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Lay Abstract

It is common for control and optimization of chemical plants to be performed in

a multi-layered hierarchy. The ability to predict the behavior of other layers or

the future behavior of the same layer can improve overall plant performance. This

thesis presents optimization and control frameworks which use this concept to more

effectively control and economically optimize chemical plants which are subject to

uncertain behavior or instability. The strategy is shown, in a series of simulated

case studies, to effectively control chemical plants with uncertain behavior, control

and optimize unstable plant systems, and economically optimize uncertain chemical

plants. One of the drawbacks of these strategies is the relatively large computation

time required to solve the optimization problems. Therefore, for uncertain systems,

the problem is separated into smaller pieces which are then coordinated towards a

single solution. This results in reduced computation time.
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Abstract

The control and optimization of chemical plants is a major area of research as it has

the potential to improve both economic output and plant safety. It is often prudent

to separate control and optimization tasks of varying complexities and time scales,

creating a hierarchical control structure. Within this structure, it is beneficial for one

control layer to be able to account for the effects of other layers. A clear example of

this, and the basis of this work, is closed-loop dynamic real-time optimization (CL-

DRTO), in which an economic optimization method considers both the plant behavior

and the effects of an underlying model predictive controller (MPC). This technique

can be expanded on to allow its use and methods to be employed in a greater diversity

of applications, particularly unstable and uncertain plant environments.

First, this work seeks to improve on existing robust MPC techniques, which

incorporate plant uncertainty via direct multi-scenario modelling, by also including

future MPC behavior through the use of the CL modelling technique of CL-DRTO.

This allows the CL robust MPC to account for how future MPC executions will be

affected by uncertain plant behavior. Second, Lyapunov MPC (LMPC) is a generally

nonconvex technique which focuses on effective control of plants which exhibit open-

loop unstable behavior. A new convex LMPC formulation is presented here which

can be readily embedded into a CL-DRTO scheme. Next, uncertainty handling is
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incorporated directly into a CL-DRTO via a robust multi-scenario method to allow

for the economic optimization to take uncertain plant behavior into account while

also modelling MPC behavior under plant uncertainty. Finally, the robust CL-DRTO

method is computationally expensive, so a decomposition method which separates the

robust CL-DRTO into its respective scenario subproblems is developed to improve

computation time, especially for large optimization problems.
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Chapter 1

Introduction

1.1 Background and Motivation

The control and optimization of chemical plants is an ongoing and active area of

research as modern chemical plants become increasingly complex and dynamic. Many

modern applications require the plant to respond to frequent changes in external

conditions, including product demand and raw material cost and availability. For

this reason, the methods used to control and optimize these plants should be capable

of directing the plant to new economically optimal states quickly and effectively while

also ensuring maximum economic productivity during the transition itself. While this

optimization could be implemented offline, the decisions become suboptimal as soon

as process and economic conditions change. For this reason, economic optimization

is preferably implemented in a real-time optimization (RTO) framework.

Additionally, it is common for control strategies to be designed hierarchically,

with large-scale, long-term problems handled at the top and local, short-term

problems at the bottom. This allows the different tasks to be solved separately and

1
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asynchronously, reducing complexity and computation time of each layer. As such,

optimization methods should be able to take advantage of this hierarchical control

strategy. A typical hierarchical automation architecture is illustrated in Figure 1.1.

The relevant layers to this work are the (Dynamic) Real-Time Optimization (DRTO)

and Model Predictive Control (MPC) layers.

The use of RTO systems for the purpose of determining economically optimal

operating points for chemical plants is a well-studied technique in the field of

optimization and control. Most commonly, RTO is performed in a steady state

paradigm, where the optimization problem considers only the ideal operating point,

and not how to transition the plant to that point [48, 12]. Initial work focused on

using a high fidelity, steady state model at the optimization level in conjunction

with a low fidelity, dynamic model at a lower control level (such as in an MPC). A

key advantage of the real-time nature of the RTO strategy is that it can respond

quickly and without intervention to unexpected disturbances, and then adjust the

optimal plant operating points accordingly. Ying and Joseph [79] examine some of

the stability properties and economic properties of versions of this system where

the supervisory optimization layer is a Linear Program (LP) or Quadratic Program

(QP). An excellent review of RTO implementation strategies is provided in Darby

et al. [12].

An important development in RTO is the incorporation of dynamic models into

the optimization formulation, rather than simply using a steady state model. Such

dynamic models allow the DRTO to predict how the plant will perform during

transitions and can therefore optimize for economic performance both during steady

state operation and during transition phases. This is especially useful for applications
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Figure 1.1: Illustration of a typical control hierarchy. Long-term supervisory and
economic optimization occurs near the top with short-term control and plant action

occurring near the bottom.

where the plant undergoes frequent or slow transitions.

Nath and Alzein [61] use linear dynamic models to develop a DRTO system for

coordinating distributed MPC problems. The use of linear process models allows the

problem to be formulated as a positive semi-definite quadratic program, keeping the

optimization problem tractable for on-line solution. This DRTO was then applied to

an olefin plant and was found to significantly improve ethylene production capacity

over the previous strategy of steady state RTO. Tosukhowong et al. [75] propose

a DRTO system with a reduced order model, which is executed at a substantially

lower frequency than the underlying MPC. This system was applied to two example

problems, the second of which comprised a CSTR, storage tank, and a separator

with recycle stream. The proposed scheme was found to significantly outperform a

steady state RTO in terms of economics both with and without disturbances present

in the simulation. This was accomplished because the DRTO was able to improve
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the economic conditions during transition and cause the plant to reach the optimal

steady state more quickly than with a steady state RTO.

Kadam et al. [30], rather than simply using a low frequency DRTO, trigger the

DRTO execution only when necessary, such as during transitions, thereby reducing

the overall computational demand but allowing the DRTO to effectively optimize

during transitions. They combine this with an MPC at the lower level and show the

benefits of such a two-level system over determining optimal operating points offline

with a methyl acetate semi-batch distillation process. Würth et al. [78] expand on the

execution frequency aspect of DRTO implementation by using a sensitivity analysis to

determine whether the DRTO needs to be executed at a given time point, with steady

operation leading to less frequent execution and more transient behavior resulting in

more frequent execution. Swartz and Kawajiri [74] provide an excellent review of

existing DRTO strategies and implementations.

In addition to modeling the dynamic behavior of the plant for computing optimal

transitions, it is also possible to simultaneously consider the behavior of the MPC

which controls the plant. MPC, as its own optimization problem, independently

determines the input moves which will drive the system towards the set-point.

This behavior affects the conditions of the plant during transition, thus taking it

into account at the DRTO level can improve the overall economics of the plant.

Jamaludin and Swartz [27] directly embed the MPC optimization subproblems into

the DRTO, resulting in a multilevel optimization problem. They show that such a

closed-loop (CL) prediction of MPC behavior improves economic performance over

a similar DRTO without explicit consideration of the MPC. The DRTO problem is

solved by reformulating the MPC optimization subproblems as algebraic equations
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corresponding to the first-order Karush-Kuhn-Tucker (KKT) optimality conditions,

and including them as constraints in the DRTO economic optimization problem. A

representation of a CL-DRTO architecture is shown in Fig. 1.2.

Alternative solution strategies that have been used for solving optimization

problems that account for the predicted plant response under the action of

constrained MPC include embedded closed-loop simulation [15], and use of a

multiparametric MPC formulation [8]. Jamaludin and Swartz [29] examine the

practicality of different approximations of the MPC behavior to reduce the overall

computation time of the DRTO. Following this, Jamaludin et al. [25] and Li and

Swartz [39] expand on the CL-DRTO by applying it to distributed MPC systems

where the DRTO is also coordinating different MPC subsystems.

Figure 1.2: Visual representation of the CL-DRTO algorithm.
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1.2 Research Problem Statement

The goal of this research is to extend a closed-loop dynamic real-time optimization

(CL-DRTO) strategy for use in applications where stability and uncertainty handling

are required at either the supervisory control or economic optimization level. The

objectives of this research are as follows:

• Apply the CL prediction strategy to a single-level robust multi-scenario MPC

to allow the MPC to predict its own future responses uncertain plant behavior.

• Formulate a convex Lyapunov MPC (LMPC) strategy which is effective at

controlling an open-loop (OL) unstable plant.

• Embed the convex LMPC directly into a CL-DRTO strategy and evaluate the

ability of the overall scheme to optimize and control an unstable system.

• Incorporate uncertainty handling into the CL-DRTO by using a multi-scenario

modelling approach.

• Evaluate the ability of the multi-scenario CL-DRTO method to optimize an

uncertain system across a range of possible model realizations.

• Improve the computation time of the robust CL-DRTO method for large

problems by decomposition of the singular optimization problem into scenario

subproblems.

1.3 Thesis Outline

The thesis is organized into the following chapters:
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• In Chapter 2, we seek to combine a scenario-based approach with

embedded closed-loop prediction under future MPC control action by directly

incorporating MPC subproblems into the overall robust MPC formulation.

This allows the current MPC to predict closed-loop MPC responses to a range

of uncertain future plant realizations. The resulting multilevel programming

problem is solved by reformulating the inner MPC optimization subproblems

as algebraic constraints corresponding to their first-order optimality conditions,

resulting in a single-level mathematical program with complementarity

constraints (MPCC). The performance of the robust MPC scheme is evaluated

against a standard MPC formulation in linear and nonlinear case studies.

• In Chapter 3, we address the problem of stabilizing dynamic real-time

optimization and control of nonlinear systems. The chapter seeks to bring

the improved performance of a CL-DRTO to stabilizing control systems by

formulating a CL-DRTO which utilizes and explicitly models an underlying

Lyapunov stabilizing MPC to achieve stabilization for nonlinear systems. The

proposed formulation is compared to a previously developed endpoint penalty

formulation to demonstrate the improved closed-loop control and performance.

• In Chapter 4, we extend the formulation of CL-DRTO for direct inclusion of

uncertainty handling. A robust multi-scenario CL-DRTO scheme which models

the dynamic behavior of the plant and its MPC system under uncertainty

is introduced. The method is applied and its performance evaluated in two

nonlinear case studies, where an input clipping approximation scheme is used

to reduce the computation time. The effects of number of scenarios and multiple

sources of uncertainty are also investigated.
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• In Chapter 5, we present a decomposition approach for the robust closed-loop

dynamic real-time optimization method of the previous chapter in order

to reduce the computation time of the optimization problem. The method

uses a primal decomposition approach which separates the problem into

individual scenarios and fixes the non-anticipativity constraint variables for

all subproblems. The decomposition method is compared to the monolithic

robust CL-DRTO of the previous chapter in two case studies. The method is

shown to be effective at reducing computation time when the problem size is

sufficiently large, particularly as the number of modelled scenarios increases.

• In Chapter 6, we conclude the work by covering the overall findings of the

research. The key contributions are summarized and the future research

directions are presented.
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Chapter 2

Robust Model Predictive Control

with Embedded Multi-Scenario

Closed-Loop Prediction

The formulations and results in this chapter have been published and presented in:

[1] MacKinnon, L., Li, H., Swartz, C.L.E., 2021. Robust model predictive control

with embedded multi-scenario closed-loop prediction. Computers & Chemical

Engineering 149, 107283.

[2] MacKinnon, L., and Swartz, C. L. E., 2019. Robust Model Predictive Control

with Embedded Multi-Scenario Closed-Loop Prediction. Presented at the

69th Canadian Chemical Engineering Conference (CCEC 2019), Halifax, NS,

Canada.

[3] MacKinnon, L., and Swartz, C.L.E., 2020. Robust Multi-Scenario MPC with

Embedded Closed-Loop Prediction. Presented at the 2020 Virtual AIChE
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Annual Meeting (AIChE 2020).

2.1 Introduction

Model Predictive Control (MPC) is a standard technique for control of chemical

plants, but relies on an accurate model of the plant behavior to perform efficiently.

An inaccurate model, whether due to structural mismatch, parameter uncertainty, or

unknown disturbances, can lead to suboptimal plant performance. This can include

overly aggressive or conservative behavior, constraint violation, large overshoot, or

slow settling time. In order to mitigate these effects, robust MPC methods have been

developed to deal with this plant uncertainty. The main drawbacks of robust MPC

methods are the increased complexity and solution time, and the possibility of inferior

performance relative to standard MPC if the model is highly accurate. The former of

these problems is rapidly being mitigated by the development of efficient numerical

computation and optimization algorithms, and increasing computational capabilities.

The latter is case specific and, for many applications, unlikely, since the plant model

is typically identified from plant data and chosen to be of relatively simple structure.

Therefore, robust MPC has a wide range of possible applications and its use should

only increase over time.

A number of robust MPC schemes have been proposed in the literature over the

past two to three decades, many of which can be categorized into a few key paradigms.

Bemporad and Morari [5] provide an excellent review of robust MPC approaches. One

key distinction is between the use of open-loop versus closed-loop prediction of the

propagation of the uncertainty over time. In the former, there is no provision for

future control action as the uncertainty propagates, whereas in the latter, some form
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of feedback action is considered, resulting in less conservative control action. Some

of the key robust MPC paradigms are briefly reviewed in the following paragraphs.

Campo and Morari [10] propose a robust MPC scheme in which the predicted

worst-case tracking error over a family of possible plants is minimized. An open-

loop prediction approach is utilized, and the control problem is formulated as an LP.

Kothare et al. [31] minimize an upper bound on the worst-case performance, with the

problem formulated as a linear matrix inequality (LMI) by computing a linear state

feedback controller at every control execution. Lee and Yu [38] propose a robust MPC

scheme that minimizes a worst-case quadratic performance objective. Formulations

based on both open-loop and closed-loop prediction are presented, with the latter

based on Bellman’s principle of optimality and dynamic programming. Kouvaritakis

et al. [32] capture future feedback action through a linear state feedback law, similar

to Kothare et al. [31], but add a vector which is included in the optimization decision

space. They furthermore propose that the feedback gain be determined off-line, with

the online calculation of the feedback law bias term determined through the solution

of a single LMI, resulting in a significant reduction in computation time. Wan and

Kothare [76] propose a robust output feedback MPC scheme that includes a sequence

of state feedback control laws and a state estimator that are designed off-line through

LMI formulations. Online, a specific control law is determined based on the current

state through a bisection search.

Bemporad et al. [4] develop a robust MPC scheme in which the control input is

determined as an explicit function of the state through multiparametric programming.

A worst-case linear performance objective (infinity or 1-norm based) is optimized.

Both open- and closed-loop prediction are considered, the latter utilizing dynamic
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programming. Sakizlis et al. [70] similarly utilize a multiparametric formulation for

robust MPC, and optimize a quadratic performance objective based either on nominal

performance or expected performance over the uncertainty set.

Langson et al. [37] develop a tube-based robust MPC method for linear time

invariant (LTI) systems with additive disturbances, and describe its extension to

uncertain plants. The objective is to determine a tube and a control policy, where a

tube is defined as a sequence of sets of states within which the system states will lie

for all admissible disturbance sequences. The method is extended in Mayne et al. [53]

to nonlinear plants with additive disturbances. A detailed description of tube-based

MPC schemes is given in Rawlings et al. [68].

Multi-stage stochastic programming is another tool used for the handling of

uncertainty within an MPC. In this stochastic MPC paradigm, the expected

performance of the controller across multiple possible plant scenarios is optimized,

rather than a particular (often worst-case) realization. While the optimization of

the expected behavior of the MPC differs from the strict definition of robust MPC,

it is often termed as a sub-type of robust MPC as it is still an uncertainty handling

technique. Muñoz de la Peña et al. [63] present a scheme of this type, where the

uncertainty is discretized and a scenario tree generated. With linear dynamic models,

the problem becomes a linear program (LP) or quadratic program (QP), depending

on whether an infinity-norm, 1-norm or squared Euclidean norm is used in the cost

function. Lucia et al. [44] apply a nonlinear MPC (NMPC) algorithm of this type

to a semi-batch polymerization reactor. They explore the impact of the robust

horizon, defined as the number of stages for which branching of the scenario tree

is considered, and compare the performance of standard, multi-stage and min-max
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NMPC. A potential drawback of the multi-stage stochastic MPC approach is that

the scenario tree grows exponentially with the number of stages, the number of

uncertain parameters, and the number of discrete parameter realizations. This

has led to several approaches focused on improving computational efficiency, while

retaining performance advantages offered by this robust MPC scheme. Lucia et al.

[45] propose a scenario decomposition approach in which the non-anticipativity

constraints on the inputs at each node of the scenario tree are relaxed, permitting

independent solution of the uncertainty scenario subproblems, with iteration until

the non-anticipativty constraints are satisfied. Mastragostino et al. [50] obtain good

performance using two-stage stochastic programming in robust MPC to approximate

future feedback action in an application to supply chain operation. They consider,

in addition, discrete decision variables that arise in production scheduling. Marti

et al. [49] compare the performance of different scenario decomposition approaches,

including bundle decomposition based on subsets of scenarios. Krishnamoorthy et al.

[34] propose a scenario decomposition scheme for scenario-based robust MPC based

on primal decomposition in which the non-anticipativity constraints are always

feasible. Holtorf et al. [23] consider a scenario-based approach to robust NMPC,

in which the scenario tree, based on worst-case uncertain parameter realizations, is

adaptively generated at each time step based on a constraint sensitivity analysis.

Krishnamoorthy et al. [36] propose the use of principal component analysis (PCA)

for the selection of scenarios in multi-stage robust MPC, which allows for the

relationship between uncertain parameters to be accounted for in order to reduce

conservatism.

One of the advantages of the multi-scenario method is that it computes future
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control moves under a range of future possible plant conditions. This can greatly

improve the performance of the controller in the presence of plant model mismatch.

However, beyond the robust horizon, the branching action of the multi-scenario

MPC ends and feedback response to uncertain plant behavior past that time step

is not captured. This is a significant limitation as the computational requirements

of the multi-scenario method increase exponentially with the robust horizon. The

approach proposed in this chapter is scenario-based, but follows a somewhat different

paradigm in that the predicted closed-loop response of uncertain plant realizations

under nominal MPC is utilized, thereby extending the functional length of control

actions under uncertain plant behavior. This draws on the work of Jamaludin

and Swartz [26, 27] where embedded MPC optimization problems are included in

a dynamic real-time optimization (DRTO) problem. The robust MPC approach

proposed in this article uses such embedded MPC subproblems to predict the MPC

response under uncertain parameter realizations in a multi-scenario framework.

Closed-loop dynamics are considered throughout the prediction horizon, and the

number of branches scales linearly with the number of scenarios.

2.2 Problem Formulation

The robust MPC approach used here is a multi-scenario approach where the scenarios,

other than the nominal, contain embedded MPC subproblems to generate closed-loop

predictions of the plant response under nominal MPC. This is accomplished in the

following way. For each uncertain plant realization, a closed-loop response is

generated under the action of the standard MPC algorithm utilizing the nominal

model. The control input at every time step is applied to the plant model realization
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to generate a predicted response which serves as a surrogate measurement to its

associated MPC to calculate the next input, and the sequence is repeated. A

closed-loop response under nominal MPC is thus generated for each uncertain plant

realization with the exception of the nominal plant, for which an open-loop response

is utilized as in the standard MPC formulation.

A visualization of this process can be seen in Figure 2.1, shown for three

uncertainty scenarios. The initial inputs to all scenarios are forced to be the same

through the imposition of non-anticipativity constraints.
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Figure 2.1: Visualization of embedded closed-loop control action within a robust
MPC problem. The P blocks represent plant models associated with uncertain
parameter realizations; the MPC blocks represent MPC calculations using the

nominal model; the subscripts are the time step; the superscripts are the scenario
(low, nominal, high); θ is the uncertain parameter.

The overall objective of the robust MPC is similar to that of a standard MPC.

It seeks to minimize a combined target tracking and input move suppression

performance objective by manipulating the input moves and predicting the resulting
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output trajectories. In this case, however, it optimizes a weighted performance

objective over the uncertain plant realizations. Choosing the weights as the

probability of occurrence of the scenarios yields the expected performance over

the uncertainty set; however, other choices such as nominal performance can be

selected. Additionally, the input moves beyond the first time step of the non-nominal

scenario models are computed by the inner MPC subproblems, and therefore do not

constitute optimization degrees of freedom. Therefore, the robust MPC problem

seeks to optimize the composite performance by varying the first input move of all

the scenarios and the subsequent input moves of the nominal model scenario, with

the inputs of the other plant scenarios (beyond the initial time step) determined by

the inner MPC subproblems. Input, state and output constraints are also imposed

as required.

The robust MPC interacts with the real plant in much the same way that any

standard MPC would. It determines one input move which will be implemented on

the plant and uses the current measured value of the output variables to estimate the

disturbance for the next MPC problem. A key difference is that a disturbance estimate

will be calculated for each of the scenario models; they will compute the predicted

outputs and compare these to the actual measured output, resulting in a disturbance

estimate. The embedded MPCs, on the other hand, generate a disturbance estimate

by comparing the prediction made by the inner MPC model to the prediction made by

the associated plant scenario model, which serves as a surrogate plant measurement.

This is done so that the inner MPC executions can have an updated disturbance

estimate in accordance with the scenario model being used, which simulates an MPC

updating its disturbance estimate for each execution in accordance with the most
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recent plant measurement. In other words, for the inner MPC executions and for

the purposes of disturbance estimation, the outer MPC scenario model predictions

represent the plant measurement while the inner MPC represents an MPC execution.

Let θ ∈ ℜp denote the vector of uncertain parameters, Ns denote the number of

uncertainty scenarios indexed by i, and let i = N represent the scenario corresponding

to the nominal model parameters. Then the robust MPC problem described above

can be represented mathematically as follows:

min ϕ =
Ns∑
i=1

wiφi(xi, yi, ui) (2.2.1a)

s.t.

xi
j+1 = fp(x

i
j, u

i
j, θ

i) j = 0, . . . , p− 1 i = 1, . . . , Ns (2.2.1b)

yij = gp(x
i
j, θ

i) j = 1, . . . , p i = 1, . . . , Ns (2.2.1c)

0 ≤ hp(x
i
j, y

i
j, u

i
j) j = 0, . . . , p i = 1, . . . , Ns (2.2.1d)

ui
j = fc(y

i
j, θ

N) j = 1, . . . , p− 1 i = 1, . . . , Ns, i ̸= N (2.2.1e)

In the above, φi represents the performance objective associated with scenario i with

associated weight wi. xi
j ∈ ℜnx , yij ∈ ℜny , and ui

j ∈ ℜnu are the states, outputs

and inputs, respectively, at time step j, defining the dynamic response of scenario

i. For i = N , this corresponds to the open-loop response; it otherwise represents a

closed-loop response with the inputs ui generated by the solution of an inner MPC

subproblem using the nominal model, defined by the mapping in Eq. (2.2.1e). xi

is a composite vector of the xi
j, with yi and ui similarly defined. fp and gp are

mappings that define the open-loop dynamic model, and hp represents constraints
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on the states, outputs and inputs, as well as non-anticipativity constraints to ensure

that all scenarios have the same initial input.

We remark that the proposed robust MPC scheme reduces to the standard MPC

formulation under the assumption of a nominal plant with no uncertainty scenarios.

In the next two subsections, we describe the formulation in more detail, where

for simplicity we confine the description to linear dynamic systems. We also assume

that the nominal and uncertain plants are open-loop stable, and follow the QDMC

formulation of MPC [18, 46]. In Section 2.2.1 we focus on Eqs. (2.2.1a)-(2.2.1d), and

in Section 2.2.2 we describe the inner MPC subproblems represented by Eq. (2.2.1e).

In Section 2.2.3 we describe how the integrated multilevel optimization problem is

solved.

2.2.1 Primary MPC

The primary MPC contains the multiple scenarios necessary for this approach. It

is similar in design to previous multi-scenario methods, but with a robust horizon

of 1. The single branching point is all that is required since the embedded MPC

problems provide all the necessary future predicted MPC responses. As the inner

MPC subproblems are solved at every time step, all future control actions (up

to the prediction horizon) are therefore predicted, negating the need for further

branching. Using the scenario models involving the extreme parameter realizations

to propagate the plant prediction for the non-nominal scenarios allows for the

extremes of the uncertain model to continue to be considered without the need

for additional branching. However, the extreme parameter realizations do not

necessarily correspond to the extremes of the plant behavior. The behavior of
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the plant could respond non-linearly to the change in parameter value, potentially

causing an interior value of the uncertain parameter to correspond to extreme plant

behavior. Alternatively, plant-model mismatch has the potential to cause the most

extreme possible plant behavior to be outside the range of scenarios considered by

the MPC. In these cases, the proposed robust MPC formulation would not guarantee

feasibility or constraint satisfaction, but would still be expected to outperform a

nominal MPC.

A more detailed expression of Eqs. (2.2.1a)-(2.2.1d) for the linear dynamic plant

case is as follows.

min
u0,uN

j

ϕ = wN



p∑
j=1

(yNj − yspj )TQ(yNj − yspj )

+
m−1∑
j=0

(∆uNj )TR(∆uNj )

+

m−1∑
j=0

(uNj − uspj )TS(uNj − uspj )


+

Ns∑
i=1
i ̸=N

wi



p∑
j=1

(yij − yspj )TQ(yij − yspj )

+

p−1∑
j=0

(∆uij)
TR(∆uij)

+

p−1∑
j=0

(uij − uspj )TS(uij − uspj )


(2.2.2a)

s.t. xi
j+1 = Aixi

j +Biui
j, j = 0, . . . ,m− 1 i = N (2.2.2b)

xi
j+1 = Aixi

j +Biui
m−1, j = m, . . . , p− 1 i = N (2.2.2c)

xi
j+1 = Aixi

j +Biui
j, j = 0, . . . , p− 1 i ̸= N (2.2.2d)

yij = Cixi
j + dij, j = 1, . . . , p i = 1, . . . , Ns (2.2.2e)

∆ui
j = ui

j − ui
j−1, j = 0, . . . , p− 1 i = 1, . . . , Ns (2.2.2f)

umin ≤ ui
j ≤ umax, j = 0, . . . , p− 1 i = 1, . . . , Ns (2.2.2g)

ymin ≤ yij ≤ ymax, j = 1, . . . , p i = 1, . . . , Ns (2.2.2h)
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In the above, ϕ is the objective function; u represents the vector of inputs, x represents

the states, y represents the outputs; w is the weight of each scenario; p is the prediction

horizon, m is the control horizon; ∆u is the change in input; Q,R, S are diagonal

weighting matrices for the output deviation, input move, and input deviation terms,

respectively; ysp, usp are the output and input set-points, respectively; A,B,C are the

state space model matrices; d is the disturbance estimate; ymin, ymax, umin, umax are

the constraint limits on the outputs and inputs.

The output constraints can alternatively be treated as soft constraints with the

slack variables, eimin,j and eimax,j, added to the inequality constraints. A weighted sum

of squares of the slack variables is added to the previous objective function, ϕ, to

form an adjusted objective function, ϕ̂, to keep the constraint violation at or close to

zero. This can be expressed as follows,

ϕ̂ = ϕ+
Ns∑
i=1

wi

p∑
j=1

[
(eimin,j)

TΩmin(e
i
min,j) + (eimax,j)

TΩmax(e
i
max,j)

]
(2.2.3a)

ymin − eimin,j ≤ yij ≤ ymax + eimax,j, j = 1, . . . , p i = 1, . . . , Ns (2.2.3b)

0 ≤ eimin,j, e
i
max,j, j = 1, . . . , p i = 1, . . . , Ns (2.2.3c)

where Ωmin and Ωmax are diagonal weighting matrices associated with the minimum

and maximum constraints, respectively. The nominal scenario MPC respects the

specified control horizon and halts control action beyond that time step. However,

the other model scenarios compute inputs for all time steps up to the prediction

horizon, not the control horizon. The reason for this is that these specified inputs are

not true degrees of freedom within the primary MPC optimization problem; they are

solutions to the inner MPC subproblems which are solved algebraically. Therefore,
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the only optimization degrees of freedom are the inputs at the first time step and

the subsequent inputs along the nominal MPC scenario up to the control horizon.

The objective function reflects this difference in horizons between the scenarios, with

the nominal scenario including a more standard setup with the output deviation

being considered through the prediction horizon and the input move and input

deviation terms being considered only for the control horizon. The other scenarios

instead include the input move and deviation terms for the entire prediction horizon.

This difference in horizons is why the objective function is shown as two separate

summations, one for the nominal scenario and one for the other scenarios. The

different scenarios are weighted in the objective function, in order to balance the

relative importance or expected frequency of occurrence of the scenarios.

The disturbance estimate used here is assumed constant over the prediction

horizon and is set as the difference between the last measured output value, ym, and

the corresponding predicted output, as in the DMC and QDMC formulations used

in Cutler and Ramaker [11] and Garcia and Morshedi [18], respectively.

di0 = ym − Cixi
0, i = 1, . . . , Ns (2.2.4)

dij = di0, j = 1, . . . , p i = 1, . . . , Ns (2.2.5)

The current predicted states are estimated using the MPC scenario models, the

states used as initial conditions in the previous MPC iteration, and the implemented

inputs from the previous time step (previous states and inputs are denoted with a -1
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subscript).

xi
0 = Aixi

−1 +Biui
−1, i = 1, . . . , Ns (2.2.6)

Importantly, in order for the MPC to give one input move to the plant for the

current time, the input moves across the MPC scenarios must be the same for the

first time step.

ui
0 = u0, i = 1, . . . , Ns (2.2.7)

2.2.2 Inner MPC

The inner, or embedded, MPCs simulate future control action corresponding to the

uncertain plant scenarios. The objective function of each inner MPC subproblem

corresponds to the nominal term of the primary MPC objective function. The inner

MPCs are solved for each non-nominal scenario at each time step in the prediction

horizon, and as with standard MPC, the solution that is implemented (in this case,

applied to the associated scenario plant model) is the first input along the internal

input move horizon. The inner MPC subproblems are not solved for the nominal

scenario of the primary MPC because doing so would add no new information as

the primary and inner MPCs would use the same model. The closed-loop response

generated by the inner MPCs would therefore coincide with that determined by

the open-loop calculation for the nominal scenario of the primary MPC, except for

possible minor discrepancies due to the finite MPC horizon length.

The states and outputs are predicted within the inner MPC using the nominal

scenario MPC model. As in the primary MPC, the change in input is simply
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calculated as the difference in input value between successive time steps. Output

constraints may also be implemented in the inner MPC, again either as soft or hard

constraints. The inner MPC subproblem for scenario i, i ̸= N , with hard constraints,

takes the following form for each step j = 1, . . . , p− 1:

min
ũi
j,k

ϕ̃i
j =

p∑
k=1

(ỹij,k − yspj+k)
TQ(ỹij,k − yspj+k) +

m−1∑
k=0

(∆ũi
j,k)

TR(∆ũi
j,k)

+
m−1∑
k=0

(ũi
j,k − usp

j+k)
TS(ũi

j,k − usp
j+k) (2.2.8a)

s.t. x̃i
j,k+1 = AN x̃i

j,k +BN ũi
j,k, k = 0, . . . ,m− 1 (2.2.8b)

x̃i
j,k+1 = AN x̃i

j,k +BN ũi
j,m−1, k = m, . . . , p− 1 (2.2.8c)

ỹij,k = CN x̃i
j,k + d̃ij,k, k = 1, . . . , p (2.2.8d)

∆ũi
j,k = ũi

j,k − ũi
j,k−1, k = 0, . . . ,m− 1 (2.2.8e)

umin ≤ ũi
j,k ≤ umax, k = 0, . . . ,m− 1 (2.2.8f)

ymin ≤ ỹij,k ≤ ymax, k = 1, . . . , p (2.2.8g)

The tilde (∼) denotes a variable corresponding to an embedded MPC subproblem,

distinct from the primary MPC variables, but with the same model meaning (ie. ũ is

the vector of inputs for the inner MPC subproblem, just as u is the vector of inputs for

the primary MPC problem). Note that some of the parameters used in this problem

are the same as those of the primary MPC problem.

It should be noted that the first subscript for the inner MPC input, output,

and state variables corresponds to the time step of the primary MPC problem, or, in

other words, to the time position when this inner MPC subproblem is being executed.

The second subscript is the internal time step, or the time step of the inner MPC
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subproblem.

The inner MPC disturbance estimate uses the scenario model output as the

simulated measured output and its internal nominal model to generate its predicted

output. As in the primary MPC, the disturbance is assumed constant over the internal

MPC prediction horizon, and is given by

d̃ij,0 = yij − CN x̃i
j,0, i ̸= N j = 1, . . . , p− 1 (2.2.9)

d̃ij,k = d̃ij,0, i ̸= N k = 1, . . . , p j = 1, . . . , p− 1 (2.2.10)

The value of the predicted state for the inner MPC at k = 0 corresponds to the

state at time step k = 1 of the previous inner MPC subproblem. For the first inner

MPC execution, the current predicted states are taken as the predicted states at time

j = 1 within the nominal model scenario of the primary MPC.

x̃i
1,0 = xN

1 , i ̸= N (2.2.11)

x̃i
j,0 = x̃i

j−1,1, i ̸= N j = 2, . . . , p− 1 (2.2.12)

Similarly, the input that the inner MPC considers to be the most recent

implemented input (required for k = 0 in Eq. (2.2.8e) is simply the computed

first input move from the previous inner MPC execution. For the first inner MPC

execution, the first input move of the primary MPC is used.

ũi
1,−1 = ui

0, i ̸= N (2.2.13)

ũi
j,−1 = ũi

j−1,0, i ̸= N j = 2, . . . , p− 1 (2.2.14)
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Finally, the purpose of using the embedded MPC subproblems is to generate a

predicted closed-loop response for the scenario plant models. Therefore, the first input

move from each inner MPC is applied to the scenario plant models at the primary

MPC level in at the appropriate point the prediction horizon via Eq. (2.2.2d):

ui
j = ũi

j,0, i ̸= N j = 1, . . . , p− 1 (2.2.15)

2.2.3 Solution Strategy

The primary and inner MPC optimization problems are connected through Eq. (2.2.9)

in which the primary problem provides surrogate measurements to the inner MPC

subproblems, Eq. (2.2.15) which provides predicted future control inputs to the

scenario plant models in the primary problem, and Eqs. (2.2.11) and (2.2.13) which

provide initial conditions for the first inner MPC execution. Eqs. (2.2.2) and (2.2.4)-

(2.2.15) comprise a composite multilevel optimization problem which needs to be

solved to generate the robust MPC input that is applied to the actual plant.

This multilevel programming problem could be solved sequentially, where the

primary MPC problem and inner MPC subproblem alternate in their solutions,

each giving information to the other. However, in this chapter, the simultaneous

approach presented in Jamaludin and Swartz [28] is used instead. Such an approach

allows for the multilevel problem to be solved as a single optimization problem,

simplifying the overall simulation. This is accomplished by reformulating the inner

MPC subproblems as their corresponding first-order Karush-Kuhn-Tucker (KKT)

conditions as proposed in Baker and Swartz [2]. These conditions are represented

simply as algebraic equations, and so can be included in the primary MPC problems
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as constraints. Additionally, since the inner MPC subproblems are convex QPs,

the first-order KKT conditions are necessary and sufficient for optimality. The

reformulation results in a mathematical program with complementarity constraints

(MPCC), which can be, and is here, solved using an exact penalty approach.

The general form of a QP, of which type the inner MPC subproblems are, can be

written in the following form.

min
z

1

2
zTHz + gT z (2.2.16)

s.t. Az = b (2.2.17)

z ≥ 0 (2.2.18)

The KKT conditions which correspond to this generalized problem may be written

as:

Hz + g − ATλ− ν = 0 (2.2.19)

Az − b = 0 (2.2.20)

ziνi = 0, ∀i (2.2.21)

(z,ν) ≥ 0 (2.2.22)

where λ and ν are the Lagrange multipliers for the equality and inequality constraints,

respectively.

The KKT conditions of a standard MPC problem may be found in Baker and

Swartz [2] and Jamaludin and Swartz [28]. The latter additionally shows the MPC

as a subproblem of a larger optimization problem, in a similar manner to how it
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is used here. The only substantial changes made to those previous formulations

is the addition of output constraints. This simply results in additional minimum

and maximum inequality constraints for the outputs which are similar in form to

those used for the inputs. Also, the addition of slack variables for the soft output

constraints require the addition of appropriate Lagrange gradients and primal

feasibility constraints for these variables.

The complementarity constraints created by presenting the inner MPC

subproblems as their KKT conditions are handled here with an exact penalty

approach [66, 29]. The product of the primal and dual KKT variables are summed

and multiplied by an appropriate weighting factor and then included in the objective

function.

ρ
∑
i

ziνi (2.2.23)

With a sufficiently large weight, ρ, this ensures the complementarity constraints

are satisfied. The resulting problem may then be solved by a standard NLP solver.
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2.3 Case Studies

2.3.1 Case Study 1: SISO First-Order Plus Dead Time

System

The first case study investigated is a simple Single Input Single Output (SISO) system

represented by the following first-order plus dead time transfer function,

G(s) =
K

5s+ 1
e−θs (2.3.1)

The purpose of such a basic system as a case study is to demonstrate the viability

of the proposed MPC formulation for a simple approximation of dynamics that is

nevertheless widely used. It also allows for a tightly controlled environment in which

to investigate the effects of changing circumstances on the robust MPC formulation.

The MPC parameters for this case study are shown in Table 2.1.

The output constraints can be included in the above problem formulation at

the primary MPC or inner MPC level. For this case study, the output constraints

are included only in the primary MPC, and are not activated for the inner MPC

subproblems. These output constraints are formulated as soft constraints, with the

soft constraint penalty term shown in Table 2.1. This soft constraint formulation

is also used in the nominal MPC with the same penalty term in order to properly

compare the two methods. Soft constraints are used partially to ensure the

optimization problems return solutions and do not simply state that the problem is

infeasible, which can happen in the case of plant-model mismatch if hard constraints

are violated at the plant level but not predicted by the controller. Additionally, hard
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Table 2.1: MPC parameters for Case Study 1.

Parameter Description Value
ysp Output set-point 2
ymin Output constraint - minimum 0
ymax Output constraint - maximum 2.1
umin Input constraint - minimum -100
umax Input constraint - maximum 100
p Prediction horizon 10
m Control horizon 2
Q Output tracking weight 10
R Move suppression weight 1
S Input tracking weight 0
N Simulation horizon 50
ρ Complementarity Penalty 1000

Ωmin, Ωmax Soft constraint penalty 200
Knom Nominal transfer function gain 0.4
Kmin Minimum transfer function gain 0.2
Kmax Maximum transfer function gain 0.6
θnom Nominal transfer function dead time 2
θmin Minimum transfer function dead time 0
θmax Maximum transfer function dead time 4

constraints, if desired, can be approximated by soft constraints by using a very large

penalty term, while still keeping the optimization problem feasible.

In order to fully investigate the performance of the MPC formulation, five

subcases are performed with variations in the above parameters. In each subcase,

the robust MPC formulation presented here is compared to a nominal MPC in

three potential plant scenarios, one with the uncertain parameter at the nominal

value, one at the minimum value, and one at the maximum. Each subcase also

compares the robust MPC to a nominal MPC under 20 different random plant

scenarios where the uncertain parameter is between the minimum and maximum

values for that parameter. Then the average performance metrics for these random
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plants are compared. Three scenarios are used in the robust MPC as it corresponds

to an appropriate balance of performance and computation time for this (and the

subsequent) case study. It was found that, for these case studies, increasing the

number of scenarios did not significantly improve the controller performance but did

increase the computation time. However, other applications with potentially more

nonlinear behavior may benefit from including additional scenarios.

Subcase 1: Unconstrained, uncertain gain

The first subcase involves uncertainty in the gain and no output constraints. It also

uses three scenarios for the robust MPC, one with the nominal gain, one with the

minimum gain, and one with the maximum gain. Plots of the plant trajectories are

shown in Figure 2.2 and a summary of the sum of squared errors, which is used to

evaluate the MPC performance, is shown in Tables 2.2 and 2.3. As can be seen from

Figure 2.2, the responses appear similar for the nominal and robust MPCs when

applied to the nominal and minimum gain plants, but the robust MPC noticeably

outperforms the nominal MPC in the maximum plant gain case. In terms of deviation

from the set-point, the sum of squared errors (SSE) is less in each scenario for the

robust MPC than the nominal MPC, showing that the robust MPC is approaching the

set-point more quickly and/or reducing overshoot of the set-point. Therefore, even in

the nominal gain plant scenario, the robust MPC outperforms the nominal. However,

the computation time for the robust MPC is higher than for the nominal, which is

the result of the optimization problem which must be solved being significantly more

complex. Specifically, the average solution time for the robust MPC in this subcase

was 0.915 seconds for one MPC execution, compared to 0.013 seconds for the nominal
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MPC. The longer computation time is still substantially less than the MPC sample

time used in typical chemical process applications [64]. The solution times for the

subsequent subcases in this case study are of a similar order as those described here.

Table 2.2: Unconstrained, uncertain gain subcase sum of squared errors (SSE).

Case Nominal Robust
Nominal 17.3254 16.1128
Minimum 27.1568 25.6982
Maximum 15.3896 14.0759

Table 2.3: Unconstrained, uncertain gain subcase statistics for 20 plants with
random gain.

Metric Nominal Robust
SSE Mean 17.5499 16.2749

SSE Standard Deviation 2.9819 2.9620

Subcase 2: Constrained, uncertain gain

The second subcase is identical to the first but with the output constrained according

to the constraints stated in Table 2.1. The results, shown in Figure 2.3 and Tables

2.4 and 2.5, are similar to the first subcase. The nominal and minimum gain plant

results are especially similar as neither the robust nor the nominal MPC violates

the constraints for these plants even in the unconstrained subcase. However, in

the maximum gain plant, the nominal MPC has a larger overshoot and therefore

significantly violates the maximum output constraint. The robust MPC violates

the constraint by a nearly insignificant margin and for a shorter time period, thus

outperforming the nominal MPC in terms of reducing constraint violation. The SSE

for the robust MPC also remains less than that of the nominal MPC for all plants.
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Figure 2.2: Input and output trajectories for the uncertain gain and unconstrained
SISO subcase, for the nominal plant gain (top), minimum plant gain (middle), and

maximum plant gain (bottom). Solid line: Robust MPC; Black dashed line:
Nominal MPC; Blue dashed line: set-point.

Subcase 3: Unconstrained, uncertain dead time

The third case study is also similar to the first, but with the dead time as the uncertain

parameter rather than the gain. The output is unconstrained. As with the gain,

the three scenarios for the robust MPC use the nominal dead time, minimum dead

time, and maximum dead time. The three plants also use the nominal, minimum,

and maximum dead time. The results for this subcase are shown in Figure 2.4 and

Tables 2.6 and 2.7. The robust MPC has a faster initial response than the nominal.

As a result, the SSE is markedly lower for the robust MPC across all scenarios,
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Table 2.4: Constrained, uncertain gain subcase metrics.

Case Metric Nominal Robust

Nominal
SSE 17.6467 16.9346

Constraint Violation 0 0

Minimum
SSE 27.8114 27.0991

Constraint Violation 0 0

Maximum
SSE 15.3545 14.3245

Constraint Violation 0.0995 0.0026

Table 2.5: Constrained, uncertain gain subcase statistics for 20 plants with random
gain.

Metric Nominal Robust
SSE Mean 17.5499 16.2749

SSE Standard Deviation 2.9819 2.9620
Constraint Violation Mean 0.0067 8.2810e-8

Constraint Violation Standard Deviation 0.0167 3.034e-7

demonstrating the superiority of the robust MPC over the nominal MPC for this

subcase in terms of set-point deviation.

Table 2.6: Unconstrained, uncertain dead time subcase sum of squared errors (SSE).

Case Nominal Robust
Nominal 17.3254 15.5694
Minimum 11.7638 10.2638
Maximum 27.5550 25.2032
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Figure 2.3: Input and output trajectories for the uncertain gain and constrained
SISO subcase, for the nominal plant gain (top), minimum plant gain (middle), and

maximum plant gain (bottom). Solid line: Robust MPC; Black dashed line:
Nominal MPC; Blue dashed line: set-point; Red dashed line: constraints.

Subcase 4: Constrained, uncertain dead time

The next subcase which is investigated involves uncertain dead time and constrained

output according to the constraints in Table 2.1. The results are shown in Figure

2.5 and Tables 2.8 and 2.9. The robust MPC is more conservative in the nominal

and minimum dead time plants, more noticeably for the nominal plant. However,

the nominal MPC significantly violates the upper bound output constraint in the

maximum dead time plant, whereas the robust MPC shows only a slight violation.

By largely avoiding the constraint violation in this plant scenario, the robust MPC
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Table 2.7: Unconstrained, uncertain dead time subcase statistics for 20 plants with
random dead time.

Metric Nominal Robust
SSE Mean 17.5639 15.7276

SSE Standard Deviation 4.9322 4.6512

also reduces oscillations. However, it does show slight oscillations in the minimum

and nominal dead time plant scenarios during approach to the set-point. As a

result, the SSE for the robust MPC is similar to that of the nominal MPC in the

minimum and nominal scenarios (lower in the nominal and higher in the minimum),

but substantially lower in the maximum dead time scenario. For a random value

of the dead time, the robust MPC, on average, outperforms the nominal MPC in

terms of set-point deviation, as seen in Table 2.9. As with the constrained, uncertain

gain subcase, the robust MPC significantly reduces the constraint violation in the

maximum scenario compared to the nominal MPC.

Table 2.8: Constrained, uncertain dead time subcase metrics.

Case Metric Nominal Robust

Nominal
SSE 17.6467 17.6230

Constraint Violation 0 0

Minimum
SSE 12.0591 12.2667

Constraint Violation 0 0

Maximum
SSE 27.3839 24.0755

Constraint Violation 0.9455 6.3085e-4
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Figure 2.4: Input and output trajectories for the uncertain dead time and
unconstrained SISO subcase, for the nominal plant dead time (top), minimum plant
dead time (middle), and maximum plant dead time (bottom). Solid line: Robust

MPC; Black dashed line: Nominal MPC; Blue dashed line: set-point.

Subcase 5: Unconstrained, uncertain dead time with adjusted parameters

for instability

The final subcase investigated considers a different set of plant parameters to

demonstrate the ability of the robust MPC to maintain stability in cases where the

nominal MPC is unable to do so. The plant considered here has a nominal gain of

0.4 as before, but a time constant of 2 and nominal dead time of 3. Uncertainty

in the dead time is considered with a minimum value of 1 and a maximum of 5.

Additionally, the input move suppression weight (R) and the prediction horizon (p)
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Table 2.9: Constrained, uncertain dead time subcase statistics for 20 plants with
random dead time.

Metric Nominal Robust
SSE Mean 17.8781 17.3771

SSE Standard Deviation 4.3030 3.3041
Constraint Violation Mean 0.0892 1.9435e-5

Constraint Violation Standard Deviation 0.2240 8.6914e-5

are chosen as 0.1 and 8, respectively. It is shown in Figure 2.6 and Tables 2.10 and

2.11 that with these parameters, the nominal MPC is unstable in both the minimum

and maximum plant dead time scenarios while the robust MPC is stable. In the

nominal plant dead time scenario, the nominal MPC outperforms the robust MPC

substantially. This is to be expected since the robust MPC is attempting to stabilize

all three scenarios while the nominal MPC is free to aggressively reach the output

set-point. However, that same characteristic results in instability in the minimum

and maximum dead time plant scenarios for the nominal MPC.

Table 2.10: Unconstrained, uncertain dead time with adjusted parameters for
instability subcase sum of squared errors (SSE).

Case Nominal Robust
Nominal 16.387 17.620
Minimum 355570 10.994
Maximum 512.23 30.757

Table 2.11: Unconstrained, uncertain dead time with adjusted parameters for
instability subcase statistics for 20 plants with random dead time.

Metric Nominal Robust
SSE Mean 10378 18.079

SSE Standard Deviation 21713 5.6920
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Figure 2.5: Input and output trajectories for the uncertain dead time and
constrained SISO subcase, for the nominal plant dead time (top), minimum plant
dead time (middle), and maximum plant dead time (bottom). Solid line: Robust
MPC; Black dashed line: Nominal MPC; Blue dashed line: set-point; Red dashed

line: constraints.

Discussion of Case Study 1

Based on the above case study, it is clear that the robust MPC outperforms the

nominal for the metrics of SSE and constraint violation under nearly all conditions

tested. Specifically, the robust MPC substantially reduces constraint violation

compared to the nominal MPC, and also reduces the overshoot that both controllers

display when the plant dead time or gain is larger than in the MPC model. The

reduction in overshoot is particularly pronounced in the output constrained case,
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Figure 2.6: Input and output trajectories for the uncertain dead time and
unconstrained SISO subcase with adjusted parameters for instability, for the

nominal plant dead time (top), minimum plant dead time (middle), and maximum
plant dead time (bottom). Solid line: Robust MPC; Black dashed line: Nominal

MPC; Blue dashed line: set-point.

where the nominal MPC continues to significantly overshoot the set-point, thereby

also violating the upper bound constraint on the output. The robust MPC is

able to further reduce the overshoot in order to nearly completely avoid constraint

violation. It should be noted that increasing the soft constraint penalty term causes

the constraint violation by the robust MPC to approach 0 but has no significant

effect on the nominal MPC. This is because the nominal MPC does not predict the

plant to go above the bound, while the robust MPC can account for the extreme
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scenario and keeps the plant far from the constraint in order to avoid violation. The

sum of squared set-point tracking errors provides a quantitative metric by which to

compare the performance of the two controllers. The robust MPC achieves smaller

SSEs, on average, by responding more quickly initially than the nominal MPC,

but appropriately slowing when near the set-point. This reduces overshoot when

the plant responds more quickly than predicted and reduces the time spent very

far from the set-point. The nominal MPC, however, does require significantly less

computation time.

2.3.2 Case Study 2: Nonlinear Polymerization Reaction with

Linear MPC

The second case study investigated is a grade transition problem of a styrene

polymerization reaction in a jacketed CSTR, studied by Maner et al. [47]. The

plant model used is a nonlinear index-1 DAE system with six differential states and

corresponding differential equations. The model equations are unchanged from the

case study in Maner et al. [47] and the values of the model parameters are similarly

unchanged, with the exception of the uncertain parameter, which is varied from the

value specified in order to create the robust scenarios for the MPC, as described

below.

The control problem has three inputs and three outputs; two outputs and one

input are controlled. The chosen manipulated inputs for this problem are the initiator

inlet flow rate, the coolant flow rate, and the monomer inlet flow rate. The monomer

flow rate is the controlled input. The controlled outputs are the number average

molecular weight (NAMW) and the temperature in the reactor. The concentration
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of monomer in the reactor is a measured, uncontrolled output.

The setup for this MPC problem is to use a linearization of the nonlinear plant

model as the MPC dynamic model. This maintains the MPC as a linear MPC.

However, the MPC control actions will be implemented on the nonlinear plant model

to simulate real plant behavior. This creates a structural plant-model mismatch

inherent in running a linear MPC on a plant with nonlinear behavior. Additionally,

the pre-exponential reaction rate constant for the polymerization reaction is chosen

to have a ±10% uncertainty and additional linearizations of the system were created

around the same steady state using the minimum and maximum values of this

parameter. The result of this is to have three linear models of the system which

will form the basis of the multi-scenario robust MPC prediction. A summary of the

input and output variables is shown in Table 2.12.

The performance of the controller is evaluated on three potential nonlinear

plant models, one with the nominal value of the uncertain parameter, one with the

minimum, and one with the maximum. This determines whether the controller

is effective at various plant models, simulating its effectiveness controlling a plant

under a range of possible parameter realizations. Additionally, the linearization of

the nonlinear model inherently creates plant model mismatch and so the robust

MPC will be tested in its ability to control a plant under both parameter error and

structural model error.

The set-points and constraints on the inputs and outputs are shown in Table 2.13.

The output constraints are only applicable to the second subcase, where constraints

are considered. The MPC parameters used for this case study are shown in Table

2.14.
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Table 2.12: Summary of input and output variables used in Case Study 2.

Variable Description Initial Value Units
Manipulated Inputs

Qi Flow rate of initiator inlet stream 108 L/hr
Qc Flow rate of coolant inlet stream 471.6 L/hr
Qm Flow rate of monomer inlet stream 378 L/hr

Outputs
NAMW Number average molecular weight (controlled) 58.481 kg/mol

T Temperature (controlled) 323.56 K
[M ] Concentration of monomer (measured) 3.3245 mol/L

Table 2.13: Input and output set-points and constraints for Case Study 2.

Variable set-point Minimum Maximum Units
Qi - 0 300 L/hr
Qc - 0 1000 L/hr
Qm 400 0 600 L/hr

NAMW 68.9 58.381 70.9 kg/mol
T 325 323.56 325.5 K
[M ] - 3 4 mol/L

This case study involves an investigation into two specific subcases of the MPC

problem, both involving a transition problem where the set-points on the controlled

variables change at the outset of the simulation and the controller must direct the

system to a new steady state. The first is with no output constraints or disturbance

and the second is with both output constraints and a state disturbance. The MPC

parameters, including weights and horizons, remain the same in both subcases. The

only difference is the output constraint weight is set to 0 for the unconstrained subcase.

Within each subcase, the robust MPC formulation is compared against a nominal

MPC in three plant scenarios, each corresponding to the nonlinear plant used to
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Table 2.14: MPC parameters for Case Study 2.

Parameter Description Value
p Prediction horizon 5
m Control horizon 2
Q Output tracking weight diag(0.1,5,0)
R Input move suppression weight diag(5e-4,1.5e-4,1e-5)
S Input tracking weight diag(0,0,5e-3)
N Simulation horizon 50
ρ Complementarity Penalty 1000

Ωmin,Ωmax Output soft constraint penalty diag(1,50,40)
Ts Time Step 1 hr

generate the linear robust MPC scenarios. These scenarios represent the expected

range of potential plant models.

Subcase 1: Unconstrained

The first subcase investigated is the unconstrained case. The sum of squared errors

(SSE) for each controlled output variable of the nominal and robust MPCs across the

different plant scenarios is shown in Table 2.15. The SSE is the primary metric used to

determine the effectiveness of the MPC methods. Figure 2.7 shows the performance

of the nominal and robust MPCs when implemented on the nominal plant (ie. the

nonlinear plant with the nominal value of the uncertain parameter). Figures 2.8 and

2.9 show the performances on the minimum and maximum plants, respectively.

Table 2.15 clearly shows that the robust MPC significantly outperforms the

nominal MPC across all plant scenarios. This can be seen by the decrease in

SSE by approximately 20%, 29%, and 46% for the molecular weight, temperature,

and monomer flow rate, respectively, from the nominal to the robust MPC. The
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Table 2.15: sum of squared errors (SSE) of controlled variables for nominal and
robust MPC methods with unconstrained outputs.

Plant Model Nominal MPC Robust MPC Percent Decrease

Nominal
NAMW 235.57 185.71 21.17

T 6.6255 4.6476 29.85
Qm 773.06 433.08 43.98

Minimum
NAMW 430.04 342.69 20.31

T 11.078 8.2093 25.90
Qm 773.06 433.08 43.98

Maximum
NAMW 126.54 101.88 19.49

T 4.3447 3.0137 30.64
Qm 435.75 230.69 47.06

improvement in SSE is also fairly consistent for each variable between scenarios,

with the robust MPC producing a smaller error, and by a similar amount, for each

variable in every scenario.

With a nominal plant model, it can be seen in Figure 2.7 that the overshoot of

the set-point is smaller for the robust MPC for all three controlled variables. The

overshoot beyond the steady state is also smaller for the other two inputs and slightly

smaller for the uncontrolled output. The robust MPC also settles more quickly, as all

input and output variables reach a new steady state with no oscillation prior to the

nominal doing so.

The behavior of the controllers changes very little from the nominal to the

minimum plant scenarios, as can be seen in Figure 2.8. The robust MPC again

settles faster than the nominal MPC, with a smaller overshoot overshoot for the

controlled variables.

For the maximum plant model, shown in Figure 2.9 the robust MPC responses

settle faster, with a smaller overshoot than the nominal MPC for the controlled
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Figure 2.7: Input and Output trajectories for the unconstrained nonlinear MIMO
subcase, nominal plant model. Solid line: Robust MPC; Black dashed line: Nominal

MPC; Blue dashed line: set-point.

outputs.

Subcase 2: Constrained

The second subcase investigated includes output constraints, as specified in Table

2.13, which adds an element which is likely to be present in a real plant. It would be

reasonable to include temperature or composition constraints on a reactor to ensure

that it is running efficiently, safely, and economically.

Additionally, it is desirable that these constraints be met even in the presence

of plant model mismatch or disturbances. Therefore, both of these elements are

tested here. Specifically, a state disturbance is included in this subcase where a fixed
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Figure 2.8: Input and Output trajectories for the unconstrained nonlinear MIMO
subcase, minimum plant model. Solid line: Robust MPC; Black dashed line:

Nominal MPC; Blue dashed line: set-point.

value (+3%) is added to one of the simulation response states (the concentration

of monomer) at the end of each sample time. This type of fixed disturbance

could represent a number of physical disturbances present in the reactor, such

as a systematic measurement error, an impurity in the monomer feed, or simply

additional plant model mismatch. The purpose of adding the disturbance is to test

the robust MPC in a scenario where the plant model (including disturbance) does

not match exactly with one of the robust scenarios.

As in the previous subcase, the effectiveness of the robust MPC is determined by

comparison with a nominal MPC in terms of SSE and qualitatively by examining the

input and output trajectories. Additionally, the constraint violation produced by the
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Figure 2.9: Input and Output trajectories for the unconstrained nonlinear MIMO
subcase, maximum plant model. Solid line: Robust MPC; Black dashed line:

Nominal MPC; Blue dashed line: set-point.

control actions of the two controllers is also used as a metric. A summary of the SSE

of the two controllers by variable across the three plant scenarios is shown in Table

2.16. A similar summary of the constraint violation is shown in Table 2.17. The input

and output trajectories in the three plant scenarios is shown in Figures 2.10 through

2.12.

In the constrained subcase, the robust MPC continues to improve on the nominal

MPC with respect to SSE in all scenarios. The robust MPC decreases the SSE

by approximately 21%, 25%, and 62% for the molecular weight, temperature,

and monomer flow rate, respectively. This improvement is similar to that of the

unconstrained case, with more improvement in the molecular weight error, less for
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Table 2.16: sum of squared errors (SSE) of controlled variables for nominal and
robust MPC methods with constrained outputs.

Plant Model Variable Nominal MPC Robust MPC Percent Decrease

Nominal
NAMW 228.93 178.43 22.06

T 7.0077 4.9394 29.51
Qm 793.68 289.66 63.50

Minimum
NAMW 388.54 306.68 21.07

T 10.362 7.5551 27.09
Qm 945.92 412.81 56.36

Maximum
NAMW 150.68 119.99 20.37

T 6.0489 4.8653 19.57
Qm 1043.5 344.36 67.00

the temperature, and substantially more for the monomer flow rate.

Table 2.17: Output Variable Constraint Violation for nominal and robust MPC
methods with constrained outputs.

Plant Model Output Nominal MPC Robust MPC Percent Decrease

Nominal
NAMW 1.9583 0.058547 97.01

T 0.014155 0 100

Minimum
NAMW 2.9848 0.39831 86.66

T 0.11369 0.022674 80.06

Maximum
NAMW 4.0875 1.6176 60.43

T 0.45473 0.14921 67.19

The robust MPC reduces the constraint violation of the controlled outputs

substantially across all scenarios when compared to the nominal. The percent

decrease from the nominal to the robust MPC is approximately 81% and 82% for

the molecular weight and temperature, respectively.

The constrained trajectories with a nominal plant model, shown in Figure 2.10,

retain many similarities to the respective scenario in the unconstrained case. The
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Figure 2.10: Input and Output trajectories for the constrained nonlinear MIMO
subcase, nominal plant model. Solid line: Robust MPC; Black dashed line: Nominal

MPC; Blue dashed line: set-point; Red dashed lines: output constraints.

robust MPC has smaller overshoot in the controlled variables, and settles to steady

state more quickly. Additionally, the robust MPC manages to nearly eliminate any

constraint violation in this scenario, with only a small violation of the upper bound

on the molecular weight and no violation for temperature. This is contrasted to

the relatively substantial violation of the two upper bounds by the nominal MPC

produced by the larger overshoot of that controller trajectory.

The minimum plant scenario in the constrained case, shown in Figure 2.11, is

quite similar to the nominal scenario, just as in the unconstrained case. The robust

MPC still has smaller overshoot than the nominal and settles faster. The nominal

MPC again overshoots the set-points of the controlled outputs sufficiently to violate
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Figure 2.11: Input and Output trajectories for the constrained nonlinear MIMO
subcase, minimum plant model. Solid line: Robust MPC; Black dashed line:

Nominal MPC; Blue dashed line: set-point; Red dashed lines: output constraints.

the upper bounds, and by a similar margin. The robust MPC, on the other hand,

reduces the overshoot such that neither controlled output violates the upper bound.

However, both controllers violate the lower bound for both variables in the initial time

steps of the simulation. Nevertheless, the robust MPC still manages to substantially

reduce the constraint violation in the two controlled outputs by reducing the overshoot

so as not to exceed the upper bound.

The maximum plant scenario, seen in Figure 2.12, still retains some elements

seen in the previous scenarios. The robust MPC still has smaller overshoot than the

nominal and settles faster. However, the degree of these improvements, especially

the overshoot reduction, is noticeably smaller in this scenario. This can be seen
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Figure 2.12: Input and Output trajectories for the constrained nonlinear MIMO
subcase, maximum plant model. Solid line: Robust MPC; Black dashed line:

Nominal MPC; Blue dashed line: set-point; Red dashed lines: output constraints.

most clearly in the two controlled outputs, where the overshoot produced by both

controllers exceeds the upper bound. However, the robust MPC does manage to

reduce the amount of violation by decreasing the overshoot and returning to below

the upper bound more quickly than the nominal.

Discussion of Case Study 2

The second case study investigated here evaluates the performance of the robust MPC

formulation on a more realistic system than the simple linear SISO system of the first

case study. The disagreement between the linear MPC models and the nonlinear plant

simulation models emulates the plant model mismatch likely to be present when an
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MPC is applied to a real plant. Therefore, the effectiveness of the robust MPC in

this case study should more closely reflect its ability to control real plants.

The robust MPC in this case study clearly outperforms the nominal MPC in

both subcases, under all three plant scenarios, and in all measured metrics. The

robust MPC output responses have smaller overshoot than that of the nominal MPC.

The robust MPC settles and reaches the new steady state more rapidly; it reduces

constraint violation; and it maintains a lower error in all controlled variables in all

scenarios. Unlike in the first case study, this remains true even when the nominal

MPC model uses the same parameter values as the plant model. This is likely because,

even with identical parameters, the nominal MPC model and the plant simulation

model are different, as one uses a linearized model and the other a nonlinear model.

Therefore, including the uncertain parameter to produce linearizations, as in the

robust MPC, improves performance even in nominal plant model scenarios.

Additionally, the robust MPC is able to better handle the state disturbance

included in the second subcase, both in terms of reducing constraint violation and

set-point error. In fact, the robust MPC manages to nearly eliminate upper bound

violations in the first two plant scenarios, with only the maximum plant scenario

resulting in substantial upper bound violation. This is likely because the maximum

plant scenario with state disturbance represents a plant model which is functionally

outside the robust scenarios included in the robust MPC. As such, it is unable to

correctly predict the constraint violation and adjust accordingly to avoid it. Instead,

it must react to the constraint violation after it has already occurred. Despite this,

the robust MPC still outperforms the nominal in this scenario, by reacting faster to

the violation and bringing the system to inside the constraints and then to steady

52

http://www.mcmaster.ca/


Ph.D. Thesis – L. MacKinnon; McMaster University – Chemical Engineering

state more quickly. It is likely able to do this because its outermost scenario is still

nearer to the true plant performance than the nominal MPC model is, thus giving it

better predictive abilities even in this scenario.

2.4 Conclusions

In this chapter, a novel multi-scenario robust MPC method with embedded closed-

loop prediction was proposed and tested against a standard MPC architecture.

The closed-loop prediction allows the MPC to predict the future behavior of

uncertain plant realizations while taking the effect of feedback action into account.

By only branching at the first time step but continuing the embedded MPC

problems along the prediction horizon, the future behavior of control action can

be predicted throughout the prediction horizon without creating an exponentially

increasing number of scenarios. The resulting multi-level optimization problem was

reformulated as a single-level MPCC by expressing the embedded MPC subproblems

as their associated first-order optimality conditions, which, since the inner MPC is a

convex QP, are necessary and sufficient for optimality.

The robust MPC formulation presented here was tested in two main case studies

against a standard QDMC formulation. The first case study involved a linear SISO

transfer function model with either the gain or the dead time uncertain. For all

subcases, the average SSE and constraint violation of the robust MPC across a range

of uncertain parameter values was less than that produced by the standard MPC.

The second case study involved a three input, three output polymerization reaction

with a nonlinear plant model. In this case study, the robust MPC was shown to

outperform the standard implementation in both a constrained and unconstrained
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context regardless of the plant realization, even in the case where the standard MPC

model used the same value of the uncertain parameter as the plant model. This was

likely the result of the structural plant model mismatch produced by using a nonlinear

plant model with a linear MPC model.
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Chapter 3

Closed-Loop Stabilizing Dynamic

Real-Time Optimization for

Nonlinear Systems

The formulations and results in this chapter have been published and presented in:

[1] MacKinnon, L., Ramesh, P.S., Mhaskar, P., Swartz, C.L.E., 2022. Dynamic

real-time optimization for nonlinear systems with Lyapunov stabilizing MPC.

Journal of Process Control 114, 1-15.

[2] MacKinnon, L., Ramesh, P.S., Mhaskar, P., and Swartz, C. L. E., 2021.

Closed-Loop Stabilizing Dynamic Real-Time Optimization for Nonlinear

Systems. Presented at the 71st Canadian Chemical Engineering Conference

(CCEC 2021), Montreal, QC, Canada (virtual).

[3] MacKinnon, L., Ramesh, P.S., Mhaskar, P., and Swartz, C. L. E., 2022.

Dynamic Real-Time Optimization with Embedded Closed-Loop Lyapunov
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Stabilizing MPC. Presented at the 2022 AIChE Annual Meeting (AIChE 2022),

Phoenix, AZ, USA.

3.1 Introduction

Stability is an important aspect of both the economic and regulatory operation of

chemical plants. This is because many chemical processes exhibit open-loop (OL)

unstable characteristics where standard control and optimization techniques may be

insufficient to bring the system to a desired steady state. These systems require

additional control strategies to ensure they remain in stable operation.

Almost all existing closed-loop DRTO formulations, however, are designed for

operation around open-loop stable points. In contrast, MPC has often been used

for stability. For an introduction to many of the standard and well-established

techniques for stabilizing MPC, Mayne et al. [52] provide an excellent review. Two key

strategies discussed therein are endpoint constraint MPC and endpoint penalty MPC.

Michalska and Mayne [56] propose a variation of the endpoint constraint method

where the horizon of the MPC is variable. This allows the MPC to be feasible but

computationally intensive when the system is far from the set-point and the required

horizon is long, and to reduce the horizon and computational complexity when close

to the set-point. Muske and Rawlings [58] discuss the technique of utilizing endpoint

penalties and its stabilizing characteristics.

A third technique of importance to this work is that of Lyapunov based MPC.

In such a design, the MPC contains constraints which utilize a Lyapunov function

which must always be decreasing until it reaches a suitable region characterized by

the system being in the vicinity of the desired set-point. This technique proposed
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in Mhaskar et al. [54] (for input constraints) and Mhaskar et al. [55] (for state and

input constraints) has the advantage that it continuously drives the system towards

the set-point and therefore does not require a long horizon.

The use of a stabilizing MPC as part of a closed-loop DRTO strategy has

potential to improve economic performance while handling possible instability.

This technique has been partially explored by Ramesh et al. [67], who designed a

CL-DRTO algorithm which directly models the behavior of an underlying endpoint

penalty MPC. The DRTO MPC two-layer system was able to effectively stabilize

an OL unstable process while improving on economic performance compared to a

standalone stabilizing MPC. The formulation of Ramesh et al. [67], however, utilizes

a linear model in the underlying MPC, limiting the performance of the DRTO for

nonlinear systems.

This work aims to continue with this development by designing a CL-DRTO

algorithm which functions with a Lyapunov-based stabilizing MPC, specifically able

to handle process nonlinearity (from a stability stand-point), while still retaining the

lower computational complexity of the formulation of Ramesh et al. [67]. To achieve

this, the existing paradigm for Lyapunov MPC of nonlinear plant models both for

prediction and Lyapunov constraints is adapted. This is to enable the calculations of

the CL-DRTO, with its current implementation requiring the underlying MPC to be a

convex QP. Thus, the present manuscript first presents a LMPC algorithm that allows

the use of a linear plant prediction model and a nonlinear model in the Lyapunov

constraints, allowing the overall optimization problem to be convex quadratic, and yet

retains the stability property of the nonlinear LMPC. The resulting LMPC is tested

in standalone operation, and the improved performance compared to a linear MPC
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demonstrated. Following this, a CL-DRTO algorithm is presented which predicts

the behavior of this convex LMPC; the CL-DRTO with LMPC is then tested for

economic performance and stability characteristics, and significant improvements over

the formulation in Ramesh et al. [67] demonstrated.

3.2 Preliminaries

3.2.1 System Description

We consider nonlinear plants affine in the control input described by state-space

equations of the form:

ẋ = f(x) + g(x)u (3.2.1)

where f and g are continuous nonlinear functions of the states, x, at time t and u is

the control input constrained between umin and umax.

3.2.2 CL-DRTO

This section briefly reviews the Closed-Loop DRTO (CL-DRTO) scheme of Jamaludin

and Swartz [27] designed to ensure that the two layers of DRTO and MPC work

together effectively. This DRTO computes reference trajectories, used as set-points

for the MPC, which are economically optimal based on predicted plant and MPC

behavior. As would be expected, ensuring that the predictions of the MPC are

consistent with the actual MPC controlling the plant is paramount for the CL-DRTO

to be effective.
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The solution of the CL-DRTO involves using a primary economic optimization

problem at the DRTO level which explicitly includes MPC subproblems for each of

the MPC executions which take place along the length of the DRTO horizon. This

creates a multi-level optimization problem. It should be noted that the time step

of the DRTO and MPC are free to be different from one another, as well as the

respective horizons. The CL-DRTO problem may be expressed as follows:
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min
yRef ,uRef

ϕDRTO
econ (x̂DRTO, ûDRTO, ŷDRTO) (3.2.2a)

s.t. x̂DRTO
j+1 = fDRTO(x̂DRTO

j , ûDRTO
j ), j = 0, . . . , N − 1 (3.2.2b)

ŷDRTO
j = hDRTO(x̂DRTO

j ), j = 1, . . . , N (3.2.2c)

0 ≤ gDRTO(x̂DRTO
j , ŷDRTO

j ), j = 1, . . . , N (3.2.2d)

0 = hRef (yRef , uRef , ySP , uSP ) (3.2.2e)

0 ≤ gRef (yRef
j+1 , u

Ref
j ), j = 0, . . . , N − 1 (3.2.2f)

ûDRTO
j = ũj,0, j = 0, . . . , N − 1 (3.2.2g)

ũj,0 ∈ arg min
ũj,k

ϕj =

p∑
k=1

(ỹj,k − yspj,k)
TQ(ỹj,k − yspj,k) +

m−1∑
k=0

(∆ũj,k)
TR(∆ũj,k)

+
m−1∑
k=0

(ũj,k − usp
j,k)

TS(ũj,k − usp
j,k) (3.2.2h)

s.t. x̃j,k+1 = Ax̃j,k +Bũj,k, k = 0, . . . ,m− 1 (3.2.2i)

x̃j,k+1 = Ax̃j,k +Bũj,m−1, k = m, . . . , p− 1 (3.2.2j)

ỹj,k = Cx̃j,k, k = 1, . . . , p (3.2.2k)

∆ũj,k = ũj,k − ũj,k−1, k = 0, . . . ,m− 1 (3.2.2l)

umin ≤ ũj,k ≤ umax, k = 0, . . . ,m− 1 (3.2.2m)

where ϕDRTO
econ is the economic objective function of the primary DRTO; u,x,y are the

system inputs, states, and outputs, respectively; the hat (ˆ) and DRTO superscript

denote predicted values used at the primary DRTO optimization level; the Ref

superscript denotes reference points; the SP superscript denotes set-point trajectories
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for the MPC; fDRTO is the set of dynamic equations for the plant model; hDRTO is the

algebraic equation system for the plant model; gDRTO is the set of inequality process

constraints; hRef is the functional relationship between the reference trajectory and

the set-point trajectories for each MPC subproblem; gRef is the set of bounds on the

reference points; the tilde (˜) denotes an MPC subproblem variable; ϕj is the MPC

objective function corresponding to step j of the DRTO prediction horizon; m and

p are the MPC control and prediction horizons, respectively; Q,R,S are the output

deviation weighting matrix, input move penalty matrix, and input deviation weighting

matrix, respectively; A,B,C are the linear state-space matrices for the linear plant

system dynamic model; umin,umax are the input bounds; and j,k are the time steps

for the DRTO and MPC, respectively.

It is important to note that the input moves throughout the DRTO horizon are

not decision variables at the DRTO level, but are rather computed by the MPC

subproblems (they are the decision variables of the MPC subproblems). The DRTO

degrees of freedom are the reference trajectories used to produce the set-points for

the MPC. The set-point variables have two time dimensions, one for the time point

for which the MPC is being executed and the other for the interior time point of

the MPC. The reference trajectories, on the other hand, have a single time index

that is associated with the DRTO horizon. The set-point variables are extracted

subsets of the reference trajectory, such that the equivalent single time point in the

reference trajectory is represented by the double time point of the set-point variable.

For example, a specific instance of equation 3.2.2e may be expressed as ySPj,k = yRef
j+k .

This communication is identical to that between the CL-DRTO and the actual MPC

controlling the plant, with the DRTO providing set-points for the MPC and the MPC
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providing the DRTO with implemented input moves.

The resulting multi-level optimization problem may be solved with many different

strategies. Jamaludin and Swartz [27] chose to employ a simultaneous solution

approach, and so this chapter will follow the same strategy. For the simultaneous

method, as explored in Baker and Swartz [3], the MPC subproblems are each

transformed into their respective first-order Karush-Kuhn-Tucker (KKT) optimality

conditions. These equations are then included in the primary DRTO optimization

problem as algebraic constraints. This creates a single-level mathematical program

with complementarity constraints (MPCC). As mentioned previously, it is important

for the CL-DRTO to accurately model the MPC behavior for effective optimization.

MPC problems which are convex Quadratic Programs (QPs) can be exactly

represented by their first-order KKT conditions. Therefore, it is desirable for the

CL-DRTO to be utilized with a convex MPC, as this allows the CL-DRTO to exactly

predict the MPC behavior via KKT constraints.

The KKT conditions of a general QP of the form,

min
z

1

2
zTHz + gT z (3.2.3a)

s.t. Az = b (3.2.3b)

z ≥ 0 (3.2.3c)

can be written as:
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Hz + g − ATλ− ν = 0 (3.2.4a)

Az − b = 0 (3.2.4b)

ziνi = 0, ∀i (3.2.4c)

(z, ν) ≥ 0 (3.2.4d)

The complementarity constraints are handled with the use of an exact penalty

approach [66], where a weighted penalty term of the product of the respective

complementarity variables is included in the objective function of the primary DRTO

problem.

3.2.3 CL-DRTO with Stabilizing MPC

The applicability of the above CL-DRTO strategy is predicated on the ability of

the DRTO to accurately predict the behavior of the underlying MPC. For some

applications, however, the MPC in use requires additional complications beyond what

was considered by Jamaludin and Swartz [27]. One such requirement is the inclusion

of stability constraints in the MPC for use with open-loop (OL) unstable processes.

Therefore, Ramesh et al. [67] adjusted the CL-DRTO formulation for use with an

endpoint penalty stabilizing MPC. The basic concept of the CL-DRTO remains the

same as that for previous work, but with the addition of stabilizing considerations

within the MPC subproblems of the CL-DRTO.

Specifically, the stabilizing MPC uses endpoint penalty terms in the objective

function. These terms, therefore, also have to be included in the objective function of
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the MPC subproblems of the CL-DRTO. The work also assumes a linear state-space

plant model at the MPC level. The DRTO formulation itself remained unchanged

from previous work. The MPC subproblems with endpoint penalty constraints may

be expressed as follows:

ũj,0 ∈ argmin
ũj,k

ϕj =
m−1∑
k=0

(x̃j,k)
TCTQC(x̃j,k) + (ũj,k)

TR(ũj,k) + ∆ũT
j,kS∆ũj,k

+ (x̃j,m)
TQ(x̃j,m) + ∆ũT

j,mS∆ũj,m (3.2.5a)

s.t. x̃j,k+1 = Ax̃j,k +Bũj,k , k = 0, . . . ,m− 1 (3.2.5b)

∆ũj,k = ũj,k − ũj,k−1 , k = 0, . . . ,m (3.2.5c)

ũmin ≤ ũj,k ≤ ũmax , k = 0, . . . ,m− 1 (3.2.5d)

ũj,k = 0 , k ≥ m (3.2.5e)

Ṽu

[
Am−1B,Am−2B, . . . , B

]
ũj,m = −ṼuA

m(x̃j,0), (3.2.5f)

j = 0, . . . , N − 1 (3.2.5g)

where Q is the endpoint penalty weighting matrix, Ṽu is a matrix containing the

unstable mode eigenvectors of the system.

The above formulation assumes the MPC specific variables are in deviation form

relative to the set-points of the MPC. However, the DRTO does not assume this, and

therefore equation 3.2.2g in the original CL-DRTO formulation must be altered to

the following for consistency.

ûDRTO
j = ũj,0 + uSP , j = 0, . . . , N − 1 (3.2.6)
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For this MPC, to ensure stability of the underlying process, the objective

function has additional terms for the endpoint penalty weighting. There is also a

new constraint which is present for characterizing the future system conditions as

unstable or stable. It should be noted that the matrices Q and Ṽu can be determined

offline Muske and Rawlings [59].

As in Jamaludin and Swartz [27] and Baker and Swartz [3], the multi-level

optimization problem is solved using the simultaneous method where the MPC

subproblems are transformed to their respective KKT conditions and included in

the primary DRTO problem as constraints. These KKT conditions must simply

be adjusted to reflect the addition of the endpoint penalty terms in the objective

function and the new constraint. The resulting MPCC is again solved with the use

of an exact penalty approach for the complementarity variables [66].

The objective function additions for this stabilizing MPC are themselves convex

quadratic, the new constraint is linear, and the plant model of the MPC remains

linear. Therefore, the stabilizing MPC used here remains a convex QP, and, as such,

the KKT conditions are an exact representation of the MPC problem.

It should be noted that the stability properties of the resulting CL-DRTO problem

are posited to be inherited from those of the underlying stabilizing MPC. This is

because all feasible solutions of the CL-DRTO also represent feasible solutions to the

MPC subproblems which are themselves exact representations of the actual MPC

implementations.
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3.2.4 Lyapunov-based Stabilizing MPC

Systems which can be represented by a model of the form of equation 3.2.1 can be

effectively controlled using a stabilizing Lyapunov-based MPC (LMPC), as presented

by Mhaskar et al. [55]. The MPC formulation, to compute the control action for a

current state x0, can be represented as follows

min
u

∫ t+T

t

x(s)TQx(s) + u(s)TRu(s) ds (3.2.7a)

s.t. ẋ = f(x) + g(x)u (3.2.7b)

V̇ (x(τ)) ≤ −ε ∀τ ∈ [t, t+∆) if V (x(t)) > δ′ (3.2.7c)

V (x(τ)) ≤ δ′ ∀τ ∈ [t, t+∆) if V (x(t)) ≤ δ′ (3.2.7d)

where V is an appropriately chosen Lyapunov function, ε and δ′ are positive values,

∆ is the input hold time, and T is the horizon.

This formulation guarantees feasibility of the optimization problem and closed-

loop stabilization from a region of initial conditions that can be determined a priori.

Specifically, Mhaskar et al. [55] posit that any starting condition, x0, of a system

which can be represented by equation 3.2.1, within a well characterized region, will

result in a feasible and stabilizing result from the LMPC formulation of equation 3.2.7.

The rigorous proof and more detailed explanation thereof can be found in Mhaskar

et al. [55].

It is important to note a few of the remarks concerning this proof of stability

and feasibility for the LMPC. One is that this LMPC is also stabilizing for discrete

implementations for sufficiently small values of the discrete time step. Secondly, the
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Lyapunov constraints, equations 3.2.7c-3.2.7d, are the key to the stability properties

of the LMPC. In other words, they alone drive the system to stability, with the

objective function and other constraints only affecting the performance of the LMPC,

not its stability. Finally, the Lyapunov constraints, in discrete implementation with

sufficiently small time step, are only required to be active for the initial time step of

the LMPC execution, rather than its entire horizon, for stability to be maintained.

This is due to the receding horizon implementation practice, where each time step

inevitably is used as the initial time step of subsequent MPC executions, thereby

ensuring that the Lyapunov constraints are active for every implemented time step.

3.3 Convex Lyapunov-based Stabilizing MPC for

Nonlinear Systems

The Lyapunov MPC formulation presented here is intended to maintain the key

positive attributes of the LMPC algorithm developed previously while adjusting it

such that it results in a convex quadratic program. The reason for this is that the

CL-DRTO formulation previously developed is generally solved in such a way that

it assumes the underlying MPC is convex quadratic. Incorporating a non-convex

MPC problem into the existing structure would either require the CL-DRTO to

only approximate the MPC, rather than predicting its exact behavior, or solving

the multi-level optimization problem using an alternative method. In order to retain

the advantages of the simultaneous solution approach, the LMPC was instead adapted

to be convex such that it could be easily incorporated into the CL-DRTO method.
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3.3.1 Proposed LMPC Formulation

The proposed LMPC formulation fundamentally relies on and adapts the Lyapunov

constraints from Mhaskar et al. [55]. The proposed MPC formulation takes the form

shown in equation 3.3.1:

min
ũ

ϕ =
m−1∑
k=0

(x̃k+1)
TCTQC(x̃k+1) + (ũk)

TR(ũk) + ∆ũT
k S∆ũk (3.3.1a)

s.t. x̃k+1 = Ax̃k +Bũk , k = 0, . . . ,m− 1 (3.3.1b)

∆ũk = ũk − ũk−1 , k = 0, . . . ,m− 1 (3.3.1c)

ũmin ≤ ũk ≤ ũmax , k = 0, . . . ,m− 1 (3.3.1d)

∂V (x)

∂x

∣∣∣∣
x̃k

· g(x̃k)ũk ≤ −
∂V (x)

∂x

∣∣∣∣
x̃k

f(x̃k)− εV (x̃k), k = 0 (3.3.1e)

The feasibility and stability properties are established next. To that end, we first

define the following set:

Definition 1. For a given ∆ and a choice of V (·), let Π be the connected set of states x

for which there exists a ũmin ≤ ũk ≤ ũmax such that ∂V (x)
∂x

∣∣∣
x̃k

·g(x̃k)ũk+
∂V (x)
∂x

∣∣∣
x̃k

f(x̃k) ≤

−εV (x̃k) implies V̇ (x̃(t)) < 0 ∀ 0 ≤ t ≤ ∆, and let Ω be the largest level set of V (x)

within Π.

The above set is independent of the controller, and only depends on the system

dynamics, choice of the control Lyapunov function, and the size of the region one

ultimately wants the system to converge to. Thus, for a given set of these choices,

the set Π captures the set of states for which, if the Lyapunov function decays, is

made appropriately negative definite at the initial value of the state by the control
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action; then for that fixed value of the control action over the hold time, the Lyapunov

function value will continue to decrease for the rest of the hold time. Furthermore,

picking Ω as the largest level set of V (x) within Π renders Ω as the stability region

for the system under an appropriate choice of the controller, shown next.

Theorem 1. For any initial states, x0 ∈ Ω, the LMPC controller given by the

optimization problem of Eqs. 3.3.1 is feasible for all times; the states remain bounded,

x(t) ∈ Ω ∀ t ≥ 0; and the states approach the set-point, limt→∞ ∥x(t)∥ = 0.

Proof. The proof of the above theorem can be broken into the following points: the

LMPC is always feasible for all initial states x0 within Ω; the LMPC remains feasible

for all subsequent time; and the Lyapunov function and therefore the states are

decreasing over time and approach the set-point.

Recall that the constraint of Eq. 3.3.1e is chosen to be in line with the definition

of Π, and since Ω is a subset of Π (specifically the largest level set of Π), any initial

states within Ω result in an initially feasible LMPC. Furthermore, the definition of

Π implies that the implementation of the control action results in the decay of the

Lyapunov function over time, and since Ω is a level set entirely within Π, then any

initial state x0 ∈ Ω will produce a decreasing Lyapunov function and states which

will produce subsequent states also within Ω. Therefore, for any starting position

within Ω, the LMPC will be feasible for any subsequent time. Additionally, for all

subsequent time, the feasibility of the LMPC and the definition of Π imply that the

Lyapunov function and states will be monotonically decreasing, and therefore the

states will be approaching the set-point for all time.

Remark 1. The above requires the hold time, ∆, to be sufficiently small that the
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gradient of the Lyapunov function does not change sign during the hold time. This

then ensures that the Lyapunov function is always decreasing. Note that this is not

due to the control design but simply a result of the compute and hold nature of the

control action, and as such the MPC using the nonlinear equations can also only

guarantee practical stability.

Remark 2. The decreasing Lyapunov function is necessary only for the initial time

point as the receding horizon of the MPC causes the Lyapunov constraint to be active

for all future time points as the LMPC executes for subsequent time points. In other

words, all future time points of the system will eventually be the initial time point

of an MPC execution. Therefore, the Lyapunov constraint will inevitably be in effect

for every time point of the system. It is valid to use a horizon larger than 1 for the

Lyapunov constraint, but doing so will cause the problem to be non-convex unless a

linear model is used in the Lyapunov constraint. Instead, a nonlinear model is here

used with a horizon of 1 thus keeping the optimization problem a convex optimization

problem.

Remark 3. The model discrepancy between the Lyapunov constraint and the plant

prediction implies that the two will predict different behaviors for the system. However,

because the model prediction directly affects only the objective function, the use of

the linear model only affects the performance of the LMPC, not its stability. The

Lyapunov constraint determines the stability of the system, and therefore using the

nonlinear model for this constraint implies that the system will be stable. This is an

advantage over other stabilizing MPC systems which use only the linear model for

both prediction and stability. This is because if the linear model becomes inaccurate,

linear model based MPC will lose performance or may no longer be stabilizing, but
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the LMPC will remain stable and drive the system towards the set-point. Similarly,

this LMPC is a convex problem, and is therefore much easier and faster to solve than

a nonlinear problem. This is an advantage over MPC designs which use a nonlinear

model for both stability and prediction.

Remark 4. A consequence of the Lyapunov constraint being applied only for the

initial time of the LMPC execution is that the stabilizing ability of the LMPC is

independent of the horizon of the LMPC. This is because the horizon only affects the

objective function and model prediction of the system, not the Lyapunov constraint.

As the Lyapunov constraint is the only part of the LMPC necessary for stability,

a change to the horizon of the LMPC does not affect the stability properties of the

LMPC. A change in horizon, therefore, only affects the objective function performance

of the LMPC, not its stability properties.

The above Lyapunov constraint of equation 3.3.1e is adapted from the Lyapunov

constraints from Mhaskar et al. [55] in two ways. First, to turn the constraint into

a linear equation in the control action, the constraint is imposed only on the initial

state. Thus, since the initial or current state of the plant is known (or estimated),

the constraint is linear in the input for control affine systems described by Eq. 3.2.1.

The second adaptation from Mhaskar et al. [55] is as follows: In Mhaskar et al.

[55], the constraint essentially required V̇ to be less than −ε, with ε > 0 being a

design parameter. Thus, as the Lyapunov function approaches 0, it may not be

possible for the Lyapunov gradient to continue to be smaller than −ε. In the present

formulation, an additional adjustment is made, specifically multiplying the right hand

side by the value of the Lyapunov function such that the value the Lyapunov gradient

must be below 0 as the Lyapunov function approaches 0, thus reducing the size of the
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neighborhood around the origin to which the controller achieves practical stability.

The Lyapunov function for the case studies of this chapter was chosen to be of

the following form.

V (x) = xTPx (3.3.2)

where P is an appropriately tuned positive-definite weighting matrix.

3.3.2 Case Study 1 - Standalone LMPC

The case study presented here to illustrate the effectiveness of the proposed linear

Lyapunov MPC method is a two input, two output reaction jacketed CSTR model

where the reaction is assumed to be second order and irreversible. The inputs for

the control system are the inlet concentration of reactant and the net heat provided

to the system by way of the heating/cooling jacket. The outputs of the system are

the concentration of reactant in the CSTR and the temperature of the CSTR. The

states and outputs are the same for this system. This case study was taken from

Heidarinejad et al. [22] and is also used in Ramesh et al. [67]. The dynamic model

used for this case study is given by Eqs. (3.3.3) and (3.3.4) below,

dCA

dt
=

F

V
(CA,0 − CA)− k0e

−E
RT C2

A (3.3.3)

dT

dt
=

F

V
(T0 − T )− ∆H

ρCp

k0e
−E
RT C2

A +
Q

ρCpV
(3.3.4)

where CA represents the concentration of reactant, T is the temperature in the reactor,

CA,0 is the inlet concentration of reactant, Q is the heat input to the system, F is the
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Table 3.1: Model Parameters for MIMO Case Study

Parameter Description Value Units
F Inlet Flowrate 5 m3/h
V Volume of CSTR 1 m3

E Reaction Activation Energy 5e4 kJ/kmol
k0 Reaction Rate Constant 8.46e6 h−1

∆H Enthalpy of Reaction -1.15e4 kJ/kmol
Cp Heat Capacity of Reactor Fluid 0.231 kJ/kgK
ρ Density of Reactor Fluid 1000 kg/m3

R Gas Constant 8.314 kJ/kmolK

inlet flowrate, V is the volume of the CSTR, k0 is the pre-exponential rate constant

of the reaction, E is the activation energy of the reaction, R is the ideal gas constant,

T0 is the inlet temperature, ∆H is the molar enthalpy of reaction, ρ is the density of

the fluid in the reactor, and Cp is the heat capacity of the fluid. The model parameter

values used are given in Table 3.1.

This system is used in three separate case studies where, in each, the proposed

Lyapunov MPC is compared to an endpoint penalty MPC formulation. The first is

a comparison of the MPC methods with no supervisory RTO or DRTO present and

simply a static set-point provided to the MPC. This simulates a control hierarchy

where the upper layer optimization method is a steady state optimizer and operates

on much larger time scales than the MPC (such that the MPC will reach steady state

before the RTO determines a new steady state operating point). The initial conditions

of every simulation correspond to the unstable steady state at uss = (4, 0), xss =

(1.954, 401.9).

The first version of the case study investigated is one in which there is no

supervisory optimization present, and demonstrates the superior control capability of
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Table 3.2: MPC Parameters for MIMO Case Study

Parameter Description Value
m Control Horizon 5
Q Output Tracking Weight diag(1,1)
R Input Move Penalty Weight diag(0,0)
S Input Tracking Weight diag(100,100)
TS Time Step 0.01 h

∆TMPC MPC Execution Interval 0.01 h
umin Input Constraints - Minimum (0,-150)
umax Input Constraints - Maximum (10,150)

P Lyapunov Function Weight

[
260 24.6
24.6 4.24

]
Q Endpoint Penalty Weight

[
39700 797
797 16.0

]
Ṽu Unstable Mode Eigenvector (61.4,2.23)

the proposed MPC compared to a standard linear MPC. In both MPC formulations,

the MPC uses a linear state-space model linearized around the initial unstable steady

state. The plant simulation uses the nonlinear model equations shown previously.

For the proposed Lyapunov based linear MPC, the Lyapunov gradient function

utilizes the nonlinear model equations, rather than the linearized equations, and

evaluates the gradient only at the first time step of the MPC in accordance with the

Lyapunov MPC formulation explained previously. For this case study, the model

equations are linear in the inputs, allowing this technique to be used while the

resulting MPC formulation is a convex quadratic problem. The MPC parameters

used are the same for both MPC formulations and are shown in Table 3.2.

The Lyapunov function was found according to the previously explained

formulation using the Ricatti equations to determine a suitable P matrix. The

tolerance on the Lyapunov gradient, ε, was set to 3, as this was found to offer a
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Variable Endpoint Penalty MPC Lyapunov MPC Percent Decrease
x1 (CA) 0.579 0.107 81.5
x2 (T ) 179 69.3 61.3

u1 (CA,0) 4.41 0.309 93.0
u2 (Q) 1816 183 90.0

Table 3.3: Sum of Squared Error (SSE) by variable for standalone Lyapunov and
endpoint penalty MPC in small transition subcase.

reasonable balance of aggressiveness and smoothness in the resulting MPC.

This case study involves two subcases. The difference between the two subcases

is simply the set-point provided to the MPC. In the first subcase, the set-point is

relatively close to the initial steady state, resulting in a relatively small transition

time and distance, as well as good accuracy of the linearized model. The set-point

for the second is further from the initial steady state, which increases the transition

time, and decreases the accuracy of the linearized model, and illustrates the improved

stabilizing region of the proposed MPC.

Subcase 1 - Small Transition

The linearized state space model is expected to be reasonably accurate in the relatively

tight range of the first subcase and both MPC formulations are expected to perform

well. The set-points for this subcase are ySP = (2.454, 406.9) and a corresponding

steady state input set-point determined using the nonlinear model equations. The

sum of squared errors (SSE) of the two approaches are summarized in Table 3.3 and

the resulting plant trajectories are shown in Figure 3.1.

As can be seen in Figure 3.1, both MPC formulations perform well, reaching the

desired set-point quickly and without substantial oscillations. It could be said that the

Lyapunov MPC reaches the steady state somewhat faster than the endpoint penalty
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Figure 3.1: Input and Output Plots of the Lyapunov based MPC (solid black) and
endpoint penalty MPC (dashed black) in standalone operation for small transition

to set-point (blue dashed).

MPC, but it should be noted that this is dependent on the choice of the Lyapunov

gradient tolerance, ε. Larger values of the tolerance will result in faster and less

smooth performance. In Table 3.3, it can be seen that the SSE of the Lyapunov

MPC is substantially smaller than that produced by the endpoint penalty MPC,

suggesting that, in this case, the Lyapunov MPC is able to outperform the endpoint

penalty MPC.
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Variable Endpoint Penalty MPC Lyapunov MPC Percent Decrease
x1 (CA) 64.1 1.75 97.3
x2 (T ) 50800 902 98.2

u1 (CA,0) 9.71 0.0930 99.0
u2 (Q) 17400 1560 91.1

Table 3.4: Sum of Squared Error (SSE) by variable for standalone Lyapunov and
endpoint penalty MPC in large transition subcase.

Subcase 2 - Large Transition

The second subcase involves a somewhat larger transition with a set-point further

from the steady state. Here, the linearized model is expected to be less accurate,

resulting in poorer performance of the standard linear MPC. The proposed Lyapunov-

based MPC uses the nonlinear equations in its Lyapunov gradient constraint, which is

expected to improve the performance of the LMPC compared to the endpoint penalty

MPC as the set-point moves away from the linearization point. The set-points for this

subcase are ySP = (2.954, 411.9) and a corresponding steady state input set-point.

The SSE results are summarized in Table 3.4 and the resulting plant trajectories

shown in Figure 3.2.

As seen in Figure 3.2, the Lyapunov MPC is still able to reach the set-point

provided and does so rapidly and smoothly. The time to reach steady state is larger

than for the first subcase, but this is expected given the larger transition required.

The endpoint penalty MPC, on the other hand, is unable to reach the desired set-

point. Instead, it reaches a different steady state well away from the set-point. This is

a result of the MPC only having the linearized state space model to make predictions,

causing it to predict the system to move towards the set-point when in reality the

input moves it is providing are driving the system to a different steady state. This
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Figure 3.2: Input and Output Plots of the Lyapunov based MPC (solid black) and
endpoint penalty MPC (dashed black) in standalone operation for large transition

to set-point (blue dashed).

is a substantial drawback to stabilizing MPC methods (and to some extent, all MPC

methods) which only use a linearized model. It is a drawback which is mitigated by

the inclusion of the nonlinear Lyapunov constraints, while retaining the quadratic

nature of the resultant MPC formulation.

Table 3.4 shows that the inability of the endpoint penalty MPC to reach the

desired set-point results in the SSE of this MPC to be very high, and the corresponding

improvement of the LMPC is therefore also very high.

The first case study shows that the presented LMPC formulation is an effective

stabilizing MPC technique able to achieve significant improvements over a standard

linear model based stabilizing MPC formulation. When the set-point is close to the
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linearization point, both techniques reach the desired set-point quickly and without

substantial oscillations. The LMPC is able to produce significantly lower error than

the endpoint penalty MPC in this scenario, though this result is dependent on the

values of the tuning parameters used. When the set-point is far from the linearization

point, the LMPC greatly outperforms the endpoint penalty MPC, both in terms of

error reduction and because the endpoint penalty MPC is unable to reach steady

state at the desired set-point while the LMPC is able to do so. This is a significant

advantage of the LMPC, as it suggests the LMPC has a larger stabilizable region

than the endpoint penalty MPC due to its inclusion of the nonlinear plant model in

its Lyapunov gradient constraint.

3.4 CL-DRTO with Lyapunov MPC

The CL-DRTO formulation follows the same structure as previous versions of the

CL-DRTO algorithm with embedded prediction of an underlying MPC. The key

distinction here is that the underlying MPC includes Lyapunov stability constraints.

This is in contrast to previous work by Jamaludin and Swartz [27], which used an MPC

with no stability constraints, and Ramesh et al. [67], which used a linear MPC with

an endpoint penalty approach for stability. As mentioned previously, the underlying

LMPC used in this chapter is constructed to be convex quadratic, which allows the

embedded CL prediction of the underlying MPC to still be accomplished using a

simultaneous approach by including the first order KKT optimality conditions of the

MPC as algebraic constraints in the CL-DRTO problem, and enabling stability for the

original nonlinear system (instead of for the linear approximation). The adjustment

required is that the KKT conditions will change with the addition of the Lyapunov
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stability constraints. The complementarity constraints can still be handled with an

exact penalty approach.

3.4.1 Stabilizing CL-DRTO Formulation

The closed-loop DRTO approach presented here differs from previous work in

its model of the underlying MPC. As the MPC now contains Lyapunov stability

constraints, the embedded MPC subproblems must, therefore, also contain Lyapunov

stability constraints. The overall DRTO with embedded MPC subproblems, including

stability constraints, can be expressed in a general form as follows.
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maximize
yRef ,uRef

ϕDRTO
econ (x̂DRTO, ûDRTO, ŷDRTO) (3.4.1a)

s.t. x̂DRTO
j+1 = fDRTO(x̂DRTO

j , ûDRTO
j ) , j = 0, . . . , N − 1 (3.4.1b)

ŷDRTO
j = hDRTO(x̂DRTO

j ) , j = 1, . . . , N (3.4.1c)

ymin ≤ ŷDRTO
j ≤ ymax (3.4.1d)

yRef
min ≤ yRef ≤ yRef

max (3.4.1e)

hRef (yRef , uRef , ySP , uSP ) = 0 (3.4.1f)

ûDRTO
j = ũj,0 + uSP , j = 0, . . . , N − 1 (3.4.1g)

ũj,0 ∈ arg min
ũj,k

ΦMPC
j , j = 0, . . . , N − 1 (3.4.1h)

s.t. x̃j,k+1 = Ax̃j,k +Bũj,k , k = 0, . . . ,m− 1 (3.4.1i)

∆ũj,k = ũj,k − ũj,k−1 , k = 0, . . . ,m− 1 (3.4.1j)

ũmin ≤ ũj,k ≤ ũmax , k = 0, . . . ,m− 1 (3.4.1k)

ũj,k = 0 , k ≥ m (3.4.1l)

dV (x̃)

dx̃

∣∣∣∣
x̃j,k

∗ [f(x̃j,k) + g(x̃j,k)ũj,k] ≤ −εV (x̃j,k), k = 0

(3.4.1m)

The objective function used in the DRTO is intended to be an economic objective

function, although a target tracking objective also works if the desired steady

state of the system is already known. The plant model used in this chapter is

a nonlinear model for improved performance and accuracy. The DRTO contains

output constraints for the system, which may be hard or soft constraints, while

the MPC (and MPC subproblems) contain the input constraints. Imposing
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input constraints within the MPC optimization problem is consistent with typical

MPC implementations; imposing these constraints as well at the DRTO primary

optimization level (represented by Eqs. 3.4.1a to 3.4.1g) would be redundant. Hard

output constraints within the MPC formulation are typically avoided in practice due

to considerations of feasibility and stability, thus output constraints are applied at

the DRTO primary optimization level. The degrees of freedom of the DRTO are the

reference trajectories from which the MPC set-points are ultimately extracted; the

reference trajectories are also constrained at the DRTO level. Finally, in accordance

with previous CL-DRTO approaches, a set-point hold can also be applied such that

the set-point provided by the DRTO to the MPC must be the same for a certain

number of consecutive time points.

The communication between the DRTO and the MPC subproblems mirrors

the communication between the DRTO and the actual plant MPC executions,

and therefore the same information is exchanged in both cases. Specifically, the

set-points used for the MPC are extracted from the reference trajectories which

are decision variables of the DRTO, as expressed in equation 3.4.1. In the other

direction, the inputs determined by the embedded MPC subproblems are used as

the inputs at the DRTO primary at the appropriate time position. The states for

the MPC subproblems are assumed to be fully observed, and therefore would update

with plant measurements in a real MPC. However, as these MPC subproblems have

no interaction with the real plant, the DRTO predictions of the states are used

instead (these are different from the MPC predicted states as the MPC uses a linear

prediction model and the DRTO a nonlinear model). The MPC also uses the last

MPC execution determined initial input as the previous input of the plant (for
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purposes of calculating the change in input).

3.4.2 Solution Approach

The resulting CL-DRTO is a multi-level optimization problem represented by the

primary DRTO problem and the embedded MPC subproblems. For this chapter,

this problem is solved using the simultaneous method used in Baker and Swartz

[3], Jamaludin and Swartz [27], and Ramesh et al. [67]. Specifically, as alluded to

previously, the MPC subproblems are reformulated to their associated Karush-Kuhn-

Tucker (KKT) first order optimality conditions. This set of equations is then included

in the DRTO as algebraic constraints, resulting in a single-level mathematical program

with complementarity constraints (MPCC). The complementarity constraints are

handled with an exact penalty approach, as presented in Ralph and Wright [66]. Due

to the addition of the Lyapunov constraints, the KKT conditions for the embedded

MPC subproblems are different here from those previously derived. The KKT

conditions of this problem can be expressed as follows (using the specific choice of

Lyapunov function from equation 3.3.2, rather than the general form, for simplicity).

The Lagrangian of the convex LMPC is given by
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Lj =
m−1∑
k=0

(x̃j,k+1)
TCTQC(x̃j,k+1) + (ũj,k)

TR(ũj,k) + (∆ũj,k)
TS(∆ũj,k)

−
m−1∑
k=0

(λ1
j,k+1)

T (x̃j,k+1 − Ax̃j,k −Bũj,k)−
m−1∑
k=0

(λ2
j,k)

T (ũj,k − ũj,k−1 −∆ũj,k)

−
m−1∑
k=0

(η1j,k)
T (ũj,k − ũmin)−

m−1∑
k=0

(η2j,k)
T (ũmax − ũj,k)

+ (η3j,0)(x̃
T
j,0Pg(x̃j,0)ũ0 + x̃T

j,0Pf(x̃j,0) + εV (x̃j,0))

(3.4.2)

From this, the KKT optimality conditions are:

• Lagrange gradients, ∇Lj = 0

with respect to x̃j,k

2CTQC(x̃j,k) + ATλ1
j,k+1 − λ1

j,k = 0, k = 1, . . . ,m− 1 (3.4.3a)

2CTQC(x̃j,k)− λ1
j,k = 0, k = m (3.4.3b)

with respect to ∆ũj,k

2S(∆ũj,k) + λ2
j,k = 0, k = 0, . . . ,m− 1 (3.4.3c)
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with respect to ũj,k

2R(ũj,k) +BTλ1
j,k+1 − λ2

j,k + λ2
j,k+1 − η1j,k + η2j,k

+(η3j,k)(g(x̃j,k))
T (P T x̃j,k) = 0, k = 0 (3.4.3d)

2R(ũj,k) +BTλ1
j,k+1 − λ2

j,k − λ2
j,k+1 − η1j,k + η2j,k = 0, k = 1, . . . ,m− 2 (3.4.3e)

2R(ũj,k) +BTλ1
j,k+1 − λ2

j,k − η1j,k + η2j,k = 0, k = m− 1 (3.4.3f)

• Primal feasibility of equality constraints, input inequality constraints

transformed to equalities using slack variables, µi
j,k, i = 1, 2, 3

ũj,k − ũmin − µ1
j,k = 0, k = 0, . . . ,m− 1 (3.4.4a)

ũmax − ũj,k − µ2
j,k = 0, k = 0, . . . ,m− 1 (3.4.4b)

x̃T
j,0Pg(x̃j,0)ũ0 + x̃T

j,0Pf(x̃j,0) + εV (x̃j,0) + µ3
j,0 = 0 (3.4.4c)

µ1
j,k , µ2

j,k , µ3
j,0 ≥ 0, k = 0, . . . ,m− 1 (3.4.4d)

It should be noted that, in addition to the above reformulation of the inequality

constraints, the equality constraints of the MPC must also be included in the list

of primal feasibility KKT constraints, but are left out here for brevity, as they are

unchanged from their form in equations 3.4.1i-3.4.1j.

• Dual feasibility of inequality constraints

η1j,k , η2j,k , η3j,0 ≥ 0, k = 0, . . . ,m− 1 (3.4.5)
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• Complementarity constraints

ηij,kµ
i
j,k = 0, k = 0, . . . ,m− 1, i = 1, 2 (3.4.6a)

η3j,0µ
3
j,0 = 0 (3.4.6b)

The primary differences from previous CL-DRTO approaches are equations 3.4.3d

and 3.4.4c which have been adjusted and added, respectively, to account for the

Lyapunov constraints. The complementarity constraints are handled with an exact

penalty approach by multiplying the corresponding primal and dual KKT variables

together, summing the products, and adding the result to the DRTO objective

function with an appropriate weighting term.

ϕ′ = ϕ+ ρ(
N∑
j=1

m−1∑
k=0

(η1j,kµ
1
j,k + η2j,kµ

2
j,k) + η3j,0µ

3
j,0) (3.4.7)

where ϕ is the original DRTO objective function and ϕ′ is the new objective

function with the exact penalty weights for the complementarity variables. With an

appropriately large weighting term, the complementarity constraints are satisfied for

all time.

3.4.3 Overall System Stability

The above CL-DRTO retains the stability properties of the underlying Lyapunov

MPC. In other words, any system and control implementation for which a standalone

LMPC with constant set-point is itself stabilizing will also be stabilizable by the

CL-DRTO with underlying LMPC system.
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Theorem 2. Given any initial state x0 ∈ Ω, the CL-DRTO optimization problem of

Equation 3.4.1 is feasible for all time (in the absence of hard output constraints, Eq.

3.4.1d) , x(t) ∈ Ω ∀ t ≥ 0.

Proof. As posited previously, any initial states x0 ∈ Ω will result in initial and

subsequent feasibility, for all time, t ≥ 0. This proposition was based on a static

set-point of the LMPC at the origin, which causes the Lyapunov constraint to

continuously drive the system towards the origin, away from the edges of the level

set, Ω. Based on this, there exists a reference trajectory in the CL-DRTO which

guarantees feasibility of the underlying LMPC subproblems, so long as the initial

states are within Ω. In the absence of hard output constraints, this also implies

that the overall CL-DRTO will be feasible. Assuming the reference trajectories are

constrained to Ω, all subsequent states of the system will also be in Ω, guaranteeing

feasibility of the CL-DRTO for all time, t ≥ 0.

Remark 5. The existence of hard output constraints may cause the CL-DRTO to

become infeasible as they may overly restrict the possible set-points provided to the

LMPC and thereby the available input moves. However, if Ω is defined with respect

to both the input constraints present in the LMPC and the output constraints in

the DRTO (see Mhaskar et al. [55]), the resulting formulation will be feasible and

stabilizing for all x0 ∈ Ω.

Remark 6. The stability of the LMPC being independent of its horizon is particularly

useful as part of the CL-DRTO. This is because the horizon of the LMPC subproblems

has a significant effect on the computation time of the CL-DRTO (because multiple

LMPC subproblems must be computed). Therefore, a short horizon for the LMPC

can be used without loss of stability of the overall CL-DRTO. Furthermore, the loss
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in performance in the LMPC as a result of the short horizon will be predicted by the

DRTO and can be compensated for. Therefore, the computation time of this system

can be reduced considerably by using a short LMPC horizon and allowing the CL-

DRTO to mitigate much of the resulting performance loss while the overall system

remains stabilizing.

Remark 7. The increase in the stabilizing region of the LMPC relative to stabilizing

MPC formulations which only use a linear model is of substantial benefit to the CL-

DRTO. This is because the CL-DRTO is free to provide set-points to the LMPC

within the stabilizing region with no risk of infeasibility (set-points outside Ω may

or may not be feasible for the LMPC, but set-points within Ω are guaranteed to be

feasible). Therefore, a larger region Ω wherein the CL-DRTO can provide set-points

both increases the region to which the CL-DRTO can effectively optimize a transition;

and allows for more freedom of set-points for the LMPC, which can improve the

resulting behavior of the LMPC. This behavior is demonstrated clearly in the following

Case Study 2, specifically Subcase 2, as well as in both subcases of Case Study 3.

Remark 8. In the event of the set-point trajectory provided to the LMPC being

a static point, the resulting system will also be stabilizing. However, there is no

guarantee that the set-point trajectory will be static over the DRTO horizon. This

may be the result of the CL-DRTO attempting to improve the economic behavior of

the system during a transition or because the optimal economic behavior of the system

is not at steady state but rather oscillatory. In these cases, the system is guaranteed

to stay within Ω.
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3.4.4 Case Study 2 - DRTO with target tracking objective

In this case study, the system being controlled is identical to that used previously

for Case Study 1 where the convex LMPC was tested in standalone operation. Now,

however, the MPC formulation is embedded in a two-layer control hierarchy with

the CL-DRTO formulation at the upper level. This means that the MPC will be

receiving set-point trajectories provided by the DRTO, rather than a single static

set-point. This is meant to improve performance of the overall control system by

allowing the DRTO to predict the behavior of the MPC and adjust its provided

set-points accordingly.

For this scenario, the MPC formulations use the same parameter values as in the

standalone MPC scenario, with one exception being the horizon of the LMPC going

from 5 to 2. This will not affect the stability of the LMPC, as the stability properties

are contained in the Lyapunov constraints and which are only applied for the initial

time step, thereby being independent of the MPC horizon.

This was done for improved computation time at the DRTO level (which must

simulate the MPC subproblems), and was found to have negligible effect on the

overall controller performance, but substantially improve the computation time of

the CL-DRTO. The horizon for the endpoint penalty MPC was kept the same as the

stability properties of the endpoint penalty MPC are closely tied to the hoizon - a

longer horizon gives the MPC more time to drive the system to its desired endpoint

conditions. This stability horizon independence for the LMPC can pose an advantage

over an endpoint penalty MPC by reducing its horizon and therefore computational

complexity, which is especially important when embedded in a CL-DRTO, as the

DRTO must model many instances of the MPC simultaneously.
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Table 3.5: DRTO Parameters for MIMO Case Study

Parameter Description Value
N Optimization Horizon 20

∆TDRTO DRTO Time Step 0.05 h
xmin State Constraints - Minimum (0.454,391.9)
xmax State Constraints - Maximum (5.954,411.9)
xSP,min State set-point Constraints - Minimum (0.454,391.9)
xSP,max State set-point Constraints - Maximum (5.954,421.9)

The DRTO uses the nonlinear model equations in its prediction, allowing it to

more accurately predict the behavior of the system. However, its MPC subproblems

use the linearized equations, the same as for the MPC itself, in order to provide

the best possible prediction of the MPC behavior. While the MPC uses only input

bounds, the DRTO also includes output bounds to ensure the resultant behavior of

the system stays within desired constraints. These constraints are formulated in the

DRTO as soft constraints with a squared penalty term added to the objective function

using a weighting parameter of ω = 100. Additionally, the set-points provided to

the MPC are themselves constrained. Finally, a set-point hold of 2 MPC periods is

applied, which requires the set-points provided to stay the same for 2 MPC iterations.

A full list of the DRTO parameters is given in Table 3.5.

For this scenario, the objective function used by the DRTO is a target tracking

objective. This a version of the DRTO-MPC system, where the desired operating

point is known a priori, corresponds to a reference governor control system in which

the set-points may be varied to provide additional degrees of freedom to shape the

response (Li and Swartz [40]; Garone et al. [19]). In the present context it may

be viewed as a simplified case of the DRTO which allows for easier analysis of the

comparative properties of the DRTO with the proposed Lyapunov MPC and the
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DRTO with an endpoint penalty MPC. The objective function is given below in

Eq. 3.4.8. Note that, in practice, the full objective function also includes the soft

constraint penalty term and the complementarity constraint exact penalty term for

the embedded MPC subproblems, but these are not shown here for compactness.

min ϕ =
N∑
j=1

(yj − ytar)
T (yj − ytar) (3.4.8)

As in the previous scenario of the standalone MPC, this target tracking CL-DRTO

scenario involves two subcases, one with a small transition and one with a larger

transition. In fact, the targets provided in each of the two subcases are the same

as the set-points used in the two subcases of the standalone MPC scenario. This is

meant to show the improved performance of the CL-DRTO over the standalone MPC

using both the LMPC and endpoint penalty MPC formulations.

Subcase 1 - Small Transition

The first subcase involves a small transition with a DRTO target of ytar =

(2.454, 406.9). As both MPC formulations showed good performance in this subcase

as standalone MPCs, it is expected that the CL-DRTO with MPC system also offers

good performance with both MPC formulations. The SSE’s of the two formulations

are summarized in Table 3.6 and the plant trajectories shown in Figure 3.3.

As seen in Figure 3.3, the performance of the two formulations are here very

similar. Both reach the set-point quickly, though with some oscillations before

reaching steady state. The LMPC here is noticeably more aggressive than the

endpoint penalty MPC. This does result in a substantial overshoot of the set-point,

especially in the concentration of reactant (x1). Additionally, both results here are
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Figure 3.3: Input and Output Plots of the DRTO with Lyapunov based MPC (solid
black) and DRTO with endpoint penalty MPC (dashed black) for small transition,

target tracking objective (red dashed - target).

Table 3.6: Sum of Squared Error (SSE) by variable for DRTO with Lyapunov and
endpoint penalty MPC in small transition subcase.

Variable Endpoint Penalty MPC Lyapunov MPC Percent Decrease
x1 (CA) 1.75 1.20 31.3
x2 (T ) 39.0 141 -261

u1 (CA,0) 25.8 126 -387
u2 (Q) 6070 2540 58.1
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much less smooth than in the standalone MPC version, which is expected as the

set-point provided to the MPC varies, resulting in noisy behavior. This, along with

the overshoot seen in the LMPC version, can be largely mitigated by tuning the

set-point hold parameter and the set-point variable bounds. Increasing the set-point

hold will smooth out the trajectories of the controllers, approaching the standalone

MPC behavior at a set-point hold corresponding to the DRTO horizon. Similarly,

further constraining the set-points will decrease the overshoot by not allowing the

set-point provided to the MPC to be too aggressive. It should be noted that the

set-point trajectories determined by the DRTO are not included in the plots for this

subcase for clarity.

Table 3.6 shows that the LMPC does not, overall, outperform the endpoint penalty

MPC in terms of error reduction. Specifically, it reduces the error of the reactant

concentration (x1) and heat input (u2) while increasing the error of the temperature

(x2) and the inlet reactant concentration (u1). However, the overall SSE of both

methods is relatively small compared to subsequent cases. Furthermore, the error

of both methods can be reduced by appropriate tuning of the DRTO and MPC

parameters, as both formulations are clearly capable of reaching steady state at the

desired target value.

Subcase 2 - Large Transition

In the second subcase, as in the standalone MPC version, the transition is larger,

causing the linearized MPC model to be less accurate. While the standalone endpoint

penalty MPC was unable to reach the desired set-point, it is here expected that the

CL-DRTO will be able to drive the MPC towards the desired set-point as it can
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Figure 3.4: Input and Output Plots of the DRTO with Lyapunov based MPC (solid
black - plant; solid blue - set-point) and DRTO with endpoint penalty MPC (dashed
black - plant; dashed blue - set-point) for large transition, target tracking objective

(red dashed - target).

predict the actual behavior of the plant (using the nonlinear model equations) and

can provide set-points to the MPC which account for the MPC model error. The

CL-DRTO with LMPC is expected to perform very similarly to the small transition

subcase, as the LMPC had no difficulty reaching the set-point in standalone mode.

The errors of the two methods are summarized in Table 3.7 and the resulting plant

behavior shown in Figure 3.4.

As seen in Figure 3.4, the CL-DRTO with LMPC performs well, reaching the set-

point and settling quickly with some overshoot. This is expected as the standalone
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Table 3.7: Sum of Squared Error (SSE) by variable for DRTO with Lyapunov and
endpoint penalty MPC in large transition subcase.

Variable Endpoint Penalty MPC Lyapunov MPC Percent Decrease
x1 (CA) 27.6 1.40 94.9
x2 (T ) 325 551 -69.9

u1 (CA,0) 728 142 80.4
u2 (Q) 125000 13800 88.9

LMPC did not have difficulty reaching this set-point. The CL-DRTO can be seen to

noticeably increase the aggressiveness of the controller as compared to its standalone

performance, as evidenced by its much shorter time to reach the set-point and its

lower overall error. In contrast, the CL-DRTO with endpoint penalty MPC was able

to approach the set-point in a reasonable time, though slower than with the LMPC,

but was unable to control the system to steady state. Instead, the system continues

to oscillate near the set-point. This is likely the result of the CL-DRTO being able

to account for the MPC model error, but not fully stabilize the resulting MPC-plant

system. This shows the limitations of the CL-DRTO method when the underlying

MPC is unable to reach the desired set-point on its own. This attempt of the DRTO

to force the endpoint penalty MPC to the desired target can be seen in the set-point

trajectories provided to the MPC, particularly for the reactor temperature (x2). The

DRTO mostly provides set-points much higher than the actual target value in order

to manipulate the MPC to move to the target, since providing the MPC with set-

points equal to the target would result in the MPC reaching steady state away from

the target, as evidenced by the standalone MPC performance.

Table 3.7 shows that the inability of the endpoint penalty MPC method to reach

steady state at the desired target results in substantially higher SSE for three of the

four controlled variables when compared to the LMPC method. The exception is
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for the temperature (x2), where the endpoint penalty MPC has lower error than the

LMPC. This is because the endpoint penalty MPC approaches the target value more

quickly initially (in the first few time stpes) than the LMPC does. As the majority

of the SSE contributions come from the early time points when the variables are far

from the target, this small increase in aggressiveness by the endpoint penalty MPC

results in the overall SSE being lower than the LMPC, despite the former’s inability

to reach the desired target steady state.

Overall, when used in a two-layer control hierarchy with the upper level DRTO

using a target tracking objective function, the DRTO with LMPC is able to

outperform the endpoint penalty MPC when the target value is far from the

linearization point. In this case, rather than the endpoint penalty MPC method not

being able to reach the target, it instead reaches the region near the target but does

not reach steady state, instead oscillating around the target.

3.4.5 Case Study 3 - DRTO with economic objective

In the final version of the case study, the target tracking objective is exchanged for a

more realistic and commonly used economic objective function. Specifically, the rate

of reaction is intended to be maximized for this scenario, as shown in Eq. (3.4.9).

min ϕ =
N∑
j=1

−k0e
−E

R(yj,2)y2j,1 (3.4.9)

The parameters used by the DRTO and MPC in this scenario are the same as for

the target tracking DRTO scenario. The only changes are the variable and set-point
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Table 3.8: Input and Output constraints for DRTO with economic objective
function, subcase 1.

Variable Minimum Maximum
x1 (CA) 0.954 2.954
x2 (T ) 396.9 406.9

u1 (CA,0) 0 10
u2 (Q) -150 150

bounds, which will be mentioned as they are adjusted in each subcase.

The above objective function effectively causes the system to attempt to maximize

both output variables. Therefore, the system will likely attempt to reach the upper

bounds of the reactant concentration and temperature in order to maximize the

objective function. In light of this, the output and input bounds were chosen

separately for each subcase. Once again, soft constraints were used for the outputs at

the DRTO level and the inputs were constrained at the MPC level (hard constraints).

Subcase 1 - Active State Constraints

For this subcase, the input and output bounds were chosen such that it is expected

that the two output bounds are active while neither input bound is active.

Additionally, the bounds are sufficiently close to the initial steady state that the

linearized MPC model is expected to be able to stabilize at the new optimal steady

state. Therefore, both DRTO formulations are expected to perform reasonably well.

The actual economic objective values for both subcases are summarized in Table 3.9,

and the corresponding state constraint violations in Table 3.10. The plant behavior

for the first subcase is shown in Figure 3.5. The bounds for this subcase can be seen

in Table 3.8.

The CL-DRTO with LMPC formulation performs well in this subcase, as can
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Figure 3.5: Input and Output Plots of the DRTO with Lyapunov based MPC (solid
black - plant; solid blue - set-point) and DRTO with endpoint penalty MPC (dashed
black - plant; dashed blue - set-point) with economic objective function (red dashed

- bounds), subcase 1.

Table 3.9: Actual average economic objective value for DRTO with Lyapunov and
endpoint penalty MPC with economic objective function.

Subcase Endpoint Penalty MPC Lyapunov MPC Percent Increase
1 6.80 9.19 35.1
2 7.31 11.2 53.7
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Table 3.10: Constraint Violation by variable for DRTO with Lyapunov and
endpoint penalty MPC with economic objective function.

Subcase Variable Endpoint Penalty MPC Lyapunov MPC

1
x1 (CA) 0 0.0258
x2 (T ) 0 0.00401

2
x1 (CA) 0 0
x2 (T ) 0 0.136

be seen in Figure 3.5, with similar performance to that seen in the first subcase

of the target tracking objective scenario. It reaches the optimal steady state fairly

quickly and with only small constraint violations. The overshoot is substantially

reduced compared to the target tracking scenario because going above the steady

state is heavily penalized in this scenario whereas it was not in the target tracking

objective scenario. The CL-DRTO with endpoint penalty MPC performs much

worse than the LMPC. It is unable to reach the optimal steady state of the system,

instead approaching the optimal state for the temperature (x2) but exhibiting large

oscillations. For the reactant concentration (x1), the system does not approach the

optimal state but instead oscillates around a point well below the upper bound. The

inputs, correspondingly, also do not approach the optimal steady state. This overall

behavior results in substantially reduced economic performance (Table 3.9), though

with improved constraint violation numbers (Table 3.10).

Subcase 2 - One State, One Input Active Constraints

In the second subcase, the input and output bounds are adjusted such that the

optimal steady state is at the upper bounds of the first input and second output. The

optimal steady state is also further from the linearization point in this subcase, which

is expected to reduce the performance of the endpoint penalty MPC formulation. The
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Table 3.11: Input and Output constraints for DRTO with economic objective
function, subcase 2.

Variable Minimum Maximum
x1 (CA) 0.454 5.954
x2 (T ) 391.9 411.9

u1 (CA,0) 0 10
u2 (Q) -150 150

bounds for this are given in Table 3.11.

As seen in Figure 3.6, the DRTO with LMPC is able to substantially outperform

the DRTO with endpoint penalty MPC by stabilizing at the optimal steady state

while the endpoint penalty formulation does not. This performance is similar to that

seen in subcase 1. The DRTO with Lyapunov MPC is able to quickly and with little

oscillation reach the optimal steady with a small constraint violation (Table 3.10).

The DRTO with endpoint penalty MPC does not drive the system to the optimal

steady state defined by two upper bounds. Instead, its performance is again similar

to subcase 1, though more pronounced. Only the second state approaches the optimal

steady state, with all other variables staying far from their optimal conditions. This

controller again shows significant oscillations rather than reaching a steady state.

This behavior results in substantially improved economic performance by the DRTO

with LMPC (Table 3.9), with over 50% improvement relative to the DRTO with

endpoint penalty MPC.

Overall, the LMPC method substantially outperforms the endpoint penalty MPC

in the cases investigated where the DRTO uses an economic objective function. This

may be related to the optimal steady state being at active constraints, or may simply

represent a limitation in stabilizing region for the endpoint penalty MPC. With only

a slight improvement in constraint violation reduction, the endpoint penalty MPC
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Figure 3.6: Input and Output Plots of the DRTO with Lyapunov based MPC (solid
black - plant; solid blue - set-point) and DRTO with endpoint penalty MPC (dashed
black - plant; dashed blue - set-point) with economic objective function (red dashed

- bounds), subcase 2.

produces significantly lower economic returns than the LMPC both when the optimal

steady state is close to the linearization point and when it is further away.

3.5 Conclusion

In this chapter, a CL-DRTO algorithm is presented which predicts the behavior of an

underlying convex Lyapunov-based stabilizing MPC. The convex LMPC was adjusted

from a nonlinear Lyapunov-based stabilizing MPC formulation to use a linear plant

prediction model and to enforce the Lyapunov stability constraints at only the initial
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time step of the MPC execution. This transformed the previously nonlinear LMPC

into a convex QP, thereby allowing it to be directly embedded into the CL-DRTO

algorithm as its first-order KKT conditions. The new LMPC was posited to retain

all the stability properties of the nonlinear LMPC; it was also shown to be effective

in controlling and stabilizing a nonlinear system over a wider range set-points than

an endpoint penalty stabilizing MPC.

The resulting CL-DRTO algorithm was able to predict and account for the

dynamic behavior of the plant system as well as the underlying LMPC and thereby

determine economically optimal set-points to provide to the LMPC. This algorithm

was posited to maintain the stability properties of the underlying LMPC, as any

feasible solution to the CL-DRTO necessitated that the underlying LMPC also be

feasible because the LMPC was directly embedded in the CL-DRTO. The CL-DRTO

was then tested against a similar algorithm which predicted and used an underlying

endpoint penalty MPC. The new algorithm with Lyapunov constraints was shown to

outperform the prior endpoint penalty strategy in both target tracking and economic

objective function cases. These results show that the new CL-DRTO with Lyapunov

MPC algorithm is an effective economic optimization technique for OL unstable

processes, and exhibits superior performance and a wider range of stable set-points

than a similar strategy with an endpoint penalty MPC.
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Chapter 4

Robust Closed-Loop Dynamic

Real-Time Optimization

The formulations and results in this chapter have been published and presented in:

[1] MacKinnon, L. and Swartz, C.L.E., 2021. Robust Multi-Scenario Dynamic

Real-Time Optimization with Embedded Closed-Loop Model Predictive

Control. IFAC-PapersOnLine, 54(3), 481-486.

[2] MacKinnon, L. and Swartz, C.L.E., 2023. Robust Closed-Loop Dynamic Real-

Time Optimization. Accepted (April 12, 2023) for Publication, Journal of

Process Control, JPROCONT-D-22-00531R1.

[3] MacKinnon, L. and Swartz, C. L. E., 2020. Dynamic Real Time Optimization

Under Uncertainty with Embedded CL Prediction. Presented at the 2020

Virtual AIChE Annual Meeting (AIChE 2020).

[4] MacKinnon, L. and Swartz, C. L. E., 2022. A Multi-Scenario Stochastic
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Framework for Dynamic Real-Time Optimization under Uncertainty with

Embedded Closed-Loop MPC. Presented at the 2022 AIChE Annual Meeting

(AIChE 2022), Phoenix, AZ, USA.

4.1 Introduction

The handling of uncertainty has been widely incorporated into regulatory control in

the form of robust MPC; it is, however, less common for it to be handled at the

economic optimization level. Conceptually, the inclusion of uncertainty handling at

the RTO level is just as viable as doing so at the control level. The consequence of

not handling, or improperly handling, the uncertainty is potential loss of profitability.

Therefore, inclusion of uncertainty handling characteristics in an RTO or DRTO

framework has the potential to improve the economic performance of a system where

the plant behavior is uncertain.

Traditionally, in the presence of uncertainty, steady state RTO algorithm are

executed with two key steps - data reconciliation and estimation of model parameters

(often performed simultaneously), followed by optimization to determine a new

operating point [48, 12]. Strategies to explicitly account for uncertainty include

calculation of a back-off amount from active inequality constraints into the feasible

region based on disturbances and/or measurement noise [60, 42, 73], and casting the

RTO problem within a stochastic optimization framework [82]. The applications

considered in these studies include mineral flotation circuits [60], a fluid catalytic

cracking unit [73], and gasoline blending [72, 82].

In contrast to steady state RTO, explicit consideration of uncertainty in DRTO

has received relatively little attention. Würth et al. [77] use neighboring-extremal
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updates of parametric sensitivities to avoid solving the rigorous optimization problem

online. This method was found to be fast for small perturbations; systems that

exhibit strong nonlinearities or larger perturbations require additional iterations,

thereby increasing the solution time of the optimization problem. The method

was applied to a simulated semi-batch reactor. Krishnamoorthy et al. [33] utilize

a scenario tree-based optimization strategy in dynamic real-time optimization

applied to a gas lifted well network under uncertainty. Perfect low level controllers

were assumed. Müller et al. [57] apply a chance-constrained DRTO method to

a constructed hydroformylation mini-plant. A dynamic model was formulated,

comprising 23 process units, 12 components, and 25 streams. Three uncertain

parameters were identified.

This chapter extends the MPC-aware CL-DRTO paradigm of Jamaludin and

Swartz [27] to directly account for uncertainty within the DRTO optimization

formulation. A scenario-based stochastic optimization formulation is used, in

which the nominal plant MPC is applied to a number of discrete uncertain plant

realizations, and the expected value of the objective function optimized. An

input-clipping strategy is used to approximate the predicted closed-loop response

under constrained MPC in order to reduce computation time, and we also explore

the impact of the number of scenarios on the performance of the algorithm.

The remainder of the chapter is organized as follows. The mathematical

formulation of the robust DRTO algorithm is presented in Section 4.2, where the

primary economic optimization problem is laid out, followed by the setup of the

embedded MPC subproblems. The solution strategy for this multi-level optimization

problem is then explained, followed by a description of its modification by inclusion
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of the input clipping approximation method. Section 4.3 presents two case studies,

where the performance of the robust CL-DRTO scheme is evaluated against that

of a nominal, single-scenario CL-DRTO. The first is a simple SISO system, and

the second is a larger multi-input-multi-output (MIMO) case study. Additionally,

the second case study includes an investigation into the effectiveness of different

numbers of scenarios, and how the robust CL-DRTO performs with multiple sources

of uncertainty.

4.2 Formulation

The objective of the robust DRTO formulation is to extend the CL-DRTO strategy

previously developed in Jamaludin and Swartz [27] to effectively handle plant

uncertainty at the DRTO level. This is accomplished by modeling multiple

possible uncertain scenarios within the CL-DRTO algorithm. The plant prediction

model differs from one scenario to the next through different uncertain parameter

realizations within the model, while the MPC subproblems within each scenario

utilize the same nominal plant model. This is because the actual MPC controlling the

plant does not change based on the observed behavior of the plant; this phenomenon

is replicated in the design of the DRTO scheme. An illustration of the multi-scenario

robust CL-DRTO architecture is presented in Fig. 4.1.

This work considers nonlinear plants controlled by linear MPC, a common practice

in industrial MPC applications. The DRTO uses a discretized nonlinear plant model,

while the MPC subproblems utilize a linear plant model. The advantage of using

two different model types is that the DRTO can maintain greater accuracy, while

the MPC subproblems can remain relatively simple and maintain consistency with
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Figure 4.1: A visualization of the robust DRTO architecture.

the plant MPC. However, if the plant MPC uses a nonlinear model, it is likely to be

beneficial to also use a nonlinear plant model for the MPC subproblems within the

DRTO. This is a topic for future work.

The degrees of freedom in the robust DRTO optimization formulation are the

set-point trajectories utilized by the MPC. These trajectories are common to all

scenarios, and are determined such that the expected performance over all plant

scenario closed-loop responses is optimized across the DRTO prediction horizon. In

the DRTO formulation that follows, the primary optimization and MPC subproblems

are presented in separate subsections for clarity; however, it is important to recognize

that they constitute a single multilevel optimization problem whose components are

solved simultaneously.
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4.2.1 Primary DRTO problem

The primary robust CL-DRTO formulation proposed here includes an economic

objective function, a nonlinear plant prediction model, and embedded prediction of

the underlying MPC. The plant prediction model changes for each scenario, here

expressed as a changing parameter (or parameters) within the model. The scenario

tree branches only once, after the initial time point, with each scenario thereafter

following a single path corresponding its predicted closed-loop response. The DRTO

objective function can be specified as desired, including using a set-point target

tracking function rather than an explicit economic objective, but is here expressed

as the expected value of the economic performance over the uncertainty scenarios.

The DRTO problem also includes process constraints relevant to the plant being

modeled. These may include safety constraints or known relations between variables

which must remain true for physical realizability. In terms of variable bounds, the set-

point trajectories here have hard constraints so that the solution to the optimization

problem does not become unbounded and the set-points do not move to a point

which is not realistic to implement on the real plant. The predicted output variables

may be bounded as necessary at the DRTO level, although it should be noted that

including these as hard constraints has the potential to lead to infeasibility of the

overall optimization problem, thus in this work the output bounds are included as

soft constraints. Input constraints are applied in the MPC subproblems, and are

therefore not necessary in the DRTO primary optimization problem. Unless otherwise

specified, all equations and variables indexed by i apply to scenarios, i = 1, . . . , Ns.

The primary DRTO problem is expressed as follows:
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min
yRef ,uRef

ϕecon =
∑
i

ρiϕi
econ(x

i, ui, yi) (4.2.1a)

s.t. xi
j+1 = f i(xi

j, u
i
j), j = 0, . . . , N − 1 (4.2.1b)

yij = hi(xi
j), j = 1, . . . , N (4.2.1c)

0 ≤ g(xi
j, y

i
j), j = 1, . . . , N (4.2.1d)

ui
j =f̃j(ỹ

SP , ũSP , yij), j = 0, . . . , N − 1 (4.2.1e)

0 = hRef (yRef , uRef , ỹSP , ũSP ) (4.2.1f)

0 ≤ gRef (yRef
j+1 , u

Ref
j ), j = 0, . . . , N − 1 (4.2.1g)

In the above, ϕecon is the economic objective function of the primary DRTO; ϕi
econ

is the economic objective function value for scenario i; ρi is the objective weighting

for scenario i; u, x, y are the system inputs, states, and outputs, respectively; the

tilde ( ˜ ) denotes variables and functions associated with the MPC subproblems;

the Ref superscript denotes reference trajectory variables; the SP superscript

denotes set-point trajectories for the MPC; f i is the set of dynamic equations for

the plant model; hi is the algebraic plant model relating states to outputs; g is the

set of inequality process constraints; hRef is the functional relationship between the

reference trajectory and the set-point trajectories for each MPC subproblem; gRef is

the set of bounds on the reference points; i denotes the uncertain scenario; j denotes

the DRTO time point; and ui, xi, yi are composite vectors of the inputs, states, and

outputs, respectively, for plant scenario i over the DRTO prediction horizon.

The degrees of freedom of the DRTO problem are the set-point trajectories which
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are subsequently provided to the MPC. The set-point trajectories must be the same

across all scenarios such that there is a single, unified set-point trajectory which may

be applied to the actual plant MPC. The input values, including the initial input

move which must be the same across all scenarios, are determined entirely by the

MPC subproblems, and so are not degrees of freedom of the DRTO problem.

4.2.2 MPC subproblems

The MPC subproblems are intended to capture the behavior of the actual MPC in use

in the plant control system, thus there is an MPC subproblem associated with every

control interval along the DRTO horizon. The MPC used in this work constitutes

a standard QDMC formulation [18], but with the use of a state space rather than

step response model. In this formulation, the objective function is a sum of quadratic

terms for output and input set-point tracking, and for input move suppression. The

inputs are bounded at the MPC level in this formulation. The MPC subproblems

take the form for i = 1, . . . , Ns:
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min
ũi
j,k

ϕ̃i
j =

p∑
k=1

(ỹij,k − ỹspj,k)
TQ(ỹij,k − ỹspj,k) +

m−1∑
k=0

(∆ũi
j,k)

TR(∆ũi
j,k)

+
m−1∑
k=0

(ũi
j,k − ũsp

j,k)
TS(ũi

j,k − usp
j,k) (4.2.2a)

s.t. x̃i
j,k+1 = Ax̃i

j,k +Bũi
j,k, k = 0, . . . ,m− 1 (4.2.2b)

x̃i
j,k+1 = Ax̃i

j,k +Bũi
j,m−1, k = m, . . . , p− 1 (4.2.2c)

ỹij,k = Cx̃i
j,k + d̃ij,k, k = 1, . . . , p (4.2.2d)

∆ũi
j,k = ũi

j,k − ũi
j,k−1, k = 0, . . . ,m− 1 (4.2.2e)

umin ≤ ũi
j,k ≤ umax, k = 0, . . . ,m− 1 (4.2.2f)

In the above, ϕ̃i
j is the MPC objective function corresponding to step j of the

DRTO prediction horizon; m and p are the MPC control and prediction horizons,

respectively; Q, R, S are the output deviation weighting matrix, input move penalty

matrix, and input deviation weighting matrix, respectively; A, B, C are the linear,

or linearized, state-space matrices for the plant system dynamic model; umin, umax

are the input bounds; dij,k is the disturbance estimate; and j, k are the time steps for

the DRTO and MPC, respectively.

4.2.3 Interactions and Feedback

The set-point trajectories determined by the primary DRTO problem are provided to

the MPC subproblems as the set-point to be reached, consistent with the information

exchange between the DRTO and actual plant MPC. A subset of the unified reference

trajectory is used as the set-point trajectory for each of the MPC subproblems, with
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the specific portion of the reference trajectory extracted depending on the time point

along the DRTO prediction horizon and the length of the MPC input and output

horizons.

yRef
j+k = ỹSPj,k , j = 1, . . . , N k = 1, . . . , p (4.2.3a)

uRef
j+k = ũSP

j,k , j = 1, . . . , N k = 0, . . . ,m− 1 (4.2.3b)

The other primary interaction between the DRTO and MPC subproblems is the

determination of the input moves by the MPC, which are also used as the input moves

for the plant model at the DRTO level. Specifically, the first input determined by the

MPC subproblem at a given time in a given scenario branch is used as the DRTO

input for that time point.

ui
j = ũi

j,0, j = 0, . . . , N − 1 (4.2.4)

Further interactions between the DRTO and MPC subproblems are interactions

which emulate the utlization of plant measurements by the actual MPC. In a standard

QDMC formulation, the disturbance estimate is computed as the difference between

the predicted outputs of the MPC and the measured outputs of the plant, and is

held constant over the MPC prediction horizon. This is emulated in the CL-DRTO

fromulation as follows. The first MPC subproblem of each DRTO execution uses

the plant measurement to compute the disturbance estimate as described. However,

MPC subproblems within the DRTO which start after the initial time point do not
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have access to future plant measurements. Therefore, they use the DRTO model

output prediction as a proxy for the plant measurement. This is preferable to not

updating the disturbance estimate, since the DRTO uses a nonlinear model to predict

the plant outputs and should therefore be more accurate than the linear model of the

MPC in predicting the actual plant behavior. The disturbance estimation within the

CL-DRTO scheme takes the form, for i = 1, . . . , Ns:

d̃i0,0 = ym − Cx̃i
0,0 (4.2.5a)

d̃ij,0 = yij − Cx̃i
j,0, j = 1, . . . , N − 1 (4.2.5b)

d̃ij,k = d̃ij,0, j = 1, . . . , N − 1 k = 1, . . . , p (4.2.5c)

In the above, ym is the plant measurement at the time of execution of the DRTO.

The initial states (x̃i
j,0) and previous inputs (ũi

j,−1) for the MPC subproblems

are also required. The MPC subproblems corresponding to the initial time step

of each DRTO execution use the predicted states of the MPC subproblems in the

previous DRTO execution at the time point corresponding to the current DRTO

execution. For subsequent MPC subproblems, the predicted states of the previous

MPC subproblem are used instead. Similarly, the previous input for the first time

step MPC subproblem is the same as the input implemented on the actual plant.

The next subproblems instead use the computed inputs for that time step from the

previous MPC subproblems. For both of these updates, the information is taken from

the MPC subproblem within that scenario prediction.
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4.2.4 Solution Strategy

The DRTO with embedded MPC subproblems represents a multi-level optimization

problem. There are a number of solution methods which may be used for this type

of problem. Here we follow the same method used in Jamaludin and Swartz [27] and

solve it simultaneousfexly by using the Karush-Kuhn-Tucker (KKT) conditions of the

MPC subproblems. Since the MPC subproblems with a standard QDMC formulation

are convex quadratic problems, they can be exactly represented by their first-order

KKT conditions. These can then be included as constraints in the primary DRTO

problem. The transformation of a convex QP to its equivalent KKT form is outlined

below.

The general form of a QP, of which type the inner MPC subproblems are, can be

written as

min
z

1

2
zTHz + gT z (4.2.6a)

s.t. Az = b (4.2.6b)

z ≥ 0 (4.2.6c)

The corresponding KKT conditions are given by

Hz + g − ATλ− ν = 0 (4.2.7a)

Az − b = 0 (4.2.7b)

ziνi = 0, ∀i (4.2.7c)

(z, ν) ≥ 0 (4.2.7d)

114

http://www.mcmaster.ca/


Ph.D. Thesis – L. MacKinnon; McMaster University – Chemical Engineering

In the above, λ, ν are the Lagrange multipliers for the equality and inequality

constraints, respectively.

The reformulation of the specific MPC problem here follows that applied in Baker

and Swartz [2]. The complementarity constraints are handled here with an exact

penalty approach where the products of the respective complementarity variables are

summed and added to the objective function with an appropriately large weight. This

method for handling complementarity constraints is proposed in Ralph and Wright

[66].

4.2.5 Input Clipping Approximation

The presented formulation and solution strategy for the robust CL-DRTO is

computationally intensive. Since this is a real-time optimization strategy, it is

important that the solution time is reasonable compared to the frequency of

execution of the process being optimized. We therefore introduce approximations

of the previous formulation to reduce the computation time with limited loss of

performance.

One such method is that of input clipping, wherein the input constraints within

the MPC subproblems are removed the input bounds are reintroduced at the DRTO

level by clipping the inputs determined by the MPC subproblem to their nearest

bound if the computed value is outside those bounds. This approximation technique

was proposed for CL-DRTO in Jamaludin and Swartz [29], and applied in the DRTO

coordination of distributed MPC systems in Li and Swartz [41]. The input clipping

can be accomplished with the use of slack variables as shown below. As this clipping

only occurs when the computed inputs are outside the true input bounds, any case
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where the inputs do not saturate will result in identical performance to the rigorous

method. The MPC subproblems, in this formulation, are unconstrained QPs. The

input clipping may be described mathematically as

ui
j =


umin, ũi

j,0 < umin

ũi
j,0, umin ≤ ũi

j,0 ≤ umax

umax, ũi
j,0 > umax

(4.2.8)

Baker and Swartz [2] and Jamaludin and Swartz [29] show that this formulation

can be expressed without the use of binary variables by introducing slack variables

as follows

ũi
j,0 + η1,ij − η2,ij = ui

j (4.2.9a)

ui
j − umin = µ1,i

j (4.2.9b)

umax − ui
j = µ2,i

j (4.2.9c)

(η1,ij )Tµ1,i
j = 0 (4.2.9d)

(η2,ij )Tµ2,i
j = 0 (4.2.9e)

(η1,ij , η2,ij , µ1,i
j , µ2,i

j ) ≥ 0 (4.2.9f)

The complementarity constraints of Eqs. (4.2.9d) and (4.2.9e) can be handled

with the use of an exact penalty approach as described previously with the KKT

conditions.
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The removal of the input constraints and clipping the resulting solution at the

DRTO level reduces the number of equations to be solved for each MPC subproblem.

However, more substantial improvements in computation time can be achieved by

taking advantage of the fact that the MPC subproblems are now unconstrained QPs

which can be solved analytically. This can be accomplished by rearranging the MPC

subproblems using the equality constraints to eliminate the state variables so that

the QP is expressed with solely the input changes as decision variables.

The reformulation of the unconstrained MPC subproblems in terms of the input

moves can subsequently be expressed as

min
∆ui

j

ϕi
j = (yij − ySPj )TQ(yij − ySPj ) + (∆ui

j)
TR(∆ui

j)+ (4.2.10a)

(ui
j − uSP

j )TS(ui
j − uSP

j )

s.t. yij = A∆ui
j + bi

j (4.2.10b)

ui
j = ui

j,−1 + IL∆ui
j (4.2.10c)

where ui
j, ∆ui

j, y
i
j, u

SP
j , ySPj are time-based composite vectors of the inputs, input

changes, outputs, input set-points, and output set-points, respectively; Q, R, S are

block diagonal matrices comprised of the weighting matrices Q, R, S, respectively;

A is a composite matrix of the dynamic system matrices A, B, C; IL is a block

lower triangular matrix of identity matrices; and bi
j is a time-based composite vector

of output predictions based on initial states and inputs summed with disturbance

estimates. More detail on the form of the composite vectors may be found in Li and

Swartz [41].
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This reformulation can then be used to establish an analytical solution by

substituting the above equality constraints directly into the objective and then

setting the resulting gradient to zero, giving

∆ui
j = (ATQA+ R+ ITLSIL)

−1[ATQ(ySPj − bi
j) + ITLS(u

SP
j − ui

j,−1)] (4.2.11)

= K1(y
SP
j − bi

j) +K2(u
SP
j − ui

j,−1) (4.2.12)

Much of this computational work can be done a priori since the model matrices do

not change over time, so the equation matrices can be pre-computed. Furthermore,

only a subset of input equations needs be included, since only the first input move

is required to be provided to the DRTO. Both Jamaludin and Swartz [29] and Li

and Swartz [41] show that the input clipping approximation results in significant

reductions in computation time with limited loss of performance. Therefore, the

input clipping approximation is used in the proposed robust DRTO formulation and

in the case studies that follow.

4.3 Case Studies

4.3.1 Case Study 1 - SISO

The first case study in which the robust DRTO is applied is a simple single-input-

single-output (SISO) system, where the performance of the robust DRTO is compared

against that of a nominal DRTO. The system is a single reaction CSTR with one

inlet stream, one outlet, and one reaction. The reaction kinetics are governed by the
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Michaelis-Menten equation. The control system is SISO with two states, with the

governing equations taken from Gao [17] and can be expressed as

dC

dt
= D · (Cin − C)− Vm · C

Ks + C
(4.3.1)

dP

dt
=

Vm · C
Ks + C

−D (4.3.2)

where the differential states are the concentration of reactant, C, and concentration

of product, P ; the inlet concentration, Cin, is the input; and the concentration of

product, P , is the output. D, Vm, Ks are the ratio of flow rate to reactor volume, the

maximum reaction rate, and the reaction constant, respectively, and are parameters.

The system was discretized using the implicit Euler method. The uncertain parameter

was chosen to be the maximum reaction rate, Vm, with a ±20% uncertainty.

The DRTO uses three uncertain scenarios, corresponding to the nominal,

minimum, and maximum parameter values. The parameter is assumed to have a

uniform probability distribution within the expected range and so the scenarios

weights are all equal to 1. The DRTO schemes are evaluated in three different

realizations where the plant simulation uses the nominal, minimum, and maximum

parameter values, respectively.

The objective function used here is a profit band objective, where the system

generates revenue only when the product concentration is within a specified quality

range, as implemented in Jamaludin and Swartz [27]. The input is also included

as a cost. The profit band is approximated using hyperbolic tangent functions to

approximate binary switching functions. The objective function can be expressed as
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follows

ϕecon =
∑
i

ρi
N∑
j=0

10 ·Ri
1,j ·Ri

2,j − ui
j (4.3.3)

Ri
1,j =

1

2
tanh

(
γ[yij − (1− δ)ytarj ]

)
+

1

2
(4.3.4)

Ri
2,j =

1

2
tanh

(
γ[(1 + δ)ytarj − yij]

)
+

1

2
(4.3.5)

where γ and δ are fixed parameters which determine the slope of the tanh functions

and the half-width of the profit band, respectively; ui
j and yij are the inputs and

outputs of the system, respectively, in this case they represent the inlet concentration

of reactant, Cin, and the concentration of product, P . The product of tanh switching

function approximations in 4.3.3 gives Ri
1,j ·Ri

2,j ≈ 1 if (1− δ)ytarj ≤ yij ≤ (1 + δ)ytarj ;

and is 0 otherwise. The DRTO and MPC parameter values are shown in Table 4.1.

Table 4.1: DRTO and MPC parameters for Case Study 1.

Parameter Description Value
N DRTO horizon 40

∆tDRTO DRTO sample time 2 hr
∆tMPC MPC sample time 1 hr

p MPC prediction horizon 10
m MPC control horizon 2
Q Output tracking weight 10
R Input move suppression weight 1
S Input tracking weight 0
ρ Complementarity Penalty 1000
Ts Time Step 1 hr
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Subcase 1: Small transition with constrained output

The output in Subcase 1 is subject to a one-sided economic penalty term for exceeding

a value of 0.84, with a penalty weight of 100. The profit band is defined to be between

0.816 and 0.836 (ytarj = 0.826, δ = 0.01) with γ = 100. The results for Case Study 1,

Subcase 1 are shown in Table 4.2 and Fig. 4.2.

Figure 4.2: Plots of the input (bottom) and output (top) for the minimum (left),
nominal (middle), and maximum (right) parameter value plant realizations for Case
Study 1, Subcase 1. The red dashed line is the economic penalty bound, the blue
dashed lines are the bounds of the profit band, the black dashed lines are the
nominal CL-DRTO trajectory, and the solid black line is the robust CL-DRTO

trajectory.

The results show the robust DRTO outperforming the nominal in terms of
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Table 4.2: Summary of economic objective function values for Case Study 1,
Subcase 1, comparing the nominal and robust CL-DRTO methods.

Plant Model Nominal DRTO Robust DRTO Percent Change
Minimum 51.48 38.70 -24.8
Nominal 143.6 124.7 -13.2
Maximum 98.08 155.4 58.4

Expected Value 97.72 106.3 8.78

economics and avoiding exceeding the upper economic penalty bound of 0.84. This

can be seen in the maximum parameter value scenario, where the nominal DRTO

overshoots the profit band and the economic penalty bound, resulting in both

reduced profit accumulation during this overshoot period and a penalty applied to

the final profit value. In contrast, the robust DRTO manages to stay in the profit

band once it initially reaches it, avoiding losing profit accumulation time as well as

the penalty. In the minimum and nominal parameter value scenarios, neither the

nominal DRTO or robust DRTO overshoot. In these scenarios, the robust DRTO

reaches the profit band slightly later than the nominal DRTO, resulting in reduced

economic returns. However, the expected economic performance is still greater for

the robust DRTO since it outperforms the nominal DRTO by a larger margin in the

maximum scenario.

Subcase 2: Large transition

The second subcase is not subject to an upper bound economic penalty term. It

involves a larger transition to the profit band, with said band also being a wider

target. The profit band is now defined to be from 0.95 to 1.05 (ytarj = 1.00, δ = 0.05)

with an unchanged γ = 100. The simulation time is also increased to allow for the
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larger transition to occur and then reach steady state. The results for Case Study 1,

Subcase 2 are shown in Table 4.3 and Fig. 4.3.

Figure 4.3: Plots of the input (bottom) and output (top) for the minimum (left),
nominal (middle), and maximum (right) parameter value plant realizations for Case
Study 1, Subcase 2. The blue dashed lines are the bounds of the profit band, the
black dashed lines are the nominal CL-DRTO trajectory, and the solid black line is

the robust CL-DRTO trajectory.

The robust DRTO here outperforms the nominal DRTO in terms of expected

economic returns over the three tested realizations, as can be seen in Table 4.3.

Once again, the largest difference is in the maximum parameter value scenario,

where the robust DRTO substantially outperforms the nominal DRTO by reducing

the overshoot and oscillation (Fig. 4.3). In contrast to the previous subcase, the
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Table 4.3: Summary of economic objective function values for Case Study 1,
Subcase 2, comparing the nominal and robust CL-DRTO methods.

Plant Model Nominal DRTO Robust DRTO Percent Change
Minimum 48.03 52.87 10.1
Nominal 301.1 294.9 -2.06
Maximum 142.9 305.3 114

Expected Value 164.0 217.7 32.7

robust DRTO also outperforms the nominal DRTO in the minimum parameter value

scenario. As expected, the nominal DRTO still outperforms the robust DRTO in the

nominal scenario, as the plant simulation behavior in this scenario is in accordance

with the behavior predicted by the nominal DRTO.

For Case Study 1, the robust DRTO outperforms the nominal DRTO in terms

of expected economic performance in both subcases. This is primarily accomplished

by reducing the overshoot in the maximum parameter value scenario realization.

In Subcase 1, this overshoot causes an economic penalty to be incurred for the

nominal DRTO in addition to reduced time in the profit band; in Subcase 2, it causes

significant oscillation leading to reduced time in the profit band. The robust DRTO,

in both subcases, exhibits reduced economic performance in the nominal parameter

value scenario, but more than makes up for this loss in the other realizations.

4.3.2 Case Study 2 - MIMO

The case study here uses the polymerization case study presented previously in

Jamaludin and Swartz [27]. It is a MIMO system with three inputs, three outputs, and

six states. The system inputs are the inlet flowrates to the reactor of the monomer,
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an initiator, and a solvent, respectively. The concentrations of the respective reactant

in the inlet streams are assumed constant. The outputs of the system are the number

average molecular weight (NAMW) of the polymer product, the temperature in the

reactor, and the concentration of monomer in the reactor. The variables can range

across several orders of magnitude, and so the system is first scaled to a dimensionless

form to enable easier solution. This case study was chosen due to its nonlinear

reactor equations, its multi-variable set-points at the MPC level, and its relatively

slow transition time. The long transition time encourages improvements in transition

to reduce the time the reactor is not producing polymer product. This case study

again uses the profit band objective function as in Case Study 1. Specifically, the

NAMW of the polymer product must be within ±1% of 68.9 kg/mol (ytarj = 68.9,

δ = 0.689) with γ = 10. All three inputs are assumed to be equal in cost. Additionally,

the temperature within the reactor must be maintained between 320 and 325 K and

the NAMW must stay below 70 kg/mol. These output constraint are implemented

as soft constraints with a penalty weight of 100. The DRTO and MPC parameter

values for Case Study 2 are shown in Table 4.4.

In this case, the MPC tracking weights are non-zero for the first two outputs,

the NAMW and temperature, respectively, and the third input, the inlet flowrate

of monomer. This means the DRTO provides reference trajectories to the MPC for

these two outputs and one input. The third output, the concentration of monomer,

and the first two inputs, the inlet flowrates of initiator and coolant, respectively, do

not have reference trajectories as their MPC tracking weights are zero.
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Table 4.4: DRTO and MPC parameters for Case Study 2.

Parameter Description Value
N DRTO horizon 20

∆tDRTO DRTO sample time 5 hr
∆tMPC MPC sample time 1 hr

p MPC prediction horizon 10
m MPC control horizon 2
Q Output tracking weight diag(1,1,0)
R Input move suppression weight diag(50,15,5)
S Input tracking weight diag(0,0,1)
ρ Complementarity Penalty 1000
Ts Time Step 1 hr

Three scenario robust DRTO

The first evaluation of the robust DRTO in this case study is to evaluate the

performance of the robust DRTO with three modeled scenarios against that of the

nominal DRTO. The two DRTO formulations are evaluated first over three possible

plant realizations corresponding to the minimum, nominal, and maximum parameter

values. This is a similar setup to that shown in Case Study 1. The results for the

three scenario robust DRTO and single scenario nominal DRTO evaluated over these

three plant realizations are shown in Tables 4.5 and 4.6.

Table 4.5: Summary of economic objective function for nominal, and three scenario
robust DRTO, in characteristic scenarios for Case Study 2.

Plant Model Nominal DRTO Robust DRTO Percent Change
Minimum 53.80 67.61 25.7
Nominal 62.95 61.19 -2.80
Maximum 49.19 60.95 23.9

Expected Value 55.31 63.25 14.4
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Table 4.6: Summary of sum of squared constraint violation for nominal, and three
scenario robust DRTO, in characteristic scenarios for Case Study 2.

Plant Model Nominal DRTO Robust DRTO Percent Change
Minimum 2.097 1.806 -13.9
Nominal 0.762 0.447 -41.3
Maximum 0 0.012 -

Expected Value 0.954 0.755 -20.9

As shown in Table 4.5, the robust DRTO outperforms the nominal DRTO in

terms of economics. It should be noted that in this case study, unlike in the previous

case study, the constraint violation is not included in the economic objective function

values shown in the tables. The profit is higher in the minimum and maximum

parameter realization scenarios for the robust DRTO and slightly lower in the nominal

scenario. This is consistent with Case Study 1, and is expected given that it is in this

scenario that the deterministic nominal DRTO model matches the plant simulation.

In terms of expected profit, the robust DRTO improves on the nominal DRTO by

about 14% when evaluated in these three scenario realizations.

The robust DRTO is also able to reduce the constraint violation (specifically the

upper bound) of the NAMW relative to the nominal DRTO, as shown in Table 4.6.

The constraint violation shown is only for the NAMW; the temperature constraint

violation is negligible within a tolerance of 10−3. Here, the robust DRTO is able to

reduce the expected constraint violation by about 21%.

Plots of the inputs and outputs over time for these characteristic scenarios are

shown in Figs. 4.4-4.6. In all three scenario realizations, the overall trajectories of

the plant simulation under the control of the two algorithms are similar. The only

noticeable difference is a slight decrease in the inlet flowrates during transition (the
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ultimate steady state is not affected), resulting in a decrease in the total cost for

the plant. While too slight to be visible in the plots, the robust DRTO marginally

improves on the time to viable product NAMW band in the minimum and maximum

parameter value scenarios, resulting in a marginal increase in revenue. However, the

majority of the expected increase in profit, shown in Table 4.5, is from the decrease

in input costs.

Figure 4.4: Plot of Inputs and Outputs for nominal and robust DRTO, minimum
parameter value scenario.

An additional test for the robust DRTO is performed where 20 random parameter

values between the minimum and maximum predicted values are chosen and the

nominal and robust DRTO performances compared in these simulations. The results

are summarized in Table 4.7 and show that the overall trends from the characteristic
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Figure 4.5: Plot of Inputs and Outputs for nominal and robust DRTO, nominal
parameter value scenario.

scenarios testing are maintained. The expected economic improvement by the robust

DRTO decreases, as is expected given that the previous characteristic scenarios

are the exact scenarios modeled and the majority of the 20 random test cases are

not directly accounted for in the robust DRTO formulation. The improvement of

the robust DRTO over the nominal DRTO is still significant, however, at about

8%. The constraint violation reduction for the NAMW is actually larger for these

scenarios, at about 36%, showing that the robust DRTO is still effective at avoiding

constraint violation even when the plant behavior does not precisely match the

predicted scenarios. The temperature constraint violation is still within the same

tolerance. Finally, the solution time per DRTO execution is also shown in Table 4.7,
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Figure 4.6: Plot of Inputs and Outputs for nominal and robust DRTO, maximum
parameter value scenario.

with the nominal DRTO being approximately 5 times faster than the robust DRTO.

All solution times reported are using an Intel Core i7 8700 (3.2 GHz, 6 cores, 12

processors).

Effect of number of scenarios

The above case studies all involve a robust DRTO with three modeled scenarios, the

expected parameter value (nominal) and the two extremes of the parameter value

(minimum, maximum). However, this may not be sufficient to capture the expected

plant behavior within this range, especially for nonlinear systems. Therefore, in this

section, a robust DRTO with more than three scenarios is tested on the same set of
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Table 4.7: Metrics of expected performance for 20 random parameter value
scenarios of nominal and three scenario robust DRTO, Case Study 2.

Metric Nominal DRTO Robust DRTO Percent Change
Profit 55.47 59.94 8.05

Constraint Violation 1.009 0.6410 -36.4
Solution Time (s) 2.055 10.02 388

20 random parameter value scenario realizations. It should be noted that the overall

range of parameter values remains constant, and the added scenarios are all within

this range and are evenly spaced and evenly weighted in accordance with an assumed

uniform distribution.

Figure 4.7: Plot of expected profit across 20 random simulated scenarios by number
of DRTO modeled scenarios.

As shown in Fig. 4.7 and Table 4.8, the overall expected profit for the robust
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Table 4.8: Metrics of expected performance for 20 random parameter value
scenarios by number of modeled scenarios in Robust DRTO, Case Study 2.

No. Scenarios Profit
Constraint

Sol. Time (s)
Violation

1 55.47 1.009 2.05
3 59.94 0.641 10.02
5 59.98 0.637 25.87
7 62.55 0.582 76.58
9 67.55 0.543 134.9
11 68.82 0.529 238.9
13 68.47 0.544 299.5
15 69.94 0.528 543.7
17 70.93 0.517 803.1

DRTO shows a noticeable increase from 1 to 3 scenarios (as shown previously) and

then further increases beyond 3 scenarios, especially past 5 scenarios, up to 9 modeled

scenarios. Beyond 9 scenarios the expected profit seems to exhibit diminishing

returns. This may suggest that 9 scenarios is the superior choice for improved

economic benefit prior to diminishing returns of increased scenario modeling.

The constraint violation for the robust DRTO with varying number of scenarios

shows, in Table 4.8 and Fig. 4.8, a more clear case of diminishing returns where,

for the NAMW constraint violation, there is a large reduction from one scenario to

three scenarios, and then smaller reductions for increased scenarios beyond three.

This suggests that for the purposes of constraint violation reduction, three scenarios

modeled by the robust DRTO may be adequate. Again, the constraint violation for

the temperature is negligible.

The cost of this improvement in expected profit for increased number of scenarios

is that the computation time also increases, as shown in Fig. 4.9. While the three
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Figure 4.8: Plot of expected NAMW constraint violation across 20 random
simulated scenarios by number of DRTO modeled scenarios.

scenario robust DRTO averages about 10 s per execution, the 9 scenario DRTO

averages about 135 s, and the 17 scenario DRTO about 800 s. Therefore, although

the performance improves in terms of economics and, to a lesser extent, constraint

violation, the process to which the robust DRTO is applied must be examined to

determine if a higher number of scenarios is viable to solve in the required DRTO

iteration time.

Multiple uncertain parameters

In the previous case studies, it is assumed that there is one source of uncertainty

in the process. For this case study, it will be assumed that there are instead two

uncertain parameters. These uncertain parameters will be modeled by the robust
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Figure 4.9: Plot of average computation time (s) per DRTO iteration by number of
DRTO modeled scenarios.

DRTO by including scenario predictions for each pair of parameter values for their

minimum, nominal, and maximum values. Therefore, there will be 9 total scenarios

modeled with three possible values for each uncertain parameter. One of the uncertain

parameters is the pre-exponential rate constant for the dimerization reaction (the

same parameter considered uncertain in previous case studies) and the other is the

inlet concentration of monomer. Since these two parameters are not considered to

be related, they are treated as uncorrelated in this case study. The robust DRTO is

again compared against a single scenario nominal DRTO in the characteristic scenario

simulations (the 9 scenarios modeled by the robust DRTO) and in 20 scenarios with

random parameter values within the expected range.

Overall, Table 4.9 shows that the trends seen previously in the single uncertain

parameter case also hold here, but the magnitude of the changes from the nominal to
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Table 4.9: Metrics of expected performance for characteristic scenarios (the
scenarios modeled in the robust scenario tree) of nominal and robust DRTO with

two uncertain parameters.

Metric Nominal DRTO Robust DRTO Percent Change
Profit 48.30 75.31 55.9

Constraint Violation 1.485 0.9337 -37.1
Solution Time (s) 2.079 112.8 5330

robust DRTO are increased. The increase in profit is over 50%, compared to about

14% in the single uncertain parameter case. Furthermore, decrease in constraint

violation for the NAMW has improved substantially from about 20% to about 37%.

The constraint violation for temperature is still negligible.

Figs. 4.10-4.12 show the time plots of the input and output trajectories for three

chosen scenarios of the nine characteristic scenarios. Specifically, the nominal values

of both parameters is shown in Figure 4.10, the minimum value of the pre-exponential

rate constant paired with the maximum value of the inlet concentration of monomer

is shown in Fig. 4.11, and the maximum rate constant with minimum concentration

in Fig. 4.12. These were chosen to be shown as they represent the central scenario

(nominal-nominal) and the two scenarios which, on examination, exhibited the most

extreme behavior (min-max and max-min). The differences in the trajectories of

the two DRTOs are more noticeable than in the single uncertain parameter case.

As before, the robust DRTO drives the system to have lower inlet flowrates during

transition, though by a larger margin than previously, resulting in reduced costs.

Also, the robust DRTO now noticeably reduces the overshoot and oscillations of the

NAMW, particularly in the min-max and max-min scenarios (Figs. 4.11 and 4.12)

thereby increasing the revenue generated by staying in the profit band for a longer
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period than the nominal DRTO.

Figure 4.10: Plots of inputs, outputs for both parameters at nominal values scenario.

Table 4.10: Metrics of mean performance for 20 random parameter value scenarios
of nominal and robust DRTO with two uncertain parameters.

Metric Nominal DRTO Robust DRTO Percent Change
Profit 51.72 79.01 52.8

Constraint Violation 1.189 0.5580 -53.1
Solution Time (s) 2.080 97.60 4590

As in the previous case, the performance of the methods is also evaluated for

20 random plant uncertainty scenarios. As shown in Table 4.10, in this case, the

robust DRTO still outperforms the nominal DRTO and by similar margins to the

characteristic scenarios. The increase in profit is still about 50%. The decrease
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Figure 4.11: Plots of inputs, outputs for min-max scenario (pre-exponential rate
constant at minimum; inlet concentration of monomer at maximum).

in NAMW constraint violation has actually improved further to about 50%. The

results being very similar between the characteristic scenarios and the random

scenarios shows that the robust DRTO is very capable of handling multiple sources

of uncertainty, and effectively optimizing the plant even when its behavior does not

exactly match its modeled scenarios.

The cost of this improvement in economic performance and constraint violation

reduction is, of course, computation time. Due to modeling each pair of uncertain

parameter values, the number of modeled scenarios is relatively large, at nine.

Therefore, the computation time has increased by about a factor of 50, from

approximately 2 s per DRTO iteration to approximately 100 s per DRTO iteration.

This is one of the consequences of modeling multiple sources of uncertainty.
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Figure 4.12: Plots of inputs, outputs for max-min scenario (pre-exponential rate
constant at maximum; inlet concentration of monomer at minimum).

4.4 Conclusion

In this work, a multi-scenario closed-loop dynamic real-time optimization (CL-DRTO)

formulation with input clipping approximation was presented as a means of handling

uncertainty at the economic optimization layer while modeling the dynamic behavior

of both the plant being optimized and the MPC controlling the plant. The method

shows improvement over a single-scenario CL-DRTO in terms of economics and

constraint violation in two simulated case studies. This improvement came at the

cost of increased computation time.

A three-scenario CL-DRTO showed improvements over a single-scenario CL-

DRTO in both a SISO and a MIMO case study. Following this, the performance
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benefits of additional scenarios was investigated; it was found that additional

scenarios modeled by the DRTO improves the overall economic performance of the

method while also increasing the computation time. Specifically, the performance

increased consistently until 9 scenarios were modeled, and then showed diminishing

returns for more than 9 scenarios. Finally, the multi-scenario DRTO was shown

to be effective at handling multiple sources of model uncertainty by modeling two

uncertain parameters. In this case, the improvements over a single-scenario DRTO

were more substantial, but at a significant increase to computation time. Overall,

the method presented here has been shown to effectively handle the economic

optimization of an uncertain plant while incorporating the behavior of the underlying

deterministic MPC.
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Chapter 5

Decomposition of Robust

Closed-Loop Dynamic Real-Time

Optimization

The formulations and results in this chapter will be submitted to:

[1] MacKinnon, L. and Swartz, C.L.E. Decomposition of Robust Closed-Loop

Dynamic Real-Time Optimization. In preparation for journal publication

submission.

5.1 Introduction

Economic optimization is often performed in a real-time setting to allow the optimizer

to take into account feedback from the plant. However, this creates time constraints

on the optimization process as an optimization solution must be provided to the

plant and the relevant controllers at least before the next execution of the real-time
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optimization (RTO). Considering this, the computationally expensive multi-scenario

robust closed-loop dynamic RTO (CL-DRTO) presented in the previous chapter will

have application limitations. Specifically, large DRTO problems which must be solved

frequently may not be able to find a solution prior to the next execution. One strategy

to mitigate this limitation is to decompose the large, monolithic robust CL-DRTO

problem into its respective scenario subproblems. This chapter will propose such a

decomposition method and test it against the previously presented monolithic method

in terms of computation time and objective performance.

There are many possible strategies for decomposing multi-scenario dynamic

optimization problems. Generally speaking, these strategies can be separated into

primal and dual decomposition methods [6]. In dual methods, the variables which

connect the subproblems are not fixed but rather their gradients are adjusted by the

master problem and then the subproblems use those gradients to determine optimal

values. Benders decomposition is a commonly used example of dual decomposition

which has found use in a wide variety of applications [65]. In primal methods, the

variables themselves are fixed by the master problem and the subproblems determine

their gradients. Primal methods, therefore, maintain problem feasibility prior to

convergence while dual methods only reach a feasible solution at convergence.

For robust MPC, decomposition methods are commonly used because handling

uncertainty comes at a computational cost. De La Peña et al. [13] apply a dual

decomposition strategy to reduce the computation time of a multi-stage linear

min-max MPC in which the problem is separated by stage. They show the

computation time of the decomposition is less than that of the single, large LP,

with the gains increasing with the problem horizon. Lucia et al. [45] also use a
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dual decomposition method, but for a multi-scenario nonlinear robust MPC where

the problem is decomposed for each scenario, rather than by stage. A bundled

decomposition approach, where scenarios are grouped together and solved, is also

investigated. They find that both decomposition approaches improve computation

time while finding similar solutions. Marti et al. [49] compare a number of

decomposition strategies, including augmented Lagrangian, price-driven, sensitivity-

based, and bundled decomposition, and their performance for robust multi-scenario

nonlinear MPC. Krishnamoorthy et al. [35] instead use a primal decomposition

method for multi-scenario robust MPC and argue that the feasibility guarantee

at pre-convergence iterations is a substantial advantage over dual decomposition

techniques. They employ a gradient descent method with a backtracking line search

in the master problem. They find substantial improvement in computation time over

a centralized solution method while maintaining comparable performance.

Decomposition in the field of RTO and DRTO is also used extensively, but

generally not to separate robust scenarios, but rather to reduce the size of a large

single-scenario problem. Zhang et al. [81] use decomposition to aid in solution

of an RTO for train scheduling. They separate the coordinating problem into

the respective problem types and find substantial computational advantages as

a result. Luan et al. [43] also apply decomposition to RTO of train scheduling

and, furthermore, compare the relative performance of separating the problem

by location, by individual trains, and by time. They found that separating into

individual train problems gave overall best results of the methods tested. Jalali et al.

[24] solve a robust distributed RTO by decomposing the problem into individual

microgrids and utilize an alternating direction method of multipliers. The method is
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shown to effectively minimize operating costs of an energy distribution system under

uncertain energy cost forecasts. Gunnerud et al. [21] decompose an oil well field

RTO problem using the Dantzig-Wolfe strategy. They find that the decomposition

method outperforms the global method for all but the smallest of their tested cases.

This is because the global problem has significant difficulty finding good feasible

solutions for the larger cases, specifically running out of usable memory before an

optimal solution is found. The decomposition method solved in much less time and

had no such issues with available memory.

This chapter proposes a primal decomposition method for robust multi-scenario

CL-DRTO which separates the problem into scenario-based subproblems and

coordinates the solution with a master problem algorithm which fixes the set-point

trajectories for the scenario subproblems. A primal decomposition method was

chosen because it maintains feasibility of solution at all iterations. In this setup,

the scenario subproblems have parts of the set-point trajectories fixed by the master

problem, which then uses the objective values and gradients from the subproblems to

determine a new value of the set-point trajectories. The method is compared to the

monolithic robust CL-DRTO method in terms of computation time and performance

in two case studies.

This chapter is organized as follows. The formulation of the decomposition method

is presented in Section 5.2. The monolithic, robust CL-DRTO method is first briefly

outlined as it represents the base case method for this decomposition. Then the

scenario subproblem formulation is explained, including the information provided by

and to the master problem. Next, the master problem algorithm, how the algorithm is

intended to function, and its expected limitations are explained in detail. Section 5.3
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contains the case studies used to test the decomposition method. There are two case

studies presented, one single-input-single-output (SISO) and one multi-input-multi-

output (MIMO). The cases investigate the decomposition method solution time and

performance compared to the monolithic method and how they change with problem

size, complexity, nonlinearity, and objective function.

5.2 Formulation

The decomposition algorithm presented here uses a primal method as this

decomposition type has previously been employed for robust multi-scenario MPC

[35]. In this primal decomposition, the non-anticipativity constraints which tie

the scenarios together are fixed within the scenario subproblems. Specifically, the

variables relevant to the non-anticipativity constraints are chosen by the master

problem and held constant within each scenario subproblem. For a robust MPC,

these relevant variables are the inputs chosen by the MPC to be implemented in the

plant; for a robust CL-DRTO, they are the set-points chosen by the DRTO to be

used in the underlying MPC.

The master problem of this decomposition method uses objective values and

gradients provided by the scenario subproblems at specific values of the set-point

trajectory to determine a new set-point trajectory to implement in the subproblems.

The scenario subproblems, in turn, solve the CL-DRTO problem for a single scenario

realization and a fixed set-point trajectory to determine the objective value and

relevant subgradients for that set-point trajectory.
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5.2.1 Robust CL-DRTO

The monolithic robust CL-DRTO formulation shown here is the same as is presented

in the previous chapter. It is used in this work as a base case to compare the

decomposition formulation against to determine the potential efficacy of the new

method. The main purpose of the robust CL-DRTO is to determine an optimal

set-point trajectory to provide to an underlying MPC which will then, in turn,

provide input moves to the plant itself. The robust CL-DRTO solves an optimization

problem which takes into account the predicted response of the MPC via direct

MPC simulation and how those MPC responses will affect the plant behavior under

multiple possible realizations of an uncertain plant model. Essentially, it is a real-

time optimization formulation which accounts for underlying MPC behavior, dynamic

plant behavior, and plant model uncertainty. The formulation of the robust CL-

DRTO is shown below.
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min
yRef ,uRef

ϕecon =
∑
i

ρiϕi(xi, ui, yi) (5.2.1a)

s.t. xi
j+1 = f i(xi

j, u
i
j), j = 0, . . . , N − 1 (5.2.1b)

yij = hi(xi
j), j = 1, . . . , N (5.2.1c)

0 ≤ g(xi
j, y

i
j), j = 1, . . . , N (5.2.1d)

0 = hRef (yRef , uRef , ỹSP , ũSP ) (5.2.1e)

0 ≤ gRef (yRef
j+1 , u

Ref
j ), j = 0, . . . , N − 1 (5.2.1f)

ui
j =argmin

ũi
j,k

ϕ̃i
j =

p∑
k=1

(ỹij,k − ỹspj,k)
TQ(ỹij,k − ỹspj,k)

+
m−1∑
k=0

(∆ũi
j,k)

TR(∆ũi
j,k)

+
m−1∑
k=0

(ũi
j,k − ũsp

j,k)
TS(ũi

j,k − usp
j,k), j = 0, . . . , N − 1 (5.2.1g)

s.t. x̃i
j,k+1 = Ax̃i

j,k +Bũi
j,k, k = 0, . . . ,m− 1 (5.2.1h)

x̃i
j,k+1 = Ax̃i

j,k +Bũi
j,m−1, k = m, . . . , p− 1 (5.2.1i)

ỹij,k = Cx̃i
j,k + d̃ij,k, k = 1, . . . , p (5.2.1j)

∆ũi
j,k = ũi

j,k − ũi
j,k−1, k = 0, . . . ,m− 1 (5.2.1k)

umin ≤ ũi
j,k ≤ umax, k = 0, . . . ,m− 1 (5.2.1l)

In the above, ϕecon is the economic objective function of the primary DRTO; ϕi
econ

is the economic objective function value for scenario i; ρi is the objective weighting

for scenario i; u, x, y are the system inputs, states, and outputs, respectively; the

tilde ( ˜ ) denotes variables and functions associated with the MPC subproblems;
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the Ref superscript denotes reference trajectory variables; the SP superscript

denotes set-point trajectories for the MPC; f i is the set of dynamic equations for

the plant model; hi is the algebraic plant model relating states to outputs; g is the

set of inequality process constraints; hRef is the functional relationship between the

reference trajectory and the set-point trajectories for each MPC subproblem; gRef is

the set of bounds on the reference points; i denotes the uncertain scenario; j denotes

the DRTO time point; and ui, xi, yi are composite vectors of the inputs, states, and

outputs, respectively, for plant scenario i over the DRTO prediction horizon; ϕ̃i
j is

the MPC objective function corresponding to step j of the DRTO prediction horizon;

m and p are the MPC control and prediction horizons, respectively; Q, R, S are the

output deviation weighting matrix, input move penalty matrix, and input deviation

weighting matrix, respectively; A, B, C are the linear, or linearized, state-space

matrices for the plant system dynamic model; umin, umax are the input bounds; dij,k

is the disturbance estimate; and j, k are the time steps for the DRTO and MPC,

respectively.

In particular, the DRTO generally uses an economic objective function which is

the expected value across all modelled scenarios, though any appropriate objective

function may be used, including a target tracking objective. Additionally, it can use

a linear or nonlinear plant model at the DRTO level; previous work has focused on a

nonlinear model for increased fidelity, but a linear model for improved computation

time may also be used. Output, process, and set-point constraints are included at

the DRTO level while input constraints are handled in the MPC. At the MPC level,

it is assumed that a linear plant model is used. The MPC is also assumed to have a

quadratic target tracking objective function. These assumed properties of the MPC
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maintain the embedded MPC problems as convex quadratic programs, significantly

simplifying the solution of the overall problem.

The formulation above is a bi-level optimization problem. The DRTO determines

optimal set-points based on the inputs provided by the MPC, and the MPC

determines optimal input moves based on the set-points provided by the DRTO. A

simultaneous solution approach is used here to handle this problem, as has been

done previously [27, 2]. This approach takes advantage of the MPC’s being convex

quadratic problems by reformulating them as their respective first-order KKT

conditions which can then be directly included in the DRTO problem as algebraic

constraints. This creates a single-level mathematical program with complementarity

constraints (MPCC) which can be handled with the use of an exact penalty approach

[66].

Furthermore, if the input constraints in the embedded MPC problems are

relaxed, the MPC problems become unconstrained convex QPs, which can be solved

analytically. Doing so has been shown to significantly improve computation time

and so this is done here. This has been previously accompanied by an input clipping

approach at the DRTO level [29, 41].

However, the use of input clipping still involves complementarity constraints.

For this work, the inputs are instead not constrained within the CL-DRTO at

either the primary DRTO or MPC level. This was done to simplify the problem

to make it somewhat easier for the decomposition method to solve. While it is

unlikely that an MPC controlling a real plant would be implemented without input

constraints, simulating the MPC as being unconstrained within the DRTO is still

a reasonable approximation of a constrained MPC. For the case studies in this
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work, an underlying constrained MPC is executed as part of the closed-loop plant

simulation. Furthermore, if the inputs do not saturate, then the unconstrained MPC

is an exact representation of the constrained MPC. This was therefore considered to

be a reasonable simplification for an initial test of the decomposition method. The

removal of the input constraints was done for both the monolithic and decomposition

solution methods for fair comparison.

5.2.2 Primal Decomposition

A primal decomposition method was chosen here primarily because primal

decomposition does not relax the non-anticipativity constraints of the multi-scenario

formulation [35]. It instead uses the Lagrange multipliers of the non-anticipativity

constraints to update the variables relevant to those constraints (the set-point

trajectories, in this case). This contrasts with a dual decomposition method which

does relax the non-anticipativity constraints, solving the overall problem by updating

the Lagrange multipliers of those constraints, rather than the relevant variables

directly [45].

This property of primal decomposition ensures a feasible result at all iterations,

which then may be passed on to the underlying MPC regardless of convergence. This

is particularly useful in a real-time optimization setting where a solution to the DRTO

may be required in a relatively short time. If, in this setting, the problem size proves

too substantial and the decomposition method does not converge in time, a primal

decomposition method can still provide the most recent interim solution which is

guaranteed to be a feasible solution to the problem. However, a dual decomposition,

prior to convergence, will not have satisfied the non-anticipativity constraints and so
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will not have a feasible solution to report. For a CL-DRTO, this means that there

will be multiple set-point trajectories, one for each scenario, still present within the

master problem as potential solutions. Therefore, the dual decomposition method

will not have a single set-point trajectory which can be provided to the underlying

MPC if it has not yet converged. If a situation exists where solution time of the

DRTO problem has a fixed upper bound, a primal decomposition approach may be a

safer strategy as it will always provide a feasible solution even if it does not converge

to an optimal solution.

The above property of primal decomposition is illustrated in the case studies in the

following section by solving the optimization problem to a wide range of tolerances.

This range of tolerances is similar to terminating the problem at a wide range of

solution times. Tolerances were used instead for easy comparison between problems

of varying sizes, where different solution time limits for different problem sizes would

be required to show similar accuracy. These ranges of tolerances clearly show how the

dual decomposition method provides feasible solutions for relatively loose tolerances.

5.2.3 Scenario Subproblems

The subproblems of the primal decomposition problem can be expressed as a single

scenario realization of the robust CL-DRTO problem. This formulation is therefore

nearly the same as the single-scenario CL-DRTO formulation originally developed

by Jamaludin and Swartz [27]. A new variable is introduced, θ, which is the set of

fixed set-point trajectories of the required variables provided by the master problem.

The length of this fixed set-point trajectory must be sufficient to provide set-points

to the underlying MPC executions until the next DRTO execution. Therefore, this
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fixed set-point trajectory length must be at least the length of the MPC prediction

horizon plus the DRTO sample time. This is because the set-point trajectory must

be provided to all the MPC executions from the time point the DRTO is executed

until the next time point where the DRTO is executed. The scenario subproblems of

the primal decomposition can be expressed as follows:
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min
yRef ,uRef

ϕs = ρsϕs(xs, us, ys) (5.2.2a)

s.t. xs
j+1 = f s(xs

j , u
s
j), j = 0, . . . , N − 1 (5.2.2b)

ysj = hs(xs
j), j = 1, . . . , N (5.2.2c)

0 ≤ g(xs
j , y

s
j ), j = 1, . . . , N (5.2.2d)

0 = hRef (yRef , uRef , ỹSP , ũSP ) (5.2.2e)

0 ≤ gRef (yRef
j+1 , u

Ref
j ), j = 0, . . . , N − 1 (5.2.2f)

yRef
j = θy,j, j = 1, . . . , p+∆tDRTO (5.2.2g)

uRef
j = θu,j, j = 0, . . . , p+∆tDRTO − 1 (5.2.2h)

us
j =argmin

ũs
j,k

ϕ̃s
j =

p∑
k=1

(ỹsj,k − ỹspj,k)
TQ(ỹsj,k − ỹspj,k)

+
m−1∑
k=0

(∆ũs
j,k)

TR(∆ũs
j,k)

+
m−1∑
k=0

(ũs
j,k − ũsp

j,k)
TS(ũs

j,k − usp
j,k), j = 0, . . . , N − 1 (5.2.2i)

s.t. x̃s
j,k+1 = Ax̃s

j,k +Bũs
j,k, k = 0, . . . ,m− 1 (5.2.2j)

x̃s
j,k+1 = Ax̃s

j,k +Bũs
j,m−1, k = m, . . . , p− 1 (5.2.2k)

ỹsj,k = Cx̃s
j,k + d̃sj,k, k = 1, . . . , p (5.2.2l)

∆ũs
j,k = ũs

j,k − ũs
j,k−1, k = 0, . . . ,m− 1 (5.2.2m)

umin ≤ ũs
j,k ≤ umax, k = 0, . . . ,m− 1 (5.2.2n)

In the above, the scenario index i is replace with a fixed scenario, s, as the

scenario subproblems are solved only for one scenario at a time. Note the scenario
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specific objective value of the DRTO scenario subproblem. The set-point reference

trajectories, yRef
j and uRef

j , are fixed to the values of θy, the output subset of the fixed

set-point trajectories, and θu, the input subset of the fixed set-point trajectories,

respectively, provided by the master problem, for the required length of the MPC

horizon, p, plus the DRTO sample time, ∆tDRTO.

It should be noted that the degrees of freedom of the CL-DRTO are the set-points

to be provided to the MPC. Therefore, fixing some length of the set-point trajectory

reduces the degrees of freedom of the optimization problem. If the DRTO prediction

horizon is less than or equal to the MPC horizon plus the DRTO frequency then the

scenario subproblems of the decomposition method are deterministic and have only

one feasible solution.

Overall, the scenario subproblems primarily serve to determine the objective value

and gradients for a given set-point trajectory for each scenario. This information will

inform the master problem as to how to adjust the set-point trajectory for the next

iteration.

5.2.4 Master problem algorithm

The purpose of the master problem is to attempt to optimize the expected value of

the overall optimization problem across all modelled scenarios by varying the fixed

portion of the set-point trajectory, θ. This can be expressed as:

min
θ

ϕ =
∑
i

ϕi (5.2.3)

The scenario subproblems can provide objective values and relevant gradients for

no additional computational cost as these are necessary values for the solution of
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the respective optimization subproblems. Therefore, the master problem can simply

extract this information from the subproblems as necessary. Given this information

available from the subproblems, there are a number of strategies which have been

employed to attempt to solve problems of this form. The general concerns of these

methods is balancing the computational complexity of the master problem with

the required number of iterations. More complex master problems often require

fewer iterations but each iteration requires more computation time. A relatively

simple method would be a gradient descent with backtracking line search [1], though

such a method may require many iterations to converge. Krishnamoorthy et al.

[35] use this approach for a robust MPC decomposition because each iteration

is relatively fast to solve and the feasibility test for the backtracking step is not

an optimization problem, but an algebraic computation. For a robust CL-DRTO

decomposition, the subproblems are CL-DRTO problems and so are not trivial

to solve; furthermore, one must be solved for each scenario that is modelled. A

backtracking determination would also require additional optimization problems

instead of an algebraic computation. Therefore, it is likely to be beneficial to use

a somewhat more complex master problem which reduces the overall number of

iterations.

In light of this, the method used here is the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) [7, 16, 20, 71] algorithm with a quadratic Lagrange polynomial line search.

The BFGS algorithm uses two evaluations to estimate the Hessian of the function in

the descent direction. It then adjusts the descent direction based on the estimated

second order function information. This can be a substantial improvement over

gradient methods which only use first order function information. Additionally, a
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third point is here also computed within each iteration in order to produce a three

point quadratic approximation of the objective function along the descent direction.

Because two points are already required for the BFGS method, the additional third

point only adds approximately 50% to the computation time while substantially

improving the line search, and, therefore, reducing the required number of iterations.

This approach was found to strike a reasonable balance of master problem complexity

and required iteration count. When used in the case studies in the following section,

generally fewer than 10 iterations were required for convergence. The full algorithm

can be seen in detail in Algorithm 1.

In Algorithm 1, ε1 is the convergence tolerance, ε2 is the failure tolerance, α is

the initial step size, θ is the fixed portion of the set-point trajectories to be provided

to the scenario subproblems, ∆ϕrel is the relative change in objective value, α⋆ is the

computed step size, c is a tuning parameter determining how quickly α⋆ decreases in

the event of a non-improving step, B is the approximated inverse Hessian used for the

BFGS method, S is the total number of modelled scenarios, ∇θϕ
i are the gradients

of the objective with respect to the fixed set-point trajectories for scenario i.

For determining the initial guess for θ, here a single scenario CL-DRTO problem

is solved using the nominal values of the uncertain parameters. This provides a

good initial guess, as it represents the optimal solution for the central scenario of the

uncertain region. It also does not add significantly to the computation time, as the

decomposition method presented must solve 3 sets of S single scenario CL-DRTO

problems for every iteration.

With sufficiently tight tolerance, this algorithm should converge to a local solution

of the optimization problem. It should be noted that the algorithm is a local solution
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Algorithm 1 Master Problem Algorithm

1: Define c < 1, ε1, ε2, α
2: Initialize θ, ∆ϕrel > ε1, ϕprev >> 1, θprev ← θ, α⋆ ← α, B ← I
3: while ∆ϕrel > ε1 do
4: for i = 1 to S do
5: Solve subproblem of scenario i with fixed θ
6: Evaluate scenario objective value, ϕi, and gradients w.r.t. θ, ∇θϕ

i

7: end for
8: Assign ϕ←

∑
i

ϕi and σ ←
∑
i

∇θϕ
i

9: if ϕ > ϕprev then
10: Solution is not improving, attempt smaller step from previous point:
11: α⋆ ← c ∗ α⋆

12: θ ← θprev + α⋆ ∗B ∗ σprev

13: if α⋆ ≤ ε2 then
14: BREAK, unable to find improving step
15: end if
16: end if
17: Vary θ and test two more points along direction B ∗ σ:
18: θ ← θ + α ∗B ∗ σ
19: Repeat 4-8, assigning ϕ2 ←

∑
i

ϕi and σ2 ←
∑
i

∇θϕ
i

20: θ ← θ + α ∗B ∗ σ
21: Repeat 4-8, assigning ϕ3 ←

∑
i

ϕi

22: Return to original point:
23: θ ← θ − 2 ∗ α ∗B ∗ σ
24: Record change in θ and gradients over distance α for computation of B:
25: ∆θ ← α ∗B ∗ σ
26: ∆σ ← σ2 − σ
27: Compute optimal step size in direction B ∗ σ as if function were quadratic:

28: α⋆ ← 0.5 ∗ α ∗ −3ϕ+ 4ϕ2 − ϕ3

−ϕ+ 2ϕ2 − ϕ3

29: Update relative change in objective, ∆ϕrel:
30: ∆ϕrel ← ||ϕ− ϕprev||/||ϕprev||
31: Save information for next iteration:
32: θprev ← θ, ϕprev ← ϕ, σprev ← σ
33: Move a distance α⋆ in direction B ∗ σ:
34: θ ← θ + α⋆ ∗B ∗ σ
35: Compute new approximation for inverse Hessian, B:

36: B ← B + (1 +
∆σTB∆σ

∆θT∆σ
)
∆θ∆θT

∆θT∆σ
− B∆σ∆θT +∆θ∆σB

∆θT∆σ
37: end while
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method, with no global optimization characteristics. Local NLP solvers are often

used in DRTO applications and so a local solution method is likely sufficient for most

applications. In light of this, a good initial guess is important for the algorithm to

converge to the desired solution as well as to reduce the computation time.

The convergence criterion shown here is the relative change in objective function

value. This choice was made out of practicality as it was found to produce more

consistent results and generally better performance than using the change in set-

point trajectory as the convergence criteria. In some test cases in this chapter, a

convergence criterion was used where the relative change in objective must be less

than the tolerance for two consecutive iterations. This slightly improved the solution,

but significantly increased the solution time.

The algorithm, as presented, is an unconstrained NLP solution method and so

does not handle the presence of hard constraints. In this chapter, this limitation is

mitigated by the use of soft constraints with large penalties. This produces large

gradients when the solution of a scenario subproblem violates these constraints,

thereby driving the master problem back into the feasible region. The algorithm

can be adjusted to be able to handle hard constraints if the application requires it.

This could be done, for example, by using the BFGS-B variant of the method [9].

5.3 Case Studies

In order for the presented decomposition algorithm to be potentially useful, it should

display a few key characteristics. The most important is whether the algorithm

can converge to a local optimum. Additionally, there should be conditions under

which it is able to find a local optimum with lower computation time than the
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monolithic problem. An algorithm which exhibits these properties has potential to

be a more appropriate choice of optimization method than a monolithic problem in

some applications.

Secondly, the conditions under which this algorithm outperforms the monolithic

problem should be determined. Therefore, the decomposition method is here

evaluated on a series of case studies designed to investigate the effects of problem

size, complexity, and nonlinearity on the performance of the algorithm. For the

decomposition method to be potentially useful for future applications, there should

be some combination of these properties under which the decomposition method

outperforms the monolithic method.

For all the cases presented here, the decomposition algorithm and the monolithic

problem are solved for varying numbers of modelled scenarios. This aspect of the

problem size is especially important because of the difference in scaling. In the

monolithic problem, increasing the number of scenarios directly increases the problem

size. By contrast, in the decomposition method, the subproblems remain the same

size but the number of subproblems which must be solved increases. Therefore,

determining how this difference affects the relative performance of the decomposition

method and the monolithic solution is an important aspect of this investigation.

The case studies all evaluate the method in a closed-loop simulation where the

DRTO is executed five times over the length of the simulation. Furthermore, this

simulation is carried out for three different plant realizations corresponding to the

minimum, nominal, and maximum uncertain parameter values, here also called the

characteristic scenarios. Therefore, each solution time data point in the below case

studies is an average of the solution time of 15 DRTO executions. Each expected

158

http://www.mcmaster.ca/


Ph.D. Thesis – L. MacKinnon; McMaster University – Chemical Engineering

objective value data point is an average of the objective evaluated using the simulation

data from the three characteristic scenarios. In the simulation, an MPC is also

applied to the plant to determine inputs from the set-point trajectories provided by

the DRTO. This MPC still includes input constraints, even though the MPC problems

embedded in the DRTO does not. The monolithic method and the decomposition

scenario subproblems use CONOPT to solve the optimization problem. All solution

times reported are using an Intel Core i7 8700 (3.2 GHz, 6 cores, 12 processors).

5.3.1 Case Study 1 – SISO

The first case study used to test the algorithm is a single-input-single-output (SISO)

bioreactor problem with two states, where the kinetics are governed by the Michaelis-

Menten equation [17]. The reaction equations may be expressed as follows:

dC

dt
= D · (Cin − C)− Vm · C

Ks + C
(5.3.1)

dP

dt
=

Vm · C
Ks + C

−D (5.3.2)

where the differential states are the concentration of reactant, C, and concentration

of product, P ; the inlet concentration, Cin, is the input; and the concentration of

product, P , is the output. D, Vm, Ks are the ratio of flow rate to reactor volume, the

maximum reaction rate, and the reaction constant, respectively, and are parameters.

The uncertain parameter was chosen to be the maximum reaction rate, Vm, and is

assumed to have a uniform probability distribution within the expected range.

This case study is the same as the first case study used in the previous chapter
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and allows for a small scale example on which to test the presented decomposition

algorithm. For this case, a target-tracking objective is used for simplicity. The

number of scenarios modelled by the decomposition and monolithic robust CL-DRTO

methods varies within each subcase. The methods are tested on three simulated plant

realizations which correspond to the minimum, nominal, and maximum values of the

uncertain parameter. The DRTO and MPC parameter values used for this case are

shown in Table 5.1.

Table 5.1: DRTO and MPC parameters for Case Study 1.

Parameter Description Value
N DRTO horizon 20

∆tDRTO DRTO sample time 4 hr
∆tMPC MPC sample time 1 hr

p MPC prediction horizon 8
m MPC control horizon 2
Q Output tracking weight 1
R Input move suppression weight 1
S Input tracking weight 0
Ts Time Step 1 hr

Three subcases are presented here which test different key aspects of the algorithm.

First, a linear plant model single reactor subcase is used to determine the ability of

the algorithm to converge to an optimal solution in a convex problem. Next, a

subcase with multiple parallel reactors is used to investigate the effect of increased

problem size on the performance of the algorithm without impacting the complexity

or convexity of the problem. Finally, a nonlinear plant model is used to determine

whether the algorithm is effective in nonconvex problems.
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Subcase 1a – Single reactor, linear model, target tracking

The first subcase used to test the algorithm is designed to, first, determine the

ability of the algorithm to find a local optimum and, second, to investigate the effect

of number of scenarios on the computation time of the algorithm. This subcase uses

a linear plant model and a quadratic target tracking objective, creating a convex

optimization problem. Based on this, the decomposition method and the monolithic

optimization method should reach the same solution as there is only one local

optimum.

For this subcase, the uncertain parameter, Vm, is modelled and tested with an

uncertainty of ±20%. The output, P , is given a target of 1 g/L to transition to from

a starting point of 0.72. A soft upper bound constraint of P ≤ 1.05 is included in

this subcase with a penalty weight of 100. There are no set-point constraints for this

subcase.

Figure 5.1 shows the computation time of the decomposition and monolithic robust

CL-DRTO methods for 1 to 101 modelled scenarios. Figure 5.2 shows a subset of this

data, specifically for 1 to 21 modelled scenarios. It should be noted that, in these and

subsequent figures, a tolerance of “10−6 (consecutive)” means that the convergence

criterion with a tolerance of 10−6 had to be met for two consecutive iterations of the

master problem.
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Figure 5.2: Solution time (s) of monolithic optimization problem and decomposition
method using various tolerances from 1 to 21 modelled scenarios, SISO linear case.

Based on the solution time results shown in Figures 5.1 and 5.2, the decomposition

method appears to scale linearly with the number of modelled scenarios while the

monolithic solution method appears to scale nonlinearly (roughly proportional to the

square of the number of scenarios). This is an important result as it implies that,

regardless of the details of the problem, there should always be some sufficiently large

number of scenarios where the decomposition method converges more quickly than

the monolithic.

The investigation involves looking at the performance of the decomposition

method at various convergence tolerances. This is to show the tradeoff between the

computation time and the quality of solution for the decomposition method. For

relatively loose tolerances, the algorithm terminates quite quickly but the solution

obtained is suboptimal. Conversely, very tight tolerances provide a solution much
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closer to the local optimum but take longer to converge. In accordance with this,

the smallest number of scenarios modelled in the optimization problem for which

the decomposition method solves more quickly than the monolithic depends on the

tolerance provided to the decomposition algorithm. A table of these crossover points

is shown in Table 5.2, along with their average discrepancies from the monolithic

solution. The change from monolithic is relative to the nominal solution as this was

the initial guess for the decomposition problem. So, for example, if the nominal

solution had a value of 11, the monolithic solution 10, and the decomposition

10.1, then the change from monolithic would be reported as being 10%. For

some tolerances, the observed mean expected objective value is less than for the

monolithic. This is a result of the slight discrepancy between the model prediction

of the DRTO and the plant simulation it is tested on. The objective value computed

by the decomposition DRTO itself in these situations is still (slightly) larger than

that computed by the monolithic DRTO. This can be seen in Table 5.3, where

the objective computed by the first execution of the DRTO is shown for various

tolerances, averaged across all modelled scenarios from 1 to 101. Figure 5.3 shows

the observed expected objective function value for the monolithic method and

decomposition method at various tolerances for 1 to 101 modelled scenarios.

From Figure 5.3 and Table 5.2 and 5.3, it can be seen that it requires a tolerance of

10−6 (consecutive) for the decomposition to achieve the same result as the monolithic.

It is important that there exists a tolerance for which this is true, as it shows that

the decomposition method is converging to the same solution as the monolithic

(the only local optimum). However, the computation time for this convergence

tolerance is large, significantly larger than the monolithic for all numbers of modelled
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Figure 5.3: Expected objective from three characteristic scenario simulations of
monolithic optimization problem and decomposition method using various

tolerances by number of modelled scenarios.

scenarios tested. For looser tolerances, the solution tends to deviate from the optimal

solution. At the largest tested tolerance of 10−1, the solution found is about 31% worse

in simulation than the monolithic solution, and 4.7% worse in terms of computed

objective at the first execution. For 10−2, it is about 4.1% worse in simulation

and 2.2% worse of a first computed objective. For the tolerances of 10−3, 10−4,

and 10−6 the relative measured performance is slightly better (approximately 1-2%).

However, the computed objective is worse by a margin of 0.35%, 0.15%, and 0.068%

for tolerances of 10−3, 10−4, and 10−6, respectively. Overall, it should be considered

that these sets of results are very similar and that the decomposition method does

not show significant improvements in this subcase with tolerances tighter than 10−3.

For this simple, small, convex problem, the number of scenarios required for the
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Table 5.2: Minimum scenarios for decomposition method to solve in less time than
monolithic problem (crossover point) and expected performance relative to

monolithic for various tolerances, SISO linear case.

Decomposition Crossover Mean expected % change
Tolerance Point objective value from monolithic
Nominal N/A 15.46 +100
10−1 7 13.84 +31.1
10−2 13 13.21 +4.14
10−3 31 13.06 -2.06
10−4 81 13.05 -2.23
10−6 101 13.07 -1.66

10−6 (consecutive) N/A (>101) 13.11 0.00
Monolithic N/A 13.11 0

decomposition method to find a solution close to the optimum and solve in less time

than the monolithic is quite large, 31 modelled scenarios with a tolerance of 10−3 and

many more for tighter tolerances. It is unlikely that this many scenarios would be

necessary. Therefore, the monolithic method is probably more appropriate for such

a small, convex problem such as this. However, what this first case shows is that the

solution tends to improve and the solution time increases as the tolerance decreases.

It also showed that as more scenarios are modelled the decomposition method gets

steadily more competitive with the monolithic method. Additionally, regardless of

tolerance used, the solution provided was always better than the nominal DRTO

solution (which was used as the initial guess).

Subcase 1b – Multiple parallel reactors

The next subcase investigated involves increasing the optimization problem

size beyond the number of scenarios, while keeping the problem SISO. This is
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Table 5.3: Computed objective value by first execution of DRTO, averaged across
all modelled scenarios from 1 to 101, relative to monolithic for various tolerances,

SISO linear case.

Decomposition Mean computed % change
Tolerance objective value from monolithic
Nominal 7.0222 +100
10−1 5.8551 +4.68
10−2 5.8263 +2.16
10−3 5.8047 +0.350
10−4 5.8022 +0.149
10−6 5.8013 +0.068

10−6 (consecutive) 5.8004 0.00
Monolithic 5.8004 0

accomplished by modelling multiple identical reactors in parallel, with one inlet

stream splitting evenly into every reactor and one outlet stream being an even mix

from all of the reactors. By assuming that the reactors behave identically, this

subcase can test the effect of problem size (in the form of number of states and model

equations) on computation time for the decomposition method without increasing

the number of set-point trajectories which must be provided to the MPC. Other

than increasing the number of reactors, the other details of this subcase are identical

to the previous one.

As is expected, the solutions found in this subcase are identical to those found

in the previous subcase. Only computation time differs by changing the number of

parallel reactors. Figures 5.4, 5.5, and 5.6 show the solution time for the monolithic

method and decomposition method with various tolerances by number of parallel

reactors for 3, 11, and 21 modelled scenarios, respectively. The tolerance of 10−6

(consecutive) was not included here as it was much slower than when using the other
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tolerances and did not substantially improve on those cases. The tolerance of 10−3

was also not included as its performance was very similar to both that of 10−2 and

10−4. The nominal CL-DRTO results are also included here (in the previous subcase

the nominal result is simply the 1 scenario data point) as a reference for the solution

times of these problems by a non-robust CL-DRTO.

Figure 5.4: Solution time (s) of monolithic optimization problem and decomposition
method at various tolerances by number of parallel reactors, for 3 modelled

scenarios.

Unlike the scaling with number of scenarios, the number of reactors (acting as

a proxy for number of states and model equations) affects both the monolithic and

decomposition methods nonlinearly. However, the monolithic problem computation

time increases more quickly with number of reactors than the decomposition method.

This is likely because solution time of optimization problems generally scales
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Figure 5.5: Solution time (s) of monolithic optimization problem and decomposition
method at various tolerances by number of parallel reactors, for 11 modelled

scenarios.

nonlinearly with problem size and so the larger initial problem size of the monolithic

version causes the solution time to increase more quickly than the decomposition

method. This can also be seen in that the rate of increase of computation time for the

monolithic is higher with more scenarios modelled, but is not for the decomposition

method.

Overall, the crossover points where the monolithic takes more time to solve than

the decomposition method all occur at fewer modelled scenarios as the problem size

increases. For example, the decomposition method with 11 scenarios and a tolerance

of 10−4 is faster than the monolithic with 11 scenarios if there are 10 parallel reactors,

compared to 81 scenarios being need for the decomposition to be faster when only
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Figure 5.6: Solution time (s) of monolithic optimization problem and decomposition
method at various tolerances by number of parallel reactors, for 21 modelled

scenarios.

one reactor is present. This suggests that the decomposition method may be of

more potential use in larger problems, as the monolithic method tends to slow in

its computation time more drastically than the decomposition does as the overall

problem size increases.

Subcase 1c – Nonlinear model

Thus far, the decomposition method has been tested only on a convex case. In this

subcase, a nonlinear plant model is used to test the ability of the decomposition

method to work on a nonconvex problem. This is relevant as convex problems are

relatively easy to solve and so decomposition methods are rarely required. In order
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to avoid adding much additional complexity here, this subcase still uses the same

SISO case as above, with only one reactor, and a target tracking objective. The only

other changes made, besides switching to a nonlinear plant model, are the addition

of a soft set-point constraint of −10 ≤ yRef ≤ 10 with a penalty weight of 10−2

and a reduction in the magnitude of uncertainty. The set-point constraint simply

keeps the set-points provided to the MPC from going too far from the desired target.

The uncertain parameter is changed from having ±20% uncertainty to having ±10%

uncertainty because the same change in the uncertain parameter in the nonlinear

model leads to larger plant behavior changes than in the linear model. The output

soft constraint upper bound is still present. Figure 5.7 shows the solution time of the

monolithic method and the decomposition method with various tolerances for 1 to 25

modelled scenarios.

Figure 5.7: Solution time (s) of monolithic optimization problem and decomposition
method at various tolerances by number of modelled scenarios, SISO nonlinear case.
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Once again, it can be seen that the decomposition method solution time scales

linearly with number of scenarios, while the monolithic problem scales nonlinearly.

Overall, the decomposition method here solves the optimization problem in less time

than the monolithic at fewer modelled scenarios than in the linear subcase above. The

minimum scenarios modelled at which the monolithic is slower than the decomposition

by tolerance is shown in Table 5.4, along with the average discrepancy from the

monolithic solution. Figure 5.8 shows the expected objective value of the monolithic

and decomposition methods at various tolerances for 1 to 25 modelled scenarios.

Figure 5.8: Expected objective from three characteristic scenario simulations of
monolithic optimization problem and decomposition method using various

tolerances by number of modelled scenarios, SISO nonlinear case.

As seen in Figure 5.8 and Table 5.4, the solutions found by the decomposition

method at various tolerances once again generally improve as the tolerance tightens.
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Table 5.4: Minimum scenarios for decomposition method to solve in less time than
monolithic problem (crossover point) and expected performance relative to

monolithic for various tolerances, SISO nonlinear case.

Decomposition Crossover Mean expected % change
Tolerance Point objective value from monolithic
Nominal N/A 31.12 100
10−1 5 16.70 +11.4
10−2 9 16.51 +10.3
10−3 17 15.21 +2.23
10−4 25 14.50 -2.08
10−6 N/A (>25) 14.65 -1.16

Monolithic N/A 14.84 0

While the averages shown in Table 5.4 show the general improvement with tighter

tolerances, this is not a consistent trend. Rather, the tighter tolerances seem to

increase the likelihood that the decomposition method finds an improved solution.

For example, with a tolerance of 10−2, the decomposition method finds a solution

within 5% of the monolithic for three cases but is over 10% worse in more than half

of the cases, resulting in an overall average of about 10% discrepancy. By contrast,

a tolerance of 10−4 results in the decomposition being only 2% worse in one case

and less than 1% worse in the remaining simulations. This general improvement in

consistency can be seen visually in Figure 5.8.

As this is now a nonconvex problem, it is possible for the monolithic problem

to not find the optimal solution and instead converge to a different local optimum.

This appears to have occurred when the monolithic problem is solved with 21 and

25 modelled scenarios. The decomposition method, on the other hand, finds a

significantly better solution for these scenario cases with a tolerance of 10−4 and for

25 modelled scenarios with a tolerance of 10−6. These results from the decomposition
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method are also more similar to those found for fewer modelled scenarios, suggesting

the decomposition method is converging to the desired local optimum. This is

likely because the monolithic problem, as it increases in problem size, has difficulty

effectively finding a solution and so can terminate at an undesirable local solution;

this issue is not shared by the decomposition method due the small size of the

optimization subproblems. It should be noted that the decomposition method for

a tolerance of 10−6 with 21 scenarios finds a worse solution because this execution

erroneously terminated prior to convergence and so did not find a local solution to this

tolerance level. For the remaining simulations (with numbers of modelled scenarios

under 21), the discrepancy between the solution found by the monolithic problem and

the decomposition method with a tolerance of 10−4 and 10−6 (and often 10−3) is too

small (< 1%, with only one exception) to be significant.

This subcase shows that the decomposition method presented works to find a local

solution of nonconvex problems. It does, however, appear to require a somewhat

tighter tolerance for comparable results to the monolithic method. In the linear case,

the decomposition method with a tolerance of 10−2 finds solutions only about 4%

worse than the monolithic on average, while in the nonlinear case it is about 10%

worse for the same tolerance. However, there is potential in the nonconvex case to

outperform the monolithic method, as mentioned previously. Even ignoring the two

cases where the monolithic method doesn’t find a good solution, the decomposition

method with a tolerance of 10−4 does only 0.8% worse than the monolithic, and with

a tolerance of 10−6 does 0.05% worse. Overall, the decomposition method generally

performs better in the nonconvex case than the convex case in terms of computation

time, solving faster than the monolithic at fewer scenarios while still finding similar

174

http://www.mcmaster.ca/


Ph.D. Thesis – L. MacKinnon; McMaster University – Chemical Engineering

solutions.

5.3.2 Case 2 – MIMO with economic objective, linear model

polymerization reactor

The last case study used here to investigate the effectiveness of the decomposition

method seeks to determine if it is effective on problems with multiple inputs and

multiple outputs (MIMO) and with an economic objective function. The first of

these adds problem size both within the subproblems and in the master problem as

a set-point trajectory must be provided to the MPC for each output and the master

problem must evaluate the gradients of each of these set-point trajectories. This is a

departure from the previous investigations into increases in problem size as previously

only the subproblems were affected. The second change affects the complexity of

the objective function, as the objective is no longer a sum of quadratic functions.

This is important as a DRTO is unlikely to use a target tracking objective in a real

application and so the decomposition method’s ability to function with an economic

objective is paramount to its potential future usefulness. Additionally, the sum of

quadratic functions used previously lends itself well to the quadratic approximation

line search used in the master problem algorithm. So it is important to show that

the algorithm presented can work with other objectives. The case study here uses a

linear plant model.

The exact case study used here is a three input, three output, six state

polymerization reaction which has been used previously for CL-DRTO testing [27]

and in the previous chapter. The system inputs are the inlet flowrates of the

monomer, an initiator, and a solvent, respectively. The outputs of the system are the
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number average molecular weight (NAMW) of the polymer product, the temperature

in the reactor, and the concentration of monomer in the reactor. The objective is

a profit band function where the polymer product can be sold when the NAMW is

within a particular range, and thus revenue can be accrued. The binary nature of

this objective is approximated using hyperbolic tangent functions as:

ϕecon =
∑
i

ρi
N∑
j=0

10 ·Ri
1,j ·Ri

2,j − ui
j (5.3.3)

Ri
1,j =

1

2
tanh

(
γ[yij − (1− δ)ytarj ]

)
+

1

2
(5.3.4)

Ri
2,j =

1

2
tanh

(
γ[(1 + δ)ytarj − yij]

)
+

1

2
(5.3.5)

where γ and δ are fixed parameters which determine the slope of the tanh functions

and the half-width of the profit band, respectively; ui
j and yij are the inputs and

outputs of the system, respectively; in this case they represent the inlet concentration

of reactant, Cin, and the concentration of product, P . The product of tanh switching

function approximations in 5.3.3 gives Ri
1,j ·Ri

2,j ≈ 1 if (1− δ)ytarj ≤ yij ≤ (1 + δ)ytarj ;

and is 0 otherwise. For this case study, a target for the NAMW of 68.9 kg/mol was

used with a profit band width of ±1% (ytarj = 68.9, δ = 0.689) and γ = 10.

In addition to this, there are also soft set-point constraints and output constraints

whose penalties are added to the objective function (weights of 10−2 and 100,

respectively). Finally, in order to aid in providing gradients to the master problem

for the other output set-points (not the NAMW), a low weight (10−3) target tracking

objective was also added for all three outputs. This mainly aids in directing the

master problem towards the optimal solution and, at convergence, represents < 0.1%

176

http://www.mcmaster.ca/


Ph.D. Thesis – L. MacKinnon; McMaster University – Chemical Engineering

of the total objective function value. This was also added to the objective in the

monolithic problem for fair comparison. The DRTO and MPC parameters used

for this case study can be seen in 5.5. Figure 5.9 shows the solution time for the

monolithic method and decomposition method using various tolerances for 1 to 21

modelled scenarios.

Table 5.5: DRTO and MPC parameters for Case Study 2.

Parameter Description Value
N DRTO horizon 20

∆tDRTO DRTO sample time 4 hr
∆tMPC MPC sample time 1 hr

p MPC prediction horizon 8
m MPC control horizon 2
Q Output tracking weight diag(1,1,1)
R Input move suppression weight diag(50,15,5)
S Input tracking weight diag(0,0,0)
Ts Time Step 1 hr

Once again, it can be seen that the decomposition method solution time scales

linearly with number of scenarios while the monolithic scales nonlinearly. However, in

this MIMO case, the monolithic solution time increases much more quickly than the

decomposition, as compared to the previous SISO case. As a result, the monolithic

method is slower than even a fairly tight tolerance of 10−4 for 7 or more scenarios

(a tolerance of 10−6 was not tested here as the results were nearly identical to those

of 10−4 tolerance, with only marginally slower solution times). This shows that as

the problem size and complexity increases, the decomposition method becomes more

effective at reducing computation time of the optimization problem.

Specifically, the increase in problem size of the subproblems leads to lesser

177

http://www.mcmaster.ca/


Ph.D. Thesis – L. MacKinnon; McMaster University – Chemical Engineering

Figure 5.9: Solution time (s) of monolithic optimization problem and decomposition
method at various tolerances by number of modelled scenarios, MIMO case.

increases in solution time as the subproblems are relatively small and manageable.

The increase in complexity from the economic objective in conjunction with the

increase in number of set-points does lead to an increase in number of required

iterations, thus increasing the solution time of the decomposition method. But this

increase is simply not as large, especially for many modelled scenarios, as that seen

in the monolithic problem.

Figure 5.10 shows the expected value of the economic objective minus the

constraint violation for the monolithic method and decomposition method for various

tolerances for 1 to 21 modelled scenarios. A summary of average performance

(economic objective – constraint violation) and solution time crossover point by

tolerance relative to the monolithic solution is shown in Table 5.6. It should be

noted that this is a maximization objective, as opposed to the minimization of the
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previous cases.

Figure 5.10: Expected objective from three characteristic scenario simulations of
monolithic optimization problem and decomposition method using various

tolerances by number of modelled scenarios, MIMO case.

Overall, it can be seen in Table 5.6 that a tolerance of 1 or 10−1 leads to

substantially reduced performance compared to the monolithic, a tolerance of 10−2

yields very similar average results, and a tolerance of 10−4 produces significant

improvements over the monolithic. As seen in Figure 5.10, this general trend of

improvement as tolerance decreases is, once again, a result largely of consistency

improvements. For example, a tolerance of 1 produces mostly worse results than

the monolithic, but it does better than the monolithic in 3 cases (17, 19, and 21

scenarios). A tolerance of 10−1 yields 4 cases with better results than the monolithic

and 6 cases of worse results. A tolerance of 10−2 shows 3 cases with worse results and

the rest improvements. A tolerance of 10−4 shows all but one case having improved

performance over the monolithic method. Furthermore, the decomposition method
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Table 5.6: Minimum scenarios for decomposition method to solve in less time than
monolithic problem (crossover point) and expected performance relative to

monolithic for various tolerances, MIMO case.

Decomposition Crossover Mean expected % change
Tolerance Point objective value from monolithic
Nominal N/A -25.86 -100

1 3 43.36 -36.3
10−1 5 58.89 -22.1
10−2 5 82.86 -0.037
10−4 7 97.98 +13.9

Monolithic N/A 82.89 0

with a tolerance of 10−4 produced significantly improved results compared to the

monolithic method on average, while solving in less time for problems with more

than 5 scenarios. This suggests that for MIMO problems it is likely to be beneficial

to use the decomposition method instead of the monolithic solution.

The decomposition method does not seem to have a particular difficulty with the

economic objective function or the increased complexity from dealing with multiple

set-point trajectories and their associated gradients. While the solutions found by the

decomposition method are not very consistent across number of modelled scenarios,

the solutions found by the monolithic problem are not significantly more consistent

either. This is unlikely to be from the model-plant discrepancy as that was found

previously to be relatively small in effect size, where these inconsistencies are quite

significant; and because the discrepancy did not seem to depend on number of

modelled scenarios, which is the case here. Rather, it seems likely that the nature of

the MIMO problem size and complexity with many scenarios simply makes finding a

good solution quite difficult regardless of method used.
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In this MIMO case with an economic objective function, the decomposition

approach presented here is able to effectively reduce the required computation time

over the monolithic solution method, especially as the number of modelled scenarios

increases. The relative improvement seen in computation time is more pronounced

for the MIMO case than the SISO case, suggesting that an increase in problem

size lends itself to the decomposition method. This is consistent with the result of

subcase 1b which increased problem size through number of states only.

5.3.3 Discussion of Case Study Results

The primal decomposition method presented here shows potential benefits over a

monolithic method for relatively large problem size, especially as a result of a large

number of modelled scenarios. This is because the subproblems of the decomposition

method are single scenario problems, and thus do not grow with number of modelled

scenarios. Instead, the number of subproblems increases. Thus the decomposition

solution time increases linearly with number of scenarios while the monolithic

solution increases nonlinearly (it appears to be roughly quadratic). For problems

sizes resulting not from number of scenarios (number of states, inputs, outputs,

model equations, etc.), the monolithic problem and the scenario subproblems both

increase nonlinearly, but the larger size of the monolithic problem results in larger

proportional computation time increases.

In terms of quality of solution, the decomposition method performance depends

heavily on the convergence tolerance. For convex problems, the decomposition

method is capable of converging to an identical solution as the monolithic problem

with a sufficiently small tolerance, though the resulting solution time is unlikely to
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be smaller than the monolithic unless the problem is very large. The decomposition

method can achieve similar results to the monolithic method with substantially

looser tolerances, resulting in significantly reduced computation time. For nonconvex

problems, the decomposition method can, again, reach similar results to the

monolithic problem with sufficiently tight tolerance. Furthermore, for large

nonconvex problems (whether as a result of number of scenarios or otherwise),

the monolithic problem is not always able to find a good solution, and so the

decomposition method is capable of outperforming it in terms of expected objective

value.

As a result of the above points, there are cases shown where the decomposition

method solves the optimization problem in less time than the monolithic method

and produces a better solution in terms of the objective function used. In the SISO

nonconvex case, a tolerance of 10−4 and 25 modelled scenarios yields a decomposition

solution better than that found in the monolithic method, with less computation

time. In the MIMO convex case, the decomposition method with a tolerance of

10−2 or tighter with 9 or more scenarios produces a better solution in less time the

monolithic.

Therefore, there are applications which have reasonably large problem sizes

and a fairly large number of scenarios for which the decomposition method would

outperform the monolithic method in terms of both economic objective and solution

time. Furthermore, if an application has to solve a DRTO in a relatively short time,

this method may be a good choice as it will always give a feasible solution which is

not worse than the initial solution, even if it does not converge. This can be seen in

all case studies in the general improvements in solution as the tolerance decreases at
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the cost of computation time.

5.4 Conclusion

The proposed decomposition method has been shown to effectively reduce the

solution time of robust CL-DRTO problems for which the problem size is relatively

large. The primary difference in computation time compared to a monolithic solution

method is that the decomposition method solution time increases more slowly

than the monolithic method as the number of scenarios increases. As it has been

shown in the previous chapter that increasing the number of scenarios can improve

performance, this is an especially important result. Additionally, the decomposition

method generally solves in less time than the monolithic for large problems, even

for relatively few scenarios. Finally, for large problems with many scenarios, the

decomposition method not only reduces computation time dramatically, but is also

able to significantly outperform the monolithic in terms of expected objective.
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Chapter 6

Conclusion

6.1 Summary and Contributions

The primary purpose of this research is to extend the closed-loop prediction strategy

previously employed for CL-DRTO to settings where stability and uncertainty are

major concerns and so must be incorporated into the optimization and control

framework. These concerns are often included in the control hierarchy of industrial

chemical engineering applications and so the ability for the CL prediction strategy

to also include these concerns is necessary for its employment in many of these

applications. By allowing the CL prediction strategy to be used in additional

applications, its usefulness is extended; and the applications to which it is applied

may see improvements in performance and safety as a result. The key contributions

of this research are as follows:

1. A single-level robust multi-scenario MPC with closed-loop prediction

We apply the CL prediction strategy to a robust MPC framework to allow the
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multi-scenario modelling of the MPC to predict both the plant behavior and

the future MPC behavior subject to uncertainty. The future MPC subproblems

use a non-robust MPC model to maintain convexity. This is a reasonable

approximation of the future robust MPC behavior. The overall CL robust MPC

strategy is shown to outperform a non-robust MPC under a range of uncertainty

realizations.

2. A convex Lyapunov-based stabilizing MPC formulation for nonlinear

systems

A Lyapunov MPC which uses a linear plant prediction model with a nonlinear

Lyapunov stability constraint is formulated to produce a convex LMPC. Such a

formulation has the advantage of ease of computation compared to a nonlinear

MPC while maintaining stability under a wider range of plant conditions than

a linear model, linear constraint stability MPC.

3. Lyapunov MPC embedded in a CL-DRTO framework

The convex LMPC formulation allows for its inclusion as the MPC subproblems

in a CL-DRTO framework. This CL-DRTO with LMPC strategy models an

underlying LMPC which is directly controlling an unstable plant system. The

two-level optimization and control strategy is able to effectively optimize an

unstable system under a wider range of plant conditions than a similar CL-

DRTO strategy with an endpoint penalty stabilizing MPC.

4. A multi-scenario robust CL-DRTO formulation

We present a CL-DRTO method which incorporates uncertainty handling at

the economic optimization level by using a multi-scenario approach for the
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CL-DRTO. This approach models multiple possible plant realizations and the

associated MPC behavior in these scenario realizations. The underlying MPC

is assumed to be non-robust. The robust CL-DRTO method is shown to

outperform a non-robust, single-scenario CL-DRTO over a range of uncertain

plant realizations.

5. Effects of number of modelled scenarios on CL-DRTO performance

Investigating the performance of CL-DRTO reveals that, when executed on

a random sampling of possible plant realizations, increasing the number of

modelled scenarios also improves the overall performance of the economic

optimization. This is because the CL-DRTO is able to predict a greater variety

of plant behaviors and determine set-point moves accordingly. However, the

computation time of the CL-DRTO increases significantly as the number of

scenarios within the CL-DRTO increases.

6. Decomposition of robust CL-DRTO

We propose a primal decomposition method for the robust CL-DRTO strategy.

This method separates the multi-scenario problem into individual single-

scenario subproblems where a portion of the set-point trajectory within each

subproblem is fixed by the master problem. The decomposition approach

substantially reduces the computation time compared to the monolithic multi-

scenario method for large problem sizes without significant loss of performance,

particularly for large numbers of modelled scenarios.
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6.2 Future Work

There are many possible avenues for future research on the topics covered in this

work. A few broad areas are identified and outlined in this section.

6.2.1 Variations on existing strategies

This is an especially broad category of future work so a few particular examples will

be outlined here and briefly explored. The key characteristic of these variations is

that they do not require new solution techniques to be implemented.

One aspect of uncertainty which is not explored in either chapter 1 or chapter 3

above is that of time-varying uncertainty. In both chapters, uncertainty is modelled

in the form of an uncertain time-invariant parameter. However, there are many

other sources of uncertainty in real applications which are time-varying, including

parameters and others, such as demand uncertainty or disturbances. The ability to

model this time-varying uncertainty in a CL MPC or CL-DRTO would further expand

on the methods’ ability to be used in applications with uncertain characteristics.

However, effectively doing so would likely require additional scenario splits beyond

the first time point, thereby increasing the problem size.

The use of stabilizing MPC in CL-DRTO has been explored with both endpoint

penalty and Lyapunov MPC strategies. However, there are many more stabilizing

MPC strategies. Incorporating any of these other stabilizing MPC strategies into

the CL-DRTO algorithm would be a worthwhile endeavor as it may expand the

usefulness to more systems which require stabilizing control elements. Some of these

strategies may be adjustable (similar to the Lyapunov MPC in this work) to be convex

quadratic, if not already convex (as with the endpoint penalty MPC investigated
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previously), allowing relatively simple incorporation into the CL-DRTO system.

Similarly, a primal decomposition method is explored here for robust CL-DRTO,

but many other decomposition techniques exist, including Bender’s decomposition

and dual decomposition techniques. While many of these techniques do not have

the feasibility guarantees of the primal method, they may prove to perform better

in terms of time to convergence. A full exploration of the relative performance of

various decomposition techniques in a robust CL-DRTO setting would be valuable

for determining the ideal method of decomposition.

6.2.2 Formulation of CL-DRTO with non-convex subproblems

For the entirety of the work here, it is assumed that the underlying MPC which is

modelled in the CL-DRTO is convex. For many industrial MPC uses, this is not

the case and the real MPC being implemented constitutes a non-convex problem.

Therefore it would be beneficial if the CL-DRTO method were to be able to model the

behavior of a non-convex underlying MPC. However, the first-order KKT conditions of

a non-convex problem are not sufficient for optimality. Therefore, a different solution

method, such as a sequential approach, would be required.

The implementation of non-convex subproblems into the CL-DRTO strategy

allows for its use in a much wider range of applications. This includes a robust CL

MPC able to model its own future behavior more accurately, as it could include a

multi-scenario robust MPC as its future MPC subproblems, rather than a nominal

MPC. Additionally, a CL-DRTO with a non-convex stabilizing MPC, such as a

Lyapunov MPC with both nonlinear model and stabilizing constraints, is also a

possible extension. For applications where uncertainty is a major concern for both

188

http://www.mcmaster.ca/


Ph.D. Thesis – L. MacKinnon; McMaster University – Chemical Engineering

short-term control and long-term economic optimization, a robust CL-DRTO which

models an underlying robust MPC may be appropriate as it would allow for both

control and optimization layers to account for plant uncertainty.

6.2.3 Inclusion of scheduling decisions into CL-DRTO

The incorporation of higher order scheduling decisions into a CL-DRTO strategy is

an ongoing area of research in the Swartz group. Remigio and Swartz [69] successfully

combined a linear model CL-DRTO with a scheduling optimization problem. This

resulted in a mixed-integer linear program (MILP). Dering and Swartz [14] extend

this approach to a multi-scenario CL-DRTO to handle uncertainty and also use

piecewise-affine models within the DRTO to increase fidelity while maintaining the

problem as an MILP. Future research may seek to combine these efforts with the

methods presented in this work to allow for a CL-DRTO problem to include scheduling

decisions, underlying MPC behavior, use of a nonlinear plant model, and uncertainty

handling.

However, a nonlinear CL-DRTO with scheduling decisions would result in a

mixed-integer nonlinear program (MINLP) which are substantially more difficult

to solve. Therefore, the use of decomposition techniques may be necessary to solve

such a formulation and have it be reasonable for inclusion in a real-time setting. A

method suited for decomposition by integer variables, such as Generalized Bender’s

Decomposition, is likely to be useful. Furthermore, inclusion of uncertainty into this

problem would further increase the computational complexity, but use of a second

layer of decomposition may allow for efficient solution. The resulting problem would

include decomposition by integer variable at one layer and decomposition by scenario
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at the next layer. The number of subproblems in such a formulation would therefore

be large, but overall it may result in a much easier problem to solve than a single,

large MINLP.

6.2.4 Parameter estimation for improvement of robust CL-

DRTO model

Parameter estimation is another approach used to handle uncertainty at the RTO

level. In such an approach, data from plant measurements is used to update the

model of the RTO or DRTO at certain intervals by performing parameter estimation

in conjunction with the real-time optimization. Matias and Le Roux [51] develop

a strategy where this parameter estimation can occur prior to the system reaching

steady state, thus allowing the RTO to improve its model during transitions. This

is a significant advantage over previous methods which had to wait for steady state

and thus the optimization model could be inaccurate for a potentially long transition

period. Patrón and Ricardez-Sandoval [62] use an information content metric to

selectively choose which measurements to use for parameter estimation in order to

reduce the effects of noise. Zhang et al. [80] use a modifier adaptation principle to

not only update parameters but also adjust modifiers which are designed to account

for structural plant-model mismatch.

With the amount of active research surrounding parameter estimation for RTO, it

stands to reason that a parameter estimation step may improve the performance of a

robust CL-DRTO. The parameter estimation may allow for the size of the uncertainty

region of the robust CL-DRTO to decrease as plant measurements become available.

Furthermore, if the range of possible plant scenarios was chosen to be too restrictive
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or was substantially different from the real plant behavior, the parameter estimation

step could serve to move the entire uncertainty region towards the observed plant

behavior. Therefore, the inclusion of a parameter estimation step alongside a robust

CL-DRTO may allow for improved performance as plant measurements can serve to

improve the plant and uncertainty models of the DRTO.
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