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Abstract
We study ground states in the nonlinear Schrödinger equation (NLS) with an isotropic
harmonic potential, in energy-critical and energy-supercritical cases. In both cases, we
prove existence of a family of ground states parametrized by their amplitude, together
with the corresponding values of the spectral parameter. Moreover, we derive asymptotic
behavior of the spectral parameter when the amplitude of ground states tends to infinity.
We show that in the energy-supercritical case the family of ground states converges to
a limiting singular solution and the spectral parameter converges to a nonzero limit,
where the convergence is oscillatory for smaller dimensions, and monotone for larger
dimensions. In the energy-critical case, we show that the spectral parameter converges
to zero, with a specific leading-order term behavior depending on the spatial dimension.

Furthermore, we study the Morse index of the ground states in the energy-supercritical
case. We show that in the case of monotone behavior of the spectral parameter, that
is for large values of the dimension, the Morse index of the ground state is finite and
independent of its amplitude. Moreover, we show that it asymptotically equals to the
Morse index of the limiting singular solution. This result suggests how to estimate the
Morse index of the ground state numerically.
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Chapter 1

Introduction

1.1 Introduction
The main subject of this study is the focusing nonlinear Schrödinger equation (NLS)
with an isotropic harmonic potential, given by

i∂tw = −∆w + |x|2w − |w|2pw, (1.1)

where w(t, x) : R × Rd → C and p > 0.

In physical dimensions d = 1, 2, 3, equation (1.1) is also known as the Gross-Pitaevskii
equation. For cubic (p = 1) and quintic (p = 2) nonlinearities, it serves as a model for
the behavior of the Bose-Einstein condensate with attractive atomic interactions under
a magnetic trap [22, 3]. Originally, it was derived independently by Gross [24] and
Pitaevskii [47] in 1961 by methods of the mean field theory. Starting with Lieb et
al. [38, 39], the physical assumptions were mathematically justified with error bounds
between the multi-particle wave function and the product of individual wave functions.
More recently, equation (1.1) without the harmonic potential was justified in [51] for
the cubic nonlinearity and d = 1, and in [12] for dimensions d = 2, 3. For the quintic
nonlinearity, it was justified in [11] for d = 1, 2. From a mathematical viewpoint, (1.1)
is a prototype model of dynamics of nonlinear dispersive waves subject to a confining
potential, and from this perspective it is interesting to consider higher dimensions d and
arbitrary nonlinearity powers p > 0.

Note that formally, by multiplying (1.1) by the complex conjugate w̄, integrating over
Rd, and taking the imaginary part, we obtain the conservation of mass:

d

dt
M(w) = d

dt

∫
R

|w|2dx = 0. (1.2)

Moreover, by multiplying equation (1.1) by ∂tw̄, integrating over Rd, and taking the real
part, we formally obtain the conservation of energy:

d

dt
E(w) = d

dt

∫
Rd

(
|∇w|2 + |x|2|w|2 − 1

p+ 1 |w|2p+2
)
dx = 0. (1.3)

1
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The above calculations suggest that the suitable space to look for solutions w(t, ·) of
(1.1) is the space ENLS , where both M(w) and E(w) are well-defined:

ENLS := {u ∈ L2(Rd) : ∇u ∈ L2(Rd), xu ∈ L2(Rd), u ∈ L2p+2(Rd)}. (1.4)

This space is often referred to as the energy space.

By looking for standing wave solutions to (1.1) in the form w(t, x) = eiλtu(x), we
obtain the following stationary NLS

−∆u+ |x|2u− |u|2pu = λu. (1.5)

We are interested in studying ground states of (1.5), which are solutions corresponding
to the lowest energy level. The study of excited states lies beyond the scope of this
work, we refer to [52] and [17] for some of the recent developments on this subject. It is
well-known [37] that ground states must be radially symmetric and decaying to zero at
infinity. Thus, stationary equation (1.5) reduces to a radial equation

u′′(r) + d− 1
r

u′(r) − r2u(r) + λu(r) + |u(r)|2pu(r) = 0, (1.6)

for u(r) : R+ 7→ R, where r = |x|. Hence, the principal problem of finding ground states,
denoted as u, can be formulated as

u′′(r) + d−1
r u′(r) − r2u(r) + λu(r) + |u(r)|2pu(r) = 0, r > 0,

u(r) > 0, u′(r) < 0,
lim
r→0

u(r) < ∞, lim
r→∞

u(r) = 0.
(1.7)

Weak solutions to the boundary-value problem (1.7) are defined in the energy space

E :=
{
u ∈ L2

r(R+) : u′ ∈ L2
r(R+), ru ∈ L2

r(R+), u ∈ L2p+2
r (R+)

}
, (1.8)

where Lq
r denotes the space of radially symmetric Lq(Rd) functions with the norm defined

as

∥u∥Lq
r

:=
(∫ ∞

0
rd−1|u(r)|qdr

) 1
q

. (1.9)

Note that (1.8) follows from (1.4) after transformation to the radial variable r := |x|.

1.2 Classification for the NLS without potential
For the NLS without the harmonic potential (free NLS)

i∂tw = −∆w − |w|2pw, (1.10)

2
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it was proposed (see, e.g., [8]) to introduce different classification cases, based on the
scaling properties of the conserved quantities of mass

Mf (w) :=
∫
R

|w|2dx, (1.11)

and energy
Ef :=

∫
Rd

(
|∇w|2 − 1

p+ 1 |w|2p+2
)
dx. (1.12)

If w(t, x) is a solution of the free NLS (1.10), then the scaled function wL(t, x) defined
for L > 0 as

wL(t, x) := L
1
pw(L2t, Lx) (1.13)

is also a solution of (1.10), with the corresponding mass and energy rescaled according
to

Mf (wL) = L
2
p

−d
M(w), Ef (wL) = L

2
p

+2−d
E(w). (1.14)

Scalings (1.14) suggest three distinct cases for each of the conserved quantities. When
dp < 2, we have a mass-subcritical case, and the Cauchy problem for (1.10) is glob-
ally well-posed in H1(Rd) from the conservation laws (1.2), (1.3), and the Gagliardo-
Nirenberg inequality [21]. Case dp = 2 is called mass-critical. Here, local well-posedness
is guaranteed in H1(Rd), however global existence is available only in L2(Rd) for suffi-
ciently small initial data, and the solution might have a finite-time blow-up for large-
norm initial conditions, or for initial data with negative energy Ef (w) [57, 46, 60, 16].
Finally, the case dp > 2 is called mass-supercritical. Here, scaling (1.13) shows that the
time evolution of (1.10) may break in a finite time for arbitrary small L2-initial data
[16].

When dp > 2, we need to distinguish between three additional cases, this time for the
energy. Local well-posedness inH1(Rd) is available, as long as (d−2)p < 2, or (d−2)p = 2
which correspond to the energy-subcritical, and energy-critical cases, respectively [10,
9]. The case (d − 2)p > 2 for d ≥ 3 is referred to as the energy-supercritical case.
If d = 1, 2, or if d ≥ 3 and (d − 2)p < 2, solutions of (1.10) exist globally, as long
as the initial condition is sufficiently small with respect to the H1-norm [16]. In the
energy-critical case and dimensions d = 3, 4, 5, it has been shown in [35] that solutions
of the radial Cauchy problem for (1.10) are global and scatter, under the assumption
that both the Ḣ1-norm and energy of the initial condition are sufficiently small. For
d ≥ 3, well-posedness of (1.10) in H1(Rd) is lost for sufficiently large values of p. This
is an implication of reaching the Sobolev conjugate exponent in the continuous Sobolev
embedding H1(Rd) ↪→ Lq(Rd), valid for any 2 ≤ q ≤ 2d

d−2 =: 2∗. In our case, q = 2p+ 2,
as seen in (1.8), so that 2p + 2 = 2d

d−2 ⇐⇒ (d − 2)p = 2. To remedy this, local well-
posedness in the energy-supercritical case (d − 2)p > 2 is obtained in Hs(Rd), where
s > dp−2

2p > 1, and the initial data for the Cauchy problem is taken in the Schwartz
class S(Rd) [60]. We also refer to [41] for a more detailed blow-up study for the energy-
supercritical NLS.

3
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1.3 Ground states with the harmonic potential
The terminology and classification regarding criticality of mass and energy in free NLS
(1.10) is also used in the context of (1.1). Although the harmonic potential does not
prevent blowup in finite time, it creates a possibility of existence of the standing waves
(ground states). The linear part of the boundary-value problem (1.7) has the ground
state given by the Gaussian function u0 = e− r2

2 , which exists when the eigenvalue pa-
rameter λ is given by λ0 := d. By standard local bifurcation theory [42], there exists a
nonlinear ground state ub(r) with small amplitude b := ∥ub(0)∥∞ that bifurcates from
the linear ground state u0 as b → 0, with λ < λ0 sufficiently close to the bifurcation
point. The nonlinear ground state corresponds to λ = λ(b) satisfying the limit λ(b) → λ0
as b → 0, with the following asymptotics:

ub(r) = bu0(r) + O(b3), λ(b) = d− 2− d
2 b2 + O(b4), as b → 0. (1.15)

One of the main objectives of our work is the study of the bifurcation curve in the (λ, b)
plane as b → ∞.

The behavior of the bifurcation curve depends on criticality of the energy functional.
In the energy-subcritical case (d − 2)p < 2, global behavior of the solution curve can
be analyzed by using variational methods and global bifurcation theory [49] due to the
fact that the Sobolev embedding H1(Rd) ∩ L2,1(Rd) ⊂ L2p+2(Rd) is compact, where
L2,1(Rd) is defined as the space of functions u : Rd → R, such that | · |u ∈ L2(Rd).
Existence of solutions to (1.7) has been shown [34, 20, 52] for every λ < d. Uniqueness
was shown in [29] for d ≥ 3, and in [30] for d = 1, 2 (note that d = 1, 2 correspond to
the energy-subcritical case for any p > 0).

In the limiting energy-critical case (d − 2)p = 2, the Sobolev embedding is still
compact, so that the global bifurcation theory applies. However, the admissible values
of λ are further restricted by using Pohozaev [48] identity

4∥ru∥2
L2

r
− 2λ∥u∥2

L2
r

+ (d− 2)p− 2
p+ 1 ∥u∥2p+2

L2p+2
r

= 0, (1.16)

which holds for every solution of (1.7) (for the proof of (1.16) see the proof of Proposition
2.2 in Section 2.2). Equation (1.16) shows that in the energy-critical case (d− 2)p = 2,
no nonzero solutions of (1.7) exist if λ ≤ 0. In fact, it was proven in [52] that λ ∈ (0, d)
if d ≥ 4 and λ ∈ (1, 3) if d = 3, for every solution of (1.7). In this context, the pioneering
work of Brezis and Nirenberg [5] in 1983 was the first breakthrough in characterizing
ground states in the energy-critical case. The variational arguments applied there in the
context of free NLS served as a basis for an extension to NLS with harmonic potential
proposed in [52], where existence was proven for d ≥ 3. Additionally, numerical evidence
provided there served as a basis for more rigorous theory in [53], where it was shown
that the solution branch in the (λ, b) plane becomes unbounded. Uniqueness of solutions
to (1.7) was proven in more general setting in [55].

4
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In the energy-supercritical case (d− 2)p > 2, variational approach is no longer avail-
able, so that different methods need to be developed. Identity (1.16) shows that λ > 0
for every solution of (1.7). Furthermore, it was shown in [53] that solutions of (1.7) exist
for the values of λ in a smaller subset of (0, d). A much more striking property of the
energy-supercritical case is that ground states ub converge to a limiting singular solution
u∞ along the bifurcation curve in the (λ, b) plane, as b → ∞. Existence of such u∞ ∈ E ,
u∞ /∈ L∞ was proven in [54]. The limiting solution satisfies the stationary NLS (1.6) for
some λ = λ∞ ∈ (0, d), and diverges at the origin according to

u∞(r) = 1
p

(
d− 2 − 1

p

) 1
2p

r
− 1

p

(
1 + O(r2)

)
, as r → 0. (1.17)

Convergence ub → u∞ as b → ∞ in the energy space was proven in [54] by modifying
arguments used in [40] in the context of stationary NLS in a ball and without a harmonic
potential. Specifically, in [40] the following problem was considered:

∆u+ νu+ |u|2pu = 0, x ∈ B,
u > 0, x ∈ B
u = 0, x ∈ ∂B,

(1.18)

where ν > 0, (d−2)p > 2, and B denotes the unit ball in Rd, d ≥ 3. It was shown in [40]
that there exists a unique value ν = ν∗, such that problem (1.18) has a unique radial
singular solution with the same singular behaviour as in (1.17). Moreover, it was proven
in [15, 25] that for ν sufficiently close to ν∗, problem (1.18) has a large number of classical
solutions, as long as either d ≤ 10, or p < 2

d−2
√

d−1−4 if d > 10. These considerations,
together with numerical evidence provided in [52], suggest that a similar phenomenon
could occur in unbounded domains, and in the presence of harmonic potential, as in
(1.7).

The nature of convergence of λ(b) to λ∞ is heavily related to the spatial dimension
d. In fact, one can show that λ(b) oscillates around λ∞ as b → ∞ for 2 + 2

p < d < d∗(p),
and converges to it monotonically for d > d∗(p), where

d∗(p) := 6 + 2
p

+ 2
√

4 + 2
p
. (1.19)

This critical value of d∗(p) is in agreement with the results of [40], as d = d∗(p) ⇐⇒
p = 2

d−2
√

d−1−4 . The relation between d and p is visualized in Figure 1.1. In literature,
this oscillating dependence of λ(b) is also known as snaking behavior. Such dichotomy
between snaking and monotone dependencies has been previously discovered for the
classical Liouville-Bratu-Gelfand problem [32] in [33]. The methods used in [33] were
based on Emden-Fowler transformation [18] and a rigorous shooting method combined
with geometric approach, including phase plane analysis.

5
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Figure 1.1: Boundary between regions with oscillatory versus monotone
convergence of λ(b) to λ∞ as an interplay between dimension d and power
of nonlinearity p.

1.4 Morse index
Knowing the monotonicity of λ(b) is especially important when studying Morse index of
the ground state. In this context, it is understood as the number of negative eigenvalues
of the linearized operator Lb : E 7→ E∗, defined as

Lb := − d2

dr2 − d− 1
r

d

dr
+ r2 − λ(b) − (2p+ 1)|ub(r)|2p, (1.20)

where E∗ denotes the dual space of E . Note that if we assume C1 dependence of ub and
λ(b) on b, then differentiating the ODE in (1.7) on ub with respect to b results in the
equation Lb∂bub = λ′(b)ub, with ∂bub ∈ E . Thus, for every b > 0 such that λ′(b) = 0,
the operator Lb has a zero eigenvalue present in its spectrum, with the corresponding
eigenfunction ∂bub. This shows that monotonicity of λ(b) is closely related to spectral
properties of Lb. Specifically, it is reasonable to expect that the operator Lb gains an
additional negative eigenvalue whenever λ(b) passes a turning point for increasing values
of b. These considerations become relevant in the energy-supercritical case, where the
snaking behavior of λ(b) is replaced by the monotone behavior, see Figure 1.1.

Knowing the Morse index of ub can provide us with information about stability of
the ground state. For physical applications it is particularly important to know whether

6
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ground states survive in the time evolution under small perturbations. From the dy-
namical systems point of view, we can look at ground states as critical points of the
augmented Hamiltonian Λλ(w) := E(w) − λM(w) associated with the NLS (1.1). Gen-
erally, we would expect that those critical points are not stable in time evolution in the
usual sense, as they are saddle points. However, if the mass M(w) in (1.2) is conserved
independently of the energy E(w) in (1.3), then the critical points could be stable if they
are constrained minimizers of energy for fixed mass. Because the Gross-Pitaevskii equa-
tion (1.1) possesses a rotation symmetry: if w is a solution, so is T (θ)w with T (θ) = eiθ

for θ ∈ R, stability of critical points has to be defined as the orbital stability of the fam-
ily (orbit) {T (θ)ub}θ∈R. We are interested whether solutions of (1.1) that are initially
close to ground state ub in the energy space, stay close to the orbit generated by ub. We
provide the rigorous definition below.

Definition 1.1. We say that the ground state ub is orbitally stable in the Banach space
(X, ∥ · ∥X) if for any ϵ > 0, there exists δ > 0 such that if ∥w(0) − ub∥X < δ, then

inf
θ∈R

∥w(t, ·) − T (θ)ub∥X < ϵ, (1.21)

for every t > 0. Otherwise, ub is orbitally unstable in X.

In our case, the Banach space X to work in is the energy space ENLS , which reduces
to E under the radial symmetry assumption. Operator Lb defined by (1.20) represents
the Hessian operator of the augmented Hamiltonian Λλ(w) at w = ub. We look at the
spectral properties of Lb in the orthogonal complement of the ground state {ub}⊥, which
from the variational point of view can be seen as imposing the constraint M(w) = M0
for some M0 > 0. The following theorem presents the orbital stability result under
constrained mass.

Theorem 1.1 (Theorem 1 in [23]). Suppose that the Cauchy problem for (1.1) is locally
well-posed in E, and that

n(Lb|{ub}⊥) = 0, z(Lb|{ub}⊥) = 1, (1.22)

where n(Lb|{ub}⊥) denotes the number of negative eigenvalues, and z(Lb|{ub}⊥) denotes
the multiplicity of the zero eigenvalue, of operator (1.20) in the orthogonal complement
of ub. Then, ub is orbitally stable in time evolution of (1.1).

Remark 1.1. Note that one of the requirements of Theorem 1.1 is local well-posedness
of the Cauchy problem for (1.1). As discussed in Section 1.2 in the context of free NLS,
local well-posedness in the energy-supercritical case is not necessarily given a priori and
needs to be considered as a problem of its own.

One useful way of verifying spectral condition (1.22) in Theorem 1.1 is the so-called
Vakhitov-Kolokolov criterion, which ensures that the condition (1.22) is satisfied if the
Morse index is one and the mapping λ 7→ ∥ub∥2

L2
r

is monotonically decreasing.
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Theorem 1.2 ([59]). Suppose that the mapping λ 7→ M(ub) is C1. Under the setting of
Theorem 1.1, if n(Lb) = z(Lb) = 1, then

∂λM(ub) < 0 ⇐⇒ n(Lb|{ub}⊥) = 0, z(Lb|{ub}⊥) = 1. (1.23)

1.5 Outline of the thesis
Here, we give a brief overview of the content of all the chapters.

• In Chapter 2, we first define and describe basic properties of the linear quantum
harmonic oscillator on the real line. We provide formulas for its eigenvalues and
eigenfunctions, and show how to obtain them from the ladder operator method.
Then, for the nonlinear NLS with harmonic potential (1.6), we derive preliminary
bounds on the spectral parameter λ for the existence of the ground states.

• In Chapter 3, we consider the principal boundary-value problem (1.7) for ground
states in the energy-supercritical case. We describe how a rigorous shooting method
is used in order to prove existence of a family of ground states {ub}b>0, with the
corresponding values λ = λ(b) of the spectral parameter, and b defined as the
amplitude: b := ∥ub∥∞ = ub(0). Moreover, we analyze the behavior of this family
as b → ∞. We prove that there exists a limiting singular solution u∞, and a
corresponding value λ = λ∞, such that ub → u∞ and λ(b) → λ∞ as b → ∞.
Existence of u∞ and λ∞ was previously shown in [54], however we provide an
alternative proof of this result.

• In Chapter 4, we continue to work with the energy-supercritical case for (1.7).
Having a family of ground states {ub}b>0, and the corresponding values of λ = λ(b),
we study the precise asymptotic behaviour of λ(b) in the convergence λ(b) → λ∞
as b → ∞. We prove that for large values of b the convergence is oscillatory for
dimensions 5 ≤ d ≤ 12, and that it is monotone for d ≥ 13 if the nonlinearity
power is fixed at p = 1.

The content of Chapters 3 and 4 is based on [4]: P. Bizon, F. Ficek, D. E.
Pelinovsky, and S. Sobieszek, "Ground state in the energy super-critical Gross-
Pitaevskii equation with a harmonic potential", Nonlinear Analysis 210 (2021)
112358.

• In Chapter 5, we study the Morse index of the ground state {ub} of (1.7) in
the energy-supercritical case and the cubic nonlinearity (p = 1). We focus on the
case of monotone behaviour of λ(b) which, based on the results from Chapter 4,
corresponds to d ≥ 13. We prove that for sufficiently large values of b, the Morse
index of ub is finite and independent of b. Moreover, we show that the Morse index
of the ground state coincides with the Morse index of the limiting singular solution
for sufficiently large values of b.
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The content of Chapter 5 is based on [45]: D. E. Pelinovsky and S. Sobieszek,
"Morse index for the ground state in the energy supercritical Gross-Pitaevskii equa-
tion", Journal of Differential Equations 341 (2022) 380-401.

• In Chapter 6 we study the energy-critical case for (1.1), and general power p >
0. We consider the family of ground states {ub}b>0, as solutions of (1.7), and
the corresponding values λ = λ(b) of the spectral parameter. We explore the
shooting method applied previously in the energy-supercritical case, to show that
for sufficiently large b > 0 the ground state is pointwise close near the origin to the
Aubin-Talenti solution of the energy-critical wave equation, and to the confluent
hypergeometric function for large values of the argument. Moreover, we derive
precise asymptotic behavior of λ(b) as b → ∞, for p ∈ (0, 1). We explain why our
method cannot be used for p = 1, and suggest its possible extensions.

The content of Chapter 6 is based on [44]: D. E. Pelinovsky and S. Sobieszek,
"Ground state of the Gross-Pitaevskii equation with a harmonic potential in the
energy-critical case", arXiv:2302.03865 (2023).

1.6 Future study
We list several open problems which arise naturally from the results discussed in this
thesis.

• Existence of ground states in the energy-critical and energy-supercritical cases is
discussed in Chapter 3. In both cases, we have shown that for any fixed value
b := ∥ub∥∞, there exists a corresponding λ which makes ub a solution to (1.7).
Even though our numerical evidence suggests uniqueness of such λ, this assertion
is still an open problem. Similarly, in the energy-supercritical case, it remains to
prove uniqueness of λ∞ corresponding to the limiting singular solution u∞.

• The precise asymptotic behavior of λ(b) in the energy-supercritical case was ob-
tained in Chapter 4, where we distinguish between snaking (for small dimensions)
and monotone (for large dimensions) dependencies. The results were proven for
p = 1 in (1.7). We believe that generalization of these results for any p > 0 can be
obtained by a straightforward modification of the arguments from Chapter 4.

• Morse index of the family of ground states {ub}b>0 was studied in Chapter 5 in the
energy-supercritical case and for the monotone behavior of the spectral parameter
λ(b). It remains to study the Morse index in the case of the oscillatory dependence
of λ(b). We believe that the linearized operator Lb gains an additional zero eigen-
value at each turning point of λ(b), making the Morse index of ub infinite, see [43]
for details. Moreover, the Morse index in Chapter 5 was studied for radially sym-
metric perturbations. It is interesting to study the number of negative eigenvalues
of the linearized operator for general (non radially-symmetric) perturbations.

• The behavior of the spectral parameter λ(b) as b → ∞ was studied in Chapter 6
for the general power nonlinearity p > 0 in (1.7). The shooting method developed
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by us can be used for any p ∈ (0, 1), but fails for p = 1 (for details see Remark 6.2).
We believe that the invariant manifold approach is still viable for p ≥ 1, however
it requires certain modifications. For a more detailed explanation, we refer to the
discussion after the proof of Theorem 6.1 in Section 6.4.

• We believe that the tools developed in this dissertation in the context of the Gross-
Pitaevskii equation could be used in order to study other models of theoretical
physics, such as the Schrödinger-Newton-Hooke system, considered in [17].
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Chapter 2

Preliminaries

2.1 Linear quantum harmonic oscillator
In this section, we review the basic properties of the one-dimensional linear harmonic
oscillator operator H:

H := − d2

dx2 + x2, (2.1)

where x ∈ R, which plays a fundamental role in the theory of quantum mechanics.

Remark 2.1. Note that it is sufficient to consider the one-dimensional case (2.1), as
the problem posed in Rd

(−∆ + |x|2)u = 0, x ∈ Rd,

decomposes into d one-dimensional problems using separation of variables.

Usually, we look for eigenfunctions of H in the space H2(R) ∩L2,2(R), where L2,2(R)
is the space of functions u : R → R such that | · |2u ∈ L2(R). This space is compactly
embedded in L2(R), which makes densely defined operator (2.1) essentially self-adjoint,
meaning that it is symmetric and its closure is self-adjoint. Such operators admit a
unique extension that is self-adjoint, so that the spectral theorem applies. In particular,
we know that the spectrum of (2.1) in L2(R) is real and purely discrete. Moreover,
it is well-known, see [28], that the spectrum consists of eigenvalues {En}n∈N0 given by
En = 2n + 1. The corresponding eigenfunctions {ϕn}n∈N0 form an orthogonal basis for
L2(R), and are given by

ϕn(x) = Hn(x)e− x2
2 , (2.2)

where Hn(x) are Hermite polynomials of degree n ∈ N0. Note that ϕn(x) ∈ S(R,R) for
all n ∈ N0, where S(R,R) is the Schwartz space of real-valued functions defined on the
real line. The eigenvalues En in the physical context are called energy levels, and the
eigenfunction ϕ0(x) (corresponding to the lowest energy level) is called the ground state.
For n ≥ 1, ϕn(x) are referred to as excited states.

Knowing ϕ0(x) = e− x2
2 , eigenfunctions (2.2) can be obtained by using the so called

ladder operator method. Following [28] we define two operators, L+ (called creation, or

11
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raising operator) and L− (called annihilation, or lowering operator), as

L± := ∓ d

dx
+ x, (2.3)

where we consider S(R,R) as the domain for both L+ and L−. Note that for any
f ∈ S(R,R), we have

(L+L− + I)f = −f ′′ + xf ′ − f − xf ′ + x2f + f = Hf,

so that H = L+L− + I. Thus, we also have

HL+ = L+(H + 2I). (2.4)

Using above identity, we see that L+ϕ0 is the next eigenfunction of (2.1), with the
eigenvalue E1 = 3:

H(L+ϕ0) = L+(H + 2I)ϕ0 = 3L+ϕ0,

and in general
ϕn = (L+)nϕ0, En = 2n+ 1, n ≥ 1. (2.5)

Thus, Hermite polynomials in (2.2) appear naturally by recursively applying the creation
operator L+, and orthonormalizing the resulting set of eigenfunctions.

Remark 2.2. By a symmetric identity to (2.4),

HL− = L−(H − 2I),

we can see that for any n ≥ 1

HL−ϕn = L−(H − 2I)ϕn = (En − 2)L−ϕn = En−1L
−ϕn.

Thus, the terminology for operators L± becomes apparent: L+ can be used in order to
move to higher energy levels of operator (2.1), whereas L− acts in the opposite manner.

2.2 Bounds on the spectral parameter λ

In this section, we collect three well-known results regarding existence of nontrivial
solutions to the boundary-value problem (1.7) in the energy space E .

Proposition 2.1. For every d ≥ 1 and λ ∈ [d,∞), no solutions of the boundary-value
problem (1.7) exist in E.

Proof. It is well known (see, e.g., [28]) that the operator L0 := −∆+|x|2 is self-adjoint in
L2(Rd). The ground state of L0 is given up to a normalization by the Gaussian function
u0(r) = e− 1

2 r2 and corresponds to the smallest eigenvalue λ0 = d. The linear ground
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state u0 satisfies the following boundary value problem:
u′′

0(r) + d−1
r u′

0(r) − r2u0(r) = −du0(r), r > 0,
u0(r) > 0, u′

0(r) < 0, r > 0,
lim
r→0

u0(r) < ∞, lim
r→∞

u0(r) = 0.
(2.6)

By projecting (1.7) to u0 and integrating by parts with the use of (2.6), we obtain:

−d⟨u0, u⟩L2
r

+ λ⟨u0, u⟩L2
r

+ ⟨u0, u
3⟩L2

r
= 0

which implies

d− λ =
⟨u0, u

3⟩L2
r

⟨u0, u⟩L2
r

.

Since ⟨u0, u⟩L2
r
> 0 and ⟨u0, u

3⟩L2
r
> 0, we must have λ < d for every solution u ∈ E of

the boundary-value problem (1.7).

Proposition 2.2. For every d ≥ 4 and λ ∈ (−∞, d− 4], no solutions of the boundary-
value problem (1.7) exist in E.

Proof. It follows from multiplication of (1.7) by rd−1u that if u ∈ E , then∥∥u′∥∥2
L2

r
+ ∥ru∥2

L2
r

− λ ∥u∥2
L2

r
− ∥u∥4

L4
r

= 0. (2.7)

Similarly, it follows from multiplication of (1.7) by rdu′(r) and integration by parts that

(d− 2)
∥∥u′∥∥2

L2
r

+ (d+ 2) ∥ru∥2
L2

r
− λd ∥u∥2

L2
r

− 1
2d ∥u∥4

L4
r

= 0. (2.8)

Combining (2.7) and (2.8) yields the Pohozaev identity [48]:

4 ∥ru∥2
L2

r
− 2λ ∥u∥2

L2
r

+ 1
2 (d− 4) ∥u∥4

L4
r

= 0. (2.9)

Hence, no nonzero solution u ∈ E exists if λ ≤ 0 and d ≥ 4.

Furthermore, since d is the lowest eigenvalue of L0 = −∆ + r2, we obtain similarly
to [5]:

d∥u∥2
L2 ≤ ∥u′∥2

L2 + ∥ru∥2
L2 = λ∥u∥2

L2 + ∥u∥4
L4 . (2.10)

If d ̸= 4, then ∥u∥4
L4 can be expressed by using (2.9), after which inequality (2.10) yields

λ ≥ d− 4 + 8
d

∥ru∥2
L2

∥u∥2
L2

, (2.11)

hence no nonzero solution u ∈ E exists if λ ≤ d− 4.
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Proposition 2.3. For every d ≥ 1, there exists a unique solution of the boundary-value
problem (1.7) in E ∩L∞ for λ ∈ (d− δ, d) with sufficiently small δ such that ∥u∥L∞

r
→ 0

as λ → d.

Proof. For 1 ≤ d ≤ 4, the proof follows by the standard Lyapunov–Schmidt theory
(see Theorem 2.1 in [52] and references therein). For d ≥ 5, the proof follows by the
compactification of the nonlinear term for the standard Lyapunov–Schmidt theory and
by the Moser’s iteration argument to control the L∞-norm of the bifurcating solution
and thus the nonlinear term (see Theorem 5 in [53] and references therein).
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Chapter 3

Existence of the ground states

In this section, we prove existence of a family of ground states, i.e., solutions to (1.7),
in the energy-critical and supercritical cases. For simplicity, we assume p = 1, however
we believe that our methods could be easily modified and used for any d ≥ 3 and p > 0
satisfying (d − 2)p ≥ 2. Note that for integer values of the dimension d, p = 1 implies
d ≥ 4.

Our main strategy consists of studying solutions to the following initial-value problem:{
f ′′(r) + d−1

r f ′(r) − r2f(r) + λf(r) + f(r)3 = 0, r > 0,
f(0) = b, f ′(0) = 0, (3.1)

where b ∈ R is a free parameter (assumed to be positive without loss of generality) by
means of the shooting method pioneered in [33].

We first prove that for each b > 0 and each λ ∈ R, there exists a unique global classical
solution to the initial-value problem (3.1); moreover, there exists λ = λ(b) ∈ (d − 4, d)
such that the corresponding solution f decays to zero at infinity, so that it gives the
ground state u = ub of the boundary-value problem (1.7). The following theorem presents
this result.

Theorem 3.1. Fix d ≥ 4. For every b > 0, there exists λ ∈ (d − 4, d), labeled as λ(b),
such that the unique classical solution f ∈ C2(0,∞) to the initial-value problem (3.1)
with λ = λ(b) is a solution u = ub ∈ E to the boundary-value problem (1.7).

Remark 3.1. Uniqueness of λ in Theorem 3.1 for each given b > 0 is an open problem.

Remark 3.2. We believe that the shooting argument used to prove Theorem 3.1 can be
generalized to prove the existence of the n-th excited state with n nodes on R+ for some
λ ∈ (λn − 4, λn), where λn := d+ 4n is the nth eigenvalue of the linear problem, n ∈ N.
Such solutions were also considered in [52].

Next, following [54], for d ≥ 5 we introduce the limiting singular solution f∞, which
solves the ODE in (3.1), and is connected to the family {ub}b>0 by a convergence result
from [54]. Specifically, it was shown in [54] that f∞ exists for a unique value λ∞ of λ,
and that ub → f∞ in E and λ(b) → λ∞ as b → ∞. The limiting singular solution f∞ is
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defined by the following divergent behavior:

f∞(r) =
√
d− 3
r

[
1 + O(r2)

]
as r → 0. (3.2)

Note that f∞ corresponds to u∞ in (1.17) for p = 1. If f∞ ∈ C2(0,∞) and f∞ decays
to zero at infinity fast enough, then f∞ ∈ E for d ≥ 5.

The limiting singular solution f∞ can be introduced by the change of variables f(r) =
r−1F (r), where F (r) is defined as a bounded solution to the following initial value
problem:{

F ′′(r) + d−3
r F ′(r) − d−3

r2 F (r) − r2F (r) + λF (r) + 1
r2F (r)3 = 0, r > 0,

F (0) =
√
d− 3, F ′(0) = 0. (3.3)

For each λ ∈ R, there exists a unique global classical solution to the initial value problem
(3.3), moreover, there exists a value of λ denoted as λ∞ such that the corresponding
solution F decays to zero at infinity. This decaying solution F gives the limiting singular
solution f∞ after the transformation f(r) = r−1F (r). The following theorem was proven
in [54].

Theorem 3.2. Fix d ≥ 5. There exists a value of λ ∈ (0, d), labeled as λ∞, such that the
unique classical solution F ∈ C2(0,∞) to the initial-value problem (3.3) with λ = λ∞
satisfies F (r) > 0 and F ′(r) < 0 for every r > 0 and F (r) → 0 as r → ∞ such that
f∞(r) = r−1F (r) belongs to E.

Remark 3.3. Uniqueness of the value of λ∞ in Theorem 3.2 was claimed in [54, Section
4] by analyzing the behavior of the quotient between two hypothetical solutions of (3.3)
for two different values of λ. However, we believe the proof is incorrect, see Remark 3.8
below.

Remark 3.4. The proof of Theorem 3.1 is similar to the proof of Theorem 3.2 but we
have to work with the different initial-value problem (3.1) compared to (3.3). We also
prove the fast decay to zero at infinity and this allows us to simplify some arguments
from [54].

3.1 Existence of bounded solutions at the origin
Here we consider the differential equation

f ′′(r) + d− 1
r

f ′(r) − r2f(r) + λf(r) + f(r)3 = 0, r > 0, (3.4)

and prove several results regarding existence of classical solutions to this differential
equation.
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The first result shows that the additional condition f ′(0) = 0 does not over-determine
the initial-value problem (3.1) at the singularity point r = 0 as long as the classical
solution f(r) to the differential equation (3.4) is bounded as r → 0.

Lemma 3.1. For every d ≥ 1 and every λ ∈ R, assume that there exists a classical solu-
tion f ∈ C2(0, r0), r0 > 0 to the differential equation (3.4) such that f(0) := lim

r→0
f(r) <

∞. Then,
f ′(0) := lim

r→0
f ′(r) = 0.

Proof. One can rewrite the differential equation (3.4) in the self-adjoint form:

d

dr

[
rd−1f ′(r)

]
= rd−1

[
r2f(r) − λf(r) − f(r)3

]
. (3.5)

The right-hand side of (3.5) is integrable as r → 0 if f is bounded near r = 0. Then
lim
r→0

rd−1f ′(r) = 0 and integration of (3.5) on [0, r] yields

f ′(r) = 1
rd−1

∫ r

0
sd−1

[
s2f(s) − λf(s) − f(s)3

]
ds. (3.6)

Since lim
r→0

f ′(r) is an indeterminate form
[

0
0

]
, we can apply L’Hospital’s rule and obtain

lim
r→0

f ′(r) = lim
r→0

rd−1 [r2f(r) − λf(r) − f(r)3]
(d− 1) rd−2 = 1

d− 1 lim
r→0

r
[
r2f(r) − λf(r) − f(r)3

]
= 0,

since f is bounded near r = 0. Hence, f ′(0) := lim
r→0

f ′(r) = 0.

Remark 3.5. A similar result but for d ≥ 5 can be stated about the initial-value problem
(3.3). If F (0) =

√
d− 3 for a classical solution F ∈ C2(0, r0) with r0 > 0, then F ′(0) =

0. Indeed, the differential equation in the initial-value problem (3.3) can be written in
the self-adjoint form:

d

dr

[
rd−3F ′(r)

]
= rd−5

[
(d− 3)F (r) − F (r)3 − λr2F (r) + r4F (r)

]
The right-hand side is integrable for d ≥ 5 so that integration gives

F ′(r) = 1
rd−3

∫ r

0
sd−5

[
(d− 3)F (s) − F (s)3 − λs2F (s) + s4F (s)

]
ds
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By using the L’Hospital’s rule twice, we get if F (0) =
√
d− 3:

lim
r→0

F ′(r) = lim
r→0

(d− 3)F (r) − F (r)3 − λr2F (r) + r4F (r)
(d− 3)r

= lim
r→0

(d− 3) − 3F (r)2

(d− 3) F ′(r)

= −2 lim
r→0

F ′(r),

so that lim
r→0

F ′(r) = 0.

Singularity at r = 0 of the differential equation (3.4) is unfolded using the following
Emden–Fowler transformation [18]:

r = et, f(r) = ψ(t), f ′(r) = e−tψ′(t). (3.7)

By chain rule, the second-order differential equation (3.4) for f(r) becomes

ψ′′(t) + (d− 2)ψ′(t) = −e2t
(
λψ(t) + ψ(t)3

)
+ e4tψ(t), t ∈ R. (3.8)

The next result guarantees that there exists a unique local classical solution to the
initial-value problem (3.1). The proof is developed from analysis of the existence of the
bounded solutions of the differential equation (3.8) as t → −∞.

Lemma 3.2. For every d ≥ 3, λ ∈ R, and b > 0, there exists r0 > 0 and a unique
classical solution f ∈ C2(0, r0) to the initial-value problem (3.1) such that f(r) > 0 and
f ′(r) < 0 for r ∈ (0, r0).

Proof. By using the Emden–Fowler transformation (3.7), the initial conditions f(0) = b
and f ′(0) = 0 in the initial-value problem (3.1) become the following boundary conditions{

ψ(t) → b,
ψ′(t) → 0, as t → −∞. (3.9)

By the method of variation of parameters, we rewrite the differential equation (3.8) with
the boundary conditions (3.9) as the following Volterra’s integral equation:

ψ(t) = A(ψ)(t) := b+ 1
d− 2

∫ t

−∞

[
1 − e−(d−2)(t−t′)

]
F (ψ(t′), t′)dt′, (3.10)

where F (ψ, t) := −e2t
(
λψ + ψ3) + e4tψ. The integral operator A is considered on ψ in

the Banach space L∞(−∞, t0), where −∞ < t0 ≪ −1. It follows from (3.10) that

∥A(ψ)∥L∞ ≤ b+
[ 1

2d
(
|λ| + ∥ψ∥2

L∞

)
+ 1

4(d+ 2)e
2t0

]
∥ψ∥L∞e2t0 ,
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and

∥A(ψ) −A(ϕ)∥L∞ ≤
[ 1

2d
(
|λ| + (∥ψ∥L∞ + ∥ϕ∥L∞)2

)
+ 1

4(d+ 2)e
2t0

]
∥ψ − ϕ∥L∞e2t0 .

If t0 is a sufficiently large negative number, then A : B2b → B2b is a contraction operator
in the ball B2b ⊂ L∞(−∞, t0) of a fixed radius 2b > 0. By Banach’s fixed-point theorem,
there exists the unique solution ψ ∈ B2b ⊂ L∞(−∞, t0) to the integral equation (3.10).

Since F (ψ(·), ·) ∈ L1(−∞, t0) if ψ ∈ L∞(−∞, t0), the fixed point of the integral
equation (3.10) is in C0(−∞, t0). Since F (ψ(·), ·) ∈ C0(−∞, t0) if ψ ∈ C0(−∞, t0), the
fixed point of the integral equation (3.10) is in C1(−∞, t0), so that differentiation of
(3.10) yields

ψ′(t) =
∫ t

−∞
e−(d−2)(t−t′)F (ψ(t′), t′)dt′. (3.11)

Finally, since F (ψ(·), ·) ∈ C1(−∞, t0) if ψ ∈ C1(−∞, t0), the fixed point of the integral
equation (3.10) is in C2(−∞, t0). By the chain rule, this implies that f ∈ C2(0, r0) for
small r0 > 0.

By continuity of the solution, we have ψ(t) > 0 for t ∈ (−∞, t0) if t0 is a sufficiently
large negative number. The transformation formula f(r) = ψ(t) yields f(r) > 0 for
r ∈ (0, r0) with small positive r0. Furthermore, thanks to the bound

∥ψ − b∥L∞(−∞,t0) ≤ C1e
2t0

with some C1 > 0, it follows from (3.11) that

∥ψ′ + (λb+ b3)d−1e2t∥L∞(−∞,t0) ≤ C2e
4t0 ,

for some C2 > 0. Hence ψ′(t) < 0 for t ∈ (−∞, t0) if t0 is a large negative number. By
the transformation formula f ′(r) = e−tψ′(t), this yields f ′(r) < 0 for r ∈ (0, r0) with
small r0 > 0.

Remark 3.6. The solution ψ ∈ C2(−∞, t0) in Lemma 3.2 satisfies the asymptotic
expansion

ψ(t) = b− λb+ b3

2d e2t + O(e4t) as t → −∞. (3.12)

This expansion implies that

lim
r→0

f ′(r) = lim
t→−∞

e−tψ′(t) = 0 (3.13)

and
lim
r→0

f ′′(r) = lim
t→−∞

e−2t [ψ′′(t) − ψ′(t)
]

= −(λb+ b3)d−1. (3.14)

where the first limit is in agreement with Lemma 3.1.
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Remark 3.7. The proof of Lemma 3.2 is based on classical fixed-point arguments, which
is the main technical tool used in the rest of this work.

3.2 Existence of the decaying solution at infinity
Another solution to the same differential equation (3.4) can be constructed from the
condition that f(r), f ′(r) → 0 as r → ∞. In order to construct such decaying solu-
tions, we reformulate the second-order equation (3.8) as the following three-dimensional
dynamical system:


x′ = 2x,
ψ′ = φ,
φ′ = (2 − d)φ− x(λψ + ψ3) + x2ψ,

(3.15)

where x(t) := e2t and the prime stands for the derivative in t. The following lemma
identifies the admissible behavior of classical solutions to the differential equation (3.4)
such that f(r), f ′(r) → 0 as r → ∞.

Lemma 3.3. For every d ≥ 1 and every λ ∈ R, there exists r0 > 0 and a one-parameter
family of classical solutions f ∈ C2(r0,∞) to the differential equation (3.4) such that
f(r), f ′(r) → 0 as r → ∞. Moreover,

f(r) ∼ Cr
λ−d

2 e− 1
2 r2 as r → ∞, (3.16)

for some C ∈ R, where f(r) ∼ g(r) is the asymptotic correspondence which can be
differentiated.

Proof. The limit r → ∞ corresponds to the limit t → +∞ due to the transformation
(3.7). If f(r), f ′(r) → 0 as r → ∞, then x(t) → ∞, ψ(t) → 0, and φ(t)/

√
x(t) → 0 as

t → +∞. We introduce the following transformation of variables:

x(t) = 1
y(τ) , ψ(t) = ψ(τ), φ(t) = ϕ(τ)

y(τ) , (3.17)

where τ is the new time variable defined by the chain rule dt = y(τ)dτ . For convenience,
we do not change the notation for ψ that now depends on τ . By integrating dt = y(τ)dτ
or equivalently, dτ = x(t)dt with the initial condition τ = 0 at t = 0, we obtain

τ = 1
2
(
e2t − 1

)
. (3.18)

Substitution of (3.17) into (3.15) yields the dynamical system
ẏ = −2y2,

ψ̇ = ϕ,

ϕ̇ = ψ − y
(
dϕ+ λψ + ψ3) , (3.19)
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where the dot denotes the derivative in τ .

The only equilibrium point of system (3.19) is (y, ψ, ϕ) = (0, 0, 0). Linearization
of system (3.19) at (0, 0, 0) yields eigenvalues {−1, 0, 1}, which implies that the orbits
approaching (0, 0, 0) as τ → ∞ belongs to the two-dimensional stable-center manifold.
Moreover, since x(t) = e2t, the transformation (3.17) suggests that

y(τ) = 1
1 + 2τ = 1

2τ + Y (τ), (3.20)

where Y ∈ L1(τ0,∞) for any τ0 > 0. Since y(0) = 1 is uniquely determined, we
are only looking for a unique orbit on the two-dimensional stable-center manifold that
approaches (0, 0, 0) as τ → ∞. By the theorem on invariant manifolds, this manifold is
tangential to the stable-center manifold of the linearized system. Therefore, we study
the analytical representation of solutions to the linearized system. With the help of
(3.20), the linearized system is written in the form:

d

dτ

(
ψ
ϕ

)
= [A+ V (τ) +R (τ)]

(
ψ
ϕ

)
, (3.21)

where
A =

(
0 1
1 0

)
, V (τ) = − 1

2τ

(
0 0
λ d

)
, R (τ) = −Y (τ)

(
0 0
λ d

)
.

The eigenvalues of A are µ± = ±1 with the eigenvectors (1,±1). Solving the character-
istic equation for A+ V (τ), we obtain the eigenvalues of A+ V (τ) denoted by ν±(τ) in
the form:

ν±(τ) = − d

4τ ±

√
1 − λ

2τ + d2

16τ2 = µ± − d± λ

4τ + ν
(R)
± (τ), (3.22)

where ν
(R)
± ∈ L1(τ0,∞) for any τ0 > 0. By Theorem 8.1 on p.92 in [13], for which

the assumptions V ′, R ∈ L1 (τ0,∞) are satisfied, there exist two linearly independent
classical solutions (ψ±, ϕ±) of the linearized system (3.21) satisfying the limit

lim
τ→∞

(
ψ±
ϕ±

)
e

−
∫ τ

τ0
ν±(τ ′)dτ ′

=
(

1
±1

)
. (3.23)

Thanks to the leading order of the eigenvalues in (3.22), the upper sign corresponds to
the unstable solution and the lower sign corresponds to the stable solution. Since we are
looking for the stable solution, we adopt the decomposition of (ψ, ϕ) over the eigenvectors
of A together with the time-dependent factor which follows from the integration

e

∫ τ

τ0
ν−(τ ′)dτ ′

= C(τ0)τ
λ−d

4 e−τ
[
1 + O(τ−1)

]
as τ → ∞,

21

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


Ph.D. Thesis – Szymon Sobieszek McMaster University– Mathematics

where the positive constant C(τ0) depends on τ0. Hence we write

ψ(τ) = τ
λ−d

4 e−τ [ψ+(τ) + ψ−(τ)] , ϕ(τ) = τ
λ−d

4 e−τ [ψ+(τ) − ψ−(τ)] , (3.24)

where (ψ+, ψ−) are new variables satisfying the following system of equations:{
ψ̇+ = 2ψ+ − λ(2τ)−1ψ+ + (d− λ)(4τ)−1ψ− −H(ψ+, ψ−, τ),
ψ̇− = (d+ λ)(4τ)−1ψ+ +H,

(3.25)

where

H(ψ+, ψ−, τ) := 1
2Y (τ) [(λ+ d)ψ+ + (λ− d)ψ−] + 1

2y(τ)τ
λ−d

2 e−2τ (ψ+ + ψ−)3 .

If ψ+, ψ− ∈ L∞(τ0,∞) for τ0 > 0, then H(ψ+(·), ψ−(·), ·) ∈ L1(τ0,∞) due to Y ∈
L1(τ0,∞). This suggests that the remainder terms in the H-function remain small
along the solution satisfying (ψ, ϕ) → (0, 0) as τ → ∞. In order to make this analysis
precise, we integrate the first equation of system (3.25) subject to the boundary condition
lim

τ→∞
e−2τψ+(τ) = 0 and obtain the integral equation:

ψ+(τ) =
∫ ∞

τ
e−2(τ ′−τ)

[
λ

2τ ′ψ+(τ ′) + λ− d

4τ ′ ψ−(τ ′) +H(ψ+(τ ′), ψ−(τ ′), τ ′)
]
dτ ′. (3.26)

On the other hand, integrating the second equation of system (3.25) subject to the
boundary condition lim

τ→∞
ψ−(τ) = c for an arbitrary constant c ∈ R yields another

integral equation:

ψ−(τ) = c−
∫ ∞

τ

[
λ+ d

4τ ′ ψ+(τ ′) +H(ψ+(τ ′), ψ−(τ ′), τ ′)
]
dτ ′. (3.27)

It is clear from the integral equation (3.27) that ψ+ ∈ L∞(τ0,∞) is not sufficient for
ψ− ∈ L∞(τ0,∞). Therefore, we consider the Banach space L1(τ0,∞) ∩ L∞(τ0,∞)
for τ−1ψ+(τ) and L∞(τ0,∞) for ψ−(τ), where 1 ≪ τ0 < ∞. This suggest that one
can obtain ψ̃+(τ) := τ−1ψ+(τ) and ψ−(τ) from solutions to the system of fixed-point
equations:

ψ̃+ = A+(ψ̃+, ψ−), ψ− = A−(ψ̃+, ψ−), (3.28)

where

A+(ψ̃+, ψ−)(τ) := 1
τ

∫ ∞

τ
e−2(τ ′−τ)

[
λ

2 ψ̃+ + λ− d

4τ ′ ψ− +H(ψ̃+, ψ−, τ
′)
]
dτ ′

and
A−(ψ̃+, ψ−)(τ) := c−

∫ ∞

τ

[
λ+ d

4 ψ̃+ +H(ψ̃+, ψ−, τ
′)
]
dτ ′,
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with H(ψ̃+, ψ−, τ) being redefined in new variables by

H = 1
2Y (τ)

[
(λ+ d)τψ̃+ + (λ− d)ψ−

]
+ 1

2y(τ)τ
λ−d

2 e−2τ
(
τψ̃+ + ψ−

)3
.

We proceed with fixed-point estimates similarly to the proof of Lemma 3.2. By using
the Young inequality for convolution integrals, we estimate the first and third term in
A+ as follows:

∥ 1
τ

∫∞
τ e−2(τ ′−τ)[λ

2 ψ̃+ +H(ψ̃+, ψ−, τ
′)]dτ ′∥L1∩L∞

≤ ∥τ−1∥L∞∥e−2τ ∥L1(0,∞)
[

|λ|
2 ∥ψ̃+∥L1∩L∞ + ∥H(ψ̃+, ψ−, ·)∥L1∩L∞

]
,

where all norms are defined on (τ0,∞) with τ0 ≫ 1 except for ∥e−2τ ∥L1(0,∞) = 1
2 . In

addition, we estimate

∥H(ψ̃+, ψ−, ·)∥L1∩L∞ ≤ |λ| + d

2
(
∥τY (τ)∥L∞∥ψ̃+∥L1∩L∞ + ∥Y ∥L1∩L∞∥ψ−∥L∞

)
+1

2∥y(τ)τ
λ−d

2 e−2τ (τψ̃+ + ψ−)3∥L1∩L∞ ,

with Y ∈ L1 ∩ L∞, τY ∈ L∞ from (3.20) and y(τ)τ λ−d
2 e−2τ being exponentially small

on (τ0,∞) with τ0 ≫ 1. For the second term in A+, we use both the Young and
Cauchy–Schwarz inequalities in order to obtain:

∥1
τ

∫ ∞

τ
e−2(τ ′−τ) (λ− d)

4τ ′ ψ−dτ
′∥L1∩L∞ ≤ |λ| + d

4 ∥τ−1∥L2∩L∞∥e−2τ ∥L1(0,∞)∥τ−1∥L2∩L∞∥ψ−∥L∞ .

Finally, we estimate A− as follows:

∥A−(ψ̃+, ψ−)∥L∞ ≤ |c| + |λ| + d

4 ∥ψ̃+∥L1 + ∥H(ψ̃+, ψ−, ·)∥L1 .

If τ0 is a sufficiently large positive number and if

∥ψ̃+∥L1∩L∞ + ∥ψ−∥L∞ ≤ 2|c| (3.29)

then the previous bounds imply that

∥A(ψ̃+, ψ−)∥L1∩L∞ + ∥A−(ψ̃+, ψ−)∥L∞ ≤ 2|c|,

due to smallness of ∥τY ∥L∞ , ∥Y ∥L1∩L∞ , ∥τ−1∥L2∩L∞ , and ∥y(τ)τ λ−d
2 e−2τ ∥L1∩L∞ if τ0 ≫

1. In addition, by similar estimates, it is easy to prove that (A+, A−) is a contraction
operator in the set (3.29) if τ0 ≫ 1. By Banach’s fixed-point theorem, there exists the
unique solution for ψ̃+ ∈ L1(τ0,∞) ∩ L∞(τ0,∞) and ψ− ∈ L∞(τ0,∞) to the system
of integral equations (3.28) in the set (3.29). From ψ̃+, we obtain ψ+ by ψ+(τ) =
τψ̃+(τ). Furthermore, bootstrapping arguments similar to those in the proof of Lemma
3.2 gives smoothness of ψ+ and ψ− on (τ0,∞). Thanks to the integrability of τ−1ψ+
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and continuity of ψ+, we have ψ+(τ) → 0 as τ → ∞.

By unfolding the transformations (3.7), (3.17), and (3.24), we obtain that if f(r), f ′(r) →
0, then f(r) satisfies the asymptotic behavior (3.16), where

C := 2− λ−d
4 e

1
2 c

and c := lim
τ→∞

ψ−(τ) is defined in the integral equation (3.27).

The following lemma guarantees global continuation of classical solutions to the dif-
ferential equation (3.4) from r = 0 to r → ∞ and from r → ∞ to r = 0.

Lemma 3.4. For every d ≥ 1 and λ ∈ R, if f ∈ C2(0, r0) is a solution of Lemma 3.2
for some r0 ∈ (0,∞), then f ∈ C2(0,∞) and if f ∈ C2(r0,∞) is a solution of Lemma
3.3 for some r0 ∈ (0,∞), then f ∈ C2(0,∞).

Proof. Let us introduce the Lyapunov function in the form:

Λ(f, f ′, r) := 1
2(f ′)2 + 1

2(λ− r2)f2 + 1
4f

4. (3.30)

It follows from (3.4) and (3.30) that

d

dr
Λ(f, f ′, r) = −d− 1

r
(f ′)2 − rf2 < 0, (3.31)

hence the map r 7→ Λ(f(r), f ′(r), r) is strictly monotonically decreasing along the clas-
sical solution to the differential equation (3.4). It follows from (3.30) that

1
2(f ′)2 + 1

4(f2 + λ− r2)2 ≤ Λ(f, f ′, r) + 1
4(λ− r2)2. (3.32)

Let f ∈ C2(0, r0) be a solution of Lemma 3.2 for some r0 > 0 and assume that the
solution blows up at a finite R < ∞. Since the map r 7→ Λ(f(r), f ′(r), r) is decreasing,
we obtain a contradiction from the bound (3.32):

1
2(f ′)2 + 1

4(f2 + λ− r2)2 ≤ Λ(f(r0), f ′(r0), r0) + 1
4(λ−R2)2 < ∞, r ∈ [r0, R].

Hence, no finite R exists and the classical solution continues on (0,∞).

Let f ∈ C2(r0,∞) be a solution of Lemma 3.3 for some r0 > 0. It follows from the
fast decay of f(r), f ′(r) → 0 as r → ∞ that Λ(f(r), f ′(r), r) → 0 as r → ∞. It follows
from (3.31) and (3.32) that there exist positive constants A0 and B0 such that

r
d

dr
Λ(f, f ′, r) ≥ −A0Λ(f, f ′, r) −B0, r ∈ (0, r0],
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or equivalently,
r
d

dr
rA0Λ(f, f ′, r) ≥ −B0r

A0 , r ∈ (0, r0].

Integration on [r, r0] yields

Λ(f(r), f ′(r), r) ≤
(
r0
r

)A0 [
Λ(f(r0), f ′(r0), r0) + B0

A0

]
< ∞, r ∈ (0, r0].

It follows from the bound (3.32) that the classical solution continues on (0,∞).

3.3 Proof of Theorem 3.1
Here we develop the shooting method for the proof of Theorem 3.1.

The unique global solution f ∈ C2(0,∞) of the initial value problem (3.1) is given
by Lemmas 3.2 and 3.4. We define the following three sets:

I+ :=
{
λ ∈ R : ∃r0 ∈ (0,∞) : f(r0) = 0, while f(r) > 0, f ′(r) < 0, r ∈ (0, r0)

}
,

(3.33)

I− :=
{
λ ∈ R : ∃r0 ∈ (0,∞) : f ′(r0) = 0, while f(r) > 0, f ′(r) < 0, r ∈ (0, r0)

}
,

(3.34)
and

I0 :=
{
λ ∈ R : f(r) > 0, f ′(r) < 0, r ∈ (0,∞)

}
. (3.35)

The sets I+, I−, and I0 depend on parameters b and d, which are not written. We make
the following partition of R for parameter λ:

R = I+ ∪ I0 ∪ I−. (3.36)

By uniqueness of solutions to differential equations, if f(r0) = f ′(r0) = 0 for some
r0 ∈ (0,∞), then f(r) = 0 for every r ∈ (0,∞), hence I+ ∩ I− = ∅. By construction, it
is also true that I+ ∩ I0 = ∅ and I− ∩ I0 = ∅, hence the three sets are disjoint.

In the following two lemmas, we prove that the sets I+ and I− are open and non-
empty. These results imply that I0 in the partition (3.36) is closed and non-empty.

Lemma 3.5. For every d ≥ 1, I+ is open and, moreover, [d,∞) ⊂ I+.

Proof. The unique solution f ∈ C2(0,∞) depends smoothly on the parameter λ since the
differential equation (3.4) is smooth in f and λ. Let fλ denotes the unique λ-dependent
solution and r0 be a root of fλ0 for a fixed λ0 ∈ I+. By uniqueness of the zero solution,
if fλ0(r0) = 0, then f ′

λ0
(r0) ̸= 0. Since fλ is smooth in λ, it follows from the implicit

function theorem that for every λ in an open neighbourhood of λ0 there exists rλ near
r0 such that fλ(rλ) = 0. Hence, the set I+ is open. It remains to prove that such
rλ ∈ (0,∞) exists for every λ ∈ [d,∞).
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Let g(r) = e
1
2 r2
f(r). Then, g(r) satisfies the differential equation:

g′′(r) +
[
d− 1
r

− 2r
]
g′(r) + e−r2

g(r)3 + (λ− d)g(r) = 0, (3.37)

subject to the initial conditions g(0) = b and g′(0) = 0. By using the transformation
(3.7) and the asymptotic expansion (3.12), we obtain with the chain rule

e− 1
2 r2
g′(r) = f ′(r) + rf(r)

= e−tψ′(t) + etψ(t)

= b

d
(d− λ− b2)et + O(e3t) as t → −∞.

Since λ ≥ d, we have g′(r) < 0 for some small r > 0.

Let r0 := inf{r > 0 : g(r) = 0}. We need to show that r0 < ∞. First, we show that
g′(r) < 0 for all r ∈ (0, r0). Indeed, if there exists r1 ∈ (0, r0) such that g′(r1) = 0 and
g′(r) < 0 for r ∈ (0, r1), then the differential equation (3.37) with λ ≥ d implies that
g′′(r1) < 0, which is impossible. Hence, g′(r) < 0 for all r ∈ (0, r0).

It follows from (3.37) that

g′′(r) ≤
[
2r − d− 1

r

]
g′(r), r ∈ (0, r0).

If r0 ≤ R :=
√

d−1√
2 , we are done. Assume that r0 > R and define G(r) := −g′(r). Then,

G′(r) ≥
[
2r − d− 1

r

]
G(r), r ∈ (R, r0).

Since G(r) > 0 for r ∈ [R, r0), we have G(r) ≥ G(R) for r ∈ [R, r0), or alternatively,
g′(r) ≤ g′(R) < 0. The case r0 = ∞ is impossible since g(r) must hit zero for a finite r.
Thus, r0 < ∞ for every λ ∈ [d,∞).

Lemma 3.6. For every d ≥ 4, I− is open and, moreover, (−∞, 0] ⊂ I−.

Proof. In order to prove that I− is open, we extend the proof of Lemma 3.5 based on
the implicit function theorem. Let fλ denote the λ-dependent unique solution and r0 be
a root of f ′

λ0
for a fixed λ0 ∈ I−. Then, the differential equation (3.4) implies that either

f ′′
λ0

(r0) ̸= 0 or f ′′
λ0

(r0) = 0 and r2
0 = λ0 + fλ0(r0)2. In the latter case, since f is smooth,

the derivative of the differential equation (3.4) at the point r0 for which f ′
λ0

(r0) = 0
and f ′′

λ0
(r0) = 0 gives f ′′′

λ0
(r0) = 2r0fλ0(r0) > 0, which is impossible if f ′

λ0
(r) < 0 for

r ∈ (0, r0). This implies that if f ′
λ0

(r0) = 0, then f ′′
λ0

(r0) ̸= 0. Since fλ is smooth in λ,
it follows from the implicit function theorem that for every λ in an open neighbourhood
of λ0 there exists rλ near r0 such that f ′

λ(rλ) = 0. Hence, the set I− is open. It remains
to prove that such rλ ∈ (0,∞) exists for every λ ∈ (−∞, 0].
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First, we show that f(r) > 0 for r > 0 if λ ≤ 0. It follows from (3.4) that

rdf ′(r)f ′′(r) + (d− 1)rd−1[f ′(r)]2 − rd+2f(r)f ′(r) + rdf(r)3f ′(r) + λrdf(r)f ′(r) = 0.

Assuming f(R) = 0 for some R ∈ (0,∞) and integrating on [0, R] yields

1
2R

d[f ′(R)]2 + d− 2
2

∫ R

0
rd−1[f ′(r)]2dr + d+ 2

2

∫ R

0
rd+1f(r)2dr

−d

4

∫ R

0
rd−1f(r)4dr − dλ

2

∫ R

0
rd−1f(r)2dr = 0.

Similarly, integrating equation

rd−1f(r)f ′′(r) + (d− 1)rd−2f(r)f ′(r) − rd+1f(r)2 + rd−1f(r)4 + λrd−1f(r)2 = 0

on [0, R] with f(R) = 0 yields

−
∫ R

0
rd−1[f ′(r)]2dr −

∫ R

0
rd+1f(r)2dr +

∫ R

0
rd−1f(r)4dr + λ

∫ R

0
rd−1f(r)2dr = 0.

Eliminating
∫ R

0 rd−1[f ′(r)]2dr from these two equations yields the constraint:

1
2R

d[f ′(R)]2 + 2
∫ R

0
rd+1f(r)2dr + d− 4

4

∫ R

0
rd−1f(r)4dr − λ

∫ R

0
rd−1f(r)2dr = 0.

If d ≥ 4 and λ ≤ 0, this constraint is never satisfied, hence no R ∈ (0,∞) exists and
f(r) > 0 for every r > 0. Moreover, if f ∈ C2(0,∞) and f(r), f ′(r) → 0 as r → ∞,
then the fast asymptotic decay (3.16) in Lemma 3.3 implies that f ∈ L2

r(R+), which is
impossible if λ ∈ (−∞, 0] by Proposition 2.2. Hence, there exists a constant c > 0 such
that f(r) ≥ c for r > 0.

Next, we show that there exists r0 ∈ (0,∞) such that f ′(r0) = 0. To do so, we
integrate the differential equation

d

dr

[
rd−1f ′(r)

]
= rd+1f(r) − rd−1f(r)3 − λrd−1f(r) (3.38)

on [0, R] and obtain the estimate:

Rd−1f ′(R) =
∫ R

0
rd+1f(r)dr −

∫ R

0
rd−1f(r)3dr − λ

∫ R

0
rd−1f(r)dr

≥ c

d+ 2R
d+2 − b3

d
Rd,

where we have used that λ ≤ 0 and c ≤ f(r) ≤ b as long as f ′(r) < 0. Hence for

R >

(
b3(d+ 2)

dc

)1/2

,
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we must have f ′(R) > 0 so that there exists r0 ∈ (0,∞) such that f ′(r0) = 0 if λ ∈
(−∞, 0].

It follows from Lemmas 3.5 and 3.6 that I0 is closed and non-empty. The following
lemma states that the set I0 in the partition (3.36) contains all values of λ for which the
unique solution f to the initial-value problem (3.1) is a solution u ∈ E to the boundary-
value problem (1.7).

Lemma 3.7. If λ ∈ I0, then f(r), f ′(r) → 0 as r → ∞ and f ∈ E ⊂ L2
r(R+).

Proof. If f ∈ C2(0,∞) satisfies f(r) > 0 and f ′(r) < 0 for r ∈ (0,∞), then necessarily
f ′(r) → 0 as r → ∞ because [0, b] ∋ f is compact. Assume that f(r) → c as r → ∞
with some c ∈ (0, b). Then, integrating (3.38) on [0, R] similarly to the proof of Lemma
3.6 yields

Rd−1f ′(R) =
∫ R

0
rd+1f(r)dr −

∫ R

0
rd−1f(r)3dr − λ

∫ R

0
rd−1f(r)dr

≥ c

d+ 2R
d+2 − b(b2 + λ)

d
Rd,

where λ ∈ (0, d) if λ ∈ I0. Hence for

R >

(
b(b2 + λ)(d+ 2)

dc

)1/2

,

we must have f ′(R) > 0 which is a contradiction. This implies that c = 0, that is,
f(r) → 0 as r → ∞. Since f(r), f ′(r) → 0 as r → ∞, Lemma 3.3 implies that f(r)
satisfies the fast asymptotic decay (3.16) so that f ∈ E ⊂ L2

r(R+) for this λ ∈ I0.

We collect all individual results together as the proof of Theorem 3.1.

Proof of Theorem 3.1. Fix d ≥ 4 so that all previous results can be equally applied.

By Lemmas 3.2 and 3.4, there exists the unique global classical solution f ∈ C2(0,∞)
to the initial-value problem (3.1) for λ ∈ R. The line R for the parameter λ in the
differential equation (3.4) can be partitioned into the union of three disjoint sets I+,
I−, and I0 given by (3.33), (3.34), and (3.35) respectively. Suitable solutions to the
boundary-value problem (1.7) in the function space E ⊂ L2

r(R+) may only exist for
λ ∈ I0.

By Lemmas 3.5 and 3.6, the sets I+ and I− are open and non-empty, so that the
set I0 in the partition (3.36) is closed and non-empty. By Lemma 3.7, we proved that
if λ ∈ I0, then the corresponding function f ∈ C2(0,∞) is a solution u ∈ E to the
boundary-value problem (1.7). It follows by Propositions 2.1 and 2.2 that I0 ⊂ (d−4, d).
□
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Figure 3.1 illustrates the shooting method used in the proof of Theorem 3.1. For
d = 5 and b = 10, we compute numerically the unique classical solution to the initial-
value problem (3.1) for three different values of λ. For a special value of λ denoted as
λ(b), the solution gives the ground state of the boundary-value problem (1.7), which
implies that λ(b) ∈ I0. For another value of λ < λ(b) the solution does not cross the
zero level but grows with some oscillations as r → ∞. Therefore, there is r0 ∈ (0,∞)
such that f ′(r0) = 0 and this λ ∈ I−. For yet another value of λ > λ(b), the solution
crosses the zero level (and becomes large negative with some oscillations) so that there
is r0 ∈ (0,∞) such that f(r0) = 0 and this λ ∈ I+. We have confirmed numerically that
the value of λ(b) ∈ I0 is unique for every b > 0.

λ=λ(b)

λ>λ(b)

λ<λ(b)

2 4 6 8
r

-5

5

10

f(r)

Figure 3.1: Plot of the unique solution f satisfying the initial-value
problem (3.1) for d = 5, b = 10, and three values of λ. For λ = λ(b), the
solution f satisfies the boundary-value problem (1.7).

3.4 Proof of Theorem 3.2
Here we explain how the shooting method can be applied to the proof of Theorem 3.2.
Our arguments basically reproduce the approach in [54] with some important modifica-
tions.

By using the transformation

r = et, F (r) = Ψ(t) F ′(r) = e−tΨ′(t), (3.39)

one can obtain solutions to the initial-value problem (3.3) from the second-order differ-
ential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3 − d)Ψ(t) + Ψ(t)3 = −λe2tΨ(t) + e4tΨ(t), t ∈ R (3.40)
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completed with the boundary conditions{
Ψ(t) →

√
d− 3,

Ψ′(t) → 0, as t → −∞. (3.41)

We denote the unique solution of the second-order equation (3.40) satisfying the bound-
ary conditions (3.41) by Ψλ(t). One can prove by a simple extension of Lemma 3.2 that
this solution satisfies the asymptotic behavior:

Ψλ(t) =
√
d− 3

[
1 − λ

4d− 10e
2t + O(e4t)

]
as t → −∞. (3.42)

The solution of Theorem 3.2 arises for λ = λ∞, for which Ψ∞ := Ψλ=λ∞ decays to zero
as t → +∞. The following list contains relevant details how the shooting method is
modified for the proof of Theorem 3.2.

• (
√
d− 3, 0, 0) is an equilibrium point of the three-dimensional dynamical system

x′ = 2x,
Ψ′ = Φ,
Φ′ = (4 − d)Φ + (d− 3)Ψ − Ψ3 − λxΨ + x2Ψ,

(3.43)

where x(t) := e2t and the prime stands for the derivative in t. If d ≥ 5, the
equilibrium point (

√
d− 3, 0, 0) admits a one-dimensional unstable manifold and a

two-dimensional stable manifold. The unique local classical solution Ψλ satisfying
the differential equation (3.40) and the boundary conditions (3.41) corresponds
to the one-dimensional unstable manifold of the dynamical system (3.43) with
uniquely defined x(t) = e2t. The existence and uniqueness of Ψλ follows by the
unstable manifold theorem. In an analogue with Lemma 3.2, this gives the unique
solution F ∈ C2(0, r0) with F (r) > 0 and F ′(r) < 0 for r ∈ (0, r0) to the initial-
value problem (3.3) for d ≥ 5.

• The proof of Lemma 3.3 does not depend on the behavior of f(r) near r = 0
as long as f(r), f ′(r) → 0 as r → ∞. By the transformation F (r) = rf(r), if
F (r), F ′(r) → 0 as r → ∞, then f(r), f ′(r) → 0 as r → ∞. By Lemma 3.3, there
exists C ∈ R such that

F (r) ∼ Cr
λ−d+2

2 e− 1
2 r2 as r → ∞. (3.44)

• The proof of Lemma 3.4 is extended to f(r) = r−1F (r) verbatim.

• For the set I+ in (3.36) defined by zeros of F , openness of I+ follows from unique-
ness of the zero solutions in (3.40) which implies that if F (r0) = 0, then F ′(r0) ̸= 0.
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In order to show that [d,∞) ⊂ I+, we define

e− 1
2 r2
g(r) = f(r) = r−1F (r)

and
e− 1

2 r2
g′(r) = r−1F ′(r) − 1 − r2

r2 F (r),

hence g′(r) < 0 for small r > 0. The rest of the proof of Lemma 3.5 applies
verbatim.

• For the set I− in (3.36) defined by zeros of F ′, a special care should be taken to
prove that the set is open. In the special case when F ′

λ0
(r0) = F ′′

λ0
(r0) = 0, for

which d− 3 − Fλ0(r0)2 = (λ0 − r2
0)r2

0 > 0, we obtain by differentiation in r:

F ′′′
λ0(r0) = 2(2r0 − λ0r

−1
0 )Fλ0(r0),

hence the contradiction with F ′′′
λ0

(r0) > 0 only holds if λ0 ∈ (r2
0, 2r2

0). If λ0 = 2r2
0

so that F ′′′
λ0

(r0) = 0, then we obtain by another differentiation in r:

F ′′′′
λ0 (r0) = (6λ0r

−2
0 − 4)Fλ0(r0) = 8Fλ0(r0) > 0,

so that the minimum of Fλ persists near r0 when the solution is continued with
respect to λ near λ0. If λ0 > 2r2

0 and F ′′′
λ0

(r0) < 0, then F ′
λ0

(r) ≤ 0 near r = r0,
so that if no other extremal points exist, then Fλ0(r) ∈ [0,

√
d− 3] and F ′

λ0
(r) ≤ 0

for all r > 0. However, Fλ0(r) → c as r → ∞ is impossible for c ̸= 0 (see the next
item), hence Fλ0(r) → 0 as r → ∞. However, if Fλ0 ∈ C2(0,∞), Fλ0(r) > 0 for
r > 0, and Fλ0(r) → 0 as r → ∞, then F ′

λ0
(r) < 0 for r > 0 by the arguments

from [37], which is a contradiction with F ′
λ0

(r0) = 0. Thus, either F ′
λ0

(r0) = 0 and
F ′′

λ0
(r0) ̸= 0 or F ′

λ0
(r0) = F ′′

λ0
(r0) = F ′′′

λ0
(r0) = 0 and F ′′′′

λ0
(r0) > 0, in both cases

the minimum of Fλ persists near r = r0 in λ near λ0.

In order to show that (−∞, 0] ⊂ I−, we apply the proof of Lemma 3.6 to f(r) =
r−1F (r), which holds due to the fast decay

rd[f ′(r)]2 → 0, rd[f(r)]4 → 0, rd−1f(r)f ′(r) → 0 as r → 0

if d ≥ 5 (no decay holds if d = 4). Integrating (3.38) on [0, R] with f(r) = r−1F (r)
for c ≤ F (r) ≤

√
d− 3 and λ ≤ 0 yields

Rd−2F ′(R) ≥ c

d+ 1R
d+1 + (c−

√
d− 3)Rd−3,

due to the fast decay rd−1f ′(r) → 0 as r → 0. The lower bound implies that
F ′(r) > 0 for sufficiently large r. Hence, (−∞, 0] ∈ I− if d ≥ 5.
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• The proof of Lemma 3.7 also applies to f(r) = r−1F (r). Integrating (3.38) on
[0, R] with f(r) = r−1F (r) for c ≤ F (r) ≤

√
d− 3 yields

Rd−2F ′(R) ≥ c

d+ 1R
d+1 + (c−

√
d− 3)Rd−3 − λ

√
d− 3

d− 2 Rd−2,

which is a contradiction with F ′(r) < 0 for sufficiently large r. Hence c = 0 and
F (r), F ′(r) → 0 as r → ∞.

Remark 3.8. Uniqueness of the solution in Theorem 3.2 was claimed in Section 4 of
[54], however, we believe that the proof was incorrect. Indeed, assuming two solutions
Ψλ1(r) and Ψλ2(r) for two values λ1 and λ2 in Theorem 3.2, we construct a quotient

ρ(t) = Ψ1(t)
Ψ2(t) ,

which satisfies the differential equation

ρ′′(t) +
[
d− 4 + 2Ψ′

2(t)
Ψ2(t)

]
ρ′(t) + Ψ2(t)2ρ(t)[ρ(t)2 − 1] + (λ1 − λ2)e2tρ(t) = 0. (3.45)

It follows from (3.42) that

ρ(t) = 1 − λ1 − λ2
4d− 10e

2t + O(e4t) as t → −∞. (3.46)

A rescaling of time was applied in the arguments of [54] to make the last term in (3.45)
small but was not applied to the second term of the expansion (3.46). As a result,
the differential equation (3.45) was replaced by a differential inequality which led to
a contradiction in [54]. With the proper scaling of time in both (3.45) and (3.46),
transformation of the differential equation to a differential inequality cannot be justified.

Figure 3.2 illustrates the shooting method used in the proof of Theorem 3.2. The
left panel shows F (r) as the unique classical solution to the initial-value problem (3.3),
whereas the right panel shows Ψ(t) as a solution to the differential equation (3.40) with
the boundary conditions (3.41). For d = 5, we compute numerically the solutions for
three different values of λ. For a special value of λ = λ∞, the solution F gives the
limiting singular solution f∞ ∈ E after the transformation f(r) = r−1F (r). For values
of λ above (below) λ∞, the solution crosses the zero level and diverges to negative infinity
(attains a minimum and diverges to positive infinity). We have found numerically that
the value of λ∞ is unique.
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λ=λ∞

λ>λ∞

λ<λ∞

1 2 3 4 5 6 7
r

-2

-1

1

2
F(r)

λ=λ∞

λ>λ∞

λ<λ∞

-2 -1 1 2
t

-2

-1

1

2
Ψ (t)

Figure 3.2: Plot of the unique solution F (r) satisfying the initial-value
problem (3.3), together with Ψ(t) defined by the transformation (3.39),
for d = 5 and three values of λ. For λ = λ∞, the solution gives the limiting
singular solution f∞ ∈ E after the transformation f(r) = r−1F (r). The
dashed lines show solutions for values of λ slightly deviating from λ∞.
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Chapter 4

Snaking and monotone behaviors
of the ground states

We consider the energy-supercritical case for (1.7) and assume for simplicity that p = 1,
so that (d−2)p > 2 implies d ≥ 5. In Chapter 3 we have shown that there exists a family
of ground states {ub}b>0 ∈ E , and the main result of [54] proves existence of a limiting
singular solution f∞ ∈ E , such that ub → f∞ as b → ∞ in E . By Theorems 3.1 and 3.2
we know that there exist λ(b) ∈ (0, d) for every b > 0, and λ∞ ∈ (0, d), corresponding
to ub and f∞ respectively, such that λ(b) → λ∞ as b → ∞. Recall from Chapter 3 that
ub is found from the solutions f of the initial-value problem{

f ′′(r) + d−1
r f ′(r) − r2f(r) + λf(r) + f(r)3 = 0, r > 0,

f(0) = b, f ′(0) = 0, (4.1)

for λ = λ(b), for which the solution f to the initial-value problem (4.1) decays to zero
at infinity. Furthermore, f∞ is found by the transformation f∞(r) = r−1F (r) from the
solution F to the initial-value problem{

F ′′(r) + d−3
r F ′(r) − d−3

r2 F (r) − r2F (r) + λF (r) + 1
r2F (r)3 = 0, r > 0,

F (0) =
√
d− 3, F ′(0) = 0, (4.2)

for λ = λ∞, for which the solution F to the initial-value problem (4.2) decays to zero at
infinity.

In this chapter, we study the convergence of λ(b) to λ∞ as b → ∞, depending on
the dimension d ≥ 5. We show under a technical non-degeneracy assumption that the
solution curve has an oscillatory (snaking) behavior for 5 ≤ d ≤ 12 and a monotone
behavior for d ≥ 13. The following theorem presents the corresponding result.

Theorem 4.1. Assume that λ∞ is given by Theorem 3.2 and Assumptions 4.1 and 4.2
are satisfied. Then, there exists b0 ∈ [0,∞) such that for every b > b0 the value of λ in
Theorem 3.1, denoted by λ(b), is uniquely defined near λ∞ such that lim

b→∞
λ(b) = λ∞.
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Moreover, for 5 ≤ d ≤ 12, there exist constants A∞ > 0 and δ∞ ∈ R such that

λ(b) − λ∞ ∼ A∞b
−β sin(α ln b+ δ∞) as b → ∞, (4.3)

where
α =

√
−d2 + 16d− 40

2 , β = d− 4
2 , (4.4)

whereas for d ≥ 13, there exists B∞ > 0 such that

λ(b) − λ∞ ∼ B∞b
κ+ as b → ∞, (4.5)

where
κ+ = −d− 4

2 +
√
d2 − 16d+ 40

2 . (4.6)

Remark 4.1. In (4.3) and (4.5), f(b) ∼ g(b) denotes the asymptotic correspondence
in the sense g(b) → 0 as b → ∞ and lim

b→∞
|f(b)−g(b)|

|g(b)| = 0. Moreover, the asymptotic
correspondence f(b) ∼ g(b) can be differentiated term by term.

Remark 4.2. If the value of λ∞ in Theorem 3.2 is not unique, then for each λ∞, which
is isolated under Assumptions 4.1 and 4.2, there exists the solution curve of Theorem
4.1 with the oscillatory or monotone behavior. Our numerical results indicate that λ∞
in Theorem 3.2 is unique; moreover, λ(b) in Theorem 3.1 is unique for every b > 0.

Remark 4.3. The oscillatory behavior similar to the one in (4.3) was obtained in [6,
7, 15] for the stationary focusing nonlinear Schrödinger equation in a ball and without
a harmonic potential. The similarity is explained by the same linearization of the sta-
tionary equation near the origin after the Emden–Fowler transformation [18]. While the
previous works explore geometric methods, the main approach we undertake to prove The-
orem 4.1 is based on the functional-analytical methods. In particular, we construct three
families of solutions to the same differential equation: one family extends the solution of
the initial value problem (4.1) in new variables, the other family extends the solution of
the initial value problem (4.2), and the third family describes solution decaying to zero
at infinity. By using our methods, we see necessity of adding technical non-degeneracy
assumptions (Assumptions 4.1 and 4.2), which were not mentioned previously.

Figure 4.1 illustrates the result of Theorem 4.1 and shows the numerically computed
solution curve (the graph of λ as a function of b) for d = 5 (left) and d = 13 (right).
In agreement with Theorem 4.1, we confirm the oscillatory behavior in the former case
and the monotone behavior in the latter case. We also note that the unique value of
λ = λ(b) is found for every b > 0 in both cases (see Remarks 3.1, 3.3, and 4.2).

Notations. We denote A = O(ε) as ε → 0 if there exists an ε0 > 0 and an ϵ-
independent constant C > 0 such that |A| ≤ Cε if ε ∈ (0, ε0).
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Figure 4.1: Graph of λ as a function of b for the ground state of the
boundary-value problem (1.7) with p = 1 for d = 5 (left) and d = 13
(right).

4.1 Two solution families
For the reader’s convenience, we begin by recalling several important functions defined
in Chapter 3, which will be used in the proof of Theorem 4.1. By applying the Emden-
Fowler transformation [18]

r = et, F (r) = Ψ(t) F ′(r) = e−tΨ′(t), (4.7)

to initial-value problem (4.2), we obtain the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3 − d)Ψ(t) + Ψ(t)3 = −λe2tΨ(t) + e4tΨ(t), t ∈ R, (4.8)

together with boundary conditions{
Ψ(t) →

√
d− 3,

Ψ′(t) → 0, as t → −∞. (4.9)

In order to prove Theorem 4.1, we study three particular solutions to differential equation
(4.8). Similarly to Subsection 3.4, one solution to (4.8) is defined from the boundary
conditions (4.9) and is denoted by Ψλ. It satisfies the asymptotic behavior

Ψλ(t) =
√
d− 3

[
1 − λ

4d− 10e
2t + O(e4t)

]
as t → −∞. (4.10)

Another solution to (4.8) is obtained from the unique solution constructed in Lemma
3.2 after the scaling transformation Ψ(t) = etψ(t), where ψ(t) satisfies the differential
equation (3.8) and the boundary conditions (3.9). In order to distinguish this solution
from Ψλ, we denote it by Ψb. It follows from (3.12) that Ψb satisfies the asymptotic
behavior

Ψb(t) = bet − (λb+ b3)(2d)−1e3t + O(e5t) as t → −∞. (4.11)
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The truncated (autonomous) version to the second-order equation (4.8) is given by

Θ′′(t) + (d− 4)Θ′(t) + (3 − d)Θ(t) + Θ(t)3 = 0. (4.12)

With an elementary exercise, we have the following lemma.

Lemma 4.1. Fix d ≥ 5. There exists a unique orbit of the truncated equation (4.12) on
the phase plane (Θ,Θ′) that connects the equilibrium points (0, 0) and (

√
d− 3, 0).

Proof. The equilibrium point (0, 0) is a saddle point with two roots κ1 = 1 and κ2 =
3 − d < 0 of the characteristic equation

κ2 + (d− 4)κ+ (3 − d) = 0. (4.13)

By the unstable curve theorem, there exists a unique unstable curve on the plane (Θ,Θ′)
tangential to the direction (1, 1), along which two orbits exist satisfying Θ(t) → 0 as
t → −∞. One orbit is connected to (0, 0) in the first quadrant of the (Θ,Θ′)-plane and
the other orbit is connected to (0, 0) in the third quadrant. Because the stable curve
is connected to (0, 0) in the second and fourth quadrants and the orbits of the planar
system do not intersect away from the equilibrium points, the unstable orbit connected to
(0, 0) in the first quadrant stays in the right half-plane with positive Θ and the unstable
orbit connected to (0, 0) in the third quadrant stays in the left half-plane with negative
Θ. For the proof of the lemma, we only consider the former unstable orbit and introduce
the energy function

V (Θ,Θ′) := 1
2(Θ′)2 + 1

2(3 − d)Θ2 + 1
4Θ4.

If Θ(t) ∈ C2(R) is a solution to the second-order equation (4.12), then

d

dt
V (Θ,Θ′) = (4 − d)(Θ′)2 ≤ 0. (4.14)

Since V (Θ,Θ′) is bounded from below, and its value is monotonically decreasing, the
unstable orbit stays in a compact region of the right-half of the phase plane (Θ,Θ′). No
periodic orbits exist in this compact region, because if Θ(t+ T ) = Θ(t) is periodic with
the minimal period T > 0, then we get contradiction with (4.14):

0 = V (Θ,Θ′)|t=T − V (Θ,Θ′)|t=0 = (4 − d)
∫ T

0

(
Θ′)2 dt < 0.

Hence, the unstable curve from (0, 0) has the limit set at the stable equilibrium point.
The only stable equilibrium point in the right-half of the phase plane (Θ,Θ′) is the
point (

√
d− 3, 0), hence (0, 0) and (

√
d− 3, 0) are connected by the unique heteroclinic

orbit.
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Since the truncated equation (4.12) is autonomous, the unique orbit of Lemma 4.1
can be parameterized by the time translation such that

Θ(t+ t0) = et+t0 − (2d)−1e3(t+t0) + O(e5(t+t0)) as t → −∞, (4.15)

where t0 ∈ R is arbitrary and Θ(t) is uniquely defined. It follows by comparing the
asymptotic behaviors (4.11) and (4.15) that the parameter b plays the same role as the
translation parameter t0 with the correspondence t0 = log b. The following lemma states
that, when b is sufficiently large, the solution Ψb translated by log b converges to Θ on
the negative half-line.

Lemma 4.2. Fix d ≥ 5 and λ ∈ R. There exist b0 > 0 (sufficiently large) and C0 > 0
such that the unique solution Ψb to the second-order equation (4.8) with the asymptotic
behavior (4.11) satisfies

sup
t∈(−∞,0]

|Ψb(t− log b) − Θ(t)| + sup
t∈(−∞,0]

|Ψ′
b(t− log b) − Θ′(t)| ≤ C0b

−2, b ≥ b0, (4.16)

where Θ is the uniquely defined solution to the truncated equation (4.12) with the asymp-
totic behavior (4.15) in Lemma 4.1.

Proof. By translating t, we rewrite (4.8) for Ψb(t) in the form:

Ψ′′(t)+(d−4)Ψ′(t)+(3−d)Ψ(t)+Ψ(t)3 = −λb−2e2(t+log b)Ψ(t)+b−4e4(t+log b)Ψ(t). (4.17)

The solution Ψb(t− log b) is decomposed near the uniquely defined solution Θ(t) to the
truncated equation (4.12) by using Ψb(t− log b) = Θ(t) + Υ(t), where Υ(t) satisfies the
persistence problem

LΥ = fb(Θ + Υ) +N(Θ,Υ), (4.18)

where

(LΥ)(t) = Υ′′(t) + (d− 4)Υ′(t) + (3 − d)Υ(t) + 3Θ(t)2Υ(t),
fb(t) = −λb−2e2t + b−4e4t,

N(Θ,Υ) = −3ΘΥ2 − Υ3.

There exist two linearly independent solutions Θ′(t) and Ξ(t) of the homogeneous equa-
tion LΥ = 0, where Θ′(t) is due to translation of the truncated equation (4.12) and Ξ(t)
is the linearly independent solution satisfying the Wronskian relation from Liouville’s
theorem:

W (Θ′,Ξ)(t) := Θ′(t)Ξ′(t) − Θ′′(t)Ξ(t) = W∞e
(4−d)t, (4.19)

where W∞ is an arbitrary nonzero constant. For unique normalization of Ξ(t), we can
just set W∞ = 1. Since Θ′(t) decays to zero as t → −∞ according to

Θ′(t) = et + O(e3t) as t → −∞,
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it follows from the integration of (4.19) with W∞ = 1 that Ξ(t) grows as t → −∞
according to

Ξ(t) = (2 − d)−1e(3−d)t + O(e(5−d)t) as t → −∞.

By solving the second-order differential equation (4.18) with the variation of parameters,
we obtain the integral equation for Υ(t):

Υ(t) = −
∫ t

−∞
e(d−4)t′ [Ξ(t′)Θ′(t) − Ξ(t)Θ′(t′)

] [
fb(t′)(Θ(t′) + Υ(t′)) +N(Θ(t′),Υ(t′))

]
dt′,

(4.20)
where the choice of integration from −∞ to t ensures that Υ(t) does not grow as t → −∞
along the solution Ξ(t) and does not introduce the additional translation in time along
the solution Θ′(t). In order to prove existence of small solutions to the integral equation
(4.20) on (−∞, 0] for large b, we introduce Υ̃(t) := e−tΥ(t), so that

sup
t∈(−∞,0]

|Υ(t)| ≤ sup
t∈(−∞,0]

|Υ̃(t)|. (4.21)

Then, Υ̃(t) is found from the integral equation

Υ̃(t) = −
∫ t

−∞
K(t, t′)

[
fb(t′)

(
e−t′Θ(t′) + Υ̃(t′)

)
+ e2t′

N(e−t′Θ(t′), Υ̃(t′))
]
dt′, (4.22)

where

K(t, t′) =
[
e(d−3)t′Ξ(t′)

] [
e−tΘ′(t)

]
− e(d−2)(t′−t)

[
e(d−3)tΞ(t)

] [
e−t′Θ′(t′)

]
.

Thanks to the exponential rates of Θ′(t) and Ξ(t) as t → −∞, there exists a positive
constant A0 such that

sup
t∈(−∞,0],t′∈(−∞,0]

|K(t′, t)| ≤ A0.

It is also clear that
sup

t∈(−∞,0]
|fb(t)| ≤ (|λ| + 1)b−2, b ≥ 1,

so that the inhomogeneous term of the integral equation (4.22) is small if b is large. By
the same fixed-point iterations as in the proof of Lemma 3.2, it follows that there exists
a sufficiently large b0 such that for every b ≥ b0 there exists the unique solution Υ̃ to
the integral equation (4.22) in a closed subset of the Banach space L∞(−∞, 0) satisfying
the bound

sup
t∈(−∞,0]

|Υ̃(t)| ≤ C0b
−2, (4.23)

where C0 > 0 is a suitable chosen constant. Bounds (4.21) and (4.23) yield the first
bound in (4.16). Since Υ̃ ∈ C1(−∞, 0) by bootstrapping arguments similar to those in
the proof of Lemma 3.2, the second bound in (4.16) follows by differentiating (4.22) in
t and using bound (4.23).
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Remark 4.4. It follows from the integral equation (4.22) with the account of exponential
rates of Ξ(t) and Θ′(t) that Υ̃(t) = λb−2(2d)−1e2t + O(e4t) as t → −∞, in agreement
with the asymptotic expansions (4.11) and (4.15) for Υ̃(t) = e−t[Ψb(t− log b) − Θ(t)].

In addition to the solutions Ψλ and Ψb to the differential equation (4.8), which are
defined from the behavior as t → −∞, we define the third solution to (4.8) from the
decaying behavior as t → +∞. This solution to (4.8) is denoted by Ψc(t). Its existence
follows from a modification of the result of Lemma 3.3.

Lemma 4.3. Fix d ≥ 1 and λ ∈ R. There exists a one-parameter family of solutions to
the second-order equation (4.8) denoted by Ψc(t) such that Ψc(t),Ψ′

c(t) → 0 as t → +∞
and

Ψc(t) ∼ ce
λ−d+2

2 te− 1
2 e2t as t → +∞, (4.24)

for some c ∈ R, where the asymptotic correspondence can be differentiated. Moreover,
the solution Ψc(t) is extended globally for every t ∈ R.

Proof. By the chain rule in (4.7), if Ψ(t),Ψ′(t) → 0 as t → +∞, then F (r), F ′(r) → 0
as r → ∞. Since f(r) = r−1F (r), this decay implies f(r), f ′(r) → 0 as r → ∞. The
precise asymptotic correspondence (4.24) is obtained from (3.16) in Lemma 3.3 and
Ψc(t) = etf(et). Global continuation of Ψc on R follows by Lemma 3.4 from the global
continuation of the solution f ∈ C2(r0,∞) for some r0 ∈ (0,∞) to f ∈ C2(0,∞).

Finally, we discuss linearization of the truncated equation (4.12) at the equilibrium
point (

√
d− 3, 0). The characteristic equation

κ2 + (d− 4)κ+ 2(d− 3) = 0 (4.25)

admits the following two roots

κ± := −1
2(d− 4) ± 1

2
√
d2 − 16d+ 40 (4.26)

If 5 ≤ d ≤ 12, the roots are complex-conjugate and can be written as

κ± = −β ± iα, (4.27)

where real and positive α and β are given by (4.4). If d ≥ 13, then the roots are real
and negative with ordering

κ− < κ+ < 0. (4.28)

The difference between the two cases can be observed when the solution ψ of Theorem 3.1
is transformed to the variable Ψ, in which case it becomes the intersection of the second
solution Ψb defined as t → −∞ and the third solution Ψc for some c = c(b) > 0 defined
as t → +∞. Both solutions satisfy the differential equation (4.8) for the particular value
of λ = λ(b).
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Figure 4.2 shows both components ψ(t) and Ψ(t) for the solution of Theorem 3.1 for
d = 5 (top) and d = 13 (bottom) that corresponds to b = 14000. Compared to the
component ψ(t) which is monotonically decreasing on R, the component Ψ(t) decays to
zero at both infinities. In addition, Ψ(t) develops oscillations at the intermediate range
of t for d = 5 and no oscillations for d = 13.

-15 -10 -5 5 10
t

2000

4000

6000

8000

10000

12000

14000
ψ (t)

-15 -10 -5 5 10
t

0.5

1.0

1.5

Ψ (t)

-15 -10 -5 5 10
t

2000

4000

6000

8000

10000

12000

14000
ψ (t)

-15 -10 -5 5 10
t

0.5

1.0

1.5

2.0

2.5

3.0

Ψ (t)

Figure 4.2: Components ψ (left) and Ψ (right) for the solution of The-
orem 3.1 plotted versus t for d = 5 (top) and d = 13 (bottom) with
b = 14000.

Because of the difference between the oscillatory and monotone behavior of the so-
lutions of Theorem 3.1 in variable Ψ, the proof of Theorem 4.1 is developed separately
for 5 ≤ d ≤ 12 and d ≥ 13.

4.2 Proof of Theorem 4.1 in the oscillatory case
By Lemma 4.1, there exists the unique solution Θ to the truncated equation (4.12) with
the asymptotic behavior (4.15). The following lemma described the oscillatory behavior
of Θ(t) as t → +∞.

Lemma 4.4. Fix 5 ≤ d ≤ 12. There exist t0 > 0 (sufficiently large), A0 > 0, δ0 ∈
[0, 2π), and C0 > 0 such that the unique solution Θ of Lemma 4.1 satisfies the following
oscillatory behavior:

sup
t∈[t0,∞)

|Θ(t) −
√
d− 3 −A0e

−βt sin(αt+ δ0)| ≤ C0e
−2βt0 . (4.29)
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where α and β are given by (4.4).

Proof. The equilibrium point (
√
d− 3, 0) is a stable spiral point of the truncated equation

(4.12) for 5 ≤ d ≤ 12 due to the roots (4.27) of the characteristic equation (4.25).
Quadratic terms beyond the linearization at (

√
d− 3, 0) can be removed by a near-

identity transformation if κ± = −β ± iα. By the Hartman–Grobman theorem, there
exists a C2-diffeomorphism, under which the dynamics of the truncated equation (4.12)
near (

√
d− 3, 0) is conjugate to the dynamics of the linearized equation. The asymptotic

behavior (4.29) follows from the solution of the linearized equation and the existence of
the C2-diffeomorphism.

Remark 4.5. It follows from the dynamical system theory that the bound (4.29) can be
extended to Θ′(t) as follows:

sup
t∈[t0,∞)

|Θ′(t) − αA0e
−βt cos(αt+ δ0) + βA0e

−βt sin(αt+ δ0)| ≤ C0e
−2βt0 . (4.30)

For simplicity of writing, we will not write henceforth the explicit bounds on the deriva-
tives.

By extending Lemma 4.2 and using Lemma 4.4, we prove the oscillatory behavior of
the solution Ψb(t) at the intermediate values of t as b → ∞.

Lemma 4.5. Fix 5 ≤ d ≤ 12 and λ ∈ R. For fixed T > 0 and a ∈
(
0, 4

d

)
, there exist

bT,a > 0 and CT,a > 0 such that the unique solution Ψb to the second-order equation
(4.8) with the asymptotic behavior (4.11) satisfies

sup
t∈[0,T +a log b]

|Ψb(t− log b) − Θ(t)| ≤ CT,ab
−2(1−a), b ≥ bT,a. (4.31)

Consequently, it follows that

|Ψb(T + (a− 1) log b) −
√
d− 3 −A0b

−aβe−βT sin(αT + δ0 + aα log b)|
≤ CT,a max{b−2aβ, b−2(1−a)}, b ≥ bT,a, (4.32)

where (α, β) are given by (4.4), (A0, δ0) are defined in (4.29), and (bT,a, CT,a) are ad-
justed appropriately.

Proof. We start with the proof of the bound (4.31). This can be done by rewriting the
integral equation (4.20) in an equivalent form which is useful for t ∈ [0, T + a log b]. To
do so, we solve the second-order equation (4.18) with the variation of parameters from
t = 0 towards t = T + a log b > 0. This gives us the integral equation in the form:

Υ(t) = Υ(0)
[
Ξ′(0)Θ′(t) − Ξ(t)Θ′′(0)

]
+ Υ′(0)

[
Ξ(t)Θ′(0) − Ξ(0)Θ′(t)

]
−
∫ t

0
e(d−4)t′ [Ξ(t′)Θ′(t) − Ξ(t)Θ′(t′)

] [
fb(t′)(Θ(t′) + Υ(t′)) +N(Θ(t′),Υ(t′))

]
dt′.(4.33)
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By the bound (4.16), there exist b0 > 0 and C0 > 0 such that

|Υ(0)| + |Υ′(0)| ≤ C0b
−2, b ≥ b0.

It follows from the definition of fb that

sup
t∈[0,T +a log b]

|fb(t)| ≤ (|λ| + 1)b−2(1−a)e4T , b ≥ 1,

where T > 0 is fixed independently of b. Since (
√
d− 3, 0) is a stable spiral point of

the truncated equation (4.12) for 5 ≤ d ≤ 12 with the roots (4.27), both Θ′(t) and Ξ(t)
decays to 0 exponentially fast as t → +∞ such that

|Θ′(t)| + |Ξ(t)| ≤ C0e
−βt, t ≥ 0,

for some b-independent C0 > 0. The kernel of the integral equation (4.33) behaves like
e−β(t−t′) and decays exponentially as t → +∞. By the same fixed-point iterations as
in the proof of Lemma 3.2, it follows that there exists a sufficiently large bT,a such that
for every b ≥ bT,a there exists the unique solution Υ to the integral equation (4.33) in a
closed subset of Banach space L∞(0, T + a log b) satisfying the bound

sup
t∈[0,T +a log b]

|Υ(t)| ≤ CT,bb
−2(1−a), (4.34)

where CT,b > 0 is a suitable chosen constant and a ∈ (0, 1). Bound (4.34) yields (4.31).

Bound (4.32) follows from (4.29) and (4.31) since a log b → +∞ as b → ∞ if a > 0
and b−aβ ≫ b−2(1−a) if a < 4

d < 1.

Remark 4.6. The bound (4.16) was used in [7] without improvement given by the bound
(4.31). The bound (4.16) is not sufficient for our purpose because if a = 0 in Lemma
4.5 then we are not allowed to use the asymptotic behavior (4.29) in order to derive the
bound (4.32).

Remark 4.7. The constraint a ∈
(
0, 4

d

)
⊂ (0, 1) needed to control the small approxi-

mation error in the bound (4.31) implies that the oscillatory behavior (4.32) is observed
in Ψb(t) for sufficiently large negative t, yet not in the limit t → −∞. Indeed, Ψb(t)
satisfies the asymptotic behavior (4.11) and decays to zero as t → −∞.

Let us now turn to the one-parameter solution Ψc(t) defined by the asymptotic be-
havior (4.24) as t → +∞. This solution to the differential equation (4.8) is extended
globally for every t ∈ R by Lemma 4.3. For λ = λ∞, there exists a uniquely defined
c = c∞ such that Ψc=c∞ coincides with the unique solution Ψ∞ := Ψλ=λ∞ which satisfies
the asymptotic behavior (4.10) as t → −∞. Thus, Ψ∞ = Ψc=c∞ = Ψλ=λ∞ is a bounded
function on R. However, the functions Ψc ̸=c∞ and Ψλ ̸=λ∞ are not globally bounded on
R due to divergence as t → −∞ and t → +∞ respectively.
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The unique solution Ψc is differentiable in (λ, c) due to the smooth asymptotic be-
havior (4.24) and the smoothness of the differential equation (4.8). Therefore, we can
define

Ψ1 := ∂λΨc|(λ,c)=(λ∞,c∞), Ψ2 := ∂cΨc|(λ,c)=(λ∞,c∞). (4.35)

Functions Ψ1,2 satisfy the linear second-order equations written in the form

L0Ψ1 = f + gΨ1, L0Ψ2 = gΨ2, (4.36)

where

(L0Ψ)(t) := Ψ′′(t) + (d− 4)Ψ′(t) + 2(d− 3)Ψ(t),
f(t) := −e2tΨ∞(t),
g(t) := 3(d− 3 − Ψ∞(t)2) − λ∞e

2t + e4t.

We add the following technical assumption.

Assumption 4.1. Uniquely defined functions Ψ∞ and Ψ2 are assumed to satisfy the
following non-degeneracy assumption:∫ ∞

−∞
e(d−2)tΨ∞(t)Ψ2(t)dt ̸= 0. (4.37)

Remark 4.8. The non-degeneracy assumption (4.37) can be equivalently written as

∂

∂c

∫ ∞

−∞
e(d−2)tΨc(t)2dt

∣∣∣∣
λ=λ∞,c=c∞

̸= 0,

or

∂

∂c

∫ ∞

0
rd−3Fc(r)2dr

∣∣∣∣
λ=λ∞,c=c∞

̸= 0,

or

∂

∂c

∫ ∞

0
rd−1fc(r)2dr

∣∣∣∣
λ=λ∞,c=c∞

̸= 0,

where fc(r) = r−1Fc(r) = r−1Ψc(log r).

Remark 4.9. One can reformulate the constraint (4.37) from a different point of view.
Recall the solution Ψλ to the second-order equation (4.8) satisfying the asymptotic be-
havior (4.10) as t → −∞ and extended globally. Derivative ∂λΨλ satisfies the same
differential equation (4.36) as Ψ1 but compared to Ψ1, ∂λΨλ(t) generally diverges as
t → +∞. The condition (4.37) ensures that ∂λΨλ is not spanned by the derivatives of
the solution Ψc(t) in λ and c, which decays to zero as t → ∞. Hence, the constraint
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(4.37) is a transversality condition between the two C1 families of solutions to the dif-
ferential equation (4.8) given by Ψλ and Ψc. Note that this transversality condition was
not mentioned in the previous works in [6, 7, 15] on a related subject.

The following lemma determines the behavior of the solutions Ψ1,2 for large negative
t and the solution Ψc for parameters (λ, c) near the point (λ∞, c∞).

Lemma 4.6. Fix 5 ≤ d ≤ 12. For fixed T > 0 and a ∈ (0, 1), there exist bT,a > 0,
CT,a > 0, A1,2, B1,2 such that Ψ1,2 in (4.35) satisfy for every t ∈ (−∞, (a− 1) log b+T ]:

|Ψ1,2(t) −A1,2e
−βt sin(αt) −B1,2e

−βt cos(αt)| ≤ CT,ab
−2(1−a)e−βt, b ≥ bT,a, (4.38)

where (α, β) are given by (4.4). Consequently, there exists ϵ0 > 0 such that for every
ϵ ∈ (0, ϵ0) and for every (λ, c) ∈ R2 satisfying

(λ− λ∞)2 + (c− c∞)2 ≤ ϵ2b−2β(1−a), (4.39)

it is true for every b ≥ bT,a and every t ∈ [(a− 1) log b, (a− 1) log b+ T ] that

|Ψc(t) −
√
d− 3 − [A1(λ− λ∞) +A2(c− c∞)]e−βt sin(αt)

−[B1(λ− λ∞) +B2(c− c∞)]e−βt cos(αt)|
≤ CT,a

(
b−2(1−a) + (λ− λ∞)b−(2−β)(1−a) + (c− c∞)b−(2−β)(1−a)

+(λ− λ∞)2b2β(1−a) + (c− c∞)2b2β(1−a)
)
, (4.40)

where bT,a and CT,a are adjusted appropriately. If Assumption 4.1 is satisfied, then

A1B2 ̸= A2B1. (4.41)

Proof. Since Ψ∞(t) =
√
d− 3 + O(e2t) as t → −∞, there exist bT,a > 0 and CT,a > 0

such that

sup
t∈(−∞,(a−1) log b+T ]

(|f(t)| + |g(t)|) ≤ CT,ab
−2(1−a), b ≥ bT,a, (4.42)

where T > 0 and a ∈ (0, 1) are fixed independently of b. The left-hand side of lin-
ear equations (4.36) coincides with the linearized equation near the stable spiral point
(
√
d− 3, 0) with two roots (4.27). By variation of parameters, we can rewrite the linear

equations for Ψ1,2 in the integral form:

Ψ1,2(t) = A1,2e
−βt sin(αt) +B1,2e

−βt cos(αt)

+α−1
∫ t

−∞
e−β(t−t′) sin(α(t− t′))

[
f(t′)e1,2 + g(t′)Ψ1,2(t′)

]
dt′, (4.43)

where A1,2, B1,2 are some constant coefficients and e1 = 1, e2 = 0. The kernel of the
integral equations (4.43) is bounded in the variable Ψ̃1,2(t) = eβtΨ1,2(t), for which we
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can write

Ψ̃1,2(t) = A1,2 sin(αt) +B1,2 cos(αt)

+α−1
∫ t

−∞
sin(α(t− t′))

[
f(t′)eβt′

e1,2 + g(t′)Ψ̃1,2(t′)
]
dt′. (4.44)

By the same fixed-point iterations as in the proof of Lemma 3.2, there exists the
unique solutions Ψ̃1,2 to the integral equations (4.44) in a closed subset of Banach space
L∞(−∞, T + (a− 1) log b) satisfying the bounds

sup
t∈(−∞,T +(a−1) log b]

|Ψ̃1,2(t) −A1,2 sin(αt) −B1,2 cos(αt)| ≤ CT,ab
−2(1−a), b ≥ bT,a,

due to bounds (4.42). By using the transformation Ψ̃1,2(t) = eβtΨ1,2(t), we obtain (4.38).

In order to justify (4.40), we substitute the decomposition Ψc = Ψ∞ + Σ into (4.8)
and obtain the following persistence problem:

L∞Σ = F , (4.45)

where

(L∞Σ)(t) := Σ′′(t) + (d− 4)Σ′(t) + (3 − d)Σ(t) + 3Ψ∞(t)2Σ(t) + λ∞e
2tΣ(t) − e4tΣ(t),

F(t) := −(λ− λ∞)e2t(Ψ∞(t) + Σ(t)) − 3Ψ∞(t)Σ(t)2 − Σ(t)3.

Let {Σ1,Σ2} be the fundamental system of the homogeneous equation L∞Σ = 0 subject
to the normalization {

Σ1(0) = 1,
Σ′

1(0) = 0,

{
Σ2(0) = 0,
Σ′

2(0) = 1.

Since L∞ = L0 − g and g(t) = O(e2t) as t → −∞, the functions Σ1(t) and Σ2(t) diverge
like O(e−βt) as t → −∞, so that there exists a positive constant C such that

sup
t∈(−∞,0]

eβt (|Σ1(t)| + |Σ2(t)|) ≤ C. (4.46)

The Wronskian relation from Liouville’s theorem yields

W (Σ1,Σ2)(t) = Σ1(t)Σ′
2(t) − Σ′

1(t)Σ2(t) = e−2βt, (4.47)

where 2β = d − 4. By variation of parameters, we can rewrite the differential equation
(4.45) in the integral form:

Σ(t) = Σ(0)Σ1(t) + Σ′(0)Σ2(t)

+
∫ 0

t
e2βt′ [Σ1(t)Σ2(t′) − Σ1(t′)Σ2(t)

]
F(t′)dt′, (4.48)

where t < 0.

46

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


Ph.D. Thesis – Szymon Sobieszek McMaster University– Mathematics

For simplicity, let us set c = c∞ and consider λ satisfying |λ− λ∞| ≤ ϵe−β(1−a). The
proof of the general case under the bound (4.39) is similar. We set Σ̃(t) := eβtΣ(t) as
before and rewrite the integral equation (4.48) in the form:

Σ̃(t) = Σ(0)eβtΣ1(t) + Σ′(0)eβtΣ2(t)

−(λ− λ∞)
∫ 0

t
K(t, t′)e2t′ [

eβt′Ψ∞(t′) + Σ̃(t′)
]
dt′

−
∫ 0

t
K(t, t′)

[
3Ψ∞(t′)e−βt′Σ̃(t′)2 − e−2βt′Σ̃(t′)3

]
dt′, (4.49)

where the kernel K(t, t′) := eβ(t+t′) [Σ1(t)Σ2(t′) − Σ1(t′)Σ2(t)] satisfies the bound

sup
t∈(−∞,0],t′∈(−∞,0]

|K(t, t′)| ≤ C. (4.50)

which follows from (4.46). By the smoothness of Ψc in λ, we have |Σ(0)|+|Σ′(0)| ≤ C|λ−
λ∞|. The nonlinear terms grow as t → −∞, therefore, the fixed-point arguments cannot
be closed in L∞(−∞, 0). However, they can be closed in the ball Bδ ⊂ L∞((a−1) log b, 0)
provided that δ = Cϵe−β(1−a) with sufficiently small ϵ > 0 and some C > 0. In particular,
the nonlinear terms are contractive if ϵ is sufficiently small. By using the first-point
iterations, there exists the unique solution to the integral equation (4.49) satisfying

sup
t∈[(a−1) log b,0]

|Σ̃(t)| ≤ C|λ− λ∞| ≤ Cϵb−β(1−a). (4.51)

Since Σ̃ is smooth in λ and ∂λΣ̃|λ−λ∞ = Ψ̃1 constructed above, we then conclude that

sup
t∈[(a−1) log b,0]

|Σ̃(t) − (λ− λ∞)Ψ̃1| ≤ C(λ− λ∞)2bβ(1−a) ≤ Cϵ2b−β(1−a). (4.52)

Bound (4.40) follows from the decomposition Ψc = Ψ∞ + Σ, the expansion Ψ∞(t) =√
d− 3 + O(e2t) as t → −∞, the bound (4.38) on the first derivatives, and the bound

(4.52) on the higher-order terms.

It remains to prove that A1B2 ̸= A2B1 under Assumption 4.1. Since the differen-
tial equation (4.36) is homogeneous and Ψ2 in (4.35) is nonzero due to the boundary
conditions (4.24), it follows that (A2, B2) ̸= (0, 0) by uniqueness of the zero solution in
the integral equation (4.44) for Ψ̃2. If A1B2 = A2B1, then there exists µ ∈ R such that
(A1, B1) = µ(A2, B2) and ∆(t) := Ψ1(t) − µΨ2(t) satisfies the integral equation that
follows from (4.43):

∆(t) = α−1
∫ t

−∞
e−β(t−t′) sin(α(t− t′))

[
f(t′) + g(t′)∆(t′)

]
dt′. (4.53)

By the previous arguments, there exists the unique solution to the integral equation
(4.53) for ∆̃(t) = eβt∆(t) in a closed subset of Banach space L∞(−∞, T + (a− 1) log b).
Moreover, ∆̃(t) → 0 as t → −∞. The Wronskian between ∆ and Ψ2 satisfies the

47

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


Ph.D. Thesis – Szymon Sobieszek McMaster University– Mathematics

inhomogeneous equation

d

dt
e(d−4)tW (∆,Ψ2) = −e(d−4)tf(t)Ψ2(t). (4.54)

Due to the fast decay of Ψc(t) as t → +∞ in (4.24), we integrate the inhomogeneous
equation (4.54) on R and obtain the contradiction with the constraint (4.37) in Assump-
tion 4.1:

0 = lim
t→−∞

e(d−4)tW (∆,Ψ2) =
∫ ∞

−∞
e(d−4)tf(t)Ψ2(t)dt = −

∫ ∞

−∞
e(d−2)tΨ∞(t)Ψ2(t)dt ̸= 0,

where for the first equality we have used that Ψ̃2(t) is bounded and ∆̃(t) is decaying
to zero as t → −∞. The contradiction implies that A1B2 ̸= A2B1 under Assumption
4.1.

The proof of Theorem 4.1 for 5 ≤ d ≤ 12 is developed based on Lemmas 4.5 and 4.6.

Proof of Theorem 4.1 for 5 ≤ d ≤ 12.

By Theorem 3.1, the solution Ψb(t) exists for a certain value of λ denoted by λ(b)
for every b > 0. By Lemma 3.3, it satisfies the asymptotic behavior (4.24) for uniquely
selected c = c(b). Therefore, for this value of λ = λ(b), we have

Ψb(t) = Ψc(b)(t), t ∈ R. (4.55)

By comparing the bound (4.32) of Lemma 4.5 for any fixed T ∈ R and a ∈
(
0, 4

d

)
with

the bound (4.40) of Lemma 4.6 at the time instance t = T + (a− 1) log b, we obtain the
system of nonlinear equations:{

A1(λ(b) − λ∞) +A2(c(b) − c∞) = A0b
−β cos(δ0 + α log b) + E1

B1(λ(b) − λ∞) +B2(c(b) − c∞) = A0b
−β sin(δ0 + α log b) + E2,

(4.56)

where coefficients (A1, A2) and (B1, B2) are the same as in (4.38) and (E1, E2) are error
terms satisfying

E1,2 = O(b−(1+a)β, b−(2+β)(1−a), (λ(b) − λ∞)b−2(1−a), (c(b) − c∞)b−2(1−a),

(λ(b) − λ∞)2bβ(1−a), (c(b) − c∞)2bβ(1−a))

as b → ∞, provided that (λ(b), c(b)) satisfy the bound (4.39) for some ϵ > 0. By Lemma
4.6, it follows that A1B2 ̸= A2B1 so that the matrix in (4.56) is invertible. By the
implicit function theorem, there exist constants A∞, B∞, δ∞, and ν∞ such that the
unique solution to the system (4.56) is given by{

λ(b) − λ∞ = A∞b
−β sin(δ∞ + α log b) + O(b−(1+a)β, b−(2+β)(1−a), b−β−2(1−a)),

c(b) − c∞ = B∞b
−β sin(ν∞ + α log b) + O(b−(1+a)β, b−(2+β)(1−a), b−β−2(1−a)). (4.57)
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The solution (4.57) satisfies the bound (4.39) since b−β ≪ b−β(1−a) for a > 0. On the
other hand, if a < 4

d , then b−β ≫ e−(2+β)(1−a), and the error terms in (4.57) are smaller
compared to the leading-order terms. Expansion (4.57) justifies the expansion (4.3).
□

Remark 4.10. Let {bn}n∈N be a sequence of roots of λ(b) = λ∞. It follows from (4.57)
that

lim
n→∞

bn+1
bn

= e
π
α . (4.58)

We verified the asymptotic limit (4.58) numerically. The results for d = 5 are given in
Table 4.1, where e

π
α ≈ 5.06478.

n bn bn+1/bn

1 3.7733455 5.37388
2 20.277514 5.07167
3 102.84079 5.08211
4 522.64782 5.06062
5 2644.9194 5.06744
6 13402.960 5.06352
7 67866.139 5.06588
8 343801.49 5.06317
9 1740725.8

Table 4.1: Approximate values of bn such that λ(bn) = λ∞ for d = 5.

Figure 4.3 illustrates the solutions Ψb of the second-order equation (4.8) for d =
5 and b = b1, b3, b6, where {bn}n∈N are defined in Table 4.1. The left panel shows
that the solutions Ψb translated in t by log b in comparison with the solution Θ of the
truncated equation (4.12). The right panel shows the solutions Ψb without translation
in comparison with the limiting singular solution Ψ∞ satisfying (4.8) and (4.9). The left
panel confirms convergence of {Ψbn(· − log bn)}n∈N to Θ on (−∞, t0] for a fixed t0 > 0.
The right panel confirms convergence of {Ψbn}n∈N to Ψ∞ on [t0,∞) for a fixed t0 < 0.

Figure 4.4 shows solutions Ψb for b = b1 and b = b6 on the phase plane (Ψ,Ψ′)
together with the solution Θ of the truncated equation (4.12) and the limiting singular
solution Ψ∞ satisfying (4.8) and (4.9). The difference of Ψb=b6 (red dotted line) from
Θ and Ψ∞ is almost invisible, whereas the difference is large in the case of Ψb=b1 (blue
dotted line).

4.3 Proof of Theorem 4.1 in the monotone case
Here we state and prove the corresponding modifications of results of Lemmas 4.4, 4.5,
and 4.6 in the case d ≥ 13. The following lemma described the exponential behavior of
Θ(t) as t → +∞.

49

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


Ph.D. Thesis – Szymon Sobieszek McMaster University– Mathematics

b=b1

b=b3 b=b6

Θ

-10 -5 5 10 15 20
t

0.5

1.0

1.5

Ψ (t)

b=b1

b=b3b=b6

Ψ∞

-20 -15 -10 -5
t

0.5

1.0

1.5

Ψ (t)

Figure 4.3: Plots of the solutions Ψb for d = 5 and b = b1, b3, b6 in
comparison with Θ after translation of t by log b (left) and with Ψ∞
(right).
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Figure 4.4: Solutions Ψb1 , Ψb6 , Θ, and Ψ∞ on the phase plane (Ψ,Ψ′)
for d = 5.
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Lemma 4.7. Fix d ≥ 13. There exist t0 > 0 (sufficiently large), A0 > 0, B0 > 0, and
C0 > 0 such that the unique solution Θ of Lemma 4.1 satisfies the following behavior:

sup
t∈[t0,∞)

|Θ(t) −
√
d− 3 −A0e

κ+t −B0e
κ−t| ≤ C0e

2κ+t0 , (4.59)

where (κ+, κ−) are given by (4.26).

Proof. The equilibrium point (
√
d− 3, 0) is a stable sink of the truncated equation (4.12)

for d ≥ 13 due to the roots (4.26) of the characteristic equation (4.25) satisfying (4.28).
Quadratic terms beyond the linearization at (

√
d− 3, 0) can be removed by a near-

identity transformation under the non-resonance condition κ− ̸= 2κ+ which is satisfied
since there are no integer solutions of the quadratic equation d2 − 17d + 43 = 0. By
the Hartman–Grobman theorem, there exists a C2-diffeomorphism, under which the
dynamics of the truncated equation (4.12) near (

√
d− 3, 0) is conjugate to the dynamics

of the linearized equation. The asymptotic behavior (4.59) follows from the solution of
the linearized equation and the existence of the C2-diffeomorphism.

Remark 4.11. Because κ− < κ+ < 0, the function Θ(t) approaches
√
d− 3 monotoni-

cally and the bound (4.59) can be rewritten in a simpler way:

sup
t∈[t0,∞)

|Θ(t) −
√
d− 3 −A0e

κ+t| ≤ C0 max{eκ−t0 , e2κ+t0}, (4.60)

from which the monotone behavior of Θ(t) as t → +∞ is obvious.

Using Lemma 4.7, the statement of Lemma 4.5 is modified to yield the exponential
behavior of the solution Ψb(t) at the intermediate values of t as b → ∞.

Lemma 4.8. Fix d ≥ 13 and λ ∈ R. For fixed T > 0 and a ∈ (0, a0), where a0 ∈ (0, 1)
is defined by (4.62), there exists bT,a > 0 and CT,a > 0 such that the unique solution
Ψb to the second-order equation (4.8) with the asymptotic behavior (4.11) satisfies for
b ≥ bT,a:

|Ψb(T + (a− 1) log b) −
√
d− 3 −A0b

aκ+eκ+T | ≤ CT,a max{baκ− , b2aκ+ , b−2(1−a)},(4.61)

where (κ+, κ−) are given by (4.26) and A0 is defined in (4.60).

Proof. The proof of the bound (4.31) remains the same for every d ≥ 5. Bound (4.61)
follows from (4.31) and (4.60) since a log b → +∞ as b → ∞ if a > 0 and baκ+ ≫ b−2(1−a)

if a < a0, where

a0 := 2
2 + |κ+|

= 4
d−

√
d2 − 16d+ 40

= d+
√
d2 − 16d+ 40

2(2d− 5) . (4.62)

Note that a0 <
1
2 for every d ≥ 13.
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Finally, we recall again that Ψc coincides with Ψ∞ for (λ, c) = (λ∞, c∞) and define
Ψ1,2 as in (4.35). We add the following technical assumption.

Assumption 4.2. Uniquely defined functions Ψ∞ and Ψ2 are assumed to satisfy the
following non-degeneracy assumptions:∫ ∞

−∞
e(d−2)tΨ∞(t)Ψ2(t)dt ̸= 0 (4.63)

and
lim

t→−∞
e−κ−tΨ2(t) ̸= 0. (4.64)

Remark 4.12. Compared to Assumption 4.1, we have an additional assumption (4.64)
in Assumption 4.2. This additional condition excludes solutions of the homogeneous
equation L∞Ψ2 = 0 decaying to zero as t → +∞ to grow slowly as O(eκ+t) as t → −∞.

The following lemma determines the exponential behavior of the solution Ψc for (λ, c)
near the point (λ∞, c∞).

Lemma 4.9. Fix d ≥ 13. There exist L1, L2 ∈ R such that

L1,2 = lim
t→−∞

e−κ−tΨ1,2(t). (4.65)

If Assumption 4.2 is satisfied, then L2 ̸= 0 and for fixed T > 0 and a ∈ (0, 1), there exist
bT,a > 0, CT,a > 0, and ∆0 ̸= 0 such that ∆(t) := Ψ1(t) − L−1

2 L1Ψ2(t) satisfy for every
t ∈ (−∞, (a− 1) log b+ T ]:

|∆(t) − ∆0e
κ+t| ≤ CT,ab

−2(1−a)eκ+t, b ≥ bT,a, (4.66)

where (κ+, κ−) are given by (4.26). Consequently, there exists ϵ0 > 0 such that for every
ϵ ∈ (0, ϵ0) and for every λ ∈ R satisfying

|λ− λ∞| ≤ ϵbκ+(1−a), (4.67)

it is true for every b ≥ bT,a and every t ∈ [(a− 1) log b, (a− 1) log b+ T ] that

|Ψc∞−L−1
2 L1(λ−λ∞)(t) −

√
d− 3 − ∆0(λ− λ∞)eκ+t|

≤ CT,a

(
b−2(1−a) + (λ(b) − λ∞)b−(2+κ+)(1−a) + (λ(b) − λ∞)2b−2κ+(1−a)

)
,(4.68)

where bT,a and CT,a are adjusted appropriately.

Proof. The proof of Lemma 4.9 follows the same steps as the proof of Lemma 4.6 but
incorporates the different exponential behavior of the solutions Ψ1,2(t) in (4.35) as t →
−∞. By variation of parameters, the linear equations for Ψ1,2 can be rewritten in the
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integral form:

Ψ1,2(t) = A1,2e
κ+t +B1,2e

κ−t

+ 1
κ+ − κ−

∫ +∞

t

[
eκ−(t−t′) − eκ+(t−t′)

] [
f(t′)e1,2 + g(t′)Ψ1,2(t′)

]
dt′,(4.69)

where A1,2, B1,2 are some constant coefficients and e1 = 1, e2 = 0. Since κ− < κ+ < 0,
whereas f(t) and g(t)Ψ1,2(t) decays to zero fast as t → +∞, the integral kernel in (4.69)
becomes bounded in the variable Ψ̃1,2(t) := e−κ−tΨ1,2(t) on [t0,+∞) for every t0 ∈ R.
The existence of Ψ̃1,2 in L∞(t0,∞) is guaranteed by the Banach fixed-point theorem and
the solutions Ψ̃1,2 are extended globally on R. In the limit t → −∞, we obtain

L1,2 := lim
t→−∞

e−κ−tΨ1,2(t)

= B1,2 + 1
κ+ − κ−

∫ +∞

−∞
e−κ−t′ [

f(t′)e1,2 + g(t′)Ψ1,2(t′)
]
dt′.

Hence, L1,2 are bounded. Since L2 ̸= 0 due to the constraint (4.64) in Assumption 4.2,
we can define

∆(t) := Ψ1(t) − L−1
2 L1Ψ2(t),

so that lim
t→−∞

e−κ−t∆(t) = 0. By variation of parameters, the linear equation for ∆ can
be rewritten in the integral form:

∆(t) = ∆0e
κ+t + 1

κ+ − κ−

∫ t

−∞

[
eκ+(t−t′) − eκ−(t−t′)

] [
f(t′) + g(t′)∆(t′)

]
dt′, (4.70)

where ∆0 is some constant coefficient.

Remark 4.13. The integral equation (4.70) is different from the one which would follow
from the integral equation (4.69) in the variable ∆(t) so that ∆0 ̸= A1 − L−1

2 L1A2
generally. While (4.69) is useful in the limit t → +∞, (4.70) is useful in the limit
t → −∞.

The integral kernel in (4.70) becomes bounded in the variable ∆̃(t) := e−κ+t∆(t), for
which it can written in the form

∆̃(t) = ∆0 + 1
κ+ − κ−

∫ t

−∞

[
1 − e−(κ+−κ−)(t−t′)

] [
f(t′)e−κ+t′ + g(t′)∆̃(t′)

]
dt′, (4.71)

By the same fixed-point iterations as in the proof of Lemma 3.2, there exist the unique so-
lutions ∆̃ to the integral equation (4.71) in a closed subset of Banach space L∞(−∞, T+
(a− 1) log b) satisfying the bounds

sup
t∈(−∞,T +(a−1) log b)

|∆̃(t) − ∆0| ≤ CT,ab
−2(1−a), b ≥ bT,a,

due to bounds (4.42). Since ∆̃(t) = e−κ+t∆(t), we obtain the bounds (4.66).
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The linear combination in ∆ = Ψ1 − L−1
2 L1Ψ2 corresponds to the choice of

c− c∞ = −L−1
2 L1(λ− λ∞).

The second derivatives of Ψc in (λ, c) grow like O(e2κ+t) as t → −∞. Similarly to the
bound (4.52) in the proof of Lemma 4.6, one can justify the bound

sup
t∈[(a−1) log b,0]

|Ψc∞−L−1
2 L1(λ−λ∞)(t) − Ψ∞(t) − (λ− λ∞)∆(t)| ≤ C(λ− λ∞)2e−2κ+(1−a)

(4.72)
if |λ − λ∞| ≤ ϵeκ+(1−a) with sufficiently small ϵ > 0. Bound (4.68) follows from the
expansion Ψ∞(t) =

√
d− 3 + O(e2t) as t → −∞ and the bounds (4.66) and (4.72).

Finally, it is proven similarly to the proof of Lemma 4.6 that ∆0 = 0 is in contradiction
with the condition (4.63) of Assumption 4.2. Hence, ∆0 ̸= 0.

We end this section with the formal proof of Theorem 4.1 for d ≥ 13.

Proof of Theorem 4.1 for d ≥ 13.

We match again the solutions Ψb(t) and Ψc(t) as in (4.55). By comparing the bound
(4.61) of Lemma 4.8 for any fixed T ∈ R and a ∈ (0, a0) with the bound (4.68) of Lemma
4.9 at the time instance t = T + (a− 1) log b, we obtain the nonlinear equation:

∆0(λ(b) − λ∞) = A0b
κ+ + E, (4.73)

where coefficients A0 and ∆0 are the same as in (4.61) and (4.66) respectively and the
error term E satisfies

E = O(b(1−a)κ++aκ− , b(1+a)κ+ , b−(2−κ+)(1−a), (λ(b)−λ∞)b−2(1−a), (λ(b)−λ∞)2b−κ+(1−a))

as b → ∞, provided that λ(b) satisfies the bound (4.67) for some ϵ > 0. Since (1 −
a)κ+ + aκ− < κ+ < 0, it follows that b(1−a)κ++aκ− ≪ bκ+ . Similarly, we have already
checked that b−(2−κ+)(1−a) ≪ bκ+ if a < a0, where a0 is given by (4.62).

Since ∆0 ̸= 0 by Lemma 4.9, there exists the unique solution to the nonlinear equation
(4.73) by the implicit function theorem and the unique solution for λ(b) satisfies

λ(b) − λ∞ = ∆−1
0 A0b

κ+ + O(b(1−a)κ++aκ− , b(1+a)κ+ , b−(2−κ+)(1−a), b−2(1−a)+κ+). (4.74)

Since a > 0 and κ+ < 0, it follows that bκ+ ≪ bκ+(1−a) so that λ(b) in (4.74) belongs to
the bound (4.67). The expansion (4.74) justifies the expansion (4.5). □

Figure 4.5 illustrates the solutions Ψb of the second-order equation (4.8) with λ = λ(b)
for d = 13 and b = 1, 102, 104. The left panel shows that the solutions Ψb translated in t
by log b in comparison with the solution Θ of the truncated equation (4.12). The right
panel shows the solutions Ψb without translation in comparison with the limiting singular
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solution Ψ∞ satisfying (4.8) and (4.9). Convergence Ψb(· − log b) → Θ as b → ∞ on
(−∞, t0] for a fixed t0 > 0 is obvious from the left panel, whereas convergence Ψb → Ψ∞
as b → ∞ on [t0,∞) for a fixed t0 < 0 is obvious from the right panel.

Figure 4.6 shows two solutions Ψb with b = 1 and b = 102 on the phase plane (Ψ,Ψ′)
together with the solution Θ of the truncated equation (4.12) and the limiting singular
solution Ψ∞ satisfying (4.8) and (4.9). The difference of Ψb=102 (red dotted line) from
Θ and Ψ∞ is almost invisible, whereas the difference is large in the case of Ψb=1 (blue
dotted line).
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Figure 4.5: Plots of the solutions Ψb for λ = λ(b) and specific values of
b for d = 13 in comparison with Θ after translation of t by log b (left) and
with Ψ∞ (right).
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Figure 4.6: The solutions Ψb=1, Ψb=102 , Θ, and Ψ∞ on the phase plane
(Ψ,Ψ′) for d = 13.
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Chapter 5

Morse index of the ground states
in the monotone case

In this chapter, we study the Morse index of the ground states, i.e., solutions of (1.7), in
the energy-supercritical case (d − 2)p > 2, d ≥ 3. For simplicity, we assume that p = 1
(so that we work with the cubic nonlinearity), which allows us to utilize the results from
Chapters 3 and 4. Note that p = 1 implies that the energy-supercritical case occurs for
d ≥ 5, which will be assumed throughout this chapter.

For reader’s convenience, we rewrite explicitly the most important differential equa-
tions of Chapters 3 and 4 that will be utilized in this work as well. Ground states
were obtained in Chapter 3 by applying a rigorous shooting method to the initial-value
problem {

f ′′(r) + d−1
r f ′(r) − r2f(r) + λf(r) + f(r)3 = 0, r > 0,

f(0) = b, f ′(0) = 0. (5.1)

It has been shown in Theorem 3.1 that for every b > 0 there exists λ(b) ∈ (d−4, d), such
that the unique C2 classical solution f to (5.1) is a solution ub ∈ E to the boundary-value
problem (1.7), where the energy space E was defined in (1.8). The parameter b := ub(0)
is often referred to as the amplitude. Furthermore, it has been shown in [54] that there
exists a limiting singular solution u∞ ∈ E , u∞ /∈ L∞, such that ub → u∞ as b → ∞ in E ,
and that it satisfies the following divergent behaviour

u∞(r) =
√
d− 3
r

[
1 + O

(
r2
)]
, as r → 0. (5.2)

Existence of such solution for certain λ = λ∞ ∈ (d− 4, d) was proven in Theorem 3.2 by
applying shooting method to the following initial-value problem{

F ′′(r) + d−3
r F ′(r) − d−3

r2 F (r) − r2F (r) + λF (r) + 1
r2F (r)3 = 0, r > 0,

F (0) =
√
d− 3, F ′(0) = 0, (5.3)

where F (r) was introduced by F (r) = rf(r). Figure 5.1 shows the ground state ub(r)
for two values of b and the limiting singular solution u∞(r) for d = 13. The discrepancy
between the two solutions moves to smaller values of r if the value of b is increased.
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When b = 10, the difference between ub and u∞ becomes invisible on the scale used in
Figure 5.1.

ub=6

ub=1

u∞

0 1 2 3 4 5 6
r0

1

2

3

4

5
u(r)

Figure 5.1: Graph of the ground state ub for b = 1 and b = 6 in
comparison with the limiting singular solution u∞ for d = 13.

It was shown in Theorem 4.1 that λ(b) → λ∞ as b → ∞, however a more striking
feature explored in Chapter 4, is the nature of this convergence. It was shown in Theorem
4.1 that for large values of b the monotonicity of λ(b) depends on the dimension d.
Specifically, if 5 ≤ d ≤ 12 then λ(b) oscillates around λ∞ infinitely many times, whereas
for d ≥ 13 the convergence is monotone. These dependencies are visualized in Figure
4.1. Monotonicity of λ(b) is closely related to the Morse index m(ub) of the ground state
ub. It is defined as the number of negative eigenvalues of the linearized operator Lb given
by

Lb := − d2

dr2 − d− 1
r

d

dr
+ r2 − λ(b) − 3u2

b(r). (5.4)

Since E is the form domain of Lb, we can write Lb : E 7→ E∗, where E∗ is the dual of E
with respect to the scalar product in L2

r .

Assuming C1 property of ub in b and differentiating the initial-value problem (5.1)
with λ = λ(b) in b, we can see that Lb∂bub = λ′(b)ub, where ∂bub ∈ E . Hence, any value
of b for which λ′(b) = 0 corresponds to zero eigenvalue being in the spectrum of Lb in
L2

r . Although the converse is not known, this property implies that the oscillatory case
is very different from the monotone case, where the former has infinitely many crossing
of zero eigenvalue of Lb in the parameter continuation in b as b → ∞ whereas the latter
does not have any eigenvalue crossing as b → ∞, see also Figure ??. This suggests that
the Morse index should be well defined in the monotone case, independently of b for
large values of b. This is in fact the main result of this chapter, which we formulate as
the following theorem.
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Theorem 5.1. Under non-degeneracy Assumptions 5.1 and 5.2, for every d ≥ 13, there
exists b0 > 0 such that the Morse index m(ub) is finite and is independent of b for every
b ∈ (b0,∞).

Remark 5.1. Regarding the Morse index for the ground state in the energy supercrticial
case, we are only aware of the works [25, 36], where the Morse index was estimated in the
monotone case for the limiting singular solutions of the Dirichlet problem in a ball. We
believe that the conclusion of Theorem 5.1 and the technique behind its proof remain valid
for other problems in the monotone case, e.g. for the nonlinear Schrödinger equation in
a ball.

Remark 5.2. By the Lyapunov–Schmidt reduction technique (see, e.g., [53]), the solu-
tion curve satisfies λ(b) → d and ub → 0 as b → 0, where the Morse index m(ub) is equal
to one for small b > 0. If m(ub) = 1 for b > b0 in Theorem 5.1, then it is quite possible
that m(ub) = 1 for every b ∈ (0,∞). Since the ground state is energetically stable with
respect to the radial perturbation in E ∩L4

r if m(ub) = 1 and the mapping of λ 7→ ∥ub∥2
L2

r

is monotonically decreasing (see Theorem 1.2 in Chapter 1), it is rather interesting that
the transition from the oscillatory case for 5 ≤ d ≤ 12 to the monotone case d ≥ 13 may
enforce stability of the ground state.

In order to characterize the Morse index of Lb, we use the Emden–Fowler transfor-
mation [18] for the nonlinear equation in (5.3) and study two families of solutions. One
family is obtained from Fb(r) := rub(r) and is parametrized by its parameter b from the
behavior as r → 0. The other family is parametrized by another parameter c from the
decaying behavior as r → ∞. The second family is considered in a local neighborhood
of the limiting singular solution F∞(r) = ru∞(r). Both families have C1 property with
respect to their parameters and their derivatives with respect to these parameters are
solutions of the homogeneous equation Lbv = 0 after the inverse Emden–Fowler transfor-
mation, e.g., v(r) = r−1∂bFb(r). The proof of Theorem 5.1 is achieved from the Sturm’s
Oscillation Theorem (see, e.g., Theorem 3.5 in [56]) by showing that the two derivatives
have finitely many oscillations and there exists b0 > 0 such that the two derivatives are
linearly independent for every b ∈ (b0,∞).

As a by-product of our approach, we establish the equivalence of the Morse indices
m(ub) and m(u∞), where m(u∞) is defined by the number of negative eigenvalues of the
limiting operator L∞ := lim

b→∞
Lb computed at the limiting singular solution for d ≥ 5:

L∞ := − d2

dr2 − d− 1
r

d

dr
+ r2 − λ∞ − 3u2

∞(r). (5.5)

Compared to Lb : E 7→ E∗, where the potential −3u2
b(r) is bounded from below, the

potential −3u2
∞(r) is unbounded from below. Because of that, we would normally take

E∞ = {u ∈ E : r−1u ∈ L2
r} as the domain of L∞. However, by using the following

Hardy’s inequality valid for d ≥ 3:

∥| · |−1u∥L2(Rd) ≤ 2
d− 2∥∇u∥L2(Rd), u ∈ H1(Rd), (5.6)
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we can see that E∞ = E . Thus, the operator L∞ : E 7→ E∗ has the same domain and
codomain as Lb.

The following theorem gives the precise result on the Morse index of the two linear
operators.

Theorem 5.2. Under non-degeneracy Assumptions 5.1 and 5.2, for every d ≥ 13, there
exists b0 > 0 such that m(ub) = m(u∞) for b ∈ (b0,∞).

Remark 5.3. If the norm convergence of the resolvent for Lb to the resolvent for L∞
can be established as b → ∞, this would imply the result of Theorem 5.2. We do not
study the norm convergence of resolvents here as our methods are based on analysis of
differential equations.

Remark 5.4. The result of Theorem 5.2 suggests a simple way to obtain m(ub) in the
monotone case for large b from m(u∞), which can be approximated numerically with good
accuracy.

Figure 5.2 shows uniquely normalized solutions v(r) of Lbv = 0 with b = 1 and
L∞v = 0 such that v(r) → 0 as r → ∞. Both solutions diverge as r → 0 with different
divergence rates. Since there exists only one zero for each solution on (0,∞), Sturm’s
Oscillation Theorem (Theorem 3.5 in [56]) asserts that m(ub) = m(u∞) = 1.

vb=1
v∞

1 2 3 4 5 6
r

-0.4

-0.2

0.0

0.2

0.4

f (r)

Figure 5.2: Graph of the uniquely normalized solutions v(r) of Lbv = 0
with b = 1 and L∞v = 0 satisfying v(r) → 0 as r → ∞ for d = 13.

By the Vakhitov–Kolokolov stability criterion (Theorem 1.2 in Chapter 1), if m(ub) =
1 and the mapping of λ 7→ ∥ub∥2

L2
r

is monotonically decreasing, then the ground state ub

is energetically stable with respect to radial perturbations in E . Figure 5.3 shows the
dependence of the mass M(ub) = ∥ub∥2

L2
r

versus λ for λ = λ(b). The red dot depicts the
finite value of the limiting mass M(u∞) = ∥u∞∥2

L2
r
. Since the mapping is monotonically

decreasing, the Vakhitov–Kolokolov stability criterion asserts that the ground state ub
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Figure 5.3: Mass ∥ub∥2
L2

r
of the ground state ub for d = 13 as a function

of λ together with the mass ∥u∞∥2
L2

r
of the limiting singular solution u∞.

is energetically stable for d = 13. The energetic stability is equivalent to the orbital
stability if the time evolution of the Gross–Pitaevskii equation is locally well-posed in E .

The same conclusion holds for other values of d in the monotone case d ≥ 13. We
have also checked other values of b and found no points of bifurcations along the solution
family λ(b) where Lb admits zero eigenvalue in L2

r . This suggests that the monotone
dependence of λ(b) with no critical points, where λ′(b) vanishes, implies no bifurcation
points. This useful property has not been proven in the literature.

5.1 Two families of solutions
In this section, we recall and extend several preliminary estimates from Chapter 3. We
begin by introducing the Emden-Fowler transformation

r = et, F (r) = Ψ(t), F ′(r) = e−tΨ′(t), (5.7)

which transforms the differential equation

F ′′(r) + d− 3
r

F ′(r) − d− 3
r2 F (r) − r2F (r) + λF (r) + 1

r2F (r)3 = 0, r > 0 (5.8)

to the equivalent form

Ψ′′(t) + (d− 4)Ψ′(t) + (3 − d)Ψ(t) + Ψ(t)3 = −λe2tΨ(t) + e4tΨ(t), t ∈ R. (5.9)

For fixed d ≥ 5 and λ ∈ (0, d), two one-parameter families of solutions to the second-
order differential equation (5.9) have been constructed in Chapter 3, according to their
asymptotic behaviors as t → −∞ and t → +∞, respectively.
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The first family of solutions to the differential equation (5.9), denoted as {Ψb}b∈R,
corresponds to solutions of the initial-value problem (5.1) after applying the transfor-
mation Ψb(t) = etfb(et). By Lemmas 3.2 and 3.4 in Subsection 3.1, Ψb ∈ C2(R) satisfies
the asymptotic behavior

Ψb(t) = bet − (λb+ b3)(2d)−1e3t + O(e5t), as t → −∞, (5.10)

where the expansion can be differentiated in t. These solutions depend on λ as well, and
for λ = λ(b) and b > 0, Ψb(t) gives a solution to the boundary-value problem (1.7), after
the transformation ub(r) = r−1Ψb(log r). For other values of λ, Ψb(t) generally diverges
as t → +∞.

The second family of solutions to the differential equation (5.9), denoted as {Ψc}c∈R,
decays to zero as t → +∞. By Lemmas 3.3 and 3.4 in Subsection 3.1, Ψc ∈ C2(R)
satisfies the asymptotic behavior

Ψc(t) ∼ ce
λ−d+2

2 te− 1
2 e2t

, as t → +∞, (5.11)

where the sign ∼ denotes the asymptotic correspondence which can be differentiated in
t. Each Ψc(t) generally diverges as t → −∞, except when λ = λ(b) and c = c(b) for
some value of c(b) for which it coincides with Ψb(t) = etub(et):

λ = λ(b) : Ψb(t) = Ψc(b)(t), for all t ∈ R. (5.12)

Each family of solutions is differentiable with respect to parameters λ and either b or
c due to smoothness of the differential equation (5.9). Their derivatives decay to zero as
t → −∞ and t → +∞ respectively, but generally diverge at the other infinities.

Let us define linearizations of the second-order equation (5.9) at the two families of
solutions:

Mb := d2

dt2
+ (d− 4) d

dt
+ (3 − d) + 3Ψ2

b + λe2t − e4t, (5.13)

Mc := d2

dt2
+ (d− 4) d

dt
+ (3 − d) + 3Ψ2

c + λe2t − e4t. (5.14)

Then, differentiating the second-order equation (5.9) with respect to b and c at fixed λ
yields

Mb∂bΨb = 0, Mc∂cΨc = 0, (5.15)

where ∂bΨb(t) → 0 as t → −∞ and ∂cΨc(t) → 0 as t → +∞.

The first family {Ψb}b∈R is defined in a neighborhood of a heteroclinic orbit Θ connect-
ing the saddle point (0, 0) and the stable point (

√
d− 3, 0) of the truncated autonomous
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version of equation (5.9) given by

Θ′′(t) + (d− 4)Θ′(t) + (3 − d)Θ(t) + Θ(t)3 = 0. (5.16)

By Lemma 4.1 in Chapter 4, there exists a heteroclinic orbit between (0, 0) and (
√
d− 3, 0)

which is uniquely defined (module to the translation in t) by the asymptotic behavior

Θ(t) = et − (2d)−1e3t + O(e5t), as t → −∞. (5.17)

The following proposition presents the combined results of Lemmas 4.2, 4.5, and 4.8
from Chapter 4.

Proposition 5.1. Fix d ≥ 5 and λ ∈ R. For every T > 0 and a ∈ (0, 1), there exist
(T, a)-independent constants b0 > 0, C0 > 0 and (T, a)-dependent constants bT,a > 0,
CT,a > 0 such that the unique solution Ψb to the differential equation (5.9) with the
asymptotic behavior (5.10) satisfies for every b ∈ (b0,∞)

sup
t∈(−∞,0]

|Ψb(t− log b) − Θ(t)| ≤ C0b
−2e3t, (5.18)

and for every b ∈ (bT,a,∞)

sup
t∈[0,T +a log b]

|Ψb(t− log b) − Θ(t)| ≤ CT,ab
−2(1−a). (5.19)

The heteroclinic orbit of the truncated equation (5.16) connects the saddle point
(0, 0) associated with the characteristic exponents κ1 = 1 and κ2 = 3 − d and the stable
point (

√
d− 3, 0) associated with the characteristic exponentis κ+ and κ− given by

κ± = −1
2(d− 4) ± 1

2
√
d2 − 16d+ 40. (5.20)

For d ≥ 13, the characteristic exponents are real and satisfy κ− < κ+ < 0. We make
the following assumption on how the heteroclinic orbit converges to the stable point
(
√
d− 3, 0).

Assumption 5.1. Assume that there exists A0 ̸= 0 such that

Θ(t) =
√
d− 3 +A0e

κ+t + O(eκ−t, e2κ+t) as t → +∞. (5.21)

Remark 5.5. Assumption 5.1 implies that Θ(t) converges to
√
d− 3 as t → +∞ ac-

cording to the slowest decay rate given by κ+. It is not a priori clear why the constant A0
could not be zero in exceptional cases, for which Θ(t) converges to

√
d− 3 as t → +∞

according to the fastest decay rate given by κ−.

The second family {Ψc}c∈R is defined in a neighborhood of the special solution
Ψ∞(t) := etu∞(et) obtained from the limiting singular solution u∞ ∈ E . This special
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solution corresponds to the values of λ = λ∞ and c = c∞ so that

λ = λ∞ : Ψ∞(t) = Ψc∞(t), for all t ∈ R. (5.22)

The solution Ψ∞ satisfies the asymptotic behaviors

Ψ∞(t) =
√
d− 3

[
1 − λ∞

4d− 10e
2t + O(e4t)

]
, as t → −∞ (5.23)

and
Ψ∞(t) ∼ c∞e

λ∞−d+2
2 te− 1

2 e2t
, as t → +∞. (5.24)

The following proposition presents a modification of Lemmas 4.6 and 4.9 from Chapter
4.

Proposition 5.2. Fix d ≥ 13 and a ∈ (0, 1). There exist constants b0 > 0, C0 > 0, and
ϵ0 > 0, such that for every ϵ ∈ (0, ϵ0), b ∈ (b0,∞), and (λ, c) ∈ R2 satisfying

|λ− λ∞| + |c− c∞| ≤ ϵbκ−(1−a), (5.25)

it is true for every t ∈ [(a− 1) log b, 0] that

|Ψc(t) − Ψ∞(t)| ≤ C0ϵb
κ−(1−a)eκ−t. (5.26)

Remark 5.6. Note that the divergent behavior of eκ−t for large negative t in (5.26) is
cancelled by the decay of bκ−(1−a) on any fixed interval [(a − 1) log b, 0]. Thus, bound
(5.26) implies

sup
t∈[(a−1) log b,0]

|Ψc(t) − Ψ∞(t)| ≤ C0ϵ, (5.27)

for every (λ, c) ∈ R2 satisfying (5.25).

Remark 5.7. Since Ψc is smooth in λ and c and has the same decay (5.11) as t → +∞
in comparison with (5.24) for Ψ∞, it is true for every (λ, c) in a local neighborhood of
(λ∞, c∞) that

sup
t∈[0,∞)

|Ψc(t) − Ψ∞(t)| ≤ C0(|λ− λ∞| + |c− c∞|). (5.28)

Proof of Proposition 5.2. Let Σ(t) := Ψc(t)−Ψ∞(t). It follows from (5.9) that Σ satisfies
the following equation:

M∞Σ = F(Σ)(t), (5.29)

where M∞ is defined by (5.38) and

F(Σ)(t) := −(λ− λ∞)e2t(Ψ∞(t) + Σ(t)) − 3Ψ∞(t)Σ(t)2 − Σ(t)3.
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Since Ψ∞(t) →
√
d− 3 as t → −∞, as it follows from (5.23), we can pick two linearly

independent solutions r1, r2 to M∞r = 0 such that

r1(t) = O(eκ−t), r2(t) = O(eκ+t), as t → −∞, (5.30)

where κ− < κ+ < 0 are given by (5.20). Using the Liouville’s formula, we normalize the
Wronskian according to the relation:

W (r1, r2)(t) = r1(t)r′
2(t) − r′

1(t)r2(t) = e−(d−4)t. (5.31)

By the variation of parameters method, we rewrite the differential equation (5.29) as an
integral equation for every t ∈ [(a− 1) log b, 0]:

Σ(t) = Σ(0)
[
r1(t)r′

2(0) − r′
1(0)r2(t)

]
+ Σ′(0) [r1(0)r2(t) − r1(t)r2(0)]

+
∫ 0

t
e(d−4)t′ [

r1(t)r2(t′) − r1(t′)r2(t)
]
F(Σ)(t′)dt′. (5.32)

In order to use Banach fixed-point iterations, we introduce Σ̃(t) := e−κ−tΣ(t), which
satisfies Σ̃(t) = A(Σ̃)(t), where

A(Σ̃)(t) = Σ(0)e−κ−t [r1(t)r′
2(0) − r′

1(0)r2(t)
]

+ Σ′(0)e−κ−t [r1(0)r2(t) − r1(t)r2(0)]

− (λ− λ∞)
∫ 0

t
K2(t, t′)e2t′ [

e−κ−t′Ψ∞(t′) + Σ̃(t′)
]
dt′

−
∫ 0

t
K2(t, t′)

[
3eκ−t′Ψ∞(t′)Σ̃2(t′) + e2κ−t′Σ̃3(t′)

]
dt′,

(5.33)

where the kernel K2(t, t′) is defined as

K2(t, t′) := eκ−(t′−t)−(κ++κ−)t′ [
r1(t)r2(t′) − r1(t′)r2(t)

]
. (5.34)

It follows from (5.30) that K2(t, t′) ∼ 1 + e(κ+−κ−)(t−t′) as t − t′ → −∞, which means
that there exists some constant K0 > 0, such that

sup
−∞<t≤t′≤0

|K2(t, t′)| ≤ K0. (5.35)

It follows from (5.28) that there exists some constant C0 > 0 such that

|Σ(0)| + |Σ′(0)| ≤ C0 (|λ− λ∞| + |c− c∞|) .

The integral operator A(Σ̃) in (5.33) is estimated for every Σ̃ ∈ L∞((a− 1) log b, 0) as

∥A(Σ̃)∥∞ ≤ C0
[
|λ− λ∞| + |c− c∞| + |λ− λ∞|∥Σ̃∥∞

+ b−κ−(1−a)∥Σ̃∥2
∞ + b−2κ−(1−a)∥Σ̃∥3

∞

]
. (5.36)
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Similar estimate applies to ∥A(Σ̃1) − A(Σ̃2)∥∞. The estimates show that the integral
operator A(Σ̃) is closed and is a contraction in the ball Bδ ⊂ L∞((a− 1) log b, 0) of the
small radius δ := 2C0ϵb

κ−(1−a), provided that (λ, c) satisfy the bound (5.25) and ϵ > 0 is
sufficiently small. By the Banach fixed-point theorem, there exists a unique fixed point
of A(Σ̃) satisfying

∥Σ̃∥∞ ≤ 2C0ϵb
κ−(1−a), (5.37)

which proves the bound (5.26) after going back to the original variable Σ and redefining
C0.

Linearization of the second-order equation (5.9) at Ψ∞ is given by

M∞ := d2

dt2
+ (d− 4) d

dt
+ (3 − d) + 3Ψ2

∞ + λ∞e
2t − e4t. (5.38)

Differentiating the second-order equation (5.9) with respect to c at fixed λ and then
substituting c = c∞ and λ = λ∞ gives

M∞∂cΨ∞ = 0, (5.39)

where ∂cΨ∞ is a short notation for ∂cΨc|(λ,c)=(λ∞,c∞). The function ∂cΨ∞(t) decays fast
as t → +∞ according to (5.11), but generally diverges as t → −∞. Since Ψ∞(t) →√
d− 3 as t → −∞, the divergence of ∂cΨ∞(t) as t → −∞ is defined by the same two

characteristic exponents κ+ and κ− given by (5.20). We make the following assumption
on the divergence of this solution.

Assumption 5.2. Assume that there exists L∞ ̸= 0 such that

∂cΨ∞(t) = L∞e
κ−t + O(eκ+t, e(κ−+2)t) as t → −∞. (5.40)

Remark 5.8. Assumption 5.2 implies that ∂cΨ∞(t) diverges as t → −∞ with the fastest
growth rate given by κ−. Again, it is not a priori clear why the constant L∞ could not
be zero in exceptional cases, for which ∂cΨ∞(t) diverges as t → −∞ with the slowest
growth rate given by κ+.

Figure 5.4 shows Ψb(t) for two values of b and Ψ∞(t) for d = 13. After the in-
verse Emden-Fowler transformation (5.7) and the transformation u(r) = r−1F (r), these
functions correspond to ub(r) and u∞(r) shown on Figure 5.1.

Figure 5.5 shows ∂cΨc(b)(t) with b = 1 and ∂cΨ∞(t) for d = 13. These functions
are solutions of the homogeneous equaitons Mb∂cΨc(b) = 0 and M∞∂cΨ∞ = 0. After
the transformation v(r) = r−1∂cΨc(b)(log r), these functions correspond to solutions of
Lbv = 0 and L∞v = 0 that decay to zero as r → ∞ shown in Figure 5.2. Since ∂cΨc(b)(t)
and ∂cΨ∞(t) have only one zero on R, the corresponding functions v(r) have only one
zero on (0,∞), so that m(ub) = m(u∞) = 1.
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Ψ∞

Ψb=1

Ψb=6
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Ψ(t)

Figure 5.4: Graph of the solution Ψb for b = 1 and b = 6 in comparison
with the solution Ψ∞ for d = 13.

∂cΨc(b=1)

∂cΨ∞
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Ψ

Figure 5.5: Graph of ∂cΨc(b) with b = 1 and ∂cΨ∞ for d = 13.
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5.2 Derivative of the b-family of solutions
Here we describe the asymptotic behavior of ∂bΨb. The following lemma shows that after
translation by − log b, ∂bΨb converges to b−1Θ′ on the negative t-axis. Moreover, the
estimate can be extended from (−∞, 0] to [0, T + a log b] for fixed T ∈ R and a ∈ (0, 1)
and for sufficiently large b at the expense of slower convergence rate.

Lemma 5.1. Let d ≥ 13 and λ ∈ R. For every T > 0 and a ∈ (0, 1), there exist (T, a)-
independent constants b0 > 0, C0 > 0 and (T, a)-dependent constants bT,a > 0, CT,a > 0
such that ∂bΨb satisfies for every b ∈ (b0,∞)

sup
t∈(−∞,0]

|∂bΨb(t− log b)−b−1Θ′(t)|+ sup
t∈(−∞,0]

|∂bΨ′
b(t− log b)−b−1Θ′′(t)| ≤ C0b

−3 (5.41)

and for every b ∈ (bT,a,∞)

sup
t∈[0,T +a log b]

|∂bΨb(t− log b) − b−1Θ′(t)|

+ sup
t∈[0,T +a log b]

|∂bΨ′
b(t− log b) − b−1Θ′′(t)| ≤ CT,ab

−2(1−a)−1. (5.42)

Proof. We begin by introducing γ(t) := ∂bΨb(t−log b)−b−1Θ′(t), where Ψb is the unique
solution to (5.9) with the asymptotic behavior (5.10) and Θ is the unique solution to
(5.16) with the asymptotic behavior (5.17). Since ∂bΨb satisfies Mb∂bΨb = 0 and Θ′

satisfies M0Θ′ = 0, where Mb is given by (5.13) and

M0 := d2

dt2
+ (d− 4) d

dt
+ (3 − d) + 3Θ2, (5.43)

the difference term γ(t) satisfies the following equation:

M0γ = fb(b−1Θ′ + γ), (5.44)

where

fb(t) := 3(Θ(t)2 − Ψb(t− log b)2) − λb−2e2t + b−4e4t. (5.45)

Note that M0 − fb gives Mb after translation t 7→ t+ log b.

Proof of the bound (5.41). Two linearly independent solutions of M0γ = 0 are given
by Θ′(t) and another function Ξ(t), which can be found from the Wronskian relation

W (Θ′,Ξ)(t) = Θ′(t)Ξ′(t) − Θ′′(t)Ξ(t) = W0e
(4−d)t, (5.46)
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for some constant W0 ̸= 0. We take W0 = 1 in order to normalize Ξ(t) uniquely. Since
Θ′(t) → 0 as t → −∞ according to the asymptotic expansion

Θ′(t) = et + O(e3t), as t → −∞, (5.47)

we have Ξ(t) → ∞ as t → −∞ according to the asymptotic expansion

Ξ(t) = (2 − d)−1e(3−d)t + O(e(5−d)t), as t → −∞. (5.48)

In order to estimate the supremum-norm of γ(t) for t ∈ (−∞, 0], we first rewrite the
differential equation (5.44) as an integral equation

γ(t) =
∫ t

−∞
e(d−4)t′ [Θ′(t′)Ξ(t) − Θ′(t)Ξ(t′)]fb(t′)[b−1Θ′(t′) + γ(t′)]dt′, (5.49)

where the free solution c1Θ′(t) + c2Ξ(t) is set to zero from the requirement that γ(t) =
O(e3t) as t → −∞. The integral kernel in (5.49) becomes bounded if we introduce the
transformation γ̃(t) = e−tγ(t). The integral equation corresponding to γ̃ is

γ̃(t) =
∫ t

−∞
K1(t, t′)fb(t′)[b−1e−t′Θ′(t′) + γ̃(t′)]dt′, (5.50)

where

K1(t, t′) := [e−t′Θ′(t′)][e(d−3)tΞ(t)]e(d−2)(t′−t) − [e−tΘ′(t)][e(d−3)t′Ξ(t′)]. (5.51)

Since Θ′(t) = O(et) and Ξ(t) = O(e(3−d)t) as t → −∞, the integral kernel K1(t, t′) is a
bounded function for all t, t′ ∈ (−∞, 0].

By using bound (5.18) of Proposition 5.1, we obtain from (5.45) that

|fb(t)| ≤ C0b
−2e2t, t ∈ (−∞, 0], (5.52)

where the constant C0 is independent of b for sufficiently large b and may change from
one line to another line. Boundedness of K1 in the integral equation (5.50) on (−∞, 0]×
(−∞, 0] and the estimate (5.52) allow us to estimate the supremum norm of γ̃(t) on
(−∞, 0] as follows

∥γ̃∥∞ ≤ C0b
−2(b−1∥e−tΘ′∥∞ + ∥γ̃∥∞). (5.53)

Due to smallness of b−2 and boundness of b-independent ∥e−tΘ′∥∞, this estimate implies
that

sup
t∈(−∞,0]

|γ̃(t)| ≤ C0b
−3. (5.54)

Since |γ(t)| ≤ |γ̃(t)| for all t ∈ (−∞, 0], we obtain the first part of bound (5.41). Since
γ̃ ∈ C1(−∞, 0), we obtain the second part of bound (5.41) by differentiting equation
(5.50) and using (5.54).
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Proof of the bound (5.42). In order to estimate |γ(t)| for sufficiently large positive
t, we need to define solutions to M0γ = 0 from their behavior as t → +∞. Since
(
√
d− 3, 0) is a stable node of the nonlinear equation (5.16), we can pick two linearly

independent solutions γ1(t) and γ2(t) from their decaying behavior

γ1(t) = O(eκ−t), γ2(t) = O(eκ+t) as t → +∞, (5.55)

where κ− < κ+ < 0 are given by (5.20). The Liouville’s formula yields the Wronskian
relation

W (γ1, γ2)(t) = γ1(t)γ′
2(t) − γ′

1(t)γ2(t) = W0e
(4−d)t, (5.56)

for some constant W0 ̸= 0, and by normalizing γ1(t) and γ2(t) we can assume that
W0 = 1. In order to derive supremum-norm estimates for γ(t), we once again rewrite
differential equation (5.44) as an integral equation

γ(t) = γ(0)[γ1(t)γ′
2(0) − γ′

1(0)γ2(t)] + γ′(0)[γ1(0)γ2(t) − γ1(t)γ2(0)]

+
∫ t

0
e(d−4)t′ [γ1(t′)γ2(t) − γ1(t)γ2(t′)]fb(t′)[b−1Θ′(t′) + γ(t′)]dt′, (5.57)

this time for t ∈ [0, T + a log b]. From bound (5.41) we obtain existence of a constant
C0 > 0 and b0 > 0, such that

|γ(0)| + |γ′(0)| ≤ C0b
−3, for all b ≥ b0. (5.58)

Due to the decay of γ1(t) and γ2(t) as t → +∞, the kernel of the integral equation (5.57)
behaves like eκ+(t−t′) and eκ−(t−t′), and is thus bounded as t → +∞ since t′ ≤ t. By
using bound (5.19) of Proposition 5.1, we obtain from (5.45) that

sup
t∈[0,T +a log b]

|fb(t)| ≤ CT,ab
−2(1−a), (5.59)

where the b-independent constant CT,a may change from one line to another line. Using
estimates (5.55), (5.58), and (5.59), we obtain from the integral equation (5.57) the
following bound on the supremum-norm of γ(t) on [0, T + a log b]:

∥γ∥∞ ≤ CT,a

(
b−3 + b−2(1−a)−1∥Θ′∥L1 + (T + a log b)b−2(1−a)∥γ∥∞

)
. (5.60)

Due to smallness of (T + a log b)b−2(1−a) and boundedness of b-independent ∥Θ′∥L1 , this
estimate implies that

sup
t∈[0,T +a log b]

|γ(t)| ≤ CT,ab
−2(1−a)−1. (5.61)

By differentiting equation (5.57) and using (5.61), we obtain a similar bound on γ′(t),
which together with (5.61) gives us bound (5.42).
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Bound (5.42) of Lemma 5.1 and the expansion (5.21) imply the following important
representation of ∂bΨb(t) at t = T + (a− 1) log b.

Corollary 5.1. Under Assumption 5.1, there exist some constant a0 ∈ (0, 0.5) such that
for every a ∈ (0, a0) and T > 0, there exist some (T, a)-dependent constants bT,a > 0
and CT,a > 0 such that for every b ∈ (bT,a,∞) we have

|∂bΨb(T + (a− 1) log b) −A0κ+b
aκ+−1eκ+T | ≤ CT,a max

{
b−2(1−a)−1, baκ−−1, b2aκ+−1

}
.

(5.62)

Proof. Bound (5.62) follows from the expansion (5.21) at large positive t = T + a log b,
the bound (5.42) at t = T + (a− 1) log b, and the triangle inequality if

baκ+−1 ≫ b−2(1−a)−1.

This constraint is satisfied if a ∈ (0, a0), where

a0 := 2
2 + |κ+|

= 4
d−

√
d2 − 16d+ 40

= d+
√
d2 − 16d+ 40

2(2d− 5) . (5.63)

Note that a0 ∈ (0, 0.5) for every d ≥ 13.

5.3 Derivative of the c-family of solutions
Here, we describe the asymptotic behavior of ∂cΨc. Since Ψc is smooth in λ and c and
has the same decay as t → +∞ as the limiting solution Ψ∞ according to (5.11) and
(5.24), ∂cΨc converges to ∂cΨ∞ on [0,∞). To be precise, there exists a constant C0 > 0
such that for every (λ, c) in a local neighborhood of (λ∞, c∞), we have

sup
t∈[0,∞)

|∂cΨc(t)−∂cΨ∞(t)|+ sup
t∈[0,∞)

|∂cΨ′
c(t)−∂cΨ′

∞(t)| ≤ C0(|λ−λ∞|+ |c−c∞|). (5.64)

The following lemma extends the estimate on the difference |∂cΨc(t) − ∂cΨ∞(t)| from
[0,∞) to [(a − 1) log b, 0] for fixed a ∈ (0, 1) and for sufficiently large b provided that
(λ, c) are sufficiently close to (λ∞, c∞).

Lemma 5.2. Fix d ≥ 13. For fixed a ∈ (0, 1), there exist b0 > 0, C0 > 0, and ϵ0 > 0,
such that for every ϵ ∈ (0, ϵ0) and for every (λ, c) ∈ R2 satisfying

|λ− λ∞| + |c− c∞| ≤ ϵbκ−(1−a), (5.65)

it is true for every b ≥ b0 and every t ∈ [(a− 1) log b, 0] that

|∂cΨc(t) − ∂cΨ∞(t)| + |∂cΨ′
c(t) − ∂cΨ′

∞(t)| ≤ C0ϵe
κ−t. (5.66)
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Proof. Let r(t) := ∂cΨc(t) − ∂cΨ∞(t). Since ∂cΨc satisfies Mc∂cΨc = 0 and ∂cΨ∞
satisfies M∞∂cΨ∞ = 0, the difference term r satisfies the following equation:

M∞r = fc + gcr, (5.67)

where

fc(t) := 3(Ψ∞(t)2 − Ψc(t)2)∂cΨ∞(t) − (λ− λ∞)e2t∂cΨ∞(t), (5.68)
gc(t) := 3(Ψ∞(t)2 − Ψc(t)2) + (λ∞ − λ)e2t. (5.69)

Note that Mc = M∞ − gc.

As in the proof of Proposition 5.2, we pick two linearly independent solutions r1, r2
to M∞r = 0, such that

r1(t) = O(eκ−t), r2(t) = O(eκ+t), as t → −∞, (5.70)

where κ− < κ+ < 0 are given by (5.20). Using the method of variation of parameters,
we rewrite the differential equation (5.67) as an integral equation for every t ∈ [(a −
1) log b, 0]:

r(t) = r(0)[r1(t)r′
2(0) − r′

1(0)r2(t)] + r′(0)[r1(0)r2(t) − r1(t)r2(0)]

+
∫ 0

t
e(d−4)t′ [r1(t)r2(t′) − r1(t′)r2(t)][fc(t′) + gc(t′)r(t′)]dt′, (5.71)

where we have used the normalization of the Wronskian W (r1, r2)(t) = e−(d−4)t between
the two solutions r1 and r2 as in (5.31).

In order to elliminate the divergent behavior of the kernel in (5.71) as t → −∞, we
introduce the transformation r̃(t) = e−κ−tr(t), which results in the following integral
equation for r̃:

r̃(t) = r(0)e−κ−t[r1(t)r′
2(0) − r′

1(0)r2(t)] + r′(0)e−κ−t[r1(0)r2(t) − r1(t)r2(0)]

+
∫ 0

t
K2(t, t′)[e−κ−t′

fc(t′) + gc(t′)r̃(t′)]dt′, (5.72)

where the kernel K2(t, t′) is the same as in (5.34):

K2(t, t′) := eκ−(t′−t)−(κ++κ−)t′ [
r1(t)r2(t′) − r1(t′)r2(t)

]
. (5.73)

The kernel is bounded for every −∞ < t ≤ t′ ≤ 0 as in (5.35). It follows from (5.64)
that

|r(0)| + |r′(0)| ≤ C0(|λ− λ∞| + |c− c∞|) ≤ C0ϵb
κ−(1−a), (5.74)

where the (ϵ, b)-independent constant C0 can change from one line to another line. It
follows from the expansion (5.40) in Assumption 5.2 that ∂cΨ∞(t) = O(eκ−t) as t → −∞.
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Therefore, we get by using bounds (5.26) and (5.27):∫ 0

t
e−κ−t′ |fc(t′)|dt′ ≤ C0

(
ϵbκ−(1−a)

∫ 0

(a−1) log b
eκ−t′

dt′ + |λ− λ∞|
)

≤ C0ϵ. (5.75)

On the other hand, for every r̃ ∈ L∞((a− 1) log b, 0), we get by using bounds (5.26) and
(5.27): ∫ 0

(a−1) log b
|gc(t′)r̃(t′)|dt′ ≤ C0ϵ||r̃||∞. (5.76)

Putting estimates (5.70), (5.74), (5.75), and (5.76) together in the integral equation
(5.72) yields

sup
t∈[(a−1) log b,0]

|r̃(t)| ≤ C0ϵ, (5.77)

which is the first part of bound (5.66) after going back to the original variable r(t). The
second part of bound (5.66) is obtained by differentiating (5.72) in t and using bound
(5.77).

Bound (5.66) of Lemma 5.2 and the expansion (5.40) imply the following important
representation of ∂cΨc(t) at t = T + (a− 1) log b.

Corollary 5.2. Under Assumption 5.2, for every a ∈ (0, 1) and T > 0, there exist some
(T, a)-dependent constants bT,a > 0 and CT,a > 0 such that for every b ∈ (bT,a,∞) we
have

|∂cΨc(T + (a− 1) log b) − L∞e
κ−T b−κ−(1−a)| ≤ CT,a max{ϵb−κ−(1−a), b−κ+(1−a), b−(2+κ−)(1−a)}.

(5.78)

Proof. Bound (5.78) follows from the bound (5.66) at t = T+(a−1) log b for fixed T > 0,
a ∈ (0, 1), and sufficiently large b > 0 after ∂cΨ∞(t) for large negative t is expressed
from the expansion (5.40).

Remark 5.9. Lemma 5.2 can be obtained from the C1 property of Ψc in (λ, c) after
some transformations. It follows from the proof of Proposition 5.2 that

|Ψc(t) − Ψ∞(t)| = O(ϵ) t ∈ [(a− 1) log b, 0],

and the asymptotic expansion can be differentiated in ϵ. Parameter ϵ determines the size
of the distance |λ− λ∞| and |c− c∞| so that we can write c− c∞ = O(ϵb−κ−(1−a)) and
differentiate it in ϵ. By taking derivative in c and using the chain rule, this yields

|∂cΨc(t) − ∂cΨ∞(t)| = O(ϵb−κ−(1−a)) t ∈ [(a− 1) log b, 0],
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which is equivalent to the bound (5.66). Since taking derivatives in c and using the chain
rule are not obvious from the proof of Proposition 5.2, we provided the precise proof of
Lemma 5.2.

5.4 Proofs of Theorems 5.1 and 5.2
We recall that Mb = Mc(b) for λ = λ(b) since Ψb(t) = Ψc(b)(t) for every t ∈ R. Hence,
both ∂bΨ and ∂cΨc(b) are solutions of the same homogeneous equation Mbγ = 0 for
λ = λ(b). The following lemma shows that these two solutions are linearly independent
for sufficiently large values of b.

Lemma 5.3. Fix d ≥ 13. Under Assumptions 5.1 and 5.2, for every a ∈ (0, a0) with
a0 given by (5.63), there exists b0 > 0 such that for every b ∈ (b0,∞), there exists no
C ∈ R such that

C∂cΨc(b)(t) = ∂bΨb(t), for all t ∈ R. (5.79)

Proof. In order to get a contradiction, suppose that relation (5.79) holds for some con-
stant C ∈ R. The results of Corollaries 5.1 and 5.2 apply for t = T + (a − 1) log b for
fixed a ∈ (0, a0), T > 0, and sufficiently large b. Substituting bounds (5.62) and (5.78)
into (5.79) yields

CL∞e
κ−T b−κ−(1−a)

[
1 + O(ϵ, b−(κ+−κ−)(1−a), b−2(1−a))

]
= A0κ+b

aκ+−1eκ+T
[
1 + O(b−2(1−a)−aκ+ , b−a(κ+−κ−), baκ+)

]
, (5.80)

where we recall that 2(1 − a) + aκ+ > 0 if a ∈ (0, a0), where a0 is given by (5.63) in
Corollary 5.1. Since A0 ̸= 0 and L∞ ̸= 0 by Assumptions 5.1 and 5.2, we obtain from
(5.80) that

C
[
1 + O(ϵ, b−(κ+−κ−)(1−a), b−2(1−a))

]
= L−1

∞ A0κ+b
a(κ+−κ−)+κ−−1e(κ+−κ−)T

[
1 + O(b−2(1−a)−aκ+ , b−a(κ+−κ−), baκ+)

]
. (5.81)

Since the remainder terms on both sides of (5.81) are smaller than the leading-order
terms and κ+ ̸= κ−, this gives a T -dependent coefficient C, which is a contradiction
with the relation (5.79) for all t ∈ R and hence for all T > 0.

From Lemma 5.3, we can now prove Theorem 5.1 which states that the Morse index
m(ub) is finite and is independent of b for every b ∈ (b0,∞).

Proof of Theorem 5.1. For every b ∈ (0,∞), the potential −3u2
b(r) in Lb is bounded

from below on [0,∞). The Schrödinger operator −∆r + r2 : E 7→ E∗ is strictly positive
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with a purely discrete spectrum. Since Lb = −∆r + r2 − λ(b) − 3u2
b(r) is bounded from

below, the number of negative eigenvalues (the Morse index) of Lb : E 7→ E∗ is finite by
Theorem 10.7 in [31]. Thus, m(ub) < ∞. It remains to show that m(ub) is independent
of b for every b ∈ (b0,∞).

Let us recall the Emden–Fowler transformation (5.7), which relates solutions of Lbv =
0 with solutions of Mbγ = 0 by v(r) = r−1γ(log r). The spectrum of Lb : E 7→ E∗ includes
the zero eigenvalue if and only if there exists v ∈ E satisfying Lbv = 0. This is impossible
due to Lemma 5.3 according to the following arguments.

As t → −∞, there exist two linearly independent solutions to Mbγ = 0 and the
decaying solution is

∂bΨb(t) = et + O(e3t), as t → −∞.

The other solution is growing as e(3−d)t which corresponds to v(r) ∼ r2−d so that

rd−1|v(r)|2 ∼ r3−d

is not integrable near r = 0 for d ≥ 4. Hence, the corresponding v(r) is not in L2
r and if

there exists nonzero v ∈ E satisfying Lbv = 0, then there exists a constant C− ̸= 0 such
that

v(r) = C−r
−1∂bΨb(log r).

As t → +∞, there exist two linearly independent solutions to Mbγ = 0 and the decaying
solution is

∂cΨc(b)(t) ∼ e
λ(b)−d+2

2 e− 1
2 e2t

, as t → ∞.

The other solution is growing as e 1
2 e2t , which corresponds to v(r) ∼ e

1
2 r2 , clearly not in

L2
r . If there exists nonzero v ∈ E satisfying Lbv = 0, then there exists a constant C+ ̸= 0

such that
v(r) = C+r

−1∂cΨc(b)(log r).

Since C−, C+ ̸= 0, if there exists nonzero v ∈ E , then ∂bΨb and ∂cΨc(b) are linearly
dependent, which results in a contradiction with Lemma 5.3 for every b ∈ (b0,∞).
Hence 0 /∈ σ(Lb) for every b ∈ (b0,∞) so that m(ub) is independent of b for every
b ∈ (b0,∞).

By Lemma 5.2, ∂cΨc(t) converges to ∂cΨ∞ on [(a− 1) log b,∞) as (λ, c) → (λ∞, c∞).
Each zero of either ∂cΨc or ∂cΨ∞ is simple since they are solutions of the second-order
linear homogeneous equations Mc∂cΨc = 0 and M∞∂cΨ∞ = 0. Consequently, the
number of nodal domains of ∂cΨc in [(a − 1) log b,∞) coincides with that of ∂cΨ∞ in
[(a− 1) log b,∞).

The following lemma shows that ∂cΨc(b) does not have additional nodal domains in
the interval (−∞, (a− 1) log b) for sufficiently large b.
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Lemma 5.4. Fix d ≥ 13. Under Assumption 5.2, for every a ∈ (0, 1), there exists
b0 > 0 such that for every b ∈ (b0,∞), there exists C0 > 0 such that

e(d−3)t|∂cΨc(b)(t)| ≥ C0, t ∈ (−∞, (a− 1) log b). (5.82)

Proof. Recall that Mb = Mc(b) for λ = λ(b) and Mb∂bΨb = 0 with

∂bΨb(t) = et + O(e3t), as t → −∞. (5.83)

Similar to the proof of Lemma 5.1, we denote the second linearly independent solution
of Mbγ = 0 by Φ and normalize it such that

Φ(t) = (2 − d)−1e(3−d)t + O(e(5−d)t), as t → −∞. (5.84)

We are interested in the behavior of ∂cΨc(b) for t ∈ (−∞, t0), where t0 := (a − 1) log b.
It follows from (5.40) and (5.66) that for sufficiently large b, we have

∂cΨc(b)(t0) = L∞e
κ−t0

[
1 + O

(
ϵ, e(κ+−κ−)t0 , e2t0

)]
, (5.85)

∂cΨ′
c(b)(t0) = L∞κ−e

κ−t0
[
1 + O

(
ϵ, e(κ+−κ−)t0 , e2t0

)]
. (5.86)

Since ∂cΨc(b) is a linear combination of ∂bΨb and Φ by the linear superposition principle,
we can express ∂cΨc(b) as

∂cΨc(b)(t) = e(d−4)t0
[
(∂cΨc(b)(t0)Φ′(t0) − ∂cΨ′

c(b)(t0)Φ(t0))∂bΨb(t)

+
(
∂cΨ′

c(b)(t0)∂bΨb(t0) − ∂cΨc(b)(t0)∂bΨ′
b(t0)

)
Φ(t)

]
, (5.87)

where we have used the normalization W (∂bΨb,Φ) = e(4−d)t of the Wronskian between
the two solutions ∂bΨb and Φ. Since t0 → −∞ as b → ∞, we can use asymptotics
(5.83) and (5.84) as well as the boundary condtions (5.85) and (5.86) to obtain for every
t ∈ (−∞, t0):

∂cΨc(b)(t) = (d− 2)−1L∞e
κ−t0

[
(κ− + d− 3)et−t0 + (1 − κ−)e(3−d)(t−t0)

]
×
[
1 + O

(
ϵ, e(κ+−κ−)t0 , e2t0

)] [
1 + O(e2t)

]
, (5.88)

where 1 − κ− > 0 and

κ− + d− 3 = 1
2
(
d− 2 −

√
d2 − 16d+ 40

)
> 0

for every d ≥ 13. Thus, the sign of ∂cΨc(b)(t) for every t ∈ (−∞, t0) coincides with the
sign of L∞. Multiplying (5.88) by e(d−3)t yields the bound (5.82).
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Remark 5.10. It is interesting to know that ∂cΨc(b) and ∂cΨ∞ diverge as t → −∞ with
different growth rates: d−3 for the former and |κ−| for the latter, as is seen from (5.40)
and (5.88). This difference is explained by the different behavior of the t-dependent
coefficients of Mc(b) and M∞ as t → −∞ in (5.14) and (5.38).

From Lemmas 5.2 and 5.4, we can now prove Theorem 5.2 which states that m(ub) =
m(u∞) for every b ∈ (b0,∞).

Proof of Theorem 5.2. By Sturm’s Oscillation Theorem (see, e.g., Theorem 3.5 in [56]),
the Morse index m(ub) coincides with the number of zeros of the function v(r) on (0,∞)
satisfying Lbv = 0 and v(r) → 0 as r → ∞. Due to the Emden–Fowler transformation
(5.7), the number of zeros of v(r) on (0,∞) coincides with the number of zeros of
∂cΨc(b)(t) on R since Mb∂cΨc(b) = 0 and ∂cΨc(b)(t) → 0 as t → ∞.

By Lemma 5.4, all zeros of ∂cΨc(b) are located in the interval [(a − 1) log b,∞) for
fixed a ∈ (0, 1) and sufficiently large b > 0. By Lemma 5.2 and simplicity of the zeros of
∂cΨc(b) and ∂cΨ∞, the number of zeros of ∂cΨc(b) and ∂cΨ∞ in [(a−1) log b,∞) coincides
since λ(b) → λ∞ and c(b) → c∞ as b → ∞. All zeros of ∂cΨ∞ are located in the interval
[(a− 1) log b,∞) by Assumption 5.2 with the expansion (5.40) and give m(u∞) = m(ub)
for every b ∈ (b0,∞).
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Chapter 6

Asymptotic behavior of the
ground states in the
energy-critical case

In this chapter, we consider the ground states of (1.7) in the energy-critical case (d−2)p =
2, d ≥ 3. Based on the preliminary results of Chapter 3, there exists a family {ub}b>0
of ground states (i.e., solutions of (1.7)), together with corresponding values λ = λ(b).
The purpose of this chapter is to extend the shooting method utilized in Chapter 3 and
Chapter 4 to the energy-critical case and to obtain the asymptotic representation of λ(b)
as b → ∞. As far as we are aware, the shooting method has not been previously devel-
oped in the context of the energy-critical case, for which the variational approximations
are more common.

For the shooting method in the energy-critical case with d = 2 + 2
p , we introduce

the same two analytic families of solutions as in Chapters 3–5. The b-family is defined
by parameter b := u(0) and the c-family is defined by parameter c in the asymptotic
behavior

c := lim
r→∞

u(r)e
1
2 r2
r

d−λ
2 . (6.1)

Contrary to the energy-supercritical case, the c-family exists in a local neighborhood of
a spatially decaying solution to the stationary Schrödinger equation

V ′′(r) + d− 1
r

V ′(r) − r2V (r) + λV (r) = 0,

which is satisfied by V (r) = ce− 1
2 r2

U(r2;α, β), where c ∈ R is arbitrary and U(z;α, β) is
the Tricomi function (see [1]) with

α := p+ 1
2p − λ

4 , β := 1 + 1
p
. (6.2)
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Furthermore, contrary to the energy-supercritical case, the b-family exists in a local
neighborhood of the algebraic soliton

Ub(r) = b

(1 + αpb2pr2)
1
p

, αp := p2

4(1 + p) , (6.3)

where the parameter b has been introduced from the condition b = Ub(0). The alge-
braic soliton (also called the Aubin-Talenti solution [2, 58]) satisfies the nonlinear wave
equation −∆Ub = U2p+1

b for every b > 0. It has been used in many studies of the
energy-critical wave equations in bounded domains as in the pioneering work [5] and in
follow-up works [19, 14, 26, 27, 50]. In the context of the stationary Gross–Pitaevskii
equation (1.5), it was used in [52] in order to obtain the lower bound on the dependence
λ(b) from a variational method. Recently in [43], the variational methods and the elliptic
estimates were extended in order to get the upper bound on the dependence λ(b). We
will use the shooting method to justify the relevance of the algebraic soliton (6.3) for
the asymptotic behavior of λ(b) as b → ∞.

Ub(r)

ub(r)

0 2 4 6 8

0.0

0.5

1.0

1.5

2.0

r

u

Ub(r)

ub(r)

0 1 2 3 4

0

2

4

6

8

10

r

u

Figure 6.1: Ground states of the stationary equation (1.7) with p = 1
and d = 4 compared with the algebraic soliton (6.3) for b = 2 (left) and
b = 10 (right).

Figure 6.1 shows the numerically obtained profile ub versus r in comparison with the
profile Ub for b = 2 (left) and b = 10 (right). Visualization is given for p = 1 (that
corresponds to d = 4). Results for other values of p ∈ (0, 1) are similar. The two profiles
are different for b = 2 but the discrepancy gets smaller for b = 10 and becomes invisible
for larger values of b. The values of λ are uniquely defined in terms of b along the curve
λ = λ(b) which is shown in Figure 6.2 for p = 1.

The following theorem presents outcomes of the shooting method, which is the main
result of this chapter. We use the following notations:

• λ(b) ∼ λ0(b) denotes the asymptotic equivalence in the sense lim
b→∞

λ0(b)−1λ(b) = 1,
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Figure 6.2: The dependence λ = λ(b) for p = 1 and d = 4.

• λ(b) = O(bq) denotes the order of magnitude in the sense that |λ(b)| ≤ Cbq for
some C > 0 and all sufficiently large b.

Theorem 6.1. Fix p = 2
d−2 ∈ (0, 1) for d > 4 and let λ = λ(b) be the solution curve

for the ground state u = ub of the stationary Gross–Pitaevskii equation (1.7) satisfying
ub(0) = b, u′

b(r) < 0 for r > 0, and ub(r) → 0 as r → ∞. Then,

λ(b) ∼ Cp


b−2(1−p), 1

2 < p < 1,
b−1 log b, p = 1

2 ,
b−2p, 0 < p < 1

2 ,

as b → ∞, (6.4)

with

Cp =



−
Γ
(

p+1
2p

)
Γ
(
−1

p

)
Γ
(

2
p

)
(1 + p)Γ

(
p−1
2p

)
Γ
(

1
p

)
Γ
(

1
p − 1

)
Γ
(

1
p + 1

) [4(1 + p)
p2

] 1
p

, 1
2 < p < 1,

144, p = 1
2 ,

8(1 + p)2

p2(1 − 2p) , 0 < p < 1
2 .

Moreover, for every a ∈ (0, p
1+p), there exist Ba, Ca > 0 such that for every b ≥ Ba, we

have
sup

r∈[0,b−p(1−a)]
b−1 |ub(r) − Ub(r)| ≤ Cab

−2p(1−a), (6.5)

sup
r∈[b−p(1−a),1]

r
2
p

∣∣∣ub(r) − c(b)e− 1
2 r2

U(r2;α, β)
∣∣∣ ≤ Ca|c(b)|2p+1b2p(1−a) (6.6)
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and
sup

r∈[1,∞)

∣∣∣∣e 1
2 r2
r

d−λ(b)
2 ub(r) − c(b)r

d−λ(b)
2 U(r2;α, β)

∣∣∣∣ ≤ Ca|c(b)|2p+1, (6.7)

where c = c(b) ∼ Apb
−1 as b → ∞ for some Ap > 0.

Remark 6.1. The asymptotic result (6.4) coincides with Theorem 1.1 in [43] obtained
by the variational theory and elliptic estimates. It follows from Remark 1.2 in [43] that
there exists Cd such that

λ(ε) ∼ Cd


ε d = 5,
ε2| log ε| d = 6,
ε2 d ≥ 7,

(6.8)

where ε = b−p is defined from the algebraic soliton (6.3). The case d ≥ 7 corresponds to
0 < p < 1

2 as in (6.4). For d = 6, we have p = 1
2 so that ε2| log ε| ∼ b−1 log b as in (6.4).

For d = 5, we have p = 2
3 so that ε ∼ b−2/3 = b−2(1−p) as in (6.4).

Remark 6.2. It also follows from Remark 1.2 in [43] that λ(ε) ∼ C| log ε|−1 for d = 4
and λ(ε) − 1 ∼ Cε for d = 3. In our notations with ε = b−p, this would correspond to
λ(b) ∼ C(log b)−1 for p = 1 and λ(b)−1 ∼ Cb−2 for p = 2. However, we have found that
the shooting method based on the b-family and the c-family can be applied for p ∈ (0, 1)
but needs some further modifications for p ≥ 1.

Remark 6.3. Since U(r2;α, β) = O(r− 2
p ) as r → b−p(1−a), bound (6.6) shows that

ub(r) = O(b1−2a) as r → b−p(1−a). This is smaller than ub(r) = O(b) as r → 0 in the
bound (6.5). Since U(r2;α, β) = O(r− d−λ(b)

p ) as r → ∞, bound (6.7) shows that ub(r)
satisfies the asymptotic behavior (6.1) with c = c(b) = O(b−1) as b → ∞.

Figure 6.3 illustrates relevance of the asymptotic result (6.4) for the solution curve
λ = λ(b). For a given dimension d and the critical exponent p = 2

d−2 , we numerically
find λ(b) and plot it versus b in comparison with the asymptotic dependence (6.4). The
left and right panels show the plots for d = 7 when p = 2

5 and λ(b) ∼ Cpb
−4/5 and for

d = 5 when p = 2
3 and λ(b) ∼ Cpb

−2/3, where Cp is obtained from the best least square
fit. The proximity between the numerical and analytical curves becomes obvious in the
log-log plot for larger values of b.

Our strategy to prove Theorem 6.1 is as follows. Section 6.1 contains preliminary
results where the existence problem is reformulated after the Emden–Fowler transfor-
mation and the two solution families and their truncated limits are clearly identified.
Section 6.2 gives analysis of the b-family in a local neighborhood of the algebraic soliton
(6.3) which becomes the exponentially decaying soliton after the Emden–Fowler trans-
formation. Section 6.3 describes analysis of the c-family in a local neighborhood of the
confluent hypergeometric functions. Theorem 6.1 is proven in Section 6.4 where the
two families are considered in the common asymptotic region with parameters c and λ
obtained uniquely in the asymptotic limit b → ∞. Besides the asymptotic dependence
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Figure 6.3: Log-log graphs of λ(b) versus b for the ground state of the
stationary equation (1.7) for d = 7, p = 2

5 (left) and d = 5, p = 2
3 (right)

compared with the analytical dependence given in (6.4).

(6.4) which recovers independently the result (6.8) obtained in [43] with different meth-
ods, the main outcome of this work is the precise asymptotic construction of the ground
state with pointwise estimates (6.5), (6.6), and (6.7) near the Aubin-Talenti solution and
the confluent hypergeometric function.

6.1 Two families of solutions
As in Chapter 3, we reformulate the existence problem for the ground state of the
stationary Gross–Pitaevskii equation (1.7) as the following initial-value problem:{

f ′′(r) + d−1
r f ′(r) − r2f(r) + λf(r) + |f(r)|2pf(r) = 0, r > 0,

f(0) = b, f ′(0) = 0, (6.9)
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where b > 0 is the free parameter and d = 2 + 2
p is defined in terms of p > 0 in the

energy-critical case. We say that the solution of the initial-value problem (6.9) is a
ground state if f ′(r) < 0 for r > 0 and f(r) → 0 as r → ∞. Similarly to Lemmas
3.2 and 3.4 in Subsection 3.1 obtained in the particular case p = 1, the existence of a
unique classical solution to the initial-value problem (6.9) can be concluded by using the
integral equation formulation and the Lyapunov function method. We skip the proof
since it is standard and state that for every p > 0, λ ∈ R, and b > 0, there exists a
unique classical solution f ∈ C2(0,∞) to the initial-value problem (6.9) satisfying the
asymptotic behavior:

f(r) = b− p(λ+ b2p)
4(p+ 1) br2 + O(r4), as r → 0. (6.10)

The singularity of the stationary equation (6.9) at r = 0 is unfolded by introducing
the Emden-Fowler transformation:

r = et, Ψ(t) = e
t
p f(et). (6.11)

After the transformation of variables, Ψ satisfies the second-order nonautonomous equa-
tion

Ψ′′(t) − 1
p2 Ψ(t) + |Ψ(t)|2pΨ(t) = −λe2tΨ(t) + e4tΨ(t). (6.12)

We say that the b-family of solutions to equation (6.12) is defined by applying the
transformation (6.11) to the unique solution of the initial-value problem (6.9). The
corresponding b-solution, denoted as Ψb(t), satisfies the asymptotic behaviour

Ψb(t) = be
t
p

[
1 − p(λ+ b2p)

4(p+ 1) e2t + O(e4t)
]
, as t → −∞, (6.13)

which follows from (6.10). Thus, the b-family of solutions decays to zero as t → −∞.
We will show in Section 6.2 that the b-family stays close to the positive homoclinic orbit
of the truncated version of equation (6.12) given by the second-order autonomous ODE

Θ′′(t) − 1
p2 Θ(t) + |Θ(t)|2pΘ(t) = 0. (6.14)

The second-order equation (6.14) is integrable with the first-order invariant

1
2(Θ′)2 − 1

2p2 Θ2 + 1
2(p+ 1)Θ2(p+1) = E, (6.15)

where E is constant along the classical solutions of equation (6.14). The origin in the
(Θ,Θ′)-plane is a saddle point. The unique (up to translation) positive homoclinic orbit
exists at the energy level E = 0 for every p > 0. The homoclinic orbit can be found
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explicitly in the form

Θh(t+ t0) = e
t+t0

p

(1 + αpe2(t+t0))
1
p

, αp := p2

4 (1 + p) , (6.16)

where t0 ∈ R is an arbitrary parameter of translation. Since

Θh(t) =

 e
t
p [1 + O(e2t)] as t → −∞,

α
− 1

p
p e

− t
p [1 + O(e−2t)] as t → +∞,

(6.17)

it follows by comparison with (6.13) that Ψb(t) ∼ bΘh(t) as t → −∞ for which the
translation parameter t0 in (6.16) is uniquely selected as t0 = p log b. With this choice
for t0, we observe that Θh(t + p log b) after transformation (6.11) coincides with the
algebraic soliton Ub(r) given by (6.3).

Next, we introduce another analytical family of solutions to equation (6.12) that
decay to zero as t → +∞, which we call the c-family and denote as Ψc(t). We show
in Section 6.3 that the c-family stays close to the decaying solutions of the linearized
version of equation (6.12) given by the linear second-order nonautonomous ODE

Υ′′(t) − 1
p2 Υ(t) + λe2tΥ(t) − e4tΥ(t) = 0. (6.18)

By using the change of variables

z = e2t, Υ(t) = z
1

2p e− 1
2 zu(z), (6.19)

the second-order equation (6.18) becomes the confluent hypergeometric equation (also
known as the Kummer equation):

zu′′(z) + (β − z)u′(z) − αu(z) = 0, (6.20)

with parameters α and β given by (6.2). Two special solutions of the Kummer equation
(6.20) are given by the Kummer function M(z;α, β) and the Tricomi function U(z;α, β),
which are defined as follows [1]. The Kummer function is defined by the power series

M(z;α, β) =
∞∑

k=0

(α)k

(β)k

zk

k! (6.21)

= 1 + α

β

z

1! + α(α+ 1)
β(β + 1)

z2

2! + α(α+ 1)(α+ 2)
β(β + 1)(β + 2)

z3

3! + . . . ,

hence it is bounded as z → 0. The Tricomi function satisfies the asymptotic behavior

U(z;α, β) ∼ z−α
[
1 + O(z−1)

]
as z → +∞, (6.22)
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hence it is decaying as z → +∞ if α > 0. In fact, for every λ ∈ (−∞, d), we have

α = p+ 1
2p − λ

4 >
p+ 1

2p − d

4 = p+ 1
2p − 1

2 − 1
2p = 0, (6.23)

so that α > 0 is satisfied in the energy-critical case. By [1, 13.1.3], the Tricomi function
can be represented in the superposition form

U(z;α, β) = π

sin πβ

[
M(z;α, β)

Γ(1 + α− β)Γ(β) − z1−β M(z; 1 + α− β, 2 − β)
Γ(α)Γ(2 − β)

]
, (6.24)

which is true for β /∈ Z but can also be used in the limit β → Z. By using the identity
π

sin πz = Γ(1 − z)Γ(z), z /∈ Z. (6.25)

we can rewrite (6.24) for β /∈ N as

U(z;α, β) = Γ(1 − β)
Γ(1 + α− β)M(z;α, β) + z1−β Γ(β − 1)

Γ(α) M(z; 1 + α− β, 2 − β). (6.26)

By [1, 13.1.6], if β = n+ 1 ∈ N, then

U(z;α, n+ 1) = (−1)n+1

n!Γ(α− n)(M(z;α, n+ 1) log z

+
∞∑

k=0

(α)k

(n+ 1)k

zk

k! [ψ(α+ k) − ψ(1 + k) − ψ(1 + n+ k)])

+ 1
Γ(α)

n∑
k=1

(k − 1)!(1 − α+ k)n−k

(n− k)! z−k, (6.27)

where ψ(z) = Γ′(z)/Γ(z).

By means of the transformation (6.19), Tricomi function determines a suitable solu-
tion of the linear equation (6.18):

Υh(t) = e
t
p e− 1

2 e2t
U(e2t;α, β). (6.28)

This solution is considered to be the leading-order approximation of the c-family such
that Ψc(t) ∼ cΥh(t) as t → +∞ satisfies the asymptotic behavior

Ψc(t) ∼ ce− (2−λ)t
2 e− 1

2 e2t as t → +∞. (6.29)

The ground state of Theorem 6.1 is the connection of the unique solution of the initial-
value problem (6.9) satisfying (6.10) with the unique solution satisfying the decay be-
havior

f(r) ∼ cr
−(1+ 1

p
− λ

2 )
e− 1

2 r2 as r → ∞, (6.30)
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which follows from (6.11) and (6.29). The connection between (6.10) and (6.30) only
exists for some specific values of c = c(b) and λ = λ(b). Thus, the main question is to
find and to justify the analytical expressions for c(b) and λ(b) in the asymptotic limit
b → ∞.

6.2 Persistence of the b-family of solutions
The b-family of solutions Ψb of the differential equation (6.12) satisfying (6.13) is con-
sidered in a neighborhood of the homoclinic orbit Θh of the differential equation (6.14)
satisfying (6.17). Since the comparison gives Ψb(t) ∼ bΘh(t) ∼ Θh(t+p log b) as t → −∞,
we translate Ψb(t) by −p log b and introduce the perturbation term

γ(t) := Ψb(t− p log b) − Θh(t),

which satisfies
Lγ = fb(Θh + γ) −N(Θh, γ), (6.31)

where fb(t) := −λb−2pe2t + b−4pe4t,

(Lγ)(t) := γ′′(t) − 1
p2γ(t) + (2p+ 1)|Θh(t)|2pγ(t),

and

N(Θh, γ) := |Θh + γ|2p(Θh + γ) − |Θh|2pΘh − (2p+ 1)|Θh|2pγ.

Remark 6.4. Since Θh(t) is positive for all t ∈ R and Θh(t) + γ(t) is shown to be
positive in the region of t where we analyze persistence of the b-family of solutions, we
can neglect writing modulus signs in Lγ and N(Θh, γ).

The nonlinear term N(Θh, γ) is superlinear in γ if p ∈ (0, 1
2) and quadratic if p ≥ 1

2 ,
according to the following proposition.

Proposition 6.1. Fix p > 0 and a > 0. If F : [−a, a] → R is defined as

F (x) := (a+ x)2p+1 − a2p+1 − (2p+ 1)a2px,

then there exists a positive constant C > 0, such that for all x ∈ [−a, a]

|F (x)| ≤
{
C|x|2p+1, if p ∈ (0, 1

2),
C|x|2, if p ∈ [1

2 ,∞). (6.32)

Proof. Without the loss of generality, we assume that a = 1 due to the scaling transfor-
mation:

F (x) = a2p+1
[(

1 + x

a

)2p+1
− 1 − (2p+ 1) x

a

]
.
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Note that F ′′(x) = 2p(2p+ 1)(1 + x)2p−1, so that if 2p− 1 ≥ 0, then F ′′ is bounded on
[−1, 1], and the second line of (6.32) follows from Taylor’s theorem. If 2p− 1 < 0, then
F ′′ is bounded on [−1

2 ,
1
2 ] so that

|F (x)| ≤ C|x|2 ≤ C|x|2p+1, x ∈
[
−1

2 ,
1
2

]
,

for some positive constant C. For |x| ∈ [1
2 , 1], we have

(
1
2

)2p+1
≤ |x|2p+1 so that

|F (x)| =
(1

2

)2p+1
22p+1|F (x)| ≤ C|x|2p+1, |x| ∈

[1
2 , 1

]
,

for another positive constant C. The two estimates above give the second line of (6.32).

The homogeneous equation Lγ = 0 admits two linearly independent solutions. The
first one is given by Θ′

h(t) due to the translation symmetry of the autonomous equation
(6.14). The other solution denoted by Σ(t) can be obtained from the Wronskian relation

Θ′
h(t)Σ′(t) − Θ′′

h(t)Σ(t) = Σ0, t ∈ R, (6.33)

where Σ0 ̸= 0 is constant. We take Σ0 = 1 for normalizing Σ(t). Using (6.17) in (6.33),
we obtain that

Σ(t) = −p2

2

 e
− t

p [1 + O(e2t)] as t → −∞,

α
1
p
p e

t
p [1 + O(e−2t)] as t → +∞.

(6.34)

Using the two linearly independent solutions Θ′
h and Σ of the homogeneous equation

Lγ = 0, we rewrite (6.31) as an integral equation for γ:

γ(t) =
∫ t

−∞

(
Θ′

h(t′)Σ(t) − Θ′
h(t)Σ(t′)

) [
fb(t′)

(
Θh(t′) + γ(t′)

)
−N

(
Θh(t′), γ(t′)

)]
dt′,

(6.35)
where the free solution c1Θ′

h(t) + c2Σ(t) has been set to zero from the requirement that
γ(t) decays to zero as t → −∞ faster than Θ′

h(t).

The perturbation term γ can be estimated to be small in the L∞ norm on the semi-
infinite interval (−∞, T +ap log b] with fixed T > 0 and a > 0, where the right end point
diverges asymptotically to +∞ as b → ∞. The following lemma gives the persistence
result for the solution Ψb(t − p log b) to stay close to the leading-order term Θh(t) for
t ∈ (−∞, T + ap log b].

Lemma 6.1. Fix p ∈ (0, 1] and λ ∈ R. For any fixed T > 0 and a ∈ (0, p
1+p) there

exist bT,a > 0 and CT,a > 0 such that the unique solution Ψb(t) to the second-order
equation (6.12) with asymptotic behaviour (6.13) satisfies for t ∈ (−∞, T + ap log b] and
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all b ≥ bT,a:
|Ψb(t− p log b) − Θh(t)| ≤ CT,ab

−2p(1−a)e
t
p , (6.36)

where the bound can be differentiated in t.

Remark 6.5. The remainder term in the bound (6.36) is small on [ap log b, T +ap log b]
for every a ∈ (0, 2p

1+2p) for which b−2p+a(2p+1) → 0 as b → ∞. However, Θh(t) = O(b−a)
on the same interval so that the remainder term γ(t) is smaller than the leading-order
term Θh(t) for t ∈ [ap log b, T + ap log b] if a ∈ (0, p

1+p) for which b−2p+a(2p+1) ≪ b−a for
sufficiently large b.

Proof. In order to eliminate the divergence of the integral kernel in the integral equation
(6.35) as t → −∞, we introduce a change of variables: Θ̃h(t) := e

− t
p Θh(t) and γ̃(t) :=

e
− t

pγ(t). The new integral equation for γ̃ can be considered as the fixed-point equation
γ̃ = Aγ̃, where

(Aγ̃)(t) :=
∫ t

−∞
K(t, t′)

[
fb(t′)(Θ̃h(t′) + γ̃(t′)) − e2t′

N(Θ̃h(t′), γ̃(t′))
]
dt′, (6.37)

where the integral kernel is defined as

K(t, t′) := e
t′
p Θ′

h(t′)e− t
p Σ(t) − e

− t
p Θ′

h(t)e
t′
p Σ(t′), t′ ≤ t.

It follows from the asymptotic behaviours (6.17) and (6.34) for Θh and Σ that the integral
kernel is bounded for every t ∈ R by

|K(t, t′)| ≤ C
(
1 + e

− 2
p

(t−t′)
)
, t′ ≤ t,

for some positive constant C. Thus, as the integration in (6.37) is done in t′ from −∞
to t, the kernel K(t, t′) is bounded. In addition, the lower bound on Θ̃h follows from
(6.17):

Θ̃h(t) ≥ CT,ab
−2a, t ∈ (−∞, T + ap log b),

for some positive constant CT,a that depends on T and a for all large b. We shall prove
that the integral operator A is a contraction in a small closed ball in the Banach space
L∞(−∞, T + ap log b) equipped with the norm ∥ · ∥∞.

Case p ∈ (0, 1
2). Since Θ̃h(t) is bounded from below for t ∈ (−∞, T + ap log b), it

follows by Proposition 6.1 if ∥γ̃∥∞ ≪ b−2a for all large b, then

∥N(Θ̃h, γ̃)∥∞ ≤ C∥γ̃∥2p+1
∞ , (6.38)
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for some positive constant C. We use fb(t) := b−2pe2t[−λ+ b−2pe2t] and estimate

∥Aγ̃∥∞ ≤ C

[
(1 + ∥γ̃∥∞)

∫ T +ap log b

−∞
|fb(t′)|dt′ + ∥γ̃∥2p+1

∞

∫ T +ap log b

−∞
e2t′

dt′
]

≤ C
[
(1 + ∥γ̃∥∞) b−2p(1−a) + b2ap∥γ̃∥2p+1

∞

]
,

where the positive constant C can change from one line to the other line. If ∥γ̃∥∞ ≤
2Cb−2p(1−a), then

∥Aγ̃∥∞ ≤ C
[
b−2p(1−a) + 2Cb−4p(1−a) + (2C)2p+1b−2p(1−2a(p+1)+2p)

]
≤ 2Cb−2p(1−a),

where we have used 2p(1−a) < 2p(1−2a(p+1)+2p) if a ∈ (0, 2p
1+2p). Since 2a < 2p(1−a)

if a ∈ (0, p
1+p) with p

1+p <
2p

1+2p , the bound ∥γ̃∥∞ ≤ 2Cb−2p(1−a) ensures validity of the
bound ∥γ̃∥∞ ≪ b−2a for which the bound (6.38) can be used. Similar calculations show
that for two functions γ̃ and γ̃′ in the same small closed ball in L∞(−∞, T + ap log b),
we have

∥Aγ̃ −Aγ̃′∥∞ ≤ Cb−2p(1−a)∥γ̃ − γ̃′∥∞,

so that A is a contraction for sufficiently large b. By the Banach fixed-point theorem,
there exists a unique fixed point γ̃ of A such that

sup
t∈(−∞,T +ap log b)

|γ̃(t)| ≤ 2Cb−2p(1−a).

Since γ(t) = e
t
p γ̃(t), we obtain the bound (6.36) for the unique solution γ(t) to the

integral equation (6.35).

Case p ∈ [1
2 , 1]. The only difference in the proof is that, by Proposition 6.1, the

bound (6.38) is replaced by the bound

∥N(Θ̃h, γ̃)∥∞ ≤ C∥γ̃∥2
∞, (6.39)

if ∥γ̃∥∞ ≪ b−2a for all large b. In this case, we get the estimate

∥Aγ̃∥∞ ≤ C
[
(1 + ∥γ̃∥∞) b−2p(1−a) + b2ap∥γ̃∥2

∞

]
,

≤ C
[
b−2p(1−a) + 2Cb−4p(1−a) + (2C)2b−2p(2−3a)

]
≤ 2Cb−2p(1−a),

where we have used 2p(1 − a) < 2p(2 − 3a) if a ∈ (0, 1
2). Since 2a < 2p(1 − a) if

a ∈ (0, p
1+p) with p

1+p ≤ 1
2 , the bound ∥γ̃∥∞ ≤ 2Cb−2p(1−a) ensures validity of the bound

∥γ̃∥∞ ≪ b−2a for which the bound (6.39) can be used. The rest of the proof is verbatim
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to the case of p ∈ (0, 1
2).

Remark 6.6. The bound (6.36) can be extended for every p ≥ 1 if the values of a are
restricted to a ∈ (0, 1

2) as follows from the proof of Lemma 6.1 in the case of p ∈ [1
2 , 1].

The result of Lemma 6.1 allows us to justify the validity of

Ψb(t− p log b) ∼ Θh(t) ∼ α
− 1

p
p e

− t
p , t ∈ [ap log b, T + ap log b]

due to (6.17) and (6.36). In order to obtain the correction term which behaves like e
t
p

in the same asymptotic region, we need to analyze γ in more details and obtain the
leading-order part of γ. To do so, we write γ = γh + δ, where the leading-order term γh

satisfies Lγh = fbΘh and is given explicitly by

γh(t) = Σ(t)
∫ t

−∞
fb(t′)Θ′

h(t′)Θh(t′)dt′ − Θ′
h(t)

∫ t

−∞
fb(t′)Σ(t′)Θh(t′)dt′, (6.40)

whereas the correction term δ satisfies

Lδ = fb(γh + δ) −N(Θh, γh + δ). (6.41)

The following lemma gives a sharper bound on γh compared to the bound (6.36). The
sharper bound holds on [ap log b, T + ap log b], where the asymptotic behavior of Θh(t)
and Σ(t) as t → +∞ is relevant.

Lemma 6.2. Fix p ∈ (0, 1) and λ ∈ R. For any fixed T > 0 and a ∈ (0, p
1+p) there exist

bT,a > 0 and CT,a > 0 such that γh in (6.40) satisfies for t ∈ [ap log b, T + ap log b] and
all b ≥ bT,a:

• if p ∈ (0, 1
2), then

|γh(t)| ≤ CT,a

[
(|λ|b−2p(1−a) + b−4p(1−a))e− t

p + (|λ|b−2p + b−4p)e
t
p

]
, (6.42)

• if p ∈ [1
2 , 1), then

|γh(t)| ≤ CT,a

[
(|λ|b−2p(1−a) + b−4p(1−a))e− t

p + (|λ|b−2p + b−4p(1−a))e
t
p

]
, (6.43)

where the bounds can be differentiated in t.

Proof. Since Σ(t)Θh(t) is bounded for every t ∈ R independently of b, the second integral
term in (6.40) is controlled by∣∣∣∣∣

∫ T +ap log b

−∞
fb(t)Σ(t)Θh(t)dt

∣∣∣∣∣ ≤ C

∫ T +ap log b

−∞

(
|λ|b−2pe2t + b−4pe4t

)
dt

≤ CT,a(|λ|b−2p(1−a) + b−4p(1−a)).
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This estimate yields the first term in the bounds (6.42) and (6.43) due to the asymptotic
behavior (6.17). On the other hand, since Θh(t)2 = O(e− 2t

p ) as t → +∞, the first
integral term in (6.40) is controlled by∣∣∣∣∣
∫ T +ap log b

−∞
fb(t)Θ′

h(t)Θh(t)dt
∣∣∣∣∣ ≤ C

∫ T +ap log b

−∞

(
|λ|b−2pe

− 2(1−p)
p

t + b−4pe
− 2(1−2p)

p
t
)
dt

≤ CT,a(|λ|b−2p + b−4p+2aνp),

where νp = 0 for p ∈ (0, 1
2) and νp = 2p − 1 for p ∈ [1

2 , 1). This yields the second term
in the bounds (6.42) and (6.43) due to the asymptotic behavior (6.34), where we have
also used that 4p(1 − a) < 4p− 2a(2p− 1).

The sharper bounds (6.42) and (6.43) are compatible with the bound (6.36) on the
semi-infinite interval (−∞, T + ap log b], which can be rewritten in the form:

|γh(t)| ≤ CT,ab
−2p(1−a)e

t
p , t ∈ (−∞, T + ap log b]. (6.44)

The correction term δ is estimated to be smaller than γh according to the following
lemma.

Lemma 6.3. Fix p ∈ (0, 1] and λ ∈ R. For any fixed T > 0, a ∈ (0, p
1+p), there exist

bT,a > 0 and CT,a > 0 such that for t ∈ (−∞, T + ap log b] and all b ≥ bT,a:

• if p ∈ (0, 1
2), then

|Ψb(t− p log b) − Θh(t) − γh(t)| ≤ CT,ab
−2p[(2p+1)(1−a)−a]e

t
p , (6.45)

• if p ∈ [1
2 , 1], then

|Ψb(t− p log b) − Θh(t) − γh(t)| ≤ CT,ab
−2p(2−3a)e

t
p , (6.46)

where the bounds can be differentiated in t.

Remark 6.7. If a ∈ (0, 2p
1+2p) for p ∈ (0, 1

2), we have

2p(1 − a) < 2p [(2p+ 1)(1 − a) − a] ,

so that comparison (6.44) and (6.45) shows that δ is smaller than γh for sufficiently
large b. Similarly, if a ∈ (0, 1

2) for p ≥ 1
2 , we have

2p(1 − a) < 2p(2 − 3a),

so that the comparison of (6.44) and (6.46) shows that δ is smaller than γh for sufficiently
large b. In both cases, by Lemma 6.1, we also have γh being smaller than Θh if a ∈
(0, p

1+p), where p
1+p ≤ min{ 2p

1+2p ,
1
2} if p ∈ (0, 1].
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Proof. Equation (6.41) for δ can be written similarly to (6.35) as the integral equation

δ(t) =
∫ t

−∞

(
Θ′

h(t′)Σ(t) − Θ′
h(t)Σ(t′)

) [
fb(t′)

(
γh(t′) + δ(t′)

)
−N

(
Θh(t′), γh(t′) + δ(t′)

)]
dt′.

(6.47)
We proceed in a similar way to the proof of Lemma 6.1. Using the change of variables

Θ̃h(t) := e
− t

p Θh(t), γ̃h(t) := e
− t

pγh(t), δ̃(t) := e
− t

p δ(t),

we rewrite the integral equation for δ as the fixed-point equation δ̃ = Bδ̃, where

(Bδ̃)(t) :=
∫ t

−∞
K(t, t′)

[
fb(t′)(γ̃h(t′) + δ̃(t′)) − e2t′

N(Θ̃h(t′), γ̃h(t′) + δ̃(t′))
]
dt′. (6.48)

The only essential difference between A in (6.37) and B in (6.48) is the source term
which dictates the size of the closed ball in L∞(−∞, T + ap log b], where the fixed-point
iterations are closed. In (6.48), it consists of the linear term fbγ̃h and the contribution
from nonlinearity term N(Θ̃h, γ̃h). The linear term is estimated from (6.44) as∣∣∣∣∣

∫ T +ap log b

−∞
fb(t)γ̃h(t)dt

∣∣∣∣∣ ≤ C∥γ̃h∥∞

∫ T +ap log b

−∞
|fb(t)|dt ≤ Cb−4p(1−a). (6.49)

Estimates for the nonlinear term depend on the value of p. To proceed with the estimates,
we decompose

N(Θ̃h, γ̃h + δ̃) = N(Θ̃h, γ̃h) + Ñ(Θ̃h, γ̃h, δ̃),

where

Ñ(Θ̃h, γ̃h, δ̃) := N(Θ̃h, γ̃h + δ̃) −N(Θ̃h, γ̃h)
= (Θ̃h + γ̃h + δ̃)2p+1 − (Θ̃h + γ̃h)2p+1 − (2p+ 1)(Θ̃h)2pδ̃.

Case p ∈ (0, 1
2). By Proposition 6.1, we have

∥N(Θ̃h, γ̃h)∥∞ ≤ C ′∥γ̃h∥2p+1
∞ . (6.50)

Since Ñ |δ=0 = 0 and

∂Ñ

∂δ̃

∣∣∣∣
δ̃=0

= (2p+ 1)(Θ̃h + γ̃h)2p − (2p+ 1)(Θ̃h)2p,

we obtain by a minor modification of the proof of Proposition 6.1 that

∥Ñ(Θ̃h, γ̃h, δ̃)∥∞ ≤ C∥γ̃h∥2p
∞∥δ̃∥∞. (6.51)
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Putting together estimates (6.49), (6.50), and (6.51), we obtain that

∥Bδ̃∥∞ ≤ C
(
b−4p(1−a) + b−2p(1−a)∥δ̃∥∞ + b−2p[(2p+1)(1−a)−a] + b−2p[2p(1−a)−a]∥δ̃∥∞

)
.

Since 4p(1 − a) > 2p[(2p + 1)(1 − a) − a] for every p ∈ (0, 1
2), we have b−4p(1−a) ≪

b−2p[(2p+1)(1−a)−a] for sufficiently large b, hence the source term coming from the nonlin-
earity N(Θ̃h, γ̃h) is much larger than the source term coming from fbγ̃h as b → ∞. As a
result, if ∥δ̃∥∞ ≤ 2Cb−2p[2p(1−a)−a], then ∥Bδ̃∥∞ ≤ 2Cb−2p[2p(1−a)−a]. Moreover, B is a
contraction in the same small closed ball in L∞(−∞, T +ap log b) for sufficiently large b.
Hence, there exists a unique fixed point δ̃ of B satisfying ∥δ̃∥∞ ≤ 2Cb−2p[(2p+1)(1−a)−a],
which yields (6.45) for δ(t) = e

t
p δ̃(t).

Case p ∈ [1
2 , 1]. By Proposition 6.1, we have

∥N(Θ̃h, γ̃h)∥∞ ≤ C∥γ̃h∥2
∞,

and similarly,
∥Ñ(Θ̃h, γ̃h, δ̃)∥∞ ≤ C∥γ̃h∥∞∥δ̃∥∞.

Proceeding similarly to the previous computations, we obtain

∥Bδ̃∥∞ ≤ C ′
(
b−4p(1−a) + b−2p(1−a)∥δ̃∥∞ + b−2p(2−3a) + b−2p(1−2a)∥δ̃∥∞

)
.

Since 4p(1−a) > 2p(2−3a), we have b−4p(1−a) ≪ b−2p(2−3a) for sufficiently large b, hence
again the source term coming from the nonlinearity N(Θ̃h, γ̃h) is much larger than the
source term coming from fbγ̃h as b → ∞. Proceeding similarly, for sufficiently large b,
there exists a unique fixed point δ̃ of B satifying ∥δ̃∥∞ ≤ 2Cb−2p(2−3a), which yields
(6.46) for δ(t) = e

t
p δ̃(t).

Similarly to Lemma 6.2, we can find a sharper bound on δ compared to the bounds
(6.45) and (6.46). This is given by the following lemma, the proof of which follows from
the estimates obtained in Lemma 6.3.

Lemma 6.4. Fix p ∈ (0, 1) and λ ∈ R. For any fixed T > 0 and a ∈ (0, p
1+p) there exist

bT,a > 0 and CT,a > 0 such that δ in (6.47) satisfies for t ∈ [ap log b, T + ap log b] and
all b ≥ bT,a:

• if p ∈ (0, 1
2), then

|δ(t)| ≤ CT,a(|λ|b−2p + b−4p)2p+1b2ape
t
p , (6.52)

• if p ∈ [1
2 , 1), then

|γh(t)| ≤ CT,a(|λ|b−2p + b−4p(1−a))2b2ape
t
p , (6.53)
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where the bounds can be differentiated in t.

Proof. For p ∈ (0, 1
2), the first term in the bound (6.42) with e

− t
p is much smaller than

the second term with e
t
p on [ap log b, T + ap log b]. As a result, it can be neglected.

On the other hand, the second term in the bound (6.42) can be extended for the semi-
infinite interval (−∞, T + ap log b] such that the sharper bound compared to (6.36) can
be written in the form

|γh(t)| ≤ CT,a(|λ|b−2p + b−4p)e
t
p , t ∈ (−∞, T + ap log b].

The bound (6.52) follows from analysis of the integral equation (6.47) by using the
transformation to the tilde variables in the proof of Lemma 6.3 and the estimate (6.50)
on the nonlinear term N which is much larger than the source term from fb.

For p ∈ [1
2 , 1), the proof is analogous but we use

|γh(t)| ≤ CT,a(|λ|b−2p + b−4p(1−a))e
t
p , t ∈ (−∞, T + ap log b].

and the estimate (6.51) on the nonlinear term N which is still much larger than the
source term from fb.

6.3 Persistence of the c-family of solutions
The c-family of solutions Ψc of the differential equation (6.12) satisfying (6.29) is consid-
ered near the solution Υh of the linear equation (6.18) given by (6.28). The comparison
gives Ψc(t) ∼ cΥh(t) as t → +∞. The correction term η(t) := Ψc(t) − cΥh(t) satisfies

Mη = − |cΥh + η|2p (cΥh + η), (6.54)

where
(Mη) (t) := η′′(t) − 1

p2 η(t) + λe2tη(t) − e4tη(t).

The homogeneous equation Mη = 0 has two linearly independent solutions. One solution
is Υh given by (6.28). The other solution, denoted as Υg, can be obtained from the
normalized Wronskian relation

Υh(t)Υ′
g(t) − Υ′

h(t)Υg(t) = 1. (6.55)

Since it follows from (6.29) that

Υh(t) ∼ e−(1− λ
2 )te− 1

2 e2t
, as t → +∞, (6.56)

integrating the Wronskian relation (6.55) yields

Υg(t) ∼ 1
2e

−(1+ λ
2 )te

1
2 e2t

, as t → +∞. (6.57)
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With two linearly independent solutions Υh and Υg, we rewrite (6.54) as an integral
equation for η:

η(t) =
∫ ∞

t

(
Υh(t′)Υg(t) − Υh(t)Υg(t′)

)
|cΥh(t′) + η(t′)|2p(cΥh(t′) + η(t′))dt′, (6.58)

where the free solution c1Υh + c2Υg has been set to zero in order to guarantee that η(t)
decays to zero as t → +∞ faster than Υh(t).

The following lemma describes the size of η(t) for t ∈ [0,∞).

Lemma 6.5. Fix λ ∈ (−∞, 2] and p > 0. Then, there exist some constants C > 0 and
c0 > 0, such that for t ∈ [0,∞) and c ∈ (−c0, c0), we have

|Ψc(t) − cΥh(t)| ≤ C|c|2p+1e−(1− λ
2 )te− 1

2 e2t
, (6.59)

where the bound can be differentiated term by term.

Proof. In order to obtain a bounded kernel in the integral equation (6.58), we first
introduce the change of variables

Υ̃h(t) := e(1− λ
2 )te

1
2 e2tΥh(t), η̃(t) := e(1− λ

2 )te
1
2 e2t

η(t),

which applied to (6.58) results in the integral equation η̃ = Eη̃, where

(Eη̃)(t) :=
∫ ∞

t
K̂(t, t′)e−p(2−λ)t′−pe2t′ −2t′

N̂(cΥ̃h(t′), η̃(t′))dt′, (6.60)

and where the kernel K̂ and the nonlinearity N̂ are given by

K̂(t, t′) := e−(1− λ
2 )(t′−t)+2t′+ 1

2 (e2t−e2t′ )(Υh(t′)Υg(t) − Υh(t)Υg(t′)),

and
N̂(cΥ̃h, η̃) := |cΥ̃h + η̃|2p(cΥ̃h + η̃).

Using asymptotic behaviours (6.56) and (6.57), we get that there exists C > 0 such that

|K̂(t, t′)| ≤ C(1 + eϕ(t,t′)), 0 ≤ t ≤ t′. (6.61)

where ϕ(t, t′) := λ(t′ − t) − e2t′(1 − e−2(t′−t)). Since ϕ(t, t′) → −∞ as t′ → +∞ and
ϕ(t, t′) has an extremum in t′ at λ−2e2t′ = 0, which does not belong to R if λ ∈ (−∞, 0]
and is located on R− if λ ∈ (0, 2), we conclude that max

t′∈[t,∞)
eϕ(t,t′) = eϕ(t,t) = 1 for t ≥ 0.

Hence, the kernel K̂(t, t′) is bounded for every 0 ≤ t ≤ t′ < ∞. On the other hand, since
N̂(cΥh, η̃) is a C1 function for every p > 0, the nonlinear term satisfies the following
bound:

|N̂(cΥ̃h, η̃)| ≤ C|c|2p(|c| + |η̃|), as long as |η̃| ≤ C, (6.62)

where the constant C > 0 is independent of c.
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In order to use the Banach fixed-point theorem, we first estimate the size of Eη̃
for η̃ in a small closed ball in L∞(0,∞). Since e−p(2−λ)t−pe2t−2t in (6.60) is absolutely
integrable on [0,∞), we obtain by using (6.61) and (6.62) that

∥Eη̃∥∞ ≤ C|c|2p(|c| + ∥η̃∥∞),

where the constant C > 0 is independent of c. Thus, the operator E maps a closed ball
of radius 2C|c|2p+1 into itself as long as |c| is chosen sufficiently small.

Similarly, by Proposition 6.1, we get for every η̃1 and η̃2 in the same small closed ball
in L∞(0,∞) that N̂ is a Lipschitz function satisfying

∥N̂(cΥ̃h, η̃1) − N̂(cΥ̃h, η̃2)∥∞ ≤ C|c|2p∥η̃1 − η̃2∥∞, (6.63)

which yields
∥Eη̃1 − Eη̃2∥∞ ≤ C|c|2p∥η̃1 − η̃2∥∞,

so that the operator E is a contraction for sufficiently small values of |c|. By the Banach
fixed-point theorem, there exists a unique solution η̃(t) ∈ L∞(0,∞) of the integral
equation η̃ = Eη̃ satisfying ∥η̃∥∞ ≤ 2C|c|2p+1. This estimate yields (6.59) after unfolding
the transformation for η(t).

Using the result of Lemma 6.5, we can now extend the estimates for η(t) for large
negative values of t.

Lemma 6.6. Fix λ ∈ (−∞, 2], p > 0, and a ∈ (0, 1). Then, there exist b0 > 0 and
C > 0, such that for every b ≥ b0 there exists c0 > 0, such that for t ∈ [−(1 −a)p log b, 0]
and c ∈ (−c0b

−(1−a), c0b
−(1−a)), we have

|Ψc(t) − cΥh(t)| ≤ C|c|2p+1b2p(1−a)e− t
p , (6.64)

where the bound can be differentiated term by term.

Proof. We rewrite equation (6.54) as an integral equation for t ∈ [−(1 − a)p log b, 0]:

η(t) =
(
Υ′

g(0)Υh(t) − Υ′
h(0)Υg(t)

)
η(0) + (Υh(0)Υg(t) − Υg(0)Υh(t)) η′(0)

+
∫ 0

t

(
Υh(t′)Υg(t) − Υh(t)Υg(t′)

) (
cΥh(t′) + η(t′)

) ∣∣cΥh(t′) + η(t′)
∣∣2p
dt′, (6.65)

where |η(0)| + |η′(0)| ≤ C|c|2p+1 by Lemma 6.5. By using the scattering relation (6.26)
and the transformation (6.28), we obtain the following asymptotic behavior for Υh(t):

Υh(t) ∼
Γ
(

1
p

)
Γ(α) e

− t
p , as t → −∞, (6.66)
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where α > 0 by (6.23). Wronskian relation (6.55) implies the following asymptotic
behavior for Υg(t):

Υg(t) ∼ pΓ(α)
2Γ
(

1
p

)e t
p , as t → −∞. (6.67)

The divergent behaviour of Υh(t) as t → −∞ dictates the correct form of the transfor-
mation to use, which in this case is given by:

Υ̃h(t) := e
t
p Υh(t), Υ̃g(t) := e

t
p Υg(t), η̃(t) := e

t
p η(t).

Applying it to the integral equation (6.65) results in the fixed point equation η̃ = F η̃,
where

(F η̃)(t) :=
(
Υ′

g(0)Υ̃h(t) − Υ′
h(0)Υ̃g(t)

)
η(0) +

(
Υ̃h(0)Υg(t) − Υg(0)Υ̃h(t)

)
η′(0)

+
∫ 0

t
e−2t′

K̃(t, t′)N̂(cΥ̃h(t′), η̃(t′))dt′, (6.68)

where
K̃(t, t′) := e

t−t′
p
(
Υh(t′)Υg(t) − Υh(t)Υg(t′)

)
and N̂ is the same as in the proof of Lemma 6.5.

We proceed by estimating each term of F η̃ in the space L∞(−(1 −a)p log b, 0). Since
Υ̃h and Υ̃g are bounded for t ∈ (−∞, 0] and |η(0)| + |η′(0)| ≤ C|c|2p+1, we obtain∣∣∣(Υ′

g(0)Υ̃h(t) − Υ′
h(0)Υ̃g(t)

)
η(0) +

(
Υ̃h(0)Υg(t) − Υg(0)Υ̃h(t)

)
η′(0)

∣∣∣ ≤ C|c|2p+1.

Furthermore, if t ≪ −1, asymptotics (6.66) and (6.67) allow us to estimate size of the
last term in (6.68) as∣∣∣∣∫ 0

t
e−2t′

K̃(t, t′)N̂(cΥ̃h(t′), η̃(t′))dt′
∣∣∣∣ ≤ C|c|2p

∫ 0

t
e−2t′(1 + e

− 2
p

(t′−t))(|c| + |η̃(t′)|)dt′

≤ C|c|2pb2p(1−a)(|c| + ∥η̃∥∞),

where we have used the C1 property of N̂(cΥ̃h, η̃) satisfying (6.62). These two estimates
yield

∥F η̃∥∞ ≤ C|c|2pb2p(1−a) (|c| + ∥η̃∥∞) ,

for sufficiently large values of b. The divergent behaviour of b2p(1−a) for large b is con-
trolled by appropriately reducing the value of |c| satisfying |c| < c0b

−(1−a) for sufficiently
small c0 > 0. Thus, we see that the operator F maps the closed ball of the radius
2C|c|2p+1b2p(1−a) in L∞(−(1 − a)p log b, 0) into itself. Moreover, since N̂ is a Lipschitz
function satisfying (6.63), we get that if η̃1, η̃2 belong to the same ball, then

∥Fη1 − Fη2∥∞ ≤ C|c|2pb2p(1−a)∥η̃1 − η̃2∥∞,
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so that the operator F is a contraction as long as |c| < c0b
−(1−a) for sufficiently small c0 >

0. By the Banach fixed-point theorem, there exists a unique η̃ ∈ L∞(−(1 − a)p log b, 0)
satisfying

sup
t∈[−(1−a)p log b,0]

|η̃(t)| ≤ C|c|2p+1b2p(1−a),

which yields the bound (6.64) due to the transformation η(t) = e
− t

p η̃(t).

6.4 Matching the two solutions: the proof of Theorem 6.1
We are now equipped with all the necessary estimates to prove Theorem 6.1. The
ground state u = ub of the stationary Gross–Pitaevskii equation (1.7) in the Emden-
Fowler variables (6.11) exhibits decaying behaviour both as t → −∞ and as t → +∞
for every b > 0 if λ = λ(b). In other words, it appears at the intersection of the two
solution families with

Ψb(t) = Ψc(b)(t), t ∈ R (6.69)

for some λ = λ(b) and c = c(b). This allows us to use the asymptotic behaviours
(6.45) and (6.46) for Ψb(t), and the asymptotic behavior (6.64) for Ψc(t) at the times
t = T − (1 − a)p log b with varying T > 0 and sufficiently large values of b. Equaling the
asymptotic behaviors due to (6.69) yields two implicit equations for parameters λ and
c.

Bound (6.5) follows from the bound (6.36) with T = 0 after the transformation (6.11).
Bounds (6.6) and (6.7) follow from the bounds (6.59) and (6.64) in the reversed order
after the transformation (6.11). The proof of Theorem 6.1 is completed after obtaining
the asymptotic representation for λ(b) and c(b) for large b.

We fix p ∈ (0, 1), T > 0, and a ∈ (0, p
1+p). For sufficiently large b ≥ bT,a, we consider

(λ, c) in the rectangle [0, 2] × [0, c0b
−(1−a)] for which both Lemmas 6.4 and 6.6 can be

applied.

By Lemma 6.4, we have for t ∈ [ap log b, T + ap log b],

Ψb(t− p log b) = Θh(t) + γh(t) + O(F (λ, b)b2ape
t
p ), (6.70)

where
F (λ, b) :=

{
(|λ|b−2p + b−4p)2p+1, p ∈ (0, 1

2),
(|λ|b−2p + b−4p(1−a))2, p ∈ [1

2 , 1),

and the asymptotic expansion can be differentiated in t. Using (6.40), we can write
(6.70) as

Ψb(t− p log b) =Θh(t) + Σ(t)
∫ t

−∞
fb(t′)Θ′

h(t′)Θ(t′)dt′

− Θ′
h(t)

∫ t

−∞
fb(t′)Σ(t′)Θh(t′)dt′ + O(F (λ, b)b2ape

t
p ).
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Evaluating these expressions at t = T+ap log b and using the asymptotic relations (6.17)
and (6.34) for Θh(t) and Σ(t) as t → +∞, we obtain

Ψb(T − (1 − a)p log b) =α−1/p
p e

− T
p b−a[1 + O(b−2ap)]

− 1
2p

2α1/p
p e

T
p ba[1 + O(b−2ap)]

∫ T +ap log b

−∞
fb(t)Θ′

h(t)Θh(t)dt

+ 1
p
α−1/p

p e
− T

p b−a[1 + O(b−2ap)]
∫ T +ap log b

−∞
fb(t)Σ(t)Θh(t)dt

+ O(F (λ, b)b2ap+ae
T
p ),

where fb(t) = −λb−2pe2t + b−4pe4t. Since∣∣∣∣∣
∫ T +ap log b

−∞
fb(t)Σ(t)Θh(t)dt

∣∣∣∣∣ ≤ CT,ab
−2p(1−a)

is obtained in the proof of Lemma 6.2, we finally obtain the asymptotic formula:

Ψb(T − (1 − a)p log b) = α−1/p
p e

− T
p b−a[1 + O(b−2ap, b−2p(1−a))]

− 1
2p

2α1/p
p e

T
p ba

[∫ T +ap log b

−∞
fb(t)Θ′

h(t)Θh(t)dt[1 + O(b−2ap)] + O(F (λ, b)b2ap)
]
.

(6.71)

By Lemma 6.6, we have for t ∈ (−(1 − a)p log b, 0],

Ψc(t) = cΥh(t) + O(|c|2p+1b2p(1−a)e− t
p ), (6.72)

where Υh is given by (6.28) and the asymptotic expansion can be differentiated in t. Since
the expansion (6.72) is used for t → −∞, we can use either (6.26) or (6.27) for asymptotic
expansions of the Tricomi function U(e2t;α, β) in (6.28), where α = p+1

2p − λ
4 > 0 due to

(6.23) and β = 1 + 1
p . If p ̸= 1

n with n ∈ N, then the asymptotic formula for the solution
Ψc evaluated at t = T − (1 − a)p log b is obtained with the help of (6.26), (6.28), and
(6.72) in the form:

Ψc(T − (1 − a)p log b) =ce
T
p

Γ
(
−1

p

)
Γ
(

p−1
2p − λ

4

)b−(1−a)[1 + O(b−2p(1−a))]

+ ce
− T

p

Γ
(

1
p

)
Γ
(

p+1
2p − λ

4

)b1−a[1 + O(b−2p(1−a), |c|2pb2p(1−a))].

(6.73)
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If p = 1
n with n ∈ N, then the asymptotic formula for the solution Ψc evaluated at

t = T − (1 − a)p log b is obtained with the help of (6.27), (6.28), and (6.72) in the form:

Ψc(T − (1 − a)p log b) =cenT 2(−1)n+1

n!Γ
(

1−n
2 − λ

4

)b−(1−a)[(T − (1 − a)p log b)[1 + O(b−2p(1−a))] + O(1)]

+ ce−nT (n− 1)!
Γ(α) b1−a[1 + O(b−2p(1−a), |c|2pb2p(1−a))], (6.74)

where α = 1+n
2 − λ

4 > 0.

When we use the connection equation (6.69), it sets up a system of two equations for
two unknowns λ and c. These two equations can be obtained by equaling Ψb(t) and Ψc(t)
as well as their first derivatives at the time t = T − (1 − a)p log b. Alternatively, since
the asymptotic expansions are differentiable in t term by term, we can set up the system
by equaling coefficients in front of the exponential functions e

T
p and e

− T
p . Equaling the

coefficients for the e− T
p terms in (6.71) with either (6.73) or (6.74) yields the following

equation:

α−1/p
p b−a[1 + O(b−2ap, b−2p(1−a))] = c

Γ
(

1
p

)
Γ(α) b

1−a[1 + O(b−2p(1−a), |c|2pb2p(1−a))]. (6.75)

The nonlinear equation (6.75) is defined for (λ, c) ∈ [0, 2] × [0, c0b
−(1−a)] and the re-

mainder terms are C1 functions with respect to (λ, c). Since the leading-order part of
the nonlinear equation (6.75) is linear in c and suggests the solution c = O(b−1), which
clearly exists inside |c| ≤ c0b

−(1−a), we have by an application of the implicit function
theorem the existence of a C1 function c = c(λ, b) for λ ∈ [0, 2] and sufficiently large
b ≥ bT,a, which is given asymptotically as

c(λ, b) = α−1/p
p

Γ(α)
Γ
(

1
p

)b−1[1 + O(b−2ap, b−2p(1−a))]. (6.76)

Equaling the coefficients for the e
T
p terms in (6.71) with either (6.73) or (6.74) and sub-

stituting the expression (6.76) for c yields a nonlinear equation for λ, which we can also
solve with an application of the implicit function theorem. However, details of compu-
tations depend on the value of p ∈ (0, 1) and hence are reported separately for different
values of p.

Case p ∈ (0, 1
2). If p ̸= 1

n for every n ∈ N, we use (6.71) and (6.73) in (6.69), equal
the coefficients for the e

T
p terms, and substitute the expression (6.76) for c = c(λ, b).
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This yields the nonlinear equation for λ:

1
2p

2α1/p
p ba[λb−2p

∫ T +ap log b

−∞
e2tΘ′

h(t)Θh(t)dt[1 + O(b−2ap)]

− b−4p
∫ T +ap log b

−∞
e4tΘ′

h(t)Θh(t)dt[1 + O(b−2ap)] + O((|λ|b−2p + b−4p)2p+1b2ap)
]

= α−1/p
p

Γ
(

p+1
2p − λ

4

)
Γ
(
−1

p

)
Γ
(

p−1
2p − λ

4

)
Γ
(

1
p

) b−2+a[1 + O(b−2p(1−a))]. (6.77)

If p ∈ (0, 1
2), both integrals in the left-hand-side of (6.77) converge due to the asymptotic

expansion (6.17) so that they can be expanded as∫ T +ap log b

−∞
e2tΘ′

h(t)Θh(t)dt = −
∫ +∞

−∞
e2tΘh(t)2dt+ O(b−2a(1−p)),∫ T +ap log b

−∞
e4tΘ′

h(t)Θh(t)dt = −2
∫ +∞

−∞
e4tΘh(t)2dt+ O(b−2a(1−2p)),

which implies that the nonlinear equation (6.77) for λ can be rewritten in the equivalent
form:

λ

∫ +∞

−∞
e2tΘh(t)2dt[1 + O(b−2ap, b−2a(1−p))]

− 2b−2p
∫ +∞

−∞
e4tΘh(t)2dt[1 + O(b−2ap, b−2a(1−2p))] + O((|λ|b−2p + b−4p)2p+1b2p(1+a))

= −2p−2α−2/p
p

Γ
(

p+1
2p − λ

4

)
Γ
(
−1

p

)
Γ
(

p−1
2p − λ

4

)
Γ
(

1
p

) b−2(1−p)[1 + O(b−2p(1−a))]. (6.78)

If p ̸= 1
n for every n ∈ N, then p−1

2p ,−
1
p ̸= −m for every m ∈ N so that the arguments

of the Gamma functions at λ = 0 are away from their pole singularities. Hence, all
terms of the nonlinear equation (6.78) are C1 functions of λ at λ = 0. For p ∈ (0, 1

2),
b−2(1−p) ≪ b−2p for sufficiently large b. Since the leading-order part of the nonlinear
equation (6.78) is linear in λ and suggests the solution λ = O(b−2p), we have by an
application of the implicit function theorem the existence of a C1 function λ = λ(b) for
sufficiently large b which is given asymptotically by

λ(b) = 2
∫+∞

−∞ e4tΘh(t)2dt∫+∞
−∞ e2tΘh(t)2dt

b−2p + O(b−2(1−p), b−2p(1+a), b−2(p+a(1−2p)), b−2p(4p+1−a)).

(6.79)
The integrals in (6.79) can be computed by using the explicit expression for Θh given
by (6.16) with t0 = 0. Using the substitution s = (1 + αpe

2t)−1 we express the integrals
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in terms of the Beta function

B(z1, z2) :=
∫ 1

0
sz1−1(1 − s)z2−1ds = Γ(z1)Γ(z2)

Γ(z1 + z2) , z1, z2 > 0

and obtain

∫ +∞

−∞
e2tΘh(t)2dt = 1

2α1+1/p
p

∫ 1

0
s

1
p

−2(1 − s)
1
pds =

Γ
(

1
p − 1

)
Γ
(

1
p + 1

)
2α1+1/p

p Γ
(

2
p

) ,

∫ +∞

−∞
e4tΘh(t)2dt = 1

2α2+1/p
p

∫ 1

0
s

1
p

−3(1 − s)
1
p

+1
ds =

Γ
(

1
p − 2

)
Γ
(

1
p + 2

)
2α2+1/p

p Γ
(

2
p

) .

Substituting these expressions into (6.79) yields the final formula for p ∈ (0, 1
2) and

p ̸= 1
n for every n ∈ N:

λ(b) = 2(1 + p)
αp(1 − 2p)b

−2p + O(b−2(1−p), b−2p(1+a), b−2(p+a(1−2p)), b−2p(4p+1−a)), (6.80)

where we have used the property Γ(z + 1) = zΓ(z).

If p = 1
n for some n ∈ N\{1, 2}, we use (6.71) and (6.74) in (6.69), equal the coeffi-

cients for the e
T
p terms, and substitute the expression (6.76) for c = c(λ, b). This yields

the nonlinear equation for λ:

1
2p

2α1/p
p ba[λb−2p

∫ T +ap log b

−∞
e2tΘ′

h(t)Θh(t)dt[1 + O(b−2ap)]

− b−4p
∫ T +ap log b

−∞
e4tΘ′

h(t)Θh(t)dt[1 + O(b−2ap)] + O((|λ|b−2p + b−4p)2p+1b2ap)
]

=
2(−1)n+1Γ

(
1+n

2 − λ
4

)
αn

pn!(n− 1)!Γ
(

1−n
2 − λ

4

)b−2+a[(T − (1 − a)p log b)[1 + O(b−2p(1−a))] + O(1)].

(6.81)

After dividing it by ba−2p, this equation can be rewritten in the form (6.78), where the
right-hand side has the order of

log b b−2(1−p)

Γ(1−n
2 − λ

4 )
,

which is much smaller than the leading-order term of the order of O(b−2p) for p ∈ (0, 1
2).

For even n, the final formula (6.79) for λ(b) is modified as follows:

λ(b) = 2(1 + p)
αp(1 − 2p)b

−2p + O(log bb−2(1−p), b−2p(1+a), b−2(p+a(1−2p)), b−2p(4p+1−a)).
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For odd n, we also have Γ(1−n
2 ) = ∞. Since

Γ(z) = (−1)n

n!(z + n) + O(1) as z → −n

and λ(b) = O(b−2p), we have

1
Γ(1−n

2 − λ
4 )

= O(λ) = O(b−2p),

which modifies the final formula (6.79) for λ(b) according to

λ(b) = 2(1 + p)
αp(1 − 2p)b

−2p + O(log bb−2, b−2p(1+a), b−2(p+a(1−2p)), b−2p(4p+1−a)).

In both formulas for λ = λ(b), we have p = 1
n with either even or odd n ∈ N\{1, 2}. In

all cases, λ(b) > 0 for suffiently large values of b.

Case p ∈ (1
2 , 1). Since p ̸= 1

n for every n ∈ N if p ∈ (1
2 , 1), the nonlinear equation

(6.77) can be used. However, the integral
∫ T +ap log b

−∞ e4tΘh(t)2dt diverges exponentially
in the upper limit since Θh(t)2 = O(e− 2t

p ) as t → +∞. Consequently, there is a positive
constant CT,a such that for all b ≥ bT,a, we have∣∣∣∣∣

∫ T +ap log b

−∞
e4tΘ′

h(t)Θh(t)dt
∣∣∣∣∣ ≤ CT,ab

2a(2p−1).

The nonlinear equation (6.77) can be rewritten in the equivalent form:

λ

∫ +∞

−∞
e2tΘh(t)2dt[1 + O(b−2ap, b−2a(1−p))]

+ b−2p
∫ T +ap log b

−∞
e4tΘ′

h(t)Θh(t)dt[1 + O(b−2ap)] + O((|λ|b−2p + b−4p(1−a))2b2p(1+a))

= −2p−2α−2/p
p

Γ
(

p+1
2p − λ

4

)
Γ
(
−1

p

)
Γ
(

p−1
2p − λ

4

)
Γ
(

1
p

) b−2(1−p)[1 + O(b−2p(1−a))], (6.82)

where the second term on the left-hand side is of the order of b−2p+2a(2p−1) → 0 as b → ∞
since −2p+ 2a(2p− 1) < 0 for a < p

2p−1 , which is satisfied automatically, since p
2p−1 > 1

for p ∈ (1
2 , 1). Moreover, since b−2p+2a(2p−1) ≪ b−2(1−p) for p ∈

(
1
2 , 1
)

and a ∈ (0, 1),
the right-hand side dominates in the nonlinear equation (6.82). Solving the nonlinear
equation (6.82) by an application of the implicit function theorem, we have the existence
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of a C1 function λ = λ(b) for sufficiently large b which is given asymptotically by

λ(b) = −
4α1−1/p

p Γ
(

p+1
2p

)
Γ
(
−1

p

)
Γ
(

2
p

)
p2Γ

(
p−1
2p

)
Γ
(

1
p

)
Γ
(

1
p − 1

)
Γ
(

1
p + 1

)b−2(1−p)

+ O(b−2p+2a(2p−1), b−2(1−p)−2ap, b−2(1+a)(1−p), b−2(1−pa), b−2p(3−5a)). (6.83)

Since −1
p ∈ (−2,−1) and p−1

2p ∈ (−1
2 , 0) if p ∈ (1

2 , 1), we have Γ
(
−1

p

)
> 0 and

Γ
(

p−1
2p

)
< 0. Hence, λ(b) > 0 for sufficiently large values of b.

Case p = 1
2 . This case corresponds to n = 2 in the nonlinear equation (6.81), which

we can rewrite in the equivalent form:

λ

∫ +∞

−∞
e2tΘh(t)2dt[1 + O(b−a)]

+ b−1
∫ T +ap log b

−∞
e4tΘ′

h(t)Θh(t)dt[1 + O(b−a)] + O((|λ|b−1 + b−2 log b)2ba)

=
8Γ
(

3
2 − λ

4

)
α4

pΓ
(
−1

2 − λ
4

)b−1[(T − (1 − a)p log b)[1 + O(b−(1−a))] + O(1)], (6.84)

where αp= 1
2

= 1
4! . The second integral

∫ T +ap log b
−∞ e4tΘ′

h(t)Θh(t)dt diverges linearly in the
upper limit since Θh(t)2 = O(e−4t) as t → +∞. The exact computations with the help
of the explicit formula (6.16) yield the following asymptotic expression:
∫ T +ap log b

−∞
e4tΘ′

h(t)Θh(t)dt = 1
2e

4tΘh(t)2
∣∣∣∣t=T +ap log b

t→−∞
− 2

∫ T +ap log b

−∞
e4tΘh(t)2dt

= 1
2α4

p

− 1
α4

p

[
2(T + ap log b) + log(αp) − 11

6 + O(b−2ap)
]

= − 2
α4

p

(T + ap log b) + 7
3α4

p

− log(αp)
α4

p

+ O(b−2ap).

On the other hand, we use (6.25) and obtain

8Γ
(

3
2

)
Γ
(
−1

2

) = − 8
π

Γ2
(3

2

)
= −2,

104

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


Ph.D. Thesis – Szymon Sobieszek McMaster University– Mathematics

so that the leading-order terms of the nonlinear equation (6.84) can be collected together
as

λ

∫ +∞

−∞
e2tΘh(t)2dt[1 + O(b−a)] + O(b−1, log b b−1−a) + O((|λ|b−1 + b−2 log b)2ba)

= 1
α4

p

log b b−1[1 + O(λ)][1 + O(b−(1−a))] + O(b−1).

By using the implicit function theorem, we have the existence of a C1 function λ = λ(b)
for sufficiently large b which is given asymptotically by

λ(b) = 144 log b b−1 + O(b−1, log b b−1−a, (log b)2 b−2), (6.85)

where we have used p = 1
2 , αp= 1

2
= 1

4! , and

∫ +∞

−∞
e2tΘh(t)2dt = 1

6α3
p

.

Hence, λ(b) > 0 for sufficiently large values of b.

Theorem 6.1 is proven. For details in Remark 6.2, we give the following computations.

Case p = 1. This case corresponds to n = 1 in the nonlinear equation (6.81), which
we can rewrite in the equivalent form:

λ

∫ T +a log b

−∞
e2tΘ′

h(t)Θh(t)dt[1 + O(b−2a)]

− b−2
∫ T +a log b

−∞
e4tΘ′

h(t)Θh(t)dt[1 + O(b−2a)] + O((|λ|b−2 log b+ b−4(1−a))2b2a)

=
4Γ
(
1 − λ

4

)
α2

pΓ
(
−λ

4

) [(T − (1 − a) log b)[1 + O(b−2(1−a))] + O(1)],

where αp=1 = 1
8 . Since

Γ(z) = 1
z

+ O(1) as z → 0

and ∫ T +a log b

−∞
e2tΘ′

h(t)Θh(t)dt = − 1
α2

p

(T + a log b− 1) − 1
2α2

p

log(αp) + O(b−2a),

the leading-order terms contain only λ log b, which are not balanced by the terms of the
order of O(1) to get the asymptotic balance λ = O((log b)−1) according to Remark 6.2.
This failure of the shooting method is due to only one exponential term that appears in
(6.74) for n = 1 and λ = 0. The way to handle the asymptotic balance is to obtain the
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second exponential terms from the higher-order (nonlinear) terms of the expansion for
Ψc(t) beyond the leading order. However, this adds complexity to the shooting method
beyond the scopes of this work.
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