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Abstract

The Korteweg – de Vries (KdV) equation is a classical model for describing long surface

gravity waves propagating in dispersive media. It is known to possess many families of

exact analytic solutions, including solitons, which due to their distinct physical nature, are

of particular interest to physicists and mathematicians alike. The propagation of solitons

on the background of large-scale waves is a fundamental problem, with applications in

fluid dynamics, nonlinear optics and condensed matter physics. This thesis centers around

construction and analysis of a soliton as it interacts with either a rarefaction wave (RW)

or a modulated dispersive shock wave. Using the Darboux transformation for the KdV

equation, we construct and analyze exact solutions describing the dynamic interaction of

a soliton and a dispersive mean field.
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Introduction

A soliton is a spatially localized traveling wave solution of nonlinear partial differential

equations (PDEs) which results from an optimal balance of dispersive and nonlinear

effects. Since their discovery in 1834, solitons continue to fascinate both physicists and

mathematicians alike. They arise in the context of fluid dynamics, nonlinear optics, and

condensed matter physics.

Mathematically, solitons arise as solutions of nonlinear wave equations that are exactly

solvable by the inverse scattering transform (IST) method. The integrability, coupled

with the physical relevance of these structures, has led to the construction and analysis

of various soliton interaction solutions for a wide range of wave equations, of which a

benchmark model is known as the Korteweg–de Vries (KdV) equation.

Traditionally, the KdV equation has mostly been studied on spatial domains with

decaying boundary conditions, and resulting N−soliton interactions on a trivial, zero

background is a well-understood problem. In recent years however, motivated by de-

velopments of available algebraic tools used to study such nonlinear PDEs, as well as

advancements in physical experimental design, researchers have been actively tackling

more complicated interaction patterns between solitons and dispersive waves.

Applications of such interaction patterns are broad ranging. In fact, wherever the fun-

damental processes of dispersive hydrodynamics arise, e.g. in geophysical fluid dynamics

(tidal bores, earthquake generated waves, etc.) or photonic waves (telecommunications),

solitons and dispersive wave interactions can occur.

In this thesis, we focus on the Kortewed–de Vries equation, which we use to construct

and analyze a soliton as it interacts with rarefaction waves (RW) or modulated disper-

sive shock waves (DSW). As an alternative to the more traditional IST method, we use

Darboux transformation to construct and analyze these exact solutions describing the

interaction of a solitary wave and a dispersive mean field.

The thesis is organized as follows.

The Korteweg–de Vries equation, along with the main motivation for this thesis is

introduced in Section 1.1 of the first Chapter. In Section 1.2, we present a brief overview of

the IST method and a linear Lax pair which define the spectral problem. Finally, Chapter

1 concludes with an outline of the Darboux transformation and a simple application of

one soliton on the zero background.
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In Chapter 2 we construct a soliton on the rarefaction wave background and present

two different types of interactions depending on the soliton amplitude. Numerical analysis

of our findings is presented at the end of Chapter 2.

Two family of solutions asscoiated with soliton-periodic cnoidal wave interactions are

constructed in Chapter 3. The properties and characterization of both solution families

is presented in Sections 3.5 and 3.6.

The thesis is concluded with Chapter 4, which contains remarks and open problems.

It is worth mentioning that Chapter 2 is based on a published paper [39], and Chapter

3 is based on an accepted paper [28].



Chapter 1

Background and Motivation

1.1 Kortewed–de Vries Equation

The Korteweg–de Vries (KdV) equation is a classical model for long surface gravity

waves of small amplitude propagating over the shallow water of uniform depth. The

normalized version of the KdV equation takes the form

ut + 6uux + uxxx = 0, (1.1)

where t is the evolution time, x is the spatial coordinate for the wave propagation, and

u is the fluid velocity. The KdV equation has predominantly been studied on spatial

domains with either decaying or periodic boundary conditions.

Due to the complete integrability of the KdV equation, soliton interactions under de-

caying conditions, can be described by the exact N -soliton solutions, which can be con-

structed by successive Darboux transformations [35]. Darboux transformations achieve a

nonlinear superposition principle by effectively “adding” one soliton to the solution.

However, more recently, different classes of solutions of the KdV equation have been

identified, for which a localized soliton interacts with the dynamical field. The purpose of

this thesis is to use the Darboux transformation and obtain the nonlinear superposition

of a single soliton and a dispersive wave background. Depending on the nature of these

interactions, the characterization of the exact solutions is either done analytically, by

explicitly plotting parameters that define the interaction solution or numerically, by using

a finite difference scheme for the KdV equation.

1



Chapter 1. Background and Motivation 2

The motivation for this study comes from recent experiments that explore the inter-

action of solitons and dispersive mean fields [4, 36, 44].

Maiden et. al [36] recently used the Whitham modulation theory which is an ap-

proximate method for studying modulated nonlinear wavetrains, to study solitary waves,

interacting with either rarefaction wave (RW) or a dispersive shock wave (DSW). In both

cases, two different scenarios emerge. Either the solitary wave incident upon the mean

field tunnels through the mean field to then propagate freely on the other side with an

altered amplitude and speed. Or, the incident solitary wave remains trapped within the

interior of the mean field, as depicted in Figure 1.1 below. This paper, along with works of

[1] motivated our discussion on soliton - rarefaction wave interaction presented in Chapter

2. A detailed overview of the soliton-mean field interaction was recently presented in [4],

and is in full agreement with our findings.

Figure 1.1: Soliton-mean field interaction scenarios taken from [4]. a) Soliton-RW
tunneling. b) Soliton-RW trapping. c) Soliton-DSW tunneling. d) Soliton-DSW trap-

ping.

The motivation for the construction of the soliton-cnoidal wave interactions discussed

in Chapter 3, comes from the fact that the DSWs can be also viewed as modulated cnoidal

waves, [20, 21] and the soliton-DSW interaction is analogous to the soliton-cnoidal wave
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interaction. Two different types of soliton-DSW interaction dynamics were observed in

[36], and are shown at the bottom (c-d) of Figure 1.1. When a soliton completely passes

through a DSW, the nature of the interaction gives rise to an elevation (bright) nonlinear

wavepacket. On the other hand, when a soliton becomes embedded or trapped within a

DSW, the trapped soliton resembles a depression (dark) nonlinear wavepacket.

The exact solutions for the soliton-cnoidal wave interactions have previously been

constructed using other solution methods. The first work was developed in [31] within

the stability analysis of a cnoidal wave of the KdV equation. The authors used the

Marchenko equation of the inverse scattering transform and obtained exact solutions for

the “dislocations” of the cnoidal wave. More special solutions for the soliton-cnoidal wave

interactions were obtained in [29] by using the nonlocal symmetries of the KdV equation.

These solutions are expressed in a closed form as integrals of Jacobi elliptic functions,

but they do not represent the most general exact solutions for the soliton-cnoidal wave

interactions.

A related problem on a soliton interacting with a nonlinear wavetrain that asymptotes

to a cnoidal wave was studied in [5, 25]. This soliton-mean field problem is equivalent

to a test soliton propagating through a soliton condensate, a special kind of soliton gas

[14], linking soliton-mean interaction to breather solutions, which play an important role

in soliton-DSW interaction.

1.2 Inverse Scattering Transform and the Lax Pair

What generated interest in the soliton theory since the second half of the 1900s was

the discovery of the Inverse Scattering Transform, or IST for short, and its generalization

to a large class of nonlinear wave equations. This method is remarkable because it allows

us to solve the initial-value problem for nonlinear PDEs exactly.

The initial value problem for the KdV equation can be analyzed by means of the IST

method [41], by relating a solution of the KdV equation (1.1) to the spectrum of the

stationary Schrödinger equation

Lv = λv, L := − ∂2

∂x2
− u (1.2)
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and the time-evolution equation

∂v

∂t
= Mv, M := −3ux − 6u

∂

∂x
− 4

∂3

∂x3
. (1.3)

where λ is the time-independent spectral parameter. The above equations (1.2), (1.3)

form the linear Lax pair, and the values of λ are independent of (x, t) if L and M satisfy

the compatibility condition
∂L
∂t

+ LM = ML (1.4)

which yields the KdV equation (1.1) for u = u(x, t).

In the case of the KdV equation, solving the linear problem (1.2) is equivalent to

finding the eigenvalues and the corresponding eigenfunctions of L. The eigenvalues and

the behaviour of the eigenfunctions as |x|→ ∞ determine the scattering data at any time

t.

The overview of the IST scheme for the KdV equation (1.1) is shown in figure 1.2

below.

u(x, 0)

u(x, t)

φ(x, 0, k),
S(k, 0)

φ(x, t, k), S(k, t)

direct scattering

time evolution

inverse scattering

Figure 1.2: Initial data u(x, 0) is given at t = 0 . The initial data is mapped to
eigenfunctions and scattering data S(k, 0) via (1.2). The evolution of the eigenfunctions
and scattering data is determined from (1.3). Then u(x, t) can be recovered from inverse

scattering.

The IST method is usually applied on the infinite line for the initial data that decay

to zero sufficiently fast at infinity. In this case, the time evolution of the KdV equation

(1.1) from arbitrary initial data leads to a generation of finitely many interacting solitons

and the dispersive waves [16]. Solitons correspond to isolated eigenvalues of the discrete

spectrum of the stationary Schrödinger equation (1.2) and the dispersive waves correspond

to the continuous spectrum.

In this thesis, however, we do not explore the IST method but instead, work with

the Darboux transformation method, which is based on eigenvalues and eigenfunctions of

(1.2)-(1.3). The Darboux Transformation is used as a tool for obtaining exact solutions for
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interactions of solitons and dispersive wave background. A brief overview of the method

is given in the next section.

1.3 The Darboux Transformation for the KdV equa-

tion

The Darboux transformation is used as a practical tool for obtaining exact solution

of many partial differential equations. This algebraic method dates back to 1882 when

G. Darboux [15], first used it in the context of the one-dimensional Schrödinger equation.

Even thought the Darboux transformation presents a simpler algebraic alternative to

more complicated methods of obtaining explicit solutions, such as the IST method or the

Bäcklund transform, the application of Darboux transformation in the context of soliton

theory is still sparse. Thus, in this thesis we present, using the Darboux transformation,

two different solutions for the KdV equation (1.1), which describe non-trivial soliton -

dispersive wave interaction solutions.

The Darboux transformation u 7→ û for the KdV equation (1.1) can be defined as

follows [35]. Let u be a bounded solution of the KdV equation (1.1), v0 be a smooth

solution of the linear equations (1.2) and (1.3) with a spectral parameter λ0 ∈ R, and v
be an arbitrary solution of linear equations (1.2) and (1.3) with arbitrary λ. Then

û := u+ 2
∂2

∂x2
log(v0) (1.5)

is a new solution of the KdV equation (1.1) and

v̂ :=
∂v

∂x
− v

∂

∂x
log(v0) (1.6)

is a solution of the linear equations (1.2) and (1.3) corresponding to u = û for the same

value of λ as in v. The new solution û(x, t) is non-singular if and only if v0(x, t) ̸= 0

everywhere in the (x, t) plane. Validity of the transformation formulas (1.5) and (1.6)

can be checked by substituting them directly into equations (1.2) and (1.3).

In this work, we will be relying on the integrability of the KdV equation, which allows

us to use the Darboux transformation to superimpose a soliton on a dispersive wave

background.
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In practice, the most difficult task usually involves solving the linear Lax pair (1.2)

and (1.3) with the potential u(x, t). Once the eigenfunctions are known, the Darboux

Transformation is a routine algebraic procedure. Luckily, motivated by many physical

applications, the literature on the stationary Schrödinger equation (1.2) is broad-ranging.

For instance, the spectral problem in Chapter 3 involves a well-known Lamé equation,

for which the eigenfunctions have already been found more than a centure ago.

Let us now illustrate how the Darboux transformation works by adding a soliton to

the zero background. This will serve as a building block and a point of reference of a

more complicated interaction solutions discussed in the following chapters.

1.4 One-soliton on the zero background

Suppose the initial condition u(x, 0) tends to zero sufficiently rapidly as x→ ±∞. In

this case, the Schrödinger operator has a finite number of bound states and an absolutely

continuous spectrum for positive energies.

To solve the direct scattering problem we will follow the scheme outlined in Figure 1.2.

The linear equation (1.3) can be rewritten in the form

∂v

∂t
= (4λ− 2u)

∂v

∂x
+ (ux + γ)v, (1.7)

where we have used vxxx = −(u + λ)vx − uxv from the spectral equation (1.3) and have

added the parameter γ by the transformation v 7→ ve−γt.

Existence of the spatially bounded non-zero solutions v = v(x, t) depends on the values

of the spectral parameter λ and should be performed separately in two regions:

(1) λ ∈ (−∞, 0), (2) λ ∈ (0,∞).

1. Continuous spectrum λ ∈ (0,∞) : scattering solutions

We parameterize positive λ by λ = k2, k ∈ R. The eigenfunctions satisfy the

following asymptotic boundary conditions

ϕ(x; k) → e−ikx, ϕ̄(x; k) → eikx x→ −∞

ψ(x; k) → eikx, ψ̄(x; k) → e−ikx, x→ ∞
(1.8)
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Each pair (ϕ, ϕ̄) and (ψ, ψ̄) contains two linearly independent solutions. Since one

pair depends on the other pair, we can introduce the following scattering relation

ϕ(x; k) = a(k)ψ̄(x; k) + b(k)ψ(x; k) (1.9)

where coefficients a(k) and b(k) are referred to as the scattering data.

The time dependence of the scattering data is computed from (1.7). Substituting

the asymptotics ϕ(x, t; k) → e−ikx, and u(x, t) → 0, as x → −∞ into (1.7), we

obtain the definition of γ

γe−ikx − 4ik3e−ikx = 0 =⇒ γ = 4ik3. (1.10)

Substituting the asymptotics ϕ(x, t; k) → a(k; t)e−ikx + b(k; t)eikx, and u(x, t) → 0,

as x→ ∞ into (1.7), we obtain

da

dt
= 0,

db

dt
= 8ik3b

from which the exact solution is given by

a(k; t) = a(k; 0), b(k; t) = b(k; 0)e8ik
3t. (1.11)

A time-dependent solution of the stationary Schrödinger equation (1.2) then satisfies

ϕ(x, t; k) →

e−ikx, x→ −∞

a(k; 0)e−ikx + b(k; t)eikx, x→ ∞
(1.12)

Definition 1.1. We say that [0,∞) is the continuous spectrum of the stationary

Schrödinger equation (1.2).

2. Discrete spectrum λ ∈ (−∞, 0) : bound states

We parameterize negative λ by λ = −µ2, µ > 0. In this case, there are no oscillatory

solutions but instead we have an exponentially decaying eigenfunction ϕ(x, t;µ) as

x → −∞, with the second linearly independent solution ϕ̄(x, t;µ) unbounded as

x→ −∞. The only bounded solution as x→ −∞ satisfies

ϕ(x, t;µ) →

eµx, x→ −∞

a(µ; t)eµx + b(µ; t)e−µx, x→ ∞
(1.13)



Chapter 1. Background and Motivation 8

If a(µ; t) ̸= 0, then ϕ(x, t;µ) is unbounded as x→ +∞. However, if a(µ0; t) = 0 for

some µ0 ∈ (0,∞), then the eigenfunction ϕ(x, t;µ0) is bounded and exponentially

decaying as |x|→ ∞. The corresponding eigenfunction satisfies

ϕ(x, t;µ0) →

{
eµ0x, x→ −∞,

b0(t)e
−µ0x, x→ +∞,

Substituting ϕ(x, t;µ0) → +∞ into (1.7) we find the time evolution of b0(t):

b0(t) = b0(0)e
4µ3

0t.

Definition 1.2. We say that λ0 = −µ2
0 is an isolated eigenvalue of the stationary

Schrödinger equation (1.2) if a(µ0; t) = 0 for some µ0 ∈ (0,∞).

Remark 1.3. The bound state problem can be viewed as the analytic continuation of

the scattering problem, defined on the real k-axis, to the upper half of the complex

k-plane. Then the discrete points of the spectrum are found as simple poles k = iµ0

of the coefficient a(k; t) = a(k; 0), which is time-independent.

Simplest example of the initial condition that decays sufficiently rapidly is the trivial

potential u = 0. In this case, linear equations (1.2-1.3) reduce to

∂2v

∂x2
+ λv = 0 (1.14)

∂v

∂t
= −4

∂3v

dx3
. (1.15)

The isolated eigenvalue of the stationary Schrödinger equation (1.2) corresponds to a

soliton of the KdV equation (1.1). Thus, in order to use the Darboux transformation to

superimpose soliton on a zero background, we pick the following solution of the linear

equations (1.2) and (1.3) with fixed λ = −µ2
0 ∈ (−∞, 0),

v0(t, x) = eµ0(x−4µ2
0t−x0) + e−µ0(x−4µ2

0t−x0),

where x0 is arbitrary. Substituting u = 0 and this v0 into (1.5) yields the well-known

one-soliton solution

û(t, x) = 2µ2
0 sech

2[µ0(x− 4µ2
0t− x0)], (1.16)

where µ0 determines the amplitude 2µ2
0, the width µ

−1
0 , and the velocity 4µ2

0 of the soliton

and x0 determines the initial location of the soliton. The transformation formula (1.6)
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for the second, linear independent solution

v(t, x) = eµ0(x−4µ2
0t−x0) − e−µ0(x−4µ2

0t−x0),

of the same linear equations (1.2) and (1.3) with u = 0 and λ = λ0 yields the exponentially

decaying solution

v̂(t, x) = 2µ0 sech[µ0(x− 4µ2
0t− x0)]

of the linear equations (1.2) and (1.3) with u = û and λ = λ0. Hence, λ0 = −µ2
0 is

the isolated eigenvalue of the stationary Schrödinger equation (1.2) corresponding to the

one-soliton solution (1.16).

Figure 1.3: Soliton travelling on the zero background, given by (1.16), for µ = 0.9
and x0 = 0.

Remark 1.4. Picking solutions of the linear equations (1.2) and (1.3) with fixed λ0 = k20 ∈
(0,∞) does not generate bounded solutions of the KdV equation (1.1) by the Darboux

transformation. Indeed, a general solution is given by

v0(t, x) = c1 cos(k0x+ 4k30t) + c2 sin(k0x+ 4k30t),

where (c1, c2) are arbitrary constants. Substituting v0 into (1.5) yields a new solution of

the KdV equation (1.1),

û(t, x) = − 2k20(c
2
1 + c22)

[c1 cos(k0x+ 4k30t) + c2 sin(k0x+ 4k30t)]
2 ,

which is singular at countably many lines in the (x, t) plane where

tan(k0x+ 4k30t) = −c1
c2
.





Chapter 2

Solitons on the Rarefaction Wave

Background

Motivated by many applications, such as the tidal bores or the earthquake-generated

waves, we consider the initial-value problem for the KdV equation (1.1) with the step-like

boundary conditions:

lim
x→−∞

u(x, t) = 0, lim
x→+∞

u(x, t) = c2, (2.1)

where c2 > 0 is a constant.

Evolution of the step-like data results in the appearance of a rarefaction wave (RW) if

t advances to positive times or a dispersive shock wave (DSW) if t advances to negative

times. In what follows, we will consider the initial-value problem (2.1) for the RW in

positive time t > 0 since the analysis for negative time t < 0 is similar [36].

Compared to initial data that decay to zero sufficiently fast at infinity, for the step

boundary conditions (2.1), the dynamics of the KdV equation (1.1) are more interesting.

In addition to the RW generated by the step boundary conditions for t > 0, a finite number

of solitary waves can appear from bumps in the initial data. Depending on the amplitude

of these bumps, they either evolve into large-amplitude solitary waves propagating over

the RW background with a constant speed or into small-amplitude solitary waves trapped

by the RW [36].

Here we analyze the two scenarios of transmitted or trapped solitary wave.

11
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2.1 Main results

The spectrum of the stationary Schrödinger equation (1.2) for the step-like bound-

ary conditions (2.1) was analyzed in [1], where it was shown that the transmitted soliton

corresponds to an isolated real eigenvalue. In regards to the trapped soliton, it was

related to the so-called “pseuso-embedded” eigenvalue located near a specific point in-

side the continuous spectrum which does not correspond to a true embedded eigenvalue

with exponentially decaying eigenfunctions. Details of where these “pseudo-embedded”

eigenvalues are located were not given.

In this chapter we consider the case when a solitary wave is added on the step-like

initial data for the KdV equation. The step-like initial data evolves into a rarefaction wave

(RW) whereas the solitary wave either propagates over the RW or completely disappears

inside the RW. The outcome depends on whether there exists an isolated eigenvalue of

the stationary Schrödinger equation outside the continuous spectrum. If it exists, we can

construct the transmitted soliton by using the Darboux transformation.

The following theorem presents one of the main results of this chapter. It states that

a transmitted soliton can be generated via Darboux transformation.

Theorem 2.1. Let u be a bounded solution of the KdV equation (1.1) with the bound-

ary conditions (2.1) such that the spectrum of the Schrödinger equation (1.2) is purely

continuous in [−c2,∞). For every λ0 < −c2, there exists a choice of a smooth function

v0 such that the Darboux transformation (1.5) returns a bounded solution û of the KdV

equation (1.1) for which the spectrum of the Schrödinger equation (1.2) consists of the

purely continuous spectrum in [−c2,∞) and a simple isolated eigenvalue λ0.

The proof of this theorem can be found in Section 2.4.

If the isolated eigenvalue does not exist in the stationary Schrödinger equation, we

show that no embedded eigenvalues exist because zeros of the transmission coefficients

that correspond to the soliton, transform into complex resonant poles. This result is more

technical, and it is formulated in Theorem 2.6 and proved in Section 2.3.



Chapter 2. Solitons on the Rarefaction Wave Background 13

2.2 Direct scattering transform and the time evolu-

tion

Following Section 1.4, where we have considered decaying potentials to zero at in-

finity, here we review spectral data and their time evolution in the solutions of the linear

equations (1.2) and (1.3) for the potential u = u(x, t) satisfying the boundary conditions

(2.1). We assume that u(x, t) → c2H(x) as |x|→ ∞ sufficiently fast so that all formal

expressions can be rigorously justified with Levinson’s theorem for differential equations

whose variable coefficients are integrable perturbations of the constant coefficients. The

notation H stands for the Heaviside step function.

In Chapter 1, we introduced the following form of the linear equation (1.3)

∂v

∂t
= (4λ− 2u)

∂v

∂x
+ (ux + γ)v, (2.2)

where γ = 4ik3 is the same since u(x, t) → 0 as x→ −∞.

We are looking for the spatially bounded non-zero solutions v = v(x, t). Existence of

such solutions depend on the values of the spectral parameter λ and should be performed

separately in three regions, as summarized in Figure 2.1 below:

(1) λ ∈ (0,∞), (2) λ ∈ (−c2, 0), (3) λ ∈ (−∞,−c2).

The border cases λ = 0 and λ = −c2 can also be included in the consideration but will

be omitted to keep the presentation concise.

Continuous spectrum λ ∈ (0,∞) :

We parameterize positive λ as λ = k2 with k > 0 and introduce

κ :=
√
c2 + k2

such that κ > 0.
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x

u

λ ∈ (0,∞)

λ ∈ (−c2, 0)

−c2H(x)

λ ∈ (−∞,−c2)

x

u

−c2H(x)

Figure 2.1: Left: Admissible values of the spectral parameter λ, corresponding to
the potential u(x, t) → c2H(x), |x|→ ∞, which satisfies the boundary condition (2.1).
Right: Scattering at a step potential of height c2, shown in green. Eigenfunctions

corresponding to λ for each of the three regions are coloured accordingly.

One solution of the stationary Schrödinger equation (1.3) with u(t, x) → c2H(x) as |x|→
∞ is given by ϕ(x, t; k) satisfying

ϕ(x, t; k) →

{
e−ikx, x→ −∞,

a(k; t)e−iκx + b(k; t)eiκx, x→ +∞.
(2.3)

The second linearly independent eigenfunction is given by ϕ(x, t;−k) with the same κ.
Both solutions are oscillatory on R and do not decay to zero at infinity.

Substituting the asymptotics ϕ(x, t; k) → a(k; t)e−iκx + b(k; t)eiκx and u(x, t) → c2 as

x→ +∞ into (2.2) and using γ = 4ik3 we obtain

da

dt
= i(4k3 − 4k2κ + 2c2κ)a,

db

dt
= i(4k3 + 4k2κ − 2c2κ)b,

from which the exact solution is given by

a(k; t) = a(k; 0)ei(4k
2(k−κ)+2c2κ)t, b(k; t) = b(k; 0)ei(4k

2(k+κ)−2c2κ)t. (2.4)

Compared to the case of decaying initial conditions, i.e., c = 0, it is no longer true that

a(k; t) is constant in t.
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Continuous spectrum λ ∈ (−c2, 0):

We parameterize negative λ by λ = −µ2 with µ ∈ (0, c) and introduce

κ :=
√
c2 − µ2

such that κ > 0. For the sake of notations, we redefine ϕ(x, t; k), a(k; t), and b(k; t) for

k = iµ with µ > 0 as ϕ(x, t;µ), a(µ; t), and b(µ; t). We do not assume here any analyticity

assumptions on the eigenfunctions and scattering data. The only bounded solution as

x→ −∞ is obtained from (2.3) with k = iµ as ϕ(x, t;µ) satisfying

ϕ(x, t;µ) →

{
eµx, x→ −∞,

a(µ; t)e−iκx + b(µ; t)eiκx, x→ +∞.
(2.5)

The other solution ϕ(x, t;−µ) is exponentially growing as x→ −∞.

Time evolution of the scatering data is obtained from (2.4) with the same change

k = iµ:

a(µ; t) = a(µ; 0)e(4µ
2(µ+iκ)+2ic2κ)t, b(µ, t) = b(µ; 0)e(4µ

2(µ−iκ)−2ic2κ)t. (2.6)

Note that ϕ(x, t;µ) decays to zero as x→ −∞ but is oscillatory as x→ +∞.

Discrete spectrum λ ∈ (−∞,−c2):

We use the same parameterization λ = −µ2 with µ > c and introduce

ν :=
√
µ2 − c2

such that ν > 0. The only bounded solution as x → −∞ is obtained from (2.5) with

κ = iν so that ϕ(x, t;µ) satisfies

ϕ(x, t;µ) →

{
eµx x→ −∞,

a(µ; t)eνx + b(µ; t)e−νx x→ +∞.
(2.7)

The second linearly independent solution ϕ(x, t;−µ) is exponentially growing as x→ −∞.

If a(µ; t) ̸= 0, then ϕ(x, t;µ) is unbounded as x→ +∞. However, if a(µ0; t) = 0 for some

µ0 ∈ (c,∞), then the eigenfunction ϕ(x, t;µ0) is bounded and exponentially decaying as
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|x|→ ∞. The corresponding eigenfunction satisfies

ϕ(x, t;µ0) →

{
eµ0x, x→ −∞,

b0(t)e
−ν0x, x→ +∞,

where ν0 :=
√
µ2
0 − c2 and b0(t) satisfies the time evolution that follows from (2.6):

b0(t) = b0(0)e
(4µ2

0(µ0+ν0)+2c2ν0)t.

Note that ϕ(x, t;µ0) is exponentially decaying as x→ ±∞ with two different decay rates:

µ0 at −∞ and ν0 at +∞.

2.3 Examples of the step-like initial conditions

Here we solve the scattering problem for two simplest initial conditions satisfying

the boundary conditions (2.1). Since the time evolution of the scattering data is not

considered, we drop t from the list of arguments.

Case of the step function u0(x) = c2H(x).

For λ ∈ (0,∞), the eigenfunction is given by (2.3), where the superposition of expo-

nential functions hold for every x < 0 and x > 0, not just in the limits x → −∞ and

x → +∞. Since ϕ and ϕ′ must be continuous at x = 0, we derive the system of linear

equations for a(k) and b(k): {
1 = a(k) + b(k),

−ik = iκb(k)− iκa(k).

The linear system admits a unique solution given by

a(k) =
κ + k

2κ
, b(k) =

κ − k

2κ
. (2.8)

Similarly, for λ ∈ (−c2, 0), the scattering data a(µ) and b(µ) are obtained from (2.8) by

substituting k = iµ with µ > 0:

a(µ) =
κ + iµ

2κ
, b(µ) =

κ − iµ

2κ
. (2.9)
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No zeros of a(µ) exists for λ ∈ (−∞,−c2) since a(µ) is given by the same expression

(2.9) but with κ = iν and ν + µ =
√
µ2 − c2 + µ > 0. The spectrum of the stationary

Schrödinger equation (1.2) is purely continuous.

Remark 2.2. The step function can be replaced by the smooth function

u0(x) =
1

2
c2 [1 + tanh(εx)] , ε > 0. (2.10)

Exact solutions for the scattering data a(k) and b(k) associated with u0 in (2.10) are

available in the literature [38]. The spectrum of the stationary Schrödinger equation

(1.2) is also purely continuous. We use (2.10) instead of c2H(x) in numerical experiments

to reduce the numerical noise generated by the singular step function.

Case of a soliton on the step function.

We consider a linear superposition of a soliton and the step function:

u0(x) = 2µ2
0 sech

2(µ0(x− x0)) + c2H(x), (2.11)

where µ0 > 0 is the soliton parameter and x0 < 0 is chosen to ensure that the soliton

is located to the left of the step function. The direct scattering problem for the initial

condition (2.11) was solved in [1] and here we extend the solution with more details.

The spectral problem (1.2) with u = u0 can be solved exactly [38]. For x < 0, the

exact solution for ϕ(x; k) satisfying ϕ(x; k) → e−ikx as x→ −∞ is given by

ϕ(x; k) = e−ikx

[
1− iµ0

k + iµ0

eµ0(x−x0) sech(µ0(x− x0)

]
, x < 0.

Similarly for x > 0, the exact solution for ψ(x; k) satisfying ψ(x; k) → eiκx as x → +∞
is given by

ψ(x; k) = eiκx
[
1− iµ0

κ + iµ0

e−µ0(x−x0) sech(µ0(x− x0)

]
, x > 0.

The scattering data a(k) and b(k) in the representation (2.3) can be found from the

scattering relation

ϕ(x; k) = a(k)ψ(x; k) + b(k)ψ(x; k), x ∈ R,

where ψ(x; k) is obtained from ψ(x; k) by reflection κ 7→ −κ. Since the Wronskian

W (ψ1, ψ2) of any two solutions ψ1 and ψ2 of the stationary Schrödinger equation (1.2) is
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independent of x, the scattering coefficient a(k) can be obtained from the formula:

a(k) =
W (ϕ(x; k), ψ(x; k))

W (ψ̄(x; k), ψ(x; k))
, x ∈ R. (2.12)

Since we are free to choose x = 0 in (2.12), we compute

W (ψ̄, ψ)|x=0=2iκ
(
1 +

iµ0e
µ0x0 sech(µ0x0)

κ − iµ0

)(
1− iµ0e

µ0x0 sech(µ0x0)

κ + iµ0

)
+
iµ2

0 sech
2(µ0x0)

κ − iµ0

(
1− iµ0e

µ0x0 sech(µ0x0)

κ + iµ0

)
+
iµ2

0 sech
2(µ0x0)

κ + iµ0

(
1 +

iµ0e
µ0x0 sech(µ0x0)

κ − iµ0

)
= 2iκ

and

W (ϕ, ψ)|x=0=i(κ + k)

(
1− iµ0e

µ0x0 sech(µ0x0)

κ + iµ0

)(
1− iµ0e

µ0x0 sech(µ0x0)

κ + iµ0

)
+
iµ2

0 sech
2(µ0x0)

κ + iµ0

(
1− iµ0e

−µ0x0 sech(µ0x0)

k + iµo

)
+
iµ2

0 sech
2(µ0x0)

k + iµ0

(
1− iµ0e

µ0x0 sech(µ0x0)

κ + iµ0

)
=
i(κ + k)(κk + µ2

0 + iµ0(κ − k) tanh (µ0x0))

(κ + iµ0)(k + iµ0)
,

which yields

a(k) =
(κ + k) (κk + µ2

0 + iµ0(κ − k) tanh (µ0x0))

2κ(κ + iµ0)(k + iµ0)
. (2.13)

This expression coincides with (A6) in [1] up to notations.

Although the previous expressions were obtained for λ = k2 > 0 with k ∈ R, the
scattering coefficient a(k) can be continued analytically for k ∈ C with Im(k) ≥ 0.

However, k = ic is a branch point for the square root function for κ :=
√
c2 + k2. The

branch cuts can be defined at our disposal on the imaginary axis, Re(k) = 0, for which

Im(k) takes values on

either [−c, c] or (−∞,−c] ∪ [c,∞).

Notations.The square root function
√
z for z ∈ C is defined according to the principal

branch such that Arg(
√
z) ∈ [0, π) for every z ∈ C with Arg(z) ∈ [0, 2π).
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We are looking for zeros of a(k) for Im(k) > 0 for which ϕ(x; k) → 0 as x→ −∞.

Definition 2.3. If a(k0) = 0 with Im(k0) ∈ (c,∞) corresponds to κ0 :=
√
c2 + k20

satisfying Im(κ0) > 0, then ϕ(x; k0) = b0ψ(x; k0) → 0 as x → +∞. This yields the

eigenvalue λ0 := k20 of the spectral problem (1.2), for which the branch cut can be

chosen for Re(k) = 0 and Im(k) ∈ [−c, c]. In this case, the spectral theory of the

Schrödinger equation (1.2) implies that Re(k0) = 0 and Re(κ0) = 0.

Definition 2.4. If a(k0) = 0 with Im(k0) ∈ (0, c) corresponds to κ0 :=
√
c2 + k20 sat-

isfying Re(κ0) > 0 and Im(κ0) < 0, then ϕ(x; k0) = b0ψ(x; k0) → ∞ as x → +∞. In

this case, we say that λ0 := k20 is the resonant pole of the spectral problem (1.2).

The branch cut can be chosen for Re(k) = 0 and Im(k) ∈ (−∞,−c] ∪ [c,∞). Moreover,

Re(k0) ̸= 0 if Re(κ0) > 0, and Im(κ0) < 0.

Remark 2.5. The coefficient b0 in ϕ(x; k0) = b0ψ(x; k0) for which a(k0) = 0 can not be

associated with b(k0) because the scattering coefficient b(k) is not analytically continued

off the real axis unlike the scattering coefficient a(k).

We are now in position to analyze zeros of a(k) given by (2.13). The following propo-

sition presents the main outcome of this analysis.

Theorem 2.6. For sufficiently large negative x0, an isolated eigenvalue λ0 ∈ (−∞,−c2)
persists near −µ2

0 if µ0 ∈ (c,∞), whereas the embedded eigenvalue λ0 ∈ (−c2, 0) moves to

a resonant pole with Re(k0) < 0 if µ0 ∈ (0, c).

Proof. Since κ+ k ̸= 0, it follows from (2.13) that a(k) = 0 if and only if k is the root of

the following transcendental equation

κk + µ2
0 + iµ0(κ − k) tanh (µ0x0) = 0. (2.14)

The algebraic equation (2.14) is factorized in the limit x0 → −∞ as (κ+iµ0)(k−iµ0) = 0.

Hence, there exists a simple root k = iµ0 in the limit x0 → −∞. If µ0 ∈ (c,∞), this root

corresponds to the eigenvalue λ = −µ2
0 ∈ (−∞,−c2), however, if µ0 ∈ (0, c), the root

corresponds to the embedded eigenvalue λ = −µ2
0 ∈ (−c2, 0) in the continuous spectrum.

We consider the two cases separately.

Isolated eigenvalue if µ0 ∈ (c,∞).
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Since tanh(µ0x0) = −1 + 2e2µ0x0 + O(e4µ0x0) as x0 → −∞, the simple root of equation

(2.14) can be extended asymptotically as follows:

k = iµ0

[
1− 2

(
κ0 − iµ0

κ0 + iµ0

)
e2µ0x0 +O(e4µ0x0)

]
, (2.15)

where κ0 :=
√
c2 − µ2

0 = i
√
µ2
0 − c2 if µ0 > c. Therefore, k ∈ iR in the first two terms.

Similarly, we have expansion for κ2 = c2 + k2 given by

κ = κ0

[
1− 2µ2

0

µ2
0 − c2

e2µ0x0

(
κ0 − iµ0

κ0 + iµ0

)
+O(e4µ0x0)

]
, (2.16)

so that κ ∈ iR in the first two terms. In order to show that k,κ ∈ iR persists beyond

the first two terms, we substitute k = iµ and κ = iν with ν =
√
µ2 − c2 into (2.14) and

obtain the real-valued equation F (µ, α) = 0, where

F (µ, α) := µ
√
µ2 − c2 − µ2

0 + µ0(
√
µ2 − c2 − µ)α, α := tanh (µ0x0). (2.17)

The function F (µ, α) : R2 7→ R is a C1 function near (µ, α) = (µ0,−1) satisfying

F (µ0,−1) = 0 and

∂µF (µ0,−1) =
√
µ2
0 − c2 + µ0 ̸= 0.

By the implicit function theorem, there exists a simple real root µ ∈ (c,∞) of F (µ, α) = 0

for every x0 ≪ −1 (α ≈ −1) such that µ → µ0 as x0 → −∞ (α → −1). Since

k = iµ ∈ iR and κ = i
√
µ2 − c2 ∈ iR, the simple real root µ ∈ (c,∞) determines an

isolated eigenvalue λ = −µ2 ∈ (−∞,−c2) of the spectral problem (1.2).

Resonant pole if µ0 ∈ (0, c).

In this case we have κ0 =
√
c2 − µ2

0 ∈ R so that k and κ in (2.15) and (2.16) are no

longer purely imaginary. Since

κ0 − iµ0

κ0 + iµ0

=
(κ0 − iµ0)

2

κ2
0 + µ2

0

=
1

c2
(c2 − 2µ2

0 − 2iµ0κ0),

we obtain from (2.15) and (2.16) that

Re(k) = −4µ2
0

c2

√
c2 − µ2

0e
2µ0x0 +O(e4µ0x0)

and

Im(κ) = −4µ3
0

c2
e2µ0x0 +O(e4µ0x0).
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Hence, Re(k) < 0 and Im(κ) < 0 for the root of the complex-valued equation F (µ, α) = 0,

which still exists for x0 ≪ −1 by the same application of the implicit function theorem.

Therefore, the eigenfunction ϕ(x; k) for this root k satisfies ϕ(x; k) → 0 as x → −∞
because Im(k) > 0 but ϕ(x; k) = b0ψ(x; k) → ∞ as x → +∞ because Im(κ) < 0. Thus,

this root corresponds to the resonant pole λ = k2 with Re(λ) ∈ (−c2, 0) and Im(λ) < 0, for

which the eigenfunction ϕ(x; k) decays exponentially at −∞ and diverges exponentially

at +∞.

Remark 2.7. There exists a symmetric resonant pole −k̄ relative to iR if κ = −
√
c2 + k2

is defined according to the second branch of the square root function. The corresponding

eigenfunction is associated with the same function ϕ(x; k) that decays exponentially at

−∞ because Im(k) > 0 but grows exponentially at +∞ as ϕ(x; k) = b0ψ(x; k) because

Re(k) > 0, Re(κ) < 0, and Im(κ) < 0.

Remark 2.8. It was missed in [1] that the ”pseudo-embedded” eigenvalue near λ = −µ2
0 ∈

(−c2, 0) splits into a pair of resonant poles. There exists no embedded eigenvalues in the

spectral problem (1.2) if µ0 ∈ (0, c).

2.4 Proof of Theorem 2.1

Let λ0 be fixed, so that λ0 = −µ2
0 ∈ (−∞,−c2), with µ0 ∈ (c,∞). Then for

a(µ0; t) ̸= 0 there exists a solution ϕ(t, x;µ0) of the linear system (1.2) and (1.3) satisfying

the boundary behavior (2.7) so that ϕ(x, t;µ0) → 0 as x → −∞ and ϕ(x, t;µ0) → ∞
as x → +∞. By the Sturm’s theorem, ϕ(x, t;µ0) > 0 for every (x, t) since λ0 is be-

low the spectrum of the Schrödinger equation (1.2) for every t ∈ R. Similarly, there

exists a strictly positive solution ψ(x, t;µ0) satisfying ψ(x, t;µ0) → 0 as x → +∞ and

ψ(x, t;µ0) → ∞ as x→ −∞. If c1 and c2 are positive constants,

v0(x, t) = c1ϕ(x, t;µ0) + c2ψ(x, t;µ0)

is positive everywhere so that the Darboux transformation (1.5) yields a bounded solution

û. Let d1 and d2 be arbitrary satisfying c1d2 − c2d1 ̸= 0 and define

v(x, t) = d1ϕ(x, t;µ0) + d2ψ(x, t;µ0).
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Due to the decay and divergence conditions on ϕ(t, x;µ0) and ψ(x, t;µ0), the transforma-

tion (1.6) yields an exponentially decaying solution

v̂ = (c1d2 − c2d1)
(ϕ(x, t;µ0)∂xψ(x, t;µ0)− ψ(x, t;µ0)∂xϕ(x, t;µ0))

c1ϕ(x, t;µ0) + c2ψ(x, t;µ0)

of the Schrödinger equation (1.2) for λ = λ0. Hence λ0 ∈ (−∞,−c2) is an isolated

eigenvalue, which is also simple by the Sturm theorem. For every other value of λ, the

transformation (1.6) returns bounded solutions if λ ∈ [−c2,∞) and unbounded solutions

if λ ∈ (−∞,−c2)\{λ0} so that the spectrum of the Schrödinger equation (1.2) associated

with the new solution û consists of the purely continuous spectrum in [−c2,∞) and a

simple isolated eigenvalue λ0.

2.5 Example of a transmitted soliton

Here we illustrate the Darboux transformation for the transmitted soliton by considering

initial data u0(x) = c2H(x) at t = 0, and drop t from the list of arguments. We use

the following solution of the stationary Schrödinger equation (1.2) with u = u0 and

λ = −µ2
0 ∈ (−∞,−c2) with µ0 ∈ (c,∞),

v0(x) =

{
eµ0(x−x0) + e−µ0(x−x0), x < 0,

c1e
ν0x + c2e

−ν0x, x > 0,

where ν0 :=
√
µ2
0 − c2 > 0, x0 is arbitrary, and (c1, c2) are found from the continuity of

v0 and v′0 across x = 0. Setting up and solving the linear system for (c1, c2) similar to

(2.8), we obtain the unique solution{
c1 =

ν0+µ0

2ν0
e−µ0x0 + ν0−µ0

2ν0
eµ0x0 ,

c2 =
ν0−µ0

2ν0
e−µ0x0 + ν0+µ0

2ν0
eµ0x0 ,

Substituting v0 into (1.5) yields the initial condition, where one soliton is superposed to

the step function:

û0(x) = 2µ2
0 sech

2[µ0(x− x0)], x < 0 (2.18)

and

û0(x) = c2 + 4ν20
ν20 + µ2

0 + (ν20 − µ2
0) cosh(2µ0x0)

[(ν0 + µ0) cosh(ν0x− µ0x0) + (ν0 − µ0) cosh(ν0x+ µ0x0)]
2 , (2.19)
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for x > 0. The denominator of (2.19) is strictly positive for every x0 ∈ (−∞, x∗), where

x∗ is the unique positive root of the transcendental equation

cosh(2µ0x0) =
µ0 + ν0
µ0 − ν0

> 1.

If x0 = x∗, the expression (2.19) is singular at x = µ0x0/ν0 and if x0 ∈ (x∗,∞), there

exist two singularities of (2.19) on (0,∞) before and after the value x = µ0x0/ν0. The

transmitted soliton corresponds to the value of x0 inside (−∞, x∗).

Remark 2.9. The one-soliton û0 decays differently as x→ −∞ and as x→ +∞, accord-

ing to (2.18) and (2.19). The decay rate µ0 at −∞ corresponds to the zero boundary

condition, whereas the decay rate ν0 =
√
µ2
0 − c2 at +∞ corresponds to the nonzero

boundary condition c2. Due to this discrepancy, the one-soliton obtained by the Darboux

transformation is different from the initial condition (2.11) which has the same decay rate

µ0 at ±∞. In addition, the former is related to the isolated eigenvalue λ0 = −µ2
0, whereas

the latter is related to the isolated eigenvalue λ = k20 with k0 = iµ0 +O(e2µ0x0) given by

(2.15).

Remark 2.10. The one-soliton on the initial step for λ = −µ2
0 ∈ (−∞,−c2) corresponds

to the transmitted soliton which overtakes the RW in the time dynamics of the KdV

equation (1.1). The corresponding time-dependent solution can be constructed from the

Darboux transformation with the RW solution u = u(x, t). Since solutions u(x, t) and

v0(x, t) are not explicit, we do not obtain û(x, t) in the explicit form for t ̸= 0.

Remark 2.11. If λ = −µ2
0 ∈ (−c2, 0) with µ0 ∈ (0, c), solution of the stationary Schrödinger

equation (1.2) is a bounded and oscillatory function for x > 0. Darboux transformation

(1.5) generates unbounded solution û0(x) at a countable set of points for x > 0 similarly

to Remark 1.4. No trapped soliton can be constructed by the Darboux transformation

for λ ∈ (−c2, 0) because no embedded eigenvalues with spatially decaying eigenfunctions

exist.

Remark 2.12. If λ = k20 ∈ (0,∞), then solutions of the stationary Schrödinger equation

(1.2) are bounded and oscillatory both for x < 0 and x > 0. Darboux transformation

(1.5) generates unbounded solution û0(x) at countable sets of points both for x < 0 and

x > 0.
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2.6 Numerical approximations

Here we perform the time-dependent computations of the KdV equation (1.1). We

utilize here the finite-difference method introduced by N. Zabusky and M. Kruskal in [48]

for numerical solution of the KdV equation (1.1).

Let umn be a numerical approximation of u(xn, tm) on the equally spaced grid {xn}
with the equally space times {tm}. The time step is τ and the spatial step size is h. The

two-point numerical method in [48] is given by

um+1
n = um−1

n − 2τ

h
(umn+1 + umn + umn−1)(u

m
n+1 − umn−1)−

τ

h3
(umn+2 − 2umn+1 + 2umn−1 − umn−2).

The first step is performed separately with the Euler method

u1n = u0n −
τ

h
(u0n+1 + u0n + u0n−1)(u

0
n+1 − u0n−1)−

τ

2h3
(u0n+2 − 2u0n+1 + 2u0n−1 − u0n−2).

The finite-difference method is stable if τ < 2
3
√
3
h3 for small h [48]. To avoid oscillations

of solutions due to the step background, we use the smooth function (2.10) superposed

with the soliton (2.11) so that the initial data is

u0(x) = 2µ2
0sech

2(µ0(x− x0)) +
1

2
c2 [1 + tanh(εx)] , (2.20)

where x0 < 0 and ε = 1.

Outcomes of numerical computations. Evolution of the KdV equation (1.1)

with the initial data (2.20) depends on the amplitude of 2µ2
0 of the solitary wave to

the left of the step-like background. Figure 2.2 shows three snapshots of the evolution

with µ0 = 1.4 > c = 1. A travelling solitary wave with a sufficiently large amplitude

reaches and overtakes the RW formed from the step-like background. This corresponds

to dynamics of the transmitted soliton.

Figure 2.3 shows three snapshots of the evolution with µ0 = 0.95 < c = 1. A travelling

solitary wave with a sufficiently small amplitude becomes trapped inside the RW and

does not reach its top. This corresponds to dynamics of the trapped soliton.

The left panel of Figure 2.4 shows the spectrum of the stationary Schrödinger equation

(1.2) for the initial condition (2.20) with µ = 1.4. The spectrum consists of the continous

spectrum on [−c2,∞) and an isolated eigenvalue λ0 < −c2. The isolated eigenvalue is
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(a) (b) (c)

Figure 2.2: The time evolution of a transmitted soliton for µ = 1.4, c = 1, x0 = −15,
and ε = 1 at t = 0 (left), t = 4 (middle), and t = 8 (right).

(a) (b) (c)

Figure 2.3: The time evolution of a trapped soliton for µ = 0.95, c = 1, x0 = −10,
and ε = 1 at t = 0 (left) t = 20 (middle), and t = 40 (right).

superimposed with the approximation obtained from the numerically computed root of

the function (2.17). The difference between the two approximation is not visible on the

scale of the figure, it is of the order of O(10−3). The right panel shows the spectrum for

µ = 0.95, for which no isolated or embedded eigenvalues exist.

(a) (b)

Figure 2.4: Spectrum of the stationary Schrödinger equation (1.2) for µ = 1.4 (left)
and µ = 0.95 (right) with the potential u0 given by (2.20).

Data analysis. We will elaborate the numerical criterion to show that the trapped

soliton disappears in the long-time dynamics of the RW. In other words, the solitary wave
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does not appear to be a proper soliton on the RW background but is instead completely

absorbed by the RW.

Let a2 be the constant background (which may change in time). The solitary wave on

the constant background is obtained from the soliton on the zero background (1.16) with

the Galilean transformation:

u(x, t) = a2 + 2ν20sech
2[ν0(x− 4ν20t− 6a2t− x0)], (2.21)

where ν0 > 0 is the soliton parameter. As follows from the construction of one-soliton

on the constant background with the Darboux transformation, see expressions (2.18) and

(2.19), ν0 is related to the fixed value µ0 (determined for a = 0) by ν0 =
√
µ2
0 − a2 as

long as a < µ0. Hence the amplitude of the soliton (2.21) on the constant background a2

is

A = a2 + 2ν20 = 2µ2
0 − a2.

When the solitary wave advances to the RW from the left and is strongly localized on the

long scale of the RW like on Figures 2.2 and 2.3, the background a2 is determined by the

value of the RW at the location of the solitary wave.

The RW background can be approximated by the solution of the inviscid Burgers’

equation ut + 6uux = 0 starting with the piecewise linear profile

u0(x) =


0, x < −ε,
(2ε)−1(x+ ε), −ε ≤ x ≤ ε,

1, x > ε

Solving the inviscid Burgers’ equation with u(0, x) = u0(x) yields

u(x, t) =


0, x < −ε,
(2ε+ 6t)−1(x+ ε), −ε ≤ x ≤ ε+ 6t,

1, x > ε+ 6t.

Location ξ(t) of the solitary wave on the RW is detected numerically from which we

determine

a2(t) = (2ε+ 6t)−1(ξ(t) + ε) as long as ξ(t) ∈ [−ε, ε+ 6t].
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This gives the theoretical prediction of the amplitude of the solitary wave,

A(t) = 2µ2
0 − a2(t).

The theoretical prediction can be compared with the numerical approximation of the

amplitude of the solitary wave computed by the quadratic interpolation from three grid

points near the maximum of u.

Figure 2.5 shows the numerically detected amplitude of the solitary wave versus time

(left) and versus the amplitude of the RW background (right) for the transmitted soliton

with µ0 = 1.4 > c = 1. The numerical approximation is shown by black dots. The

red dots show the final amplitude A∞ = 2µ2
0 − c2 (left) and the theoretically computed

amplitude A(t) = 2µ2
0 − a2(t) (right). It is obvious that the discrepancy between black

and red dots disappear with time and that A(t) → A∞ as t evolves. The blue line on the

right panel shows the amplitude of the background a2(t) at the location of the transmitted

soliton. Since a2(t) → c2 and A∞ > c2 since µ0 = 1.4 > c = 1, the black and blue lines do

not meet and the soliton is transmitted over the RW background as seen in Figure 2.2.

Figure 2.6 shows the same quantities as Figure 2.5 but for the trapped soliton with

µ0 = 0.95 < c = 1. Since A∞ = 2µ2
0 − c2 < c2, the amplitude of the solitary wave never

reaches the horizontal asymptote on the left panel because the trapped soiton dissolves

inside the RW. The right panel shows again that the numerical approximation (black

dots) is getting closer to the theoretical approximation of the soliton amplitude A(t) (red

dots) as t evolves. However, for the trapped soliton the black and blue lines meet so that

there exists the limiting value of the background a2∞ such that a(t) → a∞ as t → ∞.

The limiting value a∞ is found from the balance 2µ2
0 − a2∞ = a2∞ at a∞ = µ0. Hence, the

trapped solitary wave completely disappears inside the RW background as seen in Figure

2.3.
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(a) (b)

Figure 2.5: Data analysis for the transmitted soliton shown in Figure 2.2: (a) Ampli-
tude of the solitary wave versus time (black) and the limiting amplitude A∞ = 2µ2

0− c2

(red). (b) Amplitude of the solitary wave versus amplitude of the RW background de-
tected numerically (black) and theoretically (red). The blue dots show the amplitude

of the RW background.

(a) (b)

Figure 2.6: The same as Figure 2.5 but for the trapped soliton shown in Figure 2.3.



Chapter 3

Solitons on the Cnoidal Wave

Background

We consider an important related problem in the DSW theory, which is describing

solitons interaction with a cnoidal wave background. The main focus of this chapter is

construction and analysis of exact solutions for these interactions.

Compared to the previous works, which involve Weierstrass functions with complex

translation parameters, our solutions expressed in terms of Jacobi elliptic functions have

real-valued parameters, which allows us to clarify the dynamic nature of soliton-cnoidal

wave interactions, and to characterize their corresponding properties.

We also demonstrate that the Darboux transformation provides a more straightforward

method for obtaining these complicated interaction solutions compared to the degenera-

tion methods mentioned in Chapter 1.

Due to the unsteady, wavepacket-like character of the soliton-cnoidal wave interaction

solutions, such wave patterns are referred to as breathers. Breathers generalize classical

solitons by incorporating time scale associated with internal oscillations, in addition to

the one associated with propagation. In this chapter we obtain both families of breather

solutions, namely the elevation (bright) and depression (dark) breather solutions. Both

the solution families are determined by two distinct parameters, which are initial position

and a spectral parameter. The nonlinear dispersion relations demonstrate that the bright

(dark) breathers propagate faster (slower) than the cnoidal wave background.

These results provide insight into recent experiments on soliton-cnoidal wave collisions.

Mao et. al [37] recently showed that the class of breathers considered in this Chapter,

29
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can be interpreted as a nonlinear superposition between a soliton and a cnoidal wave,

by constructing experimentally and numerically strongly nonlinear, topological breathers

through an interaction of a carrier wave with a soliton or vice-versa. Thus, the exact

solutions for soliton-cnoidal wave interactions derived in this Chapter served as a guiding

insight for the experimental and numerical work in [37].

3.1 Traveling cnoidal wave

A traveling wave solution u(x, t) = ϕ(x− ct) to the KdV equation (1.1) satisfies the

second-order equation after integration in x:

ϕ′′ + 3ϕ2 − cϕ = b, (3.1)

where b ∈ R is the integration constant and the single variable x stands for x− ct. The

second-order equation (3.1) is integrable with the first-order invariant

(ϕ′)2 + 2ϕ3 − cϕ2 − 2bϕ = d, (3.2)

where d ∈ R is another integration constant. The following (well-known) proposition

summarizes the existence of periodic solutions to system (3.1) and (3.2).

Proposition 3.1. There exists a family of periodic solutions to system (3.1) and (3.2)

for every (b, c, d) satisfying c2 + 12b > 0 and d ∈ (U(ϕ+), U(ϕ−)), where U(ϕ) := 2ϕ3 −
cϕ2 − 2bϕ and ϕ± are critical points of U given by ϕ± = (c±

√
c2 + 12b)/6.

Proof. If c2+12b > 0, the mapping ϕ 7→ U(ϕ) has two critical points ϕ±. Since U
′(ϕ±) =

6ϕ2
± − 2cϕ± − 2b = 0 and U ′′(ϕ±) = 12ϕ± − 2c = ±2

√
c2 + 12b, ϕ+ is the minimum of U

and ϕ− is the maximum of U . If d = U(ϕ+), the only bounded solution of system (3.1)

and (3.2) is a constant solution corresponding to the center point (ϕ+, 0). If d = U(ϕ−),

the only bounded solution of system (3.1) and (3.2) is a homoclinic orbit from the saddle

point (ϕ−, 0) which surrounds the center point (ϕ+, 0). The family of periodic orbits

exists in a punctured neighbourhood around the center point enclosed by the homoclinic

orbit, for d ∈ (U(ϕ+), U(ϕ−)).

If c2 + 12b ≤ 0, the mapping ϕ 7→ U(ϕ) is monotonically increasing. There exist no

bounded solutions of system (3.1) and (3.2) with the exception of the constant solution

ϕ = c/6 in the marginal case c2 + 12b = 0.
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It follows from Proposition 3.1 that the most general traveling periodic wave solution

has three parameters (b, c, d) that are defined in a subset of R3 for which c2+12b > 0 and

d ∈ U(ϕ+), U(ϕ−)). For each (b, c, d) in this subset of R3, the translational parameter

x0 ∈ R generates the family of solutions ϕ(x+ x0) due to translation symmetry.

The two parameters of the family of periodic solutions can be set uniquely due to the

following two symmetries:

Definition 3.2. The KdV equation (1.1) is invariant under the scaling transformation:

if u(x, t) is a solution, then so is α2u(αx, α3t), α > 0.

Definition 3.3. The KdV equation (1.1) is invariant under the Galilean transforma-

tion: if u(x, t) is a solution, then so is β + u(x− 6βt, t), β ∈ R.

Due to these symmetries, if ϕ0 is a periodic solution to system (3.1) and (3.2) with

(b, c, d) = (b0, c0, d0), then β + α2ϕ0(αx) is also a periodic solution to system (3.1) and

(3.2) with

(b, c, d) = (−3β2 − α2βc0 + α4b0, 6β + α2c0, 2β
3 + α2β2c0 − 2βα4b0 + α6d0),

where α > 0 and β ∈ R are arbitrary parameters. The constant in Proposition 3.1 is

invariant under the transformation since c2+12b = α4(c20+12b0) > 0. Thus, without loss

of generality, we can consider the normalized travelling cnoidal traveling wave

u(x, t) = ϕ0(x− c0t), ϕ0(x) = 2k2cn2(x, k) (3.3)

for which the values of (b0, c0, d0) are determined in the following proposition.

Proposition 3.4. The normalized cnoidal wave ϕ0(x) = 2k2cn2(x, k) is a periodic solu-

tion of system (3.1) and (3.2) for

b0 := 4k2(1− k2), c0 := 4(2k2 − 1), d0 = 0,

where k ∈ (0, 1) is an arbitrary parameter.

Proof. Since min
x∈R

ϕ0(x) = 0, it follows from (3.2) that d0 = U(0) = 0. On the other

hand, by using the fundamental relations on the Jacobi elliptic functions (3.15) and the

relations for their derivatives (A.2) included in the Appendix A, we obtain from (3.2)

with d0 = 0 that b0 = 4k2(1− k2) and c0 = 4(2k2 − 1).
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3.2 Lamé equation as the spectral problem

The spectral problem (1.2) with the normalized cnoidal wave (3.3) as the potential

u is known as the Lamé equation [30, p.395]. It can be written in the form

v′′(x)− 2k2sn2(x, k)v(x) + ηv(x) = 0, η := λ+ 2k2, (3.4)

where the single variable x stands for x − c0t. By using (A.1) and (A.2), we obtain the

following three particular solutions v = v1,2,3(x) of the Lamé equation (3.4) with the

corresponding spectral parameters λ = λ1,2,3(k):

λ1(k) := −k2, v1(x) := dn(x, k),

λ2(k) := 1− 2k2, v2(x) := cn(x, k),

λ3(k) := 1− k2, v3(x) := sn(x, k),

which correspond to the three remarkable values of η: η1 = k2, η2 = 1, and η3 = 1 + k2.

For k ∈ (0, 1), the three eigenvalues are sorted as λ1(k) < λ2(k) < λ3(k).

Figure 3.1 shows the Floquet spectrum of the Lamé equation (3.4) which correspond

to the admissible values of λ for which v ∈ L∞(R). The bands are shaded and the band

edges shown by the bold solid curves correspond to λ = λ1,2,3(k) for k ∈ (0, 1). The

cnoidal wave is the periodic potential with a single finite gap (the so-called the one-zone

potential) [42] so that the Floquet spectrum consists of a single finite band [λ1(k), λ2(k)]

and the semi-infinite band [λ3(k),∞).

Figure 3.1: Floquet spectrum of the Lamé equation (3.4) for different values of k ∈
(0, 1).
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As is well-known (see [30, p. 395]), the two linearly independent solutions of the Lamé

equation (3.4) for λ ̸= λ1,2,3(k) are given by the functions

v±(x) =
H(x± α)

Θ(x)
e∓xZ(α), (3.5)

where α ∈ C is found from λ ∈ R by using the characteristic equation η = k2 +dn2(α, k)

and the Jacobi zeta function is Z(α) := Θ′(α)
Θ(α)

, see Table A.1.

Since η = λ+ 2k2, the characteristic equation can be written in the form

λ = 1− 2k2 + k2cn2(α, k). (3.6)

The following proposition clarifies how α is defined from the characteristic equation

(3.6) when λ is decreased from λ3(k) to −∞. Figure 3.2 illustrates the path of α in the

complex plane.

Figure 3.2: Left: Floquet spectrum with orange, blue, and green dots corresponding
to λ3(k), λ2(k), and λ1(k) for a fixed value of k ∈ (0, 1). Right: The complex plane for

the parameter α indicating the path of α relative to the path of λ.

Proposition 3.5. Fix k ∈ (0, 1). We have

• α = F (φα, k) ∈ [0, K(k)] for λ ∈ [λ2(k), λ3(k)], where φα ∈ [0, π
2
] is given by

sinφα =

√
1− k2 − λ

k
. (3.7)

• α = K(k) + iβ with β = F (φβ, k
′) ∈ [0, K ′(k)] for λ ∈ [λ1(k), λ2(k)], where φβ ∈

[0, π
2
] is given by

sinφβ =

√
1− 2k2 − λ√

(1− k2)(1− k2 − λ)
. (3.8)
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• α = K(k) + iK ′(k) + γ with γ = F (φγ, k) ∈ [0, K(k)) for λ ∈ (−∞, λ1(k)], where

φγ ∈ [0, π
2
) is given by

sinφγ =

√
−k2 − λ√

1− 2k2 − λ
, (3.9)

where k′ =
√
1− k2 and K ′(k) = K(k′).

Proof. When λ ∈ [λ2(k), λ3(k)], it follows from (3.6) that cn2(α, k) ∈ [0, 1] and hence

α ∈ [0, K(k)] modK(k). Solving (3.6) in sinφα = sn(α, k) yields (3.7). As λ is decreased

from λ3(k) to λ2(k), φα is monotone increasing and so is F (φα, k). Hence, α increases

from 0 to K(k). See the orange and blue dots in Figure 3.2.

When λ ∈ [λ1(k), λ2(k)], we use the special relations (see [26, 8.151 and 8.153]),

cn(K(k) + iβ, k) = −k′ sn(iβ, k)
dn(iβ, k)

= −ik′ sn(β, k
′)

dn(β, k′)
,

where k′ :=
√
1− k2. The characteristic equation (3.6) is rewritten in the form

sn2(β, k′) =
1− 2k2 − λ

(1− k2)(1− k2 − λ)
,

from which it follows that sn2(β, k′) ∈ [0, 1] and hence β ∈ [0, K(k′)] modK(k′). Solving

in sinφβ = sn(β, k′) yields (3.8). When λ is decreased from λ2(k) to λ1(k), then φβ is

monotone increasing and so is F (φβ, k
′). Hence, β increases from 0 to K ′(k). See blue

and green dots on Figure 3.2.

When λ ∈ (−∞, λ1(k)], we use the special relations (see [26, 8.151]),

cn(K(k) + iK ′(k) + γ) = − ik′

kcn(γ, k)
,

and rewrite the characteristic equation (3.6) in the form

cn2(γ, k) =
1− k2

1− 2k2 − λ
.

from which it follows that cn2(γ, k) ∈ [0, 1] and hence γ ∈ [0, K(k)) modK(k). Solving

in sinφγ = sn(γ, k) yields (3.9). When λ is decreased from λ1(k) to −∞, then φγ is

monotone increasing and so is F (φγ, k). Hence, γ increases from 0 to K(k). See the

green and black dots in Figure 3.2.
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3.3 Time evolution of the eigenfunctions

Let u(x, t) = ϕ0(x− c0t) be the normalized cnoidal wave (3.3) and v(x, t) = v±(x, t)

be a solution of system (1.2) and (1.3) such that v±(x, 0) = v±(x) is given by (3.5). The

time dependence of v±(x, t) can be found by the separation of variables:

v±(x, t) =
H(x− c0t± α)

Θ(x− c0t)
e∓(x−c0t)Z(α)∓tω(α), (3.10)

where ω(α) is to be found. After substituting (3.10) into (1.3) and dividing by v±(x, t),

we obtain

ω(α) = (c0 + 4λ− 2ϕ0(x))

[
Z(α)± Z(x)∓ H ′(x± α)

H(x± α)

]
∓ ϕ′

0(x), (3.11)

where x stands again for x−ct. Equation (3.11) holds for every x ∈ R due to compatibility

of system (1.2) and (1.3). Hence, we obtain ω(α) by substituting c0 = 4(2k2 − 1) and

evaluating (3.11) at x = 0:

ω(α) = 4(λ+ k2 − 1)

[
Θ′(α)

Θ(α)
− H ′(α)

H(α)

]
, (3.12)

where we have used the parity properties [26, 8.192]:

H(−x) = −H(x) and Θ(−x) = Θ(x).

The following proposition ensures that ω(α) is real when λ is taken either in the semi-

infinite gap (−∞, λ1(k)) or in the finite gap (λ2(k), λ3(k)).

Proposition 3.6. Fix k ∈ (0, 1). Then, ω(α) ∈ R if λ ∈ (−∞, λ1(k)) ∪ (λ2(k), λ3(k))

and ω(α) ∈ iR if λ ∈ [λ1(k), λ2(k)].
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Proof. We recall the logarithmic derivatives of the Jacobi theta functions [26, 8.199(3)]:

H ′(x)

H(x)
=

π

2K(k)

cot( πx

2K(k)

)
+ 4 sin

(
πx

K(k)

) ∞∑
n=1

q2n

1− 2q2n cos
(

πx
K(k)

)
+ q4n

 ,
H ′

1(x)

H1(x)
= − π

2K(k)

tan( πx

2K(k)

)
+ 4 sin

(
πx

K(k)

) ∞∑
n=1

q2n

1 + 2q2n cos
(

πx
K(k)

)
+ q4n

 ,
Θ′

1(x)

Θ1(x)
= − 2π

K(k)
sin

(
πx

K(k)

) ∞∑
n=1

q2n−1

1 + 2q2n cos
(

πx
K(k)

)
+ q4n−2

,

Θ′(x)

Θ(x)
=

2π

K(k)
sin

(
πx

K(k)

) ∞∑
n=1

q2n−1

1− 2q2n cos
(

πx
K(k)

)
+ q4n−2

,

where q := e−
πK′(k)
K(k) is the Jacobi nome, see Table A.1.

If λ ∈ [λ2(k), λ3(k)], then α = F (φα, k) ∈ [0, K(k)] by Proposition 3.5 and (3.12)

returns real ω(α), where both logarithmic derivatives of the Jacobi theta functions are

positive.

If λ ∈ [λ1(k), λ2(k)], then α = K(k)+iβ with β = F (φβ, k
′) ∈ [0, K ′(k)] by Proposition

3.5. The half-period translations [26, 8.183] yield

H(K(k) + iβ) = H1(iβ),

Θ(K(k) + iβ) = Θ1(iβ),

so that the logarthmic derivatives in (3.12) are purely imaginary and ω(K(k)+ iβ) ∈ iR.

If λ ∈ (−∞, λ1(k)], then α = K(k) + iK ′(k) + γ with γ = F (φγ, k) ∈ [0, K(k)) by

Proposition 3.5. The half-period translations [26, 8.183] yield

H(K(k) + iK ′(k) + γ) = e
πK′(k)
4K(k) e−

iπγ
2K(k)Θ1(γ),

Θ(K(k) + iK ′(k) + γ) = e
πK′(k)
4K(k) e−

iπγ
2K(k)H1(γ),

The purely imaginary part of the logarithmic derivatives cancels in (3.12) after the trans-

formation and we obtain the real quantity

ω(K(k) + iK ′(k) + γ) = 4(λ+ k2 − 1)

[
H ′

1(γ)

H1(γ)
− Θ′

1(γ)

Θ1(γ)

]
, (3.13)

where both logarithmic derivatives are negative.
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3.4 New solutions via the Darboux transformation

By now, the readers should be familiar with the method of constructing new solution

using the Darboux Transformation. Following the methodology presented in Section 1.4

and Section 2.4, here we fix a value of λ = λ0 and obtain a solution v = v0(x, t) of the

linear equations (1.2) and (1.3) associated with the potential u = ϕ0(x− c0t) of the KdV

equation (1.1). Thus, the formula for the Darboux Transformation (1.5) becomes

û(x, t) = ϕ0(x− c0t) + 2∂2x log v0(x, t). (3.14)

• The new solution û is nonsingular for λ0 ∈ (−∞, λ1(k)), which is below the Flo-

quet spectrum (Figure 3.1). This is because Sturm’s nodal theorem implies that

v±(x, t), given by (3.10), are sign-definite in x for every t ∈ R, and thus v0(x, t) ̸= 0

everywhere.

• If λ0 ∈ (λ2(k), λ3(k)) is in the finite gap, Sturm’s nodal theorem implies that v±(x, t)

have exactly one zero on the fundamental period of ϕ0 for every t ∈ R. We will

show that this technical obstacle can be overcome with the translation of the new

solution û(x, t) with respect to a half-period in the complex plane of x.

Before we proceed with the construction of the new solutions, we need to connect

ϕ0(x−c0t) given by (3.3) with the Jacobi theta function used to represent v0. The following

proposition gives an important relation between the Jacobi cnoidal function and the

Jacobi theta function.

Proposition 3.7. For every k ∈ (0, 1), we have

k2cn2(x, k) = k2 − 1 +
E(k)

K(k)
+ ∂2x log Θ(x). (3.15)

Proof. It follows from [32, equation (3.5.1)] that

∂2y log θ4(y) =
θ′′4(0)

θ4(0)
− θ42(0)sn

2(x, k),

where

y =
x

θ23(0)
=

πx

2K(k)
and k =

θ22(0)

θ23(0)
.

This yields with the chain rule that

∂2x log Θ(x) =
Θ′′(0)

Θ(0)
− k2sn2(x, k).
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Since sn2(x, k) = 1− cn2(x, k) and

Θ′′(0)

Θ(0)
= 1− E(k)

K(k)

by using [26, 8.196], we obtain (3.15).

This brings us to the main result of this work; which is the derivation and analysis of

two solution families of the KdV equation (1.1) parametrized by λ and x0 ∈ R, where λ
belongs to (−∞,−k2) for the bright breather family and (1 − 2k2, 1 − k2) for the dark

breather family. The two solution families are discussed in full detail in the next two

subsections.

3.4.1 Bright Breather on the Cnoidal Wave Background

The following theorem presents the construction of bright breathers via the Darboux

transformation (3.14).

Theorem 3.8. There exists an exact solution to the KdV equation (1.1) in the form

u(x, t) = 2

[
k2 − 1 +

E(k)

K(k)

]
+ 2∂2x log τ(x, t), (3.16)

where the τ -function is given by

τ(x, t) := Θ(x− c0t+ αb)e
κb(x−cbt+x0) +Θ(x− c0t− αb)e

−κb(x−cbt+x0), (3.17)

where x0 ∈ R is arbitrary and αb ∈ (0, K(k)), κb > 0, and cb > c0 are uniquely defined

from λ ∈ (−∞, λ1(k)) by

αb = F (φγ, k), (3.18)

κb =

√
1− λ− k2

√
−λ− k2√

1− 2k2 − λ
− Z(φγ, k), (3.19)

cb = c0 +
4
√
1− λ− 2k2

√
1− λ− k2

√
−λ− k2

κb
, (3.20)

where φγ ∈ (0, π
2
) is found from

sinφγ =

√
−λ− k2√

1− 2k2 − λ
. (3.21)
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Proof. Consider a linear combination of the two solutions to the linear system (1.2) and

(1.3) in the form (3.10) with α = K(k) + iK ′(k) + γ and γ = F (φγ, k) ∈ (0, K(k)):

v0(x, t) = c+
H(x− c0t+ α)

Θ(x− c0t)
e−(x−c0t)Z(α)−ω(α)t + c−

H(x− c0t− α)

Θ(x− c0t)
e+(x−c0t)Z(α)+ω(α)t,

(3.22)

where (c+, c−) are arbitary constants. By using the half-period translations of the Jacobi

theta functions [26, 8.183], we obtain for α = K(k) + iK ′(k) + γ:

H(x+ α) = e
πK′(k)
4K(k)

− iπ(x+γ)
2K(k) Θ(x+K(k) + γ),

H(x− α) = −e
πK′(k)
4K(k)

+
iπ(x−γ)
2K(k) Θ(x+K(k)− γ),

and

Z(α) =
H ′

1(γ)

H1(γ)
− iπ

2K(k)
.

Substituting these expressions into (3.22) cancels the x-dependent complex phases. An-

ticipating (3.14), we set

c+ = ce
−(K(k)+x0)

H′
1(γ)

H1(γ) , c− = −ce(K(k)+x0)
H′
1(γ)

H1(γ)

with arbitrary parameters c, x0 ∈ R, from which the constant c cancels out due to the

second logarithmic derivative. Using c± in (3.22), inserting v0 into (3.14), and simplifying

with the help of (3.15), we obtain a new solution in the final form u(x, t) := û(x−K(k), t),

where u(x, t) is given by (3.16) with τ(x, t) given by (3.17) with the following parameters:

αb := γ ∈ (0, K(k)), κb := −H′
1(γ)

H1(γ)
> 0, and

cb := c0 − ω(K(k) + iK ′(k) + γ)
H1(γ)

H ′
1(γ)

= 4(k2 − λ) + 4(λ+ k2 − 1)
Θ′

1(γ)H1(γ)

Θ1(γ)H ′
1(γ)

,

where we have used (3.13). By using the following identities [11, 1053.02]

H ′
1(γ)

H1(γ)
= −sn(γ, k)dn(γ, k)

cn(γ, k)
+ Z(γ),

Θ′
1(γ)

Θ1(γ)
= −k

2sn(γ, k)cn(γ, k)

dn(γ, k)
+ Z(γ),
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and the relation formulas Z(γ) = Z(φγ, k),

sn(γ, k) = sin(φγ) =

√
−λ− k2√

1− 2k2 − λ
, cn(γ, k) = cos(φγ) =

√
1− k2√

1− 2k2 − λ
,

and

dn(γ, k) =

√
1− k2

√
1− λ− k2√

1− 2k2 − λ
,

we express parameters αb, κb, and cb in terms of incomplete elliptic integrals in (3.18),

(3.19), and (3.20). Since κb > 0, it follows that cb > c0.

Remark 3.9. The solution u(x, t) obtained in the proof of Theorem 3.8 is the half-period

translation along the real axis of the solution û(x, t) defined by (3.14).

Remark 3.10. Since κb > 0, it follows from (3.16), (3.17), and (3.15) that

u(x, t) → 2k2cn2(x− c0t± αb, k) as x− cbt→ ±∞.

A suitably normalized phase shift of the background cnoidal wave can be written in the

form:

∆b := − 2παb

K(k)
= −2πF (φγ, k)

K(k)
∈ (−2π, 0).

When ∆b ∈ (−π, 0), the normalized phase shift is negative. When ∆b ∈ (−2π, π], the

normalized phase shift is considered to be positive by a period translation to 2π +∆b ∈
(0, π).

Figure 3.3 depicts the spatiotemporal evolution of a solution u(x, t) given by (3.16)

and (3.17). This solution represents a bright breather with speed cb > c0 and inverse

width κb propagating through a background cnoidal wave with speed c0. As a result of

the bright soliton, the cnoidal background is spatially shifted by −2αb.

3.4.2 Dark Breather on the Cnoidal Background

The following theorem presents the construction of dark breathers via the Darboux

transformation (3.14).

Theorem 3.11. There exists an exact solution to the KdV equation (1.1) in the form

u(x, t) = 2

[
k2 − 1 +

E(k)

K(k)

]
+ 2∂2x log τ(x, t), (3.23)
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Figure 3.3: Bright breather on the cnoidal wave with k = 0.8 for λ = −1.2 and
x0 = 0.

where the τ -function is given by

τ(x, t) := Θ(x− c0t+ αd)e
−κd(x−cdt+x0) +Θ(x− c0t− αd)e

κd(x−cdt+x0), (3.24)

where x0 ∈ R is arbitrary and αd ∈ (0, K(k)), κd > 0, and cd < c0 are uniquely defined

from λ ∈ (λ2(k), λ3(k)) by

αd = F (φα, k), (3.25)

κd = Z(φα, k), (3.26)

cd = c0 −
4
√
(k2 + λ)(λ− 1 + 2k2)(1− k2 − λ)

κd
, (3.27)

where φα ∈ (0, π
2
) is found from

sinφα =

√
1− k2 − λ

k
. (3.28)

Proof. Consider a linear combination of the form (3.22), but this time with α = F (φα, k) ∈
[0, K(k)] for λ ∈ (λ2(k), λ3(k)). In this case, ω(α) and Z(α) = Z(φα, k) are real by Propo-

sitions 3.5 and 3.6. However, functions H(x ± α) change sign so that we should express

them in terms of functions Θ(x±α) after complex translation of phases. This is achieved

by the half-period translations [26, 8.183]:

H(x+ α) = ie−
πK′(k)
4K(k)

− iπ(x+α)
2K(k) Θ(x+ α− iK ′(k)),

H(x− α) = ie−
πK′(k)
4K(k)

− iπ(x−α)
2K(k) Θ(x− α− iK ′(k)).
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The x-dependent complex phase is now a multiplier in the linear superposition (3.22)

which does not affect the result due to the second logarithmic derivative. By using (3.14)

and (3.15), we set

c+ = ce−(x0−iK′(k))Z(α)+ iπα
2K(k) , c− = ce(x0−iK′(k))Z(α)− iπα

2K(k) ,

and obtain a new solution in the final form u(x, t) := û(x + iK ′(k), t) with the same

u(x, t) as in (3.23) and with τ(x, t) given by (3.24) with the following parameters: αd :=

α ∈ (0, K(k)), κb := Z(α) > 0, and

cd = c0 −
ω(α)

Z(α)

= 4(k2 − λ) + 4(λ+ k2 − 1)
Θ(α)H ′(α)

Θ′(α)H(α)
,

where we have used (3.12). Using the following identities [11, 1053.02]

H ′(α)

H(α)
=

cn(α, k)dn(α, k)

sn(α, k)
+ Z(α),

Θ′(α)

Θ(α)
= Z(α),

and the relations Z(α) = Z(φα, k),

sn(α, k) = sin(φα) =

√
1− λ− k2

k
, cn(α, k) = cos(φα) =

√
λ− 1 + 2k2

k
,

and dn(α, k) = λ+k2, we express parameters αd, κd, and cd in terms of incomplete elliptic

integrals as (3.25), (3.26), and (3.27). Since κd > 0, we have cd < c0.

Remark 3.12. The solution u(x, t) obtained in the proof of Theorem 3.11 is the half-period

translation along the imaginary axis of the solution û(x, t) defined by (3.14).

Remark 3.13. Since Z(φα, k) > 0, it follows from (3.23), (3.24), and (3.15) that

u(x, t) → 2k2cn2(x− c0t∓ αd, k) as x− cdt→ ±∞.

A suitably normalized phase shift of the background cnoidal wave can be written in the

form:

∆d =
2παd

K(k)
=
πF (φα, k)

K(k)
∈ (0, 2π). (3.29)

When ∆d ∈ (0, π], the normalized phase shift is positive. When ∆d ∈ (π, 2π), the

normalized phase shift is considered to be negative by translation to ∆d − 2π ∈ (−π, 0).
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Figure 3.4: Dark breather on the cnoidal wave background with k = 0.7 for λ = 0.265
and x0 = 0.

Figure 3.4 shows the spatiotemporal evolution of a solution u(x, t) given by (3.23)

and (3.24). This solution resembles a dark breather, where the breather core exhibits

the inverse spatial width κd and speed cd < c0 propagating through the cnoidal wave

background that has speed c0. The dark breather gives rise to the translation shift −2αd

of the cnoidal background.

3.5 Properties of the bright breather

Here we exploit the fact that each breather solution is characterized by its position

and a spectral parameter, determining a nonlinear dispersion relation, which in turn

relates the breather velocity, c, to the breather phase shift, ∆.

Figure 3.5 plots ∆b, κb, and cb for a bright breather as a function of the parameter λ,

see Theorem 3.8 and Remark 3.10. The phase shift ∆b increases monotonically while the

inverse width κb and the breather speed cb decrease monotonically as λ increases from

−∞ toward the band edge λ1(k), shown by the vertical dashed line. Since c0 = 1.12

for k = 0.8, we confirm that cb > c0, which can also be observed in Figure 3.3. This

characterization is in complete agreement with the experimental and numerical findings

in [37], in which they observe a bright breather moving faster than a cnoidal carrier wave,

while imparting a topological phase shift.

Figure 3.6 characterizes the family of bright breathers on the background cnoidal wave

by plotting cb − c0 and κb versus ∆b for three values of k. Profiles of breather solutions

observed in Figure 3.6 confirm why we call them bright breathers. Bright breathers are
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Figure 3.5: Normalized phase shift ∆b (left), inverse width κb (middle), and breather
speed cb (right) versus λ in (−∞, λ1(k)) for k = 0.8. The band edge λ1(k) = −k2 is

shown by the vertical dashed line.

Figure 3.6: Left top (bottom): dependence of cb − c0 (κb) versus ∆b for several
values of k. Right: representative solutions for the bright breathers on the background
cnoidal waves. Representative solutions are marked on the left panel with a unique

colored symbol.

more localized and have larger amplitudes, and move faster for smaller (more negative)

values of ∆b (smaller values of λ). For sufficiently large amplitude, ∆b falls below −π
and the breather exhibits the positive phase shift ∆b + 2π ∈ (0, π) (cf. Remark 3.10).

In contrast, for sufficiently small-amplitude breathers, ∆b ∈ (−π, 0) and the phase shift

is negative.

Remark 3.14. In the asymptotic limit k → 0 it follows that the background cnoidal wave

vanishes, while the bright breather solution recovers the one soliton solution with the

spectral paramter λ ∈ (−∞, 0), while in the asymptotic limit k → 1 the background
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cnoidal wave transforms into normalized soliton and the bright breather solution recovers

the two-soliton solution with the spectral parameter λ ∈ (−∞,−1) [28].

3.6 Properties of the dark breather

Figure 3.7 plots ∆d, κd, and cd for a dark breather as a function of the parameter λ,

see Theorem 3.11 and Remark 3.13.

The phase shift ∆d is monotonically decreasing between the band edges λ2(k) and

λ3(k), shown by the vertical dashed lines. The inverse width κd has a single maximum

and vanishes at the band edges. The breather speed cd is monotonically decreasing. Since

c0 = −0.08 for k = 0.7, we confirm that cd < c0, which is also clear from Figure 3.4. This

characterization is in complete agreement with the experimental and numerical findings

in [37], in which they observe a dark breather moving slower than a cnoidal carrier wave,

while imparting a topological phase shift.

Figure 3.7: Normalized phase shift ∆d (left), inverse width κd (middle), and soliton
speed cd (right) versus λ in (λ2(k), λ3(k)) for k = 0.7. The band edges λ2(k) = 1− 2k2

and λ3(k) = 1− k2 are shown by the vertical dashed lines.

Figure 3.8 characterizes the family of dark breathers on a background cnoidal wave by

plotting cd − c0 and κd versus ∆d for three values of k. The profiles of breather solutions

at t = 0 subject to the phase shift x0 = 5 confirm why we refer to them as dark breathers.

In contrast to the bright breather case, dark breather solutions exhibit vanishing cnoidal

wave modulations for both of the extreme phase shifts ∆d → 0 and ∆d → 2π, with

the largest-amplitude breather occurring at an intermediate phase shift, which we can

identify by examining the inverse width κd.

Remark 3.15. In the asymptotic limit k → 1 the background cnoidal wave transforms

into normalized soliton and the dark breather solution recovers the two-soliton solution

with the spectral parameter λ ∈ (−1, 0) [28].
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Figure 3.8: Left top (bottom): dependence of cd−c0 (κd) versus ∆d for several values
of k. Right: representative solutions for the dark breathers on the background cnoidal
wave. Representative solutions are marked on the left panel with a unique colored
symbol. The dotted curve on the left panel corresponds to points of maximum κd with

the greatest localization.



Chapter 4

Concluding Remarks and Open

Problems

The two main results of my master’s research, on the topic of solitons and dispersive

shock waves, are represented in Chapters 2 and 3. In Chapter 2 we considered a physi-

cally relevant initial value problem for the KdV equation with the step-like initial data.

We show that the step-like initial data evolves into a rarefaction wave (RW) whereas the

solitary wave either propagates over the RW or completely disappears inside the RW.

This outcome depends on the existence of an isolated eigenvalue of the Schrödinger spec-

tral problem outside the continuous spectrum. One of the main results of this chapter

involves construction of the transmitted soliton via the Darboux transformation in the

case when an isolated eigenvalue exists. The other important result is the proof that

if the isolated eigenvalue does not exist, no embedded eigenvalues exist either, because

zeros of the transmission coefficients that correspond to the soliton data transform into

complex resonant poles.

In Chapter 3, we have constructed bright and dark breathers on the cnoidal wave

background, using the Darboux Transformation. Based on properties of Jacobi elliptic

functions, we explored the explicit expressions for parameters of the τ -functions in de-

pendence of the parameter λ to characterize the dynamical properties of the bright and

dark breathers. Although the analytical expressions (3.16)-(3.17) and (3.23)-(3.24) are

not novel and can be found in equivalent forms in [5, 31, 40], it is the first time to the

best of our knowledge that the dynamic properties of the bright and dark breathers have

been explicitly investigated.

47



Chapter 4. Concluding Remarks and Open Problems 48

We hope that this study will open a road for further advances in the subject of solitary

wave interactions with the dispersive backgrounds. One of the interesting open problems

is to use the Darboux transformation for computations of the limiting phase shifts of

the transmitted solitary waves as t → ±∞ and comparison with the experimentally

detected phase shifts [36, 37]. Another interesting problem is to understand better how the

modulation theory for soliton propagation used in our data analysis is justified within the

Whitham modulation theory [12, 34, 46]. Although the resolution formulas for N solitons

transmitted over the zero background have been derived in [17, 18], it is interesting to

see how the transformations between the two problems change these formulas to the case

of the nonzero boundary conditions and how these formulas correspond to outcomes of

the qualitative theory of soliton tunneling in [43, 44]. Finally, since our approach can be

generalized to a larger class of integrable dispersive equations, we hope that this study

lays the foundation for exploring other types of dynamic soliton-dispersive background

interactions including more complex topological breather structures.
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Appendix A

Jacobi Elliptic Functions

The Jacobi elliptic functions arise from the inversion of the elliptic integral of the first

kind,

u = F (φ, k) =

∫ φ

0

dt√
1− k2 sin2 t

where k ∈ (0, 1) is the elliptic modulus, and φ = am(u, k) = am(u) is the Jacobi

amplitude. The three basic Jacobi elliptic functions are denoted

cn(u, k) = cos(φ), sn(u, k) = sin(φ), and dn(u, k) =

√
1− k2 sin2 φ,

These functions are smooth and periodic, where sn and cn are periodic with period

4K(k) while dn is periodic with period 2K(k), whereK(k) is the complete elliptic integral

of the first kind.

The fundamental relations on the Jacobi elliptic functions are given by

sn2(x, k) + cn2(x, k) = 1, dn2(x, k) + k2sn2(x, k) = 1 (A.1)

with the following derivative relations

d

dx


sn(x, k)

cn(x, k)

dn(x, k)

 =


cn(x, k)dn(x, k)

−sn(x, k)dn(x, k)

−k2sn(x, k)cn(x, k)

 , (A.2)
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The following table collects together the basic elliptic integrals and functions.

F (φ, k) Elliptic integral of the first kind F (φ, k) :=

∫ φ

0

dα√
1− k2 sin2 α

E(φ, k) Elliptic integral of the second kind E(φ, k) :=

∫ φ

0

√
1− k2 sin2 αdα

K(k) Complete elliptic integral K(k) := F
(π
2
, k
)

E(k) Complete elliptic integral E(k) := E
(π
2
, k
)

Z(φ, k) Zeta function Z(φ, k) := E(φ, k)− E(k)

K(k)
F (φ, k)

H(x) θ1

(
πx

2K(k)

)
with θ1(u) = 2

∞∑
n=1

(−1)n−1q(n−
1
2
)2 sin(2n− 1)u

H1(x) θ2

(
πx

2K(k)

)
with θ2(u) = 2

∞∑
n=1

q(n−
1
2
)2 cos(2n− 1)u

Θ1(x) θ3

(
πx

2K(k)

)
with θ3(u) = 1 + 2

∞∑
n=1

qn
2

cos 2nu

Θ(x) θ4

(
πx

2K(k)

)
with θ4(u) = 1 + 2

∞∑
n=1

(−1)nqn
2

cos 2nu

q e−
πK′(k)
K(k) with K ′(k) = K(k′) and k′ =

√
1− k2

Table A.1: Table of elliptic integrals and Jacobi elliptic functions.
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