

2023 P4 Workshop – In-depth Talk (20 minutes) proposal

Lachance and Mosser – A Language Engineering Approach to Support the P4 Coding Ecosystem

A Language Engineering Approach to Support the P4 Coding Ecosystem

Alexandre Lachance, Sébas2en Mosser

McMaster Centre for So.ware Cer0fica0on (McSCert)
McMaster University, Faculty of Engineering, Dept. of Compu0ng and So.ware

Hamilton, Ontario, Canada – {lachaa2, mossers}@mcmaster.ca

Context. P4 as a language is becoming a de facto standard to support the defini8on of So.ware Defined
Networks (SDNs). The research and industrial communi8es associated with P4 are blooming, with an intense effort
dedicated to language defini8on/formaliza8on [1], op8mized compila8on [2], sta8c code analysis [3,4,5], … However,
from a P4 developer point of view, the language suffers from this effervescence: available tools are not necessarily
interoperable, and more importantly, the research effort focuses today on the language, not on the developers who
use it daily. In this context, the Kaloom-TELUS-ETS Research Chair on DevOps for SDNs is inves8ga8ng how the DevOps
paradigm from the soRware engineering community can be leveraged and adapted to the specifici8es of SDNs. The
underlying idea of DevOps is to put developments and opera8ons at the same level in a con8nuous loop. By focusing
on culture more than on technology, a DevOps-based approach relies on three “ways” [6]: (i) iden8fying flow and
reifying such flows into con8nuous delivery pipelines, (ii) leveraging the flows and crea8ng a fast con8nuous feedback
loop, and finally (iii) use this feedback to create opportuni8es to learn con8nuously.

Challenge. The specifici8es of SDNs trigger challenges in applying DevOps principles (i.e., suppor8ng the “three
ways”) to such an ecosystem. As DevOps is about crea8ng a culture of “con0nuous feedback”, contribu8ng to this
direc8on for SDNs means iden8fying which kind of feedback is relevant and what con0nuous means in the context
of P4 development. The cri8cal point here is to provide tools and technologies to support a shiR from a language-
centred process (i.e., compiler driven) to a developer-centred one (i.e., so.ware language engineering, SLE).

Contribu2on. Leveraging our exper8se in embedded language design [7] and con8nuous feedback loops for
developer-centred ecosystems [8,9], we ini8ated a discussion with the industrial research chair research partners to
iden8fy how SLE approaches could support this thriving ecosystem from a DevOps point of view. Among the different
leads iden8fied at this stage, the most immediate result was to realize how diverse is the P4 community. Such
diversity means that any a`empt to put the P4 developers at the center of the ecosystem must be made with
integra8on in mind. To support such a vision, we propose to the P4 community an integra8ve Language Server-based
approach, depicted in Fig. 1.

Figure 1. Architecture of the proposed P4 Language Server integra>ve approach.

This architecture relies on a Language Server as a pivot element between (i) the users of the language, (ii) a
lightweight representa8on of the language grammar design to support a short feedback loop, and (iii) external
tooling that is developed independently. A classical way to deliver services to developers is to use a Language Server
Protocol (LSP), a technology popularized by MicrosoR in 2016 that supports the standard communica8on between

2023 P4 Workshop – In-depth Talk (20 minutes) proposal

Lachance and Mosser – A Language Engineering Approach to Support the P4 Coding Ecosystem

an editor and a language server in charge of providing language-specific services such as syntax highligh8ng,
formadng, or naviga8on. The server relies on an abstract representa8on of the P4 file obtained by directly transla8ng
the P4 standard into a parser. Where the reference compiler (p4c) is a fully-fledged compila8on toolchain targe8ng
mul8ple architectures, the abstract representa8on used as an underlying founda8on is designed with the ra8onale
of suppor8ng analysis to provide feedback to the developers. It complements the compila8on toolchain in the
ecosystem by providing a lighter representa8on that a language engineer can use to write a diagnos8c (e.g., unused
variable, incompa8ble types assignment). According to the integra8on-driven ra8onale of the architecture, these
analyses are developed following an inversion of control pa`ern: the language server acts here as a framework that
provides context to each analysis, and the language engineer in charge of designing their analysis has to focus on
their very problem, thanks to a “plugin” approach. In addi8on to these analyses (exposed as “diagnos8c” according
to the LSP terminology), classical lin8ng services can be offered (e.g., detec8on of bad smells, viola8on of best
prac8ces), as well as classical navigability mechanisms (e.g., go-to declara8on, go-to defini8on). Finally, some sta8c
analyses can require external tooling: for example, control-flow analysis can leverage graph databases [3], or fault
detec8on can use Z3 [5]. Consequently, the architecture relies on the adapter pa`ern to provide “hooks” one can
plug external tooling into the language server. Again, the server acts as a framework here, delega8ng to the registered
external analysis the computa8on of the diagnos8cs return to the users.

Results. We started the development of the architecture recently. Following an agile approach, we first focused on
developing a walking skeleton. The objec8ve of this proof of concept is to demonstrate the three components of the
architecture: integra8on through LSP, lightweight P4 representa8on to support analysis, and finally, integra8on of
external tooling. To date, our reference implementa8on is integrated into the NeoVim editor and offers services such
as syntax highligh8ng and variable renaming. From the analysis point of view, we propose a basic type compa8bility
valida8on and a demonstra8on of how external tooling can be integrated. This (preliminary) reference
implementa8on is available as an open-source framework (h`ps://github.com/ace-design/p4-lsp). The server is
implemented in Rust, a language providing safety-by-design guarantees. The lightweight representa8on of the P4
language is defined as a Tree-Si`er grammar (a reference tool suite to design such elements). We have also released
an open-sourced version of the language as a tree-si`er module (h`ps://github.com/ace-design/tree-si`er-p4)
based on the latest version of the P4 standard. In addi2on to this talk proposal, we can offer a tabletop
demonstra2on of the integra2ve capabili2es of the approach.

Conclusions. The P4 language is at the center of a vibrant environment. We propose in this talk to describe a
reference architecture that aims to support the integra8on of various approaches and aiming to put the developer
back at the centre of the development ecosystem, following the DevOps principles of con8nuous feedback.

Authors. Alexandre Lachance is graduate student at McMaster. His research is related to suppor8ng sta8c analysis
and code coverage tooling for the P4 language as part of the Kaloom-TELUS-ETS industrial research chair on DevOps
for SDNs. Sébas0en Mosser (PEng, Ph.D.), is an Associate Professor of SoRware Engineering at McMaster and an
execu8ve member of the McSCert research centre. His research interests are soRware design, DevOps, scalability,
modelling and language engineering.

References

[1] R. Doenges, M. Tahmasbi Arashloo, S. BauLsta, A. Chang, N. Ni, A. Parkinson, R. Peterson, A. Solko-Breslin, A. Xu, and N. Foster. 2021. Petr4:
formal founda0ons for P4 data planes. Proc. ACM Program. Lang. 5, POPL, ArLcle 41 (January 2021), 32 pages.

[2] P. Wintermeyer, M. Apostolaki, A. Dietmüller, and L. Vanbever. 2020. P2GO: P4 Profile-Guided Op0miza0ons. In Proceedings of the 19th
ACM Workshop on Hot Topics in Networks (HotNets '20). AssociaLon for CompuLng Machinery, New York, NY, USA, 146–152.

[3] D. Lukács, G. Pongrácz, M. Tejfel. Are Graph Databases Fast Enough for Sta0c P4 Code Analysis? ICAI 2020: 213-223
[4] D. Lukács, G. Pongrácz, M. Tejfel. Control flow based cost analysis for P4. Open Computer Science, vol. 11, no. 1, 2021, pp. 70-79.
[5] F. Ruffy, T. Wang, A. Sivaraman: Gauntlet. Finding Bugs in Compilers for Programmable Packet Processing. CoRR abs/2006.01074 (2020)
[6] G. Kim, P. Debois, J. Willis, and J. Humble. 2016. The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in

Technology Organiza0ons. IT RevoluLon Press.
[7] S. Bonnieux, D. Cazau, S. Mosser, M. Blay-Fornarino, Y. Hello, G. Nolet. MeLa: A Programming Language for a New Mul0disciplinary

Oceanographic Float. Sensors 20(21): 6081 (2020)
[8] S. Mosser, V. Reihnarz, and C. Pulgar. Modelling Agile Backlogs as Composable Artefacts to support Developers and Product

Owners. Journal of Object Technology., 2022.
[9] A. Lapointe-Boisvert, S. Mosser, S. Trudel. Towards Modelling Acceptance Tests as a Support for SoSware Measurement. MoDELS

(Companion) 2021: 827-832

