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Lay Abstract

Ecosystems can be characterized by underlying processes that create observed pat-
terns in space; by understanding these patterns we can learn about the ecological
mechanisms at play. Plant recruitment, the process by which new individuals join
a plant community, can be decomposed into two parts: (1) the dispersal of seeds
across the landscape and (2) the environmental conditions that determine the suc-
cess of those seeds becoming seedlings. We learn about the spatial dynamics behind
recruitment by analyzing observed seed and seedling patterns with a computational
statistics tool (Approximate Bayesian Computation, ABC). This tool can provide
strong advantages over more classic statistical methods. Our method can serve as a
general framework for understanding unobserved spatial processes that give rise to
observed spatial patterns in any ecological system.

iii



Abstract

We present a general statistical framework to infer processes (underlying ecological
mechanisms) from patterns (observed arrangements in nature) in spatial ecology. We
demonstrate our method by investigating the process of plant recruitment, how new
individuals join a plant community, combining seed dispersal and environmental fac-
tors that determine the success of seeds germinating and surviving to juvenile maturity
(establishment). Observed data includes seed and seedling counts at discrete spatial
locations for the tree species slash pine (Pinus elliottii). The patterns in the data are
described by their spatial correlation and we incorporate these correlations into his-
torically used spatial models. We use a Bayesian simulation-based inference algorithm
(Approximate Bayesian Computation, ABC) to estimate model parameters. Interest
in ABC and Bayesian inference methods is growing in ecology, but they still remain
behind classic approaches. Our results highlight techniques to validate the method to
ensure accuracy and detect issues. Simulation tools are discussed to improve compu-
tational efficiency. We conclude with ABC parameter estimates that capture valuable
spatial information ecologists can interpret. A small comparison study with classic
likelihood-based parameter estimates is performed to illustrate the flexibility and in-
formativeness of ABC. Our method is purposefully kept general to make it applicable
to many spatial ecological problems.
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1 Introduction

Ecosystems consist of a complex web of interactions between living organisms (bi-
otic processes), their environment (abiotic processes), and external influences (bi-
otic/abiotic disturbances). Ecologists have simplified this story into two pieces; 1)
patterns - the observable arrangements in nature and 2) processes - the underlying
systems that give rise to patterns. Ecologists try to understand the link between the
two.

The spatial or temporal scale, on which patterns are observed determines what we
can learn about processes. For example, a terrestrial animal might forage locally
and migrate seasonally over large ranges in response to environmental and biological
cues. Processes often act over multiple scales. In predation, a song bird preys on
an earthworm, yet these animals perceive and interact with their neighbourhood on
vastly different scales. We cannot avoid thinking about scales in ecology, and no single
scale provides the optimal vantage point.

Scales in ecological research, either imposed or chosen, are characterized by both
the fine-scale resolution in measurements (the grain) and the large-scale range of
the study (the extent). From macroecology and landscape ecology, to population
and community ecology we move from global, to regional, to local extents. These
subfields do not describe isolated systems but instead form a hierarchy of nested and
overlapping scales in which local dynamics can effect global patterns. In study design
and analysis we have to think carefully about the scales of interest, what choices we
have, and how they influence what we can infer.

1.1 Problem

The general goal of this research is to quantify aspects of spatial ecological processes
that are not directly observed and understand how they lead to the development of
spatial patterns. We hope this general statistical framework will lend itself to many
ecological studies investigating patterns from processes.

Exploring this relationship fully involves an inferential perspective. As scientists,
making predictions is essential, especially in the ever-changing natural world. Some-
times this comes at the cost of making hard and fast rules about which variables
matter and how they relate to one another. Here, we want to move away from these
practices and emphasize learning how we can better improve our models and make
more informed choices.
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Our method combines existing models in spatial ecology with Bayesian inferential
techniques. These techniques have been growing in popularity in this field, but much
is still to be learned.

Under the umbrella of population and spatial ecology we apply our framework to
a spatial data set to learn about the process of plant recruitment ; how new plant
individuals join an existing community. Seeds travel from their parent source to a final
site through seed dispersal and seedlings emerge through germination and survival
success to reach juvenile maturity (establishment). Factors such as distance from the
parent, wind and dispersing animals contribute to dispersal. Environmental filtering
effects such as soil quality, moisture, light, presence of pathogens, and herbivory in
turn determine the establishment probability. Tracking all of these parts and more
as they change through space and time would be impractical. This is why we think
of ecological processes as being “hidden” or “unobserved”; however we can uncover
elements and potentially learn about which variables to measure and on what scales
by exploring the patterns they create.

We observe the spatial patterns of plant recruitment through a data set for the tree
species Pinus elliottii(slash pine), a coniferous tree native to south eastern United
States. The data set consists of seed and seedling counts recorded at discrete spatial
locations. In the field, seeds were collected in seed traps and seedlings were counted
in quadrats according to a pre-specified sampling design. Seeds in the same seed
trap and seedlings in the same quadrat are mapped to the same spatial coordinate
given in Eastings and Northings. The dimensions of traps and quadrats are unknown,
defining the spatial grain as the smallest distance between traps and between quadrats;
therefore, we cannot quantify minimal distances between individuals in the same trap
or quadrat. The range of the experiment covers a 1500 km2 region in Florida with
data observed in 10 plots over this region. Plot sizes (in meters) specify our spatial
extent because we ignore between plot effects, assuming that the scale between plots
is too large to detect processes of interest.

1.2 Background

1.2.1 Spatial Ecology

In spatial ecology, we can characterize patterns by assessing the strength of relation-
ship between observations. A defining feature of many spatial patterns is clustering or
association where nearby measurements are more similar than farther measurements,
called positive correlation in statistics. Negative correlation manifests in segregated
patterns such as an evenly spaced grid of observations. Not surprisingly, the scale on

2
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which patterns are viewed reflect the strength and scale of relationships we measure.

A popular view of species organization is through patch dynamics and metapopulation
models. Patches describe suitable habitat islands on the landscape in which species
exist reflecting the assembly patterns we see in the world. Specifying the separate dy-
namics of within and between patch mechanisms explicitly defines the relevant scales
on the order of patch size and overarching population extent (Levin, 1992). Instead of
using spatial correlation to describe the gradient of environmental factors that make
patches suitable for habitation, these scales fix the environment into the dichotomy of
suitable and non-suitable regions. These models provide a simple mathematical tool
and ecological intuition, but they can be too restrictive about habitat layout and the
spatial variability of biotic processes (North and Ovaskainen, 2007).

Classical population models use differential equations describing the rates of demo-
graphic changes like births and deaths and the process mechanisms like dispersal and
establishment, often with a temporal component. Historically, spatial contributions
are ignored in these models because there is assumed to be sufficient population mix-
ing to average out the effects on mean population density.

Stochastic simulation-based models can incorporate the best of both worlds in which
populations can be simulated through continuous space and time governed by dynam-
ics that can be spatially variable. Individual-based models (IBM), as a subcategory,
track discrete individuals but they require large data sets and their complexity can
make inference a challenge (Bolker, 2003; North and Ovaskainen, 2007).

Seabloom et al. (2005) use theoretical spatial correlation structures as a basis for
understanding how seed dispersal, environmental heterogeneity, and competition in-
dividually and jointly create spatial patterns in plant communities at different scales.
They use second-order moment models to improve upon the classical differential equa-
tion approach, to incorporate both mean population densities and the covariances
between densities over space in addition to rates of reproduction, recruitment and
mortality. They use simulations of individuals in a two-species community with a
competition-dispersal tradeoff to construct hypotheses about how the spatial patterns
of aggregation and segregation evolve over time. In field studies with grassland plants
they confirm hypotheses and estimate scales of patterns through distance dependent
correlation functions. At smaller distances these functions describe local species be-
haviour. As the function approaches zero with increasing distance we learn about the
scales of pattern (patch size). Their results show that environmental heterogeneity
acting alone can rapidly create aggregation patterns within species and that the scales
of aggregation increased over time. All three processes have the combined effect of
breaking up clusters into more segregated patterns. Large-scale disturbances, such as
fire, can remove spatial dependencies.

3
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In related theoretical work, North and Ovaskainen (2007), use an IBM with the same
ecological processes as in Seabloom et al. (2005) to understand how environmental
heterogeneity affects reproductive rates and establishment probability on a continuous
time-space surface. The heterogeneity is classified by both patch size and “level of
heterogeneity”, which determines the difference in habitat quality within and outside
of patches (North and Ovaskainen, 2007). They use randomly spaced points on the
surface to represent patch centers and a kernel function to describe the distribution of
favourable environmental resources around those points. Over time, new patches form
and others disappear. By varying these two environmental components, they learn
that the optimal patch size leading to highest population density is intermediate. In
small patches, more seeds disperse to poor habitat quality areas and patches are more
likely to go extinct. In large patches, the population density begins to decline again as
dispersers have difficulty reaching patches farther away. Population density increased
with the magnitude of heterogeneity; that is, higher quality patches can theoretically
increase population size despite the sacrifice of making poor quality regions worse.
This was likely due to increased aggregation in patches and given the assumption of
dispersal processes being independent of habitat type.

Many empirical studies encountered, Asefa et al. (2017); He and Biswas (2019); Radu la
et al. (2020), made assumptions about probable abiotic and biotic variables contribut-
ing to patterns and processes and measured these on sequences of spatial scales. The
ability to detect correlation in these variables and its strength can inform us about
which scales are important in these systems. For example, Mod et al. (2020), use a
sequence of nested sampling grains to record presence-absence plant species counts.
Soil, moisture, light and temperature measurements were recorded on grains larger
or equal to response grains. They use a joint species distribution model to calculate
correlations between each species and the environment. Correlations of model resid-
uals are assumed to be due to biotic interactions and a Bayesian inference method
was used to parameterize the model. Traditionally, ecologists have assumed that en-
vironmental filtering acts first on larger scales, and biotic interactions perform further
filtering as an individual relates to their neighbourhood on smaller scales. Mod et al.
(2020) propose a further refinement to biotic interactions suggesting competition ef-
fects should decrease at larger scales and facilitation, the positive effects of co-existing
species, should be independent of scale. Species were more strongly correlated with
the environmental variables as the sampling grain increased. The biotic interaction
results were less clear, but in general competitive effects seemed to decrease more
than facilitative effects with increasing scale.

4
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1.2.2 Bayesian Inference

There are two major fields of thought in statistics, Frequentist versus Bayesian. Fre-
quentists describe data as a random sample from a population and wish to quantify
unknown fixed population parameters. In the context of parameter estimation, this
means we assume there is a true fixed value and its expectation is the average com-
puted from an infinite sequence of random samples. Confidence intervals express our
uncertainty that this true value is contained in an interval for a fraction of these
theoretical experiment repetitions.

In contrast, Bayesians assume data are fixed observations and parameters are random
variables represented by probability distributions. We describe our uncertainty about
parameters before our experiment, and we use the information from our data to update
our uncertainty (Crome et al., 1996). In this way we can make case-specific probability
statements. Credible intervals, the Bayesian analog of confidence intervals, represent
a direct measure about our uncertainty of a parameter by specifying an interval in
the domain of a probability distribution.

Ellison (1996) argues that the repeatability of experiments in ecology is not a realistic
assumption. Field experiments cannot be fully isolated from external influences and
even two organisms of the same species are not identical (Ellison, 1996). Further,
evolutionary changes mean that even if a true fixed parameter value exists it is likely
to change over time (Ellison, 1996)

A recent study by Lines et al. (2020), uses Bayesian inference to investigate tree
dynamics through forest models with count data. They are interested more specifically
in forest recruitment at large scales, because early dynamics determine long term forest
patterns. Due to the limited availability of early-life forest data over small scales,
forest models often contain unrealistic simplifications of early dynamics. Instead of
directly quantifying spatial patterns, they estimate demographic rates of recruitment,
growth and mortality in juveniles. These parameter estimates are then used with
large-scale adult forest data sets in forest models to assess their predictive capability.

1.3 Outline

We want to extend the work of Seabloom et al. (2005) and North and Ovaskainen
(2007) by using spatial correlation to understand how underlying processes create
patterns, with an emphasis on keeping methods general and not specific to a particular
ecological community, species, or data set.

5
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We use the terminology of patches to describe regions of high probability density
for a population. This is a more realistic ecological view than the metapopulation
dichotomy of an organism being either within a patch or outside of a patch. The
term “patch size” will refer to the ecological scale of heterogeneity so that differences
in patch sizes express that the strength of spatial correlation occurs over different
distances on the landscape.

We use a similar view of environmental heterogeneity to North and Ovaskainen (2007),
that is continuous on the landscape and characterized spatially by patch size and the
smoothness of transition between high and low density regions. We view this surface
as a continuous surface of establishment probabilities because favorable environmental
areas will create higher chances of seeds establishing. We use the same continuous
structure for the seeds, where the surface now describes probability densities of seeds
on the landscape.

We are interested in differentiating between these two sources of spatial heterogeneity
originating from the variability in biotic interactions (endogenous) and variability
from the environment (exogenous) as in Bolker (2003).

Since our data is aggregated at the level of the grain we are not considering individual
dynamics; because we observe only one time step between the two data sets, we ignore
temporal scales. Possible predictor variable measurements were not provided with this
data set, so we do not attempt to tie the spatial pattern to particular covariates.

We focus on parameter estimation via Bayesian inference as in Mod et al. (2020) and
Lines et al. (2020). Instead of assuming a set of fixed scales as in Mod et al. (2020), we
first describe our beliefs about plausible patch sizes and use our method to estimate
the spatial scales of environmental filtering and seed densities.

We introduce the spatial model in Section 2, followed by the Bayesian inference tool
(Section 3). We quantify the uncertainty about our parameters (Section 4) before
performing model simulations (Section 5). Following model validation (Section 6) we
give our inference results in Section 7. We conclude with a discussion (Section 8).

6
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Figure 1: Slash pine data set. Right panel: The data set containing 107 seed counts
collected in 9 plots and 749 seedling counts collected in 10 plots. Left panel: Detail
showing a single plot.

2 Geostatistical Data and Models

Geostatistical data is described by a set of i = 1, ..., n observed response values yi
at discrete spatial locations xi. Typically xi is a spatial coordinate pair like latitude
and longitude, while yi is a realization of Yi, a random variable whose distribution
depends on an underlying continuous spatial signal S(x) over the region (Diggle and
Ribeiro, 2007). We cannot directly observe S(x) but we attempt to gain insight from
it through the response Y = (Y1, ..., Yn) (Diggle and Ribeiro, 2007). The systems we
wish to model are typically noisy, so that the response is really a perturbed version
of the true signal (Diggle and Ribeiro, 2007). This formulation would extend in the
multivariate case to observing more than one response at each location.

The system we are describing contains two geostatistical data sets. The response
variables are counts of seeds and seedlings observed at irregularly spaced locations.
Eastings and Northings coordinates were transformed to units of meters relative to
the southwestern corner of the study region, see Figure 1. The underlying spatial
signals are seed dispersion and the environmental establishment process.

It is assumed the sampling design was chosen by ecological experts to be appropriate
to estimate characteristics about dispersal and establishment. The irregularity of the
design may in particular be better for parameter estimation than for spatial prediction
(De Oliveira and Han, 2022). As usual, in geostatistics we assume that the design is
statistically independent of the underlying spatial signals (Diggle and Ribeiro, 2007).

7
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These continuous spatial signals when incorporated in a geostatistical model are usu-
ally represented as an isotropic stationary Gaussian process (GP) (Gelfand and Baner-
jee, 2017). A GP assumes that the signal S(x) is multivariate Gaussian. Stationarity
means S(x) has a constant mean and variance independent of x, and the correlation
between S(xj) and S(xi) only depends on a difference metric u = xj − xi between
locations xj and xi (Diggle and Ribeiro, 2007). Isotropic stationarity is achieved when
the difference metric is symmetric (Diggle and Ribeiro, 2007). An obvious and pop-
ular choice for the difference metric is Euclidean distance, u = ||xj − xi||. This radial
spatial symmetry simplifies our correlation structure to depend on only one value, the
distance between spatial locations.

Interpreting GPs in the seed dispersal system, we imagine a continuous surface of
seed densities, with constant expectation and variance of seed counts over the region.
We know that seeds disperse close to their parent plant, naturally leading to positive
association (Bolker and Pacala, 1999). Over the landscape this creates a heterogeneous
pattern of seed counts. Negative spatial autocorrelation describes a self-avoiding
pattern, which can occur when incorporating competing species, but is not expected
to occur from seed dispersal alone (Bolker and Pacala, 1999).

For plant establishment, the GP is a surface representing the environmental filtering
that determines whether a seedling successfully establishes. Although we do not use
explicit patch dynamics, we can imagine this surface as a heterogenous pattern of
suitable habitat patches to describe this filtering effect. Patch size describes regions
of high suitability and gaps between patches describe low suitability areas (North
and Ovaskainen, 2007). For example, slash pine seeds are particularly successful at
germinating if the soil contains ample moisture (Burns, 1983). Soil moisture, like
most environmental variables, typically exhibits positive spatial autocorrelation. If
a seedling establishes at one location due to sufficient moisture, it is likely that the
moisture conditions will be more similar nearby and less similar as we move away
from this seedling, generating a heterogeneous pattern in established seedlings. The
seedling pattern contains signatures from both endogenous and exogenous forms of
heterogeneity.

Geostatistical models (Equation 1) are a form of Generalized Linear Mixed Model
(GLMM) with a known link function h(·), spatial variables dk and unknown regression
parameters βk (Diggle and Ribeiro, 2007).

h(E[Yi|S(·)]) = S(xi) +

p∑
k=1

βkdk(xi) (1)

The spatial variables, or predictors, would be additional variables measured at sam-

8
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pling locations that are associated with the response. In this experiment we have
no environmental covariates so we remove these terms. We could include additional
fixed terms to describe spatial trends, such as a spatial varying mean as a linear or
quadratic polynomial of the x and y coordinates.

It is convenient to split the variability in our models into two components 1) spatial
variation contained in our GP S(x) and 2) non-spatial residuals included as ϵ(x) in
Equation 2 (Gelfand and Banerjee, 2017).

h(E[Yi|S(·)]) = S(xi) + ϵ(x) (2)

The residuals ϵ(x), can also be interpreted as spatial variation on scales smaller than
the smallest distance between observed locations in conjunction with measurement
error (Diggle and Ribeiro, 2007). In the geostatistical framework, this type of variation
is called the nugget effect with variance labelled as τ 2 (Diggle and Ribeiro, 2007).
Given a random Normal deviate Zi ∼ N(0, 1) we can update our model to reflect this
as in Equation 3.

h(E[Yi|S(·)]) = S(xi) + τZi (3)

The spatial variance component of a GP is described by a covariance function γ(u)
where u is distance and the unconditional variance at any location γ(0) = σ2 is
constant. Specific families of functions are typically used to describe spatial covariance
in geostatistics because they possess the necessary property of positive definiteness
(Diggle and Ribeiro, 2007).

ρ(u) =
1

2κ−1Γ(κ)
(
u

ϕ
)κKκ(

u

ϕ
) (4)

The Matérn family is commonly used in geostatistics. The Matérn covariance func-
tion, Equation 4, takes a shape parameter κ > 0 and scale parameter ϕ > 0 (in
units of distance u). ϕ determines the rate of correlation decay with distance, while
κ determines the smoothness of the signal S (Diggle and Ribeiro, 2007). Specifically,
S(x) is ⌈κ⌉ − 1 mean-square differentiable and K is the modified Bessel function of
the second kind (Diggle and Ribeiro, 2007).

A plot of the Matérn function is shown in Figure 2 for two different scale and shape
parameters. The function continuously decreases with distance, which makes it an
ideal choice to describe the decrease in positive autocorrelation in our models. The

9
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Figure 2: The Matérn correlation function for different scale and shape parameters.
The function has an approximately constant correlation of 0.25 when using the repa-
rameterized scale parameter α (triangle points). When the unaltered Matérn scale
parameter ϕ is used, we get much larger differences in correlation among curves (cir-
cular points).

function with a larger scale parameter of 10m asymptotically approaches 0 more slowly
than the function with a scale of 2m.

In the standard parameterization, the Matérn scale and shape parameters are non-
orthogonal meaning that they are dependent (Diggle and Ribeiro, 2007). A fixed
scale value will correspond to different rates of correlation decay depending on the
specified shape value, see Figure 2. We want the ecological scale (patch size) to
depend on an approximately constant value of correlation because otherwise we cannot
compare the size of the patch with the level of spatial clustering we observe. We
choose to reparameterize as in Diggle and Ribeiro (2007) so that the reparameterized
scale α = 2ϕ

√
κ can be interpreted as approximately independent of the shape. We

can then interpret α as the approximate patch size in meters, capturing a spatial
autocorrelation value of approximately 0.25 (Figure 2).

The changes in the shape parameter can be best visualized in the context of GPs
where they govern the smoothness of transition from high density signal areas to low,
as shown in Figure 3.

The spline correlogram is a modified version of the spatial correlogram which esti-
mates the autocorrelation function in a spatial data set using binned distance groups
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Figure 3: Example Gaussian processes for simulated response data over a regular grid
with varying values of the shape parameter κ while all other parameters are held fixed
(α = 1, σ2 = 0.01, x = {0, 0.1, 0.2, ..., 5}, y = {0, 0.1, 0.2, ..., 5}).

and without assuming any particular function characteristics (Bjørnstad and Falck,
2001). This flexibility of the correlogram allows it to be used across a wide range
of spatial systems (Bjørnstad and Falck, 2001). The spline correlogram improves on
the spatial correlogram by providing a smooth positive definite autocorrelation curve
for which confidence bands can be estimated (Bjørnstad and Falck, 2001). The spline
correlogram should closely resemble the true covariance function; if no autocorrelation
is present the curve will be flat and approximately zero (Bjørnstad and Falck, 2001).

We use the spline correlogram as an initial non-parametric check of our observed
data. Later we will use values of the spline correlogram from simulated data sets to
summarize the scales of correlation in the data into a sequence of lower-dimensional
statistics.

The ncf package in R includes a spline.correlog function which computes the uni-
variate or multivariate spline correlogram (Bjørnstad, 2022). The spline correlograms
for our observed data are shown in Figure 4; they agree with our model assumptions
that correlation declines with distance.

The correlation length is a statistic derived from the spline correlogram that is defined
as the first distance at which the spline correlogram is zero (Bjørnstad and Falck,
2001). Responses measured at distances larger than the correlation length are no
more similar than by chance (Bjørnstad and Falck, 2001). Since the Matérn covariance
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Figure 4: Spline correlogram of observed data with 8 degrees of freedom. The maxi-
mum within-plot distance was used as an upper bound. The default function estimates
the correlation at 300 points. A 95% confidence envelope is shown by the shaded rib-
bon.

function never reaches zero but instead asymptotically approaches zero the correlation
length can instead be defined as the distance at which the correlation reaches some
small value (Bjørnstad and Falck, 2001). The correlation length for both data sets is
approximately 40 m.

We combine the base geostatistical model in Equation 3 and the Matérn covariance
function in Equation 4 to form the models for our two systems. Going forward we
will use the notation that µ represents sample means, σ2 represents signal variance,
and τ 2 represents nugget variance.

2.1 Seed Dispersal

We observe (or simulate) a seed count of Ni at location xi. The underlying signal is
the continuous seed density surface Sseed(x) represented by a GP ∼ MVN(µseed,Σseed).
µseed is the constant seed count mean over the region independent of location. Σseed

is the covariance matrix with constant variance σ2
seed along the diagonal and the (i-

th,j-th) entry the Matérn correlation function multiplied by the variance ρi,j(u)σ2
seed

with u, the Euclidean distance u =
√

(xi − xj)2. To account for measurement error
and non-spatial variation we add a nugget effect of τ 2seed.
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A natural choice for count data is the Poisson log-linear model where our seed counts
Ni follow a Poisson distribution with location and scale parameter, λi, and a log link
function. Our model for seed dispersion is described in Equation 5.

Ni ∼ Poisson(λi)

log[λi] = Sseed(xi) + τseedZseed,i

(5)

In the absence of a nugget effect the Poisson counts will be highly variable when the
GP mean is small and will more closely resemble the underlying surface when the
GP mean is large (Diggle and Ribeiro, 2007). We can interpret the nugget effect as
capturing this extra Poisson variation or overdispersion, as we expect noisy data.

2.2 Establishment Probability

We form a similar model for seedling establishment using a Binomial logistic-linear
model. The number of trials is the seed count Ni from the seed dispersal model, from
an observed or simulated data set. The probability of each trial is the mean establish-
ment probability pi at location xi. The numbers of successful trials are the seedling
counts Mi. Using the log odds (logit) link function is a natural choice because we want
establishment to be on the probability scale; the inverse logit function transforms real
values to (0, 1). The underlying signal Sest is the establishment probability surface or
the environmental filtering surface.

Mi ∼ Binomial(Ni, pi)

logit[pi] = Sest(xi) + τ 2estZest,i

(6)
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3 Approximate Bayesian Computation

For ecological models, usually generating data from the model for a given set of
parameters is relatively easy but solving the inverse problem, identifying parameters
that would generate data similar to the observed values, is hard (Lintusaari et al.,
2016).

By regarding the parameters as random instead of fixed variables, we can use Bayesian
inference. This method of inference includes using subject matter knowledge to spec-
ify our uncertainty about the parameters through priors (Ellison, 1996). We then
update our prior probability conditional on a data set through a likelihood function
(Lintusaari et al., 2016). With careful prior specification we achieve statistical regular-
ization by reducing parameter estimates when the data set contains less information
about the parameters because it is small or noisy (Lemoine, 2019).

Bayesian inference is derived from Bayes’ Theorem (Equation 7). With parameters
θ and data x we get the relationship that the posterior p(θ|x) is the product of
the likelihood p(x|θ) and the prior π(θ) divided by the marginal likelihood p(x) =∫
p(x|θ)π(θ)dθ.

p(θ|x) =
p(x|θ)π(θ)

p(x)
(7)

Because the denominator in Bayes’ Theorem is a constant, it can be convenient to
think of the relationships in terms of a proportionality where the likelihood revises
our prior information into posterior expectations (Ellison, 1996):

posterior ∝ likelihood × prior

Computing posterior probabilities, to estimate parameters then requires the evalua-
tion of the likelihood function. In cases where there are hidden latent states (i.e. un-
observed processes) the likelihood is often intractable and methods called “likelihood-
free inference” such as Approximate Bayesian Computation (ABC) may be necessary
(Beaumont, 2010).

ABC is a process of sampling from the posterior distribution by finding parameter
combinations that lead to model-generated data similar to the observed values, thus
arriving at parameter sets that are likely to describe our observed data (Lintusaari
et al., 2016). ABC was first introduced in the population genetics literature by Tavaré
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et al. (1997) and Pritchard et al. (1999), and later named by Beaumont et al. (2002).
ABC’s simplicity makes it useful in a wide array of applications (Lintusaari et al.,
2016).

The simplest ABC algorithm is rejection ABC (Algorithm 1). A set of summary
statistics S(·) is chosen to be computed from a simulated data set, xi, and observed
data set, y. We choose a stopping tolerance criteria ϵ and distance metric d(·, ·) to
arrive at a set of N approximate posterior samples. This approximation is due to the
tolerance condition ϵ. An exact posterior sample would be achieved in the limit as
ϵ → 0 (Robert, 2016).

Algorithm 1 Rejection ABC
1: i = 1
2: while i ≤ N do
3: Sample parameter θi ∼ π(θ)
4: Using the data-generating model, simulate a dataset xi ∼ p(x|θi)
5: if d(S(xi), S(y)) > ϵ then
6: Reject θi
7: else
8: Accept θi
9: i = i + 1
10: end if
11: end while

Reducing data to a set of summary statistics so that the dimension of the summary
statistics is much less than the dimension of the data naturally reduces the informative
power of the data in the model, decreasing the accuracy of estimates. We can achieve
identical summary statistics for non-identical but similar data sets (Lintusaari et al.,
2016). Selecting a distance metric such as Euclidean distance and deciding on an
appropriate tolerance and approximate posterior sample size are also limiting in the
sense that they determine the computational efficiency of the algorithm (Lintusaari
et al., 2016). There is a trade-off between these choices to balance accuracy versus
computational burden.

Rejection ABC is basic to program and execute, and simulating a single data set is
typically cheap enough that this step can be repeated many times (Sisson et al., 2018).
However, we need a large number of simulations because most parameter sets will be
rejected (Lintusaari et al., 2016). If we increase the number of summary statistics
to include more information from our data we increase the dimension of the distance
computation, accepting fewer parameter sets and needing to increase the number of
simulations, the “curse of dimensionality” (Lintusaari et al., 2016).

More complicated ABC algorithms can help address some of these problems. The
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Markov Chain Monte Carlo (MCMC) variant is derived from the Metropolis-Hastings
MCMC algorithm and differs from simple rejection sampling because as the chain
iterates, parameter values are drawn from noisy posteriors instead of the prior (Lin-
tusaari et al., 2016). Sequential Monte Carlo (SMC) ABC uses successively smaller
tolerances and iterative proposal distributions defined by weighted parameters that
were accepted in the previous step (Lintusaari et al., 2016). Both MC methods speed
up the computation by narrowing down the posterior parameter space, lowering the
ABC rejection rate, and thereby requiring fewer numbers of simulations (Lintusaari
et al., 2016).

A larger tolerance widens the approximate posterior because a greater variability
of parameter sets are accepted, but the advantage is a lower computational cost
(Lintusaari et al., 2016). Often the tolerance is not specified directly but is instead
specified as a percentage of the simulations to be accepted (Lintusaari et al., 2016).
This percentage will be referred to as the acceptance rate and is the default tolerance
function argument in the abc R package used to perform ABC in this study (Csillery
et al., 2012).

Choosing the right number of informative summary statistics can be challenging.
Sisson et al. (2018) advocates for the use of sufficient statistics of low dimension. A
statistic s is sufficient if the distribution “π(y|s, θ) is invariant to θ” (Sisson et al.,
2018). In most models, Sisson et al. (2018) explains these ideal statistics are not
available and a minimal set of insufficient statistics must be used instead. Lintusaari
et al. (2016) and Sisson et al. (2018) describe a number of methods that can be used
to help focus on a set of informative statistics.

When multiple summary statistics are used, they should be rescaled before the dis-
tance is computed so they have equal contribution in the rejection/acceptance step
(Lintusaari et al., 2016). The default behaviour in the abc package normalizes the
simulated summary statistics by dividing each statistic, s, by its median absolute devi-
ation (MAD) given in Equation 8 after removing missing values and before evaluating
distances. The observed summary statistics are similarly handled using the MAD of
the simulated statistics.

MAD(s) = median|s− median(s)| (8)

The MAD, like the standard deviation, is a measure of dispersion but is, more robust
to the presence of extreme observations (Leys et al., 2013). Since our distributions of
summary statistics before the ABC rejection/acceptance step are representative of a
wide range of simulated data sets, they can be highly skewed. Although scaling by
the MAD is a popular choice in ABC (Robert, 2016), in our experiments it did not

16



M.Sc. Thesis - Jennifer Freeman; McMaster University - CSE

provide enough scaling in the presence of outliers. Instead, all observed and simulated
statistics were scaled by the standard deviation for each individual statistic.

3.1 Choice of Summary Statistics

A set of sixteen summary statistics were selected, eight for each system. To reflect
within plot distances, 6 log-scaled breaks between 5 and 50m (for seeds) and between
5 and 60m (for seedlings) on the spline correlogram were chosen to capture the spatial
components of the data. Values of the correlation for larger distances were discarded
because the tail end of the spline correlogram is typically noisy. The correlation length
was not chosen as a summary statistic due to the high number of simulated data sets
in which the spline correlogram did not cross the x-axis. A short visualization of
ten randomly simulated spline correlograms with setting varying degrees of freedom,
led to a choice of 8 degrees of freedom in the simulations. The mean and standard
deviation of simulated seed and seedling data sets were natural summary statistic
choices to reflect the global characteristics.
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4 Choice of Priors

4.1 Parameters

We have ten total parameters (Equations 5 and 6) for which to specify priors, five
for each system. Each system is parameterized by a mean, i.e. mean seed count and
mean establishment probability.

We chose to parameterize the variance parameters in terms of relative measures be-
cause these unitless measures are easier to conceptualize. The nugget proportion
represents the proportion of total system variance attributed to the nugget effect (i.e.
small scale variation). The total system coefficient of variation (CV) incorporates
measurement error, small-scale and large-scale variation. We use the approximation
from Lewontin (1966) to express the CV in terms of the variance of the log trans-
formed data. For CV’s less than 0.3, we assume CV2 ≈ ln(Var(x)) (Lewontin, 1966).
We can express this as,

CV =
√
σ2
log + τ 2log

Since nugget proportion is a relative measure, we can again use the variance of the
log transformed data to define

τprop =
τ 2log

σ2
log + τ 2log

We can then solve for the signal and nugget variance to be used in our geostatistical
models.

σ2
log = CV2(1 − τprop)

τ 2log = CV2(τprop)

4.2 Prior Information

Prior distributions summarize subject matter knowledge about the unknown param-
eters of interest in our Bayesian model. We may know more or less about plausible
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parameter values, but we will always have some information about plausible values.

Priors can be categorized based on how much information they include. An un-
informative or vague prior describes a wide distribution assuming large parameter
variance. These distributions are often flat, assigning equal probabilities to all values
in an unbounded or bounded domain (Sarma and Kay, 2020). A uniform prior is one
distribution that might be used in this category amd communicates we know little
to no information about the parameter except its overall feasible range. Conversely,
an informative prior contains relevant information about the parameter (Sarma and
Kay, 2020).

A third category of weakly informative priors, intentionally contain less information
that we know in order to achieve a balance between how the data and prior jointly
contribute to the posterior (Sarma and Kay, 2020).

Uninformative priors are used when the user wants the data to speak for itself (Lam-
bert et al., 2005). Informative priors have the opposite effect; they can dominate the
information in the model introducing too much subjectivity. Since the size of the
data set communicates how much information the data contains about the unknown
parameters, the sample size can also have a strong effect on the computed posterior
(Lemoine, 2019). It is often recommended that weakly informative priors are used to
achieve a balance in inferences obtained from all available data (Lemoine, 2019).

The process of prior elicitation, a challenging step in Bayesian statistics, formulates
suitable prior distributions for parameters that reflect the range of possible values
(Crome et al., 1996). A common method is to review priors from previous studies or
to survey experts with diverse opinions.

Typically statements about proposed centrality and range limits for a parameter can
be translated to prior distributions by specifying means and standard deviations for
common probability distributions such as the Gaussian or Student’s t (Sarma and
Kay, 2020). For example, a Gaussian distribution contains 95% of the data within
2 standard deviations of the mean. We can use this knowledge to take proposed
parameter limits [l, u] and solve for the distributions standard deviation σ so that
95% of the data lie between the bounds [l, u]. Given l = µ− 2σ and u = µ + 2σ, we
get that σ = (u− l)/4.

It is important to elicit priors before looking at the data, because so called data-
dependent priors inappropriately incorporate information from the data twice in our
model (Berger, 2006). Forming a univariate prior is often easier to conceptualize
than a multivariate (Sarma and Kay, 2020). The reparameterization of the Matérn
scale allowed for the specification of two independent priors for the scale and shape
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parameters, instead of concerning ourselves with specifying a joint scale-shape prior.

Visualizing priors can be a useful tool in prior elicitation. If the parameters are difficult
to understand, prior predictive checks (PPD) can help understand the implications of
the chosen priors in the model (Gelman et al., 2020). After forming priors, PPD is
performed by simulating data from the model using parameter draws from the priors
and visualizing the simulated data in some capacity, possibly by summarizing the
data in lower dimensions.

The priors chosen in the following sections were selected to be in the category of
weakly informative and were loosely formed with a combination of information from
literature and subject matter knowledge. We use standard transformations to ensure
parameters are specified on the appropriate ranges and to increase interpretability.
The inverse logit or log-odds scale ensures real values are mapped to [0,1], while the log
scale ensures values are strictly positive and can be helpful when skewed distributions
are required.

4.3 Seed Dispersal

Parameter (Unit) ∼ Distribution Reasoning

Mean log Seed Count
(log(count))

∼ N
(

log(10), log(40)−log(5)
4

) We use a log-normal distribution to ensure
mean seed counts are positive. We also ex-
pect higher probabilities for lower means of
seed counts so a right-skewed prior is appro-
priate. A value of 10 seems to be a plausi-
ble high frequency seed count value and we
choose 95% of the prior to range from 5 to
40.

Matérn Shape (unitless)
∼ U(0.5, 4)

We use a uniform prior because it is diffi-
cult to understand plausible ecological values.
Matérn shape values of 0.5, 1.5 and 2.5 are
typically used in geostatistical models (Diggle
and Ribeiro, 2007) so we want to incorporate
this range of values. As the parameter tends
to infinity the Matérn approaches the Gaus-
sian which leads to an overly smooth GP as
is seen in Figure 3 when κ = 6.
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Parameter (Unit) ∼ Distribution Reasoning

Matérn Reparameterized Scale
(m) ∼ exp(GN(µ, σ))

µ = log(3)+log(50)
2

σ2 = αΓ(3/β)
Γ(1/β)

≈ 0.453

A Generalized Normal (GN) was used so that
the heaviness of the tails could be specified.
A tail probability of 5% and centre proba-
bility of 55% was specified in the get_gnorm

function (Bolker, 2022). These choices led to
computed values of α ≈ 1.39 and β ≈ 4.76 in
the GN which creates lighter tails and more
density in the centre. Based on the distribu-
tion of interpoint distances between seed trap
locations (see Figure 5) we chose to set the
95% range of the data between 3m and 50m
because there are not many distances outside
of this range. This also agrees with slash pine
seed disperal literature that indicates 90%
of seeds fall within 45.7m of the parent tree
(Burns, 1983). The mean and standard de-
viation are on the log-scale to form a right-
skewed distribution because we expect seed
dispersal to operate on smaller scales. We ex-
ponentiate to get the units back on the orig-
inal scale in meters.

Nugget Proportion (unitless)

∼ N
(

logit(0.1), logit(0.4)−logit(0.01)
4

) The proportion of variance described by small
scale noise and measurement error should be
small, less than 50%, because we are expect-
ing to be able to detect large-scale spatial
variation. We choose the mean nugget pro-
portion to range from 1% to 40% with an av-
erage of 10%. We use the log-odds scale to
restrict the nugget proportion to between 0
and 1.
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Parameter (Unit) ∼ Distribution Reasoning

Total CV (unitless)

∼ N
(

log(0.25), log(0.95)−log(0.05)
4

) Since it can be challenging to guess suitable
CV values for seed dispersal, we performed a
version of PPD by using prior draws from the
seed count mean and CV distributions and
each parameter pair was used to sample from
the seed count distribution. For each sample
size of 1000 from the seed count distribution,
the 10% and 90% quantiles were computed.
After 1000 prior draws, the density of these
quantiles were visualized for different values
of the CV location and scale hyperparame-
ters. A Mean CV value of 0.25 with a range
from 0.05 to 0.95 was chosen because quantile
distributions captured reasonable seed count
densities and ranges. This PPD check also
confirmed that using a crude approximation
by equating the CV to the variance of the log
transformed data did not adversely affect the
results. The PPD distributions can be seen
in Figure 6.

Table 1: Seed Dispersal Priors

4.4 Establishment

Parameter (Unit) ∼ Distribution Reasoning

Mean Establishment Probablity
(unitless)

∼ N
(

logit(0.1), logit(0.5)−logit(0.01)
4

) The probability of a seed establishing into
a seedling should be less than 50% because
trees disperse many more seeds than result
in established plants. We specify 95% of the
density to range from 1% to 50% on the prob-
ability scale with a mean of 10%. The log-
odds scale is used to restrict the parameter
to be in the probability range [0,1].

Matérn Shape (unitless)
∼ U(0.5, 4)

We use the same prior as the seed dispersal
system for the same reasons.
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Parameter (Unit) ∼ Distribution Reasoning

Matérn Reparameterized Scale
(m) ∼ exp(GN(µ, σ))

µ = log(3)+log(50)
2

σ2 = αΓ(3/β)
Γ(1/β)

≈ 0.42

The scale on which establishment operates is
again restricted to our experimental design
and a similar prior was formed. A GN was
used so that the heaviness of the tails could
be specified. A tail probability of 0.5% and
centre probability of 55% was specified in the
get_gnorm function. These choices led to
computed values of α ≈ 1.33 and β ≈ 12.24 in
the GN which creates lighter tails and more
density in the centre. As in Seed Matérn Scale
we chose to set the 95% range of the data be-
tween 3m and 50m as in Figure 5. We expo-
nentiate to get the units back on the original
scale in meters.

Nugget Proportion (unitless)

∼ N
(

logit(0.1), logit(0.4)−logit(0.01)
4

) We use the same prior from the seed dispersal
system for the same reasons.

Total CV (unitless)

∼ N
(

log(1), log(3.5)−log(0.5)
4

) This prior is defined on the log-odds scale be-
cause we are parameterizing the standard de-
viation of establishment probability which is
also defined on the log odds scale. A change
of 1 on the log-odds scale is moderate, a
change of 3.5 is large, and change of 0.5 is
small. These values were selected to capture
this knowledge and a PPD (as in the seed
CV prior) was performed to verify that they
produced reasonable distributions in Figure
6. The log transformation ensures this prior
is always positive.

Table 2: Plant Establishment Priors
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Figure 5: Distribution of distances among seedling quadrats and among seed traps
within plots.
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Figure 6: 1000 random prior draws from the mean and CV priors for each system.
The 10% and 90% quantiles of the resulting seed count and establishment probability
distribution were visualized to assess the appropriateness of the priors.
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5 Simulations

The ABC algorithm can be implemented computationally in two steps. First a large
database of prior draws and associated data sets is generated and saved. The ABC
step is then performed by appropriate filtering of this database to arrive at a set
of approximate posterior samples. Once the database is saved, the ABC step can
be implemented many times over to validate the model. Since the prior draws are
independent, the first step can be implemented using parallel computing. To save
space, we only need to save the summary statistics associated instead of the data set
itself.

We chose to simulate 1 million parameter and summary statistic pairs to have a large
enough posterior sample size after a decision on the acceptance criteria was made
(Section 6.1). The for-loop that generates this set of one million can be partioned
into smaller chunks so the computational workload is distributed to individual CPU
cores to compute, significantly reducing the total run time.

R has a number of packages that exploit parallelism. Experiments with parallezing
the ABC for-loop were done using the R packages doParallel (Microsoft and Weston,
2022a) and foreach (Microsoft and Weston, 2022b). However, due to the communica-
tion overhead between parallel workers and master processes, it makes more sense to
keep the code serial and parallelize via multiple serial runs.

The META-Farm package was chosen (Mashchenko, 2023) due to its ease of use and
availability on all Digital Research Alliance of Canada high performance computing
(HPC) research clusters. This package implements a form of computational task
distribution called job farming. Here “job” refers to a computing task that can be
allocated to a computing resource via a scheduling system called a scheduler. This
package allows for serial job farming. In this way we execute a serial script and
parallelize at the level of the scheduler instead of writing parallelized code.

A test run of 10,000 simulations was executed locally to estimate total wall clock
time per simulation. Partitioning the set of 1 million iterations into 100 chunks of
size 10,000 generated all results in a reasonable amount of time, on the order of
several hours. Each chunk of the for-loop received a different pseudo random seed
number to ensure no two chunks used the same sequence of prior draws. META-
Farm handled how each chunk was distributed to individual computing resources on
the Graham HPC cluster. This flexibility meant that chunks may be distributed to
different cores to compute, or some chunks waited in queue until an available core was
ready. Regardless, the serial farming led to significant speedup than generating all
simulations serially. The META-Farm has additional features such as capturing job
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exit status and resubmitting failed jobs, which were useful when learning how to use
the package. The post-script processing feature was used to aggregate all simulations
from the 100 serial jobs.
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6 Model Validation

6.1 Acceptance Rate Validation

Model validation can be performed by selecting a known parameter set θ∗ from the
joint prior, simulating data sets y∗ from the the model using θ∗ and assessing centrality
and spread of the computed posterior values with θ∗. This method can also be applied
to tune hyperparameters such as the ABC acceptance criteria (Lintusaari et al., 2016).
Differences in average error between θ∗ and the approximate posterior mean or mode
determine how well centrality is captured (Lintusaari et al., 2016). Assessment of
spread can be done by checking the coverage property (Lintusaari et al., 2016).

As mentioned in Section 5 our database of prior draws and summary statistic pairs
can be used for model validation many times over as any one of these records can be
used as our “observed” data set with known prior parameters before applying ABC
to the remaining records.

Acceptance Rate Number of Batches Batch Size Posterior Sample Size
0.01 1 100000 1000
0.01 5 20000 200
0.01 10 10000 100
0.01 50 2000 20
0.01 100 1000 10
0.05 5 20000 1000
0.05 25 4000 200
0.05 50 2000 100
0.05 250 400 20
0.05 500 200 10
0.1 10 10000 1000
0.1 50 2000 200
0.1 100 1000 100
0.1 500 200 20
0.1 1000 100 10

Table 3: Experimental design for tuning ABC acceptance
rate.

The experimental design chosen to tune the acceptance rate and validate the model
consisted of 10 randomly chosen parameter sets from a database of 1 million parameter
and corresponding summary statistic pairs. The 1 million records were partitioned
into 10 sets of 100,000 to match the number of observed parameter sets. Each set
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of 100,000 was further partitioned into batches of varying size with three acceptance
rates being considered (1%, 5% and 10%) so that the size of the computed posterior
was the same across acceptance rates. Table 3 gives the summary of the experimental
design computed for each parameter set.

The Root Mean Square Relative Error

(
RMSRE =

√
1
n

n∑
i=1

(
θi−θ∗

θ∗

)2)
was used to

validate the differences between the computed posterior samples and the observed
parameter for each batch in the experimental design. The RMSRE was then averaged
over each of the 10 sets and averaged for each of the three acceptance criterias (Figure
7).

RMSRE can be interpreted as approximately proportional change. Over the 10 pa-
rameters, 6 of them generated the lowest RMSRE at the 1% acceptance rate. The
RMSRE was large ( > 1) for half of the parameters; however, in these cases the 1%
acceptance rate led to the lowest RMSRE for all parameters except establishment
mean. The reasoning was sufficient to choose a 1% acceptance rate for ABC going
forward.

Large RMSRE values could be due to the fact that each prior draw in the data
base was used to generate one simulated data set from which summary statistics
were computed. Some simulated data sets are less informative than others. Another
approach that could prove to work better would be to generate multiple data sets for
each parameter draw and average the summary statistics.

Coverage was computed using the same database of 1 million simulations and using
500 random draws as observed data. The 90% HDI credible interval was computed for
each set of computed posterior samples. The percentage of time each true parameter
was in the credible interval for each of the 500 draws is the computed percent coverage
(Figure 8).

All but two parameters had a coverage in the 90% binomial confidence interval. Both
establishment mean and seed CV had a higher percent coverage, indicating we are
underestimating the coverage in these cases. This could be due to the fact that the
random draws of observed parameters were slightly more concentrated in the higher
density regions of these priors. Given Binomial(n = 10, p = 0.9), we can compute
the probability that eight or less parameters would lie in this confidence interval
(P[X ≤ 8] ≈ 0.26). This is a reasonably large probability, suggesting we could also
have achieved this coverage result due to chance.
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Reparameterized Scale
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Figure 7: ABC acceptance rate validation results using RMSRE. The 1% acceptance
rate (circular points) provided the lowest RMSRE for the majority of parameters, but
within parameters RMSRE was relatively constant.
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Figure 8: Coverage probability using 500 observed parameter and data sets with a
computed posterior sample size of 100,000. The shaded region is the 90% Binomial
confidence interval.
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6.2 Simulation Based Calibration (SBC)

The problem with validation procedures that rely on defining a true parameter θ∗

and simulating data from the model using θ∗ to generate pseudo-observed data as
done previously is that using one or multiple true parameters will not speak to how
the model performs in general. The model may perform better for some subsets
of the parameter space (Talts et al., 2020). The programmed algorithm may also
contain bugs. To be confident that our algorithm is giving us a valid result we want
to validate over the entire parameter space. In the Bayesian context the space of
meaningful parameter values should be fully described by the prior.

Simulation Based Calibration (SBC) is a validation method that can be applied to any
Bayesian computational model that computes approximate or true posterior samples
(Talts et al., 2020). The only assumption of SBC is that we have a data generating
model (Talts et al., 2020). SBC cannot detect if the model is appropriate for the
system being described; this is up to the modeller (Talts et al., 2020).

Given a prior parameter draw θ̃ and data generated from this draw and the model
ỹ we define the data averaged posterior, π(θ|ỹ)π(ỹ|θ̃)π(θ̃) (Talts et al., 2020). When
integrated over all possible prior parameter draws and data sets, we get back the
prior; π(θ) =

∫
dỹ dθ̃π(θ|ỹ)π(ỹ|θ̃)π(θ̃). This self-consistency condition means we can

use simulated data from our model to ensure it is sufficiently calibrated (Talts et al.,
2020). Differences between the data-averaged posterior and the prior indicate infer-
ence problems (Talts et al., 2020).

Theorem 1 Let θ̃ ∼ π(θ), ỹ ∼ π(y|θ̃), and θ1, ..., θL sampled independently from
π(θ|ỹ) for any joint distribution π(y, θ). The rank statistic of any one-dimensional
random variable over θ is uniformly distributed over the integers [0, L]

Algorithm 2 SBC (Talts et al., 2020)

1: for n in N do
2: Draw θ∗ ∼ π(θ)
3: Simulate a data set y∗ ∼ π(y|θ∗)
4: for i in L do
5: Draw θi ∼ π(θ|y∗)
6: end for
7: Compute the rank statistic rn({θ1, . . . , θL}, θ∗)
8: end for
9: Plot a histogram of all rank statistics r and assess for uniformity

30



M.Sc. Thesis - Jennifer Freeman; McMaster University - CSE

The SBC procedure, based on Theorem 1, is defined in Algorithm 2. For multi-
dimensional parameter sets θ∗ the rank statistics are computed for each single param-
eter, so that we have one histogram for each individual parameter. Using b equal sized
histogram bins, there is a 1

b
probability of being in each bin. Given N rank statistics

we can use the Binomial distribution, Binomial(N, 1
b
) to form confidence intervals to

help assess uniformity. One common choice is to use b = L + 1 bins.

The drawback of SBC is the computational resources required to compute N rank
statistics (Talts et al., 2020). Since all the steps are independent this algorithm can
be implemented in parallel, reducing the computational time (Talts et al., 2020).

Non-uniform patterns in the histogram can help diagnose bias or mis-calibrated poste-
riors (Talts et al., 2020). When the histogram is weighted to extreme large and small
values, this can indicate correlation among posterior samples (Talts et al., 2020). We
do not expect to observe this pattern for this data because rejection ABC, unlike
MCMC methods, uses independent samples from the prior. ∪-shaped and ∩-shaped
histograms indicate underdispersion and overdispersion between the prior and data-
averaged posterior (Talts et al., 2020). This means on average the computed posterior
will be narrower or wider than the true posterior (Talts et al., 2020). Histograms that
are skewed to one side indicate bias in the opposite direction between the computed
and true posterior (Talts et al., 2020).

The initial SBC run showed ∩-shaped histograms for some parameters indicating over-
dispersion. This led us to revisit how scaling was performed on the summary statistics
in ABC. After a different scaling was done, by dividing by the standard deviation,
SBC was re-run and the results are show in Figure 9.

If the model passes the SBC procedure, with a 99% Binomial confidence interval we
expect that less than 1 bin on average will stray from this interval. The results dra-
matically improved from the previous run, although we still observe deviations from
uniformity for most parameters. In particular the scale parameters and seed CV show
some ∩-shape and possible skew. We decided to accept this level of overdispersion
and bias in the model going forward.
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Figure 9: SBC was performed for N = 100000, L = 100, b = 51 and a 99% Binomial
confidence interval is shown by the horizontal band. Establishment scale, seed scale
and seed CV show deviations from uniformity with characteristic ∩-shapes indicating
overdispersion and right skew indicating bias.
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7 Parameter Estimates

7.1 ABC

The prior and posterior parameter distributions from the observed data are shown
in Figure 10 with summary information given in Table 4. In all parameters, except
possibly seed nugget proportion, the data is informing our estimates as we see obvious
differences between priors and posteriors.

Parameter Mean Median 95% Credible Interval
Seed Matérn
Reparameterized Scale 15.6 12.9 (2.45, 36.9)
Seed Matérn Shape 2.02 1.90 (0.50, 3.78)
Mean Seed Count 15.5 13.7 (3.52, 31.3)
Seed Nugget Proportion 0.13 0.09 (0.003, 0.36)
Seed CV 0.27 0.25 (0.06, 0.538)
Establishment Matérn
Reparameterized Scale 18.1 15.6 (3.49, 38.1)
Establishment Matérn Shape 1.51 1.20 (0.50, 3.48)
Mean Establishment Probability 0.18 0.14 (0.01, 0.46)
Establishment Nugget Proportion 0.10 0.08 (0.003, 0.27)
Establishment CV 1.44 1.32 (0.42, 2.75)

Table 4: ABC posterior statistics. These should not be
viewed as point estimates but as posterior summary in-
formation from Figure 10.

7.2 Frequentist Method

To cross check our Bayesian estimates we estimate the seed dispersal parameters using
the classic frequentist approach. We expect to be able to estimate seed parameters
because we can view our seed count data set as a random sample from a population.
In contrast, we do not have a data set of establishment probabilities because observed
seed and seedling data were not collected from the same locations. In ABC, we
simulate seed counts at seedling locations so we can infer establishment probabilities.

To model seed dispersal we closely follow our geostatistical model by fitting a Poisson
GLMM on the seed count data with a log-link function. We incorporate the unob-
served seed dispersal signal S(x) as a zero-mean multivariate Gaussian with Matérn
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Figure 10: Priors and posteriors using observed data with 95% posterior credible
intervals shown by the horizontal bar (prior sample size = 1,000,000, posterior sample
size = 100,000).
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covariance structure as a random effects. We create a seed plot grouping variable to
ensure we only consider within plot covariance, as done previously. A nugget effect
becomes a random effect by treating each individual observation as its own group.
The intercept, mean seed count, is the only fixed term and the random effects are
independent of this.

Using Maximum Likelihood Estimation (MLE) provided by the glmmTMB R pack-
age (Brooks et al., 2017), we arrive at the parameter estimates and 90% confidence
intervals given in Table 5. We again use the approximation to interpret the standard
deviation for the log transformed data as the CV on the original scale.

Parameter Estimate 95% Confidence Interval
Matérn Scale 356.42 (9.31, 13641.05)
Matérn Shape 0.22 (0.08, 0.55)
Mean Seed Count 7.79 (4.42, 13.74)
Nugget Variance 3.64e-4 NA
Seed CV 0.99 (0.67, 1.45)

Table 5: MLE seed dispersal parameter estimates

Further exploration using the profile log-likelihood was done to investigate the Matérn
Scale estimate in Table 5. The estimate is much larger than the maximum within
seed plot distance of approximately 60m and the confidence interval is very wide.
The profile log-likelihood allows us to fix a value for the Matérn Scale and optimize
the likelihoood over all other parameters (Kreutz et al., 2013). By considering a
range of scale parameters, we can reduce the likelihood to a one dimensional vector
to investigate the identifiability of this parameter (Kreutz et al., 2013).

The profile likelihood, computed using the TMB package in R, is shown in Figure
11 (Kristensen et al., 2016). The limited range of negative log-likelihood values sug-
gest that although there exists a global minimum for the scale parameter at 356.42
m, the likelihood is likely relatively flat in this region possibly making optimization
challenging.

The nugget variance is very small and had a very large standard error suggesting
we are learning little about this parameter. Fitting the profile likelihood for this
parameter in Figure 12 we see it is flat for nearly all values suggesting parameter
identifiability issues.
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Figure 11: Profile likelihood for a range of Matérn Scale parameters.
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Figure 12: Profile likelihood for a range of nugget variances.
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8 Discussion

The majority of the confidence intervals (Table 5) are narrower than the credible in-
tervals (Table 4), but this is not suprising because Bayesian uncertainty is propagated
from all known sources (priors and data) (Doll and Feiner, 2022). ABC can also create
wider interval estimates because we lose information by summarizing the data (Lines
et al., 2020). The obvious advantage of the ABC method is we learn more about
our parameters through probability distributions instead of point estimates and when
frequentist methods can not be used (establishment parameters).

As with the Matérn scale parameter, identifying an optimal set of parameters can
end up in unrealistic regions in the parameter space. In contrast, the incorporation
of priors in any Bayesian inference method prevents unrealistic parameter estimates,
even if the data is not informative enough. The ABC Reparameterized Matérn scale
estimates show we are learning about the size of seed density patches, with most
ranging from 2.5 to 37 m. Environmental filtering effects are detected on slightly
larger scales, from 3.5 to 38 m.

Matérn shape parameters are often arbitrarily fixed in advance because it is assumed
the data provides little information about them (De Oliveira and Han, 2022). There
is also evidence that jointly estimating all Matérn parameters (shape, scale and signal
variance) using MLE can have identifiability issues “leading to ridges or plateaus in
the log-likelihood surface” (Diggle and Ribeiro, 2007). Diggle and Ribeiro (2007)
suggests the profile likelihood can be used to decide on a shape value from a small
candidate list. From the Bayesian perspective, we note it is difficult to hypothesize
ecologically about the smoothness of these processes when forming priors. Despite
these challenges, in both estimation procedures we learn about the shape parameter
with ABC being more informative. De Oliveira and Han (2022) shows the amount
of information we learn about the shape parameter increases when we have a less
regular sampling design (our case) and when strong correlation is present (larger
Matérn scales). The credible intervals incorporate much of the prior range but the
drastic differences in distribution shape between priors and posteriors suggest our
underlying surfaces are more rough than smooth. This is an important result as we
hope to convince readers that this inferential method can lead to models that make
more realistic predictions.

The estimates for the mean seed count are modelled on the log seed count scale and
we exponentiate the individual frequentist estimate and the entire Bayesian posterior
distribution to view on the scale of ecological interest. The mean point estimate (Table
5) is really the geometric mean of seed counts which is smaller than the arimetic mean
(Table 4). This highlights another advantage to Bayesian posteriors because we can
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transform entire samples instead of worrying if our point estimate is invariant to
transformations.

We learn about mean establishment probability with a 95% credible interval range
from 1 to 46%.

We had challenges estimating the proportion of variance attributed to the nugget
effect using MLE and additional investigation is required here. The ABC results
suggest the seed data has limited information about the seed dispersal nugget effect.
We do learn about the nugget in the establishment system perhaps because we have
more data (seed and seedling counts) informing our model as opposed to the seed
dispersal system, and this noise becomes more detectable.

The MLE seed CV estimate of approximately 1 is a plausible ecological value for
spatial variability in seed counts given an estimate of approximately 8 for the mean of
seed counts. The ABC seed CV estimate incorporates all levels of variation including
the nugget effect so we cannot make a direct comparison to the MLE estimate. We
do however see an increase in relative variability from the seed dispersal system to
the establishment system.

The results show, even with a relatively small data set, ABC can provide valuable
ecologically meaningful parameter estimates. We advocate for its use because it is
relatively straightforward and comes with the informative power of Bayesian inference.
ABC can also come to the rescue when likelihood-based methods fail or can not be
applied. Our method highlights the flexibility of geostatistical models and ABC to
investigate spatial ecological problems.
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9 Public Access

All data and code for this research has been made publicly available at
doi:10.5281/zenodo.8002390.
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