring basketball athletes 

longitudinally over a competitive season (n = 4 months of in-season training for both studies).  

The first of these studies, conducted by Svilar and colleagues (161), used a PCA model to 

define interrelationships between external and internal training load and to distinguish how this 

differed between positional roles. It was found that rate of perceived exertion was highly correlated 

to the total amount of acceleration and deceleration (anteroposterior vector component) and change 

of direction (mediolateral vector component) experienced on-court across the season, irrespective 

of position. When stratifying the PCA model by position, two (centers) to three (forwards and 

guards) PCs arose which explained the original external training load variables; however, the 

relative importance of these original variables differed by playing position. Despite this group 

incorporating the rating of perceived exertion across the season, they failed to incorporate this 

measure into their PCA models and defined this model with on-court biomechanical data explicitly.  

The second study, which used rating of perceived exertion while monitoring basketball 

athletes longitudinally was conducted by Benson and colleagues (162). Surprisingly, this study 
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conducted by Benson and colleagues was the only study of all PCA studies in basketball athletes 

which used this advanced analytical model to determine differences in injured and uninjured 

athletes. Specifically, differences in injured and uninjured youth basketball athletes (n = 4 teams, 

with an even distribution of female and male teams) were identified and characterized at either one-

, two-, three-, or four-weeks preceding the injury. This study found that the first PC was related to 

overall workload magnitude, and the other PCs were representative of differences between specific 

workload variables and the number of weeks with which these workloads were accumulated. 

Injured youth basketball athletes demonstrated a low previous three- and four-week workload (i.e., 

chronic workload period) which was identified using PC2, coupled with a high previous one-week 

workload (i.e., the acute workload period) which was identified using PC1, suggesting an 

exceedance of the acute to chronic workload ratio (although this ratio was not directly calculated in 

the investigation by Benson and colleagues). Rating of perceived exertion (i.e., internal workload) 

demonstrated similar results to the external workload measures, such that it was lower in injured 

athletes in two-, three-, and four-weeks preceding overuse injury; however, some injured athletes 

displayed contradictory results (i.e., one standard deviation above the mean of uninjured 

participants across the same timeframe).  

Cumulatively, this study by Benson and colleagues provides some very important results 

for the workload-injury relationship and models of injury susceptibility in basketball athletes, as it 

is the first and only study to utilize PCA to summarize and identify differences between injured and 

uninjured male and female basketball athletes across a competitive season. However, this study 

only incorporated one measure of psychological state and did so in a sample of youth athletes. 

Given that previous work has identified differences in sports performance between naïve and highly 

trained athletes (150,151), there is the potential that the importance of training experience could 

transverse to models of injury risk, which would perturb the ability to use such findings in a 

collegiate or professional athletic population. Moreover, without an adequate representation of both 

the biomechanical and psychological state of the athlete, there might be underpinning and 

contributting factors to acute and/or oversue injury that Benson and colleagues do not realize. 

Unfortunately, there are some overarching trends in all the aforementioned studies which 

utilized a PCA model to assess and characterize jumping or other measures of sports performance 

– only six of these studies (161,162,165–168) monitored or attempted to characterize psychological 

stressors/state as a determinant of performance, with only three of these studies in basketball 
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athletes (161,162,165). Furthermore, only five studies (153,157–160) monitored biomechanics in a 

sport-specific context using wearable technology. This purely physical lens, whether physiological 

and/or biomechanical requirements and profiles in sports performance models, fails to adequately 

represent the global state of the athlete. Furthermore, the lack of assessment in sport-specific 

contexts during practice and/or in-game perturbs the ability of these researchers to draw definitive 

conclusions of how these traditional lab-based biomechanical assessments relate to sports 

performance and injury susceptibility in the environment that matters most. Studies in this space 

have done an abysmal job at adequately representing the global state of these athletic populations, 

which, unfortunately, persists in other studies which utilized PCA to model performance during 

change of direction and sprint speed (74,147,153–156), strength (74,147,154), and on-court 

performance (153,157–160). Ultimately, there is a dire need for the integration of psychological 

state and in-field or sport-specific monitoring using wearable sensors, such as IMUs, in conjunction 

with traditional performance assessments (i.e., CMJ and other proxies for sport-related 

performance) if we are to enhance our ability to detect a change and improve our overall 

understanding of contributory factors to sports performance and injury susceptibility in competitive 

basketball athletes, and athletic populations at large. 

2.5: Synopsis of Literature Review 

 Cumulatively, while there has been substantial research conducted in the individualized 

domains of lower limb biomechanics, both in a traditional lab-based setting (i.e., CMJ testing using 

force plates) and in sport-specific contexts (i.e., on-court or on-field assessments using IMUs and 

other wearable sensors), there has yet to be a push towards the integration of these assessments to 

define a more comprehensive biomechanical profile for athletic populations. Additionally, while 

sport psychology is well-studied, researchers and practitioners often treat biomechanics and 

psychology as separate entities rather than contextualizing changes in one domain with the other in 

a longitudinal fashion. While each of these domains provides important information about 

biomechanical and psychological factors that may be associated with sports performance and/or 

injury risk, they can each be missing the global state of the athlete. Such isolated monitoring 

practices are analogous to the parable of “The Blind Men and The Elephant”, whereby each 

assessment of the elephant, or in this case, the athlete, is not incorrect in its own right but is 

nevertheless widely misinterpreting the overall state of the elephant or athlete when not taken 

together. 
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 Additionally, those studies that have integrated these domains for contextual purposes have 

rarely used a longitudinal study design to monitor changes over time relative to normative, 

individualized baseline values. Furthermore, there has been a disproportionate selection bias in 

favour of male competitive athletes with an underrepresentation of female athletes, who have been 

reported to sustain more severe lower extremity injuries than their male counterparts. It is worthy 

noting that a recent scoping review conducted by Keogh and colleagues (67) highlighted and 

delineated significant relationships between lower limb biomechanics and asymmetry to 

introspective psychological state (which primarily pertained to the rating of perceived exertion and 

pain) that have been reported in the literature (Figure 4); however, these authors were unable to 

draw definitive conclusions about how these holistic assessments relate to sports performance and 

injury risk given the scoping nature of their review, rather than a meta-analytic approach.  

Therefore, it is evident that there is a dire need for longitudinal studies that employ a 

holistic, biopsychosocial approach in models of sports performance and injury susceptibility in 

competitive athletes, especially female athletes. A holistic, biopsychosocial approach can be 

accomplished using advanced statistical models such as PCA which summarizes correlated 

variables into resultant PCs that together describe overarching components of the multivariate 

biomechanical data, which are concurrently monitored with fluctuations in psychological state. In 

doing so, a better understanding of contributory factors to sports performance and injury risk might 

be realized in competitive student-athletes and may improve patient-centred preventive and 

prognostic medical practices.  
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Chapter 3: Thesis Research Questions and Hypotheses 

Research Questions 

The overarching aim of this project was to improve athletic monitoring practices by 

examining the utility of integrating on- and off-court biomechanical data into more holistic metrics 

(i.e., PCs that define overarching biomechanical concepts – jump power, asymmetry, etc.), with 

concurrent longitudinal monitoring of psychological state to contextualize these subject-specific 

biomechanical fluctuations. Specifically, data collected over two competitive collegiate female 

basketball seasons were used in a PCA model to support the following research questions: 

(i) Correlations Between On-Court and Vertical Jump Biomechanics: Are on-court, 

sensor-derived, and force-plate-derived vertical jump metrics significantly correlated 

throughout the 2021-2022 and 2022-2023 competitive collegiate female basketball 

seasons? 

(ii) Reliability of Biomechanical Principal Components and Introspective, Psychological 

State: What is the reliability of the biomechanical PCs (i.e., on-court and 

countermovement jump (CMJ) biomechanics) and introspective, psychological state 

metrics across the 2022-2023 competitive, collegiate female basketball preseason? 

(iii) Longitudinal PCA Application & Association Between Biomechanical and 

Introspective, Psychological State: 

(A) Are PC scores derived from a biomechanical model (i.e., on-court and vertical 

jump data) significantly correlated with introspective, psychological state (e.g., 

self-reported pain, sleep quality, sleep quantity, etc.) across the 2022-2023 regular 

season?  

(B) Could we detect subject-specific meaningful changes in these measures using PCs 

and associated MDC statistics? 

Hypotheses 

 For the initial research question, following previous research by Lachlan and colleagues 

and Keogh and colleagues, which found biomechanical metrics to be significantly correlated 

(75,169), we hypothesized that on-court and vertical jump biomechanics would be significantly 

correlated, justifying the computation and utility of a PCA model for research questions (ii) and 
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(iii) (i.e., the reliability of the biomechanical PCA model and introspective, psychological state, and 

longitudinal PCA application and detection of minimally important, and subject-specific changes, 

respectively). 

Regarding the second research question, we hypothesized that the biomechanical PCA 

model and introspective, psychological state metrics would display good-to-excellent reliability 

across the 2022-2023 preseason, which is in line with previous work by Keogh and colleagues who 

conducted a similar use-case and longitudinal PCA investigation (169). If the biomechanical PCs 

and introspective, psychological state metrics are highly reliable metrics, as hypothesized, this will 

allow us to look at in-season and subject-specific changes in these constructs. We will also highlight 

the use of this approach for the purposes of “red-flagging” individualized fluctuations from 

normative patterns, which could potentially aid in the clinical decision-making process. 

As for the third and final research question, while self-reported pain and rate of perceived 

exertion can be associated with some biomechanical measures (e.g., jump testing, lower-limb 

strength, range of motion, and lower-limb asymmetry – (67)), the associations between other 

introspective and biomechanical metrics are relatively unknown. Nevertheless, we hypothesized 

that changes in biomechanical variables collected during vertical jump testing and on-court 

practices would significantly correlate with changes in the introspective, psychological state 

measures collected in the 2022-2023 basketball regular season. Additionally, and in more of an 

exploratory lens, we hypothesized that subject-specific MDC statistics would provide a feasible and 

practical means of “red-flagging” alterations in these outcome measures, highlighting the ability to 

provide patient-centred prognostic and preventive medical practices using this approach. 
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Chapter 4: Research Methodology 

4.1: Study Design 

 This study was a longitudinal cohort design that collected repeated data on athletes across 

multiple seasons. Specifically, biomechanical, and psychological data were collected in two 

consecutive seven-month collegiate female basketball seasons (i.e., the 2021-2022 and 2022-2023 

competitive seasons) at McMaster University. These data were collected during three consecutive 

training phases, namely, one-month of offseason training, two-months of preseason training, and 

during the four-month regular season. Data were collected weekly, such that CMJ testing and 

psychological state questionnaires were completed on Monday mornings, while on-court 

biomechanical assessments with IMUs were completed during three weekly basketball practices. 

All data (i.e., CMJ, on-court IMU, and psychological state) were then summarized as weekly 

averages. Research question (i) examined associations between biomechanical variables across the 

2021-2022 and 2022-2023 seasons. Additionally, the biomechanical PCA model for research 

questions (ii) and (iii) was developed from 2021-2022 data and applied to 2022-2023 season data 

to assess the relationship between biomechanical PCs and introspective, psychological state data 

and to highlight the ability to “red-flag” subject-specific alterations in these outcome measures.  

4.2: Sample 

 Sixteen female collegiate basketball athletes (eight guards, five forwards, and three centers) 

from McMaster University volunteered to participate in the study: age 20 (2) years, height 178 (9) 

cm, body mass 73 (11) kg, and training experience 3 (1) years. All athletes were free from 

musculoskeletal injury or disorder at initial screening that would perturb their performance at the 

initiation of the 2021-2022 competitive season. Typical sample size calculations were challenging 

for this project as the pool of potential participants was limited to the number of players on the 

McMaster Women’s Basketball team. However, to counter this limitation, given the study involves 

a within-subject design, many samples were collected within each individual participant (e.g., 28 

weeks x 2 seasons = up to 56 potential weeks of data for each participant), which resulted in 

sufficient data for running PCA models and within-subject analyses (170).  

4.3: Protocol  

Data Collected: First, on-court impact asymmetry (overall impact asymmetry as well as 

impact acceleration asymmetry stratified into low-, medium-, and high-intensity bins; i.e., 
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overall/averaged, 1-5g, 6-20g, and 21-200+g, respectively), impact load, step count, and average 

intensity (i.e., n = 7 metrics) were assessed as weekly average values using peak resultant linear 

accelerations from IMUs (iMeasureU, Vicon) placed bilaterally anterosuperior to the medial 

malleoli in on-court practices. Second, between-limb differences in force production during 

braking-, propulsive-, and landing-phases of movement, peak power production during the braking- 

and propulsive-phases of movement, jump strategy metrics (i.e., countermovement depth (CMD), 

time to takeoff, and RSI mod), and JH (i.e., n = 10 metrics, cumulatively) were assessed weekly 

with vertical jump tests (i.e., the countermovement jump without an arm-swing) using bilateral 

force plates (Hawkin Dynamics). The reliability of these CMJ metrics was assessed in work parallel 

to this thesis by Keogh and colleagues (169), in which 17/18 CMJ metrics displayed excellent 

reliability (ICC ≥ 0.90) when assessed longitudinally. Additionally, I also compared the ecological 

validity of these force-plate derived inter-limb asymmetry metrics relative to the aforementioned 

on-court asymmetry metrics (52), which highlighted the need to measure lower-limb asymmetry in 

sport-specific contexts, as this metric was deemed to be highly task-specific in concordance with 

work completed by other researchers in this field (50,51). Finally, weekly questionnaires were 

completed via Google Forms, on the athletes’ own volition, on Monday mornings using a 

questionnaire that was conceived with the McMaster University Strength and Conditioning team, 

Biomechanics Laboratory, and NeuroFit Laboratory. Specifically, this weekly questionnaire was 

comprised of the following self-report measures: self-reported pain, sleep quality and sleep 

quantity, a general feeling scale, and academic workload (i.e., n = 5 metrics), which were assessed 

using the Visual Analogue Pain Scale (171), a subsection of the Pittsburgh Sleep Quality Index 

(172), and a 0-10 Likert scale, respectively. Thus, seven on-court metrics, ten metrics during CMJ 

testing, and five metrics on introspective, psychological state and well-being via the previously 

noted questionnaire were collected across the two, seven-month study periods. 

Testing Procedures: CMJ testing was conducted on Monday mornings in which 

participants first completed a low- to moderate-intensity dynamic warm-up to prepare the 

neuromuscular system. This dynamic warm-up was led by the strength and conditioning staff and 

was the same for all athletes. Two portable force platforms (Hawkin Dynamics, Westbrook, ME, 

USA) were utilized to collect the ten CMJ biomechanical variables of interest at a sampling 

frequency of 1000 Hz; this method of biomechanical assessment during vertical jump testing has 

been deemed valid when compared to the in-laboratory gold standard (173,174). Subjects were 

instructed to stand still with feet shoulder-width apart on the dual force plates, allowing for proper 
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establishment of body weight calculation. Additionally, subjects were told to self-select CMD, as 

this has been said to allow for fluid movement, as would regularly be seen when jumping in 

competition, without tampering with the reliability of the metrics obtained (47,175). No instructions 

were provided for the landing phase of the CMJ aside from ensuring that both feet made contact 

with the force platform prior to concluding the downward motion of this phase of movement and, 

subsequently, returning to an upright standing position (80), which was accomplished by providing 

synchronous visual feedback of bilateral weight distribution on either a monitor or portable device 

in front of the athletes (47). Additionally, jumps were visually monitored by the research team such 

that those attempts in which an athlete was unable to land with both feet on the force platform or 

failed to return to an upright standing position to conclude the trial were identified as mistrials, 

discarded, and the attempt was then repeated after the provision of sufficient rest (80,81). Athletes 

were then verbally cued to jump as high as possible while also completing the movement as quickly 

as possible to effectively utilize a stretch-shortening cycle and mimic the explosive performance in 

a game (18,29). All jumps were completed with hands placed on hips and without an arm-swing 

(47,176). Athletes completed three jumps per day, with a minimum of 30-seconds rest between 

each trial. Subsequently, the average of these three jumps was used to determine CMJ metrics for 

each weekly session, as this is preferable to using the best jump approach (177). However, if an 

individual jump had a JH that deviated by ≥20% within a session, then this specific jump attempt 

was removed from the computation of the weekly average and, as such, was excluded from 

statistical analyses. The impulse-momentum theorem and take-off velocity were used to derive JH, 

rather than flight time, as this has been previously noted as the gold standard (47,82).  

During on-court sessions, participants were fitted with two IMUs (Vicon IMeasureU Step, 

Denver, CO), which were positioned bilaterally anterosuperior to the medial malleoli. These 

wearable sensors collected sessional impact load, step count, average intensity, and impact 

asymmetry data, as well as impact asymmetry stratified into low, medium, and high-intensity bins 

(1-5g, 6-20g, and 21-200+g, respectively) throughout 90- to 120-minute on-court basketball 

training sessions (178). CMJ testing was completed once per week, while on-court sessions were 

completed three times per week across the 2021-2022 and 2022-2023 competitive collegiate 

basketball seasons (i.e., seven-months each).  
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All previously outlined biomechanical data were computed from either ground reaction 

force data or using resultant accelerometer data from IMU’s, all obtained from the respective 

manufacturer-provided software. 

Model Development: A total of seven-months of data were collected during the 2021-2022 

season, resulting in a total of 448 possible weekly observations (28 weeks x 16 athletes) of the 

abovementioned 22 variables. Coefficients for the PC analysis were derived from the resulting data 

matrix, which was completed using the “pca” function in MATLAB R2021a (MathWorks, Inc., 

Natick, MA, USA) following the standardization of variables (i.e., mean of zero and standard 

deviation of one). Standardization of input variables was required given the varying scales of our 

biomechanical variables (71,179). This function utilizes the singular value decomposition approach 

to consolidate commonalities between the original biomechanical variables by uniquely loading 

(i.e., rotating) them onto new variables (i.e., PCs). Therefore, the newly developed PCs utilize 

commonalities between all original biomechanical variables (i.e., on-court and vertical jump 

biomechanics), but they are orthogonal (i.e., uncorrelated). Further, these newly developed PCs are 

derived in order of maximum variance explained in the data and presented in descending order from 

PC1 to n-PC. This reduces the dimensionality of the data whereby a limited number of new 

independent variables (PCs) were selected based upon a threshold in which those PCs that explain 

≥90% of the variance in the data (71,179) were retained in the final PCA model. While the number 

of retained PCs can also be determined visually through a scree plot analysis (71,179) by finding 

the ‘elbow’ in the plot of variance or taking only those with an eigenvalue >1, as per the Kaiser rule 

(179), these retention approaches were initially conceived for factor analysis, not for PCA, and 

often retain an insufficient number of PCs (179). Jolliffe (180) suggested that a lower eigenvalue 

cutoff of 0.7 should be used based on simulation studies and following this recommendation, we 

cross-validated our ≥90% variance threshold retention approach with a scree plot retention approach 

using this 0.7 eigenvalue cutoff. In other words, we used the ≥90% approach as the primary method 

for retaining PCs but confirmed this aligned well with the two previously proposed methods. As 

such, the final PCA model describes the overarching components of the biomechanical state of 

participants by providing insight regarding the association between original variables in a 

covariance matrix, the directionality of dispersion in the data via outputted Eigenvectors, and the 

importance of the directionality of this data via computed Eigenvalues. Therefore, these model 

coefficients allowed for PC scores, defining a more holistic measure of the biomechanical state of 
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the athlete, to be computed weekly for each athlete during the 2022-2023 season, and ultimately, 

were utilized to address research questions (ii) and (iii).  

4.4: Statistical Analysis 

 i) Correlation between on-court and vertical jump biomechanics: The correlation between 

on-court and vertical jump biomechanical metrics was assessed using a series of Pearson’s 

correlation coefficients (α = 0.05, β = 0.20). Given the repeated measures of these data, it is 

important to note that the independence of observations assumption was violated for this correlation 

analysis. While this limits the potential interpretation of these correlations, it remains consistent 

with the rationale and use of a PCA as a data reduction tool (71,179). The presence of correlations 

in these metrics would give credence to the use of a PCA as it suggests these metrics have some 

redundancy and share commonalities to similar, underlying components of biomechanical 

movement patterns. ii) Reliability of biomechanical PCA model and introspective, psychological 

state: The reliability of the biomechanical PCs and introspective, psychological state metrics were 

assessed across five consecutive and unperturbed (i.e., no scheduled periods of intensified 

competition or extended rest that would implicate the consistency of these measures) weeks in the 

2022-2023 preseason using an intraclass correlation coefficient (ICC3,k) with 95% confidence 

intervals, standardized error of the measurement (SEM), and minimum detectable change (MDC95) 

statistics (77,181). We interpreted ICCs as poor (<0.5), moderate (0.5-0.75), good (0.75-0.89), and 

excellent (>0.9) (182). iii) Longitudinal PCA application & association between biomechanical 

and introspective, psychological state: The relationship of subject-specific weekly biomechanical 

PC scores to introspective, psychological state metrics were assessed using Pearson’s correlation 

coefficients (α = 0.05, β = 0.20). Additionally, these relationships were examined using a repeated 

measures correlation statistical approach to determine the common within-individual associations 

between these continuous variables (i.e., biomechanical PCs and psychological state), while 

ensuring that the assumption of independence of observations was not violated by controlling for 

the effect of between-individual variance (183). Additionally, and as previously outlined for 

research question (ii), standardized error of the measurement (SEM) and MDC statistics (77) were 

computed for “red-flagging” and identifying subject-specific statistically important levels of change 

in our biomechanical PCs and introspective, psychological state metrics across the 2022-2023 

season. These MDC statistics were defined using preseason data as normative baseline values and 

were carried forth across the season to discern when subjects had exhibited fluctuations outside of 

their normative patterns demonstrated in the preseason. This methodological approach has been 
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proven reliable and was applied in a similar use-case example by Keogh and colleagues (169) in a 

longitudinal (i.e., across one competitive season) jump-testing PCA model. All statistical analyses 

aside from the repeated measures correlation (i.e., completed using RStudio (RStudio Team, 2021) 

and the “rmcorr” R package) were performed using MATLAB R2021a (MathWorks, Inc., Natick, 

MA, USA).  
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Chapter 5: Results 

5.1: Summary of Data Collected 

 The sixteen female basketball athletes were prospectively monitored across two 

competitive, collegiate basketball seasons, which consisted of i) two-to-three on-court sessions per 

week in which IMU-derived metrics were obtained, ii) three CMJ attempts per week completed on 

Monday mornings in which force-plate-derived metrics were obtained, and iii) a weekly 

questionnaire which was completed once per week on Monday mornings to obtain introspective, 

psychological state data. Across the two competitive collegiate basketball seasons, a total of 1,226 

on-court sessions were collected (mean per athlete = 77; SD per athlete = 26), 1,936 CMJ trials 

were performed (mean per athlete = 121; SD per athlete = 42), and 910 weekly self-reported 

questionnaires were completed (mean per athlete = 57; SD per athlete = 28). 

5.2: Research Question I – Correlations Between On-Court and Countermovement Jump 

Biomechanics 

 It was found that on-court and CMJ biomechanical metrics obtained from IMUs, and dual 

force plates were correlated between and within systems (Table 1). In terms of the inter-connectivity 

of these biomechanical data (i.e., relationships between systems), it was found that 58 of 70 total 

relationships reached statistical significance (r = |0.10, 0.58|; p < 0.05). Meanwhile, when looking 

at the intra-connectivity of biomechanical data within systems, 13 of 21 and 41 of 45 total 

relationships reached statistical significance for on-court (r = |0.11, 0.87|; p < 0.05) and CMJ 

biomechanical metrics (r = |0.12, 0.94|; p < 0.05), respectively. For example, on-court total impact 

load was closely related to total step count and average intensity (r = 0.75, and 0.83, respectively; 

p < 0.001), as were the four on-court asymmetry metrics (r = |0.13, 0.87|; p < 0.01). For the within-

system relationships identified for CMJ biomechanics, strong correlations were observed between 

“explosive-based metrics” such as JH, peak relative propulsive power, and RSI mod (r = 0.85, 0.94; 

p < 0.001), as well as “CMJ asymmetry metrics” such as peak braking force, peak propulsive force, 

average braking rate of force development, and peak landing force asymmetry (r = |0.29, 0.87|; p < 

0.001). These biomechanical associations also happened to cross systems, but most related to 

loading/intensity and explosive capabilities (i.e., on-court total impact load and average intensity 

with JH, peak relative propulsive power, and RSI mod; r = 0.46, 0.58; p < 0.001). Interestingly, on-

court and CMJ asymmetry displayed very weak associations (r = |0.11, 0.27|; p < 0.05), suggesting 
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that these biomechanical asymmetries might be distinct. Cumulatively and per our hypothesis, the 

correlated nature of these biomechanical metrics supported the implementation of a biomechanical 

PCA model to reduce the dimensionality of the biomechanical data before conducting research 

questions (ii) and (iii) (71,179).  
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Table 1. Correlations between on-court inertial measurement unit-derived and force plate-derived countermovement jump biomechanical 

metrics in a cohort of collegiate female basketball athletes from data across two competitive seasons. 

 TIL TSC Ave 

Int 

Impact 

Asym 

Low-

G 

Asym 

Medium-

G Asym 

High-

G 

Asym 

JH CMD TTTo PRBP PRPP PBF 

Asym 

PPF 

Asym 

Ave 

BRFD 

Asym 

PLF 

Asym 

RSI 

Mod 

TIL 
1.00 

(1.00, 

1.00) 

0.75 

(0.70, 

0.79) 

*** 

0.83 

(0.80, 

0.86) 

*** 

0.14 

(0.04, 

0.23) ** 

0.08 (-

0.02, 

0.18) 

0.08 (-

0.02, 0.18) 

-0.11 

(-0.21, 

-0.01) 

* 

0.46 

(0.38, 

0.54) 

*** 

-0.04 

(-0.14, 

0.06) 

-0.11 

(-0.21, 

-0.01) 

* 

-0.12 

(-0.22, 

-0.02) 

* 

0.50 

(0.42, 

0.57) 

*** 

-0.33 (-

0.42, -

0.24) 

*** 

-0.36 (-

0.45, -

0.27) 

*** 

-0.36 (-

0.44, -

0.26) 

*** 

-0.18 

(-0.27, 

-0.08) 

*** 

0.47 

(0.39, 

0.55) 

*** 

TSC 0.75 

(0.70, 

0.79) 

*** 

1.00 

(1.00, 

1.00) 

0.28 

(0.19, 

0.37) 

*** 

0.08 (-

0.03, 

0.17) 

0.07 (-

0.03, 

0.17) 

0.05 (-

0.05, 0.15) 

-0.05 

(-0.15, 

0.05) 

0.16 

(0.06, 

0.25) 

** 

0.10 

(0.00, 

0.20) 

-0.15 

(-0.24, 

-0.05) 

** 

-0.10 

(-0.20, 

0.00) * 

0.19 

(0.09, 

0.28) 

*** 

-0.11 (-

0.21, -

0.01) * 

-0.17 (-

0.27, -

0.07) 

*** 

-0.08 (-

0.18, 

0.02) 

-0.05 

(-0.15, 

0.05) 

0.22 

(0.12, 

0.31) 

*** 

Ave Int 0.83 

(0.80, 

0.86) 

*** 

0.28 

(0.19, 

0.37) 

*** 

1.00 

(1.00, 

1.00) 

0.13 

(0.03, 

0.23) * 

0.07 (-

0.03, 

0.17) 

0.04 (-

0.06, 0.14) 

-0.12 

(-0.22, 

-0.02) 

* 

0.56 

(0.49, 

0.63) 

*** 

-0.17 

(-0.26, 

-0.07) 

** 

-0.02 

(-0.12, 

0.08) 

-0.09 

(-0.19, 

0.01) 

0.58 

(0.50, 

0.64) 

*** 

-0.39 (-

0.48, -

0.31) 

*** 

-0.38 (-

0.46, -

0.29) 

*** 

-0.46 (-

0.53, -

0.37) 

*** 

-0.24 

(-0.33, 

-0.14) 

*** 

0.50 

(0.42, 

0.57) 

*** 

Impact Asym 0.14 

(0.04, 

0.23) 

** 

0.08 (-

0.03, 

0.17) 

0.13 

(0.03, 

0.23) * 

1.00 

(1.00, 

1.00) 

0.65 

(0.59, 

0.71) 

*** 

0.62 (0.55, 

0.68) *** 

-0.87 

(-0.89, 

-0.85) 

*** 

0.16 

(0.06, 

0.26) 

** 

-0.06 

(-0.16, 

0.04) 

-0.13 

(-0.23, 

-0.03) 

** 

-0.25 

(-0.34, 

-0.15) 

*** 

0.20 

(0.10, 

0.29) 

*** 

-0.15 (-

0.25, -

0.06) 

** 

-0.23 (-

0.32, -

0.13) 

*** 

-0.13 (-

0.23, -

0.03) 

** 

-0.26 

(-0.35, 

-0.16) 

*** 

0.22 

(0.12, 

0.31) 

*** 

Low-G Asym 
0.08 (-

0.02, 

0.18) 

0.07 (-

0.03, 

0.17) 

0.07 (-

0.03, 

0.17) 

0.65 

(0.59, 

0.71) 

*** 

1.00 

(1.00, 

1.00) 

0.13 (0.03, 

0.23) ** 

-0.55 

(-0.62, 

-0.48) 

*** 

0.08 (-

0.03, 

0.17) 

0.07 (-

0.03, 

0.17) 

-0.22 

(-0.32, 

-0.13) 

*** 

-0.20 

(-0.29, 

-0.10) 

*** 

0.10 

(0.00, 

0.20) 

-0.16 (-

0.25, -

0.06) 

** 

-0.18 (-

0.28, -

0.08) 

*** 

-0.14 (-

0.24, -

0.04) 

** 

-0.15 

(-0.25, 

-0.05) 

** 

0.18 

(0.08, 

0.27) 

*** 

Medium-G Asym 
0.08 (-

0.02, 

0.18) 

0.05 (-

0.05, 

0.15) 

0.04 (-

0.06, 

0.14) 

0.62 

(0.55, 

0.68) 

*** 

0.13 

(0.03, 

0.23) 

** 

1.00 (1.00, 

1.00) 

-0.56 

(-0.63, 

-0.49) 

*** 

0.08 (-

0.02, 

0.18) 

-0.11 

(-0.21, 

-0.01) 

* 

-0.19 

(-0.28, 

-0.09) 

*** 

-0.29 

(-0.38, 

-0.19) 

*** 

0.16 

(0.06, 

0.25) 

** 

-0.11 (-

0.21, 

0.01) * 

-0.22 (-

0.31, -

0.12) 

*** 

-0.11 (-

0.21, 

0.01) * 

-0.27 

(-0.36, 

-0.18) 

*** 

0.19 

(0.09, 

0.28) 

*** 

High-G Asym 
-0.11 

(-0.21, 

-0.01) 

* 

-0.05 

(-0.15, 

0.05) 

-0.12 

(-0.22, 

-0.02) 

* 

-0.87 (-

0.89, -

0.85) 

*** 

-0.55 

(-0.62, 

-0.48) 

*** 

-0.56 (-

0.63, -

0.49) *** 

1.00 

(1.00, 

1.00) 

-0.18 

(-0.27, 

-0.08) 

***  

0.05 (-

0.05, 

0.15) 

0.12 

(0.01, 

0.21) * 

0.21 

(0.11, 

0.30) 

*** 

-0.24 (-

0.33, -

0.14) 

*** 

0.14 

(0.04, 

0.24) 

** 

0.23 

(0.13, 

0.32) 

*** 

0.14 

(0.04, 

0.23) 

** 

0.26 

(0.16, 

0.35) 

*** 

-0.22 

(-

0.31, -

0.12) 

*** 

JH 0.46 

(0.38, 

0.54) 

*** 

0.16 

(0.06, 

0.25) 

** 

0.56 

(0.49, 

0.63) 

*** 

0.16 

(0.06, 

0.26) ** 

0.08 (-

0.03, 

0.17) 

0.08 (-

0.02, 0.18) 

-0.18 

(-0.27, 

-0.08) 

*** 

1.00 

(1.00, 

1.00) 

-0.43 

(-0.51, 

-0.34) 

*** 

-0.01 

(-0.11, 

0.09) 

-0.32 

(-0.41, 

-0.23) 

*** 

0.94 

(0.93, 

0.95) 

*** 

-0.51 (-

0.58, -

0.44) 

*** 

-0.50 (-

0.57, -

0.42) 

*** 

-0.46 (-

0.54, -

0.38) 

*** 

-0.43 

(-0.51, 

-0.35) 

*** 

0.85 

(0.82, 

0.87) 

*** 

CMD 
-0.04 

(-0.14, 

0.06) 

0.10 (-

0.00, 

0.20) 

-0.17 

(-0.26, 

-0.07) 

** 

-0.06 (-

0.16, 

0.04) 

0.07 (-

0.03, 

0.17) 

-0.11 (-

0.21, -

0.01) * 

0.05 (-

0.05, 

0.15) 

-0.43 

(-0.51, 

-0.34) 

*** 

1.00 

(1.00, 

1.00) 

-0.50 

(-0.57, 

-0.42) 

*** 

0.21 

(0.11, 

0.31) 

*** 

-0.21 (-

0.30, -

0.11) 

*** 

0.27 

(0.18, 

0.36) 

*** 

0.21 

(0.11, 

0.30) 

*** 

0.25 

(0.16, 

0.35) 

*** 

0.32 

(0.23, 

0.41) 

*** 

-0.08 

(-

0.18, -

0.02)  
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TTTo 
-0.11 

(-0.21, 

-0.01) 

* 

-0.15 

(-0.24, 

-0.05) 

** 

0.02 (-

0.12, 

0.08) 

-0.13 (-

0.23, -

0.03) ** 

-0.22 

(-0.32, 

-0.13) 

*** 

-0.19 (-

0.28, -

0.09) *** 

0.12 

(0.01, 

0.21) * 

0.01 (-

0.11, 

0.09) 

-0.50 

(-0.57, 

-0.42) 

*** 

1.00 

(1.00, 

1.00) 

0.53 

(0.45, 

0.60) 

*** 

-0.13 (-

0.23, -

0.03) * 

0.06 (-

0.04, 

0.16) 

0.13 

(0.03, 

0.23) * 

0.12 

(0.02, 

0.21) * 

-0.03 

(-0.13, 

0.07) 

-0.51 

(-

0.58, -

0.43) 

*** 

PRBP 
-0.12 

(-0.22, 

-0.02) 

* 

-0.10 

(-0.20, 

0.00) * 

0.09 (-

0.19, 

0.01) 

-0.25 (-

0.34, -

0.15) 

*** 

-0.20 

(-0.29, 

-0.10) 

*** 

-0.29 (-

0.38, -

0.19) *** 

0.21 

(0.11, 

0.30) 

*** 

-0.32 

(-0.41, 

-0.23) 

*** 

0.21 

(0.11, 

0.31) 

*** 

0.53 

(0.45, 

0.60) 

*** 

1.00 

(1.00, 

1.00) 

-0.24 (-

0.33, -

0.14) 

*** 

0.17 

(0.07, 

0.27) 

*** 

0.28 

(0.18, 

0.37) 

*** 

0.22 

(0.12, 

0.32) 

*** 

0.16 

(0.06, 

0.26) 

** 

-0.55 

(-

0.61, -

0.47) 

*** 

PRPP 0.50 

(0.42, 

0.57) 

*** 

0.19 

(0.09, 

0.28) 

*** 

0.58 

(0.50, 

0.64) 

*** 

0.20 

(0.10, 

0.29) 

*** 

0.10 

(0.00, 

0.20) 

0.16 (0.06, 

0.25) ** 

-0.24 

(-0.33, 

-0.14) 

*** 

0.94 

(0.93, 

0.95) 

*** 

-0.21 

(-0.30, 

-0.11) 

*** 

-0.13 

(-0.23, 

-0.03) 

* 

-0.24 

(-0.33, 

-0.14) 

*** 

1.00 

(1.00, 

1.00) 

-0.48 (-

0.55, -

0.40) 

*** 

-0.49 (-

0.56, -

0.41) 

*** 

-0.40 (-

0.48, -

0.31) 

*** 

-0.43 

(-0.51, 

-0.34) 

*** 

0.87 

(0.84, 

0.89) 

*** 

PBF Asym 
-0.33 

(-0.42, 

-0.24) 

*** 

-0.11 

(-0.21, 

-0.01) 

* 

-0.39 

(-0.48, 

-0.31) 

*** 

-0.15 (-

0.25, -

0.06) ** 

-0.16 

(-0.25, 

-0.06) 

** 

-0.11 (-

0.21, 0.01) 

* 

0.14 

(0.04, 

0.24) 

** 

-0.51 

(-0.58, 

-0.44) 

*** 

0.27 

(0.18, 

0.36) 

*** 

0.06 (-

0.04, 

0.16) 

0.17 

(0.07, 

0.27) 

*** 

-0.48 (-

0.55, -

0.40) 

*** 

1.00 

(1.00, 

1.00) 

0.87 

(0.84, 

0.89) 

*** 

0.73 

(0.68, 

0.78) 

*** 

0.43 

(0.34, 

0.51) 

*** 

-0.46 

(-

0.53, -

0.37) 

*** 

PPF Asym 
-0.36 

(-0.45, 

-0.27) 

*** 

-0.17 

(-0.27, 

-0.07) 

*** 

-0.38 

(-0.46, 

-0.29) 

*** 

-0.23 (-

0.32, -

0.13) 

*** 

-0.18 

(-0.28, 

-0.08) 

*** 

-0.22 (-

0.31, -

0.12) *** 

0.23 

(0.13, 

0.32) 

*** 

-0.50 

(-0.57, 

-0.42) 

*** 

0.21 

(0.11, 

0.30) 

*** 

0.13 

(0.03, 

0.23) * 

0.28 

(0.18, 

0.37) 

*** 

-0.49 (-

0.56, -

0.41) 

*** 

0.87 

(0.84, 

0.89) 

*** 

1.00 

(1.00, 

1.00) 

0.65 

(0.58, 

0.70) 

*** 

0.41 

(0.32, 

0.49) 

*** 

-0.49 

(-

0.56, -

0.41) 

*** 

Ave BRFD Asym 
-0.36 

(-0.44, 

-0.26) 

*** 

-0.08 

(-0.18, 

0.02) 

-0.46 

(-0.53, 

-0.37) 

*** 

-0.13 (-

0.23, -

0.03) ** 

-0.14 

(-0.24, 

-0.04) 

** 

-0.11 (-

0.21, 0.01) 

* 

0.14 

(0.04, 

0.23) 

** 

-0.46 

(-0.54, 

-0.38) 

*** 

0.25 

(0.16, 

0.35) 

*** 

0.12 

(0.02, 

0.21) * 

0.22 

(0.12, 

0.32) 

*** 

-0.40 (-

0.48, -

0.31) 

*** 

0.73 

(0.68, 

0.78) 

*** 

0.65 

(0.58, 

0.70) 

*** 

1.00 

(1.00, 

1.00) 

0.29 

(0.20, 

0.38) 

*** 

-0.44 

(-

0.52, -

0.36) 

*** 

PLF Asym 
-0.18 

(-0.27, 

-0.08) 

*** 

-0.05 

(-0.15, 

0.05) 

-0.24 

(-0.33, 

-0.14) 

*** 

-0.26 (-

0.35, -

0.16) 

*** 

-0.15 

(-0.25, 

-0.05) 

** 

-0.27 (-

0.36, -

0.18) *** 

0.26 

(0.16, 

0.35) 

*** 

-0.43 

(-0.51, 

-0.35) 

*** 

0.32 

(0.23, 

0.41) 

*** 

-0.03 

(-0.13, 

0.07) 

0.16 

(0.06, 

0.26) 

** 

-0.43 (-

0.51, -

0.34) 

*** 

0.43 

(0.34, 

0.51) 

*** 

0.41 

(0.32, 

0.49) 

*** 

0.29 

(0.20, 

0.38) 

*** 

1.00 

(1.00, 

1.00) 

-0.36 

(-

0.44, -

0.27) 

*** 

RSI Mod 0.47 

(0.39, 

0.55) 

*** 

0.22 

(0.12, 

0.31) 

*** 

0.50 

(0.42, 

0.57) 

*** 

0.22 

(0.12, 

0.31) 

*** 

0.18 

(0.08, 

0.27) 

*** 

0.19 (0.09, 

0.28) *** 

-0.22 

(-0.31, 

-0.12) 

*** 

0.85 

(0.82, 

0.87) 

*** 

-0.08 

(-0.18, 

-0.02) 

-0.51 

(-0.58, 

-0.43) 

*** 

-0.55 

(-0.61, 

-0.47) 

*** 

0.87 

(0.84, 

0.89) 

*** 

-0.46 (-

0.53, -

0.37) 

*** 

-0.49 (-

0.56, -

0.41) 

*** 

-0.44 (-

0.52, -

0.36) 

*** 

-0.36 

(-0.44, 

-0.27) 

*** 

1.00 

(1.00, 

1.00) 

Abbreviations: TIL = on-court total impact load; TSC = on-court total step count; Ave Int = on-court average intensity; Impact Asym = on-court impact asymmetry; Low-G Asym = on-court low-intensity 

impact asymmetry; Medium-G Asym = on-court medium-intensity impact asymmetry; High-G Asym = on-court high-intensity impact asymmetry; JH = jump height; CMD = countermovement depth; TTTo 

= time to takeoff; PRBP  = peak relative braking power; PRPP = peak relative propulsive power; PBF Asym = peak braking force asymmetry; PPF Asym = peak propulsive force asymmetry; Ave BRFD Asym 

= average braking rate of force development asymmetry; PLF Asym = peak landing force asymmetry; RSI mod = the modified reactive strength index; * = p<0.05; ** = p<0.01; *** = p<0.001. 
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5.3: Biomechanical PCA Model Development 

 Given the highly correlated nature and redundancy of the included biomechanical metrics 

(Table 1), a biomechanically-focused PCA was trained using on-court and CMJ testing data 

obtained across two competitive seasons (i.e., 14-months of training). Initially, there were 865 

weekly observations (i.e., on-court, CMJ, or self-reported introspective, psychological state data) 

amongst the cohort of 16 female basketball athletes. However, after filtering for weeks in which 

there were no missing biomechanical data, our model consisted of 394 synonymous weekly 

observations (i.e., on-court and CMJ data collected during the same week of training; mean number 

of weeks that biomechanical data were collected per athlete = 25 (9)). 

  Following suggestions made by Bartholomew, and Jolliffe and Cadima (71,179), we 

retained n-PCs that explained ≥90% of the variance in our biomechanical data, which resulted in a 

total of eight PCs that were extracted in our trained biomechanical PCA model (Table 2 and Figure 

5). Additionally, the correlation between the original biomechanical metrics and the newly derived 

PCs are presented in the Appendix in Table 4. 

 While the loading coefficients for the biomechanical PCs represent complex relationships 

between the on-court and CMJ metrics used in the PCA, some general interpretations can be made 

of each biomechanical PC. Specifically, PC1 was loaded towards various biomechanical metrics 

and thus signifies an “Overall Magnitude Component”, as is often the case for the first PC in a 

model (184,185). Next, PC2 signified an “On-Court Asymmetry Component”, reiterating the task-

specific nature of biomechanical asymmetry previously highlighted in research question (i). 

Interestingly, PC1 (i.e., overall biomechanical magnitude) and PC2 (i.e., on-court asymmetry) 

accounted for ~50% of the variance in the data, suggesting the importance of both biomechanical 

constructs in our cohort. While PC3 was loaded with some on-court loading metrics, it was most 

heavily loaded with CMJ strategy metrics, signifying a “Jump Movement Strategy Component”. 

PC4 was loaded with vertical jump braking power production and time-to-takeoff and with on-court 

impact loading metrics, signifying an “On-Court Impact Loading Component” that has interplay 

with the braking phase of vertical jump completion. PC5 was heavily loaded toward between-limb 

difference metrics from vertical jump testing and signified a “Jump Asymmetry Component”. 

While the relative importance of jump asymmetry was less than that of on-court asymmetry in our 

model (explained 7%, and 15% of the variance in the data, respectively), the composition of this 

PC further demonstrates the task specificity of biomechanical asymmetry. PCs six and seven 
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presented similar, albeit inverse, loadings of initial biomechanical metrics, suggesting that on-court 

asymmetry in low- to medium-intensity bins may be associated with vertical jump power 

production. Lastly, PC8 was almost entirely related to the asymmetry that exists during the landing-

phase of movement during vertical jump testing, and thus, signifies a “Jump Landing-Phase 

Asymmetry Component”. 

Table 2. Summary of principal component analysis loading coefficients. 

Biomechanical Metrics 

Included 
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Total Impact Load 0.26 -0.17 -0.29 0.45 0.04 0.13 -0.03 0.07 

Total Step Count 0.13 -0.07 -0.36 0.46 -0.02 0.37 -0.16 -0.37 

Ave. Intensity 0.28 -0.20 -0.11 0.28 0.09 -0.13 0.05 0.38 
Impact Asym. 0.19 0.50 0.11 0.20 0.04 -0.08 -0.02 0.10 

Low-G Asym. 0.13 0.39 -0.02 0.12 -0.20 -0.41 -0.48 -0.20 

Medium-G Asym. 0.15 0.37 0.11 0.03 0.12 0.46 0.48 0.21 
High-G Asym. -0.18 -0.47 -0.12 -0.18 -0.07 0.11 -0.04 -0.12 

Jump Height 0.34 -0.18 0.07 -0.12 0.32 -0.19 -0.06 -0.01 

CMD -0.12 0.13 -0.51 -0.01 -0.25 -0.32 0.44 -0.08 

Time to Takeoff -0.11 -0.20 0.51 0.38 0.16 -0.06 -0.09 0.03 
Pk Rel. Brk Power -0.19 -0.16 0.16 0.41 -0.12 -0.42 0.44 -0.05 

Pk Rel. Prop Power 0.34 -0.13 -0.04 -0.09 0.31 -0.28 0.16 -0.04 

Pk Brk Force Asym. -0.30 0.14 -0.19 0.06 0.47 -0.01 -0.05 0.06 
Pk Prop Force Asym. -0.31 0.07 -0.13 0.06 0.42 -0.10 -0.08 0.07 

Ave. Brk RFD Asym. -0.27 0.13 -0.12 0.06 0.43 -0.04 0.05 -0.30 

Pk Lnd Force Asym. -0.23 -0.02 -0.27 0.03 -0.09 -0.05 -0.27 0.70 
RSI Mod. 0.35 -0.04 -0.22 -0.28 0.20 -0.13 0.03 -0.01 

Individual % Var. Exp. 34 15 11 9 7 5 5 4 

Cumulative % Var. Exp. 34 49 60 70 77 83 87 91 

Abbreviations: PC = principal component; Ave. = average; Asym. = asymmetry; CMD = countermovement 
depth; Pk = peak; Rel. = relative; Brk = braking; Prop = propulsive; RFD = rate of force development; Lnd = 

landing; RSI Mod. = the modified reactive strength index; % Var. Exp. = percent variance explained. 
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Figure 5. Scree plot of log-eigenvalues of each principal component in the biomechanical PCA 

model vs. the number of principal components in the model. 

5.4: Research Question II – Preseason Reliability of Biomechanical Principal Components 

and Introspective, Psychological State 

 The cohort examined in the 2022-2023 collegiate basketball season consisted of 15 athletes, 

which was less than the data used for the research question (i). This dropout was due to 

discontinuing participation on the team from the first to second season. There were 182 weekly 

observations obtained in the 2022-2023 competitive collegiate basketball season in which all three 

forms of data were concurrently collected in a week (i.e., on-court biomechanics, CMJ 

biomechanics, and introspective, psychological state; mean number of weeks that all data were 

collected per athlete = 12 (4)). Meanwhile, the reliability was examined across five preseason weeks 

between mid-September 2022 to mid-October 2022. The group mean and standard deviations, 

preseason reliability analyses, SEM, and MDC statistics for all preseason biomechanical PCs and 

introspective, psychological state metrics, are presented in Table 3. It was found that all eight 

biomechanical PCs displayed excellent reliability (ICC>0.9), while the introspective, psychological 

state metrics displayed moderate-to-good reliability (ICC = 0.71 – 0.89). 
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Table 3. The reliability of biomechanical principal component scores and psychological state 
metrics collected across five-weeks of the 2022-2023 competitive, collegiate female basketball 

preseason, along with the corresponding standard error of the measurement and minimum 

detectable change statistics. 

PCs and Psychological 

State Metrics 
Mean (SD) ICC 95% CI SEM MDC 

PC1 0.41 (2.22) 1.00 0.99 - 1.00 0.15 0.42 
PC2 -0.29 (1.46) 0.95 0.90 - 0.98 0.32 0.88 

PC3 -0.75 (1.18) 0.93 0.85 - 0.97 0.32 0.89 

PC4 0.59 (0.97) 0.91 0.81 - 0.97 0.29 0.81 

PC5 0.07 (1.07) 0.95 0.89 - 0.98 0.23 0.64 
PC6 0.28 (0.92) 0.92 0.83 - 0.97 0.27 0.74 

PC7 -0.25 (0.84) 0.93 0.83 - 0.98 0.22 0.60 

PC8 -0.38 (0.83) 0.91 0.81 - 0.97 0.25 0.69 

Academic Workload 5.25 (1.90) 0.71 0.41 - 0.89 1.02 2.83 

Feeling 6.15 (1.63) 0.77 0.52 - 0.91 0.78 2.16 

Sleep Quantity 0.66 (0.86) 0.72 0.42 - 0.89 0.46 1.26 

Sleep Quality 1.01 (0.74) 0.89 0.77 - 0.96 0.24 0.68 
Pain 1 (1.29) 0.89 0.76 - 0.96 0.44 1.21 

Abbreviations: PC = principal component; SD = standard deviation; ICC = intraclass correlation 

coefficient; CI = confidence interval; SEM = standard error of the measurement; MDC = minimum 
detectable change. 

5.5: Research Question III - Association Between Biomechanics and Introspective, 

Psychological State Across a Competitive, Collegiate Basketball Season 

Associations between biomechanical PCs and psychological state metrics were examined 

within each subject across the 2022-2023 season and summarized in this section, and in the 

Appendix in Figures 8-12. It is important to note that the Supplementary Figures are vastly under-

representative of the amount of data that was collected per participant over the two-year study 

period, as i) only data from the 2022-2023 season are presented, as the first season (2021-2022) 

was only used to train the PCA model, and ii) only weeks in which all three forms of data (i.e., on-

court biomechanics, CMJ biomechanics, and psychological state) were concurrently collected are 

visually represented for simplicity sake and interpretability. Additionally, even though data has 

been vastly reduced using the PCA, many variables remain examined within each individual that 

are summarized below. Further, it is important to acknowledge that identifying or interpreting 

relationships at a group level can be difficult given the subject-specific nature of potential 

longitudinal relationships in these variables. Therefore, the following summary of significant 

relationships between variables should be viewed as exploratory and useful in highlighting which 

variables more often exhibited associations at the individual level. For a more appropriate and 
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robust interpretation of the associations found between the biomechanical PCs and psychological 

state metrics, see Figures 13-17 in the Appendix. These figures display the results from the repeated 

measures correlation analyses that determined the common within-individual associations between 

these continuous variables (i.e., biomechanical PCs and psychological state), while ensuring that 

the assumption of independence of observations was not violated by controlling for the effect of 

between-individual variance (183). 

Academic Workload: Only two of the 15 athletes (13%) included in this analysis 

demonstrated significant relationships between biomechanical PCs and self-reported academic 

workload. Specifically, there were two significant relationships (r = |0.49 – 0.63|; p < 0.05) 

identified between academic workload and biomechanical PCs (PC2 – on-court asymmetry and 

PC4 – on-court impact loading, respectively), with both athletes demonstrating different 

relationships from the other. 

Feeling: Seven of the 15 athletes (47%) included in this analysis demonstrated significant 

relationships between biomechanical PCs and self-reported feeling. Specifically, four athletes 

demonstrated significant associations between jump asymmetry (i.e., PC5) and self-reported feeling 

(r = |0.55 – 0.62|; p < 0.05). It is important to note that the directionality of this association is 

challenging to summarize, given the influence of whether an athlete displays left (positive value) 

or right (negative value) limb dominance. Secondly, two athletes displayed significant associations 

between self-reported feeling and PC3 – jump movement strategy. However, one athlete displayed 

a positive association (r = 0.61; p < 0.05), while the other displayed a negative association between 

these outcome measures (r = -0.59; p < 0.05). Finally, feeling had a significant association with on-

court impact loading (i.e., PC4) in one athlete (r = -0.54; p < 0.05), PC7 (i.e., low- to moderate-

intensity on-court asymmetry and jump power production) in one athlete (r = 0.64; p < 0.05), and 

jump-landing asymmetry (i.e., PC8) in another athlete (r = 0.56; p < 0.05).  

Sleep Quantity: Two athletes (13%) displayed a significant association between self-

reported sleep quantity and biomechanical PCs. Namely, jump asymmetry (i.e., PC5), and PC7 (i.e., 

low- to moderate-intensity on-court asymmetry and jump power production). Jump asymmetry was 

found to be associated with sleep quantity in one athlete (r = -0.62; p < 0.05), while PC7 was 

associated with sleep quantity in another (r = 0.77; p < 0.05). 
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Sleep Quality: Four athletes (27%) displayed a significant association between self-

reported sleep quality and biomechanical PCs, each being subject-specific and different. 

Specifically, one subject displayed a significant positive association with PC1 (i.e., overall 

magnitude; r = 0.77; p < 0.01), one subject displayed a significant positive association with jump 

movement strategy (i.e., PC3; r = 0.53; p < 0.05), one subject displayed a significant association 

with jump asymmetry (i.e., PC5; r = 0.56; p < 0.05), and one subject displayed a significant positive 

association with PC7 (i.e., low- to moderate-intensity on-court impact asymmetry and jump power 

production; r = 0.71; p < 0.05). 

Pain: Four subjects (27%) displayed a significant association between self-reported pain 

and biomechanical PCs. Specifically, jump movement strategy (i.e., PC3) was significantly 

positively associated with pain in three athletes (r = 0.58 – 0.66; p < 0.05). Secondly, PC6 and PC7 

(i.e., low- to moderate-intensity on-court asymmetry and jump power production) were 

significantly associated with pain in two athletes. However, one athlete displayed a significant 

negative association with PC6 (r = -0.61; p < 0.05), and a positive association with PC7 (r = 0.84; 

p < 0.01), while the other athlete presented discordant and inverse relationships (i.e., PC6: r = 0.51; 

p < 0.05; PC7: r = -0.69; p < 0.01). Additionally, one subject displayed a significant negative 

association with overall biomechanical magnitude (i.e., PC1: r = -0.56; p < 0.05), one subject 

displayed a significant negative association with on-court impact loading (i.e., PC4: r = -0.54; p < 

0.05), and one subject displayed a significant association with jump-landing asymmetry (i.e., PC8: 

r = 0.68; p < 0.05). 

Take Home Message and Necessity for Patient-Centered, and Individualized Monitoring 

Practices: While many relationships (n = 27) were identified between biomechanical PCs and 

introspective, psychological state metrics, no clear overarching associations were identified at the 

cohort or group level. The predominant psychological state metrics associated with biomechanics 

were self-reported feeling (n = 9) and pain (n = 10), with fewer relationships identified in academic 

workload (n = 2), sleep quantity (n = 2), and sleep quality (n = 4). While these results are 

exploratory, they can begin to highlight the complexity of these relationships and the difficulty in 

defining group-based relationships across these biopsychosocial domains. Therefore, if we are to 

utilize such models for preventive, prognostic, or rehabilitate purposes in future research and 

clinical application, it appears necessary to assess on a subject-specific basis whether biomechanics 

or psychological state changes exceed normatively defined minimum detectable change thresholds. 
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The following section of the results will provide two use-case examples in our cohort of how this 

might be applied for subject-specific purposes in future work. 

5.6: Research Question III – Longitudinal PCA Use-Case and Application of Patient-

Centered Monitoring Using Minimum Detectable Change Statistics 

To demonstrate the potential utility and challenges of incorporating PCs into athletic 

monitoring practices, Figures 6 and 7 highlight two unique and interesting case studies. 

Specifically, the first example (Figure 6) demonstrates an apparent connection between on-court 

asymmetry and impact loading related to pain. The athlete in the second example (Figure 7) was 

found to exhibit significant fluctuations in jump asymmetry, as well as pain across the season, but 

highlights the difficulty in establishing normative biomechanical patterns as our “unperturbed” 

baseline period was confounded with elevated levels of self-reported pain. In both examples, the 

interpretation of meaningful changes can be defined based on subject-specific normative preseason 

baseline values in combination with the MDC statistics reported in Table 3. In doing so, this 

provides a viable means of prospectively identifying and red-flagging deviations from their typical 

biomechanical and/or psychological patterns on a subject-specific basis relative to individualized 

patterns previously exhibited across a longitudinal period. However, the second case study 

highlights a consideration that needs to be made when establishing normative patterns and 

demonstrates why a biopsychosocial model is likely necessary for monitoring athlete health and 

well-being; in contrast, traditional models have placed these constructs into silos. This 

methodological framework for athletic monitoring can lead to a deeper dive into the specific metrics 

attributed to the PC that might be driving such fluctuations from normative patterns, which I will 

demonstrate in the discussion by walking through both use-case examples to aid in the interpretation 

and utility of this work. 
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Figure 6. Use-case example of weekly changes in biomechanical principal component scores and self-reported pain in a collegiate female 
basketball athlete across the 2022-2023 competitive season. Specifically, on-court impact load and self-reported pain levels peaked before 

the detection of statistically significant alterations in on-court asymmetry. To highlight the on-court asymmetry-specific minimum detectable 

change (MDC), upper and lower bounds are depicted for “red-flagging” biomechanical fluctuations above and beyond the measurement 
error of the system. The MDC statistics are derived based on five-weeks of preseason training and normative biomechanical patterns 

exhibited at the cohort level, with this MDC value applied (±) to the average value that this subject displayed across the same timeframe to 

calculate individualized bounds by which their on-court asymmetry fluctuated from their normative patterns. 
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Figure 7. Use-case example of weekly changes in biomechanical principal component scores and self-reported pain in a collegiate female 

basketball athlete across the 2022-2023 competitive season. Specifically, jump asymmetry-specific minimum detectable change (MDC) 
upper and lower bounds are depicted for “red-flagging” biomechanical fluctuations above and beyond the measurement error of the system, 

which were paralleled, to some extent, by seasonal changes in self-reported levels of pain. The MDC statistics are derived based on five-

weeks of preseason training and normative biomechanical patterns exhibited at the cohort level, with this MDC value applied (±) to the 
average value that this subject displayed across the same timeframe to calculate individualized bounds by which their jump asymmetry 

fluctuated from their normative patterns. However, this “unperturbed” baseline period was confounded by high levels of self-reported pain 

in this athlete, suggesting that our normative biomechanical patterns might not necessarily indicate what we would expect in this athlete.
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Chapter 6: Discussion 

This investigation aimed to determine the utility, reliability, and longitudinal application of 

biopsychosocial athletic monitoring practices using a PCA model in female basketball athletes. This 

is the first study to integrate these health domains using a holistic, biopsychosocial approach for 

future application in sports performance and injury risk.  Additionally, this is the only study to date 

that has used advanced analytical modelling to characterize components of student-athlete 

performance, health, and well-being, and the first to delineate subject-specific associations between 

biomechanics and introspective, psychological states, especially throughout multiple competitive 

seasons. In doing so, this investigation demonstrates the potential utility of prospectively and 

longitudinally monitoring student-athletes using a subject-specific approach. It highlights the 

potential for integrating such models in future research and clinical work for preventive, prognostic, 

and rehabilitative purposes. 

6.1: Correlation of On-Court and Countermovement Jump Biomechanics  

The first objective of this study was to determine the inter- and intra-connectivity or 

correlation between on-court and CMJ biomechanical metrics and, in doing so, the utility of 

incorporating such data into a biomechanical PCA model that reduces the dimensionality of 

biomechanical factors. While there were many statistically significant relationships identified both 

between (i.e., on-court vs. CMJ – 58/70) and within (i.e., on-court vs. on-court – 13/21, and CMJ 

vs. CMJ – 41/45) systems, there were only 4/70, 7/21, and 12/45 of these that displayed correlations 

≥ |0.5| (i.e., a moderate effect size; (186)), respectively. 

First, the observed associations across CMJ metrics align with previous work 

(73,75,80,81,169). The current findings demonstrate that the largest associations exist between 

explosive-based CMJ metrics such as JH, peak relative propulsive power, and RSI mod 

(73,75,80,81,169), while CMJ asymmetry metrics also displayed significant correlations with one 

another (169). Together, this suggests that the outcome of vertical jump testing (i.e., JH) is 

significantly associated with both the force and power-producing capabilities of the athlete, and 

might also be influenced by the underlying jump strategy (i.e., RSI mod is implicitly impacted by 

the amount of time the athlete spends on the ground due to the denominator of time to take-off, and 

thus, is inherently related to the jump strategy; (79–81,164). Furthermore, the association between 

CMJ asymmetry metrics suggests that between-limb differences present in one phase of the CMJ 

may traverse and be related to between-limb differences in other phases of the CMJ (169). 
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Following previous work by Keogh and colleagues (169), this association between CMJ asymmetry 

metrics is most pronounced in the phases prior to take-off (i.e., braking and propulsive phases) but 

to a lesser extent thereafter during the landing phase. 

Alternative to comparisons within the CMJ metrics, examining wearable-sensor or on-court 

data is novel and exploratory, with the associations observed being some of the first ever reported. 

Specifically, it was found that metrics relating to load and intensity (i.e., overall impact load, step 

count, and average intensity) were significantly associated with one another. In contrast, on-court 

asymmetry metrics (i.e., low-, medium-, high-, and overall impact acceleration asymmetry) were 

also significantly associated with each other. However, these two aspects of on-court data remained 

somewhat independent. Interestingly, in comparing between systems, on-court impact load and 

intensity were shown to be moderately associated with CMJ power and explosive capabilities. This 

finding suggests that the more explosive athletes during vertical jump testing practice and play in a 

manner conducive to utilizing their physical strengths. Meanwhile, and in concordance with 

previous literature that has suggested that lower limb asymmetry is a highly task-specific measure 

(50–52), on-court and CMJ asymmetry displayed weak correlations in the present investigation and 

were relatively independent of one another.  

Overall, the correlations exhibited within and across these biomechanical collections 

provided rationale for developing and applying a biomechanical PCA model to reduce the 

dimensionality of the redundant data. In doing so, this biomechanical PCA enabled the 

characterization of overarching components of athletes’ biomechanical profiles. While PCAs have 

been applied in many isolated tests of sports performance, such as the interpretation of jump (73–

75,147–154), change of direction and sprint speed (74,147,153–156), strength (74,147,154), and 

on-court or other sport-specific assessments of performance in basketball and other team-sports 

(153,157–161), this is to our knowledge the first investigation to integrate traditional performance 

testing and on-court, sport-specific training biomechanics into one overarching biomechanical PCA 

model. However, to confidently apply the PCA model for red-flagging fluctuations from normative 

biomechanical patterns, the reliability of these biomechanical PCs and the included introspective, 

psychological state metrics must be established. 



MSc. Thesis – Joshua A.J. Keogh; McMaster University – Science, Kinesiology  

49 

 

6.2: Reliability of Biomechanical Principal Components and Introspective, Psychological 

State 

Previous work by our research laboratory has demonstrated the longitudinal, preseason 

reliability of PCs when compared to traditional key performance indicators in a vertical jump model 

alone (169). However, given that the present investigation is the first to integrate sport-specific 

biomechanics into such a model, this study is also the first to demonstrate the reliability of 

biomechanical PCs in this fashion. The former study by our laboratory found that three of six, and 

five of six jump PCs displayed excellent reliability (ICC>0.9) when assessed week-to-week (i.e., 

comparing successive weeks temporally) and over the entire preseason (i.e., comparing each 

successive week to the preseason average as a normative baseline value), respectively (169). As 

such, we hypothesized that the biomechanical PCs and introspective, psychological state metrics in 

the present investigation would display good-to-excellent reliability across the 2022-2023 

preseason. The results supported our hypothesis for the most part, as eight biomechanical PCs in 

the present investigation displayed excellent reliability (ICC>0.9), while the psychological state 

metrics ranged from moderate-to-good reliability (ICC = 0.71 – 0.89).  

Previous research has demonstrated that the biomechanical PCs that appear to be most 

prominent in this cohort of athletes and/or performance assessments are output (e.g.., velocities and 

displacements) (73,75,153,161,162,165), causal (e.g.., forces, power, and impulses) (73,75,148–

153), and timing-based PCs (i.e., proxies for underlying jump or movement strategy) (75,150–152). 

In concordance with previous findings, the present investigation displayed an output-based PC (i.e., 

PC4 – on-court impact acceleration and loading), a timing-based PC (i.e., PC3 – jump movement 

strategy), and two causal-based PCs (i.e., PCs six and seven which together described jump power 

production and low to medium intensity on-court asymmetry). Additionally, most biomechanical 

PCA models result in the first PC being loaded towards various metrics and signifying overall 

magnitude (162,184,185), which was also the case in our PCA. To our knowledge, recent work by 

Keogh and colleagues (169) is the only study that has defined a unique asymmetry component 

derived from a vertical jump PCA model. Interestingly, on-court and jump asymmetry assembled 

into their own unique PCs (i.e., PC2 and PC5, respectively) in the present investigation, both of 

which were found to be highly reliable (r = 0.95; p < 0.001). Lower limb asymmetry is typically a 

noisy metric subject to large between and within-athlete variability (34,36,40,187,188) that can 

make this biomechanical metric challenging to interpret with any level of consistency and at the 

group level. Additionally, lower limb asymmetry has been demonstrated to be a highly task-specific 
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metric (50–52), which is further supported by the results of the present investigation, whereby a 

separate PC was developed for on-court and vertical jump asymmetry. Therefore, the present PCA 

model gives rise to an alternative method of prospectively monitoring lower limb asymmetry – a 

well-documented measure for rehabilitation and return-to-sport (25,189–191), with some 

implications for sports performance (15,33–39) and injury susceptibility (34,40–43) – that is highly 

reliable and accounts for the task specificity of this measure. In doing so, this approach might 

enhance preventive medical practices by allowing researchers and clinicians to “red-flag” athletes 

who might be at a heightened level of injury risk and to subsequently refer these athletes for 

diagnostic imaging and referrals to the necessary healthcare staff.  

Regarding the reliability of the psychological state metrics in the present investigation, 

academic workload, feeling, and sleep quantity displayed moderate reliability (ICC = 0.71 – 0.77), 

while sleep quality and pain demonstrated good reliability (ICC = 0.89). This is, to our knowledge, 

the first longitudinal investigation of the reliability of these metrics conducted alongside 

biomechanical analyses of data in this manner. Previous PCA work has concurrently monitored the 

sessional rate of perceived exertion with on-court biomechanical metrics for load monitoring 

(161,165), to identify positional differences in biomechanical loading patterns (161), and to 

determine whether workload differed between injured and uninjured basketball athletes (162). 

Unfortunately, none of the previous studies incorporated psychological state/stress into their PCA 

models. For instance, while this previous work found positional differences in on-court 

biomechanical demands (i.e., forwards – the predominance of high-intensity and cumulative 

deceleration and change-of-direction; guards – the predominance of deceleration and high-intensity 

jumping; and centers – the predominance of acceleration and change-of-direction; (161), and 

differences between injured and uninjured basketball athletes (i.e., injured athletes demonstrated 

significantly lower acute workload coupled with a significantly greater chronic workload on-court; 

(162), none incorporated psychological state into their PCA model. Furthermore, the previous 

investigations utilized a sessional rate of perceived exertion as a measure of internal workload. They 

included this more for load monitoring purposes rather than attempting to encapsulate a more 

holistic picture of athletic health and well-being by incorporating psychological state and 

biopsychosocial monitoring practices. Also, previous research has demonstrated that sleep 

(192,193) and mental health (64,194) can impact sports performance, and as such, the present 

investigation aimed to determine how reliable these metrics are when assessed longitudinally. 

Interestingly, the reliability of these metrics was less than that of the included objective, 
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biomechanical metrics. These results suggest that these subjective markers of athlete health status 

may either be more sensitive to change, or alternatively, they may simply include more week-to-

week fluctuations or measurement error. These results are discordant with a systematic review 

conducted by Saw, Main, and Gastin (58), who found subjective measures (e.g., mood disturbances, 

perceived stress and recovery, and symptoms of stress) to be superior in both their sensitivity and 

consistency to reflect changes in athlete health status. Alternatively, these reliability results might 

be a testament to the difficulty of incorporating subjective measures of psychological state in 

athletic monitoring practices. A study conducted by Neupert and colleagues (195) highlighted that 

athletes and coaches sometimes feel that the bridge between healthcare and research staff to end-

users and the feedback processes put in place are insufficient and ineffective. As such, and in 

concordance with previous work by our laboratory (67), we urge researchers and clinicians to work 

with end-users in developing projects and questionnaires that are both meaningful and practical for 

the athletes and coaching staff. In doing so, this might enhance the compliance rates and validity of 

this psychological data and improve the ability to contextualize this data with biomechanical data 

in a longitudinal and subject-specific fashion for the purposes of patient-centred preventive, 

prognostic, and rehabilitative practices. 

6.3: Association Between Biomechanics and Introspective, Psychological State 

 My third research question was to determine whether there were any overarching 

associations between biomechanics and psychology throughout a competitive collegiate basketball 

season on a subject-specific basis. A recent scoping review conducted in our research laboratory by 

Keogh and colleagues (67) found that pain and rate of perceived exertion were related to lower limb 

biomechanics and asymmetry. However, only four included studies that monitored athletes 

longitudinally throughout one or more competitive season(s), and most of the relationships 

identified were established cross-sectionally. Furthermore, while relationships were identified 

between biomechanics, including asymmetry, and psychology, these were limited in their scope, as 

many factors known to affect sports performance and injury susceptibility were neglected in the 

included studies in this scoping review (67). As such, we hypothesized that pain would demonstrate 

significant relationships with biomechanics, including asymmetry, and that other previously 

unexplored psychological states would similarly display significant relationships with 

biomechanics in some fashion. Following our hypotheses, there were several subject-specific 

relationships identified between our biomechanical PCs and introspective, psychological state (n = 

27). The psychological state metrics most predominantly associated with biomechanics were self-
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reported feeling and pain (n = 9 and 10, respectively), with only a select few associations identified 

in academic workload, sleep quantity, and sleep quality (n = 8, cumulatively). However, as 

previously stated in Chapter 5.5, no clear or overarching associations were identified at the cohort 

level, and it is important to not “miss the forest for the trees” by delving too deep into each 

association and the nuances that exist to this respect. Instead, these results emphasize the 

individualistic and subject-specific nature of the overlap between these domains, highlighting the 

necessity to undertake a subject-specific approach in such work, rather than trying to establish 

contributory factors to sports performance and risk of [re]injury at the group level. Similar subject-

specific machine-learning model suggestions have been made in runners (196,197) and patients 

diagnosed with knee osteoarthritis (198) to identify biomechanical patterns and alterations in 

individual biomechanical patterns. If such an approach were to be incorporated into sports medicine 

and athletic monitoring practices, it might enable practitioners to reduce the overall injury burden 

present, which, unfortunately, has been noted to be quite substantial (4,5). As such, it is theorized 

that developing subject-specific models and associated MDC thresholds in athletic populations 

might lead to a “red-flag” or stoplight-based system and an improvement in preventive medical 

practices. Specifically, these individualized biomechanical patterns can signify: i) a ”green-light” 

with no sign of concern when individuals display normative or unchanging biomechanical patterns, 

ii) changes outside or nearing outside of this MDC threshold might signify a “yellow-light” where 

some concern is present and follow-up may be required, and iii) significant biomechanical 

alterations from normal patterns signifying a “red-light” which might be indicative of larger concern 

and an immediate and further investigation of the athlete’s current condition. The following section 

will provide practical use-case examples of how PCs and associated MDCs can be used for 

prospectively “red-flagging” meaningful changes in biomechanics and psychology to detect 

potentially deleterious alterations from normative patterns that might be indicative of impeding 

injury or decrements in sports performance. 

6.4: Longitudinal PCA Use-Case and Application of Patient-Centered Monitoring Using 

Minimum Detectable Change Statistics for “Red-Flagging” Athletes 

Previously, two use-case examples were highlighted in Chapter 5.6 that demonstrate the 

utility of incorporating longitudinal monitoring using PCs and associated MDCs to identify 

alterations from normative biomechanical patterns on a subject-specific basis. The first use-case 

example focuses on identifying fluctuations in on-court asymmetry patterns and concurrent or prior 

changes in perceived pain and on-court impact load (Figure 6). In contrast, the second use-case 
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example focuses on identifying alterations in jump asymmetry patterns while highlighting the 

potential difficulty in establishing normative biomechanical patterns without contextualizing them 

with other facets of health, such as self-reported levels of pain (Figure 7). 

In the first use-case example in Figure 6, it is apparent that this female athlete showed 

fluctuations from their typical on-court asymmetry patterns near the end of the 2022-2023 

competitive basketball season. During the preseason (i.e., September and October), this individual 

displayed consistent PC2 scores near 3, which can be contextualized further in the metrics for this 

example as being left limb dominant (-18.1% between limb difference in favour of left limb) during 

high-intensity aspects of practices. However, when this athlete returned from the scheduled holiday 

break after final examinations, the on-court impact loading PC was near the boundary of the MDC 

with a score of 2.1, relating to a -10.5% between limb difference favouring the left limb in high-

intensity aspects of practice. Most importantly, this PC2 deviation was also met with a gradual 

increase in pain towards an eventual peak in the third week of January. Consequently, while the 

athlete was nearing “red-flagging” before this elevated pain, they reached a clear breach from their 

normal pattern of on-court asymmetry in the week following peak pain onset (e.g., PC2 score of 

0.7 and a -0.5% between limb difference in favour of left limb during high-intensity aspects of these 

sessions). Therefore, not only did this week represent an exceedance of statistically relevant 

thresholds (i.e., MDC) relative to this individual’s normative asymmetry patterns, but it also 

represented an exceedance of the 10-15% clinically relevant threshold from normative asymmetry 

patterns that are often used to deem when an athlete is at risk of suboptimal sports performance 

(15,33–39) and a possible heightened level of injury risk (34,40–43). Interestingly, this fluctuation 

from normative asymmetry patterns appeared to be most pronounced during high-intensity efforts 

(i.e., ~17% change from baseline patterns), which provided additional concern given the fact that 

most serious lower limb MSK injuries (e.g., anterior cruciate ligament rupture) are sustained during 

high-intensity landings from bouts of jumping, during change-of-direction, or cutting tasks in 

basketball (1,19–21). Afterwards, in the weeks following this “red-flag”, the athlete had various 

additional biomechanical changes. Most notably, the continued reduction of on-court loading (PC4) 

highlights the likely attempt to manage this pain and potential underlying injury. Generally, the 

exceedance of MSK structure load tolerance during training and competition leads to injury (1,19–

21), which may be exacerbated if there are large between-limb differences that exist and one limb 

is unduly stressed (34,40–43) or in this case, stressed more (right limb) than it typically was. As 

such, athletes will often attempt to restore and maintain homeostasis and mitigate the underlying 
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cause of pain by reducing the load and frequency of the activities leading to the underlying 

pathology (199). It appears this was the case for this athlete, as evident in not only on-court loading 

(PC4) but also jump movement strategy (PC3). 

The second use-case example in Figure 7 highlights seasonal fluctuations that exceeded the 

MDC threshold in normative jump asymmetry patterns in one of the female basketball athletes in 

the present investigation. An important distinction that should be made prior to delving into this 

case study for interpretability and clarity purposes is that a decrease in the jump asymmetry PC 

does not necessarily mean that there is a decrease in the asymmetry present, nor does an increase 

mean that the athlete is inherently becoming more asymmetrical. The data in our biomechanical 

PCA model uses both the magnitude and direction of asymmetry (177,188,200), as reporting the 

magnitude of asymmetry in isolation as an absolute value blinds researchers and clinicians from 

detecting fluctuations in limb dominance (e.g., using magnitude alone would mask a 20% change 

occurring from 10% left- to 10% right-dominance). Subsequently, and to this respect, we were able 

to “red-flag” specific periods for further examination of jump asymmetry and comparison to 

subject-specific normative patterns. Specifically, there were two periods in which this athlete’s 

jump asymmetry exceeded the MDC threshold, indicating a statistically meaningful alteration from 

normative biomechanical patterns: i) during the end of the preseason (i.e., October 2022) and ii) 

after the regular season just before collegiate-level playoffs (i.e., February 2023). Identifying 

periods in which this athlete fluctuated from typical jump asymmetry patterns allowed us to “red-

flag” these weeks and examine the force-time waveforms to determine whether these fluctuations 

were of clinical importance. For example, in reviewing the force-time waveforms and associated 

jump asymmetry metrics that were heavily loaded in PC5 during the final week in October, it was 

found that peak braking force asymmetry (seasonal mean = -2.6% in favour of right limb; week 

four of October = 5% in favour of left limb; Δ from mean =  .6%), peak propulsive force asymmetry 

(seasonal mean = -3.6% in favour of right limb; week four of October = 5.3% in favour of left limb; 

Δ from mean = 8.9%), and average braking rate of force development asymmetry (seasonal mean 

= 3.0% in favour of left limb; week four of October = 14.8% in favour of left limb; Δ from mean = 

11.8%) had all fluctuated from normative patterns. While the fluctuations this athlete exhibited in 

jump asymmetry exceeded the MDC thresholds for statistical relevance, none of which exceeded 

the 10-15% threshold for clinical relevance (34,201), and thus did not pose any serious or urgent 

concern, but rather an indication to keep an eye on this athlete. Interestingly, the level of on-court 

asymmetry exhibited and perceived pain that this athlete self-reported across the last six weeks of 
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the season, as seen in orange and black, respectively, in Figure 7, displayed similar and somewhat 

paralleled fluctuations to jump asymmetry. However, it is noteworthy that this athlete was 

experiencing moderate levels of perceived pain during the preseason period, which was used to 

define normative biomechanical patterns for this individual and for building out the associated 

MDC values. As such, these fluctuations identified as “red-flags” might not necessarily indicate 

meaningful fluctuations from this individual’s pain-free normative biomechanical patterns, since 

this predefined baseline period might be a misleading representation of what normal is for this 

individual. This highlights a potential limitation of this PCA model since the MDC values used for 

“red-flagging” purposes are thought to be established during a stable period, but this stability cannot 

be universally said for all athletes in this cohort, nor can the potential parallels between jump 

asymmetry and perceived pain. However, this case provides a practical example of how PCA and 

this biopsychosocial model can be applied in longitudinal contexts for potential preventive, 

prognostic, and rehabilitative purposes, while also highlighting considerations that need to be made 

when employing such models for these purposes. 

6.5: Limitations and Future Directions 

There are several limitations to the present investigation, many of which have been 

previously outlined in a similar longitudinal vertical jump PCA application study by Keogh and 

colleagues (169). First, this sample consisted of a homogenous group of collegiate female basketball 

athletes and, thus, may limit the generalizability to the male counterpart or other competitive athletic 

populations. While the PCs and associated MDCs from the current work are specific to this cohort 

and dataset, the reliability of this method and the practical use-case examples should provide 

confidence in using such methods in future research and clinical applications. Second, the sample 

size was relatively small (n = 16 athletes), and thus limited the ability to run between-subject 

analyses as they would have been underpowered. However, the immense breadth of data collected 

(i.e., 1,226 on-court sessions (mean per athlete = 77; SD per athlete = 26), 1,936 CMJ trials (mean 

per athlete = 121; SD per athlete = 42), and 910 weekly self-reported questionnaires (mean per 

athlete = 57; SD per athlete = 28)) across two competitive seasons makes this the most 

comprehensive study in this space, and should provide confidence in the within-subject analyses 

and applications. Third, the associations identified between biomechanical and psychological states 

were established across all data rather than assessing the association between weekly changes in 

these constructs. Therefore, it is suggested that future research examines the temporal association 

between biomechanics and psychological state using cross-correlation to discern whether changes 
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in one entity precede the other. Fourth, while this PCA model includes both on-court and traditional 

CMJ biomechanics, it was unable to include our psychological state metrics in this model due to 

the low compliance rates exhibited in the first year of our investigation (compliance rates in season 

one: academic workload = 67 ± 16%; feeling = 80 ± 11%; sleep = 55 ± 29%; pain = 49 ± 29%). 

Therefore, it is suggested that future research integrates psychological stress into their PCA models 

to define multivariate and holistic PCs that encapsulate a greater degree of the current health status 

of the athlete. Fifth, given that our sample consisted exclusively of female athletes, the effects of 

the menstrual cycle may have affected jump performance and neuromuscular function (202). 

However, recent systematic reviews have suggested that the effect of the menstrual cycle on 

exercise performance is inconclusive and trivial (203,204). Sixth, the PCA model in the present 

investigation was built on variation in data between athletes rather than developing numerous 

potentially more sensitive subject-specific models on the variations and relationships across 

variables within each athlete. Unfortunately, training a multivariate, subject-specific PCA model 

may require a large number of jumps and on-court sessions (e.g., 50+) from each athlete and result 

in similar but unique PC profiles across athletes that would require separate interpretations. Since 

the overarching purpose and proposed utility of the PCA model and the associated MDCs in the 

present investigation is for “red-flagging” athletes, this might not be necessary, and doing so may 

cause more difficulty and time constraints in this process. However, future work can aim to 

ascertain whether subject-specific models are more adept at detecting more subtle individual 

changes in biomechanical and psychological patterns than the present between-subject model. 
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Chapter 7: Conclusion and Significance 

Our study is the only study to use advanced analytical modelling to characterize 

components of student-athlete performance, health, and well-being, and the only study to integrate 

these domains of health in a longitudinal and biopsychosocial fashion over multiple competitive 

seasons. This study highlighted the associations and overlap between biomechanical and 

psychological patterns in athletic populations but also emphasized the highly subject-specific nature 

of these associations. This study highlights the necessity of more tailored and subject-specific 

athletic monitoring practices, particularly those that include integrated, as opposed to traditionally 

isolated, biomechanical, physiological, and psychological athletic monitoring. This investigation 

highlighted the reliability, utility, and application of biopsychosocial athletic monitoring practices 

using a PCA model. Specifically, this study demonstrated the ability to incorporate this 

methodological approach for prospectively “red-flagging” athletes who demonstrate statistically 

and clinically relevant fluctuations in normative biomechanical and psychological patterns that 

might indicate a heightened risk of injury or decrements in sports performance capabilities. Future 

research should employ similar biopsychosocial PCA models to prospectively monitor athletic 

populations to determine the potential preventive, prognostic, and rehabilitative capabilities of 

athletic monitoring practices. 
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Appendix 

Supplementary Figures 

 

Figure 8 (Appendix): Weekly changes in biomechanical principal component scores and self-reported academic workload in a cohort of 

collegiate female basketball athletes across the 2022-2023 competitive season. 
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Figure 9 (Appendix): Weekly changes in biomechanical principal component scores and self-reported feeling in a cohort of collegiate 

female basketball athletes across the 2022-2023 competitive season. 
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Figure 10 (Appendix): Weekly changes in biomechanical principal component scores and self-reported sleep quantity in a cohort of 

collegiate female basketball athletes across the 2022-2023 competitive season. 
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Figure 11 (Appendix): Weekly changes in biomechanical principal component scores and self-reported sleep quality in a cohort of collegiate 

female basketball athletes across the 2022-2023 competitive season. 
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Figure 12 (Appendix): Weekly changes in biomechanical principal component scores and self-reported pain in a cohort of collegiate female 

basketball athletes across the 2022-2023 competitive season. 
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Figure 13 (Appendix). Repeated measures correlation-based associations identified between biomechanical principal component scores and 

self-reported academic workload across the 2022-2023 season, with subject-specific data distinguished using different colours, and the 

commonality in within-individual associations after controlling for between-individual variance identified in the bottom right corner of each 

subplot. 
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Figure 14 (Appendix). Repeated measures correlation-based associations identified between biomechanical principal component scores and 
self-reported feeling across the 2022-2023 season, with subject-specific data distinguished using different colours, and the commonality in 

within-individual associations after controlling for between-individual variance identified in the bottom right corner of each subplot. 
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Figure 15 (Appendix). Repeated measures correlation-based associations identified between biomechanical principal component scores and 

self-reported sleep quantity across the 2022-2023 season, with subject-specific data distinguished using different colours, and the 

commonality in within-individual associations after controlling for between-individual variance identified in the bottom right corner of each 

subplot. 
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Figure 16 (Appendix). Repeated measures correlation-based associations identified between biomechanical principal component scores and 

self-reported sleep quality across the 2022-2023 season, with subject-specific data distinguished using different colours, and the commonality 

in within-individual associations after controlling for between-individual variance identified in the bottom right corner of each subplot. 
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Figure 17 (Appendix). Repeated measures correlation-based associations identified between biomechanical principal component scores and 

self-reported levels of pain across the 2022-2023 season, with subject-specific data distinguished using different colours, and the 

commonality in within-individual associations after controlling for between-individual variance identified in the bottom right corner of each 

subplot. 
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Supplementary Tables 

Table 4 (Appendix). Correlation between original biomechanical variables and newly derived 

principal component scores. 

Biomechanical Metrics 

Included 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Total Impact Load 0.64 -0.27 -0.40 0.56 0.05 0.13 -0.03 0.06 

Total Step Count 0.31 -0.11 -0.50 0.57 -0.03 0.36 -0.15 -0.31 

Ave. Intensity 0.68 -0.32 -0.16 0.35 0.11 -0.13 0.04 0.31 

Impact Asym. 0.46 0.79 0.15 0.24 0.04 -0.07 -0.02 0.08 
Low-G Asym. 0.32 0.62 -0.02 0.15 -0.22 -0.40 -0.43 -0.16 

Medium-G Asym. 0.36 0.59 0.15 0.03 0.13 0.44 0.43 0.17 

High-G Asym. -0.45 -0.75 -0.16 -0.22 -0.08 0.11 -0.04 -0.10 

Jump Height 0.82 -0.28 0.09 -0.15 0.36 -0.18 -0.06 -0.01 

CMD -0.28 0.21 -0.70 -0.01 -0.29 -0.31 0.39 -0.06 

Time to Takeoff -0.26 -0.32 0.71 0.47 0.17 -0.06 -0.08 0.02 
Pk Rel. Brk Power -0.46 -0.25 0.22 0.51 -0.13 -0.41 0.40 -0.04 
Pk Rel. Prop Power 0.82 -0.20 -0.05 -0.11 0.34 -0.27 0.14 -0.03 

Pk Brk Force Asym. -0.72 0.23 -0.26 0.07 0.52 -0.01 -0.05 0.05 

Pk Prop Force Asym. -0.75 0.11 -0.18 0.07 0.48 -0.10 -0.07 0.06 

Ave. Brk RFD Asym. -0.66 0.21 -0.16 0.08 0.48 -0.03 0.04 -0.25 

Pk Lnd Force Asym. -0.55 -0.04 -0.37 0.04 -0.10 -0.05 -0.24 0.58 
RSI Mod. 0.83 -0.07 -0.30 -0.35 0.23 -0.13 0.02 -0.01 
Individual % Var. Exp. 34 15 11 9 7 5 5 4 

Cumulative % Var. Exp. 34 49 60 70 77 83 87 91 

Abbreviations: PC = principal component; Ave. = average; Asym. = asymmetry; CMD = 
countermovement depth; Pk = peak; Rel. = relative; Brk = braking; Prop = propulsive; RFD = rate of 

force development; Lnd = landing; RSI Mod. = the modified reactive strength index; % Var. Exp. = 

percent variance explained. 

 

 


