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Abstract

The main goal of this thesis is computing portfolio risks and finding the optimal
portfolios. Four types of popular risk measures: variance (Var), semi variance (SVar),
Value at Risk (VaR), and Average Value at Risk (AVaR), are reviewed and their
computation process are preformed for portfolios consisting of single and multiple
primary assets, as well as general portfolios consisting of primary and secondary
assets. Finding the distribution for financial loss plays an important role here. In the
general portfolio case, moment generating function (MGF) is computed first, then we
apply Fourier inversion to obtain the cumulative distribution function (CDF) of the
portfolio loss. Following research in [2]|, Cornish-Fisher approximation is applied to
obtain VaR; Cornish-Fisher value at risk 2 (CFVaR,) is an approximation of VaR
with one term and Cornish-Fisher value at risk 3 (CFVaR3) with two terms. Two
numerical experiments are performed, with the aim to quantify risk in a portfolio of
options, and to explore the effect of correlation on risk measurements.

We also find optimal portfolios in a fairly general setting. The Var optimal port-
folio, and the C'F'VaR;y optimal portfolios are obtained by means of quadratic pro-
gramming. A numerical experiment shows that the optimal C'F'VaRs portfolio and
the minimal Var portfolio are very similar due to the mean-variance type formula of

CFVaR,. However, different optimal portfolios are obtained by minimizing C'F'VaR;.
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Chapter 1

Introduction

A risk measurement is a number that quantifies a risk. A risk measure is a map
which assigns a number to a risk. Thanks to this, risk analysts can compare the risks
in different situations under the same scale from a numerical point of view. It allows
us to have an ordering relationship for different risks. A risk measurement cannot
tell the whole story of a risk because a single number may not be enough to explain
a risk. It may be useful to calculate multiple risk measures to better understand a
risk.

In the field of financial mathematics finding the optimal portfolios, those which
minimize a risk measure, is an important problem.

Calculating portfolio risks and minimizing them are the goals of this thesis.

We review four types of popular risk measures: Var, SVar, VaR and AVaR. Exact
formulas of risk measures are found if the distribution of portfolio loss is normal or
Student’s t. In a first step, risk measurements are performed for portfolios consisting
of one asset, a stock or a bond. Then in a follow up step risk measurements are done

for portfolios consisting of multiple primary assets, stocks or bonds. Finally a general
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portfolio, consisting of primary and secondary assets are considered and their risk is
computed resorting to the delta-gamma approximation. Based on this, the moment
generating function (MGF) of the portfolio loss is computed analytically and Fourier
inversion yields the distribution of the loss. This method is described in Chapter
9 of [4], and [10] by means of discrete Fourier inversion. The computation of SVar
based on this approach is done in [8]. Inspired by these works we computed the risk
measures, Var, VaR, and SVar applied to the portfolio loss.

Our first numerical experiment is aimed to quantify risk in a portfolio of options.
It is performed by computing the risk measures (Var, VaR, and SVar) applied to
the portfolio loss over one week. The risk measurements are done by simulating the
losses, and analytically by means of delta-gamma approximation. In addition, for
the case of VaR, the risk measurement is done using the Cornish-Fisher approxima-
tion. In a second experiment, we explore the effect of underlyings correlation on risk
measurements (using Var, VaR, and SVar) in a portfolio of two options. Our finding
is that all of these risk measures are increasing with the correlation. This is proved
analytically in the case of Var.

Another goal of this thesis is to preform portfolio risk measurements for general
portfolios which hold an arbitrary number of shares. This is necessary if we want to
find the portfolios which minimize the risk. The risk is measured though the Var and
VaR risk measures. Minimizing the Var of a portfolio of options was done in [6]; they
use the same setting as we do in Chapter 3. Since a VaR portfolio formula is not
available in closed form within this paradigm, CFVaRy, CFVaR3 are used. In the
same vein [1] finds the optimal portfolio for CFVaR;. Similar with these works ([6]

and [1]), we solve the portfolio Var and CF'VaR;, optimization. We manage to obtain
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exact solutions for these optimization problems exploiting their quadratic structure.
CFVaRs portfolio optimization is more complex and it is numerically solved for the
special case of portfolios consisting of two options.

Our numerical experiment shows that optimal C'F'V aRs portfolio and the minimal
Var portfolio are very close to each other. This is explained by the mean Var type
formula of CFVaR,, and by the normality assumption on the change of factors.
However, we obtain different optimal portfolios by minimizing C' F'VaRj3.

This thesis is organized as follows. In Chapter 2 we perform risk measure for
portfolios consisting primary assets. Chapter 3 shows the computation of risks for
a general portfolio. Chapter 4 presents the risk minimization of a general portfolio.
Numerical experiments are provided in this chapter as well. Our proof and Python

code are delegated to an Appendix.
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Chapter 2

Introduction to Risk

Measurements

Risk measures should be easy to understand and communicate. Different risk mea-
sures have emerged over time. The Var (variance) is perhaps the most well known
and used risk measure. One drawback of the Var is that it equally penalizes gains and
losses. An alternative to Var is the SVar (semi variance) which fixes that drawback.
In 1990s, due to its simplicity, VaR (value at risk) emerges as a popular risk measure.
Besides being easy to communicate (it is a maximum loss given a confidence thresh-
old) VaR has some disadvantages, it doesn’t tell what may happened in the tail of
the loss distribution. This drawback was addressed by introducing AVaR (average
value at risk) risk measure. If the portfolio loss has a continuous distribution then
AVaR coincides with Conditional value at risks (CVaR) or Expected shortfall (ES)

risk measures. This chapter starts with reviewing these four risk measures.
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2.1 Variance

The Var of a random variable X which has mean E[X]| = p is,
Var = E[(X — u)?.

Sometimes the sample Var is measured; for example the sample Var of a stock price
in one year if available data on monthly stock prices S;, ¢ =1,2,--- 12,

o2, (5~ 5]

Var —
ar 2-1

where
12
5o
12 -1

2.2 Value at Risk

Let us move now to VaR. Given a confidence level, VaR is the maximum loss given

that confidence threshold. Below we give the formal definition.

Definition 2.1 Let o € (0,1) be a confidence threshold, and X be the gains of a

financial position. Then VaR is defined by

VaR, = inf{m|P[X + m < 0] < a}.

In common practice, & = 1% and a = 5% are considered. Then for the later we are

95% confident that the loss, — X, will not exceed VaR.
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2.3 Average Value at Risk

Let us define AVaR as an average of VaRs corresponding to different confidence thresh-

olds. This will be made precise in the next formal definition.
Definition 2.2 Let a € (0,1) be a confidence threshold, and VaR, be the VaR at
confidence level u. Then the AVaR is defined by

AVaR, = l/ VaR,du.
0

(07

2.4 Semi Variance

The definition of SVar is made precise below.

Definition 2.3 Let X be the gains of a financial position. Then the SVar is defined

by
SVar =F [(X — E[X])Ql{XSEx}} .

2.5 Normality Assumptions

In order to facilitate the computation of risk measurements, we assume the financial
assets gains or returns are normally distributed. However, normality assumption on
the gains implies unbounded losses. But the loss of a portfolio is typically bounded
in real life. This problem can be fixed by assuming that the geometric asset returns
are normally distributed. In this section, we denote the portfolio value at time ¢ by

P
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2.5.1 Normally Distributed Gains

Assume the financial gain X has a normal distribution with mean p and Var o2. Then

risk measurements of X are easy to obtain as shown in the following Proposition.

Proposition 2.1 Assume X ~ N(u,0?%) and ¢ the standard normal pdf, then the

following holds true

Var =o
1
SVar = 502
VaR, = —[u+ N (a)o]
N—l
AVaR, = i+ o( . (@)

Proof 2.1 See Appendiz A.1

2.5.2 Normally Distributed Arithmetic Returns

The arithmetic return for the time interval (¢,t + 7) is

- P — B
P
Then the gains X is given by
X =rP,.

In the next proposition, we obtain the risk measurements of X in terms of r statistics.

Proposition 2.2 Assume r ~ N(u,,02) and ¢ be the standard normal pdf, then the

T

7
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following holds true

Var = P?o?

1
SVar = 3 262

VaR, = —Pfu, + N~ (a)o,]

7N

AVaR, = P, | —pu,
Proof 2.2 See Appendiz A.2

2.5.3 Normally Distributed Geometric Returns

The geometric return for the time interval [¢,¢ + 7] is

P,
R—log< ;T)
t

Then the gain X is given by
X =P (e"-1).

In the next proposition, we obtain the risk measurements of X in terms of R statistics.

Proposition 2.3 Assume R ~ N(ur,0%) and ¢ the standard normal pdf, then the
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following holds true

Var = P?lexp(oy) — lexp(2ug + oF)
SVar = P2tk [e"?%N(E[X] —20g) + N(E[X]) — 2N(E[X] — or)

VaR, = P,(1 — exp[ur + N~ (a)og])

1

AVaR, = P, (1 — éeg;p (uR + 5023> [N (N~ () — aR)}) 7

where

E[X] =P (exp (/m + %aé) — 1) :

Proof 2.3 See Appendiz A.3

2.6 Cornish - Fisher Expansion

If we want to approximate the quantile of a random variable in terms of the normal
quantile we can use the Cornish-Fisher expansion. Suppose the random variable
Y has mean 0 and standard deviation 1. We have the following Cornish - Fisher

approximation of the a quantile ®y ()

NP~ 1, [NT() — 3N ()
6 ks + 21

k4
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where

kl == H’) k? == ,UQ,
k?) = K3, k4 = M4 — 3“%7

y = EIY], and i, = E[(Y — o).
We can derive a formula for VaR based on this quantile approximation. This is done
in the proposition below.

Proposition 2.4 Let o be a confidence level. Suppose gain X has mean px and

standard deviation ox. Define the normalized financial gain by

X—[LX
ox ’

Yy —

Then

VaR, = —[ux + @' (a)ox],

where @y («) is the Cornish - Fisher approzimation of the o quantile of Y.

Proof 2.4 See Appendiz A.4

2.6.1 Student t-Distribution

One drawback of the normality assumption for financial gains/returns is that under-
estimates the probability of extreme events due to the thickness of the normal tails.

One resolution is to consider the t-distribution. If the financial gain X has a student-t

10
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distribution with mean p and standard deviation o, assume that

X _
. M, / ” i 5~ student(v),

where v is the number of degrees of freedom, then we have the following result.

Proposition 2.5 Assume the normalized gain,

X —
“1 / Y student(v).
o v—2

Then

-2
VaR, = —® (a)y/ Y =0~k

Here () is the student-t quantile.

Proof 2.5 See Appendiz A.5

2.7 Examples of Portfolios Risk Measurements

In this section, we calculate risk measurements for portfolios consisting of one asset,

and multiple assets.

2.7.1 One-Stock-Portfolio in Black Scholes Model

In the Black Scholes model, the price of a stock is given by

1
Sy = Soexp((p1 — 502)15 +oWy).

11
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Here p is stock return, and o is the volatility. The risk measures applied to the

portfolio holding this stock are given in the proposition below.

Proposition 2.6 Let a be a confidence level. We have following risk measurements

for the portfolio consisting of one stock during t and t + 7

Var = Sexp(o®t) — 1]exp (2ut)

SVar = ST {e"%N(E[X] —20v/7) + N(E[X]) — 2N(E[X] — a\/F)} :

VaRa = 5 <1 —exp Ku - %UQ) T+N ()0 TD
AVaR, = S, (1 - éexp (ur) [N(N"Ha) — g\/;)]) :

where
E[X] = P (exp (u7) — 1).
Proof 2.6 See Appendiz A.6

2.7.2 One-Bond-Portfolio in Vasicek model

We consider the portfolio which holds one zero-coupon bond priced in the Vasicek

model. In this model, the short rate is given by
r(t) = e+ e Y (t)

Y(t) =e MY (0) +e M /t M dW (u),

12
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where €, €1, and A are constants. Then we can find the distribution of geometric

return of bond price on given time interval.

Proposition 2.7 The geometric return of the bond on time interval [t,t + 7] is nor-

mally distributed with mean pug and standard deviation o, where

pr=—C(T —t—7)Y()eM +C(T — )Y (t) + [A(T —t) — A(T —t —7)]

t+1
op = \/02(T —t—7) / e2Mu=7)dy,
t

The functions C' and A are given in the appendix.

Proof 2.7 See Appendiz A.7

Consider the portfolio consisting of one bond during ¢t and ¢ + 7 the next proposition

gives risk measurements of this portfolio.

Proposition 2.8 Let a be a confidence level. We have following risk measurements

for the portfolio consisting of one bond during t and t + T

Var = [P (t,T) [exp (0},) — 1] exp (205 + 07,)
SVar = [P(t,T))?e*n* %k [ea?aN(E[X] —20g) + N(E[X]) = 2N(E[X] - UR>]
VaR, = P (t,T) (1 —exp [,uR + N7 (a) UR])

1

AVaR, = P (t,T) (1 — éemp (uR + 50%) [N (N7 () — 0)]) ,

where

E[X] =P (t,T) (exp <uR + %a;) - 1) :

13
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Proof 2.8 See Appendiz A.8

2.7.3 A Portfolio with Multivariate Normal Assets Returns

Let us consider now portfolios consisting of several assets in a one-period model. Let

S1, 82, -+, 5, denote the asset prices and

their arithmetic returns. Assume that

(R17R27 T ’RN) ~ N(/L,Z),

where

is the mean vector and

is the Var covariance matrix. Consider the portfolio holding A; shares for each asset.

Let P be the current value of this portfolio and the portfolio weight in each

asset
A;S;(0)
w; =
P(0)
Define w the vector of weight,
w = (w17w27 e ,U)n).

14
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The joint normality of asset returns makes it possible to derive the distribution of
portfolio return and compute portfolio risk measures. This is done in the next propo-

sition.

Proposition 2.9 Let a be a confidence level. We have following risk measurements

for this portfolio

Var = PPwXw’
SVar = %PszwT
VaR, = —P [w,u + N—l(a)\/m}
. ch(N—l(a))] |

(0%

AVaR, =P

Proof 2.9 See Appendiz A.9

We see in this model that the variance-covariance matrix 3 has a big effect on VaR.
Let’s consider a model with two stocks. We have the following result about correlation

effect on VaR.

Proposition 2.10 Assume o < 0.5, and p the correlation of the two stocks. Then

the VaR of the portfolio consisting of the two stocks is decreasing in p.

Proof 2.10 See Appendiz A.10

2.7.4 A Portfolio of Stocks in the Black Scholes Model

Now we consider portfolios consisting of n stocks driven by n independent Brownian

motions in the Black Scholes model, and assume the interest rate r is constant. Let

15
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Wi(t) = (W;(t)), j = 1,2,--- ,n, be the column vector consisting of n Brownian

motions. Then differential of stock prices are given by

dS;(t) = Si(t)

ozldt—i—ZaUdW](t)] y 1= ]_727-.. , M.

J=1

Here «; is return of the stock ¢ and o;; comprise the volatility. Then define the excess
rates of return

Hi = OQ; — T,

and the column vector p with components p;. The proportion of the portfolio value

in stock i is denoted (;(t), and the column vector of proportions

¢(t) = (G(1)).

Assume the vector of proportions ((t) is a constant vector over the time interval
[t,t + 7]. We have the following risk measurements for the portfolio on the interval

t,t+7].

Proposition 2.11 Let the portfolio value at time t equal X (t), and o be a confidence

16
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level. The following risk measurements hold for the portfolio on [t,t + 7]

Var = [X(t)]? [exp <|CTU}27> - 1] exrp [QG Q)T+ |CT0‘27}

SVar = [X(t)]QGQG(C)T-F‘CTU’QT |:6‘CTU’2TN(E[X] _9 ‘CTU| \/;)
1 N(E[X]) - 2N(E[X] - |¢To] ﬁ)]
VaR, = X (1) [1 = exp{G ()7 + N7" () |¢"o| V7}]

AVaR, = X (t) (1 — iexp (G (O 7+ % ("o \/F2) [N (N~ (a) — |¢("o| ﬁ)]) ,
where
E[X] = X (£)(elCOm+3c" o' _ 1y,
Here G is the quadratic
Q) = Tutr—3 |l

and |(T'o| is the Euclidean norm of (*'o.

Proof 2.11 See Appendiz A.11

2.8 Conclusion

This chapter begins with examining four commonly used risk measures: Var, SVar,
VaR, and AVaR. Then we show that when the financial loss distribution is normal

or Student’s t, exact formulas for the risk measures can be established. Firstly, risk

17
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measures for single-asset portfolios are computed, and afterwards risk measures for

portfolios consisting of multiple primary assets are determined.

18
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Chapter 3

Risk Measurements for General

Portfolios

In this chapter, we consider portfolios consisting of primary and secondary assets (for
example, stocks and options on stocks), and we refer to them as general portfolios.
The risk measurements for these portfolios will be more difficult to obtain analytically
because the distribution of the loss or gains is not explicitly available. For example
consider a portfolio consisting of European-call option in the Black Scholes model. A

European-call option with payoff
C(S,T) = max[S — K, 0]
has the following the price given by the Black Scholes formula

C(S(t),t) = SE)N(dp (T —t)) — Ke " T=ON(d_(T — 1)),

19
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where

ds(z) = 0\1/5 [zogsl(;) 4 <r + ";) x} |
Then

C(S(t+1),t+1) =St +1)N(d (T —t+1)) — Ke " T IN(d_(T -t +1)).
We are unable to find the distribution of the gain from holding one share,
CS(t+1),t+1)—C(S(),t)

thus we can’t compute VaR. The resolution is to use the delta-gamma approximation.

3.1 Delta-Gamma Approximation

Let S(t) be a vector of factors (for example, stock prices at time ¢), and
c(t, S(t))

be the value of a portfolio at time ¢. Here
c=c(t,S)

is a function which maps the factors to the portfolio value. Let Ac be the change of

this portfolio on time interval [t,t + At],

Ac = c(t + A, S(t + At)) — e(t, S(1)).
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Then the delta-gamma approximation of Ac is the second order Taylor approximation,

Jc

Ac ~ At
¢ ot

1+ 6TAS + %ASTFAS,

where

AS = S(t+ At) — S(t)

Oc
0 = a8,
0%c
by = 85;08;"

3.2 Normal Returns

In order to facilitate the computation of portfolio ¢(t,S(¢)) risk measures, let us
assume that the change in factors AS(t) follows a multi-variate normal distribution.
Let us make this formal.

Assumption: Following Chapter 9 of [4] we assume that the change of factors in

time interval [¢,¢ + At] is normally distributed:

AS ~ N(0,AtY).

Here, 0 is a n x 1 zero column vector. At is the variance-covariance matrix of

AS, where ¥ is the variance-covariance matrix of annual change factors.
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3.2.1 Diagonalization

Next we would like to compute the MGF of portfolio loss

L =—Ac.

This is done through a diagonalization procedure. Since

AS ~ N(0, AtY),

then
AS =CZ
where
cot = ALY,
and
Z ~ N(0,1,)

The portfolio loss L is approximated by

L~a—0"CZ— %ZT(CTFC)Z,

where

— A
“ ot
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At first, let C be a square matrix such that
CCT = ALY
(for example C' can be the Cholesky decomposition of AtY). The matrix
51T

is symmetric, because

(CTre)" = C'rre,

where
2 2
Py 0C 9 _p.
05;0S; 05,085,
Secondly, by eigenvalue decomposition,
L =po T
—5(}’ ¢ =UAU",
where
and \;, 2 =1,2,--- ,n, are eigenvalues of —%5TI‘6’. Next let
C=CU,
then

CCT = CUUTCOT = ALY,
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Moreover,

1 1o~
—ECTFC = —éUTOTPCU =UTUANUTU = A.

We obtain the following approximation of the loss L
Lrea+bZ+27A2 =Q,

where

b=—-CT6.

This makes it possible to compute the MGF of approximate loss ), which we do next.

3.2.2 Moment Generating Function

Let us compute the MGF of @ (the approximation of the portfolio loss)

Proposition 3.1 The MGF of () is given by the formula

pq(0) = Elexp(0Q)] = exp(n(0)),

where

620?
_0a+z (1_29>\ log(l—ZGAi)).

Proof 3.1 See Appendiz A.12
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3.2.3 Expectation, Variance and The Third Central Moment

Now let us derive expectation, Var, and the third central moment of the approximated

portfolio loss.

Proposition 3.2 The expectation of () has the following formula

EQl=png=a+Y M.
=1

The Var of @ has the following formula

The third central moment of @, us3(Q), has the following formula
ps(Q) =Y (657 + 8X)) .

i=1

Proof 3.2 See Appendiz A.13

3.2.4 Value at Risk

It is time to compute the VaR for the portfolio loss on time interval [t, ¢+ At], denoted
by VaR.

Proposition 3.3 Let a be a confidence level, and x the solution of the following

equation

2%0 (&

1 N 1 [ e pg(—iu) - e "o (iu) di=1—a
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where ¢¢q is the MGF of Q). Then

VaR, = x.

Proof 3.3 See Appendiz A.1)

3.2.5 Cornish-Fisher Value at Risk

Next let us obtain a VaR approximation based on the Cornish-Fisher expansion.

Define the normalized

where k3 is the third central moment of q,

fy = 8 (Q)'

3
9Q

By Proposition 2.4

VaR, = pg + @, (a)og

N7 (@) - g { [N ()] -1} e +] o
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Define CFVaRy(Q) and CFVaR3(Q) below

CFVaRy(Q) = g — N (a) og

CFVaR3(Q) = g — N~ ' (a)og + % { [N (oz)]2 — 1} ”30(;).

3.2.6 Semi Variance

Now we can find the SVar of portfolio on time interval [t,¢ + At], and it is done in

the following proposition.

Proposition 3.4 The SVar has the following formula

SVarlQ) = [ (e~ EIQ) fo (@) da,
EQ
where
fole) =+ [ e o),

and ¢q 1is the MGF of Q).

Proof 3.4 See appendiz A.15

3.3 Student’s t Returns

In this section, we want to compute our risk measurements if change in factors is

assumed to be Student’s t-distributed. This is made formal below.
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Assumption: Let X be a multivariate Student’s t distribution (v, AtY) repre-
sented as

=AX

S

where

AAT = At%, Z ~ N(0,1,),

and Y has a 2 distribution with v degrees of freedom independent of X; the vector
X has a multivariate t student distribution with (v, I). Following Chapter 9 of [4] we

assume that the change in factors in time interval [t,¢ + At] is given by
AS =CX,
where the matrix C' is such that

CoT = A

3.3.1 Approximated Loss

Now we would like to compute the MGF of portfolio approximated loss in this case.
This will be done by a similar diagonalization operation as in the previous section.

Recall the approximated portfolio loss in the normal case

LreQ=a+)Y (biX;+\X]).

i=1
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In the following step, let us rewrite the formula of the approximated loss () for the

Student’s t case. Let Z be a vector of independent standard normals. Since

As=cx =<2

e

then it follows that
72

Q=a+ Z 517 + X5
i=1 Lz

v

In order to facilitate the calculation later, it is time to consider a fixed x, and define

Let us notice that

P(Q < z) if and only if P(Q, <0).

3.3.2 Moment Generating Function

Let us compute the MGF of @,. Recall that the MGF of a y? distributed with v

degrees of freedom random variable Y is
oy (0) = (1 —260)%.
Proposition 3.5 The MGF of Q. is given by the following formula

¢q.(0) = E[exp (0Q.)] = ¢y (a (0)) [H (1- 29&-)_5] :

=1
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where

Proof 3.5 See Appendiz A.16

3.3.3 Expectation and Variance

Now let us derive expectation, and Var of the approximated portfolio loss.

Proposition 3.6 The expectation of Q,, denoted tE[Q,], has the following formula

v n
tE[Q) = a+ — ;)\
The Var of Q, denoted tVar[Q], has the following formula

tVar|Q

y—QZbQ (v —2) Z)\2

d (e R )(ZA)

Proof 3.6 See Appendiz A.18

In addition, let us consider the comparison of the quantity between tVaR and VaR.
The following result states that given the same mean variance covariance matrix
for factors the portfolio Var is higher in the student t-distribution setting. This is

made precise below.
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Proposition 3.7 If the degree of freedom of a t-distribution is greater than 4, then
tVar|Q] > Var|Q).

Proof 3.7 See Appendiz A.19

3.3.4 Value at Risk

It is time to compute the VaR for the portfolio in the t-distribution case, which we

denote tVaR.

Proposition 3.8 Let o be a confidence level. Let x be the root of the equation

1 1 [%¢g(—u)—¢g,(uv)
54_%/0 _ du=1-a,

mu

where ¢, is the MGF of Q. Then
tVaR, = x.

Proof 3.8 See Appendiz A.20

3.3.5 Semi Variance

Now we can find the portfolio SVar for the t-distribution.

Proposition 3.9 The portfolio SVar denoted tSV ar is given by the following formula

1SVar(Q] = / ;Q} (2 — tE[Q)) fo(x)dz,
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where

du.

Proof 3.9 See Appendiz A.21

3.4 Portfolio Risk Measurement Example

In this numerical experiment, we consider a portfolio consisting of five European call
options each written on one of the five stocks, Disney, Exxon, Pfizer, Altria, and Intel.
We use the date set from Wenbo Hu and Alec N. Kercheval in [5]. The data set is

given in the table below.

4/8/2005 | Disney | Exxon | Pfizer | Altria | Intel

stock price | 28.02 60.01 | 25.24 | 65.53 | 23.29

volatility 0.1699 | 0.2032 | 0.2064 | 0.1794 | 0.2476

Table 3.1: Stock prices and volatility
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correlations | Disney | Exxon | Pfizer | Altria | Intel
Disney 1 0.367 | 0.337 | 0.189 | 0.42

Exxon 0.367 |1 0.359 | 0.197 | 0.303
Pfizer 0.337 10359 |1 0.215 | 0.297
Altria 0.189 0.197 | 0.215 |1 0.168
Intel 0.42 0.303 | 0.297 | 0.168 | 1

Table 3.2: Correlation table of stock prices

Options have maturity 7' = 1, and are at the money. They are priced by the Black
Scholes formula. We perform the risk measurements for this portfolio over one week,
which means At = % We compute risk measures with confidence level a = 0.01, and
a = 0.05. The interest rate is set at 0.05. Cj is the initial value of this portfolio. The

results are summarized in the tables below,

o =0.01 VVar/Cy | VaR/C, | SVar/Cy
ExactSimulated | 0.11089 0.24880 | 0.12235
DGSimulated 0.11145 0.25048 | 0.12254
Parametric 0.11126 0.25033 | 0.12348

Table 3.3: Risk measurements at confidence level 0.01

a=0.05 \/W/Co VaR/Cy | SVar/Cj
ExactSimulated | 0.11054 0.18151 | 0.12191
DGSimulated 0.11111 0.18246 | 0.12320
Parametric 0.11126 0.18272 | 0.12348
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At first, we simulate the stock price changes given a At change in time 1,000,000
times. Then we compute portfolio values by the Black Scholes formula. We get
1000000 simulated losses and compute values of our risk measurements (Var, VaR and
SVar) based on these simulated losses. We refer to these results as exact simulated.

Next, we compute Greeks of our options, then compute changes of portfolio values
by delta-gamma approximation. We again get 1,000,000 losses simulated and compute
the values of our risk measurements based on this simulations. We refer to these
results as delta-gamma simulated.

Finally, we compute our risk measurements directly by the analytical formulas of
this chapter. We call these results parametric.

The exact simulated, delta-gamma simulated, and parametric results turn out to
be close to each other, which says that delta-gamma approximation is pretty good.
Next let us talk about the effect of the confidence level «; as we expected, increasing

the confidence level decreases VaR.

a =001 | VaR,,/CO | CFVaR,/CO | CFVaRs/CO

Parametric 0.25033 0.26383 0.25052

Table 3.5: CFVaRy ¢ CFVaRs at confidence level 0.01

a=0.05 |VaR,,/CO | CFVaR,/CO0 | CFVaR;/CO

Parametric | 0.18272 0.18800 0.18286

Table 3.6: CFVaRy ¢ CFVaR3 at confidence level 0.05

We then compute the values of CFVaR; and CFVaR3 at different confidence

levels and compare them with the corresponding parametric VaR in a same table. In
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Table (3.5) and Table (3.6) we see that C'F'VaR, has significant error when compare

with the true VaR, and CFVaR3 is a more accurate approximation of VaR.

a=0.01 VVar/Cy | VaR/Cy | SVar/Cy

normal-distributed | 0.11126 0.25033 | 0.12348

t-distributed 0.13696 0.31984 | 0.17533

Table 3.7: T-distributed results at confidence level 0.01

a=0.05 VVar/Cy | VaR/Cy | SVar/Cy

normal-distributed | 0.11126 0.18272 | 0.12348

t-distributed 0.13696 0.20917 | 0.17533

Table 3.8: T-distributed results at confidence level 0.05

Then, we assume the change in factors is t-distributed. We refer to these results
as t-distributed, and compare them with normal results.

In Table (3.7) we see the t-distributed risk measurements are higher than their
corresponding normally distributed. For Var this finding was in fact established by
Proposition 3.7. In Table (3.8) we see that if the confidence level increases, the

difference between normally distributed VaR and t-distributed VaR decreases.

3.5 Two-Options Portfolio

In this section we find the relationship between correlation and risk measurements.
For this we consider a portfolio consisting of two options each written on two different

stocks, S1, and Sy, with correlation p. Then we get the following result.
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Proposition 3.10 The Var of this portfolio is an increasing function of p.
Proof 3.10 See Appendix A.22

Next we run a numerical experiment to explore the effect of correlation on other risk

measures as well.

3.5.1 Portfolio Risk Measurement Example

Assume following parameters 7' = 1, At = =5, stocks’ initial price S;(0) = 50, S5(0) =
30, and options’ stirke prices K; = 40, Ky = 20, interest rate and volatility » =
0.05,01 = 0.15,09 = 0.20. The correlation p ranges from 0.1 to 0.5 in steps of 0.1.
The confidence level a = 0.01. Cy denotes the initial value of this portfolio. The

number of simulations n = 1000000.

p | VVar/Cy | VaR/Cy | SVar/Cy
0.5 | 0.06910 | 0.16266 | 0.05480

0.4 | 0.06668 | 0.15660 | 0.05109

0.3 | 0.06429 | 0.15143 | 0.04749

0.2 | 0.06187 | 0.14522 | 0.04388

0.1 | 0.05927 | 0.13929 | 0.04029

Table 3.9: Ezact simulated risk measurements
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The results of Table (3.9) and Table (3.10), show that the simulated risk mea-

surements decrease with correlation. For Var this finding was in fact established by

p | VVar/Cy | VaR/C, | SVar/Cy
0.5 | 0.06903 | 0.16182 | 0.05473
0.4 | 0.06675 | 0.15688 | 0.05118
0.3 | 0.06441 | 0.15148 | 0.04757
0.2 ] 0.06191 0.14563 | 0.04397
0.1 | 0.05935 | 0.13939 | 0.04032

Table 3.10: Delta-Gamma simulated risk measurements

Proposition 3.10.

p | VVar/Cy | VtVar/Cy | VaR/Cy | tVaR/Cy | SVar/Cy | tSVar/C
0.5 | 0.06910 | 0.08463 | 0.16211 | 0.21750 | 0.05473 | 0.08154
0.4 | 0.06679 | 0.08180 | 0.15679 | 0.21032 | 0.05114 | 0.07620
0.3 | 0.06440 | 0.07887 | 0.15127 | 0.20288 | 0.04754 | 0.07086
0.2 | 0.06191 | 0.07583 | 0.14554 | 0.19514 | 0.04395 | 0.06551
0.1 | 0.05932 | 0.07265 | 0.13957 | 0.18708 | 0.04035 | 0.06016

In Table (3.11), we see the t-distributed risk measurements are higher than their

corresponding normal results, and decrease with correlation as well.
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p | CFVaR3/Cy | Par VaR/Cy | Sim VaR/Cy | DGSim VaR/Cj
0.5 0.16215 0.16215 0.16188 0.16226
0.4 0.15682 0.15682 0.15643 0.15725
0.3 0.15131 0.15131 0.15121 0.15102
0.2 0.14546 0.14558 0.14578 0.14549
0.1 0.13960 0.13960 0.13973 0.13969

Table 3.12: Cornish-Fisher VaR

In Table (3.12), the CFVaR3 approximation also has a negative relation with

correlation.

3.6 Conclusion

In this chapter, we use the delta-gamma approximation to compute the portfolio
loss. This procedure makes it possible to compute the MGF of loss. Then CDF and
PDF of portfolio loss are found by applying Fourier inversion to MGF. Afterwards, we
perform risk measurements in both when the change of factors is normally distributed
or Student’s t distributed.

In the first numerical experiment, Var, VaR, and SVar are computed for a portfolio
consisting of five European options. This was done first by simulating the portfolio
losses, and secondly by computing the parametric Var, VaR, and SVar though delta-
gamma approximation and MGF inversion (VaR and SVar). VaR is also computed
by means of Cornish-Fisher approximation. In the second numerical experiment, we
consider a two-options portfolio. Our numerical experiment shows that risk increase

with correlation; in the case of Var, an analytical formula was established for the risk
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dependence on correlation, and this shows the Var increase in correlation.
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Chapter 4

Optimal Portfolios

Finding an optimal portfolio in a specific condition is a primary topic in financial
mathematics, and it also another goal of this thesis. Since we have completed com-
puting risk measurements of portfolios consisting of multiple options, now we are
ready for finding portfolios which minimize these risks. They are parameterized by
the vector of weights or shares invested in each asset. The portfolio risk is measured

by Var and VaR. Let us consider portfolios which minimize Var.

4.1 Optimal Variance Portfolios

In this section, the goal is to minimize the Var of a portfolio of options. Let us

consider a portfolio consisting of m instruments and let

Tk, k=1,2,---,m
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stand for the number of shares of instrument & held in the portfolio at time ¢. Denote
by
%(Sat)a k= 1727"' , M

the value of instrument k& held in the portfolio at time ¢. Then, the value of the

portfolio is given by

\%4 (S, t) = Z l‘ka(S, t).
k=1

Here

82(517527”' 7S1’L>

is the vector of the underlyings.
We want to minimize the Var of this portfolio. Denote by AV the return over

time interval [t,t + At],
AV =V (S+AS t+ At) =V (S,t).
Following Chapter 9 of [4] we assume AS, has a normal distribution

AS ~ N(0,AtY).

4.1.1 Delta-Gamma Approximation

Now let us use delta-gamma approximation of Chapter 3

AV =~ At%—‘t/ +0TAS + %ASTFAS,
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where

0= [51, 52, ce ,5n]T, I'= [Fij]izl,Q,w,n;j:1,2,~~-,n

ov 0*V

=0 andTy = —o .
1T a8, M T 95,08,

Recall that the value of the portfolio at time ¢ is
\%4 (S, t) = Z kak(S, t).
k=1

Next let us compute the Greeks of this portfolio

m

5i:g;:;xk5f
55::2—?’:, i=1,2,,n k=12, .,m
b= a(?sj‘a/gj’ i, j=12--,n k=12 m.

In addition, we would like to use the diagonalization procedure of Chapter 3, with

the vector of independent normals
Z ~ N(0,1,),
and matrix C' that

CcCt = Aty
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to get the approximated loss

AV ~a+b"'Z+7Z"\7 := L.

Here

oV

= —At—
a t@t
b=-CT§
1 T

4.1.2 Formula of Variance

Now let us compute the Var of this portfolio. Apply Proposition 3.3 to get

n

Var[L] =Y (b7 +2X7).

=1

Next we rewrite this formula as a function of z, where x is the vector consisting of the
number of shares in the portfolio. In order to ease the notation, assume the initial

value of the portfolio V(.S,¢) = 1. Let us make this computation formal.

Proposition 4.1 Let x represent the vector of the number of shares held. The Var

of L is given by
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where

S =2MT (AtS) M and
M= (My)=(6F), i=1,2,---.,n, k=1,2,---,m
Q:

Qi) = (tr (" (AtZ)T*(ALY))), i=1,2,---,n, k=1,---,m.

Proof 4.1 See Appendiz A.23

Then to minimize the Var of L we need to find vector  which solves the quadratic

programming problem

s.t.

> @ Vi(S,t) = V(S,t) = 1.
k=1

Notice that since Var(L) > 0, then it follows that (i] + Q> is positive definite. Now

set

Il
/N
™M
_l’_
O
N———

The Lagrangian is

1
L(z,\) = §xTPx + M (Ve —1).
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Then our optimization problem is reduced to the solution of the first order conditions

(FOQ),

Recall P is positive definite, and therefore it is invertible so

r=—-P WA
Plug this in
Ve=1
to get
VP WA =1
So

A= (VP V)L

Plug this in

x=—P'VT\
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to get

r=P'VI(vpPtvh)Th

4.2 Optimal Cornish-Fisher Value at Risk Portfo-
lios

In this section, we continue the ideas from the previous section, and find the port-
folios which minimizes VaR. However, we can foresee that is complicated to perform
optimization of VaR found through Fourier Inversion in Chapter 3. In order to solve

this problem, we consider C'F'VaRy, and CFVaR3 approximations of VaR.

4.2.1 Optimal CFVaR2 Portfolios

Let confidence level be «, then C'F'VaR; is given by next proposition.

Proposition 4.2 Let x represent the vector of the number of shares. Then

CFVCLRQZML—N_I (Oé)O'L
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where

Proof 4.2 See Appendiz A.24

We work under the assumption that the vector
©O+p

is not the zero vector, nor it is proportional to vector V, for otherwise C' F'VaRy will
be just a scalar times the standard deviation plus a term free of x. The portfolio

optimization problem is

mlg'n {—xT@ —z'p— N1 (a) \/%a:T (f] + Q) x}

s.t.

> Vi(S,t) = 1.
k=1
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We solve this optimization problem in two steps. In a first step, set
27O+ alp =,
and optimize over x for a fixed €. Then our optimization problem becomes

m:gn {-e—=N""(a)o}

s.t.
Ax =b,
where
Vi(S,t) -+ V,(S,t)
€
b:
1
Since
a< 1
— 27
then
N (a) <0,
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so we conclude that C'F'VaR, is an increasing function of o7. Therefore, let us find

r that minimizes 0. Set

A

Recall that in the previous subsection, we solve for x in the following quadratic

programming problem to minimizing 0%, where recall that

1
o =1/ éacTPq:.

Now we need to solve

1
min {§xTPx}

s.t.

Ax =b.
The Lagrangian is
L(x,A) = %xTPx AT (Az —b).
then our optimization problem is reduced to the solution of the following system

Pr+ATX=0

Az =b.
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Because P is invertible we get

x=—PTAT).
Plug this in
Axr=b
to get
—AP'ATX =b.
Because the matrix
APTTAT

is invertible (since the vector (© + p) is not a zero vector nor proportional to the V'

vector), it follows that

A= —(AP71AT)p,

Plug this in

x=—PtAT)

to get

v =P tAT(APTAT) M.
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Let
g11 912
PrAT(APIANY =G =|... ...|,
9n1  Gno
then
= (x;) = (9a€+ gi2),
and
1
i —;L‘TP,I' =3 Za: Pii + Zx T;Dij
i#]
= Aée* + Be +C,
where

1
) Z 9i1951Pij
Y]

- 1
B=Ygugopi+ 3 > (9519kPik + Gi2grpin)
i=1 7k

1
) Z 9i29;52Pij-
0,J

Now we can establish the exact formula of C'F'VaRy as a function of e,

CFVaRy = —e — N~ 'a)V.Ae2 + Be + C.

o1
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In the second step we preform optimization over €. The first derivative of this function

is given by

2Ae + B
WAL+ Be+C

—1—N"Ya)

The critical points are

e— —b+Vb? — 4dac

2a

a = [442 (N7 () - 14]
b= [4AB (N (a)* - 48]
c= :62 (N (oz))2 - 4C] :

Since

then

2Ae + B B 1
WAZ LB+ C —N-Ya)

> 0.

The only e that makes

2Ae +B >0

o2
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is the minimizer. Therefore,

, if 2Ae; +B >0

€1

 —b+ Vb? — 4dac
- 2a

- VIE—4
ey = > 9 if 2des + B> 0.
a

Finally, the optimal portfolio is x, where
v =P TAT(AP1AT) 1,

and

4.3 Portfolio Optimization Example

In this example, we use the same data as in Section 3.2.10. Assume a portfolio

investing in five European call options each written on one of the five stocks. The

interest rate is = 0.05. Options have maturity 7' = 1, and are at the money. They are

priced by the Black-Scholes-Merton formula. We optimize the risk for this portfolio

over one week, which means At = % We set the initial value of the portfolio to 1

dollar. Next let us compute optimal weights vector w, w = [wy, -+ , ws],

wz:xz‘/;7 Z:1727 75

by using our result of the previous section. The optimal portfolio weights w for

minimizing Var and C'F'VaR, are presented in the table below.
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a = 0.01 Wy Wa W3 Wy Ws

Variance | 0.18587 | 0.17725 | 0.17662 | 0.29702 | 0.16323

CFVaR, | 0.18338 | 0.17766 | 0.17715 | 0.29614 | 0.16566

Table 4.1: Optimal Portfolio under confidence level 0.01

a = 0.05 wq Wa w3 Wy Wy

Variance | 0.18587 | 0.17725 | 0.17662 | 0.29702 | 0.16323

CFVaRy | 0.18235 | 0.17784 | 0.17737 | 0.29578 | 0.16666

Table 4.2: Optimal Portfolio under confidence level 0.05

From Table 4.1 and Table 4.2 we see little variation in the two optimal portfolios
(minimal Var, and C'F'VaRs portfolios). This is due to: 1) the normality assumption

of the stock price changes and 2) the linear term,
—zTe — 2T,

(in the formula of CFVaR;), having little effect on the optimization.

Recall
o7 = Ae* + Be + C,
then for Var, € = ¢,, where

B
L= 2 = _0.005018.
Y|

o4
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For CFVaRs, € = € fyar2, Where €.f44r2 is the root of the following equation

2Aec + B

0=—-1-N"a) :
2V Ae? + Be +C

We get
€cfvarz = —0.005013.

Since €, and €.fyqr2 are close, then we obtain optimal portfolios with little variation

because they are given by

v =P AT(APTAT)!
1

4.4 Two-Options Portfolio

Next we perform a more accurate approximation of the VaR which is the CFVaR;3.
However, we can foresee a complication arising from the third moment of CFVaRj3.
Thus, we consider a portfolio which only invests in two options. Let x; and x5 be the

number of shares held. In addition, assume the portfolio’s initial value equals 1.

4.4.1 Delta-Gamma Approximation of Portfolio Loss

Denote S; the initial price of the first stock, and Sy the initial price of the second
stock. Following Chapter 9 of [4] let us assume change in stock prices have zero

mean, and volatility o1, 0o, and correlation p. Next let us consider the delta-gamma
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approximation of the portfolio loss

L~ — <Ata—v +0TAS + 1ASTFAS) ,
ot 2
where
ov
5@' - 8_5'1-’
*V
T = .
J 0S5;0S;

Then the vector of 9, and the matrix of I" is given by

o0x1 V1
9, 7101
a8
5 p— 1 pu—
Oxa Vo
0S5 $252
8%z,
95,05, 0 Ilrl 0
F p— pu—
8229 V5
O 95295, 0 ZL‘QFQ

Set z1 ~ N(0,1), 2z ~ N(0,1), and z; L25. Let

0'151\/ At 0
O'QSQ V Atp 0'252 V At\/ 1— p2
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then

o282 At 01025152 p At
oot 1°1 10201020 v
JlagSlSszt U%S%At

Since AS' is normally distributed with variance-covariance matrix 3, then
AS =CZ,
where
7 = [z, )",
Thus,

(STAS = 0'181 V At51x121 + O'QSQ\/ At52x2(p21 + 1-— p222)

1 1 1
§ASTFAS = 5(0'151\/ At)Zflxlzf + 5(0'252\/ At)QFQJJQ(le + 1— p222)2.
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Next let us compute central moments of the portfolio loss

1
E[L] = —At%—‘tf +E { §TAS — EASTFAS}
Var[L] = Var [—At%—‘t/ —6TAS — ;ASTFAS]

=Var {—5%5 — %ASTFAS]

1

[ At— —6TAS —

3
( At— — 6TAS — %ASTFAS E[L ])
SASTTAS

~aeS| v |-oas - AsTmsDﬂ

(-
( At— —6TAS — ASTFAS - E[L]) 3
(

NAM

Il
&5

3
—6TAS — %ASTFAS - E {-5%5 — %ASTFASD ]

= /13 (—5TAS — %ASTFAS) .

Therefore, the formula of CF'VaR3 is given by

CFVaRs = —Ataa—‘t/ +E { STAS — %ASH“AS}

1
— N (a) \/ Var {—5%5 — §ASTFAS}

ps (—6TAS — LASTTAS)

e @) 1 g [0TAS — IASTTAS]

| =

o8
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We want to write the exact formula of CFVaR3 as a function number of shares. Let

1
—6TAS — EASTFAS =a+b+c+d.

Here

a; — —01(51511'1
QA9 — —0252521’2

1
bl = —§J%S%F1£L’1

1
bQ == —§U§S§F2$2

a = VAta1z
b= VAtas(pz1 + /1 — p?2z2)
c= Ath 2}

d= Atbg(le + 1-— p222)2.
For tractability, let p = 0. We have the following formulas:

E {—5%5 — %ASTPAS = Atb; + Atb,

2
E <—5TAS — ASTFAS) = Ata] + Atas + 3[At]*b] + 3[At]*b5 + 2[At]*biby

1
2

3
E (—5TAS - %ASTFAS) = 15[At]*63 + 15[At)b5 + 9[At]*ab; + I[At)*a3b,

These formulas are established in the Appendix A.25.
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Next let us denote
1
E {-5%5 - §ASTFAS} = L.

Then the formula of the second central moment and the third central moment is given

by

Var {—5TAS — %ASTFAS} =F {(—éTAS — %ASTFASF} —p? =0

and

1 1 ’
13 (—5TAS — §ASTFAS) =F (—5TAS — §ASTFAS) —3uc® — i = s

Now the formula of CF'VaRj3 is given by

CFVaR; = —Ata—v +p— N"Ha)o + 1 [(N_1 (a))2 - 1] Hs

ot 6 o2’

where

oV B 210V1 220V5 B

o o T bt
and

oV,
= 1,2
62 at 7Z )
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Since
1-— IL’1‘/1
Tg= ———,
7
we can write Var, CFVaR,, and CFVaR3 as a function of 1. Although this function
is non-linear, we can use scipy.optimize to minimize it. This is done in the next

subsection.

4.4.2 Two-Options Portfolio Example

In this example, we use the same data as in Section 3.2.10. However, we only

invest in stock options written on Disney and Exxon. Options have maturity 7' = 1,

At = 2

=5, and they are at the money. We set the initial portfolio value to 1 dollar.

We set the interest rate at 0.05. We compute the optimal w, the vector of weights,

w = [wy, ws]. Our results are displayed in the table below.

Variance CFVaRs CFVaRs

wq Wa wq W wq W2

0.51789 | 0.48211 | 0.51551 | 0.48449 | 0.51515 | 0.48485

Table 4.3: Optimal Portfolio of short time horizon under confidence level 0.05

Variance CFVaRs CFVaRs

w1 W2 w1 W2 w1 W2

0.51789 | 0.48211 | 0.51621 | 0.48379 | 0.51586 | 0.48414

Table 4.4: Optimal Portfolio of short time horizon under confidence level 0.01
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We notice that the optimal portfolios (for Var, CFVaRsy, and CF'VaRj3) are close
to each other.

We would like to get an intuition for this result. Recall the formula of CFVaR;3
CFV&Rg = —61$1 - 921’2 + m— Nil (Od) o+ = |:(N71 (&))2 — 1:| &

Since we take At to be a small number

1= O(At)
o = O(VAL)
M3 = O(At2)

Therefore,

_ CFVaRy  ai(bi—b)+m(0h—b) o 1 [(N‘l ()" =1
VAIN-1 (o) N~ () VAt 6 N1 (a)

O(AL).

It is obvious that

sy

is linear for x; and xz,. This part effects the minimisation little. If we want the term
with p3 have more effect on minimizing C'F'VaR3, we make
-1 2
L[ ) 1]

6 N-'(a) VA
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large. Since

(vt ) 1]

6 N=1(«a)

is a decreasing function of « this is achieved for very small values of «, and large

enough values of At. The result of this parameters’ choice is presented in the table

below.
a=10"1
Variance CFVaR, CFVaRs
2
w1y Wo Wy Wa wh W
0.51809 | 0.48191 | 0.51662 | 0.48338 | 0.36059 | 0.63941

Table 4.5: Optimal portfolio of long time horizon under confidence level 10~%

a=10"7
Variance CFVaR, CFEFVaRs
1
w1 Wa w1 Wo w1 Wy
0.51789 | 0.48211 | 0.51714 | 0.48286 | 0.34034 | 0.65966

Table 4.6: Optimal portfolio of long time horizon under confidence level 10~7

We notice that C'F'VaR3 optimal portfolios are different. This result should be
taken with a grain of salt because we set large time horizon (one month or two
months), in this case, 1) the delta-gamma approximation may not be accurate any-
more, and 2) the zero assumption of stock changes mean may not be realistic anymore.

However, this result shows that different portfolios are optimal for CFVaRs.
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4.5 Conclusion

In this chapter, we consider portfolios which invest in options each written on an
different stocks. We find the optimal Var and CFVaRs portfolios in closed form.
Based on optimal portfolios’ formulas we showcase the results on stock data.
Another goal of this chapter is to compare optimal Var, CFVaRs, and CFVaR3
portfolios. Our numerical results show that Var, and CFVaR, optimal portfolios are
close to each other which means we are always minimizing the variance. However, we
obtained different optimal portfolios using C'F'V aR3 risk measure. This result implies

optimization on CFVaR3 is a process of minimizing VaR.
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Appendix

A.1 Proof of Proposition 2.1.

Recall X ~ N(u,0).
The Var of X is

Var = o2,

Next let us compute the SVar of X directly from the definition

B[X ~ BX) Loxemn] = | (@ =wi— exp{_; (““)Q}dx

oV 2T

- 127T /:(x—u)2exp{—% (x;'u)Q}dx.
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Substitute z = =£, dx = odz

E [(X — E[X])? 1{X<E[X]} o’z exp{ ;(z)z} odz

\/ﬁ
O\/% zexp{ ;(z)z}dz.

/(; 2exp {—%(2)2} dz = /(; 2(zexp {—%(2)2})dz,

Integrate by parts with u = z, dv = zexp {—1(2)?)} dz

Rewrite

I
|
N
S
=
—N
|
DN | —
©
€
S~—
——
| o
8
|
i
g =)
|
D
S
]
—N
|
DO | —
—
N
SN~—
N
——
QL
N

. ™
= 27

since er f(—oo) = —1,erf(0) = 0. Therefore, the SVar of X is

SVar = E [(X — E[X))*Lix<pixy] =
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Next let us move to finding VaR of X. Since X ~ N(u, o) then

X _
PX+m<0=P[X—p<-m—p =P “<—m+“}:N(—m+“).
o o o
Next set m = VaR,, then by definition

PX+m<0] =a.

Therefore,

N(—m+u) =
o

m=—[p+ N (a)o]

Solve for m to get

which means

VaR, = — [p+ N (a)o] .

Next we establish the formula of AVaR. By definition

AVaR, = l/ VaR,du
0
= —/ — [p+ N (w)o] du
0

1 [ [
= —/ —pdu — —/ N~ (u)odu
@ Jo @ Jo

1 [}
=—pu— —/ N~ (u)odu.
@ Jo

To solve for [;* N™'(u)odu we substitute u = N(y), where N is the standard normal
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CDF then y = N~'(u), and du = ¢(y)dy (¢ standard normal PDF), and

- [ ()]
- [ (5]
= ¢ (N7} (a))
Therefore,
¢ (N"'(a))

A.2 Proof of Proposition 2.2.

First of all, we compute the Var of portfolio gains. Since
X = —Lossy . =1F;,

then

Var = Po?.
Now let us compute the SVar. Recall P, is normally distributed, then
X ~ N(,ul‘u O-LE)7
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where p, = Py, 02 = P2o?. Therefore,
Var = P?o>.
By the same argument as in the Proof of Proposition 2.2, we get
SVar = E[(X — E[X])) l{x<px}] = —= _ 1y —P2 2
2 $
Next, let us establish the formula of VaR. Since X ~ N(u,,o0,) then
PlrPBb+m<0]=P {rt < ——} —N(——) .
o,
Now, let m = VaR, then
a=PlrP,+m <0 :N(——).
o,

Solve for m to get

% = — [pr + N_l(a)ar} :

Therefore,

VaR, = =P, [p. + N'(a)o,] .
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Now we can compute the AVaR directly from the definition

1 (e}
AVaR, = —/ VaR,du
a Jo

= l/ —Piy [ + NN (u)o,] du
0

e}
= Ptl/ — [,ur + N_l(u)ar} du.
& Jo

We can use a the same argument as in the proof of Proposition 2.2 to get

AVaR, = P, {_M L 7N (e))

«

where ¢ is the standard normal pdf.

A.3 Proof of Proposition 2.3.

Let Y = exp(R), where R ~ N(u,o0). The MGF of Y has the formula:

1
E[Y"] = exp (nu + 571202) :
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Now we can establish the first and second moments of X, and obtain the formula of

Var

VarlY] = E[Y? — (E[Y])? = exp(2u + 20%) — exp(2p + o?)

VarlY] = lexp(c?) — 1]exp(2u + o).
Substitute pg, and og to get
Var = Plexp(oy) — lexp(2ur + o).
Next, let us compute the SVar. The expectation of gain has formula
E[X] = Peltntioh) — p, = p,(elrntach) 1),
Since R has log-normal distribution, rewrite
R = ur+ opz.
Here z has standard normal distribution,

2z~ N(0,1).
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By definition of SVar,

SVar = E [(X — E[X])*1{x<px)]

b ntons) Py(elrnrior) — 1))
= eWRTIRZ) _ 1) — P(e\FrT29R) — ]
| ln )~ B N

2
P 2.2 ORZ 152 2 67%
= Pte“R[eR—e? R} dz

o

P2e20r  EX] L2122
= i/2_ / [e‘mz — eﬁ"R} e 2dz.
™ —00

Now let us compute following integration,

E[X] 1_2 2 22 E[X] 2 1 _2 z2
/ [e"RZ — 6503] e 2dz = / [GQURZ + e’R — 26(5”R+”Rz)] e~ 2dz

— 0 oo
E[X] ) ) . 2
/ eQJsz—ZQ eO'QRf% 2€(§UR+URZ—%

o0

)dz.

First of all, let us compute the first term in this integration.

E[X] E[X]

oo oo
ElX] 1 2 2
— / 6—5(3—201-?) +20Rdz
—00
2 BIX] 1 2
= 6203/ e 2(3720R)" 15
—00

Substitute u = z — 20, and du = dz to get

BIX] E[X]-20R
/ eZURZ_édz — 2% / e~ 2% gy

o0 —00

— ¥i\2r N(E[X] — 20R).
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Here

is the CDF of normal distribution. Then let us compute the second term in integration

We compute the third term in integration.

E[X] E[X
—/ 26(203—'—01{2_7 dz = —262 / elorRz =% )dz

—00

BIX] .

= —2620R/ eallzmor)*~Rl g,

E[X] L

= 262 e~ 2(*9R) )43 2Ry

Bx
= —26”R/ e 3(z=oR)? 1

[e.9]

Substitute u = z — og, du = dz to get,

EX 2 E[X]-or
—/ 26<10%+0RZ77>dZ = —26‘7%/ e 2" du

[e.o] — 00

= —2¢°0/27N(E[X] — oR).
Therefore, the integration equals to

e h\2rN(E[X] — 20R) + ¢"2V21 N (E[X]) — 2¢72v/2n N (E[X] — o).
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Next let us times it with the constant term outside to get

Pt2€2uR
V2r
— p2elnnt [eU%N(E[X] — 205) + N(E[X]) — 2N(E[X] — o—R)] .

[QQU%mN(E[X] —20p) + e”?a\/%N(E[X]) — 26012*\/%N(E[X] - UR)]

Therefore,
SVar = P22tk [Tk N(E[X] — 20%) + N(E[X]) — 2N (E[X] — aR)] .
Now let us establish the VaR of of geometric loss. Consider

P[Py, — P,+m<0] =P |[Pe"™ — P, < —m] :P{R<zog<1‘%>}'
t

Let

—log(1-2
x = log 5 )

and m = VaR, then

a:P[Rt+r—Rt+m<0]:N(x_uR).
OR

Solve for x to get

r=pup+ N Ha)og.
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Now, let us solve for m
m = B(1 - explur + N~ (2)og]).
Recall m = VaR,, the formula of VaR equals
VaR, = Pi(1 — explur + N (a)og]).
Next let us compute AVaR directly. By definition,

AVaR, = —/ VaR,du
0

T a /Oa Py(1 — exp[pgr + N~ (u)og])du

1 (03
=P, — Pt(exp(,uR)a/ exp(N " (u)og)du.
0
Now, let us solve the integration
/ exp(N~(uw)og)du.
0

Let us substitute u = N(y), where N is the standard normal CDF. Then y = N~ (u),
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and du = ¢(y)dy, where ¢ standard normal PDF. Consider following integration,
o N~ 1(a)
| eV o= [ (N (N ooty
0 N=1(0)

N1(a)
- / exp(yor)b(y)dy

N—1(0)
/N—l(a) ( ) 1 < yZ) ;
= eEXTp yO'R EXTP | —— y
N-1(0) V2 2
N7He) 4 1 1
=/ exp (—§(y—UR)2+§UJQz) dy

I
o
8
s

N-1(0) V2T
1, /Nl(“) 1 ( 1 )
=exp| -0 exp | —=(y — o d
p(2 R) N-1(0) \/ﬁ 4 2<y R) Yy
1, N~a)
= exp (EO'R>/ o(y — or)dy
N-1(0)
1 1o
—cap (304 NG = o] 20
1
2

Q
:JJM

Therefore,

1 (6
AVaR, =P, — Pt(exp(pR)E/ exp(N ' (u)og)du
0

=7, (1= S (n+ 503 ) V(@) - )]

A.4 Proof of Proposition 2.4.

Recall X has mean pux and standard deviation ox. Let us define normalized

X — px
ox ’

Y =
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Then it follows that

X —px < —m = kx
0x %5'¢

P[X—i—m<0]:P[X—,uX<—m—,uX]:P[

=P|Y <

—m - Bx
ox .

Then denote « by the confidence level. Then the Cornish - Fisher approximation of

the a quantile ®y (a) is

b7 (0) N () + O N,
NN = 5N a)
36 3
Here
ky = M1, ko = H2,
ks = w3, ka = pa — 33,
and

for = E[(Y - N)r]

Now let us consider the formula of VaR. By directly computation,

p[y<M}Z¢Y(M>:&

gx 0x

7
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Recall m = VaR,,, then solve for m = VaR,,, to get

VaR, = — [px + @' (o) ox] -

A.5 Proof of Proposition 2.5.

X —
. M, / ” i 5 student(v),

where v is the number of degrees of freedom. Next let us compute directly,

X —
P[X+m<0]:P[ “,/ Y <—m+”,/ Y :<I>y(—m+ﬂ,/ - >:a.
o v—2 o v—2 o v—2

Set m = VaR,, then solve for VaR, to get

-2
VaRa:—(I)_l(a)\/VV o — [

Here ® is the quantile of normalized X.

Recall that

A.6 Proof of Proposition 2.6.

First, recall

1
Sy = Spexp [(u — 502) t+ chVt] ,

1
Sirr = Siexp [(u — 502) T+ CTWH_T:| .

78


http://www.mcmaster.ca/
https://math.mcmaster.ca/

M.A.Sc. Thesis — K. Pan; McMaster University — Mathematics

Next let us establish the geometric return

where

Now let us show formulas for risk measurements, since the distribution of one-stock
portfolio geometric return is obtained.

Substitute Var of geometric return with pug = (u — %02) T, 0r = 04/T into Var

formula of Proposition 2.3
Var = Si[exp(og) — 1)(exp(2ur + oF)

to get

Var = Slexp(o?r) — 1]exp (2ut) .

Substitute SVar of geometric return with ur = (,u — %02) 7, Or = 04/T into SVar

formula of Proposition 2.3

SVar = P2en+oh [eU%N(E[X] — 205) + N(E[X]) — 2N(B[X] — O—R)]
to get

SVar = S2e [ef’QTN(E[X] — 20+/7) + N(E[X]) — 2N (E[X] — aﬁ)] .

Substitute VaR of geometric return with pup = (,u — %O‘Q) T, or = 0+/T into VaR
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formula of Proposition 2.3
VaR, = S; (1 — exp [,uR + N_l(a)aR])

to get

VaR, = S, (1 — exp Ku — %cﬂ) T+ N1 (a)o TD :

Substitute AVaR of geometric return with pur = (u — 502) T, op = 04/T into AVaR

formula of Proposition 2.3

AVaR, = S, (1 — éexp <MR + %a;) [N(N"!(a) — o—R)})

to get

AVaR, = S, (1 - éemp (ur) [N(N"Ha) — 0o 7')]) :

Here

E[X] = S fexp (pr) — 1].

A.7 Proof of Proposition 2.7.

In order to facilitate the computation, we let the market price of interest rate risk be
zero. It is well known that the bond price under a risk-neutral measure in this model

is given by

P(t,T) = exp|-Y ()C(T — t) — A(T — 1)),
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where

Clz) =~ (1—e™)

Alz) = /0 ' (—%C’(u) + 60) du.

Let us consider the geometric return of the bond on the time interval [¢,t + 7],

P(t+7,T)

P(t,T) ) = lOg (P<t + 7, T)) - log(P(t,T)) ,

R, = log (

then

Ri=[-Yt+1)C(T—t—7)— AT —-t—7)]—[-Y()C(T —t) — A(T —t)].
Next let us establish the non stochastic term, and stochastic term of R;, since

t+7
Y(t+7)=eY(t) + e_’\T/ eMdW (u),
t
the non stochastic term of R; is
—O(T —t—1)Y)eM +C(T —t)Y(t) + [A(T —t) — A(T —t — 7)),

and the stochastic term of R; is

t+7
—CO(T —t—7)e™ / M dW (u).
¢
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Therefore, R; has normal distribution, where

pr=—C(T —t—7)Yt)eN +C(T —t)Y(t) + [A(T —t) — A(T —t —7)]
OR = \/02(T —t—7) /HT e2A =) du.

A.8 Proof of Proposition 2.8.

Now since distribution of geometric turn is normal, next step is substituting ug, og,

and bond price P(t,T) into formulas of Proposition 2.3 to obtain

Var = [P (t,T) [exp (o) — 1] exp (2un + o)
SVar = [P(t, T2k |7k N (B[X] — 207) + N(E[X]) = 2N(E[X] - on)|
VaR, = P (t,T) (1 - eap [ug + N~ (a) og])

1

AVaR, = P (t,T) (1 — éexp (uR + 50%) [N (N7 () — 0)}) ,

where

E[X]=P(t,T) (exp <uR + %Ué) - 1) :

A.9 Proof of Proposition 2.9.

First, recall the weight of each stock
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where P(0) denotes the initial portfolio value. Recall that

P(1) - P(0)
PO)

is given by

P(1) = P(0) &

O

Since

Z w;R; ~ N(wp, VwiwT),

i=1
then

R ~ N(wp, VwXwT).

Now we would like to establish formulas for risk measurements. Apply Proposi-

tion 2.2 to get

Var = P*wXw’
SVar = %P2U)EIUT
VaR, = —P [w,u + N_l(a)\/m}
., W¢<N—l<a>>] |

(07

AVaR, =P

where ¢ is the standard normal pdf.
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A.10 Proof of Proposition 2.10.

Assume equal weights,

wy = w2 = 7,

2

in the two stocks, the Var of the stocks is o1 = 09 = 1, and their correlation is p. The
portfolio Var is

02 = wXw?!

2 2
= wjoy1 + 2wiwe019 + W50

_1+4p
=
By the previous proposition,
-1 L4p
VaR, = —P |wp+ N («) —

which is increasing in p as long as N~!(a) is negative or o < 0.5.

A.11 Proof of Proposition 2.11.
The time ¢ value of the portfolio is
t 1 9 t
X(1) = X(O)emp{ [ =5 1calas+ | <Tadw<s>},

where W (s) is the vector of Brownian motion. Recall that

Tt =5 |0l = 6(0),
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and consider portfolio value at time ¢ + T,

X(t+7) = X(t)exp { /t HTG(C)ds + /t v (TJdW(s)}

= X(t)exp {G()T+ To(W(t+71)—W(t)}.
Now let us compute the geometric return for portfolio consisting of n stocks,

R; = log (%) =GOT+To(W(t+ 1) —W(t)),

and

Ry ~ N(G(Q)r, || V7).

Apply Proposition 2.3 to get

Var = [X(t)]? (exp((}QTa‘z 7)) — 1> exrp (ZG(C)T + ‘CTJ‘Z 7')
SVar = (PO [l N (L)~ 2|c7o| v
# NELX) 2N (ELX] - |¢7o] v7)]
VaR, = X(t)[1 — exp {G(C)T + N Ya) ‘CTJ{ \/F}]

AVaR, = X(t) <1 — éexp (G(C)T + % ‘CTO'| \/?2) [N(N(a) — ‘CTU| ﬁ)]) )
Here
E[X] = X(t) (€3l ) ),

and KTO" is the Euclidean norm of (0.
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A.12 Proof of Proposition 3.1.

Recall
Q=a+b"Z+27Z"A\Z,
then the MGF of Q is

Elexp(0Q)] = Elexp(f(a +b"Z + Z"AZ))

= exp(a)Elexp(0(b" Z + ZTN2))).
Here
b Z = i biZi, Z'NZ = i NZ2.
i i=1
Let us focus on this expectation for now

Elexp(0(b"Z + Z"AZ))| = E

exp(0 (Z biZ; + MZ;))
i=1

Since Z; and Z; are independent for ¢ # 7,

exp (9 (Z b; Z; + )\jZJZ>)
i=1

Now we rewrite

n

_ H E [e:cp(@(bizi + AjZf)ﬂ '

i=1

E

E lexp(0(b:Z; + N\, Z7))] = E

b' 2 b2
N7z + S
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Substitute the MGF of the y? distribution with § = 0)\;, x =

to get

b;

2,
E lexp(0(Z; +2)%)] = (1 - 29)_%«%]) a”
’ 1—260
b2
b. 2 ) 9)%&
i = (1—20A) 3 :
2&) )] (1=200) 2exp | 7505,

Therefore, the MGF of @ is

where

n(0) =ba+

= (1—20)\,) Zeap

= (1—20)\,) Zeap

= (1 —20)\) 2eap ((
= (1 —20)\) 2exp (

=(1- 29)\i)’%exp (

Elexp(0Q)] = exp(n(0)),

1/ 6%
2 \1—-20\

87

into formula

O,
AN exp | —
A

b2
1—20);, 4\
G
&y _ ob?
1—-20);, 4\
1
— 1
o)
20N, OB
1—20)\; 4\
1 0%
2 1-—20)\

—log(1 — 29@) .

4N

0b?

)

4N

)
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A.13 Proof of Proposition 3.2.

First of all, let us compute the expectation of () by taking the first derivative of @)
MGF,

E[Q] =1 (0) exp (n () lo=o-

Here

1 0%b?

b2 (2-0— 2\ -0?) 2\ -
— § = E ;.
- < (1—2x-0)? +1—2M0> Hizl

Therefore, the obtained expectation is

MGF,

Here the second derivative of n at § = 0 is given by

1 2b2 4\?
! O — - ( ) + ) )
70=2 3 (1—2)n-0P°  (1—2X-0)

=1

=> (7 +2x7).
=1
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Therefore, the second moment equals

Then let us compute the Var of portfolio loss

Var Q] = E [Q?] —E[Q]in(bf+2)\?)+ <a+zn:Ai> - (a+zn:&>

=> (7 +2x).

i=1

Last but not least, consider the third central moment
13 (@) = E [(Q = no)’] = E [Q°] — 3uqo — .

Now let us compute value of the third moment by taking the third derivative of @)
MGF,
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Here the third derivative of n at § = 0 is given by

n

6b2\; 8\3
"n O — 17 _l’ .
7 (0) ;(1—2)\i-0)4 (1—2)-0)°

Recall
' (0) = EC] =a+i&'=ﬂ@
i=1
710) = Var (Q) = 3 (5 + 2%) = o,
i=1
Therefore,

E[Q*] =n"(0) + 3pqog + i

13 (Q) = E[(Q — 110)°] = E [Q°] = 3pqa — u
=" (0) + 3pqog + 1y — 3pqog — Ho
=" (0)
= i 62N, + 8A?

i=1

A.14 Proof of Proposition 3.3.

Firstly, let us obtain the CDF of approximated portfolio loss (). The characteristic

function of () is

¢q(iu) = exp(n(iu)).
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By Fourier inversion in Chapter 4 of [7], @ has the following CDF

L, 1 [ ™og(min) — e 9q(iu)

- du.
2" 2r J, i "

Set

VaR, = z,

by definition

P(-Q+z<0)=a

Pz <Q)=«a

1 1 0 iuxr s o —iux .
PQ<z)=1—-a==-+— ] m). e "oq(iu)

du

Then we solve for x in the above equation.

A.15 Proof of Proposition 3.4.

First let us compute the formula of fg(x), the PDF of @, by

0
falz) = 5 Fo(x)
_ 1 d [T e™og(—iu) — e Pg(iu)
T ordr 0 0

1 [~ _
= —/ e " hg(iu)du.
0

du

/0
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Then by Definition 2.3.

o0

SvarlQ) = [ (- EQ) fo () s

EQ

A.16 Proof of Proposition 3.5.

First let us consider conditional MGF of @),. If Y is known, then

o (85 1422 002))

Bleap(0Qu)1¥] = eop (0 0)) £

=1

In Appendix 5.12 we have already obtained

£ (0 (3202 02) )

ﬁ exp b i Zi + /\jZ?))}
B

(1 o

i=1

Now let us replace b; with bi\/g in previous formula. Then the following conditional
MGF holds true

In addition let us factor out Y to get

% 1 I 62V P2 0 1O 6202
e N 220 (- N 7%y
(e I>+2y;1—29Ai <y(a x)+2yi211—2mi> ’
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and set

Now the conditional MGF is

Elexp(0Q.)[Y] = exp(a(0)Y)

Recall that ¢y () is the MGF of Y, and it is given by
Gy (0) = (1 —20)"%.
By the law of total expectation

Elexp(0Qs)] = E[Elexp(6Qq)[Y]]

ﬁ1—2w %]

= FElexp(a

A.17 MGF of Inverse Chi-Squared Distribution

The result of this section are needed in the proof of Proposition 3.6. Assume X

has a chi-squared distribution, with v degrees of freedom. Let
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Recall an inverse-chi-squared distributed random variable have following PDF:

fr(y) = 25)y<_g_1>exp (— ! ) _

2y

EWﬂ:(y—m@—4y

Now let us establish these formulas. The expectation of Y is

r(%) :F<g—1) (g—1>, (A17.1)
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we get
R B (O )
ElY :/ 2257 emp(——u)du
SRR A YERVEE
Y A (R
= _2 2 ullz=H)1 exp <——u) du.
s—=1Jo I(E-1)
Note that
2 () Dy (L
P v_1)-1 1
F(%_l)u exp( 2“)

is the the PDF of

Then it is obvious,

Therefore,
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Next let us compute E[Y?]

Again

is the the PDF of

SO
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Therefore,

A.18 Proof of Proposition 3.6.
Recall

72

i=1 —

v

First we would like to apply the law of total expectation, to conditional expectation

of @ if Y is known. Let us represent this process formally.
v n
QY]=a+ 1 Zl
v n
- \;
a+ % ;

=1

ElQ=E

By Appendix 5.17,

Therefore,
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Next let us compute Var of (). First, consider
Q*=d’+a) bWi+tad AW}
i=1 i=1
n n 2 n n
+ay bW+ (Z bjwj) + (Z bjwj> (Z wvf)
=1 j=1 j=1 i=1
n n n n 2
i=1 j=1 i=1 j=1

1% 1%
W;=1/<Zi~N{(04/=]).
K2 Y K2 (07 Y)

Expectations of the first three terms are given by

Here

E[a®] = a?
i=1 i
E CLZZI/\J/V%2 :a%;/\’

Next let us compute the expectation for the fifth term

n 2

E (Z?W) = E
i=j

=2

=7

i=1 =1

b;W; Zn: bin‘]
=1

zn:bjoE[ij]] :

i=1
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Since W;,W; are independent for i # j,

EW;Wi] = (EWi])(E[W;]) = 0, i # J,

4 .
E[W; W) = (EW]]) = 37, i = j,
then
u ] v
E |0;W; Y 0iW;| = b
=1 J

E

Now let us consider the remaining terms.

j=1 i=1 i=1
IR SEVE
j=1 =1 .
= En: Xn: bbi EIW,W7]| .
j=1 Li=1 |

Since W;,W; are independent for 7 # j,

E[W; W] = EW;|E[W] =0-1=0, i #,

E[W;W] = EW;] =0, i =

J

99
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then
E|bW; > AW2 | =0
i=1 i
(Z bjwj) <Z wvf) => 0=0.
j=1 i=1 1 =1
Finally let us compute the expectation for the last term.
n 2 n n
<Z )\jo2> =E | MWPY AW | 4+ B (A AiWE]
j=1 i=1 i=1

SR T
j=1 i=1

-3 eEwi s Y AM[WEW?]] -
j=1 i=1,ij

Since
4 4 v?
E[W]] =30 = ﬁa
2
99 7 ve
E[Win]—y'?Zﬁ» i # 7,
then

E (Zn:AjVI/j?)Q :;—22 22)\2 (Z)\)

j=1 =1

Next if Y is known, the conditional expectation of () is given by

n n 2
EQ* Y] =a +2a—Z)\ —i—Ysz VQ 22)\?—1- <Z)\z>
i=1 i=1
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Then the expectation of the value above is given by

n n 2 n
BIE[Q}Y]| = F |a®+2a=S M+ 25 02+ 2 [25 a2
[E[Q*|Y]] a+aY;A+Y;bZ+Y2 Z:;+

Substitute

(see Appendix A.17) to get

E[Q?] =a® + 2a

1% - 1% "
V—Q;Ai—'—y—Q;b?
S ey 2;Ai+ ;)\

Before our last step, let us compute (E[Q])?.

101
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Finally, the Var of () is given by

Var[Q

Mathematics
202 -
62 A2
v—2 Z (v—2)(v—4) ; ‘
V2 v? -
i <<u—2><u—4> T -2y

A.19 Proof of Proposition 3.7

Recall formulas of Var, and tVar.

Var|Q]

tVar|Q

Since v > 4, then

proves the claim.

n

=D (0 +2X)
2y 2V2 - 2
y—zzb (v—2) 4);Ai
+((y—2)(y—4)_(y—2)2) (z;A
Vi2>1
202
Vw1 >
((V—2)(V—4)_<I/—2)2)>1’
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A.20 Proof of Proposition 3.8.

Let us first consider

b, (1u) = H (1 — 2iuN;) %
=1
is the characteristic function of @),. By Fourier inversion, ), has following CDF

1 1 [®epq (—iu) — e g, (iu
Fo.(0) = P(Q < a) = 5 5 [ Soelmm m ey,

Recall
P(Q, < 0)if and only if P(Q < ).

Set

VaR =z,
then by definition:
P(-Q+zx<0)=a
Plx < Q) =«
P(Q<az)=1—a=P(Q,<0)=Fy(0 27r/ $q. (— d)Qz( )

Then we solve for x for the above equation
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A.21 Proof of Proposition 3.9.

First let us compute the formula of fo(z), the PDF of @, by

d Pq, (—iu) — ¢q, (iu)
" oz ( 27T/ i du )

n

= % N [(1 — 2a(—iu))"E D [H (14 zmi)—%]

0 i=1

+ (1 —2a(iu)) [H (1 — 2iu\;) 3| |du

=1

Then by Definition 2.3.

[e.9]

SVariQ) = [ (o~ EQPfo(w)ds

EQ

A.22 Proof of Proposition 3.10.

Let us prove that the portfolio Var is an increasing function of the correlation. Let

21~ N(07 1), 29 N(O, ].),
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z1 and 29 are independent. Here

5122—;
52:2_;
2
.
2
FQZZ—SZ;,

where ¢, and ¢y are the option prices. Define

2
Av = 0121 + 0y <p21 +4/1 - p222> + 22 + Ty (pzl +4/1 - p222> ,
then

Gain = Av + deterministic term
Var [Loss] = Var [-Gain] = Var [Gain|

Var [Gain] = Var [Av + deterministic term| = Var [Av] .
Now we want to show Var(Av) is an increasing function of p.

E[Av] =6 E [z1] + 62pF [21] + 92/ 1 — p?FE | 23]
+ 1B [27] + T2p’E [27] + 2T2p\/1 — p*E [2122]
+ 12 (1= p)* B[]

:F1+F2.
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Let Av=a+b+c+d

a=0121
b= (52 <p2’1 + 1-— p222>
c=T2°

2
d=T, (pzl + 41— p222>
=1, (pZZf + (1 — p2) 22+ 2p\/1 — p2z122>

(a+b+c+d)’ =

(6121)% + (52 <p21 + ng>>2
+(1,22)° + (F2 (pzzf +(1-p?) 22+ 2pmzlz2>>
2 (5121) (6 (pzl + m22>>
+2(003) (T (P28 + (1= ) B+ 20T = P2 ) ) +2(0121) (T2)
+2(8 (p21 + V1= %) ) (Ti)
+2(6,21) ( <p2zl (1-p%) 2+ 2pmz1z2>)
+2 (52 <p21 + ﬂ@)) (r2 <p2212 +(1—p) 2+ 2pﬂzlz2>>
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By independence of z; and z,, their zero skewness and kurtosis of three,

E [Av?] = 07 4 05 4 317 + 313 + 20102p + 401 Tap” + 21Ty
Var [Av] = E [Av?] — E [Av)?

= f(p)

Calculate the derivative of f(p) to get
f/ (p) = 20102 + 8F1F2,0 > 0.

Therefore Var of loss is an increasing function of p.

A.23 Proof of Proposition 4.1

Firstly, recall Proposition 3.2, Var of the portfolio loss is

Var(L] =Y (b +2X7).
i=1
Now let us compute the value of
> nr

=1

Since

—b=C"9,
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and

then

Set

then

Next let us compute

m
§ k
61‘ - 'Tk(;l ’
k=1

i: b2 = b7

p
= (CT8)T(C75)
= 5TCCTS
= §TALSS

= 2" MTAtS Mz
S =2MTAtSM,

n

Z b? = %fo]x

=1

; 3 = i ((0Tro)” (0™re))

= itr (c'rec'To)
1
=t (rcc'rec”)

= itr (TAtSTALY)
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Since
m
k
VRS E $kF¢ja
k=1
then rewrite

= ixkrk.
k=1

Now

2
1 1 .
Lt (CAISTALY) = —tr (Z xkrmtz)

k=1

_ }1 (zm: 22 tr <(F’“At2)2> +23 " zaytr (D AISTLALT)
k=1

ik
= 7ar,
where
Q=Qu=tr VAISTUALS), i=1,2,-,n, k=12,
Thus,
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A.24 Proof of Proposition 4.2

Recall in Section 3.2.5 we obtain
CFVaRy = pup, — N7 ' () oy,

where pr, and oy are the mean and standard deviation of loss L. Now combing

Proposition 3.2 and trace properties, we have

Hr = a+ Z A
i=1
T L
=20 —tr (50 FC)
1
= 27O — §tr (FCC’T)

1
= —2'0 - §tr (FAtY)

1 m
_ T k
=—2 0 — itr <]§:1 il AtZ)

= —zTe — a7p,
where
1 T
P=3 (tr (T'ALE) -+ tr (TALR)) .
Recall by Proposition 4.1 that

o7 =Var[l] = %Z‘T (f] + Q) x.
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Thus, CFVaR, is given by

1 ~
CFVRy=—2"0 —2"p— N7 (a) \/ﬁxT <Z + Q) x.

A.25 Proof of Moments in 4.4.1

Firstly, let us compute the first moment. It’s formula is given by
E|—6TAS — %ASTFAS} = VAtaiE [21] + VAL E (2] + Ath E [22] + Athy B [22] .
Since 21, z5 are independent, have zero means, and have Vars equal one, then
E [—5TAS — %ASTFAS = Atby + Atbs.

Next, let us compute the second moment. Since

Ella+b+c+d)?] = E[(a®+ b+ &+ d* + 2ab + 2ac + 2bd + 2bc + 2cd)]
then it’s formula is given by
E

2
(—6TAS _ %ASTFAS) — At2E [2] + Ata2E [22)] + [M22E 2] + [AHRE [

+ 2Ata1a2E [2122] + Q[At]%alblE [Zﬂ + Q[At]%alng [2123]

+ 2[A)2 aghy B [2225] + 2[At)2asbo E [25] + 2[At2bybyE [2223] .
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Since z7, zo are independent, have zero means, have Var equals one, have skewness
equals zero, and kurtosis equals three then, the formula of the second order moment

is given by

2
E (-5%5 — %ASTFAS) = Ata] + Ataj + 3[At]*b] + 3[At]*b; + 2[At]*b1b.

Finally, we compute the third moment. Since

Ef(a+b+c+d)’] = E[a® +b* + ¢ + d® + 3ab® + 3ac® + 3ad” + 3ba® + 3bc” + 3bd”

+ 3ca® + 3¢b? + 3ed® + 3da® 4 3db? + 3dc? + Gabe + 6abd + 6acd + 6bed)
It’s formula is given by

3
B|(=67A5 - 1ASTTAS) | = [AQSGE [] + [AS3E 2
2 1 1 2

+ AR [4] + [APHE [

+ 3[Al2a1a2E [2122] + 3[At]3a,b2E [2]]

+ 3[AL 2 a b2E [2121] + 3[At)2a2asF [222)

+ 3[A2 apb?E [2i2] + 3[At]Zasb2E [2]]

+ 3[At?aibi E [2]] + 3[At]Pa3bi E [2723)

+ 3[APUBE 2723 + 3[AtPaib E [272]

+ 3[AtPa3bo E [23] + 3[ALPHIb E |21 23]

+ 6[AtParaoh E [2725] + 6[At]*arasbo B [21 23 |

+ 6[At]ga1b1b2E [Z%Zg} + G[At]%agblng [2%2;] .
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Since z7, zo are independent, have zero means, have Var equals one, have skewness
equals zero, kurtosis equals three, 5th moment equals zero, and 6th moment equals

15 then, the formula of the third order moment is given by

3
E <—5TAS — %ASTFAS) = 15[A°0] + 15[AL]°05 + 9[At]*aib, + I[At]*adby
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Appendix B

Python Codes

B.1 Options-Portfolio Risk Measurement

from scipy.stats import norm

from scipy import integrate # Compute a definite integral.
from scipy.optimize import fsolve

from numpy.linalg import inv

import matplotlib.pyplot as plt

from scipy.optimize import minimize_scalar
import numpy as np

import math

import cmath

import scipy

import scipy.linalg

pi = math.pi
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def BLSCPRICE(s,T,t,K,sig,r):
di=(np.log(s/K)+(r+sig**2/2)*(T-t))/(sig*np.sqrt(T-t))
d2=(np.log(s/K)+(r-sig**2/2)*(T-t))/(sig*np.sqrt(T-t))
call = s*norm.cdf(dl)-K*np.exp(-r*(T-t))*norm.cdf (d2)

return call

def BLSCALLGREEK(s,T,t,K,sig,r):
d1=(np.log(s/K)+(r+sig**2/2)*(T-t))/(sig*np.sqrt(T-t))
d2=(np.log(s/K)+(r-sig**2/2)*(T-t))/(sig*np.sqrt(T-t))

calldelta = norm.cdf(d1l)

callgamma = norm.pdf(dl)/(s*sig*np.sqrt(T-t))
calltheta=-r*K+np.exp (-r*(T-t))*norm.cdf (d2) - ((sig*s*norm.pdf (d1)
< )/(2*np.sqrt(T-t)))

return[calldelta,callgamma,callthetal

def Diag(cov):
L=np.linalg.cholesky(cov)
A=(-1/2)*np.matmul (np.matmul (L.transpose() ,GAMMA),L)
eigenvalues, U = np.linalg.eig(A)
LAMBDA=np.zeros((5,5))
for i in range(0,5):

LAMBDA[i,i]=eigenvalues[i]

Q
n

np.matmul (L,U)

=
Il

-t*THETA
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B = -np.matmul(C.transpose() ,DELTA)

return [LAMBDA,A,B]

def intgl(x):

F_1= lambda u: (np.exp(lj*uwkx—A*1j*u+l/2x(-wk*x2*B[0]**2/(1+2%1j*u
— *LAMBDA[0,0])-np.log(1+2%1j*u*LAMBDA[0,0]))+1/2% (-u**2xB[1]%*x* |
— 2/(1+2%1j*u*LAMBDA[1,1])-np.log(1+2*1j*u*xLAMBDA[1,1]))+1/2% (-
o wek2*B[2]#%2/ (1+2%1 j*u*LAMBDA[2,2])-np.log(1+2+1j*u*LAMBDA[2, |
= 21))+1/2% (~ux*2%B[3]**2/ (1+2+1j+u*LAMBDA[3,3]) -np.log (1+2%1j*
—  wkLAMBDA[3,3]))+1/2% (-u**2*B[4] **2/ (1+2%1j*u*LAMBDA[4,4])-np. |
< log(1+2%1j*u*LAMBDA[4,41))))/(1j*u)

s_l=integrate.quad(F_1, 0, 20)

F_2= lambda u: (np.exp(-1j*utx+Ax1j*u+l/2%(-ux*2+B[0]**2/(1-2%17%*,
— wkLAMBDA[0,0])-np.log(1-2%1j*u*LAMBDA[0,0]))+1/2% (—u**2+B[1]* |
< %2/(1-2%1j*u*LAMBDA[1,1])-np.log(1-2%1j*u*LAMBDA[1,1]))+1/2%(
o —uxk2%B[2] *%2/(1-2%1j*u*LAMBDA[2,2]) -np.log(1-2%1j*u*LAMBDA[2
o ,21))+1/2% (—uk2*B[3] **2/ (1-2%1 j*u*LAMBDA[3,3]) -np.log(1-2%1j
— *uxLAMBDA[3,3]))+1/2% (-u**2xB[4]**2/(1-2%1j*u*xLAMBDA[4,4]) -np |
< .log(1-2%1j*u*LAMBDA[4,4]))))/(1j*u)

s_2=integrate.quad(F_2, 0, 20)

return (s_1[0]-s_2[0]1)

def pdf (x):
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g = lambda u: (1/pi)*(np.exp(-1j*uwsx+A*1j*u+l/2%(~wk*2*B[0]**2/ (1
< —2%1j*u*LAMBDA[0,0])-np.log(1-2%1j*u*xLAMBDA[0,0]))+1/2% (~u**2 |
o *#B[1]*%2/(1-2%1j*u*LAMBDA[1,1])-np.log(1-2*1j*u*LAMBDA[1,1]))
o +1/2%(-ux*k2+B[2] **2/ (1-2%1j*u*LAMBDA[2,2]) -np.log(1-2*1j*u*LA |
— MBDA[2,2]))+1/2%(-u**2xB[3]**2/(1-2%1j*u*LAMBDA[3,3])-np.log(
< 1-2%1j%u*xLAMBDA[3,3]))+1/2% (-u**2*B[4]**2/ (1-2%1j*u*xLAMBDA[4, |
< 41)-np.log(1-2%1j*u*LAMBDA[4,4]1))))

pdf = integrate.quad(g,0,20)

return pdf [0]

#initial stock price
S5=[28.02,60.01,25.24,65.53,23.29]
#stirke price

K=8

#interest rate

r=0.05
sig=[0.1699,0.2032,0.2064,0.1794,0.2476]
#maturity

T=1

t=1/52

#number of similuations
n=1000000

#correlation
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Rho=[[1,0.367,0.337,0.189,0.420],[0.367,1,0.359,0.197,0.303], [0.337,0,
~ .3569,1,0.215,0.297],[0.189,0.197,0.215,1,0.168], [0.42,0.303,0.297,
- ,0.168,1]]

#confidence level

alpha=0.01

index = n-n*alpha - 1

mean=[0,0,0,0,0]
COV=np.zeros((5,5))
for i in range(0,5):
for j in range(0,5):
COV[i,jl=t*S[i]l*S[jl*siglil*sigl[j]l*Rho[i] [j]

dS = np.random.multivariate_normal (mean, COV, n).T

C0=0

for i in range (0,5):
CO=CO+BLSCPRICE(S[i],T,0,K[i],sigli],r)

C1=0

for i in range (0,5):

C1=C1+BLSCPRICE(S[i]+dS[i],T,t,K[i],sigl[i],r)

# exact stmulated

L_ex=C0-C1
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Var_ex=np.var(L_ex)
LS_ex=np.sort(L_ex)
VaR_ex=LS_ex[int (index)]
Q_ex=-L_ex
E_ex=np.mean(Q_ex)
S_ex=Q_ex[Q_ex<E_ex]
S1_ex=Q_ex[Q_ex>E_ex]

SVar_ex=(1/Q_ex.shape[0])*np.sum((S_ex-E_ex) **2)

# delta gamma
DELTA = np.zeros(5)
for i in range (0,5):
DELTA[i]=BLSCALLGREEK(S[i],T,0,K[i],sigl[i],r) [0]
GAMMA = np.zeros((5,5))
for i in range (0,5):
GAMMA [i,i]=BLSCALLGREEK(S[i],T,0,K[i],sigli],r) [1]
THETA = 0O
for i in range (0,5):

THETA=THETA+BLSCALLGREEK(S[i],T,0,K[i],sigl[i],r) [2]

dC=np.zeros(n)
for i in range (0,n):
dC[i]=t*THETA+np.matmul (DELTA.T,dS[:,i])+0.5*np.matmul(dS[:,i].T,

< np.matmul (GAMMA,dS[:,i]))
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L_dg=-dC

Var_dg=np.var(L_dg)
LS_dg=np.sort(L_dg)
VaR_dg=LS_dg[int (index)]
0_dg=-L_dg
E_dg=np.mean(Q_dg)
S_dg=Q_dg[Q_dg<E_dg]
S1_dg=Q_dg[Q_dg>E_dg]

SVar_dg=(1/Q_dg.shape [0])*np.sum((S_dg-E_dg) **2) #SVar in note

[LAMBDA, A,B]=Diag(COV)

# parametric

E_pa=A

for i in range (0,5):
E_pa=E_pa+LAMBDA[i,1i]

Var_pa=0

for i in range (0,5):

Var_pa=Var_pa+(B[i]**2+2+«LAMBDA [i,1]**2)

s=2xpi*(0.5-alpha) # the integral in formula of CDF equals to this

< value
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tol = le-6
a=5.00
b=6.00
while (b - a) > tol:
m=(a+Db) /2
if (intgl(a)-s>=0>= intgl(m)-s) or (intgl(a)-s <= 0 <=
< intgl(m)-s):
# f changes sign in going from a to m, so there ts a root
o in [a,m]. set b =m

b=m

else:
# f must change sign in going from m to b, so there s a
— 1root in [m,b]. set a = m
a=m

VaR_pa = a

S= lambda x: (x-E_pa)**2x*pdf (x)
SVar_pa=integrate.quad(S,E_pa,20)

SVar_pa=SVar_pal[0]

# cfvar 2 and cfvar3d

cfE = -E_pa
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mu3 = 0
for i in range (0,5):
mu3=mu3+ (6*B[i] **2+«LAMBDA[i,i] + 8+*math.pow(LAMBDA[i,i],3))

mu3 = -mu3

cfvar_2 = -cfE - norm.ppf (alpha)*np.sqrt(Var_pa)

cfvar_3 = -cfE - norm.ppf (alpha)*np.sqrt(Var_pa) -

— (1/6)*((norm.ppf (alpha))**2 - 1)*(mu3/Var_pa)

print ('Parametric risk measurements over initial

< wealth:', [np.sqrt(Var_pa)/C0O, VaR_pa/CO, SVar_pa/CO0])
print('Simulated risk measurements over initial

— wealth:', [np.sqrt(Var_ex)/CO, VaR_ex/CO, SVar_ex/CO0])
print ('D-G Simulated risk measurements over initial

— wealth:', [np.sqrt(Var_dg)/CO, VaR_dg/C0, SVar_dg/C0l)
print ('Cornish-Fisher VaR

- estimation:', [VaR_pa/CO,cfvar_2/C0,cfvar_3/C0])

# t student

nu = 6

E_t=A

for i in range (0,5):

E_t=E_t+(nu/(nu-2))*LAMBDA[i,1i]
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bsquare = 0
1=0
lsquare = 0O

for i in range (0,5):
bsquare = bsquare+B[i]**2
1 = 1+LAMBDA[i,i]

lsquare = lsquare+LAMBDA[i,i]**2

var_t = (nu/(nu-2))*bsquare + ((2*nu*+*2)/((nu-2)*(nu-4)))*lsquare +

o (((aux*2)/((nu-2) *(nu-4))) - ((nu*x*2) / (nu-2) **2) ) * 1**2

def inteloft(x):

F_1 = lambda u :

- np.exp(-3*np.log(1+2x1j*ux(A-x)/nu+(wk*2*B[0]**2) /(nu+nu*2x1j |
— *uxLAMBDA[0,0] )+ (u**2*B[1]**2) / (nu+nu*2*1j*u*LAMBDA[1,1])+(u*
< *2xB[2]*%2) / (nu+nu*2*1j*u*LAMBDA [2, 2] ) + (u**2+B [3] **2) / (nu+nu* |
< 2%1j*uxLAMBDA[3,3])+(u**2+B[4]*+*2) / (nu+nu*2*1j*u*LAMBDA[4,4])
— ))*np.sqrt(1/(1+2x1j*u*xLAMBDA[0,0]))*np.sqrt (1/(1+2%1j*u*LAMB
< DA[1,1]1))*np.sqrt(1/(1+2x1j*u*LAMBDA[2,2]))*np.sqrt (1/(1+2%1j
— *u*LAMBDA[3,3]))*np.sqrt (1/(1+2+1j*uxLAMBDA[4,4]))/(1j*u)

s_1 = integrate.quad(F_1, 0, 20)
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F_2 = lambda u :

— np.exp(-3*np.log(1-2%1j*u*(A-x)/nu+ (ux*2+B[0]**2) / (nu-nu*2+*1j |
< *uxLAMBDA[0,0] )+ (u**2*B[1]**2) / (nu—nu*2%1j*u*LAMBDA[1,1])+(u*
- *2xB[2]*%2)/(nu-nu*2+*1j*u*xLAMBDA[2,2] )+ (u**2*B[3] **2) / (nu-nux* |
< 2%1j*u*LAMBDA[3,3])+ (u**2+B[4]**2) / (nu-nu*2+1j*u*xLAMBDA[4,4]) |
- ))#*np.sqrt(1/(1-2x1j*u*LAMBDA[0,0]))*np.sqrt (1/(1-2%1j*u*LAMB
— DA[1,11))*np.sqrt(1/(1-2*1j*u*LAMBDA[2,2]))*np.sqrt(1/(1-2%17
— *u*LAMBDA[3,3]))#*np.sqrt(1/(1-2x1j*u*LAMBDA[4,4]))/(1j*u)

s_2 = integrate.quad(F_2, 0, 20)

return (s_1[0]-s_2[0])

tol = le-6
a=6
b=7
while (b - a) > tol:
m=(a+Db) /2
if (inteloft(a)-s>=0>= inteloft(m)-s) or (inteloft(a)-s <= 0 <=
— inteloft(m)-s):
# f changes sign in going from a to m, so there is a Toot
o in [a,m]. set b =m

b=m

else:
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# f must change sign in going from m to b, so there s a

- rToot tn [m,b]. set a = m

def pdfoft(x):

F_1

s_2

= lambda u :

np.exp(-4*np.log(1+2+1j*u* (A-x) /nu+ (ux*2+B[0] **2) / (nu+nu*2+*1j |
*u*LAMBDA [0, 0]) + (ux*2xB[1]*%2) / (nu+nu*2+1j*u*xLAMBDA [1,1] )+ (u*
*2%B [2] #%2) / (nu+nu*2*1 j*u*LAMBDA [2,2] ) + (ux*2+B[3] **2) / (nu+nu* |
2%1j*u*LAMBDA [3,3]) + (u**2+B[4]**2) / (nu+nu*2*1j*u*LAMBDA [4,4]) |
))*np.sqrt (1/(1+2%1j*u*LAMBDA[0,0]))*np.sqrt (1/(1+2x1j*u*LAMB
DA[1,1]))*np.sqrt(1/(1+2*1j*u*LAMBDA[2,2]))*np.sqrt(1/(1+2%173

*u+xLAMBDA[3,3]))*np.sqrt(1/(1+2*1j*u*xLAMBDA[4,4]))

integrate.quad(F_1, 0, 20)

lambda u :
np.exp(-4*np.log(1-2+1j*u* (A-x) /nu+ (ux*2+B[0]**2) / (nu-nu*2+*1j |
*u*LAMBDA [0, 0]) + (u**2xB[1]*%2) / (nu-nu*2+1j*u*xLAMBDA[1, 1] )+ (u*
*2+B[2]**2) / (nu-nu*2*1j*u*LAMBDA [2, 2] ) + (u**2*B [3] **2) / (nu-nu* |
2+13j*u*LAMBDA[3,3]) + (u*2*B[4] **2) / (nu-nu*2*1j*u*LAMBDA[4,4]) ,
))*np.sqrt (1/(1-2%1j*u*LAMBDA[0,0]))*np.sqrt (1/(1-2*1j*u*LAMB
DA[1,11))#*np.sqrt(1/(1-2+1j*u*xLAMBDA[2,2]))*np.sqrt (1/(1-2%1j
*u*LAMBDA [3,3]))*np.sqrt (1/(1-2+1j*u*LAMBDA[4,4]))

= integrate.quad(F_2, 0, 20)
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return (s_1[0]+s_2[0])/(2*pi)

St= lambda x: (x-E_t)**2*pdfoft(x)
SVar_t=integrate.quad(St,E_t,20)
SVar_t=SVar_t [0]

print ("t student risk

- measurements", [np.sqrt(var_t)/C0,VaR_t/C0,SVar_t/C0])

B.2 Options-Portfolio Optimization

B.2.1 Five-Options-Portfolio case

from scipy.stats import norm

from scipy import integrate

from scipy.optimize import fsolve

from numpy.linalg import inv

import matplotlib.pyplot as plt

from scipy.optimize import minimize_scalar
import numpy as np

import math

import scipy

import scipy.linalg

pi = math.pi

#initial stock price

5=[28.02,60.01,25.24,65.53,23.29]
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#stirke price
#K=[40,40,40,40,40]

K=S

#interest rate
r=0.05

sig=[0.1699,0.2032,0.2064,0.1794,0.2476]

#maturity
T=1

t=1/52

#number of similuations

n=100000

#correlation
Rho=[[1,0.367,0.337,0.189,0.420],[0.367,1,0.359,0.197,0.303],[0.337,OJ
o .359,1,0.215,0.297],[O.189,0.197,0.215,1,0.168],[0.42,0.303,0.297J

-~ ,0.168,1]1]

#confidence level
alpha=0.01

index = n-n*alpha
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mean=[0,0,0,0,0]
COV=np.zeros((5,5))
for i in range(0,5):
for j in range(0,5):
COV[i,jl=t*S[i]*S[jl*siglil*sigl[j]l*Rho[i] [j]

dS = np.random.multivariate_normal (mean, COV, n).T

def BLSCPRICE(s,T,t,K,sig,r):
d1=(np.log(s/K)+(r+sig**2/2)*(T-t))/(sig*np.sqrt(T-t))
d2=(np.log(s/K)+(r-sig**2/2)*(T-t))/(sig*np.sqrt (T-t))
call = s*norm.cdf(dl)-K*np.exp(-r*(T-t))*norm.cdf (d2)

return call

C0=0

V = np.zeros(5)

for i in range (0,5):
CO0=CO+BLSCPRICE(S[i],T,0,K[i],sigli],r)

V[i] = BLSCPRICE(S[i],T,0,K[i],sigl[i],r)

def BLSCALLGREEK(s,T,t,K,sig,r):
d1=(np.log(s/K)+(r+sig**2/2)*(T-t))/(sig*np.sqrt(T-t))
d2=(np.log(s/K)+(r-sig**2/2)*(T-t))/(sig*np.sqrt(T-t))

calldelta = norm.cdf(dl)

128


http://www.mcmaster.ca/
https://math.mcmaster.ca/

M.A.Sc. Thesis — K. Pan; McMaster University — Mathematics

callgamma = norm.pdf(dl)/(s*sig*np.sqrt(T-t))
calltheta=-r*K+#np.exp (-r*(T-t))*norm.cdf (d2) - ((sig*s*norm.pdf (d1)
< )/(2%np.sqrt(T-t)))

return[calldelta,callgamma,callthetal

DELTA = np.zeros(5)
for i in range (0,5):
DELTA[1]=BLSCALLGREEK(S[i],T,0,K[i],sigl[i],r) [0]
GAMMA = np.zeros((5,5))
for i in range (0,5):
GAMMA [i,1]=BLSCALLGREEK(S[i],T,0,K[i],sig[i],r) [1]
THETA = np.zeros(5)
for i in range (0,5):

THETA [1]=BLSCALLGREEK(S[i],T,0,K[i],sigli],r) [2]

# Matriz Of M
M=np.zeros((5,5))
for i in range (0,5):

M[i,i]=DELTA[i]

# Matriz of Gamma~7 s
GAMMAS=np.zeros((25,5))
GAMMAS [0,0]=GAMMA [0, 0]

GAMMAS[6,1]=GAMMA[1,1]
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GAMMAS[12,2]=GAMMA[2,2]
GAMMAS[18,3]=GAMMA[3, 3]
GAMMAS [24,4]=GAMMA [4,4]

GAMMAS=GAMMAS . reshape(5,5,5)

# Matrixz of SIGMAHAT

SIGMAHAT=2#np.matmul (np.matmul (M.transpose(),COV) ,M)

#M atriz of (@

Q=np.zeros((5,5))

for i in range (0,5):

for k in range(0,5):

Q[i,k]=np.trace(np.matmul (GAMMAS[i] ,np.matmul (COV,np.matmul (G,
—~ AMMAS[k],COV))))

P = SIGMAHAT+Q

# wariance optimal portfolio
P_1 = np.matmul (np.matmul(V,inv(P)),V.transpose())

x_variance = (np.matmul (inv(P),V.transpose()))*(1/P_1)

# cfvar2 optimal portfolio
# P matriz

P = SIGMAHAT+Q

A = np.zeros((2,5))

for i in range (0,5):
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Af0,1i] (1/2)*np.trace(np.matmul (GAMMAS[i],COV))+THETA[i]*t

Afl1,i]

V[i]

# Matriz of G(ALPHA Here)
P_1 = np.matmul (np.matmul(A,inv(P)),A.transpose())

ALPHA = np.matmul (np.matmul (inv(P),A.transpose()),inv(P_1))

# coefficients in sigma function
funcA = 0
for j in range (0,5):

for k in range(0,5):

funcA = funcA + 0.5%(ALPHA[j,0]*ALPHA[k,0]*P[j,k])

funcB = 0
for i in range (0,5):
funcB = funcB + ALPHA[i,0]*ALPHA[i,1]*P[i,1i]
for j in range (0,5):
for k in range (0,5):
funcB = funcB + 0.5%(ALPHA[j,0]*ALPHA[k,1]1*P[j,k]+ALPHA[j,1]*
< ALPHA[k,0]1*P[j,k])
for 1 in range (0,5):
funcB = funcB - 0.5%(ALPHA[1,0]*ALPHA[1,1]*P[1,1]+ALPHA[1,1]*ALPH

- A[1,0]*P[1,1])

131


http://www.mcmaster.ca/
https://math.mcmaster.ca/

M.A.Sc. Thesis — K. Pan; McMaster University — Mathematics

funcC = 0
for j in range (0,5):
for k in range (0,5):

funcC = funcC + 0.5*ALPHA[j,1]*ALPHA[k,1]1*P[j, k]

# another way to optimize wvariance

elp_variance = -funcB/(2*funcA)

b = np.array([elp_variance,1])

x_variance_2 = np.matmul (ALPHA,D)

# find the root of the first derivative

a_1l = 4xfuncAxfuncA*norm.ppf (alpha)*norm.ppf (alpha)-4*funcA
b_1 = 4xfuncA*funcB*norm.ppf (alpha)*norm.ppf (alpha)-4+funcB
c_1 = funcB*funcB*norm.ppf (alpha)*norm.ppf (alpha)-4*funcC

elp=[(-b_1+np.sqrt(b_1**2-4xa_1%c_1))/(2*a_1),(-b_1-np.sqrt (b_1x*2-4x
~ a_lxc_1))/(2*a_1)]

if 2+funcA*elp[0]+funcB > O:

elp_cfvar = elp[0]

else:

elp_cfvar = elp[1]
b = np.array([elp_cfvar,1])

x_cfvar = np.matmul (ALPHA,Db)
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# results

print(x_variance)

print(x_variance_2)

print (x_cfvar)

# compute the weights
print(x_variance*V,"variance optimal portfolio")
print(x_variance_2*V,"variance optimal portfolio")

print(x_cfvar*V,"cfvar2 optimal portfolio")

# comparision of elp

print(elp_variance,elp_cfvar)

B.2.2 Two-Options-Portfolio case

from scipy.stats import norm

from scipy import integrate # Compute a definite integral.
from scipy.optimize import fsolve

from scipy.optimize import minimize_scalar

import matplotlib.pyplot as plt

import numpy as np

import math

pi = math.pi

#parameters of stocks
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#interest rate

r=0.05

#stockl initial price
S51=28.02
#stockl strike price

K1=S1

#stockl volatilaity

sig1=0.1699

#s1g91 = 1

#stock2 initial price

52=60.01

#stock2 strike price

K2=52

#stock2 volatilaity

sig2=0.2032

#5192 = 1

#maturity
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t=2/12

#number of similuations

n=100000

#correlation

rho=0

#alpha=0. 01

alpha=math.pow(10,-4)

mean = [0,0]
covl2 = rho*sigl*sig?2
cov =

o [[t*S1#x2+sigl**2,t*xS1*S32*covl2] , [t*S1*S2*covl2, t*S2**2*xsig2+*2] ]

def BLSCPRICE(s,T,t,K,sig,r):
di=(np.log(s/K)+(r+sig**2/2)*(T-t))/(sig*np.sqrt(T-t))
d2=(np.log(s/K)+(r-sig**2/2)*(T-t))/(sig*np.sqrt(T-t))
call = s*norm.cdf(dl)-K*np.exp(-r*(T-t))*norm.cdf (d2)

return call

CO=BLSCPRICE(S1,T,0,K1,sigl,r) + BLSCPRICE(S2,T,0,K2,sig2,r)
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Cco
V1 = BLSCPRICE(S1,T,0,K1,sigl,r)
V2 = BLSCPRICE(S2,T,0,K2,sig2,r)

def BLSCALLGREEK(s,T,t,K,sig,r):
d1=(np.log(s/K)+(r+sig**2/2)*(T-t))/(sig*np.sqrt(T-t))

d2=(np.log(s/K)+(r-sig**2/2)*(T-t))/(sig*np.sqrt(T-t))

calldelta = norm.cdf(dl)

callgamma = norm.pdf(dl)/(s*sig*np.sqrt(T-t))
calltheta=-r*K+np.exp (-r*(T-t))*norm.cdf (d2) - ((sig*s*norm.pdf (d1)
— )/ (2*np.sqrt(T-t)))

return[calldelta,callgamma,calltheta]

def BLSPUTGREEK(s,T,t,K,sig,r):
d1=(np.log(s/K)+(r+sig**2/2)*(T-t))/(sig*np.sqrt(T-t))
d2=(np.log(s/K)+(r-sig**2/2)*(T-t))/(sig*np.sqrt(T-t))
putdelta = norm.cdf(dl)-1 #-N(-d1)=N(d1)-1
putgamma=norm.pdf (d1) /(s*sig*np.sqrt(T-t)) #d(N(d1)-1)=dN(d1)
puttheta=r*K+np.exp (-r*(T-t))*norm. cdf (-d2) - ((sig*s*norm.pdf (d1))
< /(2*np.sqrt(T-t)))

return[putdelta,putgamma,putthetal

greek_call1=BLSCALLGREEK(S1,T,0,K1,sigl,r)

greek_call2=BLSCALLGREEK(S2,T,0,K2,sig2,r)
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DELTA=np.array([greek_calll[0],greek_call2[0]])

GAMMA=np.array([[greek_call1[1],0], [0,greek_call2[1]]])

THETA = greek_calll[2] + greek_call2[2]

def Diag(cov):

L=np.linalg.cholesky(cov)

A=(-1/2) *np .matmul (np.matmul (L.transpose() ,GAMMA) ,L)
eigenvalues, U = np.linalg.eig(A)

LAMBDA = np.array([[eigenvalues[0],0], [0,eigenvalues[1]]])

C

np.matmul (L, U)

A

-t*(greek_calll[2]+greek_call2[2])
#A=t*(greek_calll[2]+greek_call2[2])
B = -np.matmul(C.transpose() ,DELTA)

return [LAMBDA,A,B]

[LAMBDA,A,B]=Diag(cov)

D_

G_
T_

T_

_1

2

2

1

2

greek_calll[0]

greek_call2[0]

greek_calll[1]

greek_call2[1]

greek_calll[2]

greek_call2[2]
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def var(x):
x1l = x

x2=(1-V1*x1)/V2

sl = sigl*Slxnp.sqrt(t)

s2 = sig2*S2+*np.sqrt(t)

al = s1xD_1x*x1
a2 = s2*%D_2%x2
bl = 0.5*%s1**2*%xG_1%*x1

b2 = 0.5%s2%*2xG_2*x2
El = bl+b2
E2 = al**2 + al2%x2 + 3xbl**x2 + 3*b2%*2 + 2%alxa2*rho +

—  4xblxb2*rho**2 + 2¥blxb2

mu = E1

var = E2 - mu*x*2

return var

def CFVaR(x):

x1l = x
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x2=(1-V1*x1) /V2

sl = sigl*Si*np.sqrt(t)
s2 = sig2+S2#np.sqrt(t)
al = s1*D_1xx1

a2 = s2*D_2x*x2

bl = 0.5%s1+*x2xG_1*x1

b2 = 0.5%s2%*2xG_2*x2

El = bl+b2

E2 = al**2 + al2*%x2 + 3xbl**x2 + 3*b2**2 + 2%alxa2%rho +

< 4%blxb2*rho**2 + 2xblx*b2

E3 = 15#math.pow(bl,3) + 15+math.pow(b2,3) + 9*al**2xbl +

o 9%al2*xx2xb2 + Jkalx*x2xb2 + 3*ax*k2xbl + 9xblkx2xb2 + Oxbl¥xb2**2

A x1*+T_1%t + x2*xT_2*t
mu = E1
var = E2 - mux*x*2

mu3 = E3 - 3*mu*var - math.pow(mu,3)

#theta term
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cfvar = -mu - A - norm.ppf(alpha)*np.sqrt(var) -
— (1/6)*((norm.ppf (alpha))**2-1)* (mu3/var)

#1/6

return cfvar

def CFVaR2(x):
x1l = x

x2=(1-V1*x1)/V2

sl = sigl*Slxnp.sqrt(t)

s2 = sig2+S2+*np.sqrt(t)

al = s1xD_1x*x1
a2 = s2*%D_2%x2
bl = 0.5*%s1**2*%xG_1%*x1

b2 = 0.5%s2%%2xG_2*x2

El = bl+b2

E2 = al**2 + al2*%x2 + 3*xbl**x2 + 3*b2**2 + 2%alxa2%rho +

—  4xblxb2xrho**2 + 2%blxb2

E3 = 15#math.pow(bl,3) + 15%math.pow(b2,3) + 9*al*x2xbl +

o 9%a2%x2%b2 + 3Fkal*x*x2%b2 + 3*a%*x2%bl + 9*bl*x*x2%b2 + O9*blxb2**2
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mu = E1
var = E2 - mu*x*2
mu3 = E3 - 3*mu*var - math.pow(mu,3)

A = x1xT_1%t + x2+T_2%*t
#theta term

cfvar = -mu - A - norm.ppf(alpha)*np.sqrt(var)

return cfvar

result = minimize_scalar(CFVaR, method="brent")

resultvar = minimize_scalar(var, method="brent")

reslutcfvar2=minimize_scalar(CFVaR2, method="brent")

print(result['x']*V1l, (1-Vi*result['x']),"cfvar3")

print(resultvar['x']*V1l, (1-Vi*resultvar['x']),"var")

print(reslutcfvar2['x']*V1l, (1-Vi*reslutcfvar2['x']),"cfvar2")
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