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Abstract
This thesis deals with the properties of the coefficients of Hypergeometric Series.
Specifically, we are interested in which primes appear in the denominators to a
bounded power. The first main result gives a method of categorizing the primes up
to equivalence class which appear finitely many times in the denominators of gen-

eralized hypergeometric series nFm

(
a1 a2 · · · an

b1 b2 · · · bm
; z

)
over the rational numbers

Q. Necessary and sufficient conditions for when the density is zero are provided
as well as a categorization of the n and m for which the problem is interesting.

The second main result is a similar condition for the appearance of primes in
the denominators of the hypergeometric series 2F1 over number fields, specifically
quadratic extensions Q(

√
D). A novel conjecture to the study of p-adic numbers

is also provided, which discusses the digits of irrational algebraic numbers’ p-adic
expansions. Both of these results build off previous research done by Franc et al.
2020, which was concerned with 2F1 over the rational numbers, and expands it to
general hypergeometric series, as well as fields other than the rational numbers.
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Chapter 1

Introduction

1.1 Basic Problem
The crux of this thesis lies in the examination of the arithmetic properties of the
coefficients of hypergeometric series. We are interested in the density of bounded
primes in the denominators of the series coefficients.

We provide two main results in this thesis. Chapter 3 contains the first, Theo-
rem 3.1.5. This theorem gives a complete method to finding the density of bounded
primes in the denominators of the series nFn−1. This is a generalization of the
density result given as Theorem 4 of Franc et al. 2020 to higher values of n. Fur-
thermore, necessary and sufficient conditions for the density of the bounded primes
to be zero are shown, as well as conditions on the density depending on the values
of n and m. Specifically, it is shown that the only case of interest for the density
of bounded primes in the denominators of generalized hypergeometric series nFm

is when n = m + 1.

Chapter 4 contains the second set of main results. Theorem 4.2.4 is an analogous
result to Theorem 4 of Franc et al. 2020 over quadratic number fields Q(

√
D)

rather than over the rational numbers Q. As well, similar conditions to that of
the previous chapter are given, providing conditions for when the density is zero.
These results rely on a novel conjecture to the field, which presents an expected
property of the p-adic expansions of irrational algebraic numbers.

1.2 Notation
In this section we will provide a quick reference for different notation used through-
out the thesis. This will include definitions of functions as well as the shorthand
that will be used. These will be explained in context in their individual sections.

Notation for writing p-adic integers: 2.2.1
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p-adic Absolute Value: 2.2.5

p-adic Truncation: 2.2.2

p-adic Valuation: 2.2.3

p-adic Carry: 2.2.4

Fractional Part: 2.2.6

Greek letter notation for digits of expansion: 2.2.7

Hypergeometric Series: 2.1

Numerator Majorization: 3.1.2

2
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Chapter 2

Background

2.1 Quadratic Number Fields
A field F is an extension field if it contains a subfield R ⊆ F such that the
operations on R are the same as those on F restricted to R. As an example, the
complex numbers C are an extension field over the real numbers R.

We define the degree of an extension field to be the dimension of that field over
its subfield. So the field of complex numbers, which can be viewed as 2-dimensional
vectors with real components, has degree 2 as an extension over the real numbers.

In this way, quadratic number fields are degree 2 field extensions of the rational
numbers Q. We denote one of these fields Q

(√
D
)
, where D ∈ Z is square-free.

By the quadratic formula, every quadratic field can be expressed in this way.

For a quadratic field K = Q
(√

D
)
, we define the ring of integers OK to be the

ring composed of all elements of K that are roots of monic polynomials with integer
coefficients Neukirch 2013. This ring can be expressed as OK = Z+Z

(
1
2(d +

√
d)
)
,

where d = D if D ≡ 1 mod 4
d = 4D if D ≡ 2 or 3 mod 4

An important property of quadratic number fields is that an ideal in the ring
of integers OK of the field K = Q

(√
D
)

that is generated by a prime p ∈ Z is not
necessarily prime in this field. For an ideal ⟨p⟩, either ⟨p⟩ is prime, in which case
we call p inert, ⟨p⟩ is the square of a prime ideal, in which case p is ramified, or
⟨p⟩ is the product of two distinct prime ideals, and we say p splits in Q

(√
D
)
.

We also note that, if D is not square-free, we can take the square-free part of it,
as if D = x2d, then for any a + b

√
D, it is equal to taking a + b′

√
d, where b′ = bx.
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We provide the following method to determine when a rational prime splits in
Q
(√

D
)
, which will be important later in Chapter 4, along with the above listed

property.

Theorem 2.1.1. Take Q
(√

D
)

with D square-free. If p is an odd prime, then p

splits in Q
(√

D
)

if and only if D is a quadratic residue mod p.

Proof. This is adapted from Proposition 8.5 of Neukirch 2013.

2.2 p-adic numbers
We can first begin with the basic idea of a p-adic number. Consider a natural
number x, and a prime p. The p-adic expansion of x is to write it as a sum of
powers of p. For instance, if we take x = 219, p = 7, we get the p-adic expansion

2 + 3 · 7 + 4 · 72.

Writing natural numbers in base p this way is simple and intuitive. These
numbers can be added and subtracted as expected. We call a number a p-adic
integer when the lowest power of p in its expansion is greater than or equal to
zero. While we can clearly see how natural numbers are p-adic integers, this
becomes more complicated when attempting to extend the same to integers and
rational numbers, and it helps to first introduce the p-adic absolute values, as well
as the truncation, p-adic valuation, and the notation in which a p-adic expansion
is written.

Definition 2.2.1. For a p-adic integer a, we write the digits of its expansion as
a0a1a2 · · · ak if it has a finite expansion, and as a0a1a2 · · · akak+1 · · · an where the
over-lined part is the periodic part of an expansion.

Definition 2.2.2. If x is a p-adic integer, then τj(x) denotes the truncation of
x mod pj. This is the unique integer 0 ≤ τj(x) < pj such that x ≡ τj(x) mod pj.

Definition 2.2.3. Let νp(n) denote the p-adic valuation of n, the exponent of the
highest power of p that divides n. This can be negative if the highest power of p is
in the denominator of n. By convention, we define νp(0) = ∞.

Definition 2.2.4. We use cp(x, y) to denote the number of carries required to
evaluate the sum of the p-adic numbers x and y.

4
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Definition 2.2.5. Let x be a rational number. We define its p-adic absolute value
for a prime p to be

|x|p = 1
pn

where n = νp(x) is the highest power of p that divides x.

These absolute values are non-Archimedean, meaning they fulfill the strong
triangle inequality: for x, y,

|x + y|p ≤ max(|x|p, |y|p)

This can be seen to be true by considering the fact that the p-adic absolute
value is found from the lowest exponent term. When adding two numbers together,
their sum cannot gain a term with a lower exponent than either summand.

Under this absolute value, we have the interesting property that a number that
is very large under the Euclidean absolute value can be very small under the p-adic
absolute value. As a result, this also lets two numbers that are very far away in the
Euclidean sense be close using this norm. For example, p100 is quite large under
the regular Archimedean norm, but under the p-adic absolute value, |p100|p = 1

p100 .

Using this norm, we can now determine a p-adic number X that can act as −1.
Since we need this number to be the additive inverse of 1, we need X + 1 to be
zero. This is where we use the properties of the p-adic norm. When we take each
term of the expansion to be p − 1, then when we add 1, we continually carry onto
the next digit. Consider the following p-adic integer X. We will show how this
acts like −1 does for the integers:

X = (p − 1) + (p − 1) · p + (p − 1) · p2 + · · ·

If we consider the partial sum given by 1 + τj(X), we can look at the limit as
j → ∞. The remaining term after the carries of this sum is (p − 1)pj. Using the
p-adic absolute value, |1 + τj(X)|p = 1

pj . As j increases, this quickly approaches
zero, and so the limit is zero. As such X + 1 = 0 and X = −1. If one is to
multiply X by itself, you will also find that by the same carry properties, X2 = 1,
and so X acts as desired. Thus any negative integer can be constructed by the
multiplication of a positive integer by −1.

Rational numbers are more complicated. The following construction of rational
numbers’ p-adic expansions is adapted from Conrad 2019. First note that all
rational numbers are an integer addition away from a rational between −1 and 0.
So it suffices to look at rationals in the interval (−1, 0). For a rational −a

b
with

5
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0 < a < b, we can first take the order of p mod b. Call this order M . Then taking
(pM − 1) = bb′, we use this as the denominator of a geometric series, with ab′ as
the numerator.

−a

b
= −ab′

bb′

Then, taking the p-adic expansion of the numerator, we get a string of digits with
length M , which forms the periodic expansion of this number.

−a

b
= a0a1a2 · · · aM−1

1 − pM
= a0a1a2 · · · aM−1

Thus, any rational number can be expressed as the sum of an integer expansion
and the expansion of a number between negative 1 and zero.

As an example, we will take the 3-adic expansion of −a
b

= − 7
11 . We begin with

finding the order of 3 mod 11, which gives M = 5. We then get 35 − 1 = 22 · 11
which we can apply to the − 7

11 , and take the 3-adic expansion of the numerator:

−a

b
= − 7 · 22

11 · 22 = 10221
1 − 35 = 10221

Since we have an absolute value, we can thus complete the rational numbers for
some p, which gives us the p-adic number fields. There are infinitely many of these
fields, as there are infinitely many primes. Interestingly, by a result of Ostrowski,
the only distinct completions of the rationals are the real numbers, the completion
with regard to the trivial norm, and the p-adic numbers Neukirch 2013. We will
refer to the completion of the rational numbers with respect to a p-adic absolute
value as Qp, and define Zp to be the p-adic integers, which are any x ∈ Qp with
νp(x) ≥ 0.

It will be useful to have some functions on the p-adic numbers that we can use.
We begin with the truncation of a p-adic integer.

Definition 2.2.6. Let x be a rational number. We denote by {x} the fractional
part of x, such that

{x} = x − ⌊x⌋

where ⌊x⌋ is the standard floor operator.

It will be valuable later to have a method for calculating the p-adic coefficients
of a rational number. For this we introduce the following lemma, taken from Franc
et al. 2018 with notation changed:

6
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Lemma 2.2.7. Let a = n
d

denote a rational number with gcd(n, d) = 1 satisfying
0 < a < 1, and let p denote a prime such that a − 1 ∈ Z×

p . Let M denote the
multiplicative order of p mod d, and let a − 1 = α0α1 · · · αM−1 denote the p-adic
expansion of a − 1. Then for each index 0 ≤ j < M ,

αj =
⌊{

−pM−1−jα
}
p
⌋
.

In this way, we will refer to the digits of a rational number’s p-adic expansion
by the corresponding Greek letter, i.e. αi refers to the digits of a − 1 and γi refers
to the digits of c − 1, et cetera.

Notice that we are referring to the expansion of a−1 rather than the expansion
of a. We can do this without worry, which is due to the fact that the expansions
of a and a − 1 can only differ on finitely many leading terms. When we add 1 to
a − 1, in almost every case it only changes the first term. If α1 = p − 1, we will
carry to the next term, which will be the last time it carries unless that is also
p − 1. We saw earlier that X = (p − 1) + (p − 1)p + (p − 1)p2 + · · · is the expansion
of the integer −1, and this is also the only case where we could have infinitely
many carries. However, this lemma restricts to 0 < a < 1, and so a = X + 1 = 0
is outside the bounds of this lemma.

We will also occasionally refer to the digits of the expansion of b
√

D, which will
be denoted by β̄i for an index i.

We can also use these p-adic fields to determine the splitting properties of a
prime. The following theorem is a consequence of Dedekind’s theorem for factoring
primes and Hensel’s Lemma for p-adic number fields. This is also naturally related
to Theorem 2.1.1.

Theorem 2.2.8. Let Q
(√

D
)

be a quadratic number field and let p be an odd
prime. Then p splits in Q

(√
D
)

if and only if Qp contains Q
(√

D
)
.

2.3 Hypergeometric Series
The hypergeometric function is defined in terms of the hypergeometric series as
follows:

2F1(a, b, c; z) =
∞∑

n=0

(a)n(b)n

(c)nn! zn

7
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where (x)n is the rising Pochhammer symbol

(x)n =

1 n = 0
x(x + 1) · · · (x + n − 1) n > 0.

The hypergeometric function is commonly seen as a solution to second-order
ODEs with three regular singular points. The function is algebraic on certain sets
of parameters, discovered and categorized by Schwarz 1873. Table 2.1 presents
this list of parameters for which the function is algebraic.

No. a b c

1 1
2

1
2 ν

2 1
2

1
3

1
3

3 2
3

1
3

1
3

4 1
2

1
3

1
4

5 2
3

1
4

1
4

6 1
2

1
3

1
5

7 2
5

1
3

1
3

8 2
3

1
5

1
5

9 1
2

2
5

1
5

10 3
5

1
3

1
5

11 2
5

2
5

2
5

12 2
3

1
3

1
5

13 4
5

1
5

1
5

14 1
2

2
5

1
3

15 3
5

2
5

1
3

Table 2.1: Schwarz’s list of parameters for which the hypergeo-
metric function can be expressed algebraically. Schwarz 1873

There also exists a generalized hypergeometric function, which is as follows:

nFn−1

(
a1 a2 · · · an

b1 b2 · · · bn−1
; z

)
=

∞∑
k=0

∏
i≤n(ai)k∏
i≤n(bi)k

1
k!z

k (2.1)

8
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Importantly, for all cases of the generalized hypergeometric function, we will be
using ai to refer to parameters in the numerator, and using bi to refer to those in
the denominators.

A specific property of these series that we are interested in is the primes that
appear in the denominators. For any given prime p, we want to know if the prime
is bounded.

Definition 2.3.1. We call a prime unbounded in the denominators of the series
if the p-adic valuation of all of the coefficients are not bounded below. We call a
prime bounded if it is not unbounded.

A simple example could be the geometric series ∑r≥0 2−rxr. The prime p = 2
is clearly unbounded in the denominators of the coefficients, but any odd prime
will never appear, and so is bounded.

For an example of a prime bounded in the denominators of a hypergeometric
series, if we have a series 2F1(a, c; c; z), if the 7-adic valuation of every coefficient
is always greater than some integer r, then it would be bounded below by r, and
we would say that 7 is bounded in the denominators of the series.

In the following chapters, we will be referring to a concept of density of bounded
primes in the denominators of the series, so it is important to properly define what
that means.

Definition 2.3.2. The density of bounded primes for a series F is the natural
density given by

lim
N→∞

{p ≤ N | p is bounded for F}
{p ≤ N}

where p represents a prime number.

Considering 2F1, when we have rational coefficients we find the density is ac-
curately given by a computable finite set of primes, as proven in Franc et al. 2020.
As this will be referenced often, we will restate it here:

Theorem 2.3.3. Let a, b, and c denote three rational numbers satisfying 0 <
a, b, c < 1 and c ̸= a, b. Let M denote the least common multiple of the de-
nominators of a − 1, b − 1, and c − 1 when written in lowest terms, and define

B(a, b; c) =
{
u ∈ (Z/MZ)×| for all j ∈ Z,

{
−ujc

}
≤ max

({
−uJa

}
,
{
−ujb

})}
.

Then, for all primes p > M , the series 2F1(a, b; c) is p-adically bounded if and only
if p is congruent to an element of B(a, b; c) mod M . Thus, the density of the set

9
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of bounded primes for 2F1(a, b; c) is

D(a, b; c) = |B(a, b; c)|
|(Z/MZ)×|

Interestingly, we find that the only cases where this density is 1 are precisely
those cases on Schwarz’s list. That is, if the monodromy group is not finite, then
there always exists a positive density of unbounded primes.

There are analogues for this density 1 case that can be given for some generalized
hypergeometric functions. In the case of 3F2, the parameters that give a density of
1 are given in Table 1 of Kato 2011. Other cases can likely be derived in a similar
manner, making use of results from Beukers and Heckman 1989.

In the next chapter we will explore the density of bounded primes in the de-
nominators of the generalized hypergeometric series over the rationals. Following
that, we will discuss the densities for bounded primes in the denominators of the
hypergeometric series for fields outside the rationals, specifically quadratic number
fields.

10
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Chapter 3

Generalized Hypergeometric
Series

3.1 Results on nFn−1

It has been previously seen how the density of bounded primes in denominators of
the standard hypergeometric series 2F1 can be found over the rational numbers.
In this chapter we present conditions for nFn−1 to have densities of zero, one, as
well as provide a general construction of the set that gives the density for any set
of rational parameters.

We begin with a valuable lemma for the proofs in this chapter.

Lemma 3.1.1. Let a and b be rational numbers 0 < a, b < 1. If a < b, then for
sufficiently large prime p, there is at least one digit in the p-adic expansion of a
that is greater than the digit in the same index of the p-adic expansion of b. By
periodicity of the expansions, this then occurs infinitely often.

We can note that if the prime is not sufficiently large, then the position where
this would be true could instead have the digits be equal.

Proof. Recall the formula for the digits for a p-adic expansion given in Lemma
2.2.7. Denote the order of p mod den(a) as Ma, and the order of p mod den(b) as
Mb. We can note that, if the expansion of a is 1-periodic, then, since a < b, the
fractional part of −a will be greater than the fractional part of −b. So in the bMb−1
digit, we have

⌊{−b}p⌋ < ⌊{−a}p⌋.

Observe that in this step is where the statement relies on the prime being
sufficiently large, as the rounding inherent to the floor function with a small prime
can lead to equality of these digits.
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In the cases where the expansion of a is not 1-periodic, there is still a biggest
term, which will always be in the aMa−1 digit, as, like above, we have

⌊{−b}p⌋ < ⌊{−a}p⌋

since Ma divides the exponent of p in the formula.

Then, we further divide this into cases. If the period of the expansion of b
divides that of a, then we end with a digit where the prime power in the formula
for the digits is p0 in both a and b. The same occurs if the period of a divides that
of b.

If the greatest common divisor of the two periods is 1, then we simply look at
the digit at the lcm of the periods of a and b. Then, once again, Ma and Mb will
divide the exponent of p in the formula, and we have that the digit for a is larger
than the digit for b at that position.

We can now introduce the following notation, which will form the basis of the
upcoming theorem.

Definition 3.1.2. We call a set of rational generalized hypergeometric parameters
numerator majorized with respect to a prime p if a permutation σj ∈ Sn can be de-
fined for every position j up to the lowest common multiple M of the denominators
of the parameters such that

βi,j < ασj(i),j

for all 0 ≤ i ≤ m, 0 ≤ j ≤ M .

We provide the following table as an easy example of numerator majorized
parameters with respect to p = 11. Each row in Table 3.1 represents the p-adic
digits of a rational hypergeometric parameter such that all five parameters have
4-periodic 11-adic expansions. Hence it is a finite computation to check whether
the parameters are numerator majorized with respect to the prime p = 11. The
digits are coloured according to the pairing, where a red numerator digit is the
distinct digit greater than the red denominator digit, and likewise for the blue
digits.
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1 2 3 4
a1 = 3

10 7 7 7 7
a2 = 1

3 2 8 2 8
a3 = 1

3 8 2 8 2

b1 = 8
15 1 5 1 5

b2 = 13
15 5 1 5 1

Table 3.1: An example of hypergeometric parameters that are
numerator majorized with respect to p = 11.

In this table we can see that at every position, each denominator digit has a
distinct numerator parameter greater than it.

This is a property that can easily be checked for any given set of parameters and
prime. Particularly, we can check this condition using an equivalent technique to
that which appears in Theorem 2.3.3. The following lemma serves as an equivalent
definition.

Lemma 3.1.3. A set of parameters is numerator majorized with respect to a suf-
ficiently large prime p ≡ u mod M where M is the lowest common multiple of the
denominators of the parameters if the following condition holds.

for all j ∈ Z≥0, there exists a permutation σj ∈ Sn such that{
−ujbi

}
≤
{
−ujaσj(i)

}
for all bi

Proof. As before, a prime that is not sufficiently large may be equal instead of less
than. Note that we only need to check for j up to the multiplicative order of u in
(Z/MZ)×. This Lemma follows as a result of the earlier stated Lemma 2.2.7.

This is a much easier definition to use when calculating the densities, as it allows
for wholesale checking of an entire congruence class of prime numbers: notice that
the lined formula in Lemma 3.1.3 no longer relies on p. As Lemma 2.2.7 is the
simplest way of calculating rational p-adic expansions manually, the process of
calculating the digits of the expansion includes the calculation of the fractional
parts used in Lemma 3.1.3.

Let us now discuss in detail how to check numerator majorization using both
the p-adic approach and the approach of Lemma 3.1.3. We begin with the p-adic

13
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approach. Take p = 11 and parameters (ai) =
(

2
3 , 1

2 , 1
3

)
, (bi) =

(
4
5 , 3

5

)
. We can

then see the expansions of these parameters in Table 3.2. We can see that at
every position, each b parameter has at least one a parameter greater than it, and
so with the manual method we can see that this set of parameters is numerator
majorized.

Position 1 2 3 4 5
2/3 8 3 7 3 7
1/2 6 5 5 5 5
1/3 4 7 3 7 3
4/5 3 2 2 2 2
3/5 5 4 4 4 4

Table 3.2: The 11-adic expansions of (ai) =
(

2
3 , 1

2 , 1
3

)
, (bi) =(

4
5 , 3

5

)

Now we will consider instead the approach given by Lemma 3.1.3. In fact, this
method will determine numerator majorization for all primes p ≡ 11 mod 30, as 30
is the lowest common multiple of the denominators . This illustrates the usefulness
of Lemma 3.1.3. For u = 11, we calculate {−uja1}, {−uja2}, {−uja3}, {−ujb1}, and {−ujb2}.
Note that the multiplicative order of 11 in Z/30Z is 2, and so we only need to check
j = 0, 1.

{−u0a1} = 1
3 {−u1a1} = 2

3
{−u0a2} = 1

2 {−u1a2} = 1
2

{−u0a3} = 2
3 {−u1a3} = 1

3
{−u0b1} = 1

5 {−u1b1} = 1
5

{−u0b2} = 2
5 {−u1b2} = 2

5

Here we see that, just as in the table version, we have distinct aσj(i) > bi for
each bi and each exponent j. So each method gives the same result, that this
set of parameters is numerator majorized with respect to large enough primes
p ≡ u mod 30. Since we are ultimately interested in densities of primes, it is
sufficient for our purposes to work with sufficiently large primes, where the notion
of sufficiently large depends only on the hypergeometric parameters.

14
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Notice that in the case of n = 2, this is identical to the property given in
Theorem 2.3.3. If there is only one b parameter, then you only need to check
whether {−ujb} ≤ max({−uja1}, {−uja2}) for all j up to the multiplicative order
of u ∈ Z/MZ. Thus, our theorem generalizes this to arbitrary n.

We also will state the following theorem from Franc et al. 2018 which shall be
used in the proof of the main theorem for this chapter. Here, admissible refers
to a rational parameter in the interval (0, 1), and good primes are precisely those
such that ai − 1 and bi − 1 have purely periodic expansions.

Theorem 3.1.4. Let (a1, . . . , an; b1, . . . , bn−1) denote rational hypergeometric pa-
rameters, and let p denote a prime such that νp(aj − 1) ≥ 0 and νp(bk − 1) ≥ 0 for
all j and k. Then if Am denotes the mthcoefficient of nFn−1(aj; bk; z),

νp(Am) =
n∑

j=1
cp(aj − 1, m) −

n−1∑
k=1

cp(bk − 1, m) (3.1)

Further, assume that the parameters (a1, . . . , an; b1, . . . , bn−1) are admissible,
assume that p is a good prime for this data, and let M denote the corresponding
common period of the p-adic expansions of the hypergeometric parameters. Then

νp(AmpM ) = νp(Am)

for all m ∈ Z≥0.

Proof. See Theorem 3.4 of Franc et al. 2018.

We can now use the previously stated definition of numerator majorization to
form the basis of the following theorem:

Theorem 3.1.5. Consider a generalized hypergeometric series

F = nFn−1

(
a1 a2 · · · an

b1 b2 · · · bn−1
; z

)
.

Take M to be the lowest common multiple of the denominators of the parameters
{a1, . . . , an, b1, . . . , bn−1}. We can define a set

B =
{

u ∈ (Z/MZ)×
∣∣∣∣∣The parameters are numerator majorized
for sufficiently large primes p ≡ u mod M

}
.
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The density of bounded primes in the denominators of this series F is given by

D = |B|
|(Z/MZ)×|

Proof. This proof makes use of Theorem 3.1.4 to determine when an equivalence
class is bounded. By applying Lemma 3.1.3, we are free to use the numerator
majorization condition.

In this proof, by an abuse of notation, when referring to the expansions of the
parameters, we are referring to the expansions of the parameters fractional parts
minus 1. This convention is used, as these expansions only differs from the ‘actual’
expansions by the addition of a rational integer. So we can simply consider the
purely periodic expansion of {x} − 1 for a parameter x.

Take {a1, . . . , an} and {b1, . . . , bn−1} to be the numerator and denominator pa-
rameters for nFn−1. For each equivalence class u ∈ (Z/MZ)×, we check whether
these parameters are numerator majorized. We then have two cases. We will begin
with the case where we are not numerator majorized.

If we are not numerator majorized, then there is some exponent j according
to the inequality of Lemma 3.1.3 between 0 and the order of u mod M where one
of the denominator parameters has no distinct numerator parameter greater than
it. This, by our definition of numerator majorization, corresponds to a position
where that parameter’s p-adic digit is greater than the remaining valid numera-
tor parameter digits. We can renumber the parameters such that b1 is the first
parameter where numerator majorization fails and take j to be the lowest index
position where this occurs. Then, taking βj to be the value of b1 at this position
j, we can construct the following for some positive integer r:

mr =
r∑

s=0
(p − βj)pMs+j−1.

We now can apply the first statement of Theorem 3.1.4 taking Amr .

νp(Amr) =
n∑

j=1
cp(aj − 1, mr) −

n−1∑
k=1

cp(bk − 1, mr)
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Note that when we add mr to the denominator parameters, since we are not
numerator majorized, we will have more carries in the denominator than in the
numerator. Since the definition of mr gives a carry in the first r positions where
majorization fails, we get the following bound on the value of νp(Amr):

νp(Amr) ≤ −r − 1.

As r increases, the valuation of Amr with respect to p is bounded above, and
unbounded below, and thus that prime is unbounded in the denominators of the
series, as well as any prime in its equivalence class.

If we now look at the u where we do have numerator majorization, we see that
regardless of the value of m used for Am in (3.1.4), we will always carry at least
an equal amount in the numerator parameters as in the denominators. Thus, the
valuation with respect to any given prime p ≡ u mod M is bounded below, and so
these u are bounded in the denominators of the series.

We thus can compute the density of bounded primes in the denominators of
the hypergeometric series nFn−1 as

D = |B|
ϕ(M)

since ϕ(M) = |(Z/MZ)×|.

We also can provide some examples of parameters and their corresponding
densities. Table 3.3 provides several examples. Note that there are cases where we
have density 1, which make use of some results shown in Kato 2011. We expect
there to be similar cases in higher n that can be found with similar techniques.
We also see cases with density zero, which occur precisely when the conditions for
Theorem 3.1.6 (stated and proven below) are satisfied.

You can also notice that in general, these densities are very small. This is
due to the fact that, the more parameters there are, the lower the likelihood that
all of the denominator expansions are smaller than sufficiently many numerator
parameters. Note that it only takes one digit at one position per u ∈ (Z/MZ)×

for all primes p ≡ u mod M to have valuation unbounded from below.

We also limit the denominators shown in this example. While this theorem
works for any set of parameters, these examples were generated using no repeat
parameters, and limiting the denominator to 15. As the LCM of the denominators
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n ai bi Density
3

[
1
6 , 2

3 , 5
6

] [
5
4 , 3

4

]
1

3
[

1
2 , 3

11 , 2
7

] [
4
9 , 7

11

]
13
360

3
[

1
3 , 1

4 , 13
15

] [
5
13 , 11

13

]
7
96

3
[

1
11 , 4

11 , 3
4

] [
1
4 , 1

2

]
3
20

4
[

3
13 , 10

13 , 5
13 , 2

9

] [
3
11 , 1

3 , 3
4

]
1
80

4
[

1
7 , 4

13 , 2
3 , 7

10

] [
5
7 , 1

5 , 3
5

]
17
576

4
[

3
10 , 1

9 , 1
2 , 7

11

] [
11
14 , 2

11 , 7
9

]
1
72

5
[

6
13 , 2

3 , 2
15 , 3

11 , 5
14

] [
9
13 , 3

4 , 1
2 , 1

6

]
11

1280

5
[

7
10 , 1

14 , 11
14 , 3

11 , 2
15

] [
4
5 , 1

2 , 3
10 , 1

4

]
7

480

5
[

1
14 , 6

11 , 1
2 , 3

5 , 10
13

] [
2
3 , 1

8 , 3
4 , 4

7

]
1
64

6
[

3
5 , 5

7 , 5
13 , 1

2 , 1
6 , 4

11

] [
7
9 , 8

15 , 5
11 , 7

8 , 2
3

]
371

69120

6
[

4
7 , 2

7 , 9
10 , 1

3 , 6
7 , 2

3

] [
1
2 , 9

13 , 3
5 , 2

5 , 7
8

]
1
32

6
[

2
11 , 2

9 , 7
11 , 8

13 , 1
7 , 5

8

] [
9
13 , 4

15 , 5
13 , 11

13 , 1
6

]
53

69120

7
[

1
13 , 1

2 , 7
15 , 1

14 , 1
6 , 3

4 , 5
8

] [
11
15 , 3

5 , 11
13 , 4

9 , 1
9 , 13

15

]
77

3456

7
[

8
11 , 3

11 , 8
9 , 4

5 , 5
8 , 2

7 , 1
5

] [
5
6 , 5

9 , 1
3 , 1

6 , 4
11 , 1

14

]
0

7
[

2
13 , 3

7 , 1
5 , 6

11 , 9
10 , 1

3 , 13
15

] [
5
12 , 9

13 , 1
10 , 1

2 , 3
10 , 4

5

]
0

Table 3.3: Example densities for various sets of parameters and
values of n.

quickly increases with larger denominator values, the computing time becomes
prohibitively long.

Furthermore, the sets of parameters given in this example are not chosen entirely
at random. The parameters were generated such that there would be no duplicate
parameters, and no parameters outside (0, 1). Values without this restriction can
still work, as seen in the first row which contains b1 = 5

4 , but for simplicities
sake were not generated in the random parameter sets. As well, in most cases,
randomly generating a set of parameters will give a density of zero in much higher
proportion than is shown. In order to communicate more non-zero densities, sets
of parameters were repeatedly generated until sufficiently few zeroes were present.

There are several corollaries to our main Theorem 3.1.5 above. We will begin
with a sufficient condition for the density of bounded primes in the denominators
of the series to be zero. This generalizes Theorem 4.2 of Franc et al. 2018.
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Theorem 3.1.6. Consider nFn−1

(
a1 a2 · · · an

b1 b2 · · · bn−1
; z

)
, and assume without loss

of generality that both the sets of parameters are ordered from smallest to greatest
fractional part. The density of bounded primes in the denominators of this series
is zero if and only if

there exists i ∈ {1, . . . , n − 1} such that {bi} < {ai}.

Proof. Recall from the earlier stated Lemma 2.2.7 that if bi < ai, then the expan-
sions of bi and ai have at least one position k where αk < βk. As in the proof of
Theorem 3.1.5, when referring to the digits of a parameter, we are truly referring
to the digits of that parameter minus 1.

We begin with the assumption that there exists i ∈ {1, . . . , n − 1} such that
{bi} < {ai} holds. Then, we show that as long as this condition holds, we cannot
be numerator majorized for any u ∈ (Z/MZ)×. Take i to be the smallest index
such that this condition holds. Assume first that i = 1, and so the smallest
numerator parameter is greater than the smallest denominator parameter. Then
there is necessarily a position within their expansions where αk < βk regardless of
the prime we are expanding with. Thus, the sets of parameters is not numerator
majorized for any u ∈ (Z/MZ)×, and so the density must be zero.

Now assume that the smallest index is greater than 1. Then, for all lower
indexed parameters, we have a further two cases, either they themselves would
cause numerator majorization to fail for all primes p ≡ u for some specific u ∈
(Z/MZ)×, or we have αk < βk for all k and all p ≡ u. Note that both of those cases
can be ignored. In the first case, we can just consider the u for which the lower
indexed parameters do not fail numerator majorization, as if those primes fail, they
will still fail when considering the expansions of ai and bi. In the second case, we
note that each of the digits of the aj expansion must be used to ‘counteract’ those
of the bj expansion. Each αk carries with a smaller m than the corresponding βk,
and since one carry can only cancel out one carry, the values of these αk will not
affect whether we will cancel a carry for the expansions of bi.

Then, just as above, since bi < ai, there exists a position k where αk < βk

regardless of the prime p ≡ u ∈ (Z/MZ)×. Thus, these also fail numerator
majorization (keeping in mind that we do not need to consider any u for which a
pair of parameters has already caused a failure) so if our condition holds for a set
of parameters, the density of bounded primes in the denominators of the series is
always zero.

We now assume that the density is zero. Since the density is zero, we know
that for all equivalence classes u ∈ (Z/MZ)×, all but finitely many primes p ≡ u
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appear with valuation νp(Am) unbounded below for coefficients Am of the series.
Recall that

νp(Am) =
n∑

j=1
cp(aj − 1, m) −

n−1∑
k=1

cp(bk − 1, m).

Since this is unbounded below, and the expansions are periodic, we know that
we can construct mr such that Amr has unbounded negative valuation for all but
finitely many primes as r → ∞.

If we take p ≡ 1 mod M , then all expansions are 1-periodic, since the digits of
its expansion are then given by x0 = ⌊{−p1−1−0x}p⌋ = ⌊{−x}p⌋. Notice as well
that the larger the digit, the smaller the parameter, as the digit is a result of the
fractional part of the negative of the parameter. So for numerator majorization to
fail, there must be some denominator parameter that, when the lists of parameters
are ordered from smallest to largest, is itself smaller than its numerator parameter
with the same index. So if u = 1 fails, the condition stated in the theorem must
hold, and so if the density is zero, there exists i ∈ {1, . . . , n − 1} such that {bi} <
{ai}.

We also have the following on the potential densities:

Theorem 3.1.7. The set of p-adically bounded primes for a given set of parameters
is a union of cyclic subgroups of (Z/MZ)×.

Proof. This follows naturally from the definition of numerator majorization given
in Lemma 3.1.3 and Theorem 3.1.5. Notice that if the condition in Lemma 3.1.3
holds for u, it holds for all powers of u, and in particular for the cyclic subgroup
of (Z/MZ)× generated by u.

While these theorems work well for generalized hypergeometric series of the
form nFn−1, they need some adjustment to be used for series of the form nFm

for n, m ∈ N. We will first make the argument that Theorem 3.1.4 can be ad-
justed in a somewhat natural way and used for the valuation of the coefficients of

nFm

(
a1 a2 · · · an

b1 b2 · · · bm
; z

)
.

The following theorem shows that the only interesting cases of nFm are the
cases where n = m + 1.

Theorem 3.1.8. Consider nFm

(
a1 a2 · · · an

b1 b2 · · · bm
; z

)
. If n > m + 1, the density of

bounded primes in the denominators is 1, and if n < m+1, the density of bounded
primes in the denominators is 0.
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Proof. This proof relies on the use of the Gamma function, with properties taken
from Abramowitz and Stegun 1965. Specifically 6.1.21 and 6.1.22 from Abramowitz
and Stegun, which give the definitions for the binomial coefficient and Pochham-
mer symbol respectively. We begin by recalling that the Pochhammer symbol can
be described as

(x)n = Γ(x + n)
Γ(x)

and the binomial coefficient can be described as(
n

k

)
= Γ(n + 1)

Γ(k + 1)Γ(n − k + 1) .

We can then manipulate the coefficients Ak of nFm

(
a1 a2 · · · an

b1 b2 · · · bm
; z

)
as fol-

lows:

Ak =
∏n

i=1(ai)k∏m
j=1(bi)k

1
k!

=
∏n

i=1
Γ(ai+k)

Γ(ai)∏m
j=1

Γ(bj+k)
Γ(bj)

1
Γ(k + 1)

=
∏n

i=1
Γ((ai−1+k)+1)Γ(k+1)

Γ((ai−1+k)−k+1)Γ(k+1)∏m
j=1

Γ((bj−1+k)+1)Γ(k+1)
Γ((bj−1+k)−k+1)Γ(k+1)

1
Γ(k + 1)

=
∏n

i=1

(
ai−1+k

k

)
Γ(k + 1)∏m

j=1

(
bj−1+k

k

)
Γ(k + 1)

1
Γ(k + 1)

=
∏n

i=1

(
ai−1+k

k

)
∏m

j=1

(
bj−1+k

k

)(k!)n−m−1

Now, by the p-adic analogue of Kummer’s theorem given in Franc et al. 2018,
we can see that the valuation of this term is given by

νp(Ak) =
n∑

i=1
cp(ai − 1, k) −

m∑
j=1

cp(bj − 1, k) + (n − m − 1)νp(k!) (3.2)

We now need to show that, if k is large enough, then νp(k!) dominates either
of the sums in this formula. Note that, if we look at the Akth coefficient, we can
have at most as many carries as the highest exponent in the expansion of k.
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This shows that

cp(ai − 1, k) = O(logp(k))
cp(bi − 1, k) = O(logp(k))

On the other hand, it is well known by Legendre’s formula that νp(k!) = O(k)
Neukirch 2013.

Call this exponent ℓ ≈ logp(k). We can then see that the values of the first
two terms of Formula 3.2 above are bounded by nℓ and mℓ respectively. Thus, we
can see that the asymptotic behaviour of Equation 3.2 depends only on the sign of
n − m − 1, except in the interesting case where n = m + 1). If this sign is negative
we get unboundedness and if positive we get boundedness. This concludes the
proof.
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Chapter 4

A Conjecture on Irrational p-adic
Numbers

4.1 Conjecture
We are now considering the subject of 2F1 over quadratic extensions. We begin
by stating the following conjecture:

Conjecture 4.1.1. Let α ∈ Q \ Q, and let S be the set of unramified primes in
Q(α). Let r and s be integers, and let 0 ≤ u < v ≤ 1. Let αn(p) denote the nth
p-adic digit of α for p ∈ S. Then for all but finitely many primes p ∈ S (where the
finite exceptional set of primes depends on α, r, s, u and v), αn(p) is contained in
the interval (u(p−1), v(p−1)) for infinitely many integers n ≥ 0 in the arithmetic
progression n = rm + s.

There are several possible rationales in support of this conjecture. We can use
Hensel’s lemma to approximate the digits of a p-adic irrational number. With this,
we can look at whether or not we find the digits in any interval we can define. As
can be seen in Figure 4.1, we have digits frequently appearing in the interval.

When we look in detail at the digits that appear, we find that every digit appears
with a natural density of roughly 1

p
. The further into the approximation we search,

the closer we get to this density. We see in Figure 4.2 that along an arithmetic
progression (here every fourth digit of the first 40000) we get a roughly equal
density for each digit. That is to say, that there are no biases in the coefficients
of these square roots.

It is valuable to note the relationship between this conjecture and what would
be commonly referred to as normality of an irrational number. We define the
equivalent concept for an irrational p-adic number. Though the second clause
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Figure 4.1: The first 5000 digits of
√

2 in Q113, with a coloured
band representing the interval (0.5(113 − 1), 0.65(113 − 1))

below is a strengthening of the first clause in this definition, we phrase it in such
a way that we can compare this with the analogue in the real numbers.

Definition 4.1.2. An irrational p-adic number x ∈ Qp is called normal if every
digit in its expansion appears with equal natural density 1

p
and, more generally if

every string of n digits appears asymptotically with frequency p−n.

If we were instead working in the real numbers, the second part of this definition
would come automatically as a result of being able to change bases, as can be seen
in Theorem 1.3 of Harman 1998. In the p-adic case, however, results to this end
do not exist, and so the stronger definition of normality must be taken.

With this definition of normality in mind, we can now see that our Conjecture
holds for normal p-adic numbers.

Proposition 4.1.3. If a p-adic number x is normal, then Conjecture 4.1.1 also
holds for that number.
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Proof. Consider an arithmetic progression of positions {an} = {nk + ℓ}, which
looks at every kth digit of the expansion after ℓ. We want to show that any digit
appears infinitely many times on this progression. Since x is normal, we know
that each digit has an equal probability of appearing on this progression of digits.
However, we need to show that it is not possible for a digit to only appear a finitely
many times. We can see that in certain cases this must be true. For example, when
{an} = {1, 2, . . .}, there can be no number that appears finitely many times, as
this would contradict normality.

Assume towards a contradiction that there exists a digit b that appears finitely
many times along this progression. Then, if we break this expansion into strings
of length k, there are no occurrences of this digit in the kthposition of the string.
However, there are finitely many strings of this nature. By the definition of nor-
mality each n-length string appears with equal density. Then we must have digits
in the pk expansion that correspond to strings containing b in its final position
appearing. Thus there can be no final occurrence of b along {an}, and thus the
conjecture holds.
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Figure 4.2: The number of occurrences of digits along the arith-
metic progression {4n}n∈Z+

in the expansions of
√

2 with respect
to various primes.

Figure 4.3: The number of occurrences of digits along the arith-
metic progression {4n}n∈Z+

in the expansions of
√

3 with respect
to various primes.
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4.2 Applications of the Conjecture to Hyperge-
ometric Series

We define the hypergeometric series used in this section as below:

F = 2F1
(
a + b

√
D, a − b

√
D; c; z

)
(4.1)

for rational parameters a, b, c. Though this series has irrational parameters, it has
rational coefficients. In this section, we will stufy the densities of this F . We begin
with a necessary condition for a prime to be bounded in the denominators of F

Theorem 4.2.1. A prime p can only be bounded in the denominators of F defined
over a number field Q

(√
D
)

if p splits in Q
(√

D
)
.

Proof. Consider the formula for a coefficient of the hypergeometric series.

An = (a + b
√

D)n(a − b
√

D)n

(c)nm!

=
∏n−1

j=0 (a + b
√

D + j)(a − b
√

D + j)∏n−1
j=0 (c + j)(j + 1)

=
∏n−1

j=0 (a2 − b2D + 2aj + j2)∏n−1
j=0 (c + j)(j + 1)

Defining P (x) = a2 − b2D + 2ax + x2. We see that:

An =
∏n−1

j=0 P (j)∏n−1
j=0 (c + j)(j + 1)

The discriminant of P (x) can be seen to be 4b2D, which is a perfect square
multiple of D, and so defines the same number field. Then, this polynomial splits
completely over the p-adic field Qp if and only if its discriminant is a square mod
p, as stated in Theorem 2.1.1.

Then, we know that a prime splits completely in Q
(√

D
)

if and only if D is a
quadratic residue mod p. Since P (x) over Qp splits only when D is a square mod
p, by the definition of the Legendre symbol, we can only potentially cancel out a
prime in the denominator of An when p splits in Q(

√
D). Neukirch 2013.
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We now introduce the following theorem, which needs some adaptation from
how it appears in Franc et al. 2018. We are setting parameters in a specific way such
that we have rational coefficients, which must be done since we are working over
a number field instead of the rational numbers. The following theorem suppresses
the need to consider the

√
D term. Here "admissible hypergeometric parameters"

are positive rational numbers 0 < a, b, c, < 1 in least form.

Theorem 4.2.2. Assuming 4.1.1 to be true, the following holds. Let (a, b; c) de-
note admissible hypergeometric parameters, and p denote a good prime. Then the
following are equivalent:

(i) for some index j, we have τj(c − 1) > τj(a − 1)

(ii) 2F1(a + b
√

D, a − b
√

D, c; z) has p-adically unbounded coefficients.

Proof. We will explain how to adapt the proof from Franc et al. 2018 to the number
field setting. The primary difference between the settings is that, in the rationals,
the expansions all of the parameters are purely periodic, and in the case of number
fields, the presence of the

√
D factor means that we do not have periodicity of the

expansions, and we must substitute Conjecture 4.1.1 for this lack of periodicity.

In the rational case, since the terms are periodic, it suffices to show that there
is one index where condition (i) holds. Each index corresponds to one occurrence
of the prime p in the denominator at some term of the series, and since they are
periodic, a single index necessarily corresponds to an arithmetic sequence of indices
that all fit the condition.

In our case however, since the b
√

D term is irrational, we must consider that
there is not necessarily more than one index along the arithmetic progression that
has the condition holds. Take j to be the smallest index where condition (i) holds.
Then we can look at an arithmetic progression {j + Mn} where M is the lowest
common multiple of the denominators of a and c. Along this progression, we know
that if b

√
D is sufficiently small at that index, we still have that digit of c−1 greater

than the digits of a+b
√

D and a−b
√

D. Take ∆j to be the difference ∆j = γj −αj.

We can then fix an interval (0, ∆j), and by the conjecture, b
√

D must con-
tain infinitely many occurrences of digits within this interval on our arithmetic
progression. Let the indices where β̄i ∈ (0, ∆j) along the arithmetic progression
{j + Mn} be denoted by {ki}. We then define mr = ∑

k∈{ki}i≤r
(p − γj)pk. Then,

as in the proofs in the previous chapter using Theorem 3.1.4, if we look at the
Amr

thcoefficient, we will have a carry in the denominator and not in the numer-
ator for each i ≤ r. Since r is not bounded, the p-adic valuation of this prime is
not bounded below, and so 2F1(a + b

√
D, a − b

√
D, c; z) has p-adically bounded

coefficients.
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The rest of the proof is not affected by the change to number fields.

We now, in pursuit of understanding how parameters affect the density, prove
the analogue, in our setting, of Theorem 4.14 of Franc et al. 2018.

Theorem 4.2.3. Assume Conjecture 4.1.1 to be true and let a, c denote the rele-
vant hypergeometric parameters. The following are equivalent:

(i) c < max
(
a,
{
a + 1

2

})
.

(ii) All but finitely many primes are unbounded in the denominators of F .

Proof. We can assume without loss of generality that a ≥ 1
2 , as if a is less than 1

2 ,
we look at a + 1

2 , and if a is greater, then a + 1
2 mod 1 is less than a.

So assume c < a, and a ≥ 1
2 . Recall the formula for the terms of the p-adic

expansions given in Lemma 2.2.7. Then, defining Ma and Mc to be the order of
p mod da, p mod dc where da and dc are the denominators of a and c in least form,
respectively.

Then, notice that {c} < {a}, and by extension −{a} < −{c}. We then look at
the p-adic expansions of a − 1 and c − 1, taking n such that n ≡ 1 mod MaMc:

γn =
⌊{

−pMc−1−nc
}
p
⌋

= ⌊{−c}p⌋ = p + ⌊−cp⌋

αn =
⌊{

−pMa−1−na
}
p
⌋

= ⌊{−a}p⌋ = p + ⌊−ap⌋

If we take the primes p such that p > 1
a−c

, then we have −ap + 1 < −cp.
Therefore,

γn = p + ⌊−cp⌋ > p + ⌊−ap + 1⌋ > p + ⌊−ap⌋ = αn.

We can then apply the same ∆n = γn −αn as in the proof of Theorem 4.2.2, which
gives that this prime p is unbounded in the given series. Since this works for all
sufficiently large primes, all but finitely many primes are unbounded.

To prove the other direction, we assume that all but finitely many primes are
unbounded. Then, clearly infinitely many primes such that p = 1 mod d are un-
bounded. Thus there exists a prime p such that p ≡ 1 mod d and {−c} > {−a}.
Therefore c < a, and so c is smaller than the maximum of a, a + 1

2 .

We can now prove the following, making use of the framework provided in Franc
et al. 2020.
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Theorem 4.2.4. Assume Conjecture 4.1.1. Let D ∈ Z be square-free. Take
a, b, c ∈ Q, b ̸= 0. We define

f = 2F1
(
a + b

√
D, a − b

√
D; c

)
.

Then f has a density of bounded primes independent of b. There exists a constant
N such that if p > N then f is p-adically bounded if and only if p is congruent to
an element of

B(a, c) :=
{

u ∈ S |
{
−ujc

}
≤ max

({
−uja

}
,
{

−uj
(

a + 1
2

)})
for j = 0, . . . , ϕ(M)

}

where S is the set of classes of primes mod M that split in Q
(√

D
)

and M is given
by

M = lcm(4|D|, denom(a), denom(c)).

Therefore the density of bounded primes for f is given by D = |B(a,c)|
|(Z/MZ)×| .

Proof. We first demonstrate where the formula arises from. Consider the formula
for the p-adic expansion of a − 1:

αn =
⌊{

−pMa−1−nc
}
p
⌋
.

If we ‘normalize’ this by dividing by p, and take the limit of all p ≡ u mod da

for a fixed u, we get the following:

lim
p≡u(mod da)

αn

p
= lim

p≡u(mod da)

⌊{
−pMa−1−na

}
p
⌋

p

= lim
p≡u(mod da)

{
−pMa−1−na

}
p −

{{
−pMa−1−na

}
p
}

p

= lim
p≡u(mod da)

{
−pMa−1−na

}
−

{{
−pMa−1−na

}
p
}

p
.

Since the fractional part is less than 1, as p increases, the second term vanishes

lim
p≡u(mod da)

αn

p
= lim

p≡u(mod da)

{
−pMa−1−na

}
.
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Let a = a′/d. Since p = u(mod d), we can write p = u+ tda for some t. Continuing
after making this substitution we find:

lim
p≡u(mod da)

αn

p
= lim

p≡u(mod da)

{
−(u + tda)Ma−1−na′/da

}
= lim

p≡u(mod da)

{
−(u)Ma−1−na′/da −

Ma−1−n∑
k=0

uMa−1−ntMa−1−n−kdMa−2−n−k
a a′

}
.

Notice that u, t, da, a′ are all integers. So the second term of this can be safely
dropped from the fractional part, and the above equation reduces to

lim
p≡u(mod da)

αn

p
= lim

p≡u(mod da)

{
−(u)Ma−1−na

}
.

Since there is no longer a dependency on p, we can drop the limit, which gives us

lim
p≡u(mod da)

αn

p
=
{
−uMa−1−na

}
.

When we use this technique, we can make the substitution of j = M − 1 − n,
giving us

lim
p≡u(mod d)

αn

p
=
{
−uja

}
for large enough primes p. We can apply the same to c and a+ 1

2 . Now we compare
the terms to show that a class of primes is unbounded. Fix u ∈ S. Note that if
γj/p ≤ αj/p, then γj ≤ αj, and so if {−ujc} > max

(
{−uja},

{
−uj

(
a + 1

2

)})
, then

γj > αj.

As in the earlier proof of Theorem 4.2.3, if γj > αj, then we can define ∆j to
be the difference, and by Theorem 4.2.2, which itself relies on the assumption of
Conjecture 4.1.1, f has p-adically unbounded coefficients. Thus this value for u
should not be in the set B. If we check for all u ∈ S and remove any for which
the condition of B fails, then we have a set only composed of the classes of primes
mod M for which f does not have unbounded coefficients. We can thus get a
density of bounded primes independent of the value of b by taking the fraction

D = |B(a, c)|
ϕ(M) .

We can note some interesting properties about this theorem. For one, we have
a maximum possible density of 1

2 . In particular, there are always unbounded
primes for these series. This is consistent with the fact that the corresponding
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a c
l
k

l
k

2
3

1
3

7
13

5
2

1
5

1
2

2
9

3
2

7
4

1
2

15
4

13
3

7
5

1
2

1
3

4
3

4
3

2
3

5
3

1
3

13
9

3
2

a c
2
3

13
2

1
4

2
3

1
10

6
5

1
2

3
2

3
4

4
3

3
4

3
2

8
3

1
2

1
14

1
2

1
2

5
2

1
4

7
3

9
2

1
2

5
14

12
7

a c
12
5

3
2

14
3

7
3

7
10

1
2

5
4

7
3

12
13

7
2

1
8

11
8

4
5

1
2

11
15

1
2

6
5

13
2

1
3

11
3

11
2

3
2

7
12

3
2

Table 4.1: Sets of parameters a, c over the field Q
(√

2
)

where the
density is 1

2 .

monodromy groups are infinite, since the hypergeometric parameters are irrational
(recalling that Schwarz’s list of parameters such that the monodromy groups are
finite is composed only of rational hypergeometric parameters). This is a result of
Chebotarev’s density theorem, which for our application states that the density of
primes that can split in a quadratic number field Q

(√
D
)

is 1
2 Neukirch 2013.

We also know some examples where we get this density. Note that since we are
only dependent on a and c for our density, any set (a, c) defines an infinite class
of parameters (a, b, c) which give an equal density. We provide the Table 4.1 that
gives some, but not all, of the cases where we get density of 1

2 .

We can notice that whenever we have a = c, then we get a density of 1
2 . This

makes sense, as when the parameters are equal, then they automatically satisfy
the condition of Theorem 4.2.4. We also see that many of these fit with those that
appear on Schwarz’s list Schwarz 1873, as seen in Figure 2.1. This is not universal
for the entries on that list, however. For example, (a, b, c) = (1/2, 1/3, 1/5) is on
Schwarz’s list, but neither (a, c) = (1/2, 1/5) or (a, c) = (1/3, 1/5) gives a density
of 1

2 for our quadratic analogue. In fact, both of these sets of parameters gives a
density of zero in the quadratic analogue of Schwarz’s list.
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Chapter 5

Conclusions and Next Steps

5.1 Summary
We have generalized results of Franc et al. 2018 and Franc et al. 2020 to differ-
ent hypergeometric series, being nFm over the rationals, and 2F1 over quadratic
number fields. Existing results were limited to the case of 2F1 over the ratio-
nal numbers, but with the results of Chapter 3, we can now precisely calculate a
density for the bounded primes in the denominators of the generalized hypergeo-
metric series nFm for any set of rational parameters and any values of n and m.
We also have presented a new conjecture which presents a probable property on
the expansions of all algebraic p-adic algebraic numbers. We presented evidence
and justifications towards the truth of the conjecture, and will discuss in the next
section some possibly relevant results from the literature.

5.2 Next Steps
We will first discuss potential avenues towards a proof for Conjecture 4.1.1. The
easiest case to prove it is likely the case of p = 2. In this case, the conjecture is
simply that there are an infinite number of zeroes or ones along the arithmetic
progression. There are several results that are related to this that could be useful.
Kaneko 2016 gives a lower bound for the number of non-zero digits of an algebraic
number’s expansion over a real base b, which could have potential applications to
an analogous result over the p-adic numbers. Similarly, Bugeaud 2007 gives bounds
and results on the Hensel expansion of an algebraic irrational p-adic number. These
results do give a spark of hope towards a proof of the conjecture, at least in the
p = 2 case. They unfortunately only give bounds of the number of non-zero digits,
which is not in general applicable to the conjecture where we need information on
the positioning of these digits as well.
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These results could potentially be applied to the simplest case, p = 2. In this
case, since the only non-zero digit is 1, the bound directly gives the number of
non-zero digits. The issue comes up when attempting to ensure that these non-
zero digits appear on a given arithmetic progression. One can easily imagine an
expansion that has a finite number of non-zero digits on any given arithmetic
progression, though evidence suggests that an algebraic irrational number can
never have this occur.

Of course, as proven earlier, the conjecture would be proven were normality
of algebraic irrational p-adic numbers to be proven, but this seems to be a very
difficult problem at present.

Looking elsewhere, we can consider possible results on number fields that are
not quadratic. For instance, we could look at a cyclotomic field, with n roots of
unity. These become very complicated, however. Recalling Chebotarev’s Density
Theorem, we know that the density of splitting primes in an Abelian extension is
1/n if n is the degree of the extension over Q (this was why we had a maximum
density of 1

2 in the results from chapter 4).

We believe that the only cases where primes can be bounded are when the
hypergeometric parameters of the series multiply out to leave no irrational terms
in the coefficients of the series. As the degree of the extension increases, however,
it becomes increasingly difficult to consider all cases. For instance, a degree 5
extension could have 5F4 with numerator parameters that are all rational, and
denominator parameters that contain the powers of roots of unity, or the denomi-
nator parameters can be all rational with the roots of unity in the numerator, or
both. There are simply too many cases to consider, so any study of this area will
require a strict culling of the possibilities.
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