OSA90/hope™

" User’s Manual

Optimization Systems Associates Inc.

~ = - - r - ﬁ - . - r - = - [.|
| [o " P — hl. mllu\l | e e { S e
W - =

OSA90/hope™
User’s Manual

Version 4.0

August, 1997

Optimization Systems Associates Inc.

LIABILITY AND WARRANTY

NEITHER OPTIMIZATION SYSTEMS ASSOCIATES INC. NOR ITS EMPLOYEES, OFFICERS, DIRECTORS OR ANY OTHER PERSON, COMPANY, AGENCY
ORINSTITUTION: (1) MAKESANY WARRANTY, EXPRESSORIMPLIED ASTOANY MATTER WHATSOEVER REGARDING THISMATERIAL, INCLUDING
BUT NOT LIMITED TO THE GENERALITY THEREOF, ALL IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, OR THOSE ARISING BY STATUTE OR OTHERWISEIN LAW OR FROMTHE COURSE OF DEALING OR USAGEOF TRADEHAVE
BEEN AND ARE HEREBY EXPRESSLY EXCLUDED; OR (2) ASSUMES ANY LEGAL RESPONSIBILITY WHATSOEVER FOR THE ACCURACY,
‘COMPLETENESS OR USEFULNESS OF THISMATERIAL; OR (3) REPRESENTS THATITS USE WOULDNOTINFRINGEUPON PRIVATELY OWNEDRIGHTS
OF THIRD PARTIES. ITISEXPRESSLY UNDERSTOOD ANDAGREED THAT ANY RISKS, LIABILITIES OR LOSSES ARISING OUTOF ANY USE, TRANSFER
‘OR LEASE OF THIS MATERIAL WILL NOT BE ATTRIBUTED TO OPTIMIZATION SYSTEMS ASSOCIATES INC. OR ANY INDIVIDUAL ASSOCIATED WITH
‘THE COMPANY. ACCURACY, COMPLETENESS OR USEFULNESSFOR ANY APPLICATION SHALL BE DETERMINED INDEPENDENTLY BY THEPARTY
UNDERTAKING SUCH AN APPLICATION.

IN NO EVENT WHATSOEVER WILL OPTIMIZATION SYSTEMS ASSOCIATES INC., ITS EMPLOYEES, OFFICERS, DIRECTORS, OR AGENTS BE LIABLE
FOR ANY DAMAGES, INCLUDING, BUT WITHOUT LIMITATION, DIRECT, INDIRECT, INCIDENTAL AND CONSEQUENTIAL DAMAGES ANDDAMAGES
FOR LOST DATA OR PROFITS, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS MATERIAL.

‘CONTENTS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Copyright

Copyright © 1997 Optimization Systems Associates Inc.

The i " b . . cas s o Ot A Tnc s of this

document in whole or in part, or the use or disck { any of the it i ined berein, wit prior express wrif ization of Optimization Systems
Associates Inc. is prohibited.

OSAg0/hope User’s Manual Version 4.0 first published in 1997. Printed in Canada.

Optimization Systems Associates Inc.
P.O. Box 8083, Dundas, Ontario
Canada L9H 5E7

Tel 905 628 8228
Fax 905 628 8225

Email osa@osacad.com

Trademarks of Optimization Systems Associates Inc.

Datapipe

Empipe

Empipe3D

FAST

Geometry Capture
HarPE .
OSA90
OSAg90/hope
Space Mapping
Spicepipe

Other Trademarks
Windows95 and WindowsNT are registered trademarks of the Microsoft Corporation.

Touchstone is a trademark of the Hewlett-Packard Company.
em and xgeom are trademarks of Sonnet Software, Inc.

OSA90/hope™ User’'s Manual

Table of Contents

Installation

Introduction 1-1
InstallingtheSoftware, 1-2
Installing the HardwareLock 1-3
OSA90 Example Directory e e it e e e 1-4
Uninstallingthesoftware 0uiuu.. 1-5

Technical Overview

OVeIVIeW e 2-1
OSAOWINAOWttt e 2-5
OSA90Userinterface e e e 2-6
OSAS9O InputFileandFlleEditorc00uuuuun... 2-10
SimulationandOptimization 2-11
APractice Sesslon e 2-12
Input File

OVeIVI W e e 3-1
Keywords e 3-1
InputFileBlockst 3-2
InputFileTemplatest 3-3
Statements e 3-5
PreprocessorMacros0. it 3-6
IncludeFlles i 3-12
Comtrol BIOCK e 3-13
PhysicalUnlts i, 3-26

Expressions

OptimizationVarlables 4-6

EXpressions 4-8
Conditional Expressionsc.cciuiiiuunnunn... 4-10
ATTAYS . . . e 4-13
Array EXpressions 4-17
ArrayFunctions 4-19
Stringlabels 4-41
Transformations 4-43
CubicSplineFunctions iiuuriinnnnnn.. 4-49
Piece-Wise LinearInterpolation 4-52
Datapipe

OVeIVI W . . . e 5-1
Dataplpe Server 5-3
Datapipe Protocols i 5-6
SIMProtocol 5-9
COMand COMD Protocolsuiiiimmmmeeeeeaannnnn. 5-15
FUNProtocol ittt i e 5-24
FDFProtocol et e 5-25
LINEARProtocol00 iiiiiiiiniiniinannn. 5-29
ApplicationNotes e 5-32
Circuit Models

OVeIVIeW . . . L e e 6-1
Nodes e 6-3
Elements e 6-4
Ideal Sources 6-6
POMS . L e 6-11
VoltageandCurrentlLabels 6-16
CIRCUITStatement0ttiitiiitteeennnnnnn. 6-18
DO RESPONSeS\ttt e 6-19
Small-SignalResponsesc.ciuiiiiiiunnnennnnnn. 6-22
Large-SignalResponses0ttt 6-26
PostprocessingResponsesc.cuiiiiinnnnann.. 6-36
LinearSubcircults 6-38
User-DefinedLinearModelscvu.... 6-41
User-Defined NonlinearModels 6-44
ImportDataBlock i 6-48
LINEARDataplpe0iiiiiiiiiiiiiiiiiiiiennnnn 6-56
Macros and SymbolicSubclrcuits 6-58

Osclllator Portttt 6-61

7 Nonlinear Elements

BJTU user-definable bipolar junction transistor model 7-2
DIODE SPICE diodemodel0 iuiintiniinnennnnnnnnnn.. 7-3
DIODEO semiconductor diode model e e e e e e e 7-7
DIODEU user-definable diode model0uuuuummnnnnnn.. 7-9
FETC Curtice and Ettenberg FET model0uiutunenennnnn. 7-10
FETCA Curtice asymmetrical FET model0.0uuuuueueennnn. 7-12
FETM Materka and Kacprzak FET model0uuu.... 7-14
FETR Raytheon FETmodell uuunnnnn.. 7-17
FETT physics-based Khatibzadeh and Trew FETmodel 7-19
FETT1 modified physics-based FET model00uuurnnunn.. 7-23
FETU1 user-definable FETmodel 100iuunnnennnn... 7-26
FETU2 user-definable FET model 2c0uuuuuunnnon.. 7-27
HBT heterojunction bipolar transistor model 7-28
HEMTAC advanced Curtice HEMT model e 7-31
HEMTC Curtice HEMT model0tiuiuninnneeeneannnnnn. 7-34
HEMTG1 high order beta degradation HEMT model 7-37
HEMTG2 double parabolic HEMT modelouuuuuunnnnnnnnnn... 7-40
KTL physics-based bias-dependent small-signal FET model 7-43
NLCCS nonlinear controlled CUrrent SOUICEououuerennunnnnn. 7-48
NLCQ nonlinear controlled charge SOUrCecuouuiuunnnnnnn. 7-49
NPN NPN Gummel and Poon bipolar transistor model 7-50
PNP PNP Gummel and Poon bipolar transistor model 7-52
8 Linear Elements

CAP CAPACTIOT & i ittt ittt et e e e 8-2
CCCs current controlled current SOUrCe, 8-3
CCVs current controlled voltage sourceovuveruunnnnn.. 8-4
CIR3 ideal three-port circulatorttt 8-5
CLIN ideal coupled transmission linescc0uuuun... 8-6
CLINP coupled transmission lines, physical model 8-7
EXTRINSIC1 extrinsic parasiticmodel 1c.c0uuuunnnnn... 8-8
EXTRINSIC2 extrinsic parasitic model 20uurrunnnnnn.. 8-9
EXTRINSIC3 extrinsic parasiticmodel 300vuuurununur.. 8-10
EXTRINSIC4 extrinsic parasiticmodel 4cco..... 8-11
IND INAUCIOT . ..ttt e 8-12
MAGAP MICTroStrip aSymmetric 8aPo ovvviiiii et 8-13
MBEND1 microstrip 90 degree bend et e s et ce et et eseeeecenn 8-14
MBEND2 microstrip chamfered 90 degree bend 8-15
MBEND3 microstrip optimally-chamfered 90 degree bend 8-16
MBEND3A microstrip optimally-chamfered 90 degree bend 8-17
MCROSS MICTOStriP CrosS-JUNCHONo v vv i ittt i it eeeeenn. 8-18
MGAP MICrostrip Symmetric 8apttt ittt e e 8-19
MLANG4 four-finger microstrip Lange coupler0..... 8-20
MLANG6 six-finger microstrip Lange couplerc0uuuuu... 8-22
MLANGS eight-finger microstrip Lange couplercuo.o... 8-24
MOPEN microstrip open Stub e 8-26
MRSTUB microstripradialstub..................._ 8-27

MSACL asymmetrical coupled microstrip lines 8-28
MSCL two-conductor symmetrical coupled microstrip lines 8-29
MSHORT microstrip Short stub e 8-30
MSL microstrip lime 8-31
MSLIT narrow transverse slit in microstrip 8-33
MSTEP IECTOSIEID StED & o i vttt ittt et ettt et et et e e 8-34
MSUB microstrip substrate definitionttt 8-35
MTEE microstrip T-Junction ittt it i e 8-36
OPEN OPEN CIFCUIL .« . it ittt ittt et ittt ettt et et eneennnn 8-37
PRC parallel connection of resistor and capacitor 8-38
RES TOSISEOT & & i ittt et 8-39
SRC series connection of resistor and capacitor0.0. ... 8-40
SRL series connection of resistor and inductor 8-41
SRLC series connection of resistor, inductor and capacitor 8-42
TEM ideal transmission line 8-43
TRL transmission line, physical model00uuuuunun.. 8-44
VCCS voltage controlled current SOUICeovveeunenennnnn.. 8-45
VCVs voltage controlled voltage source0iuuuennunn.. 8-46
DATAPORT imported n-port SUbCIFCUito ovin et eee e eee e 8-47
SPORT n-port subcircuit defined by Smatrix 8-48
YPORT n-port subcircuit defined by Ymatrix0..... 8-54
ZPORT n-port subcircuit defined by Z matrix 8-60
9 Simulation

9.1 OVeIVIeW 9-1
9.2 SWeep BIOCK e 9-1
9.3 Simulation Typesttt 9-3
9.4 Parameter Sweepst e e 9-7
9.5 ParameterlLabelst 9-13
9.6 OutputLabels00t iiiiiiiiiinnennnn. 9-14
9.7 OSAS0DIsplay Menu0iuitiiiiii i 9-15
9.8 XsweepDisplay 9-17
9.9 Numerical Display i iuiiimnnannnn.. 9-22
910 GraphlcsZoom 9-24
011 DraW TYPeS e 9-27
9.12 ParametricDisplay 9-28
913 ArrayDisplay 9-31
9.14 Visualization and ContourPlotting N 9-32
9.15 HostAccelerationFiles00 uiuiiuiunnnn. 9-43
9.16 ReportGeneration 9-44
10 Graphical Views

101 OVeIVIeW 10-1
10,2 XsWeep VIeWSttt e 10-2
10.3 Specifications ShowninViews 10-14
10.4 SelectViewsforDisplayc.uiiiiiniuuunnnnnnn. 10-17

12

121
122
123
124
125
126
127

129

12.10
1211
1212
1213
12.14
12.15
12.16
1217
12.18
1219
12.20
12.21
12.22

ParametricViews 10-18
WaveformViews, 10-21
SmithChartViews 10-26
PolarPlotViews 10-29
VisualizationViewsot 10-32
Optimization

OVerVIeW e e 11-1
SpecificationBlock 11-2
Simulation Types 11-5
ParameterSweeps 11-9
Parameterlabels 11-15
OutputLabelsandGoalsc0uuiuiunnnnnn.. 11-16
Error FunctionsandWelghts 11-19
FUNDatapipeittiiiiitte e, 11-21
FDF Datapipe ittt e 11-24
ObjectiveFunctions 11-27
OSA90Optimize Menuttt 11-32
Trace of OptimizationVarlables 11-45
Sensitivity Analysls 11-46
Space Mapping Optimization 11-51
TechnicalReferences uiuiiiunnnennn.. 11-58

OVerVIeW 12-1
Statistical Parameters, 12-2
UniformDistribution 12-3
Exponential Distribution 12-4
Lognormal Distribution 12-5
NormalDistribution 12-6
SampleDistribution 12-8
Statistics Blockand Correlations 12-11
User-Created Hybrid Distributions 12-14
MonteCarloBIOCKt e 12-15
Simulation Typesttt 12-18
ParameterSweeps0ttt 12-22
ParameterLabels e 12-28
OutputlabelsandGoalsciiiiinuunnnnn. 12-29
OSA90MonteCarlo Menuttt 12-32
Monte CarloDisplayOptions 12-35
Monte CarloXsweepDisplay0uuuuuuuunmune... 12-37
Monte Carlo ParametricDisplayt uieennnn. 12-39
Histograms e 12-41
RunCharts P 12-43
Yied e e e e e e 12-44

12.23 Displayof MaximumErrors, 12-49

1224 ScatterDlagrams00 i, 12-51
1225 ViewsforMonteCarloDisplaysoo. .. 12-53
1226 HistogramViews i, 12-56
1227 RunChartViews 12-58
1228 ScatterViews i 12-60

13 Yield Optimization

134 Overview © 13-1
13.2 Yield OptimizationOptions\ 0., 13-2
13.3 RestartYieldOptimization 0., 13-7
13.4 Technical References000uuiiuuuununnnnn.. 13-8

14 OSA90 as Datapipe Child

15 Auxiliary Files

151 UsersManualFiles 0uimunnnnnnnnn. 15-1
152 LogFiles.................. e e e e et et e e 15-2
16 Examples

161 Overview e 16-1
162 Exampledemo0l, 16-8
163 Exampledemo02t 16-11
164 Exampledemo03, 16-14
16.5 Exampledemoll, 16-19

App'endix A Datapipe Server

Appendix B Diagnostic Messages

Index

1

| Installation

T dntroduction 1-1
1.2 InstallingtheSoftware 1-2
1.3 Installingthe HardwareLockuuuuuuuuunn... 1-3

1.4 OSA90 Example Directory
1.5 Uninstalling the software

1

Installation

1.1 Introduction

Throughout this Manual, OSAS0/hope is referred to as OSAS0.

The installation of OSASO can be done by either a system administrator or a user.

In a Windows NT multi-user environment, the system administrator should install OSAQO so that it
is accessible to all users. If, on the other hand, OSASO is to be used by a single user, then that user
can carry out the installation himself/herself.

Sections 1.2 and 1.3 describe the procedure of installing the software and hardware lock respectively.
Only the person who performs the installation needs to follow this procedure.

If you experience difficulties in the installation of OSA90, you can contact our technical support staff
at

Tel 905 628 8228
Fax 905 628 8225

Email osa@osacad.com

Home page http://www.osacad.com

1.2 Installing the Software

We recommend that you close all open applications before starting the installation. If there
were additional installation instructions provided with the software, please follow them as
well.

Insert the floppy disk labelled “Installation Disk 1” in the appropriate drive. Click on the “Start”
menu (located on the taskbar) and choose “Run”. A dialog box will appear, prompting you for a file
location. Enter the following string:

a:\setup.exe
where “a:” is the drive letter of the 3.5" floppy drive.
The installation program will guide you through the actual installation of OSASO.
After setup has been successfully completed you will see a dialog box which provides directions for

installing the Sentinel Pro drivers. OSASO requires these drivers to access the information stored in
the hardware lock to function properly.

The software portion of the setup procedure is now complete.

1.3 Installing the Hardware Lock

Provided with the software is a Sentinel Pro hardware lock. The hardware lock should be installed on
the first parallel port of the computer (i.e., LPT1). If there are other locks already attached to the
computer, be sure to place the Sentinel Pro at the end of the chain. This lock is completely transparent
and should not interfere with normal operation of the computer printers or other devices which may
be attached to the computer’s parallel port..

After installing the hardware lock, insert the floppy disk labelled either “Win95 Sentinel Setup” or
“WinNT Sentinel Setup” (whichever is appropriate for your operating system) in the drive. Click on
the “Start” menu (located on the taskbar) and choose “Run”. A dialog box will appear, prompting
you for a file location. Enter the following string:

a:\setup.exe
where “a:” is the drive letter of the 3.5" floppy drive.
You will be presented with a screen titled “Sentinel Driver Setup Program”. You will see that there
is only one menu item available, “Functions”. From “Functions”, choose “Install Sentinel Driver”.
You will be prompted for the location of the installation files. The location is the root directory of the
installation floppy disk (for example, “a:\").
Afer a brief period of time, you will be presented with a dialog box informing you of the outcome of
the installation and requesting that you reboot your machine. Prior to rebooting the machine, remove
the installation floppy disk from the drive.

After rebooting, OSA90 is ready to run.

‘ There have been problems reported involving hardware locks attached to enhanced or
bidirectional parallel ports. If you experience problems with the hardware lock, please see the
documentation for your computer and set the port to “standard” or “normal” mode.

1.4 OSA90 Example Directory

The directory hierarchy of the OSA9O installation is as follows.

[i] 2 Osa OSA Installation Directory
bin executables
03a%0_examples examples

0sa90msg configuration files

‘We recommend that before using the software, you make a working copy of the examples to a suitable
directory and work with that copy.

If you need more information on how to copy files and folders, select “Help” from the “Start” menu
(located on the taskbar) and search for “copying”.

1.5 Uninstalling the Software

To uninstall OSA90 and its components, perform the following actions:
¢ Select “Control Panel” from the “Settings” sub-menu of the “Start” menu.
¢ Open “Add/Remove Programs”.
¢ Select the software you wish to uninstall.
¢ Click the “Add/Remove” button.

¢ Click “Yes” when the “Confirm File Deletion” dialog box appears.

A message box will appear, informing you whether or not the software was successfully removed.

2

Technical Overview

Overview i, et 2-1
OSASOWINAOW e - 2-5
OSASOUserinterfacec.uiininununnnnanmannnnnn. 2-6
OSA90 InputFileandFlleEditor uuuu.... 2-10
Simulationand Optimization 2-11
A Practice Sesslon 2-12

2

Technical Overview

2.1 Overview

OSAQO/hopem is a state-of-the-art, general purpose CAD software system offering simulation,
modeling, statistical analysis, nominal and yield optimization, and data visualization for linear and
nonlinear RF/microwave analog circuits. Its open architecture allows you to create fully optimizable
interconnections of components, subcircuits, simulators and mathematical functions. OSAS0/hope
is equipped with several protocols for connecting external programs through interprocess pipes. This
facilitates high-speed data connections to external executable programs.

Powerful Circuit Simulation

4

linear and nonlinear simulation of general n-port analog circuits with an arbitrary number of
nonlinear devices and excitations

analytically unified DC, small-signal AC and large-signal harmonic balance analyses
comprehensive nonlinear device and linear element model library

customized models created by the user from nonlinear controlled current and charge sources with
arbitrary controlling voltages

linear subcircuits and symbolic nonlinear subcircuits
user-created linear element models as fully parameterized subcircuits
calculation of DC and AC voltages and currents, small-signal scattering parameters, large-signal

harmonic distortion, compression, intercept points, intermodulation products, insertion loss,
stability factor, group delay and more

design of small-signal amplifiers, power amplifiers, filters, mixers, frequency multipliers and
- oscillators

State-of-the-Art Optimization

4

gradient-based minimax, ¢,, {,, quasi-Newton, conjugate gradient and Huber optimizers
non-gradient simplex, random and simulatéd annealing optimizers

Space Mapping™ optimization

statistical yield optimization

efficient FAST™ sensitivities for nonlinear circuits

display of large-change sensitivities, including yield sensitivities

arbitrary variables, functions, specifications and weights

Sophisticated Mathematics

4

formulation of functions and equations by arbitrary combinations of constants, variables, labels,
algebraic operations and mathematical functions

vector and matrix definitions and expressions, including built-in functions for matrix algebra,
inverse, LU factorization, eigenvalues and eigenvectors

built-in transformations for complex numbers: polar form to/from rectangular form
built-in DFT transformations: time domain to/from frequency domain

‘built-in cubic spline interpolation, including two-dimensional bicubic splines
conditional expressions (if and else)

uniform, normal, exponential, lognormal and sample statistical distributions with absolute or
relative tolerances and user-definable correlation matrices

quadratic approximations for efficient statistical optimization

Intelligent Connectivity

>

unique Datapipe™ for high-speed data communications to and from external programs

functional integration of separate in-house software with flexible pre-, post- and inter-processing
of inputs and outputs

adding statistical and optimization capabilities to other CAD programs such as time-domain, field
and structural simulators

optimization using externally calculated gradients via Datapipe

importing linear subcircuits from external simulators

OSA90 calling OSASO through Datapipe to create a virtual simulation hierarchy of unlimited
depth

EM Simulation and Optimization

>

proprietary Empipe™ connection to ez (by Somnet Software, Inc.) for electromagnetic simulation
and optimization of predominantly planar structures

proprietary Empipe3D™ connection to Ansoft HFSS and HP HFSS (offered by Ansoft
Corporation, and Hewlett-Packard Co., respectively) for electromagnetic simulation and
optimization of 3D structures

Geometry Capture™ for optimization of arbitrary structures

automatic discretization and interpolation of geometrical parameters, and efficient database
management to minimize the number of calls to the EM solver

accurate EM simulation results seamlessly embedded into OSASO circuit definition

‘Friendly Environment

>

logically designed menus and windows, easy to learn and use
integrated screen editor and input file parser

arbitrary parameter sweeps, parametric plots, waveform displays, Smith chart and polar plots,
Monte Carlo sweeps, histograms and run charts

quality graphics with zooming
3D visualization and contour plotting with rotating, scaling and smoothing
view definitions allowing customized graphical displays

user-formatted report generation embedding simulation results in arbitrary text

Comprehensive Documentation

>

>

on-line User's Manual

more than 80 demo examples on a wide range of applications

OSA Products and Services

Optimization Systems Associates Inc. has been developing state-of-the-art CAE software and
technologies since 1983. OSAS0 offers you the opportunity to take advantage of OSA's long-standing
and continually evolving CAD/CAE technologies.

HarPE™ is a well established system dedicated to complete nonlinear device CAD, including device
characterization, device simulation and optimization, as well as statistical modeling and analysis.

Empipe is a powerful and friendly software system for automated electromagnetic (EM) design
optimization, driving the EM simulator em™ from Sonnet Software, Inc. Empipe allows you to
designate geometrical and material parameters as candidate variables for optimization in an intuitive
and friendly manner. Any arbitrary structures that you can simulate using em you can now optimize
using Empipe!

Empipe3D is a powerful and friendly software system for automated EM optimization, driving the
EM simulators Ansoft HFSS from Ansoft Corporation and HP HFSS offered by Hewlett-Packard Co.
Empipe3D allows you to designate geometrical and material parameters as candidate variables for
optimization in an intuitive and friendly manner. Any arbitrary structures that you can simulate using
HFSS you can now optimize using Empipe3D!
OSA also provides consulting services for specialized CAE solutions.

For further information:

Tel 905 628 8228

Fax 905 628 8225

Email osa@osacad.com

Home Page http://www.osacad.com

2.2 OSA90 Window

e RE

! Empipe3D user-defined structure BEND -

Hodel
#include “bendi_osa\bend1.inc”;

BEND1_d: 70 8.2 0.357;

BEND1 1 2 8 model=7
d=(BEND1_d = 1in);

PORTS 1 6 2 03
CIRCUIT;

NS_DB[2,2] = if (NS > 8) (20 = log18(KS)) else (NAN);
NST1_DB = MS_DB[1,1];
lend

Sweep
AC: FREQ: from 96Hz to 156Hz step=1GHz MS11_dB
{XSWEEP title="MS11_dB and Spec" X=FREQ Y=MS11_dB
SPEC=(from 96Hz to 156Hz, < -38) &
(from 96Hz to 15GHz, < -30)};

AC: FREQ: from 9CHz to 15CHz step=1GHz MS NS_DB PS
{Smith MP={MS11,PS11).S11}
{Polar WP=(HS21,PS21).S21};

lend

Spec
AC: FREQ: from 9GHz to 15GHZ step=1GH2 MS11_dB < -3
AC: FREQ: from 96HZ to 156Hz step~1GHz MS11_dB < -38;

-Jend

§Control
Perturbation_Scale=1.8e-%;
Optimizer=Minimax;

AN A AN
Ol

Fig. 2.1 OSA90 window.

The top of the window contains the menu bar and toolbar and the middle portion of the window is used
to display graphics or ASCII files (the input file, or netlist is shown here). The status bar is located
at the bottom of the window. ’

2.3 OSA90 User Interface

Near the top of the OSAS0 window is the menu area, where the menu options are presented.

You can use the mouse to highlight the different menu options. As you do so, the status bar displays
a brief comment on the function of the highlighted option.

To select a menu option, you can click the left-hand mouse button on the desired option.
Some menu options lead to another level of menu options. The OSAS0 menu hierarchy is summarized

in Table 2.1, described in greater detail in Table 2.2 and toolbar button associations are listed in Table
2.3.

TABLE2.1 OSA90 MENU OPTIONS

Menu Option Brief Description

File reads, edits, parses and saves files

Edit provides access to cut, copy and paste

Display calculates and displays responses and functions
Optimize initiates optimization

MonteCarlo performs statistical (Monte Carlo) analysis

Help where to go when you need help

TABLE22 MENU FUNCTIONS

Option Brief Description

FILE

wOpen opens an existing file

wSave saves the current input file

wSave As saves the current input file under a different name
wNew creates a new input file

w Edit Input File returns to editing mode

= Compile Input File
w Print

=Online Manual

- Exit

EDIT
wUndo

- Cut
=Copy
wPaste
wSelect All
= Find

wReplace

DISPLAY
-Xsweep

w Parameteric
- Array
w\Waveform
wSmithChart
wVisual

= Report

compiles the input file and checks for syntax errors
prints the current contents of the OSA90 main window
displays the online manual

exits OSA90

undoes the last edit or change to the input file

deletes selected text and places it on the clipboard

copies selected text to the clipboard

places the contents of the clipboard at the current cursor location
selects the text of the entire file

searches the file for the specified text

replaces specified text with alternate text

displays responses versus parameter sweeps
displays parametric plots of responses
displays elements of arrays

displays time-domain waveforms

displays Smith charts and polar plots
displays 3D visualization and contours
generates a report file

TABLE 2.2 (cont'd) MENU FUNCTIONS

Option Brief Description

OPTIMIZE selects and runs one of available optimization routines
-l

-2

wMinimax

wQuasi-Newton

= Conjugate Gradient
wHuber

= One-Sided L1
wMinimax AG
wRandom

w Simplex
wSimulated Annealing
wSpace Mapping

- Yield

wSensitivity Analysis

MONTECARLO
- Xsweep
wParametric

w Histogram
wRun Chart

~ wYield

w Sensitivity
wMax Error
wScatter Plot

HELP
wHelp Topics
wAbout OSAS0

invokes sensitivity analysis

displays statistical sweep responses

displays statistical parametric plots

displays histogram of individual responses
displays run chart of individual responses
displays yield estimated by Monte Carlo analysis
displays yield versus parameter sweeps

displays histogram of the maximum errors
displays scatter diagram between two responses

launches Online Manual
displays license information and serial number

TABLE2.3 TOOLBAR BUTTONS

Menu Option HotKey Toolber Bufion
Open Cul+0 i
Save Ctel +§ =
New Ctl+N
Edit Input File Cl+E ;% ,
Compile Input File 7

Print Ctrl +P @
Online Manual F1 @
Cut Cul+X @
Copy cul+C
Paste Ctl+V @
Find Ctrl+F @
Display

Optimize

Sensiﬁvity
MonteCarlo @

2.4 OSA90 Input File and File Editor

OSA90 input files are ASCI text files. The default extension for OSASO0 input files is ".ckt".

The input file contains definitions of parameters, variables, labels, models, responses, equations,
frequency ranges, parameter sweeps, simulation outputs, optimization specifications, operation control
options, statistical tolerances and distributions, etc.

The structure and syntax of OSASO input files are discussed in Chapter 3.

OSAS0 has a built-in full screen ASCII text file editor. It allows you to create, retrieve, modify and
save input files for OSA90.

The screen editor features search and replace, cut and paste, undo, printing, and more. The editor is
integrated with the file parser to make syntax error detection and correction convenient and friendly.
Functions listed under the “File” and “Edit” menus above pertain to the editing and compilation of the
input file.

2.5 Simulation and Optimization

OSAQ0 simulation is invoked by the “Display” menu option. The various options listed under the .
“Display” menu allow you to view the circuit responses in a variety of formats.

TABLE2.4 DISPLAY FORMATS

Option Brief Description

Xsweep displays one or more responses versus frequency or a parameter
Parametric displays one or more responses versus another response

Array displays elements of an array

Waveform displays time-domain waveforms

Smith displays Smith charts and polar plots

Visual displays 3D visualization and contours

OSAS90 optimization is invoked by the “Optimize” menu option. The choices available for the
“Optimize” menu option are listed in Table 2.2 and are further described in Chapter 11.

For more information on simulation and optimization, please see Chapters 9, 10 and 11.

2.6 A Practice Session

This practice session guides you, step by step, through the basic operations of OSA90 using a simple
example.
Copying the Tutorial Examples
A set of OSA90 examples are provided to you in the subdirectory
<OSA Installation Directory>/osa90_examples

Before proceeding with this practice session, we strong recommend that you make a copy of the
example files to a suitable location as set out in Chapter 1.

Starting OSA90

To start OSAZO, click on the “OSA90” icon located in the “Osa” program group.

§ Command Prompt
{ & Windows NT Explores

§

% 48 Administrative Tools (Common) >
g :g Graphics Tools 4
{ &8 Microsoft Peer Web Services (Common) »

>

WindowsNT Workstation |

Fig. 2.2 Location of OSA90 on the Start Menu

The OSAS0 main window will appear on screen, along with the “OSA90 Open File” dialog box.

%, 0SAS0_V4.0-0 - new

[a] DEMDO1.ckt DEM004_0.ckt

w] DEMOO2 ckt] DEMOOS.ckt

:m] DEMO0O2_0.ckt DEMO0S_0.ckt

ia) DEMOO3. ckt DEMO06.ckt

] DEMOO3_0.ckt i DEMO07.ckt
28 DEMO07_0.ckt

K1 REPRER . PEOPR R S AR
Fles of type: [Inpu fles [~.ckt) 1 B

o EdR _fissise Quisies Hoshelwhs Helo
{05A90 Dpen File [7] ’g

AR,

S SN NINTNNINY:

Fig. 2.3 The “OSA90 main window and Open File dialog”

For this practice session, we need to read in the file named "practice.ckt".

OSA90 File Editor

The contents of the file "practice.ckt" are displayed in the OSA9O file editor screen, as depicted in
Fig. 2.4. You can browse through the file, but be careful not to inadvertently alter the contents of
"practice.ckt".

B 05A90_v4.0-0 - practice.ckt
Eile Edit Dsstar Dudmise MosdsCaloe Help

t Example practice.ckt
¢ key: minimax, optimization, small-signal, amplifier.

jModel
TEM 1 8 2=70 E=?125? F=186H2;
TEH 2 8 2=50 E=7867 F=18GHZ;

TEMN 13 8 4 2=108 E=65 F=186HZ;
OPEN 3 &;

TEN 15 2=188 E=25 F=186HZ;

CAP 5 6 C=1ONF;
IND 6 7 L=100NH;

Extrinsic2 8 9 18 6 11
RG=3.5 LG=0.06306NH RD=8.5 LD=0.86792NH
RS=4.73 LS=0.8451NH G6DS=8.80345 CDS=0.838738PF CX=18PF;

N
A :
KRR

e

FETR 8 9 10 b
IS=SE-15 Ne1 FC=8.5 GMIN=1.0E-87 :
UBI=8.8 UBR=28.8 ALPHA=2 THETA=8.863

BETA=0.629 UT0=-1.637 LAMBDA=0.04978 TAU=2.8PS
CGSO=0.4428PF CGDO~0.1866PF;

CAP 11 12 C=10NF;
- IND 11 13 L=106NH;

Fig. 2.4 OSA90 file editor screen.

The Circuit Model

The OSASO input file contains the circuit model, the frequency range for simulation, the responses
of interest, the optimization specifications and other relevant information.
The file "practice.ckt" describes a small-signal amplifier, as depicted in Fig. 2.5.

-0.56Vv 4V

e

NEC700

de

Fig. 2.5 The small-signal amplifier.

Optimization Variables and Specifications

Near the beginning of the input file "practice.ckt", you can find these statements:

TEM 1 0 2=70 E=?125? F=18GHZ;
TEM 2 0 2=50 E=2807? F=18GHZ;

Each statement defines a transmission line model with the parameters Z (characteristic impedance),
E (electrical length) and F (frequency at which E is given). Notice that the values for the parameter
E are enclosed within question marks. This indicates that they are optimizable parameters. In other
words, when we invoke optimization, the values enclosed within question marks will be adjusted by
the program in an attempt to improve the circuit performance with respect to a set of specifications.
Further discussions on optimization variables and bounds can be found in Chapter 4.

Near the end of the input file you can find these statements:

Spec

AC: FREQ: from 6 to 18 Step=1 Ms21 DB > 7 MS21 DB < 9;
end

These statements represent the specifications on the small-signal gain of the amplifier:
7 < 20'10g10(iS,]) < 9 for 6 GHz < frequency < 18 GHz

For details on defining specifications, see Chapter 11.

Compiling the Input File

Before you can perform any display or optimization operations, you must first compile the input file.

‘When compiling the input file OSA90 checks the syntax of the file and will locate and highlight any
errors it detects. To compile the input file, either choose “Compile Input File” from the “File” menu,
hit the <F7> key, or click on the corresponding toolbar button.

The Display Menu

The “Display” menu should now be active. Click on “Display” and select “Xsweep” from the list
of options that drops down. A dialog box will appear:

Xsweep Display Upllons

Sweep Set: |sweep set1 it E OK ;

Y-axis: {view_1

i~i
X-axis: {FREQ i1

Numerical Output
@ No C Output to new file C: Append to existing file

2} Fonmated sumercal autput

Press <ENTER> to accept the default setting (the display options are explained in Chapter 9). You
should see the display shown in Fig. 2.6. It shows both the response and the specifications. The
specifications are not satisfied.

12

10

MS21_DB

4 6 8 10 12 14 16 18 20
FREQ

Fig. 2.6 The small-signal amplifier gain.

Performing Minimax Optimization

Choose “Minimax” from the “Optimize” menu option. A dialog box appears:

i Minimax Optimization Options

Number of iterations: : _

Accuracy of solution: lﬂ.l]lll]l §

[} Show downdill iterations only

Click on "OK" (alternatively you can press <ENTER>). This starts the optimization.

The progress of optimization is reported on the screen:

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

1/30
2/30
3/30
4/30
5/30
6/30
7/30
8/30
9/30

Max
Max
Max
Max
Max
Max
Max
Max
Max

Error=1.35546
Error=1.27626
Error=1.11658
Error=0.792285
Error=0.124942
Error=-0.543871
Error=-0.573292
Error=-0.577194
Error=-0.577254

Solution Max Error=-0.577254

@ The numerical values you actually see may be slightly different from those shown here, due
to differences in the computer hardware and/or software versions.

Simulating the Optimized Solution

After the optimization is finished, choose "Xsweep" from the "Display” menu. After the simulation
is completed the “Xsweep Display Options™ dialog box appears, press <ENTER> to accept the
default setting.

The optimized amplifier response is shown in Fig. 2.7. Clearly, the specifications are satisfied after
the optimization.

10

—
/

4 6 8 10 12 14 16 18 20
FREQ

Fig. 2.7 The small-signal amplifier gain after optimization.

Back Annotation of the Optimization Solution

The solution of the optimization is automatically back-annotated into the input file. To see it, choose
“Edit Input File” from the “File” menu (or press <Ctrl + E>).

" Within the file e&itor, you can locate near the beginning of the input file these statements:

TEM 1-0 2=70 E=?126.958? F=18GHZ;
TEM 2 0 2z=50 E=?61.4634? F=18GHZ;

The optimizable parameter values within the question marks have been updated.

‘ The numerical values you actually see may be slightly different from those shown here, due
to differences in the computer hardware and/or software versions.

Exiting the OSA90 Program

Choose “Exit” from the “File” menu. A message box will appear asking you wether you wish to save
the changes. This alerts us to the fact that we did not save the input file with the optimized parameter
values. Since this is only a practice session, we do not need to save the file. Click on “No”.

Another message box will appear, requesting confirmation that you wish to exit the program. Click
on “Yes”.

3
Input File

31 OVeIVIeW 3-1
32 Keywords et et e e e e e e e e 3-1
33 InputFileBIOCKS i e 3-2
34 InputFileTemplates0 0. 3-3
3.5 Statements 3-5
3.6 PreprocessorMacrosiiii e 3-6
37 IncludeFlles e e 3-12
3.8 Control BIOCK 3-13

3.1

3.2

3
Input File

Overview

An input file is an ASCII text file prepared by the user to supply OSAS0 with the essential
information needed for simulation and optimization.

The input file defines parameters and variables, circuit topology and models, responses and
functions, formulas and equations, simulation types and ranges, optimization goals and
specifications, statistical tolerances and distributions, etc.

The contents of an input file are divided into sections called file blocks. Each file block
is designated to supply information related to a particular aspect of the operation.

This chapter outlines the basic structure of the input file and describes the syntax rules that
are applicable throughout the input file. Details of the various file blocks are given in
subsequent chapters when the appropriate features are discussed.

Extension .ckt is recommended for all OSA90 input files. Some efficiency-enhancing
features apply only to input files with the .ckt extension (§= Chapters 9, 11 and 12).

The input file size is limited to 256K bytes by default. This limit can be extended if

necessary (please contact the technical support at OSA).

Keywords

Keywords are names designated by OSA90 to denote built-in features and options.
For example, in the input file, a resistor is defined as
RES 12 R =5.0;

where RES is the keyword representing the built-in resistor element model, and R is the
keyword representing the resistance parameter of the resistor element model.

Keywords are case insensitive. For example, RES, res and Res are treated by the file
parser as identical keywords.

3.3 Input File Blocks

The contents of an input file are divided into sections called file blocks. Each file block
is designated to supply information related to a particular aspect of the operatit_)n.

Syntax:

Block_Name
End

where Block_Name represents one of the keywords listed in Table 3.1.

TABLE 3.1 INPUT FILE BLOCKS

Block Name Contains Definitions of Required for < Chapter
CONTROL user-controllable default options - 3
SAMPLE sample of statistical outcomes - 12
STATISTICS statistical correlation coefficients - 12
IMPORTDATA imported linear subcircuit data - 6
EXPRESSION labels, variables, functions - 4,5
MODEL circuit models, circuit responses circuit simulation 6,7,8
SWEEP simulation types, ranges, outputs simulation/display 9,10
SPECIFICATION design specifications, weights optimization 11
MONTECARLO statistical analysis ranges, outputs statistical analysis 12
REPORT text report template - 9
TRACE record of optimization variables - 11

Block names are case insensitive, like all other keywords. For example, MODEL,
Model and model all identify the same file block.

Block names can be abbreviated to the first four or more characters. For example,
you can use Spec as the name for the Specification block.

All blocks are optional. You only need to define those file blocks that are necessary for
the desired operations, as noted in Table 3.1 in the "Required for" column. For instance,
you need to define the Specification block in the input file only if you wish to perform
optimization.

Order of entry is arbitrary. The file blocks may appear in the input file in any order,
although the file parser always processes the blocks in the order given in Table 3.1.

3.4 Input File Templates

This section contains a number of templates for creating OSA90 input files. The templates
are designed for several typical combinations of features. In each case, the minimal
configuration of file blocks necessary to set up a problem properly is shown.

The templates contain only an outline of the input file. Details of the relevant file blocks
are discussed in the appropriate chapters as listed in Table 3.1.

F<= See also the demo examples in Chapter 16 and OSA90/hope Applications Illustrated.

Generic Numerical Simulation

Expression
define parameters and functions (Chapters 4,5)
End

Sweep
define simulation ranges and outputs (Chapter 9)
End

Generic Numerical Simulation and Optimization

Expression
" define parameters, variables and functions (Chapters 4,5)
End
Sweep
define simulation ranges and outputs (Chapter 9)
End
Specification
define optimization ranges, specifications and weights (Chapter 10)
End

Circuit Simulation

Model
define circuit topology, models, excitations and responses (Chapters 6,7,8)

define formulas, functions and postprocessed responses (Chapters 4.5)
End

Sweep

define simulation types, ranges and outputs (Chapter 9)
End

Circuit Simulation and Optimization

Model
define circuit topology, models, excitations and responses (Chapters 6,7,.8)

define formulas, functions and postprocessed responses (Chapters 4,5)
End

Sweep .

define simulation types, ranges and outpaés (Chapter 9)
End

Specification

define optimization types, ranges, specifications and weights (Chapter 10)
End

Statistical Analysis and Optimization

Statistics

define statistical correlation coefficient matrices (Chapter 11)
End

Model
define statistical parameters (Chapter 11)

define circuit models, responses and other functions (Chapters 4,5,6,7,8)
End

MonteCarlo

define statistical simulation types, ranges and outputs (Chapter 11)
End

Specification

define optimization types, ranges, specifications and weights (Chapter 10)
End

3.5 Statements

The logical unit of the information within an input file block is called a statement.
Statements are delimited (separated) by a semicolon ";".
A statement may occupy one text line:
RES 12 R=5.0;
Or, a long statement may occupy several text lines:
Value DB: if (Value > Value Max) (20.0 * loglO(Value_Max))
else (if (Value < Value_Min) (20.0 * LoglO(Value_ Min))
else (20.0 * loglO(Value)));
On the other hand, several short statements may share a single text line:
V1 =50; V2=12?1.5?; V3 = (V1+V2)/2;
‘ Since a statement does not always correspond to one text line, make sure it is

properly terminated by a semicolon. Otherwise information from different lines can
get mixed up. .

Comments can be included in the input file following the exclamation mark "". The file
parser will skip over any text following an exclamation mark "!" until the end of the line.
You can have full lines of comments, such as

! File: demoOl.ckt
! O0SA90 input file for demonstration

or in-line comments, such as

d=sqrt(X * X + Y * Y); ! Euclidean norm

Blank Lines can be used to space the input file text for clarity.

3.6 Preprocessor Macros

OSAQO’s file parser has a built-in preprocessor. As the first phase of file parsing, the input
file is scanned for preprocessor directives which are marked by the number sign (hash) "#".
The preprocessor directives include text macros and include files.

Text macros are created by the #define directive to represent lengthy, complex and/or
repetitive portions of text. At parsing time, references to text macros are expanded into
the full text the macros represent. The use of text macros can make the input file more
readable and easier to modify.

The preprocessor macros in OSA90 are quite similar to those of the "C" language, except

> In OSAQ0, text macro names are case insensitive unless enclosed within quotation marks.

> In OSA90, macros apply to the whole input file regardless of the location where the
macros are defined. In other words, the file parser recognizes references to a macro
even if such references appear before the macro is defined. This is necessary because,
as described in Section 3.3, the input file blocks may be rearranged by the file parser
into a certain order.

> OSAGQ0 allows two alternative styles for continuation lines.

> OSAS0 implements a special "$" argument.

Macro Constants

Syntax:

#define macro name substitution_text

Example:
#define Boltzmann_ Constant 1.38066E-23

During preprocessing, the file parser will replace all references to macro_name in the input
file with substitution_text. In the example, the substitution text is "1.38066E-23". The file
preprocessor will replace all references to Boltzmann_Constant with "1.38066E-23".

Macro names are case insensitive unless enclosed within double quotation marks. For
example, MACRO1, macrol and Macro1 are indistinguishable as macro names, whereas
*macro1® and *Macro1* would be considered as different and distinct names.

Macros are useful for associating critical constants with meaningful names, such as the
Boltzmann constant.

Aliases for built-in keywords can be created using macros. For instance, the macro

#define Resistor RES

creates an alias for the built-in resistor element keyword RES. Using this alias, you can
write

Resistor 1 2 R = 5.0;
which the file parsef will translate into the standard form of

RES 12 R =5.0;

Macro Expressions

Syntax:

#define macro name substitution_text

Example:
#define AREA LENGTH * WIDTH
Here, the substitution text is an expression rather than a constant.

Recursive references, ie., macros which contain references to other macros, are
permissible. For example,

#define VOLUME AREA * HEIGHT
where the substitution text includes a reference to the macro AREA defined above.

Care must be exercised with recursive references to macro expressions. You may
have to use parentheses to preserve the proper precedence of algebraic operations.

Example:
' #define X SUM X1 + X2
#define Y2 Y1l * X SUM
Y2 will be expanded into

Y1l * X1 + X2

which is unlikely to be the intended result.

A proper definition of Y2 should be

#define Y2 Y1l * (X_SuM)

Remember that the preprocessor does not actually evaluate the macro expressions
but merely carries out text substitutions.

Macro Functions

Macro functions are the most sophisticated form of preprocessor macros. In addition to a
name for identification, a macro function is defined with a set of arguments and the
substitution text is typically defined with dependence on the arguments.

Syntax:

#define macro_name(arguments) substitution_text

Example:
#define MAGNITUDE(REAL,IMAG) sqrt(REAL*REAL + IMAG*IMAG)

The opening parenthesis of the argument list must immediately follow the macro name. No
space can separate the macro name from the opening parenthesis, otherwise the parenthesis
and the arguments would be mistaken as part of the substitution text. Multiple arguments
must be separated by commas.

Formal and actual arguments: the arguments listed in the macro definition are called
the formal arguments; each reference to a macro function must supply a set of actual
arguments to match the list of formal arguments. The formal arguments which appear in
the substitution text will be replaced by the actual arguments. In other words, for each
reference, a specific version of the substitution text is generated according to the actual
arguments.

For example, the folloWing reference to the macro function shown above
MAGNITUDE(x1,x2)
will be expanded during preprocessing to

sqrt(x1l*xl + x2%x2)

Recursive references in actual arguments, i.e., the actual arguments for a macro
function which contain references to other macros, are permissible. For example, consider
a macro function defined as

#define MULTI(X1,X2) X1 * X2

and the following reference to this macro function:

MULTI(MAGNITUDE(x1,x2), x3) -

where the actual arguments refer to another macro function MAGNITUDE which is defined
earlier. This reference will be expanded to

sqrt(xl*xl + x2%x2) * x3
after preprocessing.

‘ Care must be exercised with recursive macro references. You may have to use
parentheses to preserve the proper precedence of algebraic operations.

Example:

#define SUM(X1,X2) X1 + X2
#define MULTI(X1,X2) X1 * X2

MULTI(SUM(x1,x2), x3)
The macro reference will lead to erroneous results after preprocessing:
x1 + x2 * x3

You can avoid this kind of problem by using parentheses either in the macro definition,
such as .

#define SUM(X1,X2) (X1 + X2)
or, in the actual arguments
MULTI((SUM(x1,x2)), x3)

or both.

Formal arguments are local identifiers within the macro functions, since they are
merely placeholders for the actual arguments. For instance,

#define MAGNITUDE(REAL,IMAG) sqrt (REAL*REAL + IMAG*IMAG)

the formal arguments REAL and IMAG are local identifiers recognized only within the macro
function MAGNITUDE.

Hence, you can assign the same names to the formal arguments of different macro functions
without causing conflicts.

Continuation Lines for Long Substitution Text

The substitution text of some macros may be longer than one line. Similar to the "C"
language, OSA90’s preprocessor allows long text to be continued onto the next line by
ending the current line with a backslash "\":
#define EXP_SAFE(X) if (X > X MAX) (exp(X_MAX)) \
else (if (X < X_MIN) (0) \
else (exp(X)))

Also, OSA90 implements an alternative style for continuation lines: using a pair of curly
brackets to enclose the lines, such as

#define EXP_SAFE(X) { if (X > X_MAX) (exp(X_MAX))
else (if (X < X MIN) (0)
else (exp(X)))
}
This is especially useful for macros which contain multiple statements, such as
#define INITIALIZATION {
X1l =1.2;
N_STEPS = 50;
N_POINTS = 3 % N_STEPS;
} .

The two styles for continuation lines can be mixed for different macros, but they
cannot be mixed within the same macro definition.

Null Substitution Text

A macro can be defined with null (empty) substitution text:

#define macro_name
The result is that all appearances of macro_name are removed from the input file.
An interesting application is the design of a "compilation switch”. You may wish to include
or exclude part of the input file for testing purpose. A convenient way for you to do this
is to mark (precede) the text you wish to include/exclude with a macro name, say, FLAG.
Then you can "comment out" the marked text by having

#define FLAG e

or, you can "activate" the marked text by having

#define FLAG

which in effect removes FLAG from the input file.

The $ Argument

The "$" argument is a special feature of OSAS0 for macro functions. You can include "$"
as a formal argument of a macro function, and the $ argument will be treated differently
from any other arguments, in the sense that it can be concatenated with other arguments
to form unique identifiers (names).
Example:

#define OFFSET($) FACTORS * A$09 + J$
Then

OFFSET(3)
will be expanded into

FACTOR3 * A309 + J3

The $ argument may appear anywhere in the formal argument list. The corresponding
actual argument can be a number, a character string or even null (empty). For example,

#define CONCAT(A, $, B) A$B

CONCAT(Drive_, Path, _File)
CONCAT(Spec, , ification)

The first reference will be expanded into Drive_Path_File and the second reference will be
expanded into Specification.

Macro Subcircuits

One of the most useful application of macro functions is the definition of symbolic
subcircuits. 5= See Chapter 6 for details.

3.7 Include Files

Syntax:

#include file name

Examples:
#include "equation.inc"
#include "/o0sa90/macros.inc"
#include "numbers.dat"
where "equation.inc", "/osa90/macros.inc" and "numbers.dat" are file names.

The preprocessor will incorporate the contents of the named file into the input file at the
point where the #include directive appears.

The files to be included must already exist on the disk and must be accessible to
OSA90 (i.e., the user must have the file read privilege).

Include files are useful for
> breaking up a very long file into several smaller files
> importing data from other programs and applications

> storing frequently used definitions so they can be shared among qifferent input files

Restrictions on include files:

> The #include directive must appear within the body of a file block. The file block
name (which begins the block) and the END keyword (which closes a file block) must
be in the main input file and cannot be imported from an include file. In other words,
a file block cannot begin or end within an include file.

> The input file may contain any number of #include directives, but an include file
cannot contain any #include directives. In other words, you can have many files to be
included into the input file, but you cannot have nested include files.

> An include file cannot contain definitions of optimization variables (J5 Chapter 4),
because of back-annotation problems. After optimization, the input file text is updated
with the new values of the optimizable variables. Since the text of an include file is
utilized only during preprocessing, it cannot be updated after optimization.

3.8 Control Block

Many of the operation parameters of OSA90 are user-controllable by means of the Control

block in the input file.

Syntax:

Control :
control_keyword = choice;

control_keyword;

End

TABLE 3.2 CONTROL KEYWORDS

To Select

Keyword Type
Accuracy choice
Allow_Neg_Parameters flag
Alternative_Solver flag
Cooling_Ratio value
Disable_Adjoint flag
Display_N_Digits choice
Equality_Threshold value
Group_Delay_Freq_Step value
Huber_Threshold value
Initial_Temperature value
Interpolate_Real_Imag flag
lterations_of T) choice
Jacobian_Perturbation value
NAN value
Newton_EPS_Relative value
Non_Microwave_Units flag
No_Default_Bounds flag
No_Q_Model flag
N_lterations choice
N_Yield Outcomes choice
Objective_Function choice
One_Sided_Group_Delay flag
Optimizer choice
Perturbation_Scale value
Print_Best_lterations flag
Two_Sided_Jacobian flag

Two_Sided_Perturbation flag

solution accuracy required for optimization
permitting circuit model parameters to be negative
the alternative Newton nonlinear equation solver
a parameter for the simulated annealing optimizer
no adjoint sensitivity analysis during optimization
number of decimal digits for numerical displays
threshold value for comparing two numbers
frequency step size for group delay calculation
threshold value for Huber optimization

a parameter for the simulated annealing optimizer
interpolating imported data in rectangular form

a parameter for the simulated annealing optimizer
perturbation scale for nonlinear device Jacobians
a value representing "Not A Number"

solution accuracy required for Newton iteration
non-microwave physical unit system

no default bounds for optimization variables

no quadratic modeling for yield optimization
number of iterations for optimization

number of random outcomes for yield optimization
choosing the objective function for optimization
one-sided perturbation for group delay calculation
choosing the optimizer

perturbation scale for estimating gradients
printing only the best optimization iterations
two-sided perturbations for device Jacobians
two-sided perturbations for estimating gradients’

Control Keyword Types

In Table 3.2, the control keywords are categorized into three different types: choice, flag
and value. For the "choice" type keywords, you select among a predefined set of multiple
choices. The "flag" type keywords by their presence activate the options they represent.
The "value" type keywords require to you specify a numerical value.

Accuracy: Solution Accuracy Required for Optimization

When you invoke optimization, you can interactively select the accuracy required for the
solution in the pop-up window (J Chapter 11).

You can also designate your choice in the Control block.

Syntax:
Accuracy = v;
where v is one of the choices: 0.01, 0.001, 1.0e-4, 1.0e-5, 1.0e-6.

Other values of v will be rounded to the closest choice which is smaller than v,
e.g., 0.003 will be rounded to 0.001. If v < 1.0e-6, it will be set to 1.0e-6.

Allow_Neg_Parameters: Permitting Negative Circuit Model Parameters

By default, OSAS0 requires circuit model parameters (resistance, capacitance, inductance,
dielectric constant, width, height, etc.) to be assigned positive values. If a negative circuit
model parameter value is detected, the file parser will signal an error.

In some situations, such as in the development of a new empirical model, you may wish to
allow negative values for the circuit model parameters.

Syntax:

Allow_Neg Parameters;

This option affects only circuit parameters. Parameters and coefficients in generic equations
and formulas can always be assigned positive or negative values as appropriate.

Alternative_Solver: Alternative Solver for Nonlinear Circuit Equations

Solutions of nonlinear circuit equations are involved in harmonic and DC circuit analyses.
Two different nonlinear solvers are implemented in OSAS0.

The first one is an improved implementation of Powell’s hybrid method (M.J.D. Powell, "A
hybrid method for nonlinear equations”, in Numerical Methods for Nonlinear Algebraic
Egquations, P. Rabinowitz Ed., New York: Gorden and Breach Science Publishers, 1970).
This is chosen as the default nonlinear solver and it works well in most cases.

The alternative nonlinear solver is based on a norm-reducing Newton Method (H.R. Yeager
and R.W. Dutton, "Improvement in norm-reducing Newton methods for circuit simulation”,
IEEE Trans. Computer-Aided Design, vol. 8, 1989). This method may provide better
convergence in some situations. In the Control block, you can request that this alternative
solver be used for nonlinear circuit simulation.

Syntax:

Alternative Solver;

Cooling_Ratio: a Parameter for Simulated Annealing Optimization

This is a parameter for the simulated annealing optimizer in OSA90. It controls the ratio
for reducing the annealing temperature between iterations. As the temperature declines,
exploratory moves are less likely to be accepted and the optimization is more likely to focus
on the vicinity of the most promising local optimum.

You can specify a value for the cooling ratio either in the Control block or interactively in
the optimization pop-up window (5= Chapter 11).

Syntax:
Cooling Ratio = v;

where v must be a constant and 0.01 < v < 0.999999. The default value is 0.85.

Disable_Adjoint: Disabling Adjoint Sensitivity Analysis

OSA90 incorporates circuit adjoint sensitivity analysis to compute gradients efficiently for
optimization. This feature can be disabled in the Control block.

Syntax:

Disable_Adjoint;

This can be useful in studying the impact of gradient accuracy on optimization. Also, it
may alter the sequence of simulation during optimization. For example, the adjoint analysis
in OSAQ0 may require parameter perturbations at each frequency of circuit simulation, i.e.,
the parameter perturbation loop is within the frequency sweep loop (or power sweep, etc.).
When the adjoint analysis is disabled, the parameter perturbation loop, if required, is
outside of the frequency (power, etc.) sweep loop.

Display_N_Digits: Number of Decimal Digits for Numerical Outputs

OSA90 can display simulation results graphically or numerically (5= Chapter 9). By
default, numerical outputs are displayed with up to 4 significant decimal digits. You can
change this default in the Control block.

Syntax:
Display N Digits = n;

where n is the number of decimal digits for numerical display and 3 <n <6

For example, the numerical value 12.3456 is displayed as 12.35 by default. If you specify

Display N Digits = 5;

then the same value will be displayed as 12.346.

Equality_Threshold: Tolerance for Comparing Two Floating-Point Numbers

OSAQ90 supports conditional expressions using If-Else structures ()= Chapter 4). One of
the often used conditions is to compare two numbers to see if they are equal. For integers,
such equality check can be exact. But, for floating-point numbers, such comparison is
subject to truncation errors.

The control keyword Equality_Threshold allows you to prescribe a tolerance within which
two floating-point numbers will be considered equal. More precisely, if

| X - Y | < Equality Threshold - (|X| + |Y|)
then X and Y are considered equal.
OSAQ0 applies criterion to conditional expressions such as (§= Chapter 4)
if X=1Y)
if X>=7) ...

if X<=Y) ...

Syntax:
Equality_Threshold = v;

where 0 < v < 1. The default value for v is 1.0E-5.

Group_Delay_Freq_Step: Step Size for Group Delay Calculation

OSAGQO calculates group delay by
6 + &) - §N1/ of

where ¢ is the phase of the appropriate S parameter and f represents the frequency. You
can specify the frequency step size Af in the Control block.

Syntax:
Group_Delay Freq_Step = v

where v must be a positive constant. The default value is 0.01.

A related control option is One_Sided_Group_Delay.

Huber_Threshold: a Parameter for Huber Optimization

When you invoke optimization and select the Huber optimizer, you can interactively select
the threshold value in the pop-up window (g== Chapter 11).

You can also designate the threshold value in the Control block.

Syntax:
Huber_Threshold = v;

where v must be a positive value.

Initial_Temperature: a Parameter for Simulated Annealing Optimization

This is a parameter for the simulated annealing optimizer in OSA90. It specifies the initial
value of the annealing temperature.

The initial temperature has a significant impact on the outcome of the simulated annealing
optimization. It influences the step size of exploratory moves. An initial temperature that
is too small may retard the process by not allowing enough exploratory moves over a
sufficiently large area of the parameter space.

Unfortunately, in general the "optimal” initial temperature is problem dependent and cannot
be easily determined in advance.

You can specify an initial temperature either in the Control block or interactively in the
optimization pop-up window (j5= Chapter 11).

Syntax:
Initial Temperature = v;

where v must be a constant and v > 0.01. The default value is 5.0.

Interpolate_Real_Imag: Option for Interpolating Imported Data

When imported data is used to define linear subcircuits, OSAS0 may perform interpolation
if the data does not contain all the frequencies involved in simulation.

By default, the interpolation is done directly on the supplied data. For instance, if the data
supplied contains S parameters in the polar form (MS11, PS11, ...), then interpolation, if
necessary, is performed on MS11, PS11, etc.

You can instruct the program to convert the imported data to rectangular form before
interpolation.

Syntax:

Interpolate Real Imag;

For well-behaved data, this should not make a significant difference. However, if the
phase varies abruptly between frequencies, interpolation in rectangular or polar form may
lead to different results. There are no general rules as to which is the better choice. The
best solution is perhaps to supply data with more densely spaced frequencies, if this is
feasible.

lterations_of_T: a Parameter for Simulated Annealing Optimization

This is a parameter for the simulated annealing optimizer in OSA90, It controls the number
of iterations before temperature reduction.

You can specify a value for this parameter either in the Control block or interactively in the
optimization pop-up window (js= Chapter 11).

Syntax:
Iterations of T = n;
where n is one of the choices: 5, 10, 20, 40, 70, 100.

Other values of n will be rounded to the closest choice which is greater than n,
e.g., 30 will be rounded to 40. If n > 100, it will be set to 100.

Jacobian_Perturbation: step Size for Estimating Nonlinear Device Jacobians

For circuits containing nonlinear devices, the Jacobians of the nonlinear currents and
charges with respect to the device intrinsic voltages are needed for the Newton iteration as
well as for linearizing the devices for small-signal analysis.

For built-in device models, the Jacobians are evaluated analytically. But for user-defined
models, the Jacobians have to be computed numerically by perturbations. For instance, the
derivative of a nonlinear current i with respect to a voltage v can be estimated by

[i(v + &v) - i(v)] / &v

You can specify the relative step size for Av in the Control block.

Syntax:
Jacobian_Perturbation = v

where v must be a constant and 1.0e-6 < v < 0.1. The default value is 1.e-4.

A related control option is Two_Sided_Jacobian.

NAN: Representing Not A Number

Sometimes you may define expressions that are meaningful only when the parameters fall
within a given range. The predefined label NAN allows you to signal OSAS0 that the result
of an expression is out of range.
Example:
Power_dBm = if (Power > 1.0e-6) (10 * loglO(Power) + 30) else (NAN);

OSAZ0 will not display values that are marked by NAN. Any arithmetic operations which
involve an NAN operand will result in an NAN value.

In the Control block, you can designate a value to be used to represent NAN.

Syntax:
NAN = x;

where x is a numerical value. The default value for NAN is 98989.0.

You should choose a value that is least likely to coincide with the "normal" numerical values
in the same input file.

Newton_EPS_Relative: Solution Accuracy Required for Newton Iteration

Newton iteration is employed for nonlinear circuit simulation. You can specify the
accuracy required for the Newton iteration in the Control block.

Syntax:
Newton_EPS_Relative = v;
where v must be a constant and it represents a multiplier to the internally determined

accuracy threshold. For example, v = 0.1 means the solution should be 10 times more
accurate than the default. The valid range is 1.0e-6 < v < 10. The default is 1.

A tighter accuracy threshold may require longer simulation time. Excessively tight accuracy
requirement may even lead to non-convergence.

Non_Microwave_Units

This keyword controls the default physical unit system to be used, see Section 3.9.

No_Default_Bounds: Disabling Implicit Bounds on Optimization Variables

In OSA90, you can assign explicit bounds on optimization variables (5= Chapter 4). On
the other hand, if an optimization variable is defined without explicit bounds, then it is
implicitly constrained within a set of default bounds.

The default bounds depend on the starting value (initial value) of the optimization variable.
If the starting value is positive or zero, the default bounds are (0, oo), otherwise the default
bounds are (-o0, 0).

You can disable the assignment of default bounds in the Control block. This will allow
variables defined without explicit bounds to vary freely from -oco to co.

Syntax:

No_Default_Bounds;

No_Q_Model: Disabling Quadratic Modeling for Yield Optimization

When you invoke yield optimization, by default a quadratic modeling feature is employed
to reduce computational cost.

You can disable the use of Q-model in the Control block.

Syntax:

No_Q_Model;

N_[Iterations: Maximum Number of Optimization Iterations

When you invoke optimization, you can interactively select the maximum number of
optimization iterations in the pop-up window (g5= Chapter 11).

You can also designate your choice in the Control block.

Syntax:
N_Iterations = n;
where #n is one of the choices: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 30, 50, 100, 999, 9999.

Other values of n will be rounded to the closest choice which is greater than n,
e.g., 45 will be rounded to 50. If n > 9999, it will be set to 9999.

N_Yield_Outcomes: Number of Statistical Outcomes for Yield Optimization

When you invoke yield optimization, you can interactively select the number of statistical
outcomes in the pop-up window (& Chapter 13).

You can also designate your choice in the Control block. -

Syntax:
N_Yield Outcomes = n;
where 7 is one of the choices: 10, 20, 50, 100, 200, 500.

Other values of n will be rounded to the closest choice which is greater than n,
e.g., 80 will be rounded to 100. If n > 500, it will be set to 500.

Objective_Function: Choosing the Objective Function for Optimization

Some of the optimizers offered by OSA90 can optimize more than one objective function.
For example, the Huber optimizer can optimize the one- or two-sided Huber objective
function. You can indicate the preferred objective function in the Control block.

Syntax:
Objective_Function = name;

name can be: L1, L2, Minimax, Generalized L2, Sum_of Errors,
Yield, GL1, Huber, One_Sided Huber, One_Sided L1

Not all the objective functions are appropriate for every optimizer. In the event that there
is a conflict between the objective function and the optimizer chosen, the objective function
specified in the Control block will be ignored.

One_Sided_Group_Delay: Calculating Group Delay by One-Sided Perturbations

By default, two-sided perturbations are used for group delay computation. In the Control
block, you can specify one-sided perturbations to be used instead.

Syntax:

One_Sided Group_Delay;

Optimizer: Designating the Default Optimizer

OSA90 offers a comprehensive set of optimizers (§== Chapter 11). You can designate the
default optimizer in the Control block.

Syntax:

Optimizer = optimizer name;

optimizer_name can be: L1, L2, Minimax, Conjugate_Gradient,
Huber, One_Sided L1, Quasi_Newton,
Random, Simplex, Simulated Annealing,

Yield

Perturbation_Scale: Perturbation Scale for Estimating Gradients

OSAZ0 employs a number of advanced techniques to calculate in the most efficient way the
derivatives required for gradient-based optimization. However, in certain situations some
of the derivatives may be estimated by perturbations (finite differences).

For example, the derivative of a function f(x) with respect to x can be estimated by

[f(x + ax) - f(x)] / ax

You can specify the relative step size for Ax in the Control block.

Syntax:
Perturbation_Scale = v

where v must be a constant and 1.0e-6 < v < 0.5. The default value is 5.0e-6.

A related control option is Two_Sided_Perturbation.

Print_Best_lIterations: an Option for Printing Optimization Results

When you invoke optimization, you can interactively select in the pop-up window the
option to print all the iterations or the best iterations only (§s= Chapter 11).

The default is to print all the iterations. You can instruct the program to print only the
best iterations in the Control block.

Syntax:

Print_Best_Iterationms;

Two_Sided_Jacobian: Two-Sided Perturbation for Nonlinear Device Jacobians

For circuits containing nonlinear devices, the Jacobians of the nonlinear currents and
charges with respect to the device intrinsic voltages are needed for the Newton iteration as
well as for linearizing the devices for small-signal analysis.

For most built-in device models, the Jacobians can be evaluated analytically. But for user-
defined models, the Jacobians may have to be computed numerically by perturbations (finite
differences).

By default, one-sided perturbations (forward difference) are used. For instance, the
derivative of a nonlinear current i with respect to a voltage v can be estimated by

[i(v + &v) - i(v)] / av

In the Control block, you can request two-sided perturbations (full differences):

Syntax:

Two_Sided_Jacobian;

Using two-sided perturbations, the derivative of i with respect to v is estimated by
[i(v + &av) - i(v - &V)] / (2 &v)
This usually improves the accuracy at the expense of increased computational effort.

A related control option is Jacobian_Perturbation.

Two_Sided_Perturbation: Two-Sided Perturbation for Estimating Gradients

OSA90 employs a number of advanced techniques to calculate in the most efficient way the
derivatives required for gradient-based optimization. However, in certain situations some
of the derivatives may be estimated by perturbations (finite differences).

By default, one-sided perturbations (forward difference) are used, i.e., the denvat:ve of a
function f(x) w.r.t. a variable x is estimated by

U(x + ax) - f(x)] / ax

In the Control block, you can request two-sided perturbations (full differences):

Syntax:

Two_Sided Perturbation;

Using two-sided perturbations, the derivative of f(x) w.r.t. x is estimated by

U(x + ax) - f(x - ax)] / (2 &%)

This usually improves the accuracy at the expense of increased computational effort.

3.9 Physical Units

When entering numerical constants in an input file, you can include physical units from
those listed in Table 3.3. For example, you can use 3.5CM to represent 3.5 centimeters.

TABLE 3.3 PHYSICAL UNITS

Quantity Avallable Keywords

capacitance F (farad) MF (millifarad)
UF (microfarad) NF (nanofarad)
PF (picofarad)

conductance /OH (siemens) /KOH (millisiemens)
/MOH (microsiemens)

frequency HZ (hertz) KHZ (kilohertz)
MHZ (megahertz) GHZ (gigahertz)
THZ (terahertz) PHZ (pectahertz)

inductance H (henry) MH (millihenry)
UH (microhenry) NH (nanohenry)
PH (picohenry)

resistance OH (ohm) KOH (kilo-ohm)
MOH (mega-ohm)

time SEC (second) MS (millisecond)
us (microsecond) NS (nanosecond)
PS (picosecond)

power DBM (dBm) w (watt)
MW (milliwatt)

current A (ampere) MA (milliampere)
UA (microampere) NA (nanoampere)

voltage A (volt) MV (millivolt)
uv (microvolt)

phase DEG (degree) RAD (radian)

length M (meter) CM (centimeter)
MM (millimeter) UM (micron)
IN (inch) MIL (milli-inch)
UIN (microinch)

Like all keywords, the physical units are case insensitive, e.g., MHZ, MHz and mhz all
represent megahertz.

The unit must not be separated by space from the numerals. For instance, 3.5cm
cannot be entered as 3.5 cm.

Default Units

Numerical constantsb without explicit units in the input file are assigned default units. Two
systems of default units are available, as listed in Table 3.4 under the headings Microwave
and Non-Microwave.

TABLE 3.4 DEFAULT UNITS

Quantity Microwave Non-Microwave
capacitance NF F
conductance /OH /OH
frequency GHz HZ
inductance NH H
resistance OH OH
time NS SEC
power DBM DBM
current A A
voltage v v
phase DEG DEG
length M M

The difference between these two systems is their default units for capacitance, frequency,
inductance and time.

The Microwave unit system is the default system. You can change the default unit system
to Non-Microwave in the Control block.

Syntax:
Control
Non_Microwave Units;

End

4

3
Expressions
OVeIVIEW e 4-1
LabelNames it 4-2
ConstantLabels 00 iuiiiiiiiiimmnnnnnnn. 4-3
PredefinedLabels it 4-4
Optimization Varlables0.0tttumimmaaannnann 4-6
EXPressions 4-8
Conditional Expressions ittt 4-10
ARTaYS 4-13
Array EXpresslons 4-17
Array FUNCHIONS e 4-19
StringLabels 4-41
Transformations 4-43
CubicSplineFunctions00uiiimmmmnannann. 4-49
Plece-Wise Linearinterpolation 4-52

4

Expressions

4.1 Overview

In the Expression block of the input file, you can define

>

>

labels representing constants and optimization variables
labels using expressions to describe formulas, equations and functions
Datapipe connections to external programs

statistical variables

Syntax:

Expression

End

label_name: constant;
label name: optimization variable;
. label _name: expression;

Datapipe: protocol descriptions;

This chapter focuses on labels and expressions. Datapipe is described in Chapter 5 and
statistical variables are described in Chapter 12.

g

Labels and expressions can be defined in the Model block also. The functionality
of the Model block is a superset of the functionality of the Expression block. All
the descriptions in this chapter are applicable to the Model block. Technically, you
do not need to have a separate Expression block. For clarity, though, it may be
desirable to keep only the circuit descriptions in the Model block, and keep abstract
variables and functions in the Expression block.

4.2 Label Names

Labels are symbolic names created by the user to represent constants, variables, formulas
and functions.

A label can be defined by a statement which begins with the label name, followed by a
colon ™" or an equal sign "=", and ends with a semicolon ";".

For example,

V1i: 2.5;
Formulal = V1 * V1 - 0.76 * V1 + 2;

where V1 and Formulal are label names. The label V1 represents a constant, and the label
Formulal represents a formula (an expression).

Reserved symbols. Label names can be arbitrary character strings but they must not
contain any of the reserved symbols listed in Table 4.1, and they must not begin with a
digit (0, ..., 9). For instance, "3_VAR" or "ABC!" cannot be used as a label name.

TABLE 4.1 RESERVED SYMBOLS

+ -) * / \ ! @ # $
% ~ & () = { } []
H ! < > ? ~ ‘

Label names are case insensitive by default, e.g., FORMULA1, formulal and Formula1
are considered to be referring to the same label.

Literal label names can be created by enclosing the label names in quotation marks.
Literal label names are case sensitive, e.g., *formulai® and *Formulai® will be treated as
distinct and different label names. Also, literal label names are not restricted by reserved
symbols, e.g.,

"/0sa90/my_data.dat"
"1989-device-33-55-7"

are legitimate label names. This is especially relevant for file names, because they are case
sensitive on UNIX systems and often contain the reserved symbols "." and "/".

Length of label names can be up to 4096 characters.

4.3 Constant Labels

In the simplest form, a label represents a numerical constant, such as

Boltzmann Constant: 1.3806E-23;

Constant labels and preprocessor macro constants (Chapter 3) are nearly identical in their
usage. For example, a macro constant defined as

#define Boltzmann Constant 1.3806E-23

can be used almost identically to the constant label defined above.

The subtle difference lies in their internal structure; a macro is meaningful only to the file
preprocessor as an alias of its substitution text, whereas a label is structured as a permanent
identifier. A label can be used as an output for graphical and numerical display, but a
macro cannot. On the other hand, a label requires slightly more memory and processing
time than a macro.

4.4 Predefined Labels

Predefined labels are internally created by OSAQO rather than by the user, otherwise they
are no different from other labels. The purpose of predefined labels is to facilitate access
to certain internal variables by the user.

TABLE 4.2 PREDEFINED LABELS

Name Description
FREQ the frequency in circuit simulation
lteration_Count index of optimization iterations
NAN representing "Not A Number”
Perturbed_Analysis index of perturbation for gradients
Pi the constant 3.14159

The FREQ Label

In the Sweep, Specification and MonteCarlo blocks, you can prescribe a set of frequencies
for circuit simulation and optimization (j& Chapters 9, 11 and 12). During simulation and
optimization, OSAS0 will automatically update FREQ with the then current value. Using
FREQ, you can create frequency-dependent formulas and functions, e.g.,

Reactance_l = FREQ * Inductance_l;

d The unit of FREQ is GHZ (gigahertz) in the default microwave unit system, but you
can change the default to the non-microwave unit system in which the unit for
FREQ is HZ (g Chapter 3).

Iteration Count During Optimization

The predefined label Mteration_Count facilitates user access to the internal variable of
optimization iteration index. At the start of optimization, the label is initialized to the
value of 1. It is then incremented at each and every iteration during optimization.

This label can be useful when OSASO0 is used to drive an external simulator and the iteration
count is of some interest to the external simulator. For example, the external simulator may
wish to store some intermediate output data in a file, indexed by the iteration count.

The NAN Label

Sometimes you may define expressions that are meaningful only when the parameters fall
within a given range. The predefined label NAN allows you to signal OSASO0 that the result
of an expression is out of range.
Example:

Power_dBm = if (Power > 1.0e-6) (10 * loglO(Power) + 30) else (NAN);

OSAQ0 will not display values that are marked by NAN. Any arithmetic operations which
involve an NAN operand will result in an NAN value.

You can choose a value for the NAN label in the Control block (= Chapter 3). By
default, the value of NAN is set to 98989.0.

Perturbed Analysis Index

If you use OSAZO to drive an external simulator through Datapipe (5= Chapter 5) and
invoke optimization, then perturbed analyses may be required to estimate the gradients.

In a perturbed analysis, one of the optimization variables is perturbed from its nominal
value. The external simulator is called only if the variable being perturbed affects the
Datapipe inputs (i.e., inputs to the external simulator). '

The predefined label Perturbed_Analysis can be used to distinguish between a nominal
analysis and a perturbed analysis. You can pass Perturbed_Analysis through Datapipe to an
external simulator which can take advantage of such a distinction.

The value of Perturbed_Analysis is set to 0 for a nominal analysis and set to i when the ith
variable is perturbed. If the total number of optimization variables is n, then the value of
Perturbed_Analysis is between 0 and n.

Circuit Response Labels

In addition to the predefined labels listed in Table 4.2, OSASO may also create labels to
represent circuit responses. Such labels will be created according to the circuit definition
in the Model block (g5~ Chapter 6).

4.5 Optimization Variables

Optimization variables in the file are marked by question marks.

Syntax:

label name: ?initial value?;

Example:

X1: ?2.57;
After optimization, the variables will be automatically updated with their optimized values.
For instance, consider the variable labelled X1 in the above example. Suppose that its value
is changed to 1.234 after optimization. Then the corresponding text in the input file will
be automatically updated to be

X1: ?1.2347;

‘ Optimization variables can also be directly defined for circuit model parameters in
the Model block without being associated with a label (g~ Chapter 6).

Bounds on Variables

Optional bounds can be assigned to an optimization variable:

Syntax:

label _name: ?lower bound initial value upper_bound?;

Example:
X1l: 20.1 2.5 107?;

This will force the value of the variable to remain within lower_bound and upper__bound
during optimization. If you specify bounds, you must specify both bounds.

Relative bounds can also be specified.

Syntax:

label _name: ?lower% initial value upper%?;

The effective bounds are calculated by the file parser as

lower_bound = initial value - ABS(lower * initial value) / 100
upper_bound = initial _value + ABS(upper * initial value) / 100
Example:
X1: ?80% 10 70%7;
The effective lower bound will be 2 and the effective upper bound 17.

‘ Note that the effective bounds are evaluated based on the initial _value when the
input file is parsed and they will not change during optimization.

Default Bounds

An optimization variable defined without explicit bounds will be assigned the default
bounds: (0 +oo) if the initial value is positive or zero, or (-co 0) otherwise.

For example,
X1: ?22.57;
X1 will be given the default boﬁnds (0 +00), i.e., its value will remain positive.
The default bounds are based on the assumption of natural bounds which exist in many

physical problems. For instance, when a physical measurement (length, weight, etc.) is
optimized, its value should never become negative.

The assignment of default bounds can be disabled in the Control block:

Syntax:

Control
No_Default Bounds;

End

The No_Default Bounds control keyword indicates that optimization variables defined
without explicit bounds should be allowed to vary freely from -oco to co. (The Control block
is described in Chapter 3).

4.6 Expressions

Expressions generically refer to formulas, equations and functions defined through
combinations of constants, algebraic operators, mathematical functions, and references to
labels that are already defined.
For example,

Euclidean Norm = SQRT(X * X + Y * Y);
where Euclidean_Norm is the label representing the expression, SQRT is the mathematical
function of square root, "*" and "+" are algebraic operators, and X and Y refer to labels that
should be already defined.
Optimization variables cannot be created within an expression. For example,

Fl = FREQ * ?2.57;
is not acceptable. The optimization variable must be defined separately, such as

X1: ?2.57?;

Fl = FREQ * X1;

Algebraic Operators

Table 4.3 lists the set of algebraic operators available.

- TABLE 4.3 - ALGEBRAIC OPERATORS

Symbol Operation
& logical AND
| logical OR
greater than
>= greater than or equal to
< less than
<= less than or equal to
= equal to
+ addition
- subtraction
* multiplication
/ division
~ exponentiation
) precedence

The operators are listed in ascending order of precedence in Table 4.3. Parentheses can be
used to override the natural order of precedence, e.g.,

Error = Weight * (Response - Goal);

Mathematical Function Library

TABLE 4.4 LIBRARY OF MATHEMATICAL FUNCTIONS

Function Description
ABS(x) absolute value of x
ACOS(x) arccosine of x
ASIN(x) arcsine of x

- ATAN(x) arctangent of x
ATAN2(x,y) arctangent of x/y .
CEIL(x) the smallest integer > x
COS(x) cosine. of x
COSH(x) hyperbolic cosine of x
EVEN(x) returns 1 if x is an even number, returns 0 otherwise
EXP(x) exponential function of x
FLOOR(x) the largest integer < x
INTEGER(x) returns 1 if x is an integer, returns 0 otherwise
JO(x) Bessel function of the first kind, order 0
Ji(x) Bessel function of the first kind, order 1
JN(n,x) Bessel function of the first kind, order n
LOG(x) natural logarithm of x
LOG10(x) base-10 logarithm of x
MAX(x1,...,xn) the maximum of xI, ..., xn
MIN(x1,...,xn) the minimum of xI, ..., xn
NEG(x) returns 1 if x < 0, returns 0 otherwise
NINT(x) the nearest integer to x
ODD(x) returns 1 if x is an odd number, returns 0 otherwise
POS(x) returns 1 if x > 0, returns 0 otherwise
SIN(x) sine of x
SINH(x) hyperbolic sine of x
SQRT(x) square root of x
TAN(x) tangent of x)
TANH(x) hyperbolic tangent of x
YO(x) Bessel function of the second kind, order 0
Y1(x) Bessel function of the second kind, order 1
YN(n,x) Bessel function of the second kind, order n
ZERO(x) returns 1 if x = 0, returns 0 otherwise

4.7 Conditional Expressions

Conditional expressions can be used to assign different values to a label according to a given
set of conditions. OSA90 supports both explicit if - else structures and implicit conditional
expressions.

If - Else Structure

Syntax:

label: if (condition) (expressionl) [else (expression2)];

Examples:
Absolute_Difference: if (X > Y) (X - Y) else (Y - X);

X _Truncated: if (X > 0) (X);

‘ condition, expressionl and expression2 must all be enclosed within parentheses.

If condition is true, then label is evaluated from expressionl, otherwise it is evaluated from
expression2. :

If expression2 is omitted and condition is false, then label is set to zero.

Logical Condition

The condition in an if - else structure can be a logical expression constructed using the
operators &, |, >, <, >=, <= and =.

In OSA90, a logical expression evaluates to 1 if it is true, or 0 if false.
Example:
Y: if (X > -2 & X <= 2) (X) else (-2);
Y is set to X if -2 < X < 2, otherwise Y is set to -2.
Another example:

Y: if X< -2 | X>2) X);

Y is set to X if X < -2 or X > 2, otherwise Y is set to 0.

Threshold Value for Comparing Two Floating-Point Numbers

Conditional expressions such as
ifX=Y) ...
if X>=7Y) ...
if X<=Y) ...

involves equality check between two numbers. If the numbers are floating-point values,
the equality check is subject to truncation errors.

In the Control block (Chapter 3), you can define Equality_Threshold. If
| X =Y | < Equality Threshold - (|X| + |Y])

then X and Y are considered equal.

Syntax:
Equality Threshold = v;

where 0 < v < 1. The default value for v is 1.0E-S5.

Nested If - Else
Nested if - else structures are supported:
Y: if (X > X_MAX) (exp(X_MAX))
else (
if (X < X_MIN) (exp(X_MIN)) else (exp(X))
);
The inner if - else structure(s) must be entirely enclosed within parentheses.

Only the value of a label but not the existence of the label itself can be made conditional.
Hence the following "statement" is not permissible:

if (X > X _MAX) (
Y: exp(X_MAX);

)

Algebraic Condition

The condition in an if - else structure can also be an algebraic expression. In this case, it is
considered "true” if it evaluates to a nonzero value, or "false" if it evaluates to zero.

Example:
Y: if (X - 3.5) (4.44) else (7.77);

Y will be set to 4.44 if X equals to 3.5, otherwise Y is set to 7.77.

Implicit Conditional Expression

In addition to explicit if - else structures, implicit conditional expressions can be defined
using the &, |, >, <, >=, <= and = operators and the POS(), NEG() and ZERO() functions.

Example:

Y = POS(X) * Y1 + ZERO(X) * Y2 + NEG(X) * Y3;
is equivalent to

Y = if (X > 0) (Y1) else (if (X = 0) (Y2) else (Y3));
The same conditions can also be expressed as

Y=(X>0) * Yl + (X=0) Y2+ (X<0) *Y3;
Implicit conditional expressions are generally less efficient. In the example, if an explicit
if - else structure is used, only one of the three formulas, namely Y1, Y2 or Y3, needs to be
evaluated under any given condition. Using implicit expressions all three formulas are
evaluated first and then multiplied by the corresponding conditions (1 or 0). This is
especially vulnerable if one of the formulas may result in a floating-point error under
certain conditions.
For example, expression

Y = POS(X) * log(X);

will cause an error when X is zero or negative. The correct expression should be

Y = if (X > 0) (log(X));

On the other hand, implicit conditional expressions can be useful for complex expressions
which depend on multi-layer and inter-related algebraic conditions.

4.8 Arrays

Labels can be defined to represent arrays, including one-dimensional arrays (vectors) and
two-dimensional arrays (matrices).

Vectors

Syntax:
label name[n]: [x1 x2 ... =xm];

where n is the number of elements in the vector, 1 < n < 4096.

The number of the initializers within the square brackets, namely xI, x2, ..., xn, must be
equal to the length of the vector. The initializers can be constants, optimization variables,
other labels that are already defined and expressions.
Example:

Vectorl[5] = [1.2 ?5? Fl1 (F2 * sin(2*PI*FREQ*T)) -12.34];

where F1, F2 and T refer to labels that must be already defined, and Pl and FREQ refer to
predefined labels.

d When an array element is initialized by an expression, the entire expression must be
enclosed within a pair of parentheses to clearly delimit it from the other entries.

Optionally, the initializers can be separated by commas for clarity, e.g.,

Vectorl[5] = [1.2, ?5?, Fl, (F2 * sin(2*PI*FREQ*T)), -12.34];
The array definition statement can occupy as many lines as necessary. For instance, the
initializers of a long vector may take up several lines:

Long_Vector[200] = [1.0 2.0 3.0

199.0 200.0];

Individual elements of a vector are denoted by label namefk], where 1 < k < n. For
instance, Vector1[3] refers to the 3rd element of the vector Vectort.

Specify the First Index of a Vector

You can specify the first index of a vector (i.e., the index of the first element) to be
different than 1.

Syntax:
label_name[nl:n2]: [xnl ... xn2];

where nl and n2 are the indices of the first and the last elements, respectively,
-65535 < nl < n2 < 65535, the number of elements = (n2 - nl + 1) < 4096.

Example:
Vector2[-2:2] = [1.1 2.2 3.3 4.4 5.5];

The indices of the vector elements range from nl to n2. For instance, Vector2[0] refers to
the 3rd element of the vector Vector2. '

Matrices
Syntax:
label name[n,m]: [x11 x12 ... xIm
x21 x22 ... x2m
xnl xn2 ... xnm];

where n is the number of rows and m is the number of columns, '
1 <n <409, 1 <m< 4096, (n x m) < 4096.

Example:

Matrix1[3,4] =
[.23 2.34 3.45 4.56
5.67 7.89 9.01 -1.23
-2.34 -3.45 -4.56 -5.67];

Order of initialization is row-wise, i.e., the first row of the matrix is completely filled
first, then the second row, and so on.

The initializers may occupy as many lines as necessary and each line does not have to
correspond to one row of the matrix. For example:

Matrixl[3,4] =
[1.23 2.3¢ 3.45 4.56 5.67 7.89
9.01 -1.23 -2.34 -3.45 -4.56 -5.67];

The initializers can be constants, optimization variables, other labels that are already defined
and expressions.

Specify the First Indices of a Matrix

You can specify the indices of the first row and/or the first column of a matrix to be
different than 1.

Syntax:

label_name[nl:n2,ml:m?): [xnlml ... xnlm?

x2ml ... xn2m?];

where nl, n2, mI and m2 are the indices of the first row, the last row,
the first column and the last column, respectively,

-65535 < nl < n2 < 65535, -65535 < ml < m2 < 65535,

the size of the matrix = (n2 - nl + 1) x (m2 - ml + 1) < 4096.

Initialization by Sub-Vectors and Sub-Matrices

Arrays can be initialized not only by scalars but also by other arrays. For example,

Vectorl[3] = [

B
Vector2([7] = [1;

Vector3[10] = [Vectorl Vector2];

which in effect concatenates Vector1 and Vector2 to produce Vector3. Vectori and Vector2
may be considered as sub-vectors of Vector3,

The sizes of the arrays must be consistent, i.e., the combined size of all initializers (scalars
and sub-vectors) must not exceed (must be equal to) the size of vector being initialized.

Matrices can be initialized block-wise, i.e., by sub-matrices. Initializers of a matrix may
include vectors which are oriented row-wise. For example,

rowl[5] = [...];

row2[5] = [...];

row3[3] = [...];

Matrix1[3,5] = [rowl row2 1.0 row3 2.0];

where row1 and row2 initialize the first and second rows of Matrix1, respectively, and row3
initializes part of the third row.

Initializers of a matrix can also be other matrices, e.g.,

AA[2,4] = [...]}
BB[2,2] = [...];
cC[3,2] = [... 1;
DD[3,4] = [1s

Matrix2[5,6] = [AA BB
CC DD];

The result can be illustrated as follows.

Matrix2
CcC DD

The matrix being initialized is filled row-wise. Each initializer starts at the next available
location in the matrix (i.e., the next element not yet initialized). If the initializer is a vector
or a matrix, it fills a sub-matrix of the same size and dimensions as the initializer itself.
The sub-matrix must not extend beyond the dimensions of the overall matrix. Also, the
sub-matrix must not overlap with any other initializers, i.e., the elements within the sub-
matrix must not have been initialized already.

For example, the following statements

Matrix1[3,2] = [...];
Vectorl[4] = [...];

Matrix2[3,4] = [1.0 2.0 Matrixl
Vectorl
3.0 4.0 1

would generate an error, because Matrix1 and Vectori would overlap:

Matrixl

Matrix2 Vectorl

where the shaded area indicates the overlap.

4.9 Array Expressions

Array expressions are expressions which involve arrays (vectors or matrices) as operands.
All the operands of an array expression must have identical sizes and dimensions. The
result of an array expression is an array of the same size and dimension as the array
operands.
Example:

Af3] = [... 1s
B3] =[... I;

C[3] = A * cos(B) + 3.0;
This array expression is interpreted as the equivalence of

C[k] = A[k] * cos(B[k]) + 3.0, k=1, 2, 3
The algebraic operations and mathematical functions in an array expression are applied to
individual elements of the operand arrays with the same offset. You may visualize array

expressions as a short-hand notation for a set of parallel scalar expressions involving the
corresponding elements of the operand arrays.

d Array expressions do not lead to inner or outer products of vectors and matrices
(such products can be obtained using array functions, < Section 4.10).
An example of array expressions with matrix operands:

A[3,5] = [... 1;
B[3,5] = [...];

C[3,5] = A * cos(B);

which is interpreted as

C[i,j] = A[i,j] * cos(B[i,j]), i=1,2,3, j=1,2, ...,5

Alignment by Offsets

Arrays of different first indices are aligned by using element offsets instead of element
indices. For example,

D[1:5] = [...];
F[101:105] = [...];
G[0:4] =D + F;

where the vectors have identical length but different first indices. In such cases, the
operation applies to array elements of the same offset, where offset is defined as

offset = index - first_index
In the above example, the vector G is computed as
G[0] = D[1] + F[101]

G[1] = D[2] + F[102]

G[4] = D[5] + F[105]

Scalar Operands

Array expressions may include references to scalar constants, labels and individual elements
of other arrays.

Example,

X[10] = 5;
which in effect sets all the elements of X to the same value of 5.
Another example:

X[10] = [.... 1;

X normalized[10] = X / X[1];

means

X normalized[k] = X[k] / X[1], k=1, ..., 10

4.10 Array Functions

Array functions are functions which accept arrays as arguments. The set of array functions
available in OSAQO is listed in Table 4.5. These functions provide powerful and efficient
tools for manipulating vectors and matrices, solving linear systems, etc.

TABLE 4.5 LIBRARY OF ARRAY FUNCTIONS

Function Description

AABS(x) absolute values of the elements of array x

AMAX(x) maximum of the elements of array x

AMIN(x) minimum of the elements of array x

SUM(x) sum of all the elements of array x

PRODUCT(x,y) product of arrays x and y

SUBSET(x,k) sub-vector of vector x starting from x[k]

SUBSET(x,i,j) sub-matrix of matrix x starting from x[i,j]

ROW(x,k) the row of matrix x with row index k

COL(x,k) the column of matrix x with column index k

TRANSPOSE(x) transposition of matrix x

INVERSE(x) inverse of matrix x

SOLVE(x,y) solution of a linear system of equations with the coefficient matrix x and
the right-hand-side vector y

LU(x) LU factorization of matrix x

SUBST(x,y) solution of a linear system of equations by forward and backward

. substitutions with the LU factors x and the right-hand-side vector y

SUBSTT(x,y) solution of a transposed linear system by forward and backward

substitutions with the LU factors x and the right-hand-side vector y
- LUF(x) LU factorization of matrix x without pivoting

EXTRACT_L(x) extracts the lower-triangular matrix L from the LU factors x which
must be obtained from LUF()

EXTRACT_U(x) extracts the upper-triangular matrix U from the LU factors x which
must be obtained from LUF()

INDEX(x,y) finds the index of the scalar y in the array x

QR(4,X,V) QR factorization of matrix 4 for eigenvalues and eigenvectors

MEAN(x) mean value of the data in array x

StdDev(x) standard deviation of the data in array x

CORR(x,y) correlation coefficient between arrays x and y

CORR(x) correlation matrix for the data matrix x

SKEW(x,k) skewness of the data in array x

KURT(x) kurtosis of the data in array x

Absolute Values of Array Elements

Syntax:
A[n] = AABS(B);

where A and B are vectors of identical size, A[«] = |B[«]|

Example:
Bl4] = [1 -2 3 -41];
A[4] = AABS(B);

The resultis A=[123 4]

AABS can also be applied to matrices:

Syntax:
A[n,m] = AABS(B);

where A and B are matrices of identical dimensions, A[s,+] = |B[«,*]]|

Example:
B[4,2] = [-1 -2
-3 -4
2 1
=5 31

A[4,2] = AABS(B);
The result is

Al4,2] = [1

3
2
5

Maximum of Array Elements

Syntax:
v = AMAX(A);

where v is a scalar label and A is a vector, v = max {A[+])’

Example:
A[10] = [1234598760];
v = AMAX(A);

The result is v= 9.

AMAX can also be applied to the column vectors of a matrix:

Syntax:

vim] = AMAX(A);

where A is an nxm matrix, v[i] = max (A[+,i]}

Example:
B[4,2] = [-1 -2
-3 -4
2 1
=5 31
v[2] = AMAX(B);
The result is v=[2 3].
You can obtain the maximum of all the elements of a matrix using AMAX of AMAX, e.g.,

v = AMAX(AMAX(B));

The result is v = 3.

Minimum of Array Elements

Syntax:
v = AMIN(A);

where v is a scalar label and 4 is a vector, v = min {A[*])

Example:
A[10] = [1 -23 -45-98-760];
v = AMIN(A);

The result is v = -9.

AMIN can also be applied to the column vectors of a matrix:

Syntax:
vim] = AMIN(A);

where A is an nxm matrix, v[i] = min {A[-,i])

Example:
B[4,2] = [-1 =2
-3 =4
2 1
-5 3 1;
v[2] = AMIN(B);
The result is v = [-5 -4].

You can obtain the minimum of all the elements of a matrix using AMIN of AMIN, e.g.,

v = AMIN(AMIN(B));

The result is v = -5,

Sum of Array Elements

Syntax:
v = SUM(A);

where v is a scalar label and A is a vector, v = = A[+]

Example:
A[10] = [1234567 8910];
v = SUM(A);

The result is v = 55.

SUM can also be applied to the column vectors of a matrix:

Syntax:
v[m] = SUM(4);

where A is an nxm matrix, v[i] = 2 A[.,i]

Example:
B[4,2] = [-1 -2
-3 -4
2 1
-5 31;
v[2] = SUM(B);
The result is v =[-7 -2].

You can obtain the sum over all the elements of a matrix using SUM of SUM, e.g.,

v = SUM(SUM(B));

The result is v = -9.

Inner Product of Two Vectors

Syntax:
v = PRODUCT(A,B);

where v is a scalar label, and A and B are two vectors of identical length,
v =3 (A[+] X B[+])

Example:

ve v

2 5]

4321]
v = PRODUCT(A,B);

The result is v = 35.

In comparison, the array expression
C[5] = A * B;

leadstoC=[5 8 9 8 5]

Product of a Matrix and a Vector

‘Syntax
Aln] = PRODUCT(B,C);

where A and C are two vectors and B is a matrix, A[k] = = (B[k,*] X C[-]).
The length of A is n, and if the length of C is m, then B must be an n x m matrix.

Example:
B[(2,3] =[123
456];
C[3] =17891];

A[2] = PRODUCT(B,C);

The result is A = [50 122].

Product of a Transposed Matrix and a Vector

Syntax:
A[n] = PRODUCT(B,C);
where A and B are vectors and C is a matrix.

Alk] = = (B[+] x C[+,k]), i.e., A = C'B.
The length of A is n, and if the length of B is m, then C must be an m x n matrix.

Example:
B[2] =[12];
C[2,3] = [345
67 81];

A[3] = PRODUCT(B,C);

The result is A = [15 18 21], i.e., the product of matrix C transposed and vector B.

Product of Two Matrices

Syntax:
A[n,m] = PRODUCT(B,C);

where A, B and C are matrices, A[i,j] = = (B[i,+] X C[-,j]).
If B is an n x k matrix, then C must be a k x m matrix.

Example:
B[2,3]=[1 2 3
4 5 6];
C[3,4] =[-1 -2 1 2
-3 =4 3 4
-5 -6 5 6 1];
A[2,4] = PRODUCT(B,C);
The result is
A[2,4] = [=22 -28 22 28

-49 -64 49 64].

Sub-Vector

Syntax:
A[n] = SUBSET(B,k);

where A and B are vectors and k is an integer constant or label.
A[i] = B[k + i - 1], the length of B must be at least n + k - 1.

Example:
B[10] = [1234567 8910];
A[3] = SUBSET(B,5);

The result is A =[5 6 7].

Another example:
B[-10:-1] = [1234567 8910];
A[3] = SUBSET(B,-9);

The result is A = [2 3 4].

Sub-Matrix

Syntax:
Aln,m] = SUBSET(B,i,j);
where A and B are matrices and i and j are integer constants or labels.

A will be a sub-matrix of B with A[1,1] being B[i,j].
B must be able to accommodate 4, i.e., A must not extend beyond the dimensions of B.

Example:
Bl4,4] = [1 2 3 &4
5 6 7 8
9 10 11 12
13 14 15 16];
A[2,2] = SUBSET(B,3,2);

The result is

A[2,2] = [10 11
14 15].

Row of a Matrix

Syntax:
A[n] = ROW(B,k);

where A is a vector, B is a matrix and k is an integer constant or label,
A[] = B[k,-].

Example:

B[2,3] =[1 2 3
4 5 6 1;

A[3] = ROW(B,2);

The resultis A=[4 5 6].

Column of a Matrix

Syntax:
A[n] = COL(B,k);

where A is a vector, B is a matrix and k is an integer constant or label,
A[+] = B[, k].

Example:

B[2,3] =[1 2 3
4 5 6 1];

A[2] = COL(B,2);

The result is A=[2 5].

Transposition of a Matrix

Syntax:
A[n,m] = TRANSPOSE(B);

where A and B are matrices, B must be an m x n matrix, A[i,j] = B[j,i].

Example:
B[2,3] =[1 2 3
4 5 6 1;
A[3,2] = TRANSPOSE(B);
The result is

A[3,2] =[1 &
2 5
3 6.

Inverse of a Matrix

Syntax:
A[n,n] = INVERSE(B);

where A and B are square matrices of identical dimensions.

Example:

B[2,2] = [1 2
3 47,

A[2,2] = INVERSE(B);
The result is

Al2,2] = [-2 1
1.5 -0.5].

The matrix to be inverted must be non-singular, otherwise you will see an error message
when the program attempts to compute the inverse during simulation.

Solution of a Linear System of Equations

Syntax:
A[n] = SOLVE(B,C);
where A and C are vectors of length #n and B must be an n x n square matrix.

B is the coefficient matrix of a linear system of equations,
C is the right-hand-side vector and A will be the solution vector.

Example:

B[2,2] = [1 2
3 41
C[2] =[1 01];

A[2] = SOLVE(B,C);
The result is A = [-2 1.5].
The linear system of equations is solved by LU factorization of the coefficient matrix,
followed by forward and backward substitutions with the right-hand-side vector. The

coefficient matrix must be non-singular, otherwise you will see an error message when the
program attempts to solve the equations during simulation.

‘ The coefficient matrix is not overwritten by the computed LU factors. The LU
factors of the coefficient matrix are computed every time SOLVE() is called.

Solution of Linear Equations by LU Factorization

Syntax:
A[lm,n] = LU(B);
where B must be an n x n coefficient matrix of a linear system of equations.

A is an m x n matrix, m = n + 1, which stores the LU factors and pivoting information
to be used in conjunction with the following functions.

c[n] = SUBST(A,d);

c is the solution to the linear system of equations obtained by forward and backward
substitutions with the right-hand-side vector d, i.e., Bc = d.

e[n] = SUBSTT(A,f);

e is the solution to the transposed linear system of equations obtained by forward and
backward substitutions with the right-hand-side vector f, i.e., BTe = f.

Example:

B[3,3]

[}
—
NSO
V-3 SW)

D[3] = [14 28
F[3] = [34 38

A[4,3] = LU(B);
C[3] = SUBST(A,D);
E[3] = SUBSTT(A,F);

The results are

31 =03 2 11,
E[3] =[1 2 3].

d The LU factors are stored in a compact format in the rectangular matrix produced
by the LU() function. If you try to analyze the contents of the matrix, you may find
the information difficult to interpret, especially when pivoting is required and has

been performed during the LU factorization.

Comparison of INVERSE, SOLVE and LU

You can solve a linear system of equations, such as
Ax=y
using three different array functions:

(1) B = INVERSE(4)
x = PRODUCT(B,y)

(2) x = SOLVE(4,y)

(3) B=LU4)
x = SUBST(B,y)

where the notation of array dimensions has been omitted for brevity.

Method (1), by matrix inversion, is the most computationally intensive. It should be chosen
only when you are also interested in the inverse matrix in addition to the solution.

Method (2) is the most straightforward approach. It has the simplest syntax and should be
the best choice if you need the solution for only one right-hand-side vector.

Method (3) is very efficient if you need a number of solutions with the same coefficient
matrix but different right-hand-side vectors.
To solve the transposed system, i.e.,
ATx = y
' you can use

(1) B = INVERSE(4)
x = PRODUCT(y,B)

2 B = TRANSPOSE(4)
x = SOLVE(B,y)

A3) B = LU(4) .
© x = SUBSTT(B,y)

4 B = TRANSPOSE(4)
C = LU(B)
x = SUBST(C,y)

LU Factorization without Pivoting

Syntax:
A[m,n] = LUF(B);

where B must be an n x n matrix whose LU factors can be computed without pivoting.
A is an m x n matrix, m = n + 1, which stores the LU factors. The last row of A
contains "pivots" which are always set to 0, 1, ..., n - 1. This puts A in a consistent
format with the result from LU().

Example:

B[3,3] = [... 1}
A[4,3] = LUF(B);

The formats of the LU factors produced by the LU() and LUF() functions are consistent.
Therefore, you can use the LU factors computed by LUF() to find the solutions of a linear
system of equations in the same way as the LU() function would be used:

c[n] = SUBST(A,d);

c is the solution to the linear system of equations obtained by forward and backward
substitutions with the right-hand-side vector d, i.e., Bc = d.

e[n] = SUBSTT(A,f);

e is the solution to the transposed linear system of equations obtained by forward and
backward substitutions with the right-hand-side vector f, i.e., BTe = f.

Extracting the L and U Factors

You can use the functions EXTRACT_L() and EXTRACT_U() to separate the L and U factors
and store them in square matrices.

Example:
B[(3,3] =[... 1;
A[4,3] = LUF(B);
L[3,3] = EXTRACT_L(A);

U[3,3] = EXTRACT U(A);

The argument to the EXTRACT_L() and EXTRACT_U() functions must have been obtained
from the LUF() function. If you use the result from LU() which may involve pivoting in the
factorization, you will get an error message.

Finding the Index of an Array Element

Syntax:
i = INDEX(A,X);

where A is a vector and i is the index such that A[i] = x.
i is set to 0 if x does not match any element of A.

Example:
A[6] = [1.2 -3.5 0.1 16 -2 0];
X =0.1;
I = INDEX(A, X);

The result is I = 3.

The function INDEX() can be applied to matrices as well:

Syntax:
i[2] = INDEX(A,x);
where A is a matrix (i.e., a two-dimensional array) and i contains two indices

such that A[j,k] = x, where j = i[1] and k = i[2].
iis set to [0 .0] if x does not match any element of A.

Example:
A[3,4] = [1.2 -3.5 0.1 6.0
-2.0 0.0 7.2 0.3
1.9 0.6 -4.4 -8.6];
X =7.2;

I[2] = INDEX(A, X);

The result is I =[2 3].

Eigenvalues and Eigenvectors of Matrix

Syntax:
QR(4,X[n],V[n,n]);

where A is an nxn real symmetrical matrix. Upon return, X contains the eigenvalues
of A and the rows of V contain the corresponding eigenvectors.

Example:
A[3,3] =[7.3 1.9 2.8
1.9 8.2 6.4
2.8 6.4 9.1];

QR(A,X[3],V[3,3]);
The result is
X[3] = [16.3094 6.1197 2.1709]
V[3,3] = [0.348566 0.629626 0.694315
0.929453 -0.327753 -0.169396
-0.120907 -0.704379 0.699451]
The rows of V are the eigenvectors. For instance,
V2[3] = ROW(V,2);
is the eigenvector corresponding to the eigenvalue X[2].
.You can verify this by comparing
P1[3] = PRODUCT(A,V2);
with

P2[3] = X[2] * V2;

P1 and P2 should be identical.

Mean Values of Data

Syntax:
v = MEAN(X);

where X is a vector of size n, v = (2 X[+]) / n

Example:
X[10] = [1234567 8910];
V = MEAN(X);

The result is V = 5.5.

MEAN can also be applied to the column vectors of a matrix:

Syntax:
v[m] = MEAN(4);

where A is an nxm matrix, v[i] = (2 A[+,i]) / n

Example:
A[5,3]=[1 2 3
4 5 6
7 8 9
10 11 12
13 14 15 1;

V[3] = MEAN(A);

The result is V=[7 8 9].

Standard Deviations of Data

Syntax:

v = StdDev(X);

where X is a vector of size n, the standard deviation of X is given by
v = sqrt((S(X[+] - X0)?) / (n - 1))

where X0 denotes the mean of X.

Example:

X[20] = [1.0 2.0 3.0 4.0 5.0
1.1 2.2 3.3 4.4 5.5

V = StdDev(X);

The result is V = 3.11057.

StdDev can also be applied to the column vectors of a matrix:

Syntax:

v[im] = StdDev(A);

where A is an nxm matrix, the standard deviations of the columns are given by
v[i] = sqrt((S(A[-,i] - 4i0)%) / (n - 1))

where Ai0 denotes the mean value of the ith column of A.

Example:

A[50,3] = [...];

V[3] = StdDev(A);

Correlation Coefficient Between Two Sets of Data

Syntax:

¢ = CORR(X,Y);

e = (2(X[+] - X0)(Y[+] - Y0)) / ((n - 1) ow,)

where X and Y are vectors of size n, the correlation coefficient is given by

where X0 and YO denote the means of X and Y, respectively,
and o, and o, denote the standard deviations of X and Y, respectively.

Example:

X[10] =[1 2 3 4 5 6 7 8 9
Y[10] = [1 2 4 8 16 32 64 128 256
C = CORR(X,Y);

The result is C = 0.798837.

Correlation Matrix

10];
512];

Syntax:

C[m,m] = CORR(A);

where A is an nxm matrix. C is the correlation matrix. C[i,j] represents the
correlation coefficient between the ith and jth columns of A.

C is a symmetrical matrix and the value of its diagonal elements is always 1.

Example:

A[50,3] = [...];

C[3,3] = CORR(A);

Skewness of Statistical Data

Syntax:

v = SKEW(X);

where X is a vector of size n, the skewness of X is given by
v = (B((X[+] - X0) /o)) / n

where X0 and o, denote the mean and standard deviation of X, respectively.

Example:

X[20] = [1.0 2.0 3.0 4.0 5.0 6.0 7.0
1.1 2.2 3.3 4.4 5.5 6.6 7.7

V = SKEW(X);

The result is V = -0.023745.

SKEW can also be applied to the column vectors of a matrix:

Syntax:
v[m] = SKEW(A);

where A is an nxm matrix and v[i] contains the skewness of the ith column of A.

Example:

A[50,3] = [...];

V[3] = SKEW(A);

Kurtosis of Statistical Data

Syntax:
v = KURT(X);
where X is a vector of size n, the kurtosis of X is given by

v = ((S((X[+] - X0) /o)) / n) -3

where X0 and o, denote the mean and standard deviation of X, respectively.

Example:

X[20] = [1.0 2.0 3.0 4.0 5.0 6.0 7.0
1.1 2.2 3.3 4.4 5.5 6.6 7.7
V = KURT(X);

The result is V = -1.36514.

KURT can also be applied to the column vectors of a matrix:

Syntax:
v[m] = KURT(A);

where A is an nxm matrix and v[i] contains the kurtosis of the ith column of A.

Example:

A[50,3] = [...];

V[3] = KURT(A);

Embedded Array Functions

References to array functions can be embedded in expressions.

Examples:

A[20,3] = [.
B[20] = COL(A, 1) + COL(A 3);

v[i10] = [... 1;

D[10] = V - SUM(V) / 10;
References to array functions can also be used directly as arguments to another array
function.

Example:

A[5,4] = [... 1;
B(4,3] = [... I;

ABK[5] = PRODUCT(A, COL(B,K));

inverse_A transpose_ A[4,4] = INVERSE(PRODUCT(TRANSPOSE(A), A));

SUBSET Cannot Be Embedded

The dimension of the result of an embedded reference to an array function is determmed
implicitly from the dimensions of the arguments.

Embedded reference to the array function SUBSET is not allowed, because the dimension
of the result cannot be determined implicitly.

For example,
A[100] = [... 1;

AA[5] = SUBSET(A,K);

AA is a 5-element sub-vector of A, starting from the Kth element of A. The dimension of
the result is explicitly defined by the dimension of AA. It cannot be determined implicitly
from the reference SUBSET(A,K) alone.

4.11 String Labels

String labels can be defined to represent character strings instead of numerical values.

Syntax:
char label name(]: "character string";
char label name[n]: "character_string";

where 7 is the size of the string label, 16384 > n >'m, m represents the length of
character_string including the NULL byte. If omitted, » is set to m.

Examples:
char Greetings[] = "hello, world";
char Filename[12] = "circuit.dat";
The size of string labels must include the NULL byte which terminates a character

string. In the above example, the size of Filename must be no less than 12, though
"circuit.dat” contains only 11 characters.

String labels are usef ul for passing text information between OSA90 and external programs
via Datapipe (j= Chapter 5), e.g., passing an input file to an external simulator in its own
syntax format.

Multi-Line Strings

Multi-line strings can be defined in the natural way, any and all blanks and new line
characters between the quotation marks are preserved as part of the string.

Example:

char Multi Line_Text[] = "
Called from O0SA90 via Datapipe.
Calculate the transmitter characteristics.
Script file name: /user/charlie/trnsmttr.scr
Output data file name: /o0sa90/data/trnsmttr.dat

which defines a string label to represent 6 lines of text, the first and last lines being blank
lines.

Control Characters

Control characters such as the escape sequences used by some programming languages, are
not supported by OSA90. For instance, the new-line character in "C", namely "\n", will not
be interpreted but simply treated as two separate characters "\" and "n".

Literal Quotation Marks

You can use two consecutive double quotation marks (") to represent one literal double
quotation mark (").

Example:
char Title[] = "Data from the ""Child"" Program";

This defines a label Title to represent the character string

Data from the "Child" Program

4.12 Transformations

For the user’s convenience, OSA90 has several common numerical transformations as built-
in features: polar form to rectangular form, rectangular form to polar form, and the discrete

Fourier transforms.

Polar and rectangular forms are two standard representations of complex numbers. They
represent a complex number by two real numbers: magnitude and phase in the polar form;
real and imaginary parts in the rectangular form. The built-in transformations allow you

to convert one form to the other.

The discrete Fourier transform (DFT) is useful for converting a periodic signal between its

frequency-domain complex spectrum and time-domain waveform.

Polar to Rectangular

Syntax:

MP2RI(mag, ang, real, imag);

where mag and ang are inputs (numerical constants or labels) representing the
magnitude and phase (in degrees) of a complex number.

The output labels real and imag must not duplicate any existing label names.

real = mag * cos(ang), imag = mag * sin(ang).

Example:

Mag = 3;
Ang = 30Deg;

MP2RI(Mag, Ang, Real, Imag);
The results are Real = 2.598 and Imag = 1.5.
The transformation can also be applied to arrays, e.g.,

Mag[10] = [

1;
Ang[10] = [1;

MP2RI(Mag, Ang, Real[10], Imag[10]);

All the arrays must have identical dimensions.

The outputs of MP2RI() are in effect definitions of new labels (scalars or arrays).
They can be used just like any other user-defined labels.

Rectangular to Polar

Syntax:

RI2MP(real, imag, mag, ang);

where real and imag are inputs (numerical constants or labels) representing
the real and imaginary parts of a complex number.

The output labels mag and ang must not duplicate any existing label names.

mag = sqrt(real * real + imag * imag), ang = atan2(imag,real).

Example:

Real = 3;
Imag = 4;

RI2MP(Real, Imag, Mag, Ang);
The results are Mag = 5 and Ang = 53.13 (degrees).
The transformation can also be applied to arrays, e.g.,

Real[10] = [...];
Imag[10] = [...]:

RI2MP(Real, Imag, Mag[10], Ang[10]);

All the arrays must have identical dimensions.

The outputs of RI2MP() are in effect definitions of new labels (scalars or arrays).
They can be used just like any other user-defined labels.

DFT Time to Frequency

Syntax:

DFT_TF(x_time, x_real[0:n], x_imag[0O:n]);

Example:
VT[9] = [1.282 1.151 1.900 4.384 6.611 6.189 6.373 4.729 2.390];
DFT_TF(VT, VR[0:4], VI[0:4]);

The results are

VR[0:4] = [3.89 -1.35 0.1648 -0.3969 0.08222],
VI[0:4] = [0.0 2.63 0.007732 0.08699 -0.1459].

DFT_TF implements the Discrete Fourier Transform (DFT) to convert a periodic signal from
its time-domain waveform to its frequency-domain complex spectrum.

The input x__time is a vector containing time-domain waveform samples of the signal. The
number of samples is implied by the length of the vector x_time. Uniform sampling over
one complete period is assumed, i.e., the time points are assumed to be

0, To/m, 2xTy/m, ..., (m - 1)XTy/m

where T, is the period and m is the number of time points (i.e., the length of the vector
x_time.

- The output vectors x_real and x_imag will contain the real and imaginary parts of the
frequency-domain spectrum of the signal. It is recommended that they are defined with
0 as the first index and » as the last index, » being the highest harmonic to be included in
the DFT. Then, x_real[k] and x_imag[k] correspond to the kth harmonic component of
the spectrum, e.g., x_real[l] and x_imag[l] are the real and imaginary parts of the
fundamental component of the spectrum. x_real[0] is the DC component of the spectrum,
and x_imag{0] is always set to zero.

OSA90 uses the one-sided cosine DFT. The time-domain waveform is related to the
frequency-domain spectrum as

n
x(t) = Ev(x__real[k]xcos(Zxﬁ) + x_imag[k]xsin(Zrﬁ))
=0 Ty Ty

‘ To guarantee the recoverability of the time-domain sample from the calculated
spectrum, n must be at least (m - 1)/2.

DFT Frequency to Time

The transformation DFT_FT() implements the inverse Discrete Fourier Transform to convert
the frequency-domain complex spectrum of a periodic signal to its time-domain waveform.

Four different formats are available for using DFT_FT(), allowing flexibility in terms of
specifying the time period, the number of time points, the number of tones, etc.

DFT_FT Format 1: Standard One Period

Syntax:
x_time[m] = DFT_FT(x_real, x_imag);

DFT_FT(x_real, x_imag, x_time[m]);

The input vectors x_real and x_imag supply the real and imaginary parts of the complex
frequency-domain spectrum for consecutive harmonic frequencies, starting from 0 (DC).
The sizes of x_real and x_imag must be identical and their size implies the number of
harmonics included in the spectrum. For instance, if they are defined as x_ real[0:n] and
x__imag[0:n], then n is the highest harmonic index in the spectrum.

The output vector x_time will contain the calculated time-domain samples of the signal at
m uniformly spaced time points over one period.

Example:

VR[0:4] = [3.89 -1.35 0.1648 -0.3969 0.08222];
VI[0:4] = [0.0 2.63 0.007732 0.08699 -0.1459];

VT[9] = DFT_FT(VR,VI);
The result is

VT[9] = [1.282 1.151 1.900 4.384 6.611 6.189 6.373 4.729 2.390].

Function or Subroutine
The transformation DFT_FT() can be invoked as a function, such as
VT[9] = DFT_FT(VR,VI);
or as a "subroutine", such as

DFT_FT(VR, VI, VT[9]);

Both calls produce identical results.

DFT_FT Format 2: Specific Time Range

Syntax:
x_time[m] = DFT_FT(x_real, x_iﬁag, t0, tl);

DFT_FT(x_real, x_imag, t0, tl, x_time[m]);

The inputs x_real and x_imag are vectors of the same description as in Format 1.

The main difference from Format 1 is that instead of sampling the time points over one
period, you can specify the range of time points by the input parameters 20 and ¢].

The parameters ¢0 and ¢/ must be scalar constants or labels, and they represent a time range
normalized with respect to the period. The m time points are uniformly spaced in the
interval [t0%T, t1%T,], where Ty is the period.

The output vector x_time will contain the calculated time-domain samples of the signal at
the m time points.

Example:

VR[0:4] = [13
VI[0:4] = [13
VT[51] = DFT_FT(VR, VI, 0, 2]);

where 51 time points between 0 and 2 periods are specified.

DFT_FT Format 3: Specify Spectral Frequencies

Syntax:
x_time[m] = DFT_FT(x_real, x_imag, frequency, t0, tl);

DFT_FT(x_real, x_imag, frequency, t0, tl, x_time[m]);

The inputs x_real and x_imag are vectors of the same déscription as in Formats 1 and 2.

The main difference from Format 2 is the additional input vector frequency which contains
the spectral frequencies. The size of frequency must be identical to the size of x_real and
x_imag, and frequency[0] must be zero (DC). Including frequency as an argument allows
you to use DFT_FT() in cases where the spectral frequencies are not simply the consecutive
multiples of the fundamental frequency, such multitone intermodulation frequencies.

The spectrum data in x_real and x_imag must correspond to the specified frequencies.

In this format, the input parameters ¢0 and ¢ specify the actual time range (in Format 2
t0 and ¢/ are normalized by the period).

The output vector x_time will contain the calculated time-domain samples of the signal at
m uniformly spaced time points in the interval [t0 tI].

Example:

VR[0:4] = [3.89 -1.35 0.1648 -0.3969 0.08222];
VI[0:4] = [0.0 2.63 0.007732 0.08699 =-0.1459];
FO = 3GHz;

F[0:4] = [0 FO (2 * FO) (3 * FO) (4 * FO)];
Two_TO = 2.0 / FO;

VT[51] = DFT_FT(VR, VI, F, 0, Two_TO);

DFT_FT Format 4: Single Time Point

Syntax:

x_time = DFT_FT(x real, x_imag, frequency, t);

DFT_FT(x_real, x_imag, frequency, t, x_time);

The inputs x_real and x_imag are vectors of the same description as in Format 3.

This format is different from the others because it calculates the time-domain signal at a
single time point which is specified by the input parameter ¢.

The output x_time must be a scalar label. Using this format, DFT_FT() can, be called
repeatedly with different values of ¢ (i.e., sweep ¢, g Chapter 9).

The advantage is that when you wish to perform DFT for a large number of time points,
you can avoid defining a large output vector x_time to store all the time points. Instead,
you obtain the result for one time point at a time.

Example:

VR[O0:4] = [... 1;
VI[O0:4] = [...]1;
F[O:4] = [... 1;
T=...;

VI = DFT_FI(WR, VI, F, T);

4.13 Cubic Spline Functions

A set of cubic spline functions is built into OSAS0 for data interpolation, as summarized
in Table 4.6.

TABLE 4.6 CUBIC SPLINE FUNCTIONS

Function Description

SPLINE(X,F) computes the cubic spline coefficients (second-order)

SPLINT(x,C.X.F) evaluates an approximate function value using the cubic
splines where the coefficients C must be obtained from
SPLINE()

SPLIND(x,C.X,F) estimates the first-order derivative of w.r.t. x using the cubic
splines where the coeff:clents C must be obtained from
SPLINE()

SPLINE2D(XA4,XB,F) computes the bicubic (two-dimensional) spline coefficients

SPLINT2D(xa,xb,C,XA,XB,F) evaluates an approximate function value using the bicubic
splines (two-dimensional) where the coefficients C must be
obtained from SPLINE2D()

Spline Interpolation of a Function of One Variable

The cubic spline functions SPLINE() and SPLINT() are useful for mterpolatmg functions of
one variable of the form f(x).

Syntax:
C[n] = SPLINE(X,F);

where X must be an array of length » which contains » distinct values of the variable
in ascending order and F must be an array of length » which contains the corresponding
function values. The result C is an array of length n which contains the (second-order)
coefficients of the cubic splines.

f = SPLINT(x,C,X,F);

where f is the approximate function value computed using cubic spline interpolation
at the given variable value of x. The coefficients ¢ must be obtained from
SPLINE(X , F).

Example:

X _data[ll] = [0.00 0.05 0.10 0.15 0.20 0.25
0.30 0.35 0.40 0.45 0.50];

F_data[1l] = [-2.143 -2.166 -1.867 0.09704
1.9 2.087 2.161 1.687
0.099 -1.855 -2.143];
Coef[11] = SPLINE(X data, F_data);
x: 0.325;
f spline = SPLINT(x, Coef, X data, F_data);
The interpolated value of f_spline at x = 0.325 is 2.045.
The variable values (such as those contained in the array X data in the example)

must be sorted into ascending order.

F< See demodl for an example of the application of cubic splines.

Estimating First-Order Derivatives Using Cubic Splines

The function SPLIND() evaluates the first-order derivative of f(x) w.r.t. x using the cubic
spline model for f(x).

Syntax:
d = SPLIND(x,C,X,F);

where d is the first-order derivative computed using cubic spline interpolation at the
given variable value of x. The coefficients C must be obtained from SPLINE(X,F).

Example:
x: 0.325;
d_spline = SPLIND(x, Coef, X data, F_data);

where Coef, X_data and F_data are the same as in the preceding example.

The first-order derivative of F_data w.r.t. X_data as estimated by SPLIND() is -8.96291 at
x = 0.325.

Bicubic Spline Interpolation

The functions SPLINE2D() and SPLINT2D() are provided for two-dimensional cubic spline
interpolation, i.e., for interpolating functions of two variables of the form f(xa,xb).

Syntax:
C[m,n] = SPLINE2D(XA,XB,F);

where XA must be an array of length m which contains m distinct values of the first
variable, XB must be an array of length n which contains » distinct values of the second
variable, and F must be an m x n matrix which contains the corresponding function |
values. The values in XA and XB must be in ascending order. The result C is an m x
n matrix which contains the bicubic spline coefficients.

f = SPLINT2D(xa,xb,C,XA,XB,F);

where £ is the approximate function value computed using bicubic spline interpolation
at the given variable values (xa,xb). The coefficient matrix C must be obtained from
SPLINE2D(XA,XB,F).

Example:

VG_data[5] = [-2 -1.5 -1 -0.5 0];
VD_data[9] = [0 0.5 1 1.5 2 3 4 5 6];

ID data[5,9] =
0.0 0.759 0.6787 0.5717 0.5396 0.7016 1.135 1.809 2.697
0.0 2.697 3.521 4.027 4.552 5.744 7.12 8.666 10.37
0.0 12.72 15.96 16.76 17.36 18.62 20.01 21.53 23.17
0.0 24.86 33.64 35.03 35.5 36.35 37.28 38.29 39.38
0.0 35.42 53.6 56.97 57.33 57.5 57.67 57.87 58.09

1;
Coef[5,9] = SPLINE2D(VG_data, VD_data, ID_data);

VG: -0.7;
VD: 2.33;

ID_spline = SPLINT2D(VG, VD, Coef, VG_data, VD_data, ID_data);
The interpolated value of ID_spline at VG = -0.77 and VD = 2.33 is 28.08.

The variable values (such as those contained in the array VG_data and VD_data in
the example) must be sorted into ascending order.

J<= See demo42 and demo43 for examples of using the 2D bicubic spline functions.

4.14 Piece-Wise Linear Interpolation

A piece-wise linear interpolation function is built into OSAS0 for interpolating functions
of one variable of the form f(x).

Syntax:
y = PWL(x, X, Y);

where X must be an array of length n which contains » distinct values of the variable
in ascending order and Y must be an array of length » which contains the corresponding
function values. Using piece-wise linear interpolation, y is computed as the function
value at the given variable value of x.

The PWL function works as follows.

If x < X[1], then y = ¥[1].

If x > X[n], then y = Y[n].

Otherwise, find the indices i/ and j such that XT#] < x < X[j], then

¥ = YIil + (x - XTIXYLj] - YLD / (XUj] - XTiD)

Example:
X data[5] = [1.0 2.0 4.0 6.0 7.0];
Y_data[5] = [-2.0 0.0 5.5 1.6 0.3];
x: 3.0;

y = PWL(x, X data, Y _data);

The interpolated value of y at x = 3.0 is 2.75.

5
Datapipe

OVeIVIeW e 5-1
Datapipe Server 5-3
Dataplpe Protocols ittt 5-6
SIM Protocol 5-9
COMand COMD Protocolsc..uiuiiiiuemeennenennnannn 5-15
FUN Protocolttt ittt et 5-24
FDF Protocol ittt e e e 5-25
LINEAR Protocol it 5-29
Application Notes 5-32

5
Datapipe

5.1 Overview

Traditional CAD programs are closed systems in the sense that all the features are built-in
for a preconceived application. They offer little flexibility for customization or user-
designed extensions. Modern frameworks promise full-scale integration of independent
programs, but they require complicated rules, dedicated training, extensive reprogramming
of existing codes, and excessive hardware support.

OSA90’s Datapipe utilizes UNIX’s interprocess pipe communication facility to establish high
speed data connections between OSAS0 and one or more external programs. The input
parameters to the external programs can be defined and preprocessed in OSAS0. The
outputs from the external programs can be postprocessed, displayed and optimized. You

can functionally integrate multiple external programs by making the outputs of one the
inputs of another.

In the input file, Datapipe can be defined in the Expression and Model blocks. The Datapipe
schematic is illustrated in Fig. 5.1.

O8A90
Pipe Protocol e .| Pipe Protocol
Pipe Server Pipe Server
Child Program Child Program

Fig. 5.1 Datapipe schematic

Child Program

Child program refers to an external program which communicates with OSAS0 via a
Datapipe connection. A child program may also be referred to simply as a "child".

Pipe Server

Pipe server is a small set of functions to be included in all child programs for reading data
from and writing data to Datapipe. The pipe server is supplied by OSA.

Child Process

When Datapipe is involved during simulation or optimization, OSAS0 will fork (create) a
new process and request the operating system to execute the child program in the new
process. At the same time, a pair of interprocess communication pipes will be established
between OSAS0 and the child process.

Dialogues

Once the Datapipe connection is established, OSAS0 and the child program can begin to
exchange data. OSA90 computes the inputs required by the child program according to
their definitions (variables, labels, etc.) and writes the data to Datapipe. The child program
reads the inputs from Datapipe, carries out the calculations, and sends back the outputs to
OSA90.

Each exchange of data is called a dialogue. Many dialogues may be involved in one
simulation or optimization session, in which many different sets of inputs and outputs are
exchanged between OSA90 and the child program.

Pipe Protocol

Datapipe protocols are a set of communication standards which defines the sequence and
meaning of the data fields to be exchanged between OSAS0 and the child program. The
protocols are designed to accommodate a variety of data formats for different applications.

5.2 Datapipe Server

Datapipe server is a small set of functions to be included in all child programs for reading
data from and writing data to Datapipe. These functions are written in "C" and based on
standard UNIX facilities. The pipe server source code is supplied by OSA which contains
about 150 lines of text (the source code is also listed in Appendix A).

TABLE 5.1 DATAPIPE SERVER FUNCTIONS

Name Description

pipe_initialize2() synchronizes dialogues

pipe_initialize3() synchronizes dialogues with termination notification
pipe_read2() reads data from Datapipe

pipe_write2() writes data to Datapipe

Pipe Server Structure in Child Program

main ()
{
for (;3)
{
pipe_initialize2();

pipe_read2(...);
. /* calculating the outputs from the inputs */
pipe_write2(...);
) .
L
Synchronization

Each iteration within the loop for (;;) ({) represents one dialogue between the child
program and OSAS0. The loop is indefinite, because the total number of dialogues cannot
be anticipated by the child program. The termination of the loop (and the child program)
is implicitly controlled by the pipe server function pipe_initialize2().

The pipe server function

int pipe_initialize2()
synchronizes the Datapipe communication by waiting for an encoded message from OSA90.
The message is then interpreted as either (a) to open a dialogue, or (b) to terminate the
Datapipe connection. In case (a), an acknowledgement is returned to OSAS0 and a data
exchange may then begin. In case (b), the child process is terminated.

Reading Data

The child program obtains input data from OSA90 via Datapipe by calling the pipe server
function pipe_read2():

int pipe_read2 (char *buffer, int size, int count)

The pointer buffer must point to a memory buffer in the child program where the data will
be stored. The integer size is the number of bytes per data item, and the integer count is
the number of items to be read.
Pipe_read2() returns 0 if the data is successfully read, or -1 if there is an error.
Fuﬁctionally, the child program reads input data using pipe_read2() in the same way as it
would read from the standard input (keyboard) or a data file.

Writing Data

The child program sends output data back to OSAS0 via Datapipe by calling the pipe server
function pipe_write2():

int pipe_write2 (char *buffer, int size, int count)
The pointer buffer must point to a memory buffer which contains the data. The integer
size is the number of bytes per data item, and the integer count is the number of items to
be written. .
Pipe_write2() returns 0 if the data is successfully written, or -1 if there is an error.
Functionally, the child program writes output data using pipe_write2() in the same ways as
it would write to the standard output or a data file.

The calculations of the outputs from the inputs can be coded in any programming languages
and organized in any fashion as desired.

To ensure that data is exchanged in the proper order and can be correctly interpreted, the
child program must comply with a set of protocols.

Pipe Server With Termination Notification

main ()
{
for (;3)
{
if (plpe initialize3()) ¢
.. /* actions before the child program terminates %/

exit(0);
)

pipe_read2(...);
/* calculating the outputs from the inputs */

pipe_write2(...);

The pipe server function
int pipe_initialize3()

is identical to pipe_initialize2() except that it notifies the child program of the termination
of Datapipe communication by OSAS0.

Both pipe_initialize2() and pipe_initialize3() wait for an encoded message from OSAS0. The
message is interpreted as either (a) to open a dialogue, or (b) to terminate the Datapipe
‘ connection.

In case (a), pipe_initialize2() or pipe_initialize3() sends an acknowledgement to OSA90 and
return to the main program of the child to begin a data exchange. The return value from
pipe_initialize2() or pipe_initialize3() to the main program of the child is 0 in this case.

In case (b), i.e., upon receiving the termination code from OSA90, pipe_initialize2() invokes
the C function exit() to terminate the child program. pipe_initialize3(), on the other hand,
does not terminates within itself. Rather, pipe_initialize3() returns -1 to the main program
of the child as a notification of termination. This allows the child program to perform any
tasks necessary (updating and closing data files, for example) before the termination.

returns -1 the child program will invoke exit() after the necessary clean-up actions.

f If you choose to use pipe_initialize3(), you must make sure that when pipe_initialize3()

5.3 Datapipe Protocols

Datapipes can be defined in the Expression and Model blocks of the input file.

Syntax:

Datapipe: protocol FILE="filename"
N_INPUT=n INPUT=(x1, ..., xn)
N_OUTPUT=m OUTPUT=(yl, ..., ym)
TIMEOUT=k;

where protocol is a keyword identifying the protocol, filename is the name of the child
program, n is the number of inputs to the child, m is the number of outputs from the
child and k is the number of seconds before "time-out".

TABLE 5.2 DATAPIPE PROTOCOLS

Keyword Description

SIM simple protocol with numerical inputs and outputs

COM comprehensive protocol allowing for string inputs/outputs
FUN protocol for optimization error functions

FDF protocol for optimization error functions and derivatives

LINEAR protocol for importing linear subcircuit S/Y/Z data

Example:

Datapipe: SIM FILE="my prog" .
N_INPUT=3 INPUT=(3.5, FREQ, ?10cm?)
N OUTPUT=2 OUTPUT=(Gain, Efficiency);

which defines a Datapipe to communicate with an external program named "my_prog" using
the SIM protocol. The child program expects three input parameters, which are specified
in OSAS0 by a constant 3.5, the label FREQ and an optimization variable 210cm?. The child
program returns two outputs which will be stored as labels Gain and Efficiency.

d There are slight syntax variations between the different protocols. This section
focuses on aspects that are common among the protocols. Protocol-dependent details
are addressed in the subsequent sections.

Child Program File Name

The child program as named in FILE=filename must be an executable file. If necessary,
filename should include the full path. For instance, if the child program is named my_prog
which does not reside in the working directory but, say, in the directory /user/john, then
filename should be specified as "/user/john/my_prog".

The user of OSA90 must have the (file protection) privilege to execute the child program.

Inputs to the Child

The inputs to the child program xI, ..., xn can be specified by constants, optimization
variables and labels. Labels used as inputs must have been defined in the input file prior
to the Datapipe statement.

Outputs from the Child

The outputs from the child program are represented by labels which can then be displayed
and optimized, and used in expressions and models.

The output label names yI, ..., ym must not duplicate any label names which already exist
prior to the Datapipe statement.

Array Inputs and Outputs

Arrays can also be used as inputs to the child program and to represent outputs from the
child program. For example:

X[3] = [3.5 FREQ ?10cm?];

Datapipe: SIM FILE="my prog"
N_INPUT=3 INPUT=(X)
N_OUTPUT=2 OUTPUT=(Y[2]);

‘ Notice that each array counts as not just one input or output, but as many inputs
or outputs as the size of the array. In the above example array X counts as three
inputs and array Y represents two outputs.

Whether a numerical input is specified by a constant, a variable or a label is inconsequential
to the child program, because its evaluation is handled by OSAS0 and only its value is
passed to the child program.

Another example:

XA[3] = [?-7? ?10cm? ?3PS?];
XB[2,2] = [1.0 2.0
3.0 4.0];

Datapipe: SIM FILE="my prog"
N_INPUT=6 INPUT=(FREQ, XA[2], XB)
N_OUTPUT=10 OUTPUT=(Y[2,5]);

where scalar label FREQ and array element XA[2] each counts as one input, matrix XB counts

as 4 inputs, and matrix Y stores 10 output values from the child program.

ﬂ Elements of matrices are passed row-wise. For instance, the matrix XB in the above
example is passed as XB[1,1], XB[1,2], XB[2,1] and XB[2,2].

Time Out

Mistakes in programming could cause the Datapipe communication to be out of synchroni-
zation. For example, a discrepancy in the number of outputs between the child program
and OSA90 could cause OSA90 to wait indefinitely for data that the child program never
sent (a deadlock).

The protocols are designed to prevent such problems. If the child program strictly complies
with the protocol, the communication should- be without problems.

However, to avoid a deadlock in the event of unintentional breach of protocol, a "time out"
feature allows OSAS0 to abort the Datapipe connection and force the termination of the
child process after a specified amount of time has elapsed without receiving any data.

The amount of time OSAS0 should wait for data is specified by TIMEOUT=k, where k is an
integer representing the number of CPU seconds. The default is k¥ = 0, which means the
time-out feature is disabled. You can specify a different time-out value for each Datapipe
definition.

When the time-out feature is activated, OSAS0 has to continually poll (check) the
A pipe for data availability. This could consume a significant amount of CPU time.
It is recommended that you activate the time-out feature only when testing Datapipe
connections to new child programs. After the connection is tested and found to be
reliable, you should disable the feature (by removing the TIMEOUT keyword or
setting k = 0) to avoid wasting CPU time on a safeguard that is no longer needed.

5.4 SIM Protocol

The SIM protocol is simple and straightforward. It assumes that all the data to be exchanged
between OSA90 and the child program are floating-point numbers.

Syntax:

Datapipe: SIM FILE="filename"
N_INPUT=n INPUT=(xI, ..., xn)
N_OUTPUT=m OUTPUT=(yl, ..., ym)
TIMEOUT=k; :

where filename is the name of the child program, » is the number of inputs to the child,
m is the number of outputs from the child and k is the number of seconds for time-out.

J< Section 5.3 gives a general description of the keywords.

Example:

Datapipe: SIM FILE="sim _prog"'
N_INPUT=3 INPUT=(3.5, FREQ, ?1l0cm?)
N_OUTPUT=2 OUTPUT=(Gain, Efficiency);

which defines a Datapipe to communicate with an external program named "sim_prog" using
the SIM protocol. The child program sim_prog expects three input parameters, which are
specified in OSAQ0 by a constant 3.5, the label FREQ and an optimization variable ?10cm?.
The child program returns two outputs which will be stored as labels Gain and Efficiency.

Input Data Format

As described in the overview, the communication between OSA90 and the child takes place
in the form of dialogues. OSA90 opens a dialogue by sending the input data to the child.
The data sent by OSA90 to the child using the SIM protocol consists of three fields, as
shown in Fig. 5.2.

n integer, number of inputs

m integer, number of outputs

x n floats, input values

Fig. 5.2 SIM protocol input data format

The first two fields are the numbers of inputs and outputs, respectively, exactly as you have
specified in the corresponding Datapipe statement in the input file.

The child program should first read these two fields. The child may be programmed for
a fixed number of inputs (outputs), or perhaps it can accept a flexible number of inputs
(outputs) within a certain range. In either case, the values of n and m should be validated.
If they are found to be incorrect, the child should send an error signal back to OSA90 and
then OSA90 will alert the user to the problem.

The third field contains the actual inputs: n float-point values.
Example of reading the inputs in the child program:

float x[16];
int n, m, error = 0;

for (;3) (
pipe_initialize2(); /* synchronization */
pipe_read2(&n, sizeof(int), 1); /* number of inputs */

pipe_read2(&m, sizeof(int), 1); /* number of outputs */
pipe_read2(x, sizeof(float), n); /* input values */

if (n != 16) error = -1; /* invalid number of inputs */
else { ...)

where the number of inputs is expected to be exactly 16.

A All the input data must be read by the child even if some of the fields are found
to be in error. Data left unread may block subsequent Datapipe communications.

Another example:

float *x;
int n, m, error = 0;

for (55) (
pipe_initialize2(); /* synchronization */

pipe_read2(&n, sizeof(int), 1); /* number of inputs %/
pipe_read2(&m, sizeof(int), 1); /* number of outputs */

x = (float *) malloc(n * sizeof(float));
pipe_read2(x, sizeof(float), n); /* input values */

if(n<2 || n>16 || m<1]||] m>3) error = -1;
else { ...}

In this case, any number of inputs between 2 and 16 is acceptable, and the number of
outputs can be between 1 and 3. The child also allocates memory for data storage according
to the actual number of inputs.

Output Data Format

After receiving the input data, the child will proceed to compute the outputs and then send
the results back to OSA90 via Datapipe.

The information sent by the child depends on whether or not an error condition has
occurred, either due to incorrect inputs or during the child’s calculations. First we will
consider the "normal" (i.e., error-free) situation.

The output data format for the SIM protocol is shown in Fig. 5.3.

0 integer, error flag, 0

y m floats, output values

Fig. 5.3 SIM protocol output format when error free

The first field is an integer error flag, which should be set to zero when there is no error.
The second field comprises m float output values computed by the child, where m must be
identical to the number of outputs specified by OSA90 to the child.

Example:

float *x, sum;
int n, m, i, error = 0;

for (55) (
pipe_initialize2(); /* synchronization */
pipe_read2(&n, sizeof(int), 1); /* number of inputs */
pipe_read2(&m, sizeof(int), 1); /* number of outputs */
x = (float *) malloc(n * sizeof(float));
pPipe_read2(x, sizeof(float), n); /* input values */
if (n<1 || mt!=1) error = -1; /* invalid n or m */
else {

for (sum -'0.0, i=20; 1i<mn; i) sum += x[i];

pipe_write2(&error, sizeof(int), 1); /* error is 0 */
pipe_write2(&sum, sizeof(float), m); /* m is 1 %/

free(x);

Error Flag

When an error is detected within the child program, the Datapipe protocols provide two
methods of reporting the error to OSA90: with an error message, or without.

Without an error message, the child program simply sends an error flag with the value —1
or 1, using the format shown in Fig. 5.4.

error integer, error flag, -1 or 1

Fig. 5.4 Output format: error flag without message

Example:

pipe_read2(&n, sizeof(int), 1); /* number of inputs %/
pipe_read2(&m, sizeof(int), 1); /* number of outputs */
pipe_read2(x, sizeof(float), n); /* input values */

if (<2 || n>16 || m<1l|]m>3){
error = -1; /% error: invalid n or m */
pipe_write2(&error, sizeof(int), 1);

}

else { ...}

After sending the error flag, the child must stop sending outputs and wait for OSA90 to
decide whether to terminate the connection or to open the next dialogue (if the error can
be rectified).

Error Message

The format for sending an error message is shown in Fig. 5.5.

error integer, error message length

message char string, NULL terminated

Fig. 5.5 Output format for error messages

where message is a character string terminated by a NULL byte, and error is the length of
message including the NULL byte. The child program must include the NULL byte in the
message string. For instance, to send the message "Hello” (5 bytes) plus the NULL byte, the
child program must set error to 6 and send it first.

Example:

float *x, sum;
char *message;
int n, m, i, error = 0;

for (;3) (
pipe_initialize2(); /* synchronization */

pipe_read2(&n, sizeof(int), 1); /* number of inputs */
pipe_read2(&m, sizeof(int), 1); /* number of outputs */

X = (float *) malloc(n * sizeof(float));
pipe_read2(x, sizeof(float), n); /* input values */

if (n<1) { :

message = "N_INPUT must be a positive integer";

error = strlen(message) + 1; /* include the NULL byte */
}
else if (m != 1) {

message = "N_OUTPUT must be 1: sum of the inputs”;

error = strlen(message) + 1; /% include the NULL byte */
}
else for (sum = 0.0, i = 0; i < n; i++) sum += x[i];

free(x);
pipe_write2(&error, sizeof(int'), 1); /* error flag */

if (error) pipe_write2(message, 1, error);
else pipe_write2(&sum, sizeof(float), m);

Upon receiving a nonzero error flag from the child, OSAS0 will alert the user to the error
condition. If error > 1, the message supplied by the child program will also be displayed.

In the example, the child program calculates the sum of the inputs and therefore the
number of outputs must be 1. Suppose that by mistake you defined the number of outputs
to be 2, as
Datapipe: SIM FILE="calc_sum"
N_INPUT=4 INPUT=(X1, X2, X3, X4)
N_OUTPUT=2 OUTPUT=(SumX, SumY);
The child program will return the error message

N_OUTPUT must be 1l: sum of the inputs

which OSAZ0 will display on the screen in the same way as built-in error messages are
displayed.

Template for Child Programs Using the SIM Protocol

main ()

{
float x[N_MAX], y[M_MAX];
char *message;
int n, m, error = 0;

for (;;)
pipe_initialize2(); /* synchronization */

pipe_read2(&n, sizeof(int), 1); /* number of inputs */
pipe_read2(&m, sizeof(int), 1); /* number of outputs */
pipe_read2(x, sizeof(float), n); /* input values */

if (n< ...) { /* validate n and m %/

if (lerror) {
/* compute the outputs from the inputs ... */

in_house_simulator(n, x, m, y, &error);
}
pipe_write2(&error, sizeof(int), 1);

if (lerror) pipe_write2(y, sizeof(float), m);
else if (error > 1) pipe_write2(message, 1, error);

~ N_MAX and M_MAX represent the maximum numbers of inputs and outputs expected by the
child program. If they cannot be easily determined (e.g., the child program can handle an
unlimited number of inputs), then the storage memory x and y will have to be dynamically
allocated according to the actual numbers of inputs and outputs.

Utilizing Termination Notification .
If you wish to perform Qome clean-up tasks before the child terminates, then replace
pipe_initialize2(); /* synchronization */
by

if (p1pe initialize3()) {
. /* perform clean-up tasks */

exit(0);

5.5 COM and COMD Protocols

The COM and COMD protocols are more comprehensive than the SIM protocol: they permit
character string inputs and outputs, in addition to numerical data.

Syntax:

Datapipe: COM FILE="filename"
N_INPUT=n INPUT=(xl, ..., xn)
N_OUTPUT=m OUTPUT=(yl, ..., ym)
TIMEOUT=k;

where filename is the name of the child program, » is the number of inputs to the child,
m is the number of outputs from the child and k is the number of seconds for time-out.

COMD is a double precision version of COM. The syntax for COMD is identical to COM
with the exception of the protocol keyword.

Syntax:

Datapipe: COMD FILE="filename"
N_INPUT=n INPUT=(x1, ..., xn)
N_OUTPUT=m OUTPUT=(yl, ..., ym)'
TIMEOUT=k;

where filename is the name of the child program, # is the number of inputs to the child,
m is the number of outputs from the child and k is the number of seconds for time-out.

Throughout this section any reference to "float" should be interpreted as "double" in the case
of the COMD protocol.

g<= Section 5.3 gives a general description of the keywords.

The inputs to the child program may include numerical data (constants, optimization
variables and labels) as well as character string labels (== Chapter 4). String inputs can
be used to pass to the child messages, file names, or even an entire file.

Example:

X[3] = [0.1 50 -3.2];
char Data_file[] = "/user/osa90/data/dev_spar.dat";
char SPICE file[] = "

VCC 5 0 12

VIN 1 0 AC 1 PULSE(0 1 2PS 2PS 2PS 25NS 50NS)
RB 2 5 1310K .

RE 3 0 670

RC 4 5 5K

CB 1 2 100UF

Ql 4 2 3 MOD

.MODEL MOD NPN(BF=100 VAF=50 IS=1.E-9 RB=100 CJC 2PF)
.PRINT TRAN V(4) V(1)

.TRAN 1NS 50NS ONS

.END

Datapipe: COM FILE="my prog" -
N_INPUT=5 INPUT=(X, Data_file, SPICE_file)
N_OUTPUT=2 OUTPUT=(V4t, V1t);

where the inputs consist of three floating-point values given by the array X and two string
labels. The string label Data_file specifies a file name, and string label SPICE_file appears
to contain SPICE commands. The child program may utilize these inputs to drive a SPICE

compatible simulator and then return the results to OSA90.

If the child program handled double precision input from and output to OSAS0 then the

Datapipe statement should read as

Datapipe: COMD FILE="my prog"
N_INPUT=5 INPUT=(X, Data file, SPICE file)
N_OUTPUT=2 OUTPUT=(V4t, V1t);

String Outputs

The outputs from the child program can also include character string labels.
Example:

Datapipe: COM FILE="gen file"
N_INPUT=n INPUT=(...)
N_OUTPUT=6 OUTPUT=(Y[4], char A[64], char B[10]);

where the outputs include four numerical values to be stored in the array Y, and two string
outputs to be labelled as A and B.

The dimension of a Datapipe output string label represents the expected maximum length
of the string including the NULL byte. The actual string returned by the child can be
shorter than the dimension.

Since the outputs from one child can be used as inputs to another child, string outputs can
be useful for passing text information between separate child programs via OSAS0.

Input Data Format

The COM protocol format for sending input data from OSA90 to a child program is shown
in Fig. 5.6.

n integer, number of inputs

m integer, number of outputs

k integer, number of packets

pl the first data packet

pk the last data packet

Fig. 5.6 coM protocol input data format

The first two fields are the numbers of inputs and outputs, respectively, exactly as you have
specified in the corresponding Datapipe statement in the input file.

The inputs are divided into data packets (i.e., subsets, groups). The third field specifies
the number of data packets. There are two types of packets: string packets and float
packets.

String Packets

1 integer, string packet ID

L integer, length of the string

s char string, NULL terminated

Fig. 5.7 COM protocol string data packet

The first field in a packet is a packet type identifier, which is set to 1 for string packets.
Instead of the explicit integer "1", you can also use the manifest constant IPPC_DATA_CHAR,
which is defined in the pipe server header file "ippcv2.h" (listed in Appendix A).

The second field in the packet specifies the length of the string. Each packet contains one
string which is terminated with a NULL byte. The string length L includes the NULL byte.
For example, for the string "Hello", L is set to 6.

The third field in the packet contains the string of L bytes.

Float Packets

2 integer, float packet ID

L integer, number of floats in the packet

X L floats, data body

Fig. 5.8 COM protocol float data packet

The first field in a packet is a packet type identifier, which is set to 2 for float packets.
Instead of the explicit integer "2", you can also use the manifest constant IPPC_DATA_FLOAT
which is defined in the pipe server header file "ippcv2.h" (listed in Appendix A).

The second field is an integer L which specnfles the number of floating-point values
contained in the packet.

The third field in the packet contains L floating-point values.

Example:

char Stringl[] = ...
char String2[] = ...
X[5] = ...;

Datapipe: COM FILE=...

N_INPUT=10 INPUT=(10, 20, Stringl, String2, X, 30)

The inputs will be grouped into 4 packets. The first one is a float packet containing two
numerical values, namely 10 and 20. The second packet is a string packet passing the string
label String1. The third packet is also a string packet containing String2. The fourth packet
is a float packet containing 6 numerical values, namely the array X and the constant 30.

The following example illustrates how a child program would read the input data using the

COM protocol.
float x[N_MAX], *xp;
char s[N_MAX][L_MAX];

int n, m, k, n_floats, n_strings, i, L,

for (55) ¢
pipe_initialize2(); /*

pipe_read2(&n, sizeof(int), 1); /*
pipe_read2(&m, sizeof(int), 1); /*
pipe_read2(&k, sizeof(int), 1); /*

n_floats = n_strings = 0;

for (i = 0; i < k; i++) /*

pipe_read2(&type, sizeof(int), 1);

pipe_read2(&L, sizeof(int), 1);

if (type == IPPC_DATA_FLOAT) {
xp = x + n_floats;

type, error = 0;
synchronization */
number of inputs */

number of outputs */
number of packets */

read one packet at a time %/

/* float packet */

pipe_read2(xp, sizeof(float), L); /* read L floats */

n_floats += L;
}

else {

pipe_read2(s[n_strings], 1, L);

n_strings++;

}

/* string packet */
/* read L chars */

A All the input data must be read by the child even if some of the fields are found
to be in error. Data left unread may block subsequent Datapipe communications.

Output Data Format

If an error is encountered in the child program, it should be handled in the same way as
described for the SIM protocol (g~ Section 5.4).

Otherwise, the child program sends the outputs to OSAS0 in the format shown in Fig. 5.9.

0 integer, error flag, 0

pl the first output packet

pk the last output packet

Fig. 5.9 COM protocol output format when error free

The first field is an error flag, which should be set to zero when there is no error.
The outputs are organized into data packets in the same way as the inputs (the formats for
string and float packets are shown in Figs. 5.7 and 5.8, respectively).

j Note that the total number of output data packets is not explicitly specified. OSA90
will read from the child via Datapipe as many packets as necessary to obtain the
total number of outputs as specified by N_OUTPUT=m.

Example:

Datapipe: COM FILE=...

N_OUTPUT=4 OUTPUT=(Y[2], char Stringl[64], Z);

The corresponding child program may be as follows.

float ..., y[2], z;
char ..., *string;
int ..., type, L, error = 0;
for (5;)
pipe_initialize2(); /* synchronization */

/* read inputs and calculate outputs */
y[0] = ...
yl1l] = ...
z = ..

string = "...";

if (lerror) {

pipe_write2(&error, sizeof(int), 1); /* error flag 0 */

type = IPPC_DATA_FLOAT; /* first packet: 2 floats */

L=2; . .
pipe_write2(&type, sizeof(int), 1);
pipe_write2(&L, sizeof(int), 1);
pipe_write2(y, sizeof(float), L);

type = IPPC_DATA_ CHAR; /* second packet:
L = strlen(string) + 1;

pipe_write2(&type, sizeof(int), 1);
pipe_write2(&L, sizeof(int), 1);
pipe_write2(string, 1, L);

type = IPPC_DATA FLOAT; /* third packet:
L=1;

pipe_write2(&type, sizeof(int), 1);
pipe_write2(&L, sizeof(int), 1);
pipe_write2(&z, sizeof(float), L);

Template for Child Programs Using the COM Protocol

main ()

(

float x[N_MAX], y[M_MAX];
char string inputs[N_MAX][L MAX], *message;
int n, m, k, n_floats, n_strings, i, L, type, error = 0;

for (5;) {
pipe_. 1n1tialize2(), /* synchronization %/
pipe_read2(&n, sizeof(int), 1); /* number of inputs */
pipe_read2(&m, sizeof(int), 1); /* number of outputs */
pipe_read2(&k, sizeof(int), 1); /* number of packets */

n_floats = n_strings = 0;

for (i = 0; i < k; i) { /* read one packet at a time */
pipe_read2(&type, sizeof(int), 1);
pipe_read2(&L, sizeof(int), 1);

if (type == IPPC_DATA FLOAT) { /* float packet */
xp = x + n_floats;
pipe_read2(xp, sizeof(float), L); /* read L floats */
n_floats += L;

}

else { /* string packet of L bytes */
pipe_read2(string inputs[n_strings], 1, L);
n_strings++;

}

... /% calculations ¥*/
pipe_write2(&error, sizeof(int), 1);

if (lerror) {

for (...) { /* write outputs in packets */
type = ...; /% IPPC_DATA FLOAT or IPPC_DATA_ CHAR */
L= ...; /* number of floats or length of string */

pipe_write2(&type, sizeof(int), 1);
pipe_write2(&L, sizeof(int), 1);

if (type = IPPC_DATA FLOAT)
pipe_write2(..., sizeof(float), L);
else pipe_write2(..., 1, L);
}

else if (error > 1) pipe write2(message, 1, error);

}

Utilizing Termination Notification

If you wish to perform some clean-up tasks beforg the child terminates, then replace
pipe_initialize2(); /* synchronization */
by

if (p1pe initialize3()) {
/* perform clean-up tasks */

exit(0);

5.6 FUN Protocol

The FUN protocol is specifically designed for optimization: the outputs from the child
program are directly taken as error functions and the outputs are not labelled.

Syntax:

Datapipe: FUN FILE="filename"
N_INPUT=n INPUT=(x1, ..., xn)
N_OUTPUT=m NAME=errf name
TIMEOUT=k;

where filename is the name of the child program, » is the number of input to the child,
m is the number of outputs from the child, errf_name is a collective identifier for all the
outputs and k is the number of seconds for time-out.

I Section 5.3 gives a general description of the keywords.

The outputs are not represented by individual labels, instead they are collectively identified
by errf_name which can then be referenced in the Specification block for optimization.

Example:
Expression
Datapipe: FUN FILE="sim errf"
N_INPUT=5 INPUT=(X1, X2, ?1.0?, 2.0, FREQ)
N_OUTPUT=6 NAME=error_setl;
end
Specification
Datapipe: error_setl;
end

This instructs OSAS0 to include all the outputs from "sim_erf" as error functions for
optimization (J&= more details in Chapter 11).

The only difference between the FUN protocol and the SIM protocol is the way outputs are
handled by OSA90. As far as the child program is concerned, there is no difference
between the FUN and SIM protocols. The input and output data formats of the FUN protocol
are identical to those of the SIM protocol (Section 5.4).

By not labelling the individual outputs, the FUN protocol consumes less memory and CPU
time in processing the Datapipe outputs than the SIM protocol. The disadvantage is that the
outputs are not individually accessible for display or postprocessing.

5.7 FDF Protocol

The FDF protocol, like the FUN protocol, is specifically designed for optimization: the
outputs from the child program are not labelled but directly taken as error functions.
Furthermore, the FDF protocol is capable of taking advantage of derivatives supplied by the
child program.

Syntax:

Datapipe: FDF FILE="filename"
N_INPUT=n INPUT=(x1, ..., xn)
N_OUTPUT=m NAME=errf name
TIMEOUT=k;

where filename is the name of the child program, » is the number of inputs to the child,
m is the number of outputs from the child, errf_name is a collective identifier for all the
outputs and k is the number of seconds for time-out.

F< Section 5.3 gives a general description of the keywords.

The outputs are not represented by individual labels, instead they are collectively identified
‘ by errf_name which can then be referenced in the Specification block for optimization.

Example:
Expression
Datapipe: FDF FILE="sim fdf"
N_INPUT=5 INPUT=(X1, X2, ?1.0?, 2.0, FREQ)
N_OUTPUT=6 NAME=error_setl;
end
Specification
Datapipe: error_setl;
end

This instructs OSAS0 to include all the outputs from "sim_fdf* as error functions for
optimization (js more details in Chapter 11).

Additionally, the FDF protocol allows the child program to supply first-order derivatives
of the outputs with respect to the inputs. These derivatives are then incorporated into the
gradients required by the optimizers. If the child program is capable of computing the
exact derivatives efficiently (e.g., by adjoint analysis), then the FDF protocol can be used
to improve the accuracy and speed of optimization.

Input Data Format

The FDF protocol format for sending input data from OSA90 to a child program is shown
in Fig. 5.10.

n integer, number of inputs

m integer, number of outputs

x n floats, input values

d integer, flag for derivative requirement

Fig. 5.10 FDF protocol input data format

The first two fields are the numbers of inputs and outputs, respectively, exactly as you have
specified in the corresponding Datapipe statement in the input file.

The third field contains the actual inputs: » floating-point values.

The fourth field is an integer flag which indicates whether it is necessary for the child to
calculate and return the derivatives. Derivatives may not be needed for some iterations
during optimization. Some optimizers (e.g., the random optimizer) may not need derivatives
at all. The flag is set to 1 when the derivatives are needed, and set to 0 when they are not
necessary.

Output Data Format: without Derivatives

If an error is encountered in the child program, it should be handled in the same way as
described for the SIM protocol (= Section 5.4).

Otherwise, if derivatives are not required as indicated by the flag in the inputs, the output
data format for the FDF protocol is shown in Fig. 5.11.

0 integer, error flag, O

f floats, output values

Fig. 5.11 FDF protocol output format without derivatives

The first field is an integer error flag, which should be set to zero when there is no error.
The second field contains the m float-point output values.

Output Data Format: with Derivatives

When derivatives are required as indicated by the flag in the inputs and the child program
did not encounter any error, the output data format shown in Fig. 5.12 should be used for
the FDF protocol.

0

integer, error flag, 0

f

m floats, output values

df

n X m floats, derivatives

Fig. 5.12 FDF protocol output format with derivatives

The total number of first-order derivatives is #n x m, where »n is the number of inputs and
m is the number of outputs. The derivatives must be sent row-wise, in the following order:

3f1/3x1, 3f2/9x1, ..., dfm/dxl,
af1/8x2, 8f2/9x2, ..., 3fm/3x2,
8f1/dxn, 8f2/8xn, ..., 3fm/3xn

where fj represents the jth output and xi represents the ith input.

Template for Child Programs Using the FDF Protocol

main ()

{
float x[N_MAX], y[M_MAX], df[N_MAX * M MAX];
char *message;
int n, m, need df, error = 0;

for (53)
pipe_initialize2(); /* synchronization */

pipe_read2(&n, sizeof(int), 1); /* number of inputs */
pipe_read2(&m, sizeof(int), 1); /* number of outputs */
pipe_read2(x, sizeof(float), n); /* input values */
pipe_read2(&need df, sizeof(int), 1); /* flag */

/* calculations */
if (need_df) { df = ...)} /* compute the derivatives */

pipe_write2(&error, sizeof(int), 1);

if (lerror) {
pipe_write2(y, s1zeof(f10at), m);

if (need_df) pipe write2(df, sizeof(float), (n * m));
}

else if (error > 1) pipe_write2(message, 1, error);

Utilizing Termination Notification
If you wish to perform some clean-up tasks before the child terminates, then re‘place
pipe_initialize2(); /* synchronization */
by

if (p1pe initialize3()) (
/* perform clean-up tasks */

exit(0);

5.8 LINEAR Protocol

The LINEAR protocol is designed for importing into OSA90 linear subcircuits described by
S (scattering), Y (admittance) or Z (impedance) matrices.

Syntax:

Datapipe: LINEAR FILE="filename"
N_INPUT=n INPUT=(x1, ..., xn)
N_PORT=m NAME=subcircuit _name FORMAT=syz
TIMEOUT=k;

where filename is the name of the child program, » is the number of inputs to the child,
m is the number of ports of the imported linear subcircuit, 1 < m < 31,
subcircuit__name is a string label to identify the imported subcircuit, syz can be specified
as S, Y or Z (the default is Y), and k is the number of seconds for time-out.

J< Section 5.3 gives a general description of the keywords.

The imported linear subcircuit must be an m-port with a common reference node (i.e.,
grounded to the reference node), and described by an m x m definite S, Y or Z matrix.
Imported subcircuits are defined and referenced in the Model block of the input file.

Example:
Model
Datapipe: LINEAR FILE="my prog"
N_INPUT=5 INPUT=(...) .
N_PORT=4 NAME=SubCircuit_1 FORMAT=Y;
DATAPORT 5 2 7 4 DATA = SubCircuit_1;
end

A linear subcill'cuit is imported from the child program "my_prog", represented by a 4-port
Y matrix and identified as SubCircuit_1. This subcircuit is later referenced through a
DATAPORT element connected to the nodes 5, 2, 7 and 4.

F< Chapters 6 and 8 provide further details on imported linear subcircuits.

Frequency Dependence

Typically, linear subcircuits are frequency-dependent. You can include the predefined label
FREQ as one of the inputs to the child so that the S, Y or Z data will be computed at the
desired frequency.

Input Data Format

The input data format for the LINEAR protocol is shown in Fig. 5.13.

n integer, number of inputs

k integer, number of outputs: 2 X m X m

x n floats, input values

Fig. 5.13 LINEAR protocol input data format

The first field is the number of inputs as specified in the corresponding Datapipe statement.

The second field is the number of outputs, which is 2 x m x m, because the m x m complex
S, Y or Z matrix is sent as 2 x m x m floating-point values.

The third field contains the actual inputs: » floating-point values.

Output Data Format

If an error is encountered in the child program, it should be handled in the same way as
described for the SIM protocol (s~ Section 5.4).

Otherwise, the S/Y/Z data is sent back to OSA90 using the format shown in Fig. 5.14.

0 integer, error flag, O

v 2 xmXx m floats, S/Y/Z data

Fig. 5.14 LINEAR protocol output format when error free

The m x m complex S, Y or Z matrix is sent as 2 x m x m floating-point values. For
example, a ¥ matrix is sent row-wise, in the following order:

RY11l, IY1l, RY12, IY12, ..., RYlm, IYlm,
RY21, IY21, ...,
RYml, IYml, RYm2, IYm2, ..., RYmm, IYmm

where RYij and IYij represent the real and imaginary parts of Y(i,j), respectively.

Template for Child Programs Using the LINEAR Protocol

main ()

(
float x[N_MAX], y[2 * M_MAX * M MAX];
char *message;
int n, m, k, error = 0;

for (;3) {
pipe_initialize2(); /*

pipe_read2(&n, sizeof(int), 1); /*
pipe_read2(&k, sizeof(int), 1); /*
pipe_read2(x, sizeof(float), n); /*
m = (int) sqrt(k / 2); : /*

/* calculations */

pipe_write2(&error, sizeof(int), 1);

synchronization %/
number of inputs */
number of outputs %/
input values */

number of ports */

if (lerror) pipe_write2(y, sizeof(float), k);
else if (error > 1) pipe_write2(message, 1, error);

Utilizing Termination Notification

If you wish to perform some clean-up tasks before the child terminates, then replace

pipe_initialize2(); /*
by

if (p1pe initialize3()) (

synchronization */

/* perform clean-up tasks */

exit(0);

5.9 Application Notes

Exciting New Dimension of Optimization-Driven EM Simulation

Empipe is a Datapipe interface connecting OSA90 and em. em is an efficient full-wave
electromagnetic field simulator from Sonnet Software, Inc.

Empipe3D is a Datapipe interface connecting OSA90 to Ansoft HFSS and HP HFSS, finite
element based electromagnetic field simulators offered by Ansoft Corporation and Hewlett-
Packard Co., respectively.

Empipe and Empipe3D allow you to incorporate EM simulation results into circuit-oriented
OSAQO0, opening up an exciting new dimension of optimization-driven EM field simulation.

A comprehensive library of em-ready microstrip components has been is built into Empipe.
The library includes both simple components, such as microstrip line, step, cross and tee,
and more sophisticated structures, such as folded double stub, interdigital capacitor and
overlay double patch capacitor. These components are fully parameterized.

Furthermore both Empipe and Empipe3D feature OSA’s exclusive Geometry Capture for
parameterization of arbitrary structures.

An intelligent database management system is built into both Empipe and Empipe3D. By
keeping track of the EM simulation history, it ensures that once a component is simulated
by the field solver, the simulation will never have to be duplicated at the same point(s).
This computation saving mechanism is especially valuable in optimization and statistical
analysis.

Using OSA90 as a Datapipe Child
OSAQ0 itself is Datapipe ready, i.e., OSA90 can invoke another copy of OSA90 as a Datapipe
child. You can exploit this feature to create a virtual simulation hierarchy of unlimited

depth and create capabilities that are not built-in.

For example, you can invoke optimization within a simulation loop (optimization performed
by the child OSA90 within a simulation loop in the parent OSA90).

For details, see Chapter 14.

Multiple References to the Same Child

A child program may be referenced in more than one Datapipe definition in the same input
file, each time with a different set of inputs. For example,

Datapipe: SIM FILE="calc_sum"
N_INPUT=4 INPUT=(40, 50, 60, 70)
N_OUTPUT=1 OUTPUT=(Suml);
Datapipe: SIM FILE="calc_sum"
N_INPUT=5 INPUT=(X1, X2, X3, X4, X5)
N_OUTPUT=1 OUTPUT=(SumX);
where the child program "calc_sum" calculates the sum of its inputs.
A special keyword "SAME" can be used to simplify the syntax:
Datapipe: SIM FILE="calc_sum"
N_INPUT=4 INPUT=(40, 50, 60, 70)
N OUTPUT-I OUTPUT-(Suml) H
Datapipe: SIM FILE=SAME
N_INPUT=5 INPUT=(X1, X2, X3, X4, X5)
N_OUTPUT=1 OUTPUT=(SumX);

The keyword SAME in the second Datapipe statement means that it refers to the same child
as in the preceding Datapipe statement.

Cascading Datapipes

You can cascade (chain) a number of Datapipes by using the outputs from one child as the
inputs to another:

Datapipe: SIM FILE="child 1"

OUTPUT=(. .., Y1[10], ...);
Yl_squared[10] = Y1 * YI1;

Datapipe: COM FILE="child 2"
INPUT=(..., Yl_squared, ...) ...;

where the outputs from "child_1" are processed and then used as inputs to "child_2".

You can utilize this feature to functionally interconnect separate programs via Datapipe as
modules of one integrated system. You can then use the expressions in OSA90 for pre-,
post- and inter-processing. The interconnections of such a system can be modified easily
on the input file level without any changes to the child programs.

Initialization of Child Programs

A child program may need to be initialized the first time it is called. One method is for
the child to keep a count of the number of times it has been called, i.e., a count of the
dialogues:

/* in the child program */

int ..., count, ...;
for (count = 0; ; count++) { /* loop for dialogues */

pipe_initialize2(); /* synchronization */

if (!count) {
/* first dialogue, perform initialization */
)

Or, you can designate one of the inputs to the child as a flag which will explicitly indicate
to the child whether initialization is required.
Another way is to have a separate initialization program:

Datapipe: SIM FILE="init_sim"

INPUT=(X1, ...)
OUTPUT=(status);

Datapipe: SIM FILE="sim prog"
INPUT=(status, ...) ...;
where "init_sim" performs the initialization required for "sim_prog".
For OSAS0 to invoke init_sim and sim_prog in the appropriate sequence, there must be
functional interdependency between init_sim and sim_prog. Such interdependency exists
because init_sim and sim_prog are cascaded, i.e., the output from init_sim, namely status, is

one of the inputs to sim_prog. Such a linkage through cascaded output-input must be
established even if an output from the initialization program is not technically needed.

é init_sim is invoked on an "as necessary” basis: init_sim will be invoked at least once

and then whenever one of its inputs, such as X1, has changed. If all the inputs to

init_sim remain constant, then it will be invoked only once (before the first call to
sim_prog).

Multi-Purpose Child Programs

A child program can be designed to handle several different tasks. Most likely, such tasks
are related in some ways and best handled by one child program. Each task may require
a different set of inputs from OSAS0 and/or return a different set of outputs.

You can include in the inputs one or more encoded flags to be passed to the child program.
The child program would then analyze these flags after receiving the inputs and determine
which specific task is being requested.

For example, suppose that you have 10 subroutines each performing a different task, but
you do not want to create 10 different child programs. You can design a multi-purpose
child program by designating, for example, the first input parameter to be an index
indicating which subroutine (task) is needed.

The file syntax may look like this:

#define TASK A 3 ! task index between 1 and 10
#define TASK B 8

Datapipe: SIM FILE="multisim"
INPUT=(TASK_A, X1, ...)
Datapipe: SIM FILE=SAME

INPUT=(TASK_B, X2, ...)

The child program:

int ..., task, error = 0;

pipe_read2(&n, sizeof(int), 1);
pipe_read2(&m, sizeof(int), 1);
pipe_read2(x, sizeof(float), n);

task = (int) x[0];

if (task == 1) {
subroutinel(...);
)

else if (task == 10) {
subroutinelO(...);

)

6.17
6.18

6
Circuit Models

OVeIVIeW e e e e 6-1
Nodes e 6-3
Elements 6-4
IdealSources i e 6-6
Ports e e ettt ettt e e e e 6-11
Voltage and CurrentLabels 00 uuuuunu... 6-16
CIRCUITStatement00t iiiiiimmaneaanannnnn 6-18
DO ReSPONSeSttt e e 6-19
Small-SignalResponsesttt 6-22
Large-Signal Responsesiiiinurinnnennnnnnn. 6-26
PostprocessingResponses0. i, 6-36
LinearSubcircults 6-38
User-DefinedLinearModelscciiuuun.. 6-41
User-Defined NonlinearModelsc¢ciiiiuiuunnn.. 6-44
ImportDataBIoCK it . 6-48
LINEARDataplpe ittt 6-56
Macros and SymbolicSubclrcuits 6-58
Oscillator Port it e 6-61

6
Circuit Models

6.1 Overview

OSA90 can simulate linear and nonlinear circuits of general n-port topology. The circuit
models are described in the Model block of the input file.

Syntax:

Model
labels and expressions;
SUBCIRCUIT ...;
Datapipe: ...;
elements;
VSOURCE ...;.
ISOURCE ...;
PORT ...;
CIRCUIT ...;
response postprocessing

End

Labels and Expressions are described in Chapter 4. Functionally, the Model block
includes all the features of the Expression block.

Datapipes are described in Chapter 5.
Elements include linear and nonlinear circuit elements. A circuit model consists of a set

of interconnected elements. The model represents a nonlinear circuit if it contains at least
one nonlinear element. Otherwise the model represents a linear circuit.

Subcircuits are user-defined linear subcircuits. Subcircuits can be parameterized to create
custom linear elements that are not available from the built-in element library.

Ideal voltae sources and current sources can be defined by VSOURCE and ISOURCE
statements, respectively. Non-ideal sources can be included in external ports defined by
PORT statements.

Circuit Responses are represented by labels which are automatically created as soon as
the circuit definition is completed with a CIRCUIT statement. Circuit responses include DC,
small-signal AC and large-signal AC responses.

Response postprocessing utilizes expressions to create customized (user-defined)
responses for display and optimization.

6.2 Nodes

Nodes represent the interconnections between the circuit elements, sources and ports defined

in the Model block.
Nodes can be designated by positive integers, such as

RES 1 2

which means that a RES element is connected between the nodes designated as 1 and 2.

Node numbers do not need to be consecutive or in any particular order.

Nodes Designated by Names

Nodes can also be designated by character strings with the prefix @.
Example:
RES @input @ground ...

FETM (@gate @drain @source

Node names are case insensitive unless they are enclosed within quotation marks.

example,
@gate, @GATE, @Gate
designate the same node, but
@'gate”, @"GATE"
are considered as two separate and distinct node names.
Mixed usage of numerical and string nodes is permitted:

RES 1 @output

The Ground Node

For

The node number 0 and the node name @grouhd are automatically created and they always
designate the ground node.

6.3 Elements

OSA90 provides a library of linear and nonlinear elements from which you can select
components of a circuit model.

Syntax:
element name nl n2 ... nk parl=xl par2=x2 ... parm=xm;
where element__name is a keyword identifying a library element, »i is the ith connection

node, parj is a keyword identifying one of the parameters of the element model, and
xj is a value or a label assigned by the user to the parameter parj.

Example:

RES 3 5 R=50;

CAP @input @ground C=10pF;
Catalogues of the library elements are contained in Chapter 7 (nonlinear elements) and
Chapter 8 (linear elements), which include the schematics, keywords, number of nodes,

parameters and model equations where appropriate.

Each element definition is a statement and must end with a semicolon ";".

Element Nodes
Each element has a predefined number of nodes. For example, the element RES (resistor)
has 2 nodes. Nodes that are not explicitly specified will be grounded (i.e., default to the
node 0 or @ground).

However, each element requires a minimum number of nonzero nodes for the €lement to
be meaningfully connected, e.g., the element RES requires at least one nonzero node.

Element Parameters

Each element has a number of parameters. An element parameter can be assigned a
constant value, defined as an optimization variable or specified by a label.

Example:
SRLC 1 0 R=15 L=?0.2nH? C=Label Cl;

where R, L and C are keywords representing the parameters for the element SRLC. R is
assigned a constant value, L is defined as an optimization variable (== Chapter 4), and C
is specified by the label Label_C1 which must have been defined prior to this reference.

Numerical constants can have physical units, e.g., 10pF and 0.2nH (g5~ Chapter 3).

Parameters Defined by Expressions

An element parameter can also be defined by an expression (formula), such as
RES 1 0 R = (Resistivity * Length / Cross_Section);
Such an expression within an element definition must be enclosed in a pair of
parentheses to clearly delimit the expression from the rest of the text. Otherwise,
the expression may be confused with the other parameter keywords in the same
statement.

For example,

SRL 1 0 R = Resistivity * Length / Cross_Section L = A + B;

will be considered as an error by the input file parser.

Alternatively, you can define the expression as a label in a separate statement:
Label R: Resistivity * Length / Cross_Section;

RES 1 0 R=Label R;

Parameters Evaluated Externally

Element parameters can also be evaluated by an external program connected to OSA90 via
Datapipe (== Chapter 5).

Example:
Datapipe: SIM FILE="my_ prog"
... INPUT=(...)
.. OUTPUT=(X1, ...) ...;

RES 1 0 R=X1;

where "my_prog" is the child program and one of its outputs is used to specify one of the
element parameters.

6.4 ldeal Sources

Independent sources provide excitations for DC and large-signal harmonic balance analyses.
DC sources may also be required to provide the appropriate bias for nonlinear active
devices.

This section describes ideal sources. Non-ideal sources associated with ports are discussed
in Section 6.5.

Ideal Voltage Sources

nl

n2

Fig. 6.1 Ideal voltage source.

Syntax:
VSOURCE.name nl n2 VDC=vdc V=v PHASE=a;

name is a character string to identify the source. nl and n2 are nodes.

vdc specifies the DC voltage.

v and a specify the magnitude and phase (angle) of the AC voltage, respectively.
Both nodes nl and n2 are required, other entries are optional.

Examples:
VSOURCE.DC_bias @bias_node @ground VDC=-1.74V;
VSOURCE 2 0 V=?0.2V? PHASE=15deg VDC=0.5V;

The identifier name is required only if you are interested in the current response of the
source. If given, name will be incorporated into the response labels (Sections 6.8 and 6.10).

The parameters VDC, V and PHASE can be specified by constants, optimization variables,
labels and expressions. If omitted, the default value is zero.

Ideal Current Sources

nl

n2

Fig. 6.2 Ideal current source.

Syntax:
ISOURCE.name nl n2 1IDC=idc I=i PHASE=a;

name is a character string to identify the source. nl and n2 are nodes.

idc specifies the DC current.

i and a specify the magnitude and phase (angle) of the AC current, respectively.
Both nodes nl and n2 are required, other entries are optional.

Examples:
ISOURCE 1 0 IDC=1.5mA;

ISOURCE.input 2 0 I=0.2A PHASE=15deg IDC=0.5A;

The identifier name is required only if you are interested in the voltage response of the
source. If given, name will be incorporated into the response labels (Sections 6.8 and 6.10).

The parameters IDC, | and PHASE can be specified by 'constants, optimization variables,
labels and expressions. If omitted, the default value is zero.

Alternative Syntax for Source Names

The names identifying voltage and current sources can also be defined using the keyword
NAME. For example, the following definitions are equivalent:

ISOURCE.input 1 0 I=0.2A ...;

ISOURCE 1 0 NAME=input I=0.2A ...;

A Potential Problem with Ideal Current Bias Sources

When an ideal current source is used as a DC bias source for an active device, you may
need to connect a large resistor in parallel with ISOURCE. For example, suppose that you
use a current source to provide the base-emitter bias for a bipolar transistor. When the
collector-emitter voltage is zero, the base current is zero. This can cause a problem for the
simulator if the only path for the current of the ideal source is through the base of the
transistor. This potential problem can be avoided if an alternate path for the source current
is provided by a large resistor connected in parallel with ISOURCE.

nl

n2

Fig. 6.3 Current source with a resistor in parallel.

A 1IMOH - 10MOH resistor is usually suitable for this purpose.

Source Frequency
AC sources in OSAS0 can be of single-tone or two-tone.

In the single-tone case, all the AC sources in the circuit share the same (fundamental)
frequency which is represented by the predefined label FREQ.

For AC analyses (small- and large-signal), you assign a value to FREQ or sweep FREQ over
a set of values in the Sweep, Specification and MonteCario blocks.

Example:
Sweep
FREQ: from 2GHZ to 10GHZ step=l1GHZ ... ;
End o
whereby the frequency of all the AC sources are swept over the specified range.

In the two-tone case, the tone frequencies are represented by FREQ and FREQ2,

<= See Chapters 9, 11 and 12 for further details.

Harmonic Excitations

An AC source may contain higher harmonics of the fundamental frequency.

Syntax:

VSOURCE.name nl n2 VDC=vdc V[l]=vl PHASE[l]=al
V[m]=vm PHASE[m]=am;

name is a character string identifier. nJ and n2 are nodes. vdc is the DC voltage.
m is the highest harmonic contained in the source, 1 < m < 8.)

vk and ak specify the magnitude and phase (angle) of the kth harmonic component,
1 <k < m, and the kth harmonic frequency is k times the fundamental frequency.
Both nodes nl and n2 are required, other entries are optional.

Example:

VSOURCE.Triangular Wave 1 0 V[1]=1 V[3]=(1/9)
V[5]=(1/25) V[7]=(1/49);

which represents a triangular waveform excitation truncated to the first 7 harmonics.

Syntax:

ISOURCE.name nl n2 1IDC=idc I[l]=il PHASE[l]=al
I[m]=im PHASE[m]=am;

name is a character string identifier. nl and »n2 are nodes. idc is the DC current.
m is the highest harmonic contained in the source, 1 <m < 8.

ik and ak specify the magnitude and phase (angle) of the kth harmonic component,
1 <k <m, and the kth harmonic frequency is k times the fundamental frequency.
Both nodes n/ and n2 are required, other entries are optional.

Example:

ISOURCE.Triangular Wave 1 0 I[1]=1 1I[3]=(1/9)
I[5]=(1/25) 1I[7]=(1/49);

which represents a triangular waveform excitation truncated to the first 7 harmonics.

Two-Tone Sources

By "two-tone sources”, we mean that the AC sources in a circuit contain two different and
harmonically unrelated stimulus frequencies.

Syntax:

VSOURCE.name nl n2 VDC=vdc V=vl PHASE=al
V2=v2 PHASE2=a2;

name is a character string identifier. nl and n2 are nodes. vdc is the DC voltage.
vl and al specify the magnitude and phase (angle) of the first tone, respectively.
v2 and a2 specify the magnitude and phase (angle) of the second tone, respectively.
Both nodes n! and n2 are required, other entries are optional.

Example:

VSOURCE. two_tone_input 1 0 V=0.2V V2=0.15V;

The two tones may also appear in separate sources:

VSOURCE.first tone @inputl 0 V=0.2V;

VSOURCE.second_tone @input2 0 V2-0.15lV;
The tone frequencies are to be specified by FREQ and FREQ2 in the Sweep, Specification
and MonteCarlo blocks.

Two-tone current sources can be similarly defined.

Syntax:

ISOURCE.name nl n2 IDC=idc I=il PHASE=al
.. I2=i2 PHASE2=a2;

name is a character string identifier. nJ and n2 are nodes. idc is the DC current.
il and al specify the magnitude and phase (angle) of the first tone, respectively.
i2 and a2 specify the magnitude and phase (angle) of the second tone, respectively.
Both nodes n/ and n2 are required, other entries are optional.

Example:

ISOURCE. two_tone_input 1 0 I=0.2A 1I2=0.15A;

6.5 Ports

Generally, the overall circuit is defined as an n-port. Ports are defined individually by
separate PORT statements. Up to 64 external ports can be defined.

nl

R +jX

n2

Fig. 6.4 Port.

Syntax:
PORT.name nl n2 R=r X=x;
name is a character string identifier. n] and n2 are nodes.

r and x specify the real and imaginary parts of the terminating impedance, respectively.
Both nodes nl and n2 are required, other entries are optional.

Example:
PORT 2 O;
The identifier name is required only if you are interested in calculating the voltage and
current responses through DC and/or large-signal simulation.
Example:
PORT.output 2 0;
The name "output” will be incorporated into the response labels (Sections 6.8 and 6.10).

Alternatively, you can specify the port name using the keyword NAME:

PORT 2 0 NAME=output;

Port Termination

Port terminations defined in the PORT statements are, by default, considered as the
reference impedances in the calculation of small-signal S parameters. In DC and harmonic
balance simulations, they are included in the overall circuit definition, as shown in Fig. 6.4.
The parameters R and X can be used to define the port termination.
Example:

PORT.output 2 0 R=10;

R and X can be specified by constant values, optimization variables, labels and exbressions.

If both R and X are omitted, the default termination is R = 500H. If only R or X is
specified, the default value for the omitted parameter is zero.

A port must not be terminated by a short circuit, i.e., R and X cannot both be set
to zero at the same time.

Frequency-Dependent Complex Termination

The port termination can be frequency dependent if R and/or X is defined by a frequency-
dependent label or expression. ’

You can also terminate a port with a one-port subcircuit by replacing the keywords R and
X with the keyword Z:

Syntax:
PORT.name nl n2 Z=subcircuit_name;

name is a character string identifier. nl and n2 are nodes.
subcircuit_name identifies a one-port linear subcircuit.

Example:
Port.output 1 0 Z=Load;
where Load identifies a one-port linear subcircuit defined by any one of the following:
a linear subcircuit defined within OSA90 (s Section 6.12),

an imported linear subcircuit defined by S/Y/Z data supplied in the ImportData block
(J= Section 6.15),

a linear subcircuit imported through LINEAR Datapipe (ps~ Section 6.16).

Voltage Source Associated with a Port

Syntax:
PORT.name nl n2 VDC=vdc V=v PHASE=a;
name is a character string identifier. nI and n2 are nodes.

vdc specifies the DC voltage. v and a specify the magnitude and phase (angle) of the
AC voltage, respectively.

Example:
PORT.input 2 0 V=0.5V;
The source associated with a port is very similar to the ideal sources described in Section

6.4, except that the source associated with a port is non-ideal.

Current Source Associated with a Port

Syntax:
PORT.name nl n2 IDC=idc I=i PHASE=a;
name is a character string identifier. n/ and n2 are nodes.

idc specifies the DC current. i and a specify the magnitude and phase (angle) of the
AC current, respectively.

Example:

PORT.input 2 0 I=10mA;

The current source associated with a port is very similar to the ideal sources described in
Section 6.4.

Source Specified by Available Power

An AC source associated with a port can be specified in terms of the available input power.

Syntax:
PORT.name nl n? R=r X=x VDC=vdc P=p PHASE=a;

name is a character string identifier. nJ and n2 are nodes.

r and x specify the real and imaginary parts of the terminating impedance, respectively.
vdc specifies the DC source voltage.

p specifies the available input power in dBm.

a specifies the phase (angle) of the AC source voltage.

Example:
PORT.input 2 0 P=-5 R=50;

The available input power in dBm is related to the magnitude of the voltage by
p = 10 * logyo(v2 / (8 * 1)) + 30

where v represents the magnitude of the AC source voltage.

i If PHASE is specified together with the available power, it is considered to be the
phase (angle) of the voltage.

Harmonic Excitations

An AC source associated with a port may contain higher harmonic excitations.

Syntax:

PORT.name nl n2 R=r X=x VDC=vdc V[l]=vl PHASE[l]=al
Vim]=vm PHASE[m]=am;

name is a character string identifier. n! and n2 are nodes.

r and x specify the real and imaginary parts of the terminating impedance, respectively.
vdc specifies the DC source voltage.

vk and ak specify the magnitude and phase (angle) of the kth harmonic component,

1 < k < m, m is the highest harmonic contained in the source, 1 < m < 8.

The magnitudes can be specified in terms the available input powers by replacing the
keywords V[k] with P[k].

Current source containing higher harmonics can be defined by replacing the keywords VDC
and V[k] with IDC and I{k], respectively.

Two-Tone Excitations

Ports may also contain two-tone sources, i.e., the sources may contain two different and
harmonically unrelated stimulus frequencies, similar to the case of ideal sources.

Syntax:

PORT.name nl n2 R=r X=x VDC=vdc V=vl PHASE=al
V2=v2 PHASE2=a2;

name is a character string identifier. n/ and n2 are nodes.

r and x specify the real and imaginary parts of the terminating impedance, respectively.
vdc is the DC source voltage.

vl and al specify the magnitude and phase (angle) of the first tone, respectively.

v2 and a2 specify the magnitude and phase (angle) of the second tone, respectively.

The magnitudes can be specified in terms of the available input powers by replacing the
keywords V and V2 with P and P2, respectively.

Two-tone current source can be defined by replacing the keywords VDC, V and V2 with IDC,
| and 12, respectively.

Multiple Ports Defined Using One Statement

You can use the keyword PORTS to define multiple ports with a single statement.

_Syntax:
PORTS nl n2 ... nk;
where nl, n2, ..., nk are nodes.

k must be an even number and the number of ports defined is k / 2.
Nodes n! and n2 forms the first port, n3 and n4 forms the second port, and so on.

Example:
PORTS 1 0 2 0;

This defines two ports. The first port is between the nodes 1 and 0, and the second port
is between the nodes 2 and 0.

PORTS provides a convenient way of defining ports for small-signal simulation. However,
you will not be able to assign names to the ports, define port terminations, or define sources
associated with the ports. Therefore, PORTS may not be useful for DC or large-signal HB
analysis where the voltage and current responses of the ports need to be identified through
the names of the ports. Also, when PORTS is used, the default reference impedance of 50
ohm is implied for S-parameter calculation.

6.6 Voltage and Current Labels

A voltage label represents the voltage between two nodes in the circuit. A current label
represents the current through a branch in the circuit.

Voltage Labels

nl n2
.._.o o___
+ VLABEL -

Fig. 6.5 Voltage label.

Syntax:
VLABEL.name nl n2 TAU=r;

where name is a string to identify the voltage label, n/ and n2 are nodes,
TAU=r specifies an optional time delay, r can be a constant, variable or label.

Example:
VLABEL.V52 ' 5 2;
Then,
V52 = v5 - v2
where v5 and v2 represent the voltages at the nodes 5 and 2, respectively.

The label identifier name represents the time-domain voltage. It can be used as a DC
response label (5= Section 6.8). The voltage label name will also be incorporated into the
name of an array which represents the large-signal voltage response (J5 Section 6.10).

Time Delay
You can specify an optional time delay for a voltage label, for example,
VLABEL.V52_delayed 5 2 TAU=3pS;
Then,

V52_delayed(t) = v5(t - 3pS) - v2(t - 3pS)

where v5 and v2 represent the voltage at the nodes 5 and 2, respectively.

You can define a number of voltage labels for the same pair of nodes but with different
delays. For example,

VLABEL.V52 5 2;
VLABEL.V52 delayed 1 5 2 TAU=3pS;
VLABEL.V52_delayed 2 5 2 TAU=5pS;

Current Labels
nl n2

ILABEL

Fig. 6.6 Current label.

Syntax:
ILABEL.name nl n2;

where name is a string to identify the current label. nl and n2 are nodes.

‘ Note that ILABEL introduces a short-circuit between nodes n1 and n2. In order to
measure the current through a branch, you need to break that branch, create a new
node and insert an ILABEL.
" Example:
ILABEL.I_52 5 2;

The label |_52 represents the current through the short-circuit between nodes 5 and 2.

Voltage and Current Measurements of a Circuit Component

Fig. 6.7 Measuring the voltage and current of a component.

6.7 CIRCUIT Statement

To indicate that the circuit definition in the Model block is finished, you must use the
CIRCUIT statement.

Syntax:
CIRCUIT.name HARM=m MIXER INTMOD;
where all the parameters are optional. If given, name must be a character string.

HARM=m specifies the highest harmonic to be included in large-signal analysis.
MIXER or INTMOD controls the formulation of spectral frequencies for two-tone analysis.

The keywords HARM, MIXER and INTMOD are relevant only for large-signal simulation,
hence they are described in the context of large-signal responses in Section 6.10.

Response Labels

As soon as the circuit definition is finished, OSA90 automatically generates a set of labels
to represent the circuit responses. These are called response labels.

Response labels provide the means by which you can refer to the circuit simulation results
for display and optimization. The response labels can also be incorporated into expressions
to create user-defined responses.

Response labels are created and become available only after the CIRCUIT statement, because
the responses depend on the overall circuit configuration (e.g., the number of S parameters
depends on the total number of circuit ports).

The proper position of the CIRCUIT statement:

Model .
circuit definition: elements, sources, ports, etc.
CIRCUIT ... response labels created here
user-defined responses: postprocessing expressions

End

6.8 DC Responses

For DC responses to be available, the circuit must contain at least one DC source, i.e., at
least one VSOURCE, ISOURCE or PORT which includes a nonzero VDC or IDC.

TABLE 6.1 DC RESPONSE LABELS

Label Response

Vname_DC DC voltage of a port defined as PORT.name
or, of a source defined as ISOURCE.name

Iname_DC DC current of a port defined as PORT.name,
or, of a source defined as VSOURCE.name

vname DC voltage of a voltage label defined as VLABEL.vname

iname DC current of a current label defined as ILABEL.iname

DC Voltages and Currents of P’oﬁs

I

nl —»

R +jX

n2

Fig. 6.8 Voltage and current of a port.

Examples:
PORT.input_port 3 4 ...;
PORT.out S5 6 ...;

The corresponding DC response labels are

Vinput_port DC, Iinput_port DC

Vout_DC, Iout DC

DC Currents of Voltage Sources

I

——» 0l

n2

‘Fig. 6.9 Current of an ideal voltage source.

Example:
VSOURCE.bias 12 ...;

The corresponding DC response label is Ibias_DC.

DC Voltages of Current Sources

nl

n2

Fig. 6.10 Voltage of an ideal current source.

Example:

ISOURCE.bias 1 2 ...;

The corresponding DC response label is Vbias_DC.

Voltage and Current Labels

Voltage and current labels can be directly used to represent the DC voltage and current
responses, respectively.

Example:
VLABEL.V52 5 2;
ILABEL.Current_Probe 11 15;
The DC voltage between node 5 and node 2 is represented by the label V52, and the DC

current through the short-circuit between node 11 and node 15 is represented by the label
Current_Probe.

Response Label Names Must Be Unique

The response label names created according to the templates, such as those listed in Table
6.1, must be unique. They cannot duplicate any existing label names defined by the user.

For example, the DC response labels corresponding to the port definition
PORT.output 56 ...;

would be Voutput DC and loutput DC. If either of these names is already taken by an
existing label, the file parser will signal an error.

Therefore, when creating labels, avoid using names which may confhct with the templates
for response labels, as listed in Tables 6.1 - 6.6.

6.9 Small-Signal Responses

S, Y and Z Matrices

The small-signal circuit responses includé the n-port S, ¥ and Z parameters.

The complex S parameters are available in both the polar form (magnitude and phase) and
the rectangular form (real and imaginary parts). The Y and Z parameters are available in
the rectangular form only.

The §/Y/Z parameters are represented by the n x n matrices listed in Table 6.2.

TABLE 6.2 S, YAND Z MATRICES

Matrix Description

MS[n,n] magnitudes of the S parameters
PS[n,n] phases of the S parameters in degrees
RS[n,n] real parts of the S parameters
IS[n,n] imaginary parts of the S parameters

RY[n,n] real parts of the Y parameters
IY[n,n] imaginary parts of the Y parameters

RZ[n,n] real parts of the Z parameters
IZ[n,n] imaginary parts of the Z parameters

You can refer to an S-, Y- or Z-parameter matrix as a whole or refer to its individual
elements. For example, you can refer to MS as a matrix or use MS[2,1] to refer to the
magnitude of S,;.

F<= See Chapter 4 for further details on matrices and array operations.

d The indices of the S/Y/Z parameters refer to port numbers. Ports are numbered
according to the order of their appearances in the Model block.

Individual S/Y/Z Parameters

For your convenience, the S/Y/Z parameters are also made available as the scalar labels
listed in Table 6.3.

TABLE 6.3 S, YAND ZLABELS

Label Description

MSij equivalent to MS[i, j]
PSij equivalent to PS[i,j]
RSij equivalent to RS[i,j]
ISij equivalent to IS[i, j]

RYij equivalent to RY[i, j]
IYij equivalent to IY[i, j]

RZij equivalent to RZ[i, j]
IZij equivalent to IZ[i, j]

‘ The scalar labels are limited to 1 <i<9and 1 < j <9. If the number of ports
exceeds 9, then only those S-, Y- and Z-parameters corresponding to the first 9
ports can be referred to in this way. To refer to the other S/Y/Z parameters, you

will have to use the matrix notation, such as MS[11,1].

Unit of the Phase

Following convention, the phase is given in degrees. This means that they cannot be
directly used in trigonometric functions. You can convert the phases to radians using an
expression, such as:

PS21_in_radians = PS21 * PI / 180;

where Pl is a predefined label. You can even convert the whole matrix:

PS_in_radians[n,n] = PS * PI / 180;

where n should be set to the number of ports.

Reference Impedances for S Parameters

By default, the reference impedances for calculating the S parameters are those of the port
terminations defined in each of the PORT statements (js~ Section 6.5); if the termination
is not defined for a port then it is assumed to be 50 ohm by default. You can override
these default settings by using the RREF keyword in the Sweep, Specification and MonteCarlo
blocks (5= Chapters 9, 11 and 12).

Group Delay Responses

The group delay responses for an n-port circuit are represented by the matrix and labels
listed in Table 6.4.

TABLE 6.4 GROUP DELAY RESPONSES

Name Description

GD[n,n] group delay matrix
GDij equivalent to GD[i, j]

The group delay is defined as
GDij = LS)/ 0w
where LS,-j is the phase of S,»j in radians and w is the angular frequency.

By default, the unit of frequency in OSA90 is GHZ. Consequentl}.', the default unit of w
is radians per nanosecond and the default unit of GDij is nanosecond.

You can change the unit of frequency to HZ by specifying Non_Microwave_Units in the
Control block. Then, the unit of GDij will be second.

One-Sided Group belay

By default, two-sided perturbations are used for group delay computation. In the Control
block, you can specify one-sided perturbations to be used instead:

Control
One_Sided_Group_Delay;

End

F< See Chapter 3 for further details on the Control block.

Two-Ports Responses

For two-ports, a number of additional small-signal responses are available.

TABLE 6.5 SMALL-SIGNAL RESPONSES FOR TWO-PORTS

Label Response

SK stability factor
GMAX maximum available gain in decibels
INSL insertion loss in decibels

These two-port responses are defined by assuming that the port which appears first in the
Model block is the input port and the other port is the output port.

6.10 Large-Signal Responses

The large-signal responses computed by OSA90 are frequency-domain complex spectra of
voltages and currents. Large-signal analysis requires that the circuit contain at least one AC
source.

The number of spectral components of the large-signal responses corresponds to the number
of spectral frequencies included in the harmonic balance simulation.

Harmonic and Spectral Frequencies

Spectral frequencies are the result of harmonic generation and intermodulation of nonlinear
circuits. In the case of single-tone excitations, we also use the term "harmonic frequencies”
since they are the harmonics (multiples) of the fundamental frequency. In the two-tone
case, spectral frequencies are linear combinations of the two tone frequencies.

Mathematically, there is possibly an infinite number of harmonic or spectral frequencies.
“In practice, only a limited number of them are actually included in the analysis.

The Highest Harmonic

You can specify the highest harmonic to be included in the large-signal analysis in the
CIRCUIT statement.

Syntax:
CIRCUIT HARM=m ...;

m is the highest harmonic to be included in large-signal analysis,
m0 < m < 16, where m0 is the highest harmonic among all the sources.

Default for linear circuits: m = m0
Default for nonlinear circuits: m = m0 + 2, subject to 4 < m < 16

In the case of single-tone excitations, the harmonic frequencies are given by

k *x f, k=0,1,2, ..., m

where f is the fundamental frequency.

MIXER and INTMOD

In the two-tone case, you can choose between two different methods of generating the
spectral frequencies in the CIRCUIT statement.

Syntax:

CIRCUIT HARM=m MIXER INTMOD;

You can specify either MIXER or INTMOD. The default is MIXER.

If MIXER is specified, the spectral frequencies are generated as
k * f1 - Af, k * f1, k * f1 + Af, k=0, 1, ., m

where Af = |fI — f2, fI and f2 are the two tone frequencies, and only the non-negative
frequencies resulting from the above formula are used.

This method assumes that the circuit is a mixer, fI is the local oscillator frequency, f2 is
the RF signal frequency, and Af is the intermediate frequency. This method is suitable if
the magnitude (power level) of the local oscillator is much greater than that of the RF
signal.

If INTMOD is specified, the spectral frequencies are given by

f =kl * f1 + k2 * £2, subject to |kI| + |k2| = m
and f =20 .

where k1 and k2 are integers, and f1 and f2 are the two tone frequencies. This method is
applicable to intermodulation analysis in general.
Label N_Spectra and Array Spectral_Freq

You can conveniently refer to the total number of positive harmonic/spectral frequencies
generated through an automatically generated label N_Spectra, which is defined as

m for single-tone
N_Spectra = 3*m+ 1 for two-tone MIXER
m* (m+ 1) for two-tone INTMOD

The values of the harmonic/spectral frequencies are stored in an automatically generated
array Spectral_Freq[0:N_Spectra]. The length of the array Spectral_Freq is N_Spectra + 1,
because the DC frequency is included: Spectral_Freq[0] is always zero.

In the single-tone case, Spectral_Freq[k] contains the kth harmonic frequency. For example,
if the fundamental frequency is f = 2 and HARM = 4, then

N_Spectra = 4
Spectral_Freq[0] = 0
Spectral_Freq[l] = 2
Spectral_Freq[2] = 4
Spectral_Freq[3] = 6
Spectral_Freq[4] = 8

In the two-tone case, the spectral frequencies are sorted and stored in ascending order. For
example, consider the two tone frequencies fI = 1, f2 = 1.007 and HARM = 3.

If MIXER is specified, then

N_Spectra = 10
Spectral_Freq[0] = 0
Spectral_Freq[l] = 0.007
Spectral_Freq[2] = 0.993
Spectral_Freq[3] = 1
Spectral_Freq[4] = 1.007
Spectral_Freq[5] = 1.993
Spectral_Freq[6] = 2)
Spectral_Freq[7] = 2.007
Spectral_Freq[8] = 2.993
Spectral_Freq[9] = 3
Spectral Freq[10] = 3.007
If INTMOD is specified, then
N_Spectra = 12
Spectral_Freq[0] = 0
Spectral_Freq[l] = 0.007
Spectral_Freq[2] = 0.993
Spectral_Freq[3] = 1
Spectral_Freq[4] = 1.007
Spectral_Freq[5] = 1.014
Spectral_Freq[6] = 2
Spectral_Freq[7] = 2.007
Spectral_Freq[8] = 2.014
Spectral_Freq[9] = 3
Spectral_Freq[10] = 3.007
Spectral_Freq[ll] = 3.014
Spectral_Freq[12] = 3.021

Spectral Index Mapping

In the two-tone case, the spectral frequencies are linear combinations of the two tone
frequencies fI and f2:

kl * f1 + k2 % £2
Because the spectral frequencies are sorted into ascending order before they are stored, the
relationship between the index of the array Spectral_Freq and the harmonic indices kJ and

k2 are not immediately obvious.

A built-in function Spectral_Index is provided to map kI and k2 to the index of the array
Spectral_Freq:

Spectral Index(FREQ, kI, k2)

where the predefined label FREQ is used as an argument to make clear the dependency of
the function upon the frequency variable.

This function returns an index such that
Spectral_Freq[Spectral_Index(FREQ,kl,k2)] = k1 * f1 + k2 * £2
If the (k1,k2) combination is out of range, i.e., if the corresponding frequency is not an
element of Spectral_Freq, then Spectral_Index returns 0.
To illustrate, consider again the example
fl =1, f2 = 1.007, HARM = 3
For the MIXER case,

k1 k2 Spectral_Index(FREQ,k1,k2) kl * f1 + k2 * f2

0 0 .0 Spectral_Freq[0] = O
-1 1 1 Spectral Freq[l] = 0.007
2 -1 2 Spectral Freq[2] = 0.993
1 0 3 Spectral_Freq[3] = 1
0 1 4 Spectral_Freq[4] = 1.007
3 -1 5 Spectral Freq[5] = 1.993
2 0 6 Spectral_Freq[6] = 2
1 1 7 Spectral Freq[7] = 2.007
4 -1 8 Spectral_Freq[8] = 2.993
3 0 9 Spectral_Freq[9] = 3
2 1 10 Spectral Freq[10] = 3.007

For the INTMOD case,

k1 k2 Spectral_Index(FREQ,kI,k2) k1 * fl1 + k2 * f2

0 0 0 Spectral_Freq[0] = O
-1 1 1 Spectral_Freq[l] = 0.007
2 -1 2 Spectral Freq[2] = 0.993
1 0 3 Spectral Freq[3] = 1
0 1 4 Spectral Freq[4] = 1.007
-1 2 5 Spectral_Freq[5] = 1.014
2 0 6 Spectral_Freq[6] = 2
1 1 7 Spectral_Freq[7] = 2.007
0 2 8 Spectral Freq[8] = 2.014
3 0 9 Spectral_Freq[9] = 3
2 1 10 Spectral_Freq[10] = 3.007
1 2 11 Spectral Freq[ll] = 3.014
0 3 12 Spectral Freq[l12] = 3.021

You can use the function Spectral_Index to select a specific mixing or intermodulation
product. For instance, in a two-tone intermodulation analysis, you may be particularly
interested in the third-order intermodulation products

2 % f1 - £2 and 2 % f2 - f1
which can be mapped to the array Spectral_Freq using the indices given by

K21 = Spectral_Index(fREQ, 2, -1);
and

K12 = Spectral_Index(FREQ, -1, 2);
In other words,

Spectral Freq[K21l] = 2 * f1 - f2

Spectral Freq(K12] = 2 * f2 - f1

Large-Signal Response Labels

The built-in large-signal response labels are listed in Table 6.6.

TABLE 6.6 LARGE-SIGNAL RESPONSES

Array

Response

MVname[0:N_Spectra]

PVname[0:N_Spectra]

MIname[0:N_Spectra]

PIname[0:N_Spectra]

Mvname[0:N_Spectra]
Pvname[0:N_Spectra]
Miname[0:N_Spectra]
Piname[0:N_Spectra]

PWname[0:N_Spectra]

magnitudes of voltage spectrum of a port or an ideal current
source

phases (in degrees) of voltage spectrum of a port or an ideal
current source

magnitudes of current spectrum of a port or an ideal voltage
source

phases (in degrees) of current spectrum of a port or an ideal
voltage source

magnitudes of vbltage spectrum of a voltage label
phases (in degrees) of voltage spectrum of a voltage label
magnitudes of current spectrum of a current label
phases (in degrees) of current spectrum of a current label

magnitudes of power spectrum (in watts) of a port

> N_Spectra is the number of positive spectral frequencies

D> name is a user-defined string, as in PORT.name ...

VSOURCE.name ...
ISOURCE.name ...

> vname is a user-defined string, as in VLABEL.vname ...

D> iname is a user-defined string, as in ILABEL.iname ...

< See Chapter 4 for further details on arrays and array operations.

Voltage, Current and Power Spectra of Ports

Fig. 6.11 Voltage and current of a port.

Example:
PORT.out 5 6 ...;
The corresponding large-signal response labels are
MVout[O:N_Spectra], PVout[O:N_Spectra],
MIout[O:N_Spectra], PIout[0:N_Spectra],
PWout [0:N_Spectra]
The magnitude of the power spectrum is related to the voltage and current spectra by
PWout[k] = -0.5 * MVout[k] * MIout[k] * cos(4)
for k =0, 1, ..., N_Spectra, where
6 = (PVout[k] - PIout[k]) * PI / 180
Note the minus sign in the formula for PWout. It is because that the power spectrum

response represents the power delivered to the port. The direction of power delivery is
opposite to the direction of I shown in Fig. 6.11.

The unit of PWout is watt. You can create power spectrum in dBm as postprocessed
responses (see Section 6.11).

Current Spectra of Ideal Voltage Sources

I

—» 0l

n2

Fig. 6.12 Current of an ideal voltage source.

Example:
VSOURCE.bias 1 2 ...;
The corresponding large-signal response labels are

MIbias[0:N_Spectra], PIbias[0:N_Spectra]

Voltage Spectra of Ideal Current Sources .

n2

Fig. 6.13 Voltage of an ideal current source.

Example:
ISOURCE.bias 1 2 ...;

The corresponding large-signal response labels are

MVbias[0:N_Spectra], PVbias[0:N_Spectra]

Voltage Labels

Example:
VLABEL.V52 5 2;
The corresponding large-signal response labels are

MV52[0:N_Spectra], PV52[0:N_Spectra]

Current Labels
Example:
ILABEL.Current_Probe 5 2;
The corresponding large-signal response labels are

MCurrent_Probe[0:N_Spectra], PCurrent_Probe[0:N_Spectra]

A Response Label Names Must Be Unique

The response label names created according to the templates listed in Table 6.6 must be
unique. They cannot duplicate any existing label names defined by the user.

For example, the voltage spectrum of a port defined by
PORT.output 56 ...;

are represented by the arrays MVoutput and PVoutput. If either of these names s already
taken by an existing label, the file parser will signal an error.

Therefore, when creating labels, avoid using names which may conflict with the templates
for response labels, as listed in Tables 6.1 - 6.6.

Response Spectral Indices

The large-signal voltage and current spectra are stored in the arrays in exactly the same
order as the spectral frequencies are stored in the array Spectral_Freq.

For single-tone, the kth array element is the kth harmonic component of the voltage or
current spectrum.

In the two-tone case, you can use the built-in function Spectral_Index to map the array
indices as described earlier in this section.

For example, assume that MVout is a large-signal response array. From the results of a two-
tone intermodulation analysis, you can select the third-order intermodulation products by

K21 = Spectral_Index(FREQ, 2, -1);
MVout_ 21 = MVout[K21];

K12 = Spectral Index(FREQ, -1, 2);
MVout_12 = MVout[K12];

Then, the user-defined labels MVout_21 and MVout12 correspond to the spectral frequencies

2 % fl - f2 and 2 * f2 - f1

respectively, where f1 and f2 are the tone frequencies.

6.11 Postprocessing Responses

You can create customized responses by postprocessing, i.e., by using expressions which
involve the built-in response labels.

User-created responses can be displayed and optimized just like the built-in responses.

Power in dBm

The built-in response array PWname represents the output power spectrum of the port
identified by name.

The unit of PWname is watt. You can define the output power in dBm as
Pout_dBm[0:N_Spectra] = 10 * loglO(Pout) + 30;

where "out" is assumed to be the name of a port.

To safeguard against numerical overflow, you use a conditional expression:

Pout_dBm[0:N_Spectra] = if (PWout > Pmin) (10 * loglO(PWout) + 30)
else (10 * loglO(Pmin) + 30);

where Pmin is a suitable threshold value (e.g., 1.0E-10).
You can also utilize the predefined label NAN ("Not A Number", see Chapter 4):

Pout_dBm[0:N_Spectra] = if (PWout > Pmin) (10 * loglO(PWout) + 30)
else (NAN);

Label values marked as NAN will be suppressed from the graphical displays in OSA90.

Spectra in Rectangular Form

The built-in spectrum responses are given in polar form. You can convert them into
rectangular form using expressions, such as

RVout[0:N_Spectra] = MVout * cos(PVout * PI / 180);
IVout[0:N_Spectra] = MVout * sin(PVout * PI / 180);

This can be done easily by the built-in transformation MP2RI (y== Chapter 4):

MP2RI(MVout, PVout, RVout[O0:N_Spectra], IVout[O:N_Spectra]);

Time-Domain Waveforms

The built-in large-signal responses are in the frequency domain.

You can use the built-in DFT transformation described in Chapter 4 to obtain the time-
domain waveforms, such as

Vout_T[nt] = DFT_FT(RVout, IVout);

where RVout and IVout are the spectrum in rectangular form, following the preceding
example, and #t is the desired number of time points.

In the two-tone case, the spectral frequencies are not uniformly spaced and must also be
supplied to the DFT function:

Vout_T[nt] = DFT_FT(RVout, IVout, Spectral_Freq, t0, tl);

where Spectral_Freq is the spectral frequency array (described in this section), and #0 and
t1 specify the time interval in which nt evenly spaced time points are to be sampled.

g OSA9O can also display waveforms as graphical views (see Chapter 10).

6.12 Linear Subcircuits

Syntax:
SUBCIRCUIT name nl n2 ... nk (
elements;
};
name is a required character string to identify the subcircuit.

nl, n2, ..., nk represent nodes. The linear subcircuit is defined as a (k — 1) port.
The node nk is the reference node.

Example:
SUBCIRCUIT T Section 1 3 0 {
CAP 1 2 C=10pF;
RES 2 0 R=5;
IND 2 3 L=2nH;
};

This defines a two-port linear subcircuit consisting of three elements.
Once defined, a linear subcircuit can be used like an element:

T_Section 1 2 0;
T_Section 2 3;

‘The number of nodes must be consistent with the subcircuit definition. The last node
(which is the reference node of the subcircuit) is optional. If omitted, the last node is
grounded by default.

Subcircuits Must Be Defined Before the Top Level Circuit
All SUBCIRCUIT definitions must appear before the top level circuit.
The following example violates this rule:

Model
RES 1 2 R=50;

SUBCIRCUIT T SECTION 1 3 O {

|

The subcircuit cannot be defined after the RES element which is part of the main circuit.

Subcircuit Internal Nodes

The node numbers and names within a linear subcircuit are internal to that subcircuit.
They can be reused for other definitions after the SUBCIRCUIT statement.

Example:
SUBCIRCUIT T _SECTION 1 3 0 ¢
.
CAP 1 2 C=10pF;

In this example, the node number 1 appears twice: first as part of the subcircuit definition
and then as part of the main circuit. It represents two separate and distinct nodes.

Subcircuits Cannot Exceed 64 External Nodes

A linear subcircuit must be configured as a 1- to 63-bort. In other words, in a subcircuit
the nodes for external connection cannot exceed 64.

Subcircuits Cannot Contain Nonlinear Elements or Sources

Linear subcircuits cannot contain any nonlinear elements (nonlinear elements are listed in
Chapter 7). '

Linear subcircuits must not contain any PORT, VSOURCE, ISOURCE, VLABEL or ILABEL
statements.

Comparison with Symbolic Subcircuits

In comparison, symbolic subcircuits (Section 6.17) are subjected to fewer restrictions.

Nested Linear Subcircuits

Linear subcircuits can be nested, i.e., the definition of a linear subcircuit can contain"
references to other linear subcircuits that are already defined.

Using Subcircuits as Port Terminations

Syntax:
PORT nl n2 Z=subcircuit ... ;

subcircuit must be the name of a 1-port linear subcircuit which is already defined.

Example:

SUBCIRCUIT ComplexLoad 1 O {
RES 1 2 R=50;
CAP 2 0 C=5pF;
IND 2 0 L=2nH;

}s

PORT ... Z=ComplexLoad;

< See demo49 for an example of using a linear subcircuit as a complex load for phase
plane plotting. !

6.13 User-Defined Linear Models

Syntax:
ELEMENT name nl n2 ... nk par I=xl ... par m=xm {
local labels and expressions;
Datapipe: ...;
elements;
};
name is a required character string to identify the user-defined linear element.
nl, n2, ..., nk represent nodes. The element is defined as a (k — 1) port subcircuit.
The node rnk is the reference node.

par_1, ..., par_m are the parameter names of the element, and xI, ..., xm are the
corresponding default values.

Example:

ELEMENT CAP.Q 1 0 C=0 Q=10000 F=1 {
G=2*%PI*F*C/Q;

CAP 1 0 C=C;
RES 10 R=(1/G);
b

This creates a user-defined element named CAP_Q which is a model for lossy capacitors.

User-Defined Element Parameters

Each user-defined linear element can have up to 64 parameters.

You define the names of the parameters and their default values following the nodes for

external connection and before the opening curly brace "{(". The generic form is

parameter_name = default_value

For example, the user-defined element CAP_Q has three parameters, namely C, Q and F.

When a user-defined element is used, each parameter can be assigned a value, specified by

a label or defined as an optimization variable.

Example:

CAP_ Q 7 23 C=?5pF? Q=1200 F=2GHZ;

If a parameter is not explicitly specified, it assumes the default value.

Example:
CAP_Q 7 23 C=?5pF? F=2GHZ;

The omitted parameter Q assumes its default value of 10000.

Local Labels and Expressions

All the parameters of a user-defined element are local labels. In other words, you are free
to choose any names for the parameters without fearing that they might be in conflict with
other identifiers.

Furthermore, you can define additional local labels within the element definition. For
example, the definition of CAP_Q includes a local label G, which is expressed as a function
of the element parameters.

Local labels are not visible beyond the end of the element definition.

Visibility of Global Labels

Expressions within an ELEMENT definition can refer to not only local labels but also global
labels (i.e., labels defined outside the ELEMENT definition).

However, if the name of a local label duplicates the name of a global label, then that global
label will not be visible within the ELEMENT definition. In other words, local labels
override global labels when they overlap.

Example:

Width: ...;

Height: ...;

Length: ...;

ELEMENT MyElem 1 2 3 0 Width=1mil ... {
Length: ...;
Volume = Width * Length * Height;

}s

In the expression that defines Volume, Width and Length refer to local labels (which override
the global labels of the same name), and Height refers a global label.

§< demo60.ckt implements a YIG resonator model as a user-defined element.

Element Definitions Must Appear Before Circuit Definition

The definitions of user-defined elements must appear before the circuit definition (i.e.,
before any connections of elements by nodes).

Example:
RES 1 0 R=10;
ELEMENT ... { ... };
This will cause an error message because an element RES is connected before the definition
of ELEMENT.
Using Datapipes within Element Definitions
User-defined elements can include Datapipe connections to external simulators. This opens
the opportunity for you to incorporate in-house models into OSA90 as fully parameterized
and optimizable elements in a truly seamless fashion.
Element Definitions Cannot Exceed 64 External Nodes
A user-defined linear model must be configured as a 1- to 63-port. In other words, in a
subcircuit the nodes for external connection cannot exceed 64.
Creating Sharable Custom Element Library

You can place the definitions of custom elements in include files so that they can be shared
by different applications and different users.

The Empipe element library is an excellent example. It is a library of microstrip structure
elements to be calculated by an external EM simulator through Datapipe. For details, see
the Empipe User’s Manual.

6.14 User-Defined Nonlinear Models

One of the most powerful features of OSAS0 is user-definable nonlinear models. There are
two different types of user-definable models:

> using a predefined (fixed) topology for a specific type of devnce, and user-defined
model equations

> using non<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>