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Abstract 

Nowadays, mobile robots are used in a wide variety of fields, such as 

manufacturing, agriculture, space and underwater exploration, and healthcare. 

The localization process is crucial to mobile robots and refers mainly to the 

precise determination of the coordinates where the system is present at a certain 

moment. Ultra-wideband (UWB) and inertial measurement unit (IMU) are 

commonly used techniques in localization systems. However, UWB can’t avoid 

Non-line-of-sight (NLOS) propagation errors due to obstacles and IMU always 

suffers from error accumulation over time. In my research, IMU and UWB are 

combined optimally in the Kalman filter to overcome their limitations in specific 

situations. A new method to detect UWB measurement anomaly is proposed 

based on the difference between the velocity calculated by UWB measurement 

and IMU data. The complementary filter is used to combine the accelerometer 

data and gyroscope data to derive the roll and pitch degree. Kalman filter 

parameters are adjusted in different situations to help the localization system 

perform better and provide reliable position information to the control system to 

complete the tracking task. 
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1. Introduction 

1.1 Background 

1.1.1 Mobile Robots Review 

The mobile robot is defined as an automatic machine highly controlled by 

software programming that uses sensors and other technologies to move around 

its environment. Mobile robots are used in a wide variety of fields, such as 

manufacturing, agriculture, space and underwater exploration, and healthcare. 

Mobile robots include five main parts: control system, sensors, actuator, power 

supply, and end effector. The robot control system manages, commands, and 

directs the movement and functions of various parts of the mobile robot to 

achieve desired results. The working principle of a robot actuator is to convert 

energy into physical motion. Robotic actuators typically fall into two categories: 

linear motion and rotational motion. For the power supply, electrical power is the 

most common source of energy in mobile robotics. The elements used in mobile 

robotics to help regenerate power constantly and slow down the depletion of 

energy are rechargeable batteries, such as Lead-Acid (Pb-Acid) Battery and 

Nickel-Iron (Ni-Fe) Battery and solar power systems collectors including flat plate 

collectors, focusing collectors, and passive collectors. Sensors are essential parts 

of a mobile robot, without which it could not gather information about the 

environment and itself. Sensors can be generally divided into those for perceiving 

external information helping robots establish their position, navigate, and avoid 
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obstacles, and those for perceiving internal state such as battery level, wheel 

position, degree of tilt, and so on. Based on the types of measurements 

performed the sensors can be classified into four categories: distance sensors, 

positioning sensors, environment sensors, and inertial sensors.  

The important function of a sensor network is to collect and forward data to the 

destination. The position information is extraordinarily important among various 

data and accurate position estimation is a key component for autonomous mobile 

robots to operate successfully. The localization process[1] is crucial to mobile 

robots and refers mainly to the precise determination of the coordinates where 

the system is present at a certain moment. For reliable navigation system, the 

mobile robot needs to adopt appropriate localization strategies to provide 

accurate information to the control system. Currently, the widely used localization 

technologies are infrared, sound, radar, inertial measurement, and ultra-

wideband. Each has its advantages and limitations, so applying each method 

individually can only perform well in specific situations or environments. 

[2]Incorporating different localization methods in specific ways to eliminate or 

minimize limitations is necessary to enhance the accuracy performance and 

ensure the localization system can be reliable in a variety of situations. 

1.1.2 Inertial Measurement Unit Introduction 

An inertial measurement unit (IMU) is an electronic device that measures and 

reports the body’s accelerometers, gyroscopes, and sometimes magnetometers 
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which can be used to calculate attitude, linear velocity, angular rate, and position 

relative to the global frame.[3] An individual inertial sensor can only sense a 

measurement along or about a single axis. Three individual inertial sensors must 

be mounted together into an orthogonal cluster known as a triad to provide a 

three-dimensional solution. This set of inertial sensors mounted in a triad is 

commonly referred to as a 3-axis inertial sensor, as the sensor can provide one 

measurement along each of the three axes. Similarly, an inertial system 

consisting of a 3-axis accelerometer and a 3-axis gyroscope is referred to as a 6-

axis system as it provides two different measurements along each of the three 

axes for a total of six measurements. In general, IMUs are to be mounted on the 

center of gravity of the object to be measured. The accelerometers detect the 

acceleration signals of the object in the carrier coordinate system independent of 

the three axes, while the gyroscopes detect the angular velocity signals of the 

carrier relative to the navigation coordinate system, measure the angular velocity 

and acceleration of the object in three-dimensional space, and use them to solve 

the attitude of the object.[4] IMUs are mostly used in devices that require motion 

control, such as automobiles and robots. They are also used in applications 

where precise displacement derivation using attitude is required, such as inertial 

navigation equipment for submarines, aircraft, missiles, and spacecraft. 

IMU’s sample frequency is high, and it is sensitive to changes in speed and 

angular rates, so it can provide relatively accurate information quickly and it can 

provide relatively accurate in a short period of time. For example, when the 
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position of the previous step is already known and the sample frequency is high, 

IMU data can be used to accurately calculate the position of next step.[5]However, 

IMU is prone to error that accumulates over time, also known as a drift. Since 

acceleration is always integrated by guidance systems concerning time to 

calculate the body’s velocity and position, the measurement error will result in a 

linear error growth in velocity and a quadratic error growth in position. Similarly, 

the angle velocity error will result in linear error growth in angle 

calculation. [5]Therefore, it is necessary to use external information like GPS for 

assistance to realize combined navigation to effectively reduce the problem of 

error accumulation over time and achieve the highest velocity and position 

accuracy.[7] To improve reliability, it is also possible to equip each axis with more 

sensors.  

1.1.3 Ultra-wideband Introduction 

Ultra-wideband (UWB) is a short-range wireless communication technology that 

enables precise location tracking by precisely timing how long it takes a radio 

pulse to travel amongst different devices.[8] UWB is defined as a signal or system 

where the bandwidth exceeds more than 500MHZ or the fractional bandwidth is 

greater than 20%. Currently, UWB is capable of supporting a variety of data rates 

from 110 to 480 Mbps at distances up to 10 meters. Although UWB technology is 

seen as a new technology, the technology has been around for decades. The 

original definition of UWB came from the pulse communication technology that 

emerged in the 1960s, also known as pulse radio technology. Unlike carrier 
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modulation technology, which is widely used in today's communications, this 

technology communicates directly with baseband pulses that are jittered at both 

the rising and falling edges, so it is also known as baseband transmission or 

carrier-free technology. Most current commercial wireless communication 

methods use a communication carrier that is a continuous electric wave to which 

a data signal is added by some kind of modulation. UWB signals, on the other 

hand, are sent in very short, very fast pulses that are precisely timed to be only a 

few to tens of picoseconds long each. So this technology can transmit data with 

less power consumption.[9] Due to the wide operating bandwidth of UWB 

technology, the signal release is distributed throughout the entire signal 

bandwidth and the signal speed and capacity are high, so UWB is suitable for the 

transmission of large amounts of data, especially the transmission of digital 

multimedia signals. At same time, UWB can work better with other wireless 

technologies because it is not easy to interfere with others, which is due to the 

weak UWB signal of decentralized transmission. The system capacity is higher 

than any other radio technology because of the extremely low duty cycle of the 

impulse pulses emitted by the UWB radio signal, the high gain of the system, and 

the strong multipath discrimination capability. Because of the relatively large gain 

of the spread spectrum processing of UWB signals, even with a low gain 

omnidirectional antenna, a power of less than 1mw can be used to achieve 

several kilometers of communication. 
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There are two main localization techniques UWB usually uses, Time of Flight 

(TOF) and Time Difference of Arrival (TDoA).[10] 

For ToF, the tag sends a poll packet to anchors and records the timestamp as 

𝑇𝑠𝑝, then the anchor receives the packet and records it as 𝑇𝑟𝑝. Then anchor 

needs some time to receive and generate a response packet. When the anchor 

sends the response packet, recording the timestamp as 𝑇𝑠𝑟 , then the tag receives 

the packet and records 𝑇𝑟𝑟 . Similarly, the tag needs to wait some time to generate 

a new response message, when the tag sends a final message and records 𝑇𝑠𝑓 . 

Finally, the anchor receives the final message and records the timestamp as 𝑇𝑟𝑓. 

So the distance between the tag and anchor can be shown as: 

 

𝐷 =  
(𝑇𝑟𝑟 −  𝑇𝑠𝑝) −  (𝑇𝑠𝑟 − 𝑇𝑟𝑝) + (𝑇𝑟𝑓 −  𝑇𝑠𝑟) − (𝑇𝑠𝑓 −  𝑇𝑟𝑟)

4
 

 

(1) 

After the ToF method, the UWB tag can measure the distance between every 

anchor and itself. There will be 3 corresponding distances named d1~d3. Use 

each anchor as the center and d1~d3 as the radius to draw circles, then the 

intersection of three circles is the estimated tag position.[11] 

For TDOA, it is localization based on comparing the time difference between 

each anchor receiving the signal from the tag. The UWB records the timestamp 

when each of the three anchors receives signal from UWB as T1, T2, and T3. 

The difference between the distance between tag and anchor1 and the distance 
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between anchor2 is C*(T1-T2) and the difference between the distance between 

tag and anchor1 and the distance between anchor3 is C*(T1-T3). According to 

these two values, two hyperbolas can be drawn, and the intersection of these two 

hyperbolas is the estimated tag position.[12] 

The main difference between the two methods is the TDoA method needs to 

keep all anchors in sync. Besides, when the tag is on the periphery of the anchor 

or outside the area, ToF is more accurate than TDoA.  Compared with TDoA, the 

ToF method is more suitable to be applied in places where the environment is 

complicated. However, concerning power consumption, the ToF method needs 

tag to send and receive signals several times to finish ranging with every anchor, 

but the TDoA only needs tag to send one broadcast message, so TDoA can 

make the battery life longer. 

There are many applications of UWB positioning technology, including industrial 

production, warehousing, logistics, judicial prisons, sports, transportation, 

airports, petrochemicals, etc.[13]  

UWB is one of the most popular indoor positioning technologies, with an 

accuracy of one centimeter in a line-of-sight (LOS) environment. However, non-

line-of-sight (NLOS) occurs when walls or other objects block the UWB signal, 

which reduces the signal ratio and causes delays in signal transmission.[14] NLOS 

means two points of communication have an obstructed line of sight and greater 

than 50% of the Fresnel zone is blocked. Some of the obstructions absorb or 
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scramble certain radio frequencies, and some others reflect them. Both can limit 

the use of many types of radio transmission especially when the power budget is 

limited. Obstacles that typically cause NLOS propagation include trees, buildings, 

hills, mountains, and sometimes high-voltage power lines.[15] While UWB is an 

ideal candidate for a localization system, it can’t avoid non-line-of-sight errors due 

to obstacles.[16] However, it is not plausible to eliminate all the obstacles before 

the mobile robots work in real environments. So UWB also needs to corporate 

with other techniques to keep high accuracy in a diverse environment. 

1.1.4 Kalman Filter Introduction 

The most commonly used filter algorithm is the Kalman filter, a state estimator 

that uses sensor fusion and information fusion to improve the accuracy of the 

system.[17]  

Usually, we have two means to observe the state of a system. One is to derive 

the state of the next moment by using the state transfer equation of the system 

and combining it with the state of the previous moment. One is to obtain the state 

of the system with the help of measurements from an auxiliary system (a 

measurement system). Both of them have their uncertainties, and the Kalman 

filter can combine them optimally (weighted average) so that the uncertainty of 

the state we estimate is less than either of them. The advantage of the Kalman 

filter does not lie in how small the bias of its estimation is, but in its clever 

integration of the observed data and the estimated data, and the closed-loop 
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management of the error, which limits the error to a certain range. In other words, 

the Kalman filter can constrain the error in an acceptable range over a long 

period. The most critical parameters in the Kalman filter are Q and R, Q 

represents the process noise covariance and R represents the measurement 

noise covariance.[18] Adjustment of these two parameters has a great impact on 

the Kalman filter result. For the process noise Q value, the smaller the value 

means we have higher trust in the predicted value of the model and the system 

converges faster; for the measurement noise R, the larger the value means we 

have lower trust in the measured value.[19]  

Kalman filter has many applications in technology. A common application is for 

guidance, navigation, and control of vehicles, aircraft, and spacecraft. In addition, 

the Kalman filter is a widely used concept in time series analysis for fields such 

as signal processing and econometrics. Kalman filter is also one of the main 

algorithms in the field of robot motion planning and control, and they are 

sometimes included in trajectory optimization.[20] The Kalman filter can also be 

used to model the control of motion by the central nervous system. Because of 

the time delay between issuing motor commands and receiving sensory 

feedback, the use of Kalman filters supports the actual model used to estimate 

the current state of the motor system and issue updated commands. 
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1.2 Thesis Contribution 

To make our mobile robot location system more accurate, I combine IMU and 

UWB data in the Kalman filter to limit the position estimation error in a certain 

range. The linear acceleration, angular velocity, and absolute orientation 

quaternion are extracted from IMU and tag coordinates are extracted from UWB. 

To obtain an optimal set of parameters in our experiment environment, I adopt 

the fmincon method, a function to minimize the objective function to determine 

parameters in the Kalman filter and use repeated experiments in the same 

environment as samples. 

Before using the IMU data in Kalman Filter, it is pre-processed to eliminate static 

error due to gravity influence and reduce noise by the mean filter algorithm. 

The Non-Line-of-Sight (NLOS) propagation occurs when walls or other objects 

block the UWB signal transmission between anchors and tag, it will degrade the 

accuracy of the UWB position system greatly. I take advantage of IMU’s high 

reliability in a short period to compare it with the UWB position data to detect the 

NLOS propagation, which means the NLOS propagation happens if the 

difference between the velocity measured by IMU and the velocity calculated by 

UWB data is too large. When the UWB position measurement is detected to be 

not accurate, then the signal is sent to adjust parameter of the Kalman Filter to 

reduce the weight of UWB in the estimated position and rely more on IMU 

acceleration data and keep a period. 
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For determining the degree of tilt and shaking of the mobile robot according to the 

pitch and roll angle of the mobile robot, I apply the accelerometer data and 

gyroscope data to the complementary filter, taking slow-moving signals from the 

accelerometer and fast-moving signals from the gyroscope and combining them. 

So the idea is to pass gyroscope signals through a high-pass filter and 

accelerometer data through a low-pass filter. When the mobile robot is detected 

shaking and bumping significantly, the level we trust the predicted value will 

decrease, so the parameters need to change with it. 

Overall, the article optimizes the localization system of our mobile robot and 

combines the data from IMU and UWB to overcome their limitations on 

localization to perform better in various environments especially when the UWB 

measurement is not accurate due to NLOS. It provides basic reliable position 

information to the mobile robot control system to complete the tracking task. 

2. Literature Review 

Nowadays, mobile robot has been widely used in different fields. The localization 

process is crucial to mobile robots and UWB and IMU are the two most promising 

technologies for mobile robot localization systems.  

However, since Time of arrival estimation in UWB is highly conditioned by the 

presence or absence of line of sight, the UWB measurement will severely 

degrade when NLOS occurs. Peng Dai analyzed the ranging results caused by 

NLOS along with the obstacle moving. In his experiment, the two UWB ranging 
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nodes are fixed at two points, and the distance between the two nodes is 130cm. 

Different types of obstacles move between the points and the measurement of 

the distance is shown below. 

 

Figure 1 Obstacles moving from A to B[21] 

From his experiment result, it can be concluded that obstacles can cause obvious 

error in distance measurement, especially the concrete brick. NLOS identification 

and mitigation methods are divided into two categories, direct path estimation 

based method and statistics based method. 

Zhuoqi Zeng proposed a method to use channel impulse response to detect 

NLOS in the real field test. The CIR c(t) is the sum of all the received pulses and 

could be described with Equation (2): 
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𝑐(𝑡) = ∑ 𝑎𝑘𝛿(𝑡 − 𝜏𝑘)
𝐾

𝑘=1
 

(2) 

Where K is the total number of the multipath components, 𝑎𝑘 and 𝜏𝑘 represent 

the amplitude and time delay of the k arrived path. The CIR samples show 

different characteristics in LOS and NLOS situations, which can be used to detect 

NLOS propagation. The CIR under LOS and NLOS with people and water block 

are shown below. 

 

Figure 2 CIR under LOS and NLOS with people, water block[22] 

Different features like rise time, rise time, mean excess delay, and maximum 

amplitude are calculated to be used in SVM to train data to detect NLOS 

propagation. 

Meanwhile, IMU suffers from accumulation error, also known as drift. Guoqiang 

Xu classified the IMU error into three kinds: dynamic drift, static drift, and 
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stochastic drift.[23] The first two errors can be filtered and eliminated by discrete 

filters but the last one is hard to process so IMU can’t be used individually to 

provide high accuracy in the navigation system. 

Shanwen Guan proposed a noise removal algorithm based on LSTM.[24] The low-

cost commercial IMUs are very noisy, so integrating IMU acceleration data 

directly may lead to worse positioning data. LSTM networks are well-suited to 

classifying, processing and making predictions based on time series data, since 

there can be lags of unknown duration between important events in a time series. 

The data with the timestep length is used as the sample feature, and the data at 

a position after the timestep is used as the sample label.  

Alvin et al. proposed a method to fuse the acceleration data from IMU and the 2D 

coordinates from UWB anchors to increase the robustness and accuracy of the 

location.[25] The method adds the fused displacement calculated by IMU 

displacement and UWB displacement to the last known position to produce a 

precise location estimate as Equations (3) and (4) show. 

 

∆𝑥𝐹𝑢𝑠𝑒𝑑 =  
∆𝑥𝐼𝑀𝑈𝜎𝐼𝑀𝑈

2 + ∆𝑥𝐼𝑃𝑆𝜎𝐼𝑃𝑆
2

𝜎𝐼𝑀𝑈
2 + 𝜎𝐼𝑃𝑆

2  
(3) 

 

∆𝑦𝐹𝑢𝑠𝑒𝑑 =  
∆𝑦𝐼𝑀𝑈𝜎𝐼𝑀𝑈

2 + ∆𝑦𝐼𝑃𝑆𝜎𝐼𝑃𝑆
2

𝜎𝐼𝑀𝑈
2 + 𝜎𝐼𝑃𝑆

2  
(4) 

Where ∆𝐼𝑀𝑈 is the IMU displacement for IMU and ∆𝐼𝑃𝑆 is the UWB 

displacement, 𝜎𝐼𝑀𝑈 is the variance of IMU measurement and 𝜎𝑈𝑊𝐵 is the variance 

of UWB measurement. 
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Xudong Yue represented the BP-EKF method to process IMU data to reduce the 

error caused by IMU using EKF in order to eliminate high-order Terms of Tyler 

expansion.[26] Backpropagation (BP) method is a widely used algorithm for 

training feedforward artificial neural networks. The algorithm uses the BP neural 

network to predict the error between the actual value and the filtered value to 

correct the EKF error. 

Fengbo Wu developed a new algorithm using the difference between the IMU 

positioning system data information and the UWB two-way ranging information as 

the measurement[27], assigning weights separately to remove outliers, and then 

using the Kalman filter to perform downhole positioning and attitude angle 

calculation. The article uses the estimated UWB position result of the previous 

step as the predicted value and the current UWB position is included in the 

observation in the Kalman filter for optimization and IMU estimation. 

H. Benzerrouk proposed the use of modern algorithms developed with a modified 

version of the Extended Kalman Filter [28], Sigma Point Kalman Filter, and 

Cubature Kalman filter to replace the standard filters. 

To solve the problem that the IMU initial state is not stationary in practical 

application and IMU installation direction is difficult to measure, Shuaikang Zhang 

presented a rotation and motion state initialization algorithm and provided a novel 

tightly-coupled IMU and multiple UWB tags fusion framework based on a graph 

optimization model. The system framework is shown below. 
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Figure 3 Real-time positioning and local optimization diagram[29] 

From figure 3, the system contains a local optimization thread and a real-time 

positioning thread. They are separate to prevent real time process from being 

influenced by local optimization thread. The local thread can give real time 

positioning constraint reference. 

The existing literatures have proposed various methods based on Kalman Filter 

to eliminate error caused by IMU and UWB measurement and initialization. My 

research proposes a new method to detect UWB anomaly by comparing the 

velocity calculated by UWB and the velocity calculated by IMU based on the fact 

that IMU calculated state is relatively accurate in a short period. Then my fusion 

algorithm will combine UWB and IMU data optimally also based on Kalman Filter 

according to the detection result. The algorithm is less complex and takes full 
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advantage of UWB’s ability to be accurate enough under normal condition and 

IMU’s ability to calculate accurate velocity and position in a short period. 

3. Experimental Platform 

3.1 Raspberry Pi 

Raspberry Pi is a series of small single-board computers. For the operating 

system, the Raspberry Pi Foundation provides Raspberry Pi OS, a Debian-based 

Linux distribution. The Raspberry Pi I use in my project to interface IMU and 

UWB is Raspberry Pi 4 Model B. My Raspberry Pi board and its GPIO pinout are 

shown below. 
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Figure 4 Raspberry Pi GPIO pinout 

3.2 Inertial Measurement Unit BNO055 

The BNO055 smart sensor board is a compact board that provides a triaxial 14-

bit accelerometer, an accurate close loop triaxial 16-bit gyroscope, a triaxial 

geomagnetic sensor, and a 32-bit microcontroller running the BSX3.0 Fusion 

software. 

The data outputs and their brief explanation are shown below. 

Data Explanation 
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Absolute Orientation(Euler 

Vector 100HZ) 

Three-axis orientation data based on a 360° 

sphere 

Absolute Orientation 

(Quaternion, 100Hz) 

Four-point quaternion output for more 

accurate data manipulation 

Angular Velocity Vector (100Hz) Three axes of ‘rotation speed’ in rad/s 

Acceleration Vector (100Hz) Three axis of acceleration (gravity + linear 

motion) in m/s^2 

Magnetic Field Strength Vector 

(20Hz) 

Three axis of magnetic field sensing in 

micro-Tesla (uT) 

Linear Acceleration Vector 

(100Hz) 

Three axis of linear acceleration data 

(acceleration minus gravity) in m/s^2 

Gravity Vector (100Hz) Three axis of gravitational acceleration 

(minus any movement) in m/s^2 

Temperature (1Hz) Ambient temperature in degrees Celsius 

Table 1 IMU data outputs and explanation 

The BNO055 hardware board is shown below. 
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Figure 5 BNO055 hardware board 

The way of connecting wires from BNO055 to Raspberry Pi is Vin – Power; GND 

– Ground; SDA -GPIO23; SCL – GPIO24. 

Serial Data(SDA) is used to transfer data that takes place through this pin and 

Serial Clock(SCL) is used to carry the clock signal to synchronize the 

conversation between devices. 

3.3 Ultra-wideband Decawave1001 

The DWM1001-DEV Development Board is shown below. 
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Figure 6 DWM1001-DEV Development Board 

For the system setup, I select four of the boards as anchors and one board as a 

tag. The anchors are powered by rechargeable batteries, the tag is connected to 

Raspberry Pi by USB. Then an android smartphone is used to configure and 

show localization. 

3.4 Robot Operating System 

ROS is an open-source meta-operating system for robots. It provides the 

services expected of an operating system, including hardware abstraction, 

underlying device control, implementation of common functions, inter-process 

messaging, and package management. It also provides the tools and library 

functions needed to acquire, compile, write, and run code across computers. In 

my project, the ROS system is used to export IMU and UWB data to txt files. 
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3.5 Data Export Process 

The data need to be exported and transferred to excel form to be processed in 

Matlab. The first step is to initialize. In IMU, I initialize the driver, open the I2C 

bus, load calibration offset and radius data, set operation mode to IMU, get 

calibration status data, and if the Pi successfully gets the accelerometer data, 

magnetometer data, gyroscope data, Euler angles data, and quaternions data. In 

UWB, I check if the serial port is open and if the anchors are created 

successfully. If anything is wrong, the Pi will terminate the program operation and 

reports the error. The errors usually occur when the wires from IMU to Pi are not 

connected properly or the anchors in UWB are out of work. 

After initialization of these two devices, the next step is to create various 

messages to pack IMU and UWB data, such as Marker message to pack tag 

positions, IMU messages to pack acceleration, orientation, angular velocity 

information, and magnetic field message to pack magnetic field information 

provided by IMU. Then the third step is to export these messages to 

corresponding topics and then publish these topics. After that, the launch file is 

created to roslaunch the node. When running the program, the Raspberry Pi can 

subscribe to the topics and save all of them or certain topics of them as .bag files. 

After that, I play the bag and save the topics I need like tag and imu data in the 

txt files in Pi. Finally, I can extract the key information in these txt files and create 

excel files to be processed in Matlab. The ROS provides a convenient way to 

publish and subscribe to information. According to the data type needed in 
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Matlab, I can choose different messages to process the data conveniently and 

effectively. 

3.6 Experiment Device Setup 

The four UWB anchors are fixed on the four corners of the experiment site, and 

the UWB tag and the IMU are connected to Raspberry Pi powered by the 

portable charger. The monitor, mouse, and keyboard are connected to the 

Raspberry Pi. The setup figure is shown below. 

 

Figure 7 The experiment device setup 
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4. IMU and UWB Error and Limitation Analysis 

4.1 IMU Error Analysis 

In chapter 2 I mentioned that IMU and UWB have their own limitations, which 

lead to error and location inaccuracy in certain situations. 

To analyze the accumulated drift of IMU, I conducted a stationary experiment, 

which means keeping the device stationary and recording the accelerometer 

data. The raw accelerometer value is shown below. 

 

Figure 8 The raw accelerometer data from IMU in the stationary case 
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As figure 8 shows, the acceleration is closer to zero, but when the accelerometer 

data is used to derive the position information, the small error still results in a 

huge error after a long time of accumulation. The x position and y position 

deduced only from IMU acceleration data are shown below. 

 

Figure 9 The x and y position calculated by IMU acceleration data 

As I mentioned in chapter 2, since acceleration is always integrated by guidance 

systems with respect to time to calculate the body’s velocity and position, the 

measurement error will result in a linear error growth in velocity and a quadratic 

error growth in position. So even after eliminating the gravity influence on the 

accelerometer, the acceleration value still results in position drift. 
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Besides, the angular velocity around three axes are shown below. 

 

Figure 10 Angle velocity around x and y axis from IMU 

From figure 10, the pitch, raw, and yaw angular velocity are close to zero when 

the device keeps stationary. But if only the angular rate data is used to calculate 

the pitch, raw, and yaw angle of our mobile robot, the small error of angular 

velocity will accumulate to an unacceptable value which results in huge errors in 

the mobile robot’s posture. 
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4.2 UWB Error Analysis 

To verify the accuracy of Decawave 1001, I first chose an open and flat ground 

next to the laboratory. The experiment scenario is shown below. 

 

Figure 11 UWB accuracy test experiment site 

As figure 11 shows, the four anchors are fixed on the four corners of the 6m*6m 

square. The coordinates are marked on the two sides of the square to obtain the 

coordinate information of each point inside the square assisted with the laser 

pointer. Then I fix the UWB at the coordinate (1,0) and record the UWB data. 
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Taking the average of the x-axis error and y-axis error as the measurement error, 

the error graph is as follows. 

 

Figure 12 UWB coordinate error without NLOS propagation 

In figure 12, it can be roughly estimated that the error of UWB in an open field is 

within 6cm. It corresponds with the description of decawave1001 that the error of 

decawave1001 is within 10cm.  

However, in the presence of obstacles in the environment, Non-Line-of-Sight will 

produce inaccurate results. Then I completed the UWB accuracy test with NLOS 

propagation. The experimental site is a 3*4 rectangle and the anchors are fixed 
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on the four corners of this rectangle. Two of the anchors are in the living room 

and two of the anchors are in the bedroom. The tag is fixed in (0.8,1). A plastic 

bag is added as an obstacle and placed between the tag and anchor. 

Taking the average of the x-axis error and y-axis error as the measurement error, 

the error graph is as follows. 

 

Figure 13 UWB measurement error with NLOS propagation 

Figure 13 shows that even though the anchors are separated by the wall, the tag 

can provide normal and acceptable position to us and the error is within 10cm. It 

is because only two or three anchors are enough for providing position 
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information to tag to analyze and give an accurate position. But when the plastic 

bag is added, which means obstacles greatly affect the tag signal reception, the 

error will increase significantly to about 0.5m. 

5. Filtering Algorithm Design 

5.1 Data Pre-processing 

To eliminate the static error due to gravity and various other factors which I 

mentioned in chapter 3, I decide to extract the mean value of the acceleration of 

the device on the x, and y axes of the first 300 times in the stationary state in a 

flat field. In the subsequent data processing, the linear acceleration and angular 

velocity minus the mean value I measured. The after-process acceleration and 

angular velocity data in the stationary experiment are shown below. 
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Figure 14 Processed acceleration on x,y axis in stationary case after eliminating the influence of 

gravity 

From figure 14, after adopting the above method to eliminate static error, the 

acceleration data becomes more reasonable, and acceleration on the x axis and 

y axis are closer to zero than before.  

To reduce the effect of oscillation of angular velocity data, I adopt the mean filter 

which is widely used in image processing. It is a simple, intuitive, and easy way to 

implement the method of smoothing images, reducing the amount of intensity 

variation between one pixel and the next. The main function of the mean filter 
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applying  to IMU data is to replace each sample’s value with the mean value of its 

neighbors. For example, 

 

 
𝑎𝑛𝑔𝑙𝑒𝑣𝑒𝑙𝑥(𝑖) =

1

2
𝑎𝑛𝑔𝑙𝑒𝑣𝑒𝑙𝑥(𝑖) +

1

4
𝑎𝑛𝑔𝑙𝑒𝑣𝑒𝑙𝑥(𝑖 − 1)

+
1

4
𝑎𝑛𝑔𝑙𝑒𝑣𝑒𝑙𝑥(𝑖 − 2) 

(5) 

The angular velocity data graph after the mean filter when the device is still is 

shown below. 

 

Figure 15 Mean filter processed angle velocity around x,y axis in stationary case 
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From figure 15, the oscillation of angle velocity becomes smaller and the static 

error decreases significantly, so the mean filter is effective for the angular velocity 

data process.  

5.2 Kalman Filter to Fuse IMU and UWB Data 

The current consideration is to estimate the current state of the system and there 

are two known quantities, an estimate of the previous state and a measurement 

of the current state, both of which have a certain amount of noise, what needs to 

be done is to combine these two. 

The first step is to predict state estimation: 

 𝑥𝑘+1|𝑘 =  𝐴𝑥𝑘|𝑘 +  𝐵𝑢𝑘 (6) 

In the first step, the position and velocity of the mobile robot are described by the 

linear state space. 

 
𝑥𝑘 = [

𝑥 𝑦
�̇� �̇�] (7) 

Where �̇� is the velocity, the derivative of position with respect to time.  

We assume the mobile robot is in uniformly accelerated linear motion in T. 

 
𝑥𝑘+1 =  𝑥𝑘 + 𝑣𝑘𝑇 +

1

2
𝑎𝑇2 

(8) 

 𝑣𝑘+1 =  𝑣𝑘 + 𝑎𝑇 (9) 

So 
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 𝐴 = [1 𝑇; 0 1] (10) 

 
𝐵 = [

1

2
∗ 𝑇2; 𝑇] 

(11) 

Where T = 0.01s, which is the IMU sample time. 

For 𝑎, which is the system’s input, can be expressed as: 

 𝑎𝑘 = [𝑎𝑐𝑐𝑥 𝑎𝑐𝑐𝑦] ∗ [𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼; 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼] (12) 

 

Where accx and accy are acceleration on the x and y axes from IMU data and α 

represents the angle of the mobile robot. The α can be obtained from the 

orientation quaternions described later. 

The second step is to predict the error covariance. 

 𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴𝑇 + 𝑄 (13) 

Where P represents the covariance matrix for an estimate, a measure of the 

estimated accuracy for the estimated state. This matrix is used to propagate the 

state estimate and state error covariance matrix appropriately. P value 

determines the initial convergence rate, and generally, a small value is set at the 

beginning to obtain a faster convergence rate. As the Kalman filter iterates, the 

value of P changes continuously, and when the system enters the steady state, 

the value of P converges to a minimum estimated variance matrix, and the 

Kalman gain at this time is also optimal, so this value only affects the initial 

convergence speed.  
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The Q matrix represents process noise for the system model. The system model 

is an approximation. Throughout the life of a system state, that system model 

fluctuates in its accuracy. Therefore, the Q matrix is used to represent this 

uncertainty and adds to the existing noise on the state. The value of Q and R 

which will be introduced later is crucial to the effect of the Kalman filter. I adopt 

the NMPC method to determine the value of Q and R and I will elaborate on the 

method later. 

The third step is to compute the Kalman gain. 

 
𝐾𝑘+1  =  𝑃𝑘+1|𝑘𝐻𝑇(𝐻𝑃𝑘+1|𝑘𝐻𝑇 + 𝑅)

−1
 (14) 

 

The Kalman filter computes a Kalman gain for each new measurement that 

determines how much the input measurement will influence the system state 

estimate. In other words, when a noisy measurement comes in to update the 

system state, the Kalman gain will trust its current state estimate more than this 

new inaccurate information. This concept is the root of the Kalman filter algorithm 

and why it works. It can recognize how to properly weigh its current estimate and 

the new measurement information to form an optimal estimate. The Kalman filter 

uses the state-to-measurement matrix, H, to convert the system state estimate 

from the state space to the measurement space.  

 𝐻 = [1 0] (15) 

R matrix represents the measurement noise matrix, which means that the larger 

the R, the less trusting the measured value. Observability of a control system is 
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the ability of the system to determine the internal states of the system by 

observing the output in a finite time interval when input is provided to the system. 

After determining the A matrix and H matrix, it can be confirmed whether the 

system is observable. The observability matrix O is shown below. 

 
𝑂 = [

𝐻
𝐻𝐴

] = [
1 0
1 𝑇

] (16) 

The determinant of the observability matrix O is T, a non-zero value, so the 

system is completely observable. 

The fourth step is to update state estimation. 

 𝑥𝑘+1|𝑘+1 = 𝑥𝑘+1|𝑘 + 𝐾𝐾+1(𝑧𝑘+1 − 𝐻𝑥𝑘+1|𝑘) (17) 

After the Kalman gain is computed, it is used to weight the measurement 

appropriately in two computations. The first computation is the new system state 

estimate. The second computation is the system state error covariance. Z 

represents the position from UWB measurement. 

The last step is to update the error covariance for the next step. 

 𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝐾+1𝐻)𝑃𝑘+1|𝑘 (18) 

Since the raw IMU acceleration data can cause obvious and huge drift, which 

results in the linear growth of error of velocity. If only applying the mean filter and 

static error elimination method, the IMU error is still not small enough to be used 

in the Kalman filter to improve accuracy when the UWB suffers from NLOS 
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propagation error. So after every step, I calibrate the velocity according to the 

absolute orientation provided by the gyroscope.   

 

𝑉𝑥 =  √𝑉𝑥
2 + 𝑉𝑦

2 ∗ 𝑐𝑜𝑠𝛼 
(19) 

 

𝑉𝑦 =  √𝑉𝑥
2 + 𝑉𝑦

2 ∗ 𝑠𝑖𝑛𝛼 
(20) 

Where 𝛼 is the orientation angle around the z axis, also known as the yaw angle. 

In every step of the Kalman filter, the velocity direction of the mobile robot is 

calibrated to correspond with the orientation data which is relatively accurate and 

free from accumulation error. 

5.3 Fmincon Method to Determine Q and R in Kalman Filter 

The fmincon function in Matlab can find the minimum of the objective function, 

the function here to determine Q and R is the difference between the true position 

and Kalman filter estimated position. I collect three sets of data and record the 

true position of some timing points in the field shown below. 
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Figure 16 Experiment site to determine Kalman filter parameters 

The device is fixed on the flat cart and the four anchors are fixed on the four 

corners of the 6m*6m square. The coordinates are marked on the two sides of 

the square to obtain the coordinate information of each point inside the square 

assisted with the laser pointer. Then I fix the UWB at the coordinate (1,0) first as 

the start point and then push the flat cart smoothly from the start point (1,0) to the 

endpoint (1,5). Every time the cart passes through the coordinate points 

(1,1),(1,2),(1,3),(1,4),(1,5), I press the stopwatch to record time. So the time of 

the cart passing through certain points can be known. Extract the corresponding 

position estimated by the Kalman filter at the same time as the stopwatch records 
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and get the error by using the estimated position minus the true position to be 

used in the objective function. I repeat the experiment three times. 

The objective function is shown below. 

  𝑜𝑏𝑗 = (𝑥1 − 1)2 + ⋯ + (𝑥5 − 1)2 + (𝑦1 − 1)2 + ⋯ + (𝑦5 − 5)2 (21) 

Where (𝑥𝑛, 𝑦𝑛) represents the coordinate estimated by the Kalman filter when the 

cart passes through (1,n). The inputs of the objective function to get the (𝑥𝑛, 𝑦𝑛) 

are Kalman filter parameters, UWB position data, IMU data, and stopwatch 

records. 

For the fmincon algorithm, I choose the ‘interior point’ algorithm. It handles large, 

sparse problems, as well as small dense problems. The algorithm satisfies 

bounds at all iterations and can recover from NaN or Inf results. It is a large-scale 

algorithm. 

The iteration results are shown below. 
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Figure 17 Fmincon iteration result 

And the optimum solution R = 0.011358 Q=23.9714. 

R is much smaller than Q since in the environment without obstacles because the 

UWB can provide accurate position data with the error less than 6cm. 

The Q and R here is the optimum solution to the flat, no obstacles, and smoothly 

moving scenario. When the mobile robot does not move smoothly or the tilt of the 

mobile robot becomes larger, the trust in IMU data to estimate position needs to 

decrease and the Q needs to increase. When obstacles appear in front of the 

mobile robot, the UWB signal transmission will be certainly influenced so the trust 
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in UWB to get the position needs to decrease and the R needs to increase. In the 

last chapter, I have discussed that UWB accuracy decreases a lot, from 6cm to 

nearly 50 cm, so the adjustment of R needs to be large enough to prevent 

inaccurate data to influence the filter effect. 

5.4 Complementary Filter for Tilt Degree 

The idea behind the complementary filter is to combine the slow moving signal 

from the accelerometer with the fast moving signal from the gyroscope. The 

accelerometer provides a good tilt indicator under static conditions. The 

gyroscope provides a good tilt indicator under dynamic conditions. However, 

each method has its own limitation in certain situations, accelerometer becomes 

inaccurate when the device is tilted and moving translationally at the same time 

and when they are subject to sudden bumps or taps. Minuscule noise in the 

signal will eventually multiply to skew the calculated rotation angle by gyroscope. 

Therefore, the idea is to pass the accelerometer signal through a low-pass filter 

and the gyroscope signal through a high-pass filter and combine them to get the 

final rate. The low-pass filters’ task is to filter out signals that are too high and 

only let frequencies under a selected number pass through, high-pass filters do 

the opposite. The key point is that the frequency response of the low-pass and 

high-pass filters adds up to 1 at all frequencies. 

First, by using the gravitational accelerometer data, the roll and pitch can be 

calculated. Formulas used to get the pitch and roll are shown below, 
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𝑎𝑛𝑔𝑙𝑒 𝑟𝑜𝑙𝑙 = 𝑎𝑡𝑎𝑛𝜃(
𝐺𝐴𝑐𝑐𝑦

√𝐺𝐴𝑐𝑐𝑥
2 + 𝐺𝐴𝑐𝑐𝑧

2
) 

(22) 

 
𝑎𝑛𝑔𝑙𝑒 𝑝𝑖𝑡𝑐ℎ = −𝑎𝑡𝑎𝑛𝜃(

𝐺𝐴𝑐𝑐𝑥

√𝐺𝐴𝑐𝑐𝑦
2 + 𝐺𝐴𝑐𝑐𝑧

2
) 

(23) 

The result of this is multiplied by (180/Pi) to get a [-90 90] range. 

Second, by using the gyroscope data, 

 𝜃𝑎𝑛𝑔𝑙𝑒 = 𝜃𝑎𝑛𝑔𝑙𝑒 + 𝑤𝑔𝑦𝑟𝑜 ∗ 𝑑𝑡 (24) 

The mathematical model used for the complementary filter can be represented as 

below. 

 𝜃𝑎𝑛𝑔𝑙𝑒 = 𝛼 ∗ (𝜃𝑎𝑛𝑔𝑙𝑒 + 𝑤𝑔𝑦𝑟𝑜 ∗ 𝑑𝑡) + (1 − 𝛼) ∗ 𝜃𝑎𝑐𝑐 (25) 

𝜃𝑎𝑛𝑔𝑙𝑒 represents the calculated angle(pitch/roll), 𝛼 is a filter weight constant, 

𝑤𝑔𝑦𝑟𝑜  is the angular velocity from the gyroscope, dt is the sampling time, and 𝜃𝑎𝑐𝑐 

is the calculated pitch or roll from the accelerometer data. 

The flow chart of the complementary filter is shown below. 
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Figure 18 Complementary filter flow chart 

The test experiment for the complementary filter is divided into two steps, In the 

first step, the device keeps stationary and flat on the table for the first 10 

seconds, then it starts to rotate around the y-axis, returns to the original state 

when it turns to ninety degrees, then repeat the rotation twice. In the second step, 

the device keeps stationary and flat on the table for the first 10 seconds, then it 

starts to rotate around the y-axis, return to the original state when it turns to 

ninety degrees, then repeats the rotation twice. 

The roll and pitch graph for the two steps are shown below. 
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Figure 19 First step roll and pitch degree 
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Figure 20 Second step roll and pitch degree 

As figure 19 and 20 show, as the device rotates around the y axis, the pitch value 

will gradually rise close to 90 degrees and the roll value will keep stable around 

the original value. As the device rotates around the x axis, the roll value will 

gradually rise close to 90 degrees and the pitch value will keep stable around the 

original value. So the estimated tilt degree through the complementary filter is 

basically close to the actual tilt degree. 

Regarding the selection of the filter weight constant, since the error of degree 

calculated by the gyroscope increases with the accumulation of time and the 

method using acceleration data is highly subject to sudden bumps and becomes 
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inaccurate when the device moves translationally when it is tilted, the work time 

and the general condition of the road need to be considered. If the mobile robot 

needs to keep in work mode for a long time, then the mobile robot needs to rely 

more on accelerometer. On the other hand, if the work time is short but the 

surface is uneven, the gyroscope is more reliable. 

The purpose of the complementary filter is to determine the tilt of the mobile 

robot, according to which Q in Kalman filter will be changed since the state 

estimation of position and velocity is based on the assumption that the mobile 

robot drives on a smooth road and the device is not tilted. So if the tilt angle is 

large, the accuracy of state estimation will certainly decrease, which means the 

trust in state estimation in the Kalman filter need to decrease. 

5.5 Data Analysis to Detect UWB Measurement Anomaly 

 Non-line-of-sight (NLOS) occurs when the obstacles move between the anchors 

and causes obvious error in UWB measurement as mentioned in UWB error 

analysis and literature review. When the NLOS occurs, the accuracy of UWB 

measurement degrades significantly, so the trust in it needs to decrease, which 

means R needs to increase and Q needs to decrease in the Kalman filter. There 

are two kinds of methods to detect NLOS propagation in experiments, the first 

one is to depend only on the camera and computer vision to detect the obstacles 

and derive the distance from the obstacles. However, the effect of obstacles on 

UWB accuracy varies greatly with different materials and different position of the 
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obstacles, so the system must be complicated if only relying on computer vision 

to determine NLOS propagation. The second option is to analyze the UWB data 

and compare it with IMU data. Since the IMU only suffers from accumulation 

error, so in a short period, the velocity calculated by IMU data is relatively 

accurate. If the velocity calculated by UWB measurements differs too much from 

the velocity calculated by IMU acceleration and gyroscope, it can be confirmed 

that the UWB anomaly occurs. 

 𝑉𝑖𝑚𝑢𝑥(𝑖) =  𝑉𝑥(𝑖 − 1) + 𝑎𝑥 ∗ 𝑇 (26) 

 Vimuy(i) =  Vy(i − 1) + ax ∗ T (27) 

 

∆𝑉𝑥 =  
[𝑥𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖) − 𝑥𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖 − 1)]

𝑇
−  𝑉𝑖𝑚𝑢𝑥 

(28) 

 

∆𝑉𝑦 =  
[𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖) − 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖 − 1)]

𝑇
−  𝑉𝑖𝑚𝑢𝑦 

(29) 

 ∆𝑉 =  √∆𝑉𝑥 2 + ∆𝑉𝑦2 (30) 

 

Where xmeasure and ymeasure are the x and y coordinate measured by UWB 

and 𝑉𝑖𝑚𝑢 is the velocity of mobile robots calculated by IMU acceleration data 

combined with the velocity of the previous step. T is 0.1s, which is the sample 

frequency of UWB. If ∆𝑉 exceeds the set threshold, the NLOS occurs. Once ∆𝑉 is 

detected to be higher than the threshold, the R in Kalman Filter is raised and held 

for the next 2.5 seconds. 
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Regarding the selection of the threshold for UWB anomaly detection , I conduct 

test experiments to observe the difference between the velocity calculated by 

UWB position measurements and velocity calculated by IMU accelerometer and 

gyroscope data. Theoretically, since the UWB measurement error is within 

certain range under normal condition and the velocity calculated by IMU data in a 

short period is accurate, the difference of velocity calculated by these two ways is 

within certain range under normal condition. 

Figure 23 shows the velocity difference between the two methods without 

obstacle interference. 

 

Figure 21 The velocity difference between the two methods without obstacle interference 
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As figure 21 shows, the maximum of velocity difference between UWB and IMU 

calculation methods is 1.96 m/s, so the threshold can be set close to and slightly 

larger than 1.96 m/s 

6. Experiment 

The experiment site is a 6m*6m square. The four UWB anchors are fixed on the 

four corners of the 6m*6m square and the device moves from point (1,0) to point 

(1,5) in straight line , turns 90 degrees and then moves to point (6,5). At second 6 

and 36, the obstacle is added and removed after 8 seconds. There are two ways 

to evaluate the algorithm effect, the first one is to observe the extent to which the 

estimated trajectory deviates from the true trajectory. The second one is to use 

the stopwatch to record timestamp when the device passes point (1,0), (1,1), 

(1,2), (1,3), (1,4), (1,5),(2,5), (3,5), (4,5), (5,5), (6,5). Comparing these points with 

the coordinates at the same time after the fusion algorithm, the effect of the 

fusion algorithm can be estimated.  

The result of pitch and roll of the device is shown below. 
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Figure 22 Roll degree of the device 
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Figure 23 Pitch degree of the device 

From figure 22 and 23, the vibration magnitude is very slight, in accordance with 

the real situation because the road is relatively flat. When pitch and roll degree 

are large, the Q needs to decrease to prevent inaccurate IMU data to influence 

the localization system. 

The orientation of the device calculated by quaternion data from IMU is shown 

below. 
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Figure 24 Orientation of the device 

From figure 24, the orientation data corresponds with the actual situation as the 

orientation of the device keeps close to zero in the first half of the trajectory and 

increases to 90 degree in the second half of trajectory. 

The result of the difference between velocity calculated by IMU and UWB is 

shown below. 
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Figure 25 Difference between velocity calculated by UWB and IMU 

Figure 25 shows that the velocity difference between UWB and IMU keeps close 

to zero before obstacle is added, but increases obviously after 6s and 36s, which 

are exactly the time the obstacle is added. It proves the NLOS propagation 

detection method is effective. To further analyze the accuracy of the detection 

algorithm, I compare it with the UWB measurement data. Since in the first half of 

the experiment, the device’s x coordinate remains unchanged and the device’s y 

coordinate remains unchanged during the second half, it is easy to tell from the 

UWB x,y coordinate graph whether UWB is accurate or not. 
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Figure 26 UWB measurement x,y coordinate 

As figure 26 shows, the anomaly of UWB measurement matches the NLOS 

propagation detection graph. At 6s and 36s, the NLOS propagation influences the 

UWB measurement accuracy, so the velocity difference starts to increase. At 

59s, the velocity difference increases suddenly because UWB moves close to the 

edge of the site, the abrupt change in UWB measurement can be observed. 

Overall, the detection value will increase when the UWB measurement is not 

accurate. 

The signal to change Kalman filter parameter according to the NLOS propagation 

detection and the set threshold is shown below. 
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Figure 27 Signal to detect NLOS 

As shown in figure 27, when the difference is larger than the threshold we set to 

detect NLOS propagation, the signal turns from zero to one and hold for 2.5 

seconds. When the signal equals to one, the Q is turned smaller and R is turned 

larger. 

The true trajectory, estimated result and the UWB measurement are shown 

below. 
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Figure 28 Estimated trajectory, UWB measured trajectory and true trajectory 

To compare the error between the UWB measured position and the true position 

and the error between the estimated position and the true position, it is not 

possible to record the true position of all sample time, so firstly I calculate the 

distance from each measured point and estimated point to the true trajectory to 

compare the extent of deviation. 
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Figure 29 UWB Measured Error 
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Figure 30 Esimated Error 

From figure 29 and 30, the maximum distance that the UWB measurement 

deviates from the real trajectory is 1.83m, while the maximum distance that the 

estimated position deviates from the real trajectory is only 1.02m. 

In addition, I use a stopwatch to record the time of the device passing some 

specific points. From the stopwatch, the timestamp of the device passing the 

certain points are recorded, and these points are compared with the estimated 

position and UWB measured position at the same time. 
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Time True 

position 

Estimated 

position 

UWB measured 

position 

Estimation 

error 

UWB 

error 

8.69s (1,1) (1.827,0.745) (1.9188,0.710) 0.865 0.963 

14.74s (1,2) (2.011,1.876) (2.563,2.740) 1.019 1.729 

20.11s (1,3) (1.071,2.469) (1.082,2.662) 0.536 0.348 

24.85s (1,4) (1.061,3.415) (1.060,3.413) 0.588 0.590 

30.08s (1,5) (0.951.4.430) (0.961,4.440) 0.572 0.561 

38.43s (2,5) (1.883,5.376) (2.576,5.758) 0.394 0.952 

41.96s (3,5) (2.618,5.161) (2.728,4.703) 0.415 0.403 

45.77s (4,5) (3.819,5.279) (4.671,5.604) 0.333 0.903 

50.16s (5,5) (4.470,5.009) (4.472,5.010) 0.530 0.528 

58.17s (6,5) (6.031,5.010) (6.032,5.012) 0.033 0.034 

Table 2 The estimated, measured position at certain time recorded by the stopwatch  

From table 2, comparing the UWB measurement error and estimation error in 

14.74 second, 38.43 second and 45.77 second, during the time NLOS 

propagation occurs, the estimation error is obviously less than the UWB 

measurement error. 

The trajectory calculated only by IMU data is shown below. 
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Figure 31 Trajectory calculated only by IMU 

From figure 31, it can be derived that the IMU drift over long time accumulation is 

huge. After finishing the experiment, the error on y axis comes to about 50m even 

after data pre-processing, from which it can be proved that the IMU error 

accumulation is huge and non-negligible. 

The threshold selection of the detection algorithm is important. When the 

threshold is too high, Kalman filter can’t adjust parameters in time when error of 

UWB measurement is too large. The estimated position will keep following the 

UWB measurement rather than depending more on IMU data to calculate 

position. The experiment result when the threshold is too large is shown below. 
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Figure 32 Estimated trajectory, UWB measured trajectory and true trajectory with large threshold 

As figure 32 shows, since the threshold is too large, the algorithm becomes less 

sensitive to UWB measurement error and can’t adjust parameters in time.  The 

distance of deviation from the true trajectory becomes larger significantly. 

On the other hand, when the velocity difference threshold is too small, which 

means the Kalman filter is too sensitive to UWB measurement error, the 

estimated position will abandon too much UWB measurement data and rely too 

much on IMU. As figure 34 shows, the error of position calculated only by IMU is 

large. Besides, every time the algorithm detects the difference of velocity 

between the velocity calculated by IMU data and the velocity calculated by UWB 
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position data exceeds the threshold, the signal will hold for the later 2.5s. So if 

the threshold is too small, the algorithm will be more complex and slower. The 

experiment result when the threshold is too small is shown below. 

 

Figure 33 Estimated trajectory, UWB measured trajectory and true trajectory with small threshold 

As figure 33 shows, since the threshold is too small, the localization system 

chooses to rely too much on IMU data to calculate position even when UWB is 

relatively accurate. Because IMU suffers from accumulation error, the position 

accuracy is low. 
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7. Conclusion 

While UWB and IMU are both ideal techniques in localization system, non-line-of-

sight propagation caused by obstacles placed between the anchor and tag 

causes huge error in position measurement by UWB and the inertial 

measurement unit suffers greatly from long-time error accumulation. 

The UWB measurement anomaly detection algorithm can detect NLOS 

propagation and other anomalies in UWB  according to the difference between 

the velocity calculated by UWB measurements and the velocity calculated by IMU 

data, then it can give a signal to adjust Kalman filter parameters. The result of the 

smoothness of the trajectory estimated by complementary filter corresponds with 

the actual situation.  

The estimated position by Kalman filter combining the processed IMU and UWB 

data is much more accurate than the position measured or estimated by UWB or 

IMU individually. On the one hand, the estimated trajectory matches the true 

trajectory more accurately, the maximum distance between the estimated 

trajectory and the true trajectory is shorter than the maximum distance between 

the UWB measured trajectory and the true trajectory. On the other hand, 

comparing the true point at certain time recorded by the stopwatch with the 

estimated point and UWB measured points at same time, the estimated points by 

Kalman filter are closer to the true point obviously than the points measured only 

by UWB especially when NLOS occurs. The threshold selection will greatly 
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influence the algorithm effect and it needs to be set appropriately according to the 

experiment under normal condition without NLOS interference. 

Overall, the algorithm can make the localization system more reliable and provide 

more accurate position information. 
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