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Abstract
The augmented phase portrait, introduced in [10], is used to analyze second order rational

discrete maps of the form

xn+1 =
α+ βxn + γxn−1

A+Bxn + Cxn−1
, for n ∈ N0 = {0, 1, 2, . . . , }

with parameters α, β, γ, A, B, C ≥ 0, and initial conditions, x0, x−1 > 0.

First we study the special case,

xn+1 =
α+ γxn−1

A+Bxn
,

with α, γ, B > 0 and A ≥ 0. Applying the change of variables, yn = xn−1, this equation can
be rewritten as a planar system. We provide a new proof to show that oscillatory solutions have
semicycles of length one, except possibly the first cycle, and that nonoscillatory solutions must
converge monotonically to the equilibrium. This was originally done in [3] and [8].

We also show that when the unique positive equilibrium is a saddle point, there exist non-
trivial positive solutions that increase and decrease monotonically to the equilibrium, proving
Conjecture 5.4.6 from [8]. In particular, Theorem 1.2 from [8] defines the tangent vector to the
stable manifold at the equilibrium. We show that specific regions defined by the augmented
phase portrait have solutions that increase and decrease monotonically to the equilibrium along
the stable manifold. While Conjecture 5.4.6 from [8] was previously proven in [5] and [12], our
proof provides a more intuitive and elementary solution.

We then consider the case,

xn+1 =
α+ β(xn + xn−1)

A+B(xn + xn−1)
,

with α, β,A,B > 0. Again, using yn = xn−1, this system can be written as a planar system.
Thus, applying the augmented phase plane from [10], we prove global asymptotic stability of the
positive equilibrium for some cases. In other cases, we show this using other theorems from [8]
as was previously done in [1].
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Chapter 1

Introduction

Over the past twenty years there has been a massive increase in interest in studying rational
difference equations. Creating a general framework to understand solutions of difference equa-
tions has become a popular topic, with two methods created in [10] and [1]. Rational difference
equations have a variety of applications and thus the development of methods to understand
their solutions is important. The second order rational difference equation,

xn+1 =
α+ βxn + γxn−1

A+Bxn + Cxn−1
, for n ∈ N0 (1.1)

with parameters α, β, γ, A, B C ≥ 0 and initial conditions x0 > 0, x−1 > 0, was presented in the
monograph by Kulenovic and Ladas [8], where the authors provide a collection of known results
and open problems. Various cases of (1.1) have been studied in numerous papers including [1],
[3], [5], [6], [7], [8], and [12]. The results from [3] were published prior to [8] and used classical

techniques such as linearization, to analyze the case, xn+1 = α+βxn−1

γ+xn
, with α, β, γ ≥ 0.

Gibbons, Kulenovic, and Ladas in [3] proved that solutions oscillating about the equilibrium,
oscillate with semicycle of length one except for possibly the first semicycle. Additionally, for
multiple sub-cases, they proved that if solutions do not oscillate about the equilibrium, then
they converge monotonically to the equilibrium. However, they did not prove the existence of
non-trivial solutions that converge monotonically to the equilibrium. Kulenovic and Ladas con-
jectured in their monograph [8] that xn+1 = 1+xn−1

xn
has solutions which converge monotonically

to the equilibrium; this conjecture was later proved in [5] and [12].

The proof from [12] showed the existence of solutions that converge monotonically to the
equilibrium by using techniques that were topological in nature. Thus, the proof was creative
and complex, using nontraditional methods for difference equations. In contrast, the proof
from [5] used more conventional methods to obtain a similar conclusion. They invoked the
Stable Manifold Theorem, showing that for some second order difference equations, including
xn+1 = 1+xn−1

xn
, there exist solutions that converge monotonically to the equilibrium.

In this thesis, we analyze xn+1 = α+βxn−1

A+γxn
, with α, β, A ≥ 0 and γ > 0. We prove the

existence of solutions that converge monotonically to the equilibrium, that all oscillatory solutions
have semicycle of length one, and that all non-oscillatory solutions converge monotonically to
the equilibrium. This generalizes the results from [3], which were also generalized in [8], and
provides a new proof for the conjecture in [8] (proven in [5] and [12].) Due to the unconventional
use of topological concepts in the proof by [12], our proof is vastly different. On the other hand,
like the proof by [5], we relied on the Stable Manifold Theorem to show that such a solution
converges to the equilibrium. Our methods to show monotonicity of such solutions, and to show
that oscillatory solutions have semicycles of length one, are entirely different due to our use of
the augmented phase portrait, which was introduced in [11] and refined in [10].

The goal of Streipert, Wolkowicz, and Bohner in [11] was to derive a discrete difference
equation predator-prey model from first principles that satisfies biologically relevant conditions.
The model they derived is

xn+1 =
(1 + r)xn

1 + r
Kxn + αyn

and yn+1 =
(1 + γxn)yn

1 + d
,

1
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with initial conditions x0 ≥ 0 and y0 ≥ 0 and parameters r, K, α, γ, d > 0 and xn denotes the
number of prey and yn the number of predator ant the nth time step. They defined root-curves
associated with the prey-nullcline (x-nullcline) to help understand the dynamics of the solutions
and the stability of the three possible equilibrium solutions that arise from this system.

An augmented phase plane approach for discrete planar maps: Introducing next-iterate opera-
tors, by Streipert and Wolkowicz [10] was the most influential paper for this thesis. The authors
fully developed the augmented phase portrait for planar difference equations to overcome several
issues faced when using standard phase portraits to analyze difference equations. Unlike for
planar systems of ordinary differential equations (ODEs), orbits of planar difference equations
can jump across nullclines and in and out of regions that would be positively invariant if the
same standard phase portrait configuration was for a system of planar ODEs. These issues are
solved by using the augmented phase portrait.

Standard phase portraits usually include only the nullclines and the direction field. However,
for the augmented phase portrait, Streipert and Wolkowicz defined next-iterate operators and
root-curves in [10]. By augmenting the standard phase portrait with root-curves that separate
regions where the next-iterate operator has a constant sign, it is possible to determine on which
side of the nullclines the next iterate lies.

In [1], Atawna, Abu-Saris, Ismail, and Hashim also aimed to develop a framework that is
useful for showing global properties of solutions of (1.1). Much like for planar ODEs, the authors
determined invariant regions in the xn, xn−1 plane. After showing that eventually all solutions of
(1.1) enter the invariant region containing the positive equilibrium, they proved global stability
of the positive equilibrium of (1.1) by using previously developed theorems from [8]. However,
unlike the invariant regions determined by nullclines for ODEs, the invariant regions used in [1]
did not depend on nullclines. While the framework created in [1] is intuitive, augmented phase
portraits are more like phase portraits for ODEs and thus more accessible.

In this thesis, we aim to continue showcasing the powerful method of the augmented phase
portrait. We focus on the analysis of second order difference equations, contributing to the
development of a framework for studying planar difference equations. This may prove to useful
in future applications of second-order rational difference equations.

2
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Chapter 2

Essentials of Difference Equations

In this thesis we explain and apply a newly-developed technique in order to analyze the
behaviour of solutions to certain classes of second order difference equations. The difference
equations that we consider are of the form,

xn+1 = F (xn, xn−1). (2.1)

Equivalently, we can make the change of variables, yn = xn−1, which gives us that yn+1 = xn.
As such, we rewrite a second order difference equation (2.1) as a system of planar difference
equations,

xn+1 = F (xn, yn),

yn+1 = xn =: G(xn, yn).
(2.2)

Using this change of variables, we turn the general second-order time-delayed difference equation
(2.1) into a planar system of equations. Hence, we can apply the methods developed in [10] to
analyze the behaviour of solutions. However, we must first discuss classical background knowledge
about difference equations from [8] as well as the definitions from [10] before we can apply the
novel methods developed in [10].

2.1 Basic Definitions

In this section we provide some important definitions. Henceforth, we write N = {1, 2, 3, . . . }
and N0 = {0, 1, 2, . . . }. To begin, we define a solution of a difference equation.

Definition 2.1.1 (Adapted from [8]). [Solution] Given (x0, x−1) ∈ R×R, a solution (or orbit)
of (2.1) is the sequence {xn} that satisfies xn+1 = F (xn, xn−1) for every n ∈ N0.

Since (2.1) and (2.2) are equivalent representations of the same difference equation, we now
provide an equivalent definition of a solution in terms of (2.2).

Definition 2.1.2 (Solution in planar variables). Given (x0, y0) ∈ R×R, a solution (or orbit) of
(2.2) is the sequence {(xn, yn)} that satisfies xn+1 = F (xn, yn) and yn+1 = G(xn, yn) for every
n ∈ N0.

Definition 2.1.3 (Positively Invariant). A region R ∈ R×R is said to be positively invariant for
a discrete system (xn+1, yn+1) = (F (xn, yn), G(xn, yn)), if (xN , yN ) ∈ R implies that (xn, yn) ∈
R for all n ∈ N, n ≥ N .

We now define a useful property that of solutions.

Definition 2.1.4 (Monotonically increasing/decreasing solution). A solution of the difference
equation xn+1 = F (xn, xn−1) is monotonically increasing if

xn < xn+1 for every n ∈ N0,

and it is monotonically decreasing if

xn > xn+1 for every n ∈ N0.

Next, we define a few of the most important types of solutions.

3
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Definition 2.1.5 (Adapted from [2]). [Equilibrium point] An equilibrium point (fixed point) x∗

of a difference equation, xn+1 = F (xn, xn−1), is a point that solves the equation, x∗ = F (x∗, x∗).

Definition 2.1.6 (Adapted from [2]). [Eventually fixed] A given point (x0, x−1) ∈ R × R, of
(2.1) is eventually fixed if it is not itself fixed, but xn for some n > 0 is fixed.

We now give an equivalent definition for an equilibrium point using the planar system of
difference equations (2.2).

Definition 2.1.7 (Planar equilibrium point). An equilibrium point (fixed point) (x∗, y∗) of (2.2)
is a solution that solves the equation, (x∗, y∗) = (F (x∗, y∗), G(x∗, y∗)).

Remark 2.1.8. Since (2.2) defines G(x, y) = x, we have that y∗ = x∗. As such, the equilibrium
point (x∗, x∗) of (2.2) is a solution that solves, (x∗, x∗) = (F (x∗, x∗), x∗).

Remark 2.1.9 (Monotonically increasing/decreasing to the equilibrium). A solution of (2.2)
such that xn > x∗ and yn > x∗ for every n ∈ N0 is said to monotonically decrease towards the
equilibrium (x∗, x∗) if

x∗ ≤ xn+1 < xn, and x∗ ≤ yn+1 < yn for every n ∈ N0.

Note that it is sufficient to show that x∗ ≤ xn+1 < xn for every n ∈ N0 since xn+1 = yn+2 and
xn = yn+1 and so x∗ ≤ yn+2 < yn+1 for every n ∈ N0.

A solution of (2.2) such that xn < x∗ and yn < x∗ for every n ∈ N0 is said to monotonically
increase towards the equilibrium (x∗, x∗) if

x∗ ≥ xn+1 > xn, and x∗ ≥ yn+1 > yn for every n ∈ N0.

Note that it is sufficient to show that x∗ ≥ xn+1 > xn for every n ∈ N0 since xn+1 = yn+2 and
xn = yn+1 and so x∗ ≥ yn+2 > yn+1 for every n ∈ N0.

Definition 2.1.10 (Adapted from [8]). [Periodic/prime periodic solution] Given (x0, x−1) ∈
R× R, a solution of (2.1) is periodic with period p if xn+p = xn for every n ≥ −1.

If p is the least positive integer such that the solution is periodic, then the solution is periodic
with prime-period p.

Definition 2.1.11 (Adapted from [2]). [Eventually periodic] A given point (x0, x−1) ∈ R × R,
of (2.1) is eventually periodic if it is not itself periodic, but {xn} for some n > 0 is periodic.

Definition 2.1.12 (Adapted from [8]). [Oscillating about the equilibrium] A solution {xn} is
said to oscillate about the equilibrium x∗ if the sequence xn − x∗ oscillates in sign. That is, the
sign of xn − x∗ is not the same for every n ∈ N0.

Definition 2.1.13 (See [8]). [Semicycle] Given a solution {xn} of xn+1 = F (xn, xn−1) that oscil-
lates about the equilibrium, a positive semicycle consists of a “string” of terms, {xm, xm+1, . . . , xk}
such that xj − x∗ ≥ 0 for all j ∈ m, m+ 1, . . . , k and

• either: m = −1, or m > −1 and xm−1 < 0;

• and, either: k = ∞, or k < ∞ and xk+1 < 0.

Similarly, a negative semicycle consists of a “string” of terms, {xm, xm+1, . . . , xk} such that
xj − x∗ < 0 for all j ∈ m, m+ 1, . . . , k and

• either: m = −1, or m > −1 and xm−1 ≥ 0;

• and, either: k = ∞, or k < ∞ and xk+1 ≥ 0.

The following definition describes how a solution might oscillate between two regions; de-
pending on the location of the two region relative to the equilibrium, it is sometimes equivalent
to Definition 2.1.12.

4
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Definition 2.1.14. [Oscillating between regions] A sequence {(xn, yn)}n∈N0 is said to oscillate
between two disjoint regions R1,R2 ⊂ R2, if (x2n, y2n) ∈ R1 and (x2n+1, y2n+1) ∈ R2 for all
n ∈ N0.

Definition 2.1.15 (Eventually oscillating between regions). A sequence {(xn, yn)}n∈N0 is said
to eventually oscillate between two disjoint regions R1,R2 ⊂ R2, if there exists a K ∈ N0 such
that (x2n, y2n) ∈ R1 and (x2n+1, y2n+1) ∈ R2 for all n > K.

Later, we will see that there are cases where Definitions 2.1.12 and 2.1.14 are equivalent; if a
solution is oscillating between two regions on opposite sides of an equilibrium, then we also have
that the solution is oscillating about the equilibrium. In these cases, planar analysis is powerful
in the sense that we can determine the behaviour of solutions in a visual and elementary way.

2.2 Stability

We now define what it means for an equilibrium to be stable, locally asymptotically stable,
globally attractive, globally asymptotically stable, unstable, and a source. For the following
definitions, we consider (2.1) with F : I × I → I where I is any interval in the real numbers, R.

Definition 2.2.1 (Adapted from [8]). [Stable equilibrium] An equilibrium point x∗ of (2.1) is
called stable if for every ϵ > 0, there exists δ > 0 such that for all x0, x−1 ∈ I with |x0 − x∗| +
|x−1 − x∗| < δ, we have

|xn − x∗| < ϵ for all n ≥ −1.

Definition 2.2.2 (Adapted from [8]). [Locally asymptotically stable equilibrium] The equilibrium
point x∗ of (2.1) is called locally asymptotically stable if it is locally stable, and if there exists
γ > 0 such that for all x0, x−1 ∈ I with |x0 − x∗|+ |x−1 − x∗| < γ, we have

lim
n→∞

xn = x∗.

Definition 2.2.3 (Adapted from [8]). [Global attractor equilibrium] The equilibrium point x∗ of
(2.1) is called a global attractor if for all x0, x−1 ∈ I we have

lim
n→∞

xn = x∗.

Definition 2.2.4 (Adapted from [8]). [Globally asymptotically stable] The equilibrium point x∗

of (2.1) is called a globally asymptotically stable if it is locally stable and a global attractor.

Definition 2.2.5 (Adapted from [8]). [Unstable equilibrium] The equilibrium point x∗ of (2.1)
is called unstable if it is not stable.

Definition 2.2.6 (Adapted from [8]). [Source/repeller equilibrium] The equilibrium point x∗ of
(2.1) is called a source, or a repeller, if there exists r > 0 such that for all x0, x−1 ∈ I with
0 < |x0 − x∗|+ |x−1 − x∗| < r, there exists N ≥ 1 such that

|xN − x∗| ≥ r.

A source is an unstable equilibrium.

Definition 2.2.7 (Adapted from [9]). [Saddle point equilibrium] The equilibrium point x∗ of
(2.1) is called a saddle point if some trajectories are attracted to it and others are repelled by it.

5
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While these definitions are helpful in understanding the stability of equilibrium points of (2.2),
it is best to simplify the problem by linearizing the difference equation about the equilibrium.
This can be an extremely effective strategy to classify the equilibrium because there are existing
stability theorems in [8] that address linear systems. Thus, we begin by explaining how to
linearize the system (2.2) about an equilibrium point.

To linearize about the equilibrium point, would mean to linearly approximate the function,
T (x, y), near the equilibrium point where,

T (x, y) =

(
F (x, y)
G(x, y)

)
.

As long as T (x, y) is C1(R2), we have the following definition for linearization of a system of
planar difference equations at the equilibrium, (x∗, y∗).

Definition 2.2.8 (Adapted from [13]). [Linearization about an equilibrium] Assume that T :
R2 → R2 is C1(R2) where,

T (x, y) =

(
F (x, y)
G(x, y)

)
.

Then the linearization of T (x, y) around an equilibrium (x∗, y∗) is given by

T (x, y) ≈ T (x∗, x∗) + JT (x
∗, x∗)

(
x− x∗

y − y∗

)
,

where JT (x
∗, y∗) is the Jacobian of T (x, y) evaluated at (x∗, y∗). The Jacobian is given by

JT (x, y) =

(
∂F
∂x (x, y)

∂F
∂y (x, y)

∂G
∂x (x, y)

∂G
∂y (x, y)

)
.

For (2.2), G(x, y) = x and so ∂G
∂x = 1 and ∂G

∂y = 0. Thus, the linearization of (2.2) around

the equilibrium (x∗, x∗) is given by

T (x, y) =

(
F (x, y)

x

)
≈
(
x∗

x∗

)
+

(
∂F
∂x (x

∗, x∗) ∂F
∂y (x

∗, x∗)

1 0

)(
x− x∗

y − x∗

)
.

Recalling that xn+1 = F (xn, yn) and yn+1 = G(xn, yn) = xn, we make a change of variables,

zn = xn − x∗.

Thus we obtain the linearized equation for (2.2) as,(
zn+1

zn

)
≈
(

∂F
∂x (x

∗, x∗) ∂F
∂y (x

∗, x∗)

1 0

)(
zn

zn−1

)
. (2.3)

Letting p := ∂F
∂x (x

∗, x∗) and q := ∂F
∂y (x

∗, x∗), the associated characteristic equation of the

linearized equation (2.3) is 0 = det(λI − J(x∗, x∗)), or equivalently,

0 = λ2 − pλ− q. (2.4)

The roots of (2.4) are used to determine the local stability of the equilibrium in the follow-
ing theorems. Note that the first theorem defines the criteria for the stability of equilibrium
points of (2.2) and the subsequent theorem determines the necessary and sufficient conditions
for classifying the stability of equilibrium points of (2.2).
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Theorem 2.2.9. [Adapted from [8, Theorem 1.1.1]] Let (x∗, x∗) be an equilibrium of (2.2).
(a) If both roots of (2.4) lie in the open disk |λ| < 1, then (x∗, x∗) is locally asymptotically stable.

(b) If at least one of the roots of (2.4) lies outside the unit-circle, then (x∗, x∗) is unstable.

(c) If one of the roots of (2.4) lies outside the unit-circle and the other inside the unit cir-
cle, then (x∗, x∗) is a saddle point.

(d) If both roots of (2.4) lie outside of the unit circle, then (x∗, x∗) is a repeller.

Theorem 2.2.10. [Adapted from [8, Theorem 1.1.1]] Let (x∗, x∗) be an equilibrium of (2.2).
(a) A necessary and sufficient condition for both roots of (2.4) to lie in the open unit disk |λ| < 1
is

|p| < 1− q < 2.

In this case, the locally asymptotically stable equilibrium, (x∗, x∗), is also called a sink.
(b) A necessary and sufficient condition for the roots of (2.4) to have modulus greater than one
is

|q| > 1 and |p| < |1− q|.

In this case, (x∗, x∗) is a repeller.
(c) A necessary and sufficient condition for one root of (2.4) to have modulus greater than one
and the other to have absolute value less than one is

p2 + 4q > 0 and |p| > |1− q|.

In this case, (x∗, x∗) is a saddle point.
(d) A necessary and sufficient condition for a root of (2.4) to have modulus equal to one is

|p| = |1− q| or q = −1 and |p| ≤ 2

In this case, (x∗, x∗) is called a nonhyperbolic point.

We now discuss and define the stable and unstable manifolds of a saddle point equilibrium.

Definition 2.2.11 (See [8]). [Stable/Unstable Manifold] Let (x∗, x∗) be a saddle point equilibrium
of (2.2). Let T : R2 → R2 be given by,

T (x, y) =

(
F (x, y)
G(x, y)

)
.

Then the stable manifold of (x∗, x∗) is the set of initial points whose forward orbit under the
iteration of T ,

(x, y), T (x, y), T 2(x, y), . . .

converges to (x∗, x∗). The unstable manifold of (x∗, x∗) is the set of initial points whose backward
orbit under the iteration of T ,

(x, y), T−1(x, y), T−2(x, y), . . .

converges to (x∗, x∗).

While local stability allows us to determine the behaviour of the solutions near the equilib-
rium, if we want to determine the global stability of an equilibrium, we require the use of other
theorems. The following theorems are useful in proving global stability for a unique, positive
equilibrium of difference equations.
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Theorem 2.2.12. [See [8, Theorem 1.4.8]] Let I = [a, b] be an interval of real numbers and
assume that

f : I × I → I

is a continuous function satisfying the following properties:

a) f(x, y) is nondecreasing in each of its arguments;

b) the equation, f(x, x) = x, has a unique positive solution.

Then, xn+1 = f(xn, xn−1) has a unique equilibrium x∗ ∈ I and every solution converges to x∗.

Theorem 2.2.13. [See [8, Theorem 1.4.7]] Let I = [a, b] be an interval of real numbers and
assume that

f : I × I → I

is a continuous function satisfying the following properties:

a) f(x, y) is nonincreasing in each of its arguments;

b) if (m,M) ∈ [a, b]× [a, b] is a solution of the system f(m,m) = M and

f(M,M) = m, then m = M .

Then, xn+1 = f(xn, xn−1) has a unique equilibrium x∗ ∈ I and every solution converges to x∗.

There are other theorems that can help show the global stability of an equilibrium in the
textbook [8]. We chose to highlight these two because we will use them in later chapters.

While these classical theorems can be used to show global stability of an equilibrium point,
the goal of this thesis is to showcase an alternative method for establishing properties of difference
equations like the global stability of equilibrium points. Specifically, we will use nullclines and
their associated root-curves introduced in [10] and we will identify cases where a classical theorem
from [8] can also be used to show global stability.

2.3 Augmented Phase Portraits

We define nullclines and their associated root-curves for a system of planar difference equa-
tions since we will be using them to analyze special cases of planar systems of the form (2.2). For
systems of planar differential equations, nullclines define where the rate of change with respect
to one variable is zero. In discrete systems, nullclines define where the difference between two
iterates of the same variable is zero.

For differential equations, if a solution exists on both sides of a nullcline, then by continuity,
the solution intersects that nullcline. In contrast, the solution of a difference equation can have
the next-iterate jump over nullclines. This difference has made standard phase portraits a less
effective method for analyzing systems of difference equations; however, if we additionally use
the pre-image of the nullclines, termed the root-curves associated with the nullclines in [10],
then we can obtain a lot of information about the behaviour of solutions. The augmented phase
portrait consists of the nullclines, their associated root-curves, the direction field, and the sign
of the next-iterate operators in the regions bounded by the root-curves.

The nullclines together with an indication of the direction field in the regions bounded by the
nullclines as well as the associated root-curves and the sign of the next-iterate operators in the
regions bounded by the root-curves constitutes the augmented phase portrait.

Before defining the nullclines of difference equations, we first define the difference operator.
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Definition 2.3.1 (Adapted from [7, Definition 2.1]). [Difference Operator] The difference oper-
ator ∆ is defined as ∆xn := xn+1 − xn.

Using this definition, we define nullclines for a planar system of difference equations (2.2).

Definition 2.3.2 (Adapted from [10]). [Nullcline] An x-nullcline of (2.2) is a function y = h(x)
or x = h̃(y) that satisfies F (x, h(x)) = x or F (h̃(y), x) = x.

A y-nullcline of (2.2) is a function y = k(x) or x = k̃(y) that satisfies G(x, k(x)) = y or
G(k̃(y), x) = y.

Remark 2.3.3. For (2.2), the y-nullcline can be defined explicitly as y = k(x) = x. However,
sometimes it is only possible to define a nullcline implicitly.

Remark 2.3.4. Since x and y-nullclines satisfy x = F (x, y) and y = G(x, y), respectively, by
Definition 2.1.7, any intersection of an x-nullcline and a y-nullcline occurs at an equilibrium
solution.

Definition 2.3.5 (Direction field). The direction field is a grid of line segments indicating the
slope and direction of the orbit to the next iterate.

For the set {(xn, yn); ∆xn > 0, ∆yn > 0}, the next-iterate will be up and to the right.

For the set {(xn, yn); ∆xn > 0, ∆yn < 0}, the next-iterate will be down and to the right.

For the set {(xn, yn); ∆xn < 0, ∆yn > 0}, the next-iterate will be up and to the left.

For the set {(xn, yn); ∆xn < 0, ∆yn < 0}, the next-iterate will be down and to the left.

The nullclines separate the phase plane into regions where the signs of ∆xn at all points in
the region are the same and the signs of ∆yn at all points in the region are the same. However,
unlike for systems of ordinary differential equations, solutions of difference equations can jump
over nullclines. Knowing where the next-iterate will be relative to the nullclines motivated the
introduction of the next-iterate operators and the next-iterate root-curves associated with the
nullclines in [10].

We first define the next-iterate operator associated with an x-nullcline, y = h(x) and a
y-nullcline, y = k(x):

Lh(x, y) := G(x, y)− h(F (x, y)) and Lk(x, y) := G(x, y)− k(F (x, y)). (2.5)

Evaluated at a point (xn, yn) in the phase plane, (2.5) is

Lh(xn, yn) := yn+1 − h(xn+1) and Lk(xn, yn) := yn+1 − k(xn+1). (2.6)

By the definition of Lh(x, y) and Lk(x, y), it is evident that the sign of the function determines
the placement of yn+1 relative to the associated nullcline. For example, if Lh(xn, yn) > 0, then
we know that yn+1 > h(xn+1) and if Lk(xn, yn) > 0, then we know that yn+1 > k(xn+1). With
this in mind the next-iterate root set (or root-set) and the next-iterate root-curve (or root-curve)
associated with a nullcline is defined in [10] as follows.

Definition 2.3.6 (Adapted from [10]). [Root-set] The root-set associated with the h(x) nullcline
is the set of points {(x, y) ∈ R2} that satisfy

G(x, y) = h(F (x, y)).

The root-set associated with the k(x) nullcline is the set of points {(x, y) ∈ R2} that satisfy

G(x, y) = k(F (x, y)).
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Definition 2.3.7 (Adapted from [10]). [Root-curves] A root-curve associated with the h(x)
nullcline is a function y = rh(x) that satisfies

G(x, rh(x)) = h(F (x, rh(x))).

A root-curve associated with the k(x) nullcline is a function y = rk(x) that satisfies

G(x, rk(x)) = k(F (x, rk(x))).

Remark 2.3.8. Sometimes it is more convenient to express a root-curve associated with a null-
cline a a function of x instead of a function f y and sometimes it is only possible to express a
root-curve implicitly.

Lemma 2.3.9 (Adapted from [10], Lemma 2.5). Assume that the root-curves associated with
the nullclines of (2.2) can be defined explicitly as y = rh(x) and y = rk(x). If for some x̄
rk(x̄) = k(x̄), then (x̄, x̄) must be an equilibrium. Also, if rh(x̄) = h(x̄), then (x̄, x̄) must be an
equilibrium.

We do not include the proof because it was proved in [10].

Lemma 2.3.10. Assume that the x-nullcline can be defined explicitly as y = h(x) and that
y = h(x) is one-to-one. Then, rk(x) = h(x).

Proof. For (2.2), from Definition 2.3.2, y = h(x) satisfies

x = F (x, h(x)).

From Remark 2.3.3, k(x) = x and so x = k(F (x, h(x))). Furthermore, G(x, y) = x, and so,

G(x, h(x)) = k(F (x, h(x))).

Therefore, rk(x) = h(x).

Lemma 2.3.11. Assume that the root-curves associated with the nullclines of (2.2) can be
defined explicitly as y = rh(x) and y = rk(x). If for some x̄, rh(x̄) = rk(x̄), then (x̄, x̄) must be
an equilibrium.

Proof. Let rh(x̄) = rk(x̄). By Lemma 2.3.10, rk(x) = h(x) and so

rh(x̄) = h(x̄).

By Lemma 2.3.9, rh(x) and h(x) can only intersect at equilibria and so (x̄, x̄) must be an
equilibrium point.

We define two additional functions that will provide more information about the behaviour
of solutions to (2.2). We first define the operator,

J (xn, yn) := F (xn, yn)− x∗,

or equivalently,

J (xn, yn) := xn+1 − x∗.

The sign of J (xn, yn) will determine what side of the line x = x∗ the next-iterate is found on.
Thus, the pre-image of the line x = x∗ is equivalent to where J (xn, yn) = 0 and is defined as
follows.
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Definition 2.3.12. The pre-image of the line x = x∗, is the set of points {(x, y) ∈ R2} that
satisfy

F (x, y) = x∗.

When we can write the set of points as a function y = S(x), the function satisfies F (x, S(x)) = x∗.

Now we define the pre-image of the root-curve associated with the h(x) nullcline. Note that
we could define a pre-image for each root-curve, however we only require the pre-image of rh(x)
in this thesis. Thus, we define the operator,

Lrh(x, y) := G(x, y)− rh(F (x, y)).

Evaluating the pre-image at (xn, yn) we obtain

Lrh(xn, yn) := yn+1 − rh(xn+1).

Note that we are interested in where Lrh(x, y) = 0.

Definition 2.3.13. The pre-image of a root-curve y = rh(x) associated with a y = h(x) nullcline
is the set of points {(x, y) ∈ R2} that satisfy

G(x, y) = rh(F (x, y)).

When we can write the set of points as a function y = Q(x), this function satisfies G(x,Q(x)) =
rh(F (x,Q(x))).

Now that we have defined the nullclines, the root-curves associated with the nullclines, the
pre-image of the root-curves and the pre-image of the line x = x∗, we can construct the augmented
phase portrait from [10]. Thus, we can obtain a good understanding of how solutions of (2.2)
behave.
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Chapter 3

Analysis of xn+1 =
α+γxn−1
A+Bxn

We analyze,

xn+1 =
α+ γxn−1

A+Bxn
, n ∈ N0 (3.1)

with initial conditions x0 > 0, x−1 > 0 and parameters α, γ,B > 0, and A ≥ 0. To simplify this
equation, without loss of generality, we make the following change of variables. First, we divide
both the numerator and denominator by γ. Then, we let x̃n = B

γ xn, and hence x̃n+1 = B
γ xn+1.

As such,

x̃n+1 =
α̃+ x̃n−1

Ã+ x̃n

,

where α̃ = Bα
γ2 and Ã = A

γ . To simplify notation, henceforth we “drop the tilde” and refer to x̃n

as xn, Ã as A, and α̃ as α. We note that the change of variables we used is different from what
was done in [8] so that we can include A = 0 in our analysis.

Now, letting yn = xn−1, we write (3.1) as the planar system,

xn+1 =
α+ yn
A+ xn

=: F (xn, yn), yn+1 = xn =: G(xn, yn) (3.2)

with parameters A ≥ 0, α > 0, and initial conditions x0 > 0 and y0 > 0. Since xn+1 > 0, the
region (0,∞)× (0,∞) is positively invariant.

From Definition 2.1.5, the equilibria of (3.2) must satisfy x∗ = F (x∗, x∗). Solving this
equation for x∗ yields the only positive solution,

x∗ =
−(A− 1) +

√
(A− 1)2 + 4α

2
. (3.3)

Thus (3.2) has a unique positive equilibrium given by E∗ = (x∗, x∗), provided A ̸= 1 and α ̸= 0.

The following theorems from [8] will be used in future sections and are adapted to suit the
variables of (3.2).

Theorem 3.0.1. [Adapted from [8, Theorem 6.5.1]] The equilibrium of (3.2) is locally asymp-
totically stable when A > 1 and is an unstable saddle point when A < 1.

The proof is in Chapter 5, Section 5.1.

Theorem 3.0.2. [Adapted from [8, Section 1.2]](Stable Manifold Theorem) Let T be a one-to-
one, smooth mapping with a smooth inverse in I × I. Assume that (x∗, y∗) ∈ I × I is a saddle
point of T and that the Jacobian of T evaluated at (x∗, y∗) has eigenvalues s and u with |s| < 1
and |u| > 1. Let vs and vu be the eigenvectors corresponding to s and u, respectively. Let S be
the stable manifold of (x∗, y∗) and U be the unstable manifold of (x∗, y∗) as defined in Definition
2.2.11.

Then both S and U are one dimensional manifolds, or curves, that contain (x∗, y∗). Further-
more, the eigenvectors vs and vu are tangent to S and U , respectively at the point (x∗, y∗).

12
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This theorem will allow us to find the tangent vector to the stable manifold at the equilibrium
point E∗ = (x∗, x∗), whenever (x∗, x∗) is a saddle point. The application of this theorem will
help us to locate the stable manifold relative to the root-curves and their associated nullclines.

In [4], xn+1 = α+βxn+γxn−1

A+xn
is studied with A, α, β, and γ, as non-negative parameters and

n ∈ N0. Setting β = 0 and γ = 1, we obtain (3.2). Thus, we present an adapted version of the
main theorem from [4] for this special case.

Theorem 3.0.3. [Adapted from [4, Theorem 1]] Consider (3.2).

a) Assume that A = 1. Then every solution converges to a period two solution.

b) Assume that A < 1. Then there exist unbounded solutions.

c) Assume that A > 1. Then every solution has a finite limit.

From this theorem, we realize that it is important to consider A < 1, A = 1, and A > 1
separately. We first look at the case where A ∈ [0, 1).

3.1 Case 1: A ∈ [0, 1).

Our goal in this section is to prove the following theorem.

Theorem 3.1.1. If xn+1 = α+xn−1

A+xn
with α ≥ 0, A ∈ [0, 1) and n ∈ N0, then

a) there exists a nontrivial positive solution that decreases monotonically to (x∗, x∗),

b) there exists a nontrivial positive solution that increases monotonically to (x∗, x∗).

The motivation for this problem comes from Conjecture 5.4.6 in [8].

Conjecture 1. [See [8, Conjecture 5.4.6]] Show that xn+1 = 1+xn−1

xn
for n ∈ N0 has a nontrivial

positive solution that decreases monotonically to the equilibrium.

After the publication of Conjecture 1 in [8], it was proved by Hoag [5] and Sun and Xi [12].
However, since we prove this conjecture by using the augmented phase portrait, our proof is very
different from that of Sun and Xi [12]. The proof done by Hoag [5] shares some similarities. We
will highlight the similarities and differences after we provide our proof.

Despite the fact that Conjecture 1 has been previously proven, we find that the value in
proving it using the augmented phase portrait is that our methods are intuitive compared to
those in [5] and [12]. This proof shows the power of this elementary and accessible approach.

3.1.1 Analysis

By Definition 2.3.2, the x-nullcline of (3.2) is the function y = h(x) that satisfies F (x, y) = x,
and so

y = h(x) = x2 +Ax− α.

The y-nullcline is the function y = k(x) that satisfies G(x, y) = y, and so

y = k(x) = x.

The calculations can be found in Chapter 5, Section 5.2.

We now observe how the nullclines divide the plane into component-wise monotone regions.

xn+1 − xn


> 0, yn > h(xn),

= 0, yn = h(xn),

< 0, yn < h(xn),

and yn+1 − yn


> 0, yn < k(xn),

= 0, yn = k(xn),

< 0, yn > k(xn).

(3.4)
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The calculations justifying (3.4) are given in Chapter 5, Section 5.3. Since both nullclines can
be expressed explicitly, we find the root-curves associated with the nullclines using Definition
2.3.7. The root-curve associated with the h(x) nullcline is a function y = rh(x) that satisfies
G(x, y) = h(F (x, y)). Solving, we obtain that the only positive function is,

y = rh(x) =
1

2

(
−2α−A2 −Ax+ (A+ x)

√
4α+A2 + 4x

)
.

The details of this calculation are in Chapter 5, Section 5.4.

Since h′(x) = 2x + A > 0 for all x > 0, we have that it is strictly increasing for x > 0 and
thus one-to-one for x > 0. Thus, from Lemma 2.3.10, the root-curve associated with the k(x)
nullcline is given by

y = rk(x) = h(x) = x2 +Ax− α.

Lemma 3.1.2. Consider (3.2) and assume that A ∈ [0, 1).

a) If yn < rh(xn), then yn+1 > h(xn+1) and equivalently, Lh(xn, yn) > 0.

b) If yn > rh(xn), then yn+1 < h(xn+1) and equivalently, Lh(xn, yn) < 0.

c) If yn < rk(xn), then yn+1 > k(xn+1) and equivalently, Lk(xn, yn) > 0.

d) If yn > rk(xn), then yn+1 < k(xn+1) and equivalently, Lk(xn, yn) < 0.

The proof is in Chapter 5, Section 5.5.

Property 3.1.3. For (3.2) with A ∈ [0, 1), any two of y = rk(x), y = rh(x) and y = k(x)
intersect only at the unique positive equilibrium, E∗ = (x∗, x∗), for x∗ > 0 given in (3.3).

The proof of Property 3.1.3 can be found in Chapter 5, Section 5.6.

Lemma 3.1.4. Consider (3.2) and assume A ∈ [0, 1). Then,

a) rk(x) < rh(x) < k(x) for x ∈ (0, x∗);

b) k(x) < rh(x) < rk(x) for x > x∗.

Proof. By definition, rk(x
∗) = rh(x

∗) = h(x∗) = x∗ and by Property 3.1.3, rk(x), rh(x) and k(x)
can only intersect at x = x∗. Thus, we can show that rk(x) < rh(x) < k(x) for x ∈ (0, x∗) if for
a particular x ∈ [0, x∗), rk(x) < rh(x) < k(x). At x = 0,

k(0) = 0,

rh(0) =
1

2

(
−2α−A2 +A

√
4α+A2

)
, and

rk(0) = −α.

Since −A2 +
√
A4 = 0, we have that 1

2

(
−A2 +

√
4A2α+A4

)
> 0, and so,

rk(0) = −α < −α+
1

2

(
−A2 +

√
4A2α+A4

)
= rh(0).

Now, suppose for the sake of a contradiction that rh(0) > 0. Then,√
4A2α+A4 > 2α+A2.

Since both sides of the inequality are positive, we can square both sides and simplify to obtain
4A2α + A4 > 4α2 + 4αA2 + A4. Hence, this gives us the contradiction, 4α2 < 0. Furthermore,
we observe that rh(0) = 0 if and only if α = 0. As such, rh(0) < 0 and so rk(0) < rh(0) < k(0).
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We now show k′(x∗) < r′h(x
∗) < r′k(x

∗) to show that k(x) < rh(x) < rk(x) for x ∈ (x∗,∞).
First we notice that from (3.3),

2x∗ +A = 1 +
√
(A− 1)2 + 4α > 1. (3.5)

We evaluate k′(x), r′h(x), and r′k(x) at x = x∗ as,

k′(x∗) = 1,

r′h(x
∗) =

1

2

(
−A+

√
4α+A2 + 4x∗ +

2(A+ x∗)√
4α+A2 + 4x∗

)
,

r′k(x
∗) = 2x∗ +A.

(3.6)

Using x∗ = α+x∗

A+x∗ > 0 or equivalently, α+x∗ = x∗(A+x∗), we simplify
√
4α+A2 + 4x∗ so that,√

A2 + 4(x∗ + α) =
√
A2 + 4x∗(A+ x∗),

=
√
A2 + 4x∗A+ (2x∗)2,

=
√
(A+ 2x∗)2,

= A+ 2x∗ > 0.

Thus, r′h(x
∗) simplifies to

r′h(x
∗) = x∗ +

A+ x∗

A+ 2x∗ , (3.7)

and so r′h(x
∗) > 1 = k′(x∗).

Finally, to show that r′h(x
∗) < r′k(x

∗), it suffices to show that r′h(x
∗) = x∗ + A+x∗

A+2x∗ <
2x∗ +A = r′k(x

∗). By (3.5) and (3.6),

r′h(x
∗)− r′k(x

∗) = x∗ +
A+ x∗

A+ 2x∗ − 2x∗ −A,

=
A+ x∗

A+ 2x∗ − (A+ x∗),

< 0.

Thus, we also have that k(x) < rh(x) < rk(x) for x ∈ (x∗,∞).

We now take the information from the direction field in (3.4) and from Lemmas 3.1.2 and
3.1.4 to plot generic root-curves and their associated nullclines in Figure 3.1. Using this figure
we define the regions bounded by the root-curves and their associated nullclines as,

R11 = {rk(x) < rh(x) < y ≤ k(x), x ∈ (0, x∗)};
R12 = {rk(x) ≤ y ≤ rh(x) < k(x), x ∈ (0, x∗)};
R2 = {y < min{k(x), rk(x)}, y < rh(x), x > 0};
R31 = {k(x) ≤ y < rh(x) < rk(x), x > x∗};
R32 = {k(x) < rh(x) ≤ y ≤ rk(x), x > x∗};
R4 = {y > max{k(x), rk(x)}, y > rh(x), x > 0}.

(3.8)
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Figure 3.1: The augmented phase portrait of (3.2) for A ∈ [0, 1). The x-nullcline, representing
y = h(x), is in dashed blue. The y-nullcline, k(x) = x, is in dashed red. The associated root-
curves, y = rh(x) and y = rk(x) are the curves in solid blue and red, respectively. Recall that
h(x) = rk(x). The vertical and horizontal arrows represent regions in which orbits have the same
component-wise monotonicity. For example, for a point (xn, yn) ∈ R2, the left arrow indicates
that ∆xn < 0 with equality only at yn = h(xn) and the upwards arrow indicates that ∆yn > 0.
Finally, regions containing a ‘+’ (‘−’) indicate that the next-iterate lies above (below) the same
colour nullcline. For example, if (xn, yn) ∈ R12 , the blue plus sign indicates that the next-iterate,
(xn+1, yn+1), lies above the blue nullcline and the red minus sign indicates that the next-iterate
lies below the red nullcline.
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3.1.2 Possible paths of solutions

To show there exists a solution of (3.2) that decreases monotonically to the equilibrium,
E∗ = (x∗, x∗), we determine the possible paths a solution can take. We do this using the
definition of the regions (3.8) and the previous lemmas. First we explain the following notation
for a solution, {(xn, yn)}n∈N0 :

• if (xn, yn) ∈ Ri and (xn+1, yn+1) ∈ Rj , we write, Ri → Rj ;

• if (xn, yn) ∈ Ri and there exists ℓ ≥ 0 such that (xn+k, yn+k) ∈ Ri, for 0 ≤ k < ℓ, before
entering Rj , we write, Ri →∗ Rj , (i.e., the orbit can remain in Ri for more than one
iteration before entering Rj);

• if a solution remains in region Ri indefinitely, we write, Ri → · · · → Ri;

• if a solution oscillates between two regions indefinitely, we write, Ri ⇌ Rj .

Lemma 3.1.5. i) Orbits that start in R12 either remain in R12 for all n ∈ N0, or they move
from region to region eventually oscillating between regions R2 and R4 indefinitely as follows:
R12 →∗ R11 → R2 ⇌ R4.

ii) Orbits that start in R32 either remain in R32 for all n ∈ N0, or they move from region to
region eventually oscillating between R2 and R4 indefinitely as follows: R32 →∗ R31 → R4 ⇌
R2.

Figure 3.2 provides visual intuition of the results in Lemma 3.1.5. We refer to it throughout
the proof of Lemma 3.1.5 so that it is easier to follow.

a) R12 → · · · → R12

b) R12 →∗ R11 → R2 ⇌ R4

c) R32 → · · · → R32

d) R32 →∗ R31 → R4 ⇌ R2

Figure 3.2: A visual representation of the possible paths that a solution of (3.2) can take, as
given in Lemma 3.1.5. Paths a) and b) correspond to i) in Lemma 3.1.5 and paths c) and d)
correspond to ii) in Lemma 3.1.5.

Proof. If (xn, yn) ∈ R12 , then by the definition of the region R12 (3.8), rk(xn) ≤ yn ≤ rh(xn)
for xn ∈ (0, x∗). From Lemma 3.1.2 we have that h(xn+1) ≤ yn+1 ≤ k(xn+1). Thus, by the
definition of the regions (3.8), (xn+1, yn+1) ∈ R11 ∪ R12 . Thus, the solution can remain in R12

indefinitely or it can stay in R12 for a finite number of steps before entering R11 . Thus, in Figure
3.2 we obtain path a) and the start of path b) as,

a) R12 → · · · → R12

b) R12 →∗ R11

(3.9)

If (xn, yn) ∈ R11 , then by the definition of R11 (3.8), rk(x) < rh(xn) < yn for x ∈ (0, x∗).
Hence, by Lemma 3.1.2, yn+1 < h(xn+1) = rk(xn+1) and yn+1 < k(xn+1) and so by Lemma
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3.1.4, yn+1 < rh(xn+1). Thus, by the definition of the regions, (xn+1, yn+1) ∈ R2 and using (3.9)
we continue showing path b) in Figure 3.2,

b) R12 →∗ R11 → R2. (3.10)

If (xn, yn) ∈ R2, then by the definition of R2 (3.8), yn < rk(xn) and yn < rh(xn). By
Lemma 3.1.2, yn+1 > h(xn+1) = rk(xn+1) and yn+1 > k(xn+1). Hence, by Lemma 3.1.4,
yn+1 > rh(xn+1). Thus by definition of the regions (3.8), (xn+1, yn+1) ∈ R4 and using (3.10) we
continue to show path b) from Figure 3.2 as,

b) R12 →∗ R11 → R2 → R4. (3.11)

If (xn, yn) ∈ R4, then by the definition of R4 (3.8), yn > rk(xn) and yn > rh(xn). By
Lemma 3.1.2, yn+1 < h(xn+1) = rk(xn+1) and yn+1 < k(xn+1), and so by Lemma 3.1.4, yn+1 <
rh(xn+1). Thus by definition of the regions (3.8), (xn+1, yn+1) ∈ R2 and so we know that a
solution will oscillate indefinitely between R2 and R4. Using (3.11), we obtain path b) from
Figure 3.2,

b) R12 →∗ R11 → R2 ⇌ R4.

Thus, we have shown i), that solutions starting inR12 either stay inR12 indefinitely or eventually
oscillate indefinitely between regions R2 and R4.

If (xn, yn) ∈ R32 , then by the definition of region R32 (3.8), rh(xn) ≤ yn ≤ rk(xn) for
xn > x∗. Thus by Lemma 3.1.2, k(xn+1) ≤ yn+1 ≤ h(xn+1) = rk(xn+1) and so by the definition
of the regions (3.8), (xn+1, yn+1) ∈ R31 ∪ R32 . Hence, the solution can remain in R32 for all
n ∈ N0, or it can remain in R32 for a finite number of steps before entering R31 . Thus, from
Figure 3.2, we obtain path c) and the start of path d) as,

c) R32 → · · · → R32

d) R32 →∗ R31 .

(3.12)

If (xn, yn) ∈ R31 , then by the definition of R31 (3.8), yn < rh(xn) < rk(xn) for x > x∗.
Hence, by Lemma 3.1.2, yn+1 > h(xn+1) = rk(xn+1) and yn+1 > k(xn+1) and so by Lemma
3.1.4, yn+1 > rh(xn+1). Thus, by the definition of the regions (3.8), (xn+1, yn+1) ∈ R4. We
know solutions will oscillate between R4 and R2 indefinitely. Thus, using (3.12) we write path
d) from Figure 3.2 as,

d) R32 →∗ R31 → R4 ⇌ R2.

Thus, we have shown that solutions starting in R32 will either stay in R32 for all n ∈ N0 or that
they will eventually oscillate between R4 and R2 indefinitely.

Lemma 3.1.6. a) A solution that oscillates between R2 and R4 can neither increase nor decrease
monotonically to the positive equilibrium E∗ = (x∗, x∗).

b) A solution that remains in R32 for all n ∈ N0, decreases monotonically and converges to
the positive equilibrium E∗ = (x∗, x∗).

c) A solution that remains in R12 for all n ∈ N0, increases monotonically and converges to
the positive equilibrium E∗ = (x∗, x∗).
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Proof. a) Suppose for the sake of a contradiction that there exists a solution that decreases
monotonically to the equilibrium and oscillates between R2 and R4. Then by assumption,
xn ≥ x∗ and yn ≥ x∗ for all n ∈ N0 and xn > xn+1 for all n ∈ N0.

Without loss of generality, assume that (x0, y0) ∈ R4, so that (x1, y1) ∈ R2. By the definition
of R2 (3.8), y1 < k(x1) and so y1 < x1. However, y1 = x0. This implies that x0 = y1 < x1. This
is a contradiction since by assumption, xn > xn+1 for all n ∈ N0.

Similarly, we can show that a solution oscillating between R2 and R4 cannot increase mono-
tonically to the equilibrium.

b) Assume the solution {(xn, yn)}n∈N0 ∈ R32 . By the definition of R32 (3.8), xn > x∗ and
yn > k(xn), and hence, yn > xn > x∗ for all n ∈ N0. Thus it suffices to show that the solution
is decreasing monotonically to also show that it converges to the equilibrium.

By Remark 2.1.9, to show that the solution decreases monotonically to the equilibrium, we
need to show that xn > xn+1 > x∗ for all n ∈ N0. From (3.4), ∆xn < 0 in R32 and it immediately
follows that,

xn > xn+1 > x∗ for all n ∈ N0.

Thus, a solution that remains in R32 for all n ∈ N0, decreases monotonically and converges to
the equilibrium E∗ = (x∗, x∗).

c) Similarly, we assume that {(xn, yn)}n∈N0 ∈ R12 and by the definition of R12 , xn < x∗ and
yn < k(xn) = xn. Hence, yn < xn < x∗ for all n ∈ N0. Thus it suffices to show that the solution
is monotonically increasing to show that it converges to the equilibrium.

By Remark 2.1.9, we need to show that xn < xn+1 < x∗. From (3.4), ∆xn > 0 in R32 so,

xn < xn+1 < x∗.

Thus a solution that remains in R12 for all n ∈ N0 increases monotonically towards the equilib-
rium, E∗ = (x∗, x∗) and converges.

We now aim to show existence of a solution that monotonically decreases to the equilibrium
in R32 and a solution that monotonically increases to the equilibrium in R12 .

3.1.3 Proof of Theorem 3.1.1

Proof. By Theorem 3.0.1, (x∗, x∗) is a saddle point equilibrium for A ∈ [0, 1). We show that the
stable manifold lies entirely in R32 and R12 . Since a solution on the stable manifold must stay
on the stable manifold and from Lemma 3.1.5, solutions cannot jump between R32 and R12 ,
this will show that there exist solutions that stay in either R32 or R12 for all time. Then, from
Lemma 3.1.6, such solutions will monotonically decrease and increase and converge to (x∗, x∗).

To find the tangent to the stable manifold at the equilibrium, we use Theorem 3.0.2. First
we verify the conditions of Theorem 3.0.2 and denote T with α ≥ 0 and A ∈ [0, 1) as,

T (x, y) =

(
F (x, y)
G(x, y)

)
=

( α+y
A+x

x

)
.

We need T (x, y) to be one-to-one. Suppose that T (x1, y1) = T (x2, y2) or equivalently,( α+y1

A+x1

x1

)
=

( α+y2

A+x2

x2

)
.

It is obvious that x1 = x2 and this implies that α+ y1 = α+ y2 and hence y1 = y2.
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The Jacobian of T evaluated at (x∗, x∗) is,

JT (x
∗, x∗) =

(
∂F
∂x (x

∗, x∗) ∂F
∂y (x

∗, x∗)
∂G
∂x (x

∗, x∗) ∂G
∂y (x

∗, x∗)

)
=

( −x∗

A+x∗
1

A+x∗

1 0

)
.

Since det(JT (x
∗, x∗)) = −1

A+x∗ < 0, by the Inverse Function Theorem, the inverse of T exists and
is smooth. Thus, we can use Theorem 3.0.2 to find the stable manifold.

Linearizing T (x, y) around (x∗, x∗), we obtain the associated characteristic equation (2.4) of
JT (x

∗, x∗),

0 = λ2 +
x∗

A+ x∗λ− 1

A+ x∗ . (3.13)

Solving for λ we obtain,

λ+ := λ =
−x∗ +

√
(x∗)2 + 4(A+ x∗)

2(A+ x∗)
and λ− := λ =

−x∗ −
√
(x∗)2 + 4(A+ x∗)

2(A+ x∗)
. (3.14)

From the proof of Theorem 3.0.1 in Chapter 5, Section 5.1, for A ∈ [0, 1), |λ+| < 1 < |λ−|.
From Theorem 3.0.2, the eigenvector associated with the eigenvalue λ+ is tangent to the stable
manifold.

We solve (λ+I − JT (x
∗, x∗))v = 0 for the eigenvector v. This is equivalent to,(

λ+ + x∗

A+x∗
−1

A+x∗

−1 λ+

)
·
(
v1
v2

)
=

(
0
0

)
,

and λ+v1 +
x∗v1
A+x∗ − v2

A+x∗ = 0 and v2 = v1
λ+

. Substituting the latter equation into the former,(
λ+ +

x∗

A+ x∗ − 1

λ+(A+ x∗)

)
v1 = 0.

Multiplying this by λ+, we obtain the characteristic equation, (3.13), implying that v1 is a free
variable. Therefore, an eigenvector associated with λ+ is

v+ =

(
λ+

1

)
and it is tangent to the stable manifold at (x∗, x∗).

To show that the stable manifold is in region R32 , we show that the slope of v+ is greater
than the slope of rh(x) at x = x∗ and less than the slope of rk(x) at x = x∗.

The slope of the eigenvector is 1
λ+

. Additionally, from (3.6) and (3.7),

rh(x
∗) = x∗ +

A+ x∗

A+ 2x∗ and rk(x
∗) = 2x∗ +A.

It therefore suffices to show that

x∗ +
A+ x∗

A+ 2x∗ <
1

λ+
< 2x∗ +A.

We begin by showing 1
λ+

< 2x∗ +A. Since |λ+| < 1,

−x∗ +
√
(x∗)2 + 4(A+ x∗) < 2(A+ x∗) ⇒
(x∗)2 + 4(A+ x∗) < (2A+ 3x∗)2 ⇒

4(A+ x∗) < 4A2 + 12Ax∗ + 8(x∗)2.
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Thus, A + x∗ < A2 + 3Ax∗ + 2(x∗)2. Adding Ax∗ + 2(x∗)2 to each side, we create a perfect
square on the right hand side and the inequality becomes A + x∗ + x∗(A + 2x∗) < (A + 2x∗)2.

Multiplying both sides by 4(A+x∗)
(A+2x∗)2 and then adding (x∗)2 to each side, we get

4(A+ x∗)2

(A+ 2x∗)2
+

4(A+ x∗)x∗

A+ 2x∗ + (x∗)2 < 4(A+ x∗) + (x∗)2.

Notice that we can rewrite the left hand side as a perfect square. We can then take the square
root of both sides to obtain,

2(A+ x∗)

A+ 2x∗ + x∗ <
√
4(A+ x∗) + (x∗)2,

and so from (3.14),
1

λ+
=

2(A+ x∗)

−x∗ +
√
4(A+ x∗) + (x∗)2

< A+ 2x∗.

Thus 1
λ+

< 2x∗ +A and hence, the slope of the stable manifold is less than the slope of rk(x) at

x = x∗.

We now have left to show that, x∗ + A+x∗

A+2x∗ < 1
λ+

. Rearranging the characteristic equation

(3.13), we have,

1

λ+
= x∗ + λ+(A+ x∗).

Since 1
λ+

< 2x∗ +A, or equivalently, 1
2x∗+A < λ+,

1

λ+
= x∗ + λ+(A+ x∗) > x∗ +

A+ x∗

A+ 2x∗ ,

as required. Thus, the slope of the stable manifold is greater than the slope of rh(x) at x = x∗,
and hence the stable manifold is in R32 for x > x∗, close to x∗ and in R12 for x < x∗ for x close
to x∗.

From Lemma 3.1.5 solutions cannot enter R32 from any other region. Additionally, solutions
on a stable manifold cannot leave the stable manifold. Thus, the existence of the stable manifold
locally in region R32 implies that the stable manifold must be located in region R32 for all x > x∗

and in R12 for all x < x∗.

A solution on the stable manifold in R32 stays in R32 indefinitely. Hence, by Lemma 3.1.6,
the solution must monotonically decrease to the equilibrium and converge. Similarly, a solution
on the stable manifold in R12 stays in R12 indefinitely. As such, by Lemma 3.1.6, the solution
monotonically increases to the equilibrium and converges.

3.1.4 Consequences

Conjecture 1 is an immediate consequence of Theorem 3.1.1 since it considers the specific
case where α = 1, β = 1, A = 0, and γ = 1. As previously mentioned, Conjecture 1 was also
proved by Hoag [5] and by Sun and Xi [12]. While Sun and Xi’s [12] proof is vastly different
from our proof, the proof by Hoag [5] shares some similarities. We discuss the similarities and
differences in the methods we used in our proof of Theorem 3.1.1. The following theorem is the
main theorem Hoag used to prove Conjecture 1.

Theorem 3.1.7. [See [5, Theorem 1]] Let I be an interval and let F : I×I → I be a continuously
differentiable function. Let x∗ ∈ I be a saddle point equilibrium of

xn+1 = F (xn−1, xn) (3.15)
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with xn−1, xn ∈ I. Assume F satisfies the following conditions:

i)
∂

∂x
F (x, y) ≤ 0 for all (x, y) ∈ I × I;

ii)
∂

∂y
F (x, y) > 0 for all (x, y) ∈ I × I;

iii) (x− x∗)(x− F (x, x)) > 0 for all x ∈ I and x ̸= x∗

Then every solution of (3.15) that converges to x∗ is monotone.

Since (3.2) satisfies the criteria for Theorem 3.1.7, Hoag shows that the special case α = 1,
β = 1, A = 0, and γ = 1 is a consequence of Theorem 3.1.7. It is obvious that Theorem 3.1.7 uses
a more general function than Theorem 3.1.1; however, Theorem 3.1.1 is shown using root-curves
and their associated nullclines. This allows for a more intuitive and visual proof. This is the
main difference between the two methods used to show Conjecture 1.

Much like in the proof of Theorem 3.1.1, Theorem 3.1.7 requires that the equilibrium is a
saddle point. Since saddle points have stable manifolds and thus convergent solutions, the proof
of Theorem 3.1.7 showed that solutions on the stable manifold will be monotonically increasing
or decreasing. This is similar to the idea we used in our proof of Theorem 3.1.1. In our proof, to
show that solutions on the stable manifold are monotonically increasing or decreasing, we show
that it is located in a specific region that ensures this property. In contrast to this, Hoag [5]
used four Lemmas not required in our proof. The theorem by Hoag is more general; however,
our proof of Theorem 3.1.1 uses an analogue to the method of phase portraits for differential
equations that allows for a more elementary and accessible proof.

3.1.5 Additional Results

Using Theorem 3.1.1 and the augmented phase portrait, we provide more information on the
behaviour of solutions of (3.2) that do not converge monotonically to the equilibrium. By Lemma
3.1.5, such solutions eventually oscillate between R2 and R4 indefinitely. Thus, we subdivide
regions R2 and R4 into,

R2a = R2 ∩ {x < x∗, y < x∗},
R2b = R2 ∩ {x ≥ x∗, y < x∗},
R2c = R2 ∩ {x ≥ x∗, y ≥ x∗},
R4a = R4 ∩ {x ≥ x∗, y ≥ x∗},
R4b = R4 ∩ {x < x∗, y ≥ x∗},
R4c = R4 ∩ {x < x∗, y < x∗}.

(3.16)

The visual representation of these sub-regions can be found in Figure 3.3.

Now we explain the following notation for a solution {(xn, yn)}n∈N0
:

• if a solution can oscillate between two regions Ri and Rj either indefinitely or finitely
before entering a region Rk from Rj , we write Ri ⇌∗ Rj → Rk.
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Figure 3.3: The augmented phase portrait of (3.2) with A ∈ [0, 1) and the new regions,
R2a ,R2b ,R2c ,R4a ,R4b , and R4c .

Lemma 3.1.8. Consider a solution of (3.2) with A ∈ [0, 1). Then the following holds.

i) If xn < x∗, then yn+1 < x∗.

ii) If xn ≥ x∗, then yn+1 ≥ x∗.

iii) If xn < x∗ and yn ≥ x∗, then xn+1 > x∗ and yn+1 < x∗

iv) If xn ≥ x∗ and yn < x∗, then xn+1 < x∗ and yn+1 ≥ x∗.

Proof. The proof of i) and ii) comes from the fact that yn+1 = xn.

iii) If xn ≥ x∗ and yn < x∗, then xn+1 = α+yn

A+xn
< α+x∗

A+x∗ = x∗. From ii), yn+1 = xn ≥ x∗.

iv) If xn < x∗ and yn ≥ x∗, then xn+1 = α+yn

A+xn
> α+x∗

A+x∗ = x∗. From i), yn+1 = xn < x∗.

Lemma 3.1.9. For solutions of (3.2) that do not converge monotonically to the equilibrium,
one of the following is always true:

i) the solution eventually oscillates between R2b and R4b indefinitely;

ii) the solution eventually oscillates between R2a and R4c indefinitely;

iii) the solution eventually oscillates between R2c and R4a indefinitely.
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We begin by providing a visual representation of all possible paths a solution could take if it
does not converge to the equilibrium in Figure 3.4. Additionally we provide a visual representa-
tion of regions that solutions cannot jump into based on Lemma 3.1.8 in Figure 3.5.

a) R32 →∗ R31 → R4a

∗
⇌ R2c → R4b ⇌ R2b

b) R32 →∗ R31 → R4b ⇌ R2b

c) R12 →∗ R11 → R2a

∗
⇌ R4c → R2b ⇌ R4b

d) R12 →∗ R11 → R2b ⇌ R4b

Figure 3.4: The possible paths a solution of (3.2) that does not converge monotonically to the
equilibrium could take.

R11 ̸→ R2c R2a ̸→ R4a ∪R4b

R31 ̸→ R4c R2b ̸→ R4a ∪R4c

R2c ̸→ R4c R4a ̸→ R2a ∪R2b

R4c ̸→ R2c R4b ̸→ R2a ∪R2c

Figure 3.5: The regions that solutions of (3.2) cannot jump into using Lemma 3.1.8.

Proof. If (xn, yn) ∈ R32 and the solution does not converge to E∗ = (x∗, x∗), from Lemma 3.1.5,
there exists an ℓ > 0 such that (xn+k, yn+k) ∈ R32 for all 0 ≤ k < ℓ and (xℓ, yℓ) ∈ R31 . Thus,
we write the start of paths a) and b) in Figure 3.4 as,

R32 →∗ R31 . (3.17)

If (xn, yn) ∈ R31 then by the definition R31 (3.8), xn > x∗ and yn ≥ k(xn) = xn > x∗,
implying that, yn+1 > x∗. From Lemma 3.1.5, (xn+1, yn+1) ∈ R4 and so by the definition of the
sub-regions (3.16), (xn+1, yn+1) ∈ R4a ∪ R4b . Using (3.17), we can continue to write paths a)
and b), from Figure 3.4, respectively, as,

a) R32 →∗ R31 → R4a ,

b) R32 →∗ R31 → R4b .

(3.18)

If (xn, yn) ∈ R4a then by the definition of the sub-regions (3.16), xn ≥ x∗ and yn ≥ x∗, and
so yn+1 ≥ x∗. From Lemma 3.1.5, (xn+1, yn+1) ∈ R2. Thus by definition of the sub-regions,
(xn+1, yn+1) ∈ R2c . Thus using (3.18) we continue to show path a) in Figure 3.4 as,

a) R32 →∗ R31 → R4a → R2c . (3.19)

If (xn, yn) ∈ R2c then by the definition of the sub-regions (3.16), we know that xn ≥ x∗ and
yn ≥ x∗ implying that, yn+1 ≥ x∗. From Lemma 3.1.5, (xn+1, yn+1) ∈ R4. Thus by definition
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of the sub-regions, (xn+1, yn+1) ∈ R4a ∪ R4b . Using (3.19), we continue to write path a) from
Figure 3.4 as,

a) R32 →∗ R31 → R4a

∗
⇌ R2c → R4b . (3.20)

If (xn, yn) ∈ R4b then by the definition of the sub-regions (3.16), we know that xn < x∗ and
yn ≥ x∗. By Lemma 3.1.8, xn+1 > x∗ and yn+1 < x∗. From Lemma 3.1.5, (xn+1, yn+1) ∈ R2

and so by the definition of the sub-regions of R2, (xn+1, yn+1) ∈ R2b . Thus using (3.20) and
(3.18) we can continue paths a) and b) from Figure 3.4, respectively, as,

a) R32 →∗ R31 → R4a

∗
⇌ R2c → R4b → R2b ,

b) R32 →∗ R31 → R4b → R2b .

If (xn, yn) ∈ R2b then by the definition of the sub-regions (3.16), we know that xn ≥ x∗ and
yn < x∗. By Lemma 3.1.8 xn+1 < x∗ and yn+1 ≥ x∗. From Lemma 3.1.5, (xn+1, yn+1) ∈ R4.
Thus by definition of the sub-regions of R4, we have (xn+1, yn+1) ∈ R4b . Finally, we complete
paths a) and b) from Figure 3.4, respectively, as,

a) R32 →∗ R31 → R4a

∗
⇌ R2c → R4b ⇌ R2b ,

b) R32 →∗ R31 → R4b ⇌ R2b .

Thus solutions on path a) can either oscillate between R4a and R2c indefinitely or oscillate
between R4b and R2b indefinitely.

If (xn, yn) ∈ R12 and the solution doesn’t converge to the equilibrium, from Lemma 3.1.5,
there exists an ℓ > 0 such that (xn+k, yn+k) ∈ R12 for all 0 ≤ k < ℓ and (xℓ, yℓ) ∈ R11 . Then,
we can start writing paths c) and d) from Figure 3.4 as,

R12 →∗ R11 . (3.21)

If (xn, yn) ∈ R11 then by the definition of R11 (3.8), xn < x∗ and yn ≤ k(xn) = xn < x∗ and
so, yn+1 < x∗. From Lemma 3.1.5, (xn+1, yn+1) ∈ R2, and by the definition of the sub-regions
(3.16), (xn+1, yn+1) ∈ R2a ∪ R2b . Using (3.21), we continue to write solutions c) and d) from
Figure 3.4, respectively, as,

c) R12 →∗ R11 → R2a ,

d) R12 →∗ R11 → R2b .

(3.22)

If (xn, yn) ∈ R2a then by the definition of the sub-regions (3.16), xn < x∗ and yn < x∗.
Thus, yn+1 < x∗. From Lemma 3.1.5, (xn+1, yn+1) ∈ R4. By the definition of the sub-regions
(3.16), (xn+1, yn+1) ∈ R4c . Using (3.22), we continue writing path c) from Figure 3.4 as,

c) R12 →∗ R11 → R2a → R4c . (3.23)

If (xn, yn) ∈ R4c then by the definition of the sub-regions (3.16), xn < x∗ and yn < x∗. Thus,
yn+1 < x∗. From Lemma 3.1.5, (xn+1, yn+1) ∈ R2. Thus by the definition of the sub-regions
(3.16), (xn+1, yn+1) ∈ R2a ∪R2b . We continue to write path c) from Figure 3.4 using (3.23) as,

c) R12 →∗ R11 → R2a

∗
⇌ R4c → R2b .
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Figure 3.6: The augmented phase portrait of (3.2) with A = 0.9 and α = 0.1. Depicted are five
iterations of three solutions, each starting at one of the green dots. One solution is oscillating
between R2b and R4b , another is oscillating between R2a and R4c , and the third is oscillating
between R2c and R4a .

Since solutions that enterR2b oscillate betweenR2b andR46 indefinitely, we can finish writing
paths c) and d) from Figure 3.4 as

c) R12 →∗ R11 → R2a

∗
⇌ R4c → R2b ⇌ R4b ,

d) R12 →∗ R11 → R2b ⇌ R4b .

Thus, for solutions that do not converge monotonically to the equilibrium, they either oscillate
betweenR2b andR4b indefinitely, oscillate betweenR2a andR4c indefinitely, or oscillate between
R2c and R4a indefinitely. See Figure 3.6 for an example of each case.

To say more about solutions of (3.2) that do not converge monotonically to the equilibrium,
using Definition 2.3.12, we find the pre-image of the line x = x∗ to be a function y = S(x) that
satisfies F (x, S(x)) = x. Equivalently, α+y

A+x = x∗, and so

S(x) = xx∗ +Ax∗ − α.

Lemma 3.1.10. Consider (3.2) with A ∈ [0, 1). If S(x̄) = k(x̄), then x̄ = x∗ and the two
functions intersect at E∗ = (x∗, x∗).
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Proof. Assume that S(x̄) = k(x̄). Then, x̄x∗ +Ax∗ − α = x̄. Thus,

x̄ =
Ax∗ − α

1− x∗ .

Since x∗ = α+x∗

A+x∗ , we have that 1− x∗ = A−α
A+x∗ and so,

x̄ =

(
A
α+ x∗

A+ x∗ − α

)(
A+ x∗

A− α

)
=

(
Aα+Ax∗ − αA− αx∗

A+ x∗

)(
A+ x∗

A− α

)
=

x∗(A− α)

A− α
= x∗.

Therefore S(x∗) = k(x∗) = x∗. Hence, the functions intersect at E∗ = (x∗, x∗).

Lemma 3.1.11. Consider (3.2) with A ∈ [0, 1). The the following holds.

i) If yn < S(xn), then xn+1 < x∗. If yn > S(xn) then, xn+1 > x∗;

ii) If α > A, then S(x) < k(x) for x ∈ (0, x∗) and k(x) < S(x) for x > x∗.

The proof of Lemma 3.1.11 is in Chapter 5, Section 5.7. Now we prove Theorem 3.1.12 from
[3] and [8] for A ∈ [0, 1). We note that this theorem was first proved in [3] by Gibbons, Kulenovic,
and Ladas and later included in [8].

Theorem 3.1.12. [Adapted from [3, Theorem 3.1] and [8, Theorem 6.5.3]] Let {(xn, yn)}n∈N0

be a nontrivial solution of (3.2) and let E∗ = (x∗, x∗) denote the unique positive equilibrium.
Then the following statements hold.

a) After the first semicycle, a solution that oscillates about the equilibrium will have semicycles
of length one.

b) Assume α > A. Then every solution that does not eventually oscillate about the equilibrium
converges monotonically to the equilibrium.

Proof. a) By Lemma 3.1.9 all solutions that do not monotonically converge to E∗ = (x∗, x∗),
eventually oscillate either between R2a and R4c , or R2c and R4a , or R2b and R4b .

By the definition of the sub-regions (3.16), since x < x∗ for R2a and R4c , if a solution
oscillates between R2a and R4c , then it is not oscillating about the equilibrium. Similarly, if a
solution oscillates between R2c and R4a , then it is not oscillating about the equilibrium.

Thus, we consider a solution that oscillates between R2b and R4b . Without loss of generality,
assume {(x2n, y2n)}n∈N0

∈ R2b and {(x2n+1, y2n+1)}n∈N0
∈ R4b . Then by the definition of the

sub-regions (3.16),

x2n ≥ x∗ and x2n+1 < x∗ for all n ∈ N0.

Thus, the solution oscillates about the equilibrium with semicycle of length one.

Now we must show that any solution that eventually oscillates between R2b and R4b does
not oscillate about the equilibrium before it enters regions R2b and R4b . By the definition of the
regions (3.8) and sub-regions (3.16), if (xn, yn) ∈ R32 ∪R31 ∪R4a ∪R2c , then

xn ≥ x∗.

Thus, a solution on path a) or b) from Figure 3.4 that eventually oscillates between R2b and R4b

does not start to oscillate about the equilibrium until it enters R4b . Thus, it has semicycles of
length one except for possibly the first semicycle.

Additionally, we have that from the definition of the regions (3.8) and sub-regions (3.16), if
(xn, yn) ∈ R12 ∪R11 ∪R4c ∪R2a then,

xn < x∗.
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Thus, a solution on path c) or d) from Figure 3.4 does not start to oscillate about the equilibrium
until it enters R2b . Thus, the solution has semicycles of length one except for possibly the first
one.

b) If α > A, then we eliminate the possibility that a solution that does not converge mono-
tonically to the equilibrium, can oscillate between R2c and R4a indefinitely, or between R2a and
R4c indefinitely.

From the proof of Lemma 3.1.9, if (xn, yn) ∈ R2c , then (xn+1, yn+1) ∈ R4a ∪ R4b . By
definition of R2 (3.8), yn < k(xn) and by the definition of R2c (3.16), xn ≥ x∗. Since α > A, by
Lemma 3.1.11 ii), yn < k(xn) < S(xn). Thus by Lemma 3.1.11 i), xn+1 < x∗. By the definition
of the sub-regions of R4a and R4b , (xn+1, yn+1) ∈ R4b . Thus, the solution cannot oscillate
between R2c and R4a .

Similarly, by Lemma 3.1.9 if (xn, yn) ∈ R4c then (xn+1, yn+1) ∈ R2a ∪R2b . By the definition
of R4 (3.8), yn > k(xn) and by the definition of R4c (3.16), xn < x∗. Since α > A, by Lemma
3.1.11 ii), yn > k(xn) > S(xn) and so by Lemma 3.1.11 i), xn+1 > x∗. By the definition of the
sub-regions R2a and R2b , (xn+1, yn+1) ∈ R2b . Thus a solution cannot oscillate between R4c and
R2a .

Therefore, a solution of (3.2) with α > Amust either eventually oscillate betweenR4b andR2b

and thus also oscillate about the equilibrium or must converge monotonically to the equilibrium.
See Figure 3.7 for examples of solutions oscillating between R4b and R2b .

In [3] and [8], the proof for Theorem 3.1.12 used more classical techniques for difference
equations. In comparison, our proof did not use any classical theorems and provided a proof
that is intuitive and accessible.

3.2 Case 2: A > 1

Since there exists a theorem that analyzes the behaviour of solutions of (3.2) with parameters
A > 1 and α > 0, we do not explore this system of equations any further. However, the following
theorem, presented in the variables used in this chapter, provides the global dynamics.

Theorem 3.2.1. [Adapted from [3, Theorem 6.1]] Assume that A > 1. Then every positive
solution of xn+1 = α+yn

A+xn
converges to the positive equilibrium, (x∗, x∗).

Note that this theorem is similar to Theorem 3.0.1 from [8]. The difference is that in Theorem
3.0.1, we only get local asymptotic stability when A > 1 and Theorem 3.2.1 gives us global
asymptotic stability of the unique positive equilibrium.

3.3 Case 3: A = 1

As in the case for A > 1, we simply provide information that is already known to present a
thorough analysis of (3.2).

By Theorem 3.0.3 a) from [4], every solution of (3.2) converges to a period two solution. This
result is also found in [3] as Theorem 5.1. We do not provide a proof for these theorems as the
proof from [3] is short and comprehensive.
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Figure 3.7: The augmented phase portrait of (3.2) with A = 0.1 and α = 0.9. Depicted are five
iterations of two solutions that are eventually oscillating between R2b and R4b . One solution
starts at the green dot in R4c and the others starts at the green dot in R2c .
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Chapter 4

Analysis of xn+1 =
α+β(xn+xn−1)
A+B(xn+xn−1)

We analyze

xn+1 =
α+ β(xn + xn−1)

A+B(xn + xn−1)
, n ∈ N0 (4.1)

for initial conditions x0 > 0, and x−1 > 0 and parameters α, β,A,B > 0. Without loss of
generality, we simplify (4.1) by dividing the numerator and denominator by β, and applying the
change of variables, x̃n := B

β xn. Then,

x̃n+1 =
B

β
xn+1 =

α̃+ x̃n + x̃n−1

Ã+ x̃n + x̃n−1

, (4.2)

where α̃ = Bα
β2 > 0 and Ã = A

β > 0, with initial conditions x̃0 > 0 and x̃−1 > 0.

To simplify the notation we henceforth “omit the tilde” by referring to α̃ as α, Ã as A, and
x̃n as xn. We can express (4.2) as a planar system by letting yn := xn−1. so that

xn+1 =
α+ xn + yn
A+ xn + yn

=: F (xn, yn), yn+1 = xn =: G(xn, yn), n ∈ N0 (4.3)

with initial conditions x0 > 0 and y0 > 0 and parameters A > 0 and α > 0.

By Definition 2.1.5, equilibria of (4.3) must satisfy x∗ = F (x∗, x∗), or equivalently,

x∗ =
α+ 2x∗

A+ 2x∗ . (4.4)

Solving (4.4) for x∗ yields the only positive solution,

x∗ =
−(A− 2) +

√
(A− 2)2 + 8α

4
. (4.5)

Since α > 0, (4.3) has a unique positive equilibrium given by (4.3) E∗ = (x∗, x∗).

4.1 Case 1: A > α

4.1.1 Analysis

In this section, we analyze (4.3) for A > α > 0. For this case, our initial analysis using
the augmented phase portrait provides the framework that allows us to prove that the unique
positive equilibrium is globally asymptotically stable, independent of existing stability theorems.

We first remark that for A > α,

0 < xn+1 =
α+ xn + yn
A+ xn + yn

< 1.

This implies that solutions with non-negative and non-trivial initial conditions (that is, x0, y0 >
0), (xn, yn) ∈ (0, 1) × (0, 1) for n ≥ 2. Hence, it suffices to only consider solutions with initial
conditions (x0, y0) ∈ (0, 1)× (0, 1).
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Furthermore, since A > α, the unique positive equilibrium,

x∗ =
α+ 2x∗

A+ 2x∗ < 1.

We now discuss the dynamics of (4.3) using the augmented phase portrait. We do not apply
classical methods to discuss the local dynamics, nor do we apply global stability theorems, such
as Theorems 2.2.12 and 2.2.13, as was done in [1]. We prove global stability of E∗ = (x∗, x∗) by
using root-curves and their associated nullclines.

By Definition 2.3.2, the x-nullcline is the function y = h(x) that solves F (x, y) = x. Solving
F (x, y) = x in (4.3) for y yields,

α+ x+ y

A+ x+ y
= x,

α+ x+ y = x(A+ x) + xy,

h(x) := y =
x2 + (A− 1)x− α

1− x
.

From Remark 2.3.3, the y-nullcline is k(x) = x. Nullclines divide the space into regions of
component-wise monotonicity (see Chapter 6, Section 6.1.1.)

Proposition 4.1.1. Consider (4.3) and assume A > α. Then,

∆xn = xn+1 − xn


> 0, yn > h(xn),

= 0, yn = h(xn),

< 0, yn < h(xn),

and ∆yn = yn+1 − yn


> 0, yn < k(xn),

= 0, yn = k(xn),

< 0, yn > k(xn).

By Definition 2.6, any root-curve associated with the x-nullcline is a function y = rh(x) that
satisfies G(x, y) = h(F (x, y)). Thus, we solve

x = h

(
α+ x+ y

A+ x+ y

)
,

for y. We rearrange using algebraic manipulations to obtain the only positive function,

y = rh(x) := − (A− 1 + x)

2
+

√
4α+ 4x+ (A− 1 + x)2

4
. (4.6)

The details of this calculation are found in Chapter 6, Section 6.1.2.

By Definition 2.3.7, a root-curve associated with the y-nullcline is a function y = rk(x) that
satisfies G(x, rk(x)) = k(F (x, rk(x))). This is equivalent to,

x = F (x, rk(x)) =
α+ x+ rk(x)

A+ x+ rk(x)
,

x(A+ x) + xrk(x) = α+ x+ rk(x),

rk(x) =
x2 + (A− 1)x− α

1− x
= h(x).

Proposition 4.1.2. Consider (4.3) and assume A > α.

a) If yn < rh(xn) then yn+1 > h(xn+1), or equivalently Lh(xn, yn) > 0.

b) If yn > rh(xn) then yn+1 < h(xn+1), or equivalently Lh(xn, yn) < 0.

c) If yn < rk(xn) then yn+1 > k(xn+1), or equivalently Lk(xn, yn) > 0.

d) If yn > rk(xn) then yn+1 < k(xn+1), or equivalently Lk(xn, yn) < 0.
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The proof of Proposition 4.1.2 is in Chapter 6, Section 6.1.3.

Property 4.1.3. For (4.3) with any A > 0 and α > 0, any two of y = rk(x), y = rh(x), and
y = k(x) only intersect at E∗ = (x∗, x∗).

The proof can be found in Chapter 6, Section 6.1.4.

Proposition 4.1.4. Consider (4.3) and assume A > α. Then,

a) rk(x) < k(x) < rh(x) for x ∈ (0, x∗) and rh(x) < k(x) < rk(x) for x ∈ (x∗, 1).

b) y = k(x) and y = rh(x) are increasing functions for all x ∈ (0, 1).

c) y = rk(x) is increasing for max{0, 1 −
√
A− α} < x < 1. In fact, if y = rk(x) > 0, then

y = rk(x) is increasing.

d) The only positive solution of rk(x) = 1 is x =
√

1 + α+ A2

4 + A
2 < 1. The only positive

solution of rk(x) = 0 is x = 1
2

(√
(A− 1)2 − 4α+ 1−A

)
> 0.

Proof. (a) By Property 4.1.3, any pair of the three functions, h(x), rh(x), and rk(x), only
intersect at the equilibrium, (x∗, x∗). If we show rk(x) < k(x) < rh(x) for a specific point
x ∈ [0, x∗), then rk(x) < k(x) < rh(x) for all x ∈ (0, x∗). Similarly, if we show that rh(x) <
k(x) < rk(x) for a specific point x ∈ (x∗, 1], then rh(x) < k(x) < rk(x) for all x ∈ (x∗, 1).

Thus we evaluate h(x), rh(x), and rk(x) at x = 0. Since,

rk(0) = −α,

rh(0) =
1−A+

√
(1−A)2 + 4α

2
> 0,

k(0) = 0,

rk(x) < k(x) < rh(x) for all x ∈ (0, x∗).

We now evaluate h(x), rh(x), and rk(x) at x = 1. Since,

lim
x−→1−

rk(x) = lim
x−→1−

x2 + (A− 1)x− α

1− x
−→ +∞,

rh(1) =
−A+

√
(−A)2 + 4α+ 4

2
<

−A+
√
A2 + 4A+ 4

2
= 1,

k(1) = 1,

rh(x) < k(x) < rk(x) for all x ∈ (x∗, 1).

(b) Since k(x) = x, it is an increasing function. To show that rh(x) is an increasing function,
we want to show that

r′h(x) =
1

2

(
1 +A+ x−

√
4(α+ x) + (1−A− x)2√

4(α+ x) + (1−A− x)2

)
> 0.

Simplifying the numerator and noting that A > α

(1 +A+ x)−
√
4(α+ x) + (1−A− x)2 = (1 +A+ x)−

√
4(α+ x) + 1− 2(A+ x) + (A+ x)2,

> (1 +A+ x)−
√
4(A+ x) + 1− 2(A+ x) + (A+ x)2,

= (1 +A+ x)−
√
(1 +A+ x)2

= 0.
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Thus, r′h(x) > 0 and so y = rh(x) is increasing.

(c) The critical points of y = h(x) = rk(x) satisfy

r′k(x) =
A− α

(1− x)2
− 1 = 0.

That is, x = 1 ±
√
A− α. Since x = 1 +

√
A− α > 1, we only consider the critical point

x = 1−
√
A− α. Now, for x ∈ (0, 1),

r′′k(x) =
2(A− α)

(1− x)3
> 0.

As such, y = rk(x) decreases for all x ∈ (0, 1 −
√
A− α) if 1 >

√
A− α. Otherwise, y = rk(x)

increases for all x ∈ (0, 1).

If 1 −
√
A− α > 0, then rk(x) is increasing for all x ∈ (1 −

√
A− α, 1). However, rk(0) =

−α < 0. Since rk(x) is decreasing for x < 1−
√
A− α, rk(x) < 0 for x ∈ (0, 1−

√
A− α). Thus,

rk(x) is increasing when rk(x) > 0 and x > 1−
√
A− α.

d) If rk(x) = 1, then x2 +Ax− (1 + α) = 0 and the only positive solution is,

x =
−A+

√
A2 + 4 + 4α

2
> 0.

Since A > α, x = −A+
√
A2+4+4α
2 < −A+

√
A2+4+4A
2 =

−A+
√

(A+2)2

2 = 1.

If rk(x) = 0, then x2 + (A− 1)x− α = 0. Thus the only positive solution is,

x =
1−A+

√
(A− 1)2 + 4α

2
> 0.

Now applying the information from Proposition 4.1.4, we plot generic root-curves in Figure
4.1. We define the following regions.

R1 = {(x, y) ∈ R2| rk(x) ≤ y ≤ k(x) < rh(x), 0 < x < x∗},

R21 =

{
(x, y) ∈ R2| y < min{rk(x), rh(x)}, y < k(x),

1−A+
√

(A− 1)2 + 4α

2
< x < 1

}
,

R22 = {(x, y) ∈ R2| rh(x) ≤ y < k(x) < rk(x), x
∗ < x < 1},

R3 = {(x, y) ∈ R2| rh(x) < k(x) ≤ y ≤ rk(x), x
∗ < x < 1},

R41 =

{
(x, y) ∈ R2| y > max{rk(x), rh(x)}, y > k(x), 0 < x <

−A+
√
A2 + 4 + 4α

2

}
,

R42 = {(x, y) ∈ R2| rk(x) < k(x) < y ≤ rh(x), 0 < x < x∗}.
(4.7)

4.1.2 Global Stability

Lemma 4.1.5. Consider (4.3) with A > α.

a) R1 is positively invariant. Every solution that enters R1 converges to E∗ = (x∗, x∗).

b) R3 is positively invariant. Every solution that enters R3 converges to E∗ = (x∗, x∗).
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Figure 4.1: A generic augmented phase portrait of (4.3) withA > α. The x-nullcline, representing
y = h(x) is in dashed blue. The y-nullcline, k(x) = x is in dashed red. The associated root-
curves, y = rh(x) and y = rk(x) are the curves in solid blue and red, respectively. Recall
that h(x) = rk(x). The vertical and horizontal arrows represent the regions of component-wise
monotonicity. For example, for a point (xn, yn) ∈ R41 , the right arrow in R41 indicates that
∆xn > 0 and the downwards arrow indicates that ∆yn < 0. Finally, regions containing a ‘+’ (‘−’)
indicate that the next-iterate lies found above (below) the same coloured nullcline. For example,
a blue plus sign in R21 indicates that for a point (xn, yn) ∈ R21 , the next-iterate, (xn+1, yn+1),
will lie above the blue nullcline. A red minus sign in R41 indicates that for (xn, yn) ∈ R41 , the
next iterate, (xn+1, yn+1) will lie below the red nullcline.
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Proof. a) If (xn, yn) ∈ R1, then by the definition of R1 (4.7), rk(xn) ≤ yn ≤ k(x) < rh(xn)
and xn ∈ (0, x∗). Hence, by Proposition 4.1.2, h(xn+1) = rk(xn+1) < yn+1 ≤ k(xn+1). Thus,
(xn+1, yn+1) ∈ R1 and R1 is a positively invariant region.

Since (xn, yn) ∈ R1, by Proposition 4.1.1, ∆xn > 0 and ∆yn > 0, so the solution is increasing
within R1. From the definition of the regions (4.7), yn ≤ k(xn) = xn < x∗, so the solution
increases monotonically and converges to E∗ = (x∗, x∗).

b) If (xn, yn) ∈ R3, then by the definition of R3 4.7, rh(xn) < k(xn) ≤ yn ≤ rk(xn) and xn ∈
(x∗, 1). By Proposition 4.1.2, k(xn+1) ≤ yn+1 < h(xn+1) = rk(xn+1). Thus (xn+1, yn+1) ∈ R3

and R3 is a positively invariant region.

Since (xn, yn) ∈ R3, by Proposition 4.1.1, ∆xn < 0 and ∆yn < 0. Additionally, from the
definition of the regions (4.7), yn ≥ k(xn) = xn > x∗. Thus the solution decreases monotonically
and therefore converges to E∗ = (x∗, x∗).
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Lemma 4.1.6. Consider a solution {(xn, yn)}n∈N0 of (4.3) with A > α. Then one of following
is always true:

a) the solution eventually enters R1 and converges to the positive equilibrium, E∗ = (x∗, x∗).

b) the solution eventually enters R3 and converges to the positive equilibrium, E∗ = (x∗, x∗).

c) the solution oscillates between R21 and R41 , indefinitely.

We first include a figure of all the possible paths a solution can take to provide visual intuition
to the reader.

a) R21 → R42 → R1 → · · · → R1

b) R41 → R22 → R3 → · · · → R3

c) R21 ⇌ R41 (oscillates).

Figure 4.2: The possible paths a solution of (4.3) can take.

Proof. Consider (xn, yn) ∈ R21 . Then by the definition of R21 (4.7), yn < min{rh(xn), rk(xn)}

for all xn ∈
(

1−A+
√

(A−1)2+4α

2 , 1

)
. By Proposition 4.1.2, yn+1 > k(xn+1) and yn+1 > h(xn+1) =

rk(xn+1), and so (xn+1, yn+1) ∈ R42 ∪ R41 . We begin writing paths a) and c) from Figure 4.2,
respectively, as

a) R21 → R42 ,

c) R21 → R41 .

(4.8)

Letting (xn, yn) ∈ R42 , the by the definition of the regions (4.7), rk(xn) < k(xn) < yn ≤
rh(xn) and xn ∈ (0, x∗). Thus, by Proposition 4.1.2, h(xn+1) = rk(xn+1) ≤ yn+1 < k(xn+1).
As such, (xn+1, yn+1) ∈ R1. Recall from Lemma 4.1.5 that solutions stay in R1 indefinitely and
converge to the equilibrium. Thus, using (4.8) we complete path a) from Figure 4.2 as

a) R21 → R42 → R1 → · · · → R1.

If (xn, yn) ∈ R41 , then by definition (4.7), yn > max{rh(xn), rk(xn)} for xn ∈
(
0, −A+

√
A2+4+4α
2

)
.

Thus by Proposition 4.1.2, yn+1 < h(xn+1) = rk(xn+1) and yn+1 < k(xn+1), and so (xn+1, yn+1) ∈
R21 ∪ R22 . Using (4.8), solutions can oscillate between R21 and R41 indefinitely. The start of
path b) and path c) from Figure 4.2, can be written, respectively as,

b) R41 → R22 ,

c) R21 ⇌ R41 .

(4.9)

Let (xn, yn) ∈ R22 . By definition of R22 (4.7), rh(xn) ≤ yn < k(xn) < rk(xn) and xn ∈
(x∗, 1). From Proposition 4.1.2, k(xn+1) < yn+1 ≤ h(xn+1) = rk(xn+1) and so (xn+1, yn+1) ∈
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R3. From Lemma 4.1.5, solutions that enter R3, stay in R3 for all time and converge to the
equilibrium. Using (4.9), we complete path d) from Figure 4.2 as,

b) R41 → R22 → R3 · · ·R3.

Thus, solutions either oscillate between R21 and R41 indefinitely or eventually enter R3 or
R1 and converge to the equilibrium E∗ = (x∗, x∗).

By Lemma 4.1.6, a solution in R41 could enter R21 or R22 . We want to define the regions
where the solution will enter R21 versus R22 . In the generic augmented phase portrait given in
Figure 4.1 and from the definition of the regions (4.7), we see that R21 and R22 are divided by
y = rh(x). From Definition 2.3.13, to define the pre-image of the root-curve, y = rh(x), we find
a function y = Q(x) that satisfies G(x, y) = rh(F (x, y)). Thus we solve,

x =
1−A− y +

√
(1−A− y)2 + 4(α+ y)

2

for y. Rearranging (see Chapter 6 Section 6.1.5), we obtain,

Q(x) := y =
h(x)(A+ x)− (α+ x)

1− h(x)
. (4.10)

Lemma 4.1.7. Consider (4.3) with A > α. If xn < −A+
√
A2+4+4α
2 , then

yn −Q(xn)


> 0, yn+1 < rh(xn+1),

= 0, yn+1 = rh(xn+1),

< 0, yn+1 > rh(xn+1),

where Q(x) is defined in (4.10) and rh(x) in (4.6).

The proof of Lemma 4.1.7 can be found in Chapter 6, Section 6.1.6.

Property 4.1.8. For (4.3) with any A > 0 and α > 0, y = Q(x) intersects y = rk(x) only at
E∗ = (x∗, x∗).

Proof. If Q(x̄) = rk(x̄) then
h(x̄)(A+x̄)−(α+x̄)

1−h(x̄) = h(x̄), and equivalently,

h(x̄)2 + h(x̄)(A− 1 + x̄)− (α+ x̄) = 0.

It follows that,

h(x̄) =
−(A− 1 + x̄) +

√
(A− 1 + x̄)2 + 4(α+ x̄)

2
= rh(x̄).

From Lemma 2.3.9, if h(x̄) = rh(x̄) then x̄ = x∗. Since x∗ = h(x∗) = rk(x
∗), y = Q(x) only

intersects y = rk(x) at E
∗ = (x∗, x∗).

Lemma 4.1.9. Consider (4.3) with A > α. Then Q(x) < rk(x) for x ∈
( 1−A+

√
(A−1)2+4α

2 , x∗)
and rk(x) < Q(x) for x ∈

(
x∗, −A+

√
A2+4+4α
2

)
.
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Proof. a) From Property 4.1.8, Q(x) and rk(x) intersect only at E∗ = (x∗, x∗). Thus if we can

show that r′k(x
∗) < Q′(x∗), then we know that rk(x) < Q(x) for all x ∈

(
x∗, −A+

√
A2+4+4α
2

)
.

Since by Lemma 2.3.10, rk(x) = h(x), we have,

Q′(x) =
(h′(x)(A+ x) + h(x)− 1)(1− h(x)) + (h(x)(A+ x)− (α+ x))h′(x)

(1− h(x))2
,

=
(h′(x)(A+ x) + h(x)− 1)(1− h(x))

(1− h(x))2
+

(h(x)(A+ x)− (α+ x))h′(x)

(1− h(x))2
,

=
h′(x)(A+ x) + h(x)− 1

(1− h(x))
+

Q(x)h′(x)

(1− h(x))
, and,

h′(x) =
(2x+A− 1)(1− x) + (x2 + (A− 1)x− α)

(1− x)2
.

Now we evaluate Q′(x) and h′(x) at x = x∗. Since h(x∗) = Q(x∗) = x∗,

Q′(x∗) =
h′(x∗)(A+ x∗) + h(x∗)− 1

(1− h(x∗))
+

Q(x∗)h′(x∗)

(1− h(x∗))
,

=
h′(x∗)(A+ x∗) + x∗ − 1

(1− x∗)
+

x∗h′(x∗)

(1− x∗)
,

=
h′(x∗)(A+ 2x∗) + x∗ − 1

(1− x∗)
, and,

h′(x∗) =
A+ 3x∗ − 1

1− x∗ .

From Remark 2.3.4 y = h(x) and y = k(x) intersect at E∗ = (x∗, x∗) and from Proposition

4.1.4, k(x) < h(x) for x ∈
(
x∗, −A+

√
A2+4+4α
2

)
⊂ (x∗, 1). Thus, k′(x∗) < h′(x∗). Furthermore,

k(x) = x and so k′(x) = 1. Hence, 1 < h′(x∗). Using this, we show,

h′(x∗) =
A+ 2x∗ + x∗ − 1

1− x∗ <
h′(x∗)(A+ 2x∗) + x∗ − 1

1− x∗ = Q′(x∗).

Thus, h(x) < Q(x) for all x ∈
(
x∗, −A+

√
A2+4+4α
2

)
. Similarly, we can show that Q(x) < h(x) for

all x ∈
( 1−A+

√
(A−1)2+4α

2 , x∗).
By Definition 2.3.12, the pre-image of the line x = x∗, with y arbitrary, is a function y = S(x)

that solves F (x, y) = α+x+y
A+x+y = x∗. Rearranging, we get α + x + y = x∗(A + x) + yx∗. Solving

for y, we obtain,

y(1− x∗) = x(x∗ − 1) +Ax∗ − α,

S(x) := y = −x+
Ax∗ − α

1− x∗ .

Lemma 4.1.10. Consider (4.3) with A > α. Then,

xn+1 − x∗


> 0, yn > S(xn),

= 0, yn = S(xn),

< 0, yn < S(xn).
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Proof. Assume that yn > S(xn). Then yn > −xn + x∗A−α
1−x∗ and so,

(yn + xn)(1− x∗) > x∗A− α,

yn + xn − (yn + xn)x
∗ > x∗A− α,

α+ xn + yn > (A+ yn + xn)x
∗,

xn+1 > x∗.

The proof to show that yn < S(xn) implies, xn+1 − x∗ < 0 is similar. By Definition 2.3.12,
yn = S(xn) implies that xn+1 − x∗ = 0.

Lemma 4.1.11. Consider (4.3) with A > α.

a) If S(x) = x∗, then x = x∗, where x∗ is given by (4.5).

b) If S(x̄) = rh(x̄) then x̄ = x∗, where x∗ is given by (4.5). The two functions pass through
E∗ = (x∗, x∗).

Proof. a) First note that since x∗ = α+2x∗

A+2x∗ , 1− x∗ = A−α
A+2x∗ and so we can rewrite S(x) as,

S(x) = −x+
Ax∗ − α

1− x∗ = −x+

(
A(α+ 2x∗)− α(A+ 2x∗)

A+ 2x∗

)(
A+ 2x∗

A− α

)
= −x+

Aα+ 2Ax∗ − αA− 2αx∗

A− α
= −x+

2x∗(A− α)

A− α
= −x+ 2x∗.

Thus, If S(x) = x∗, then −x+ 2x∗ = x∗, and so x = x∗.

b) Assume that S(x̄) = rh(x̄). By definition F (x̄, S(x̄)) = x∗ andG(x̄, rh(x̄)) = h(F (x̄, rh(x̄)))
are satisfied. Since G(x̄, y) = x̄ and S(x̄) = rh(x̄),

x̄ = G(x̄, rh(x̄)) = h(F (x̄, rh(x̄))) = h(F (x̄, S(x̄))) = h(x∗) = x∗.

Thus, x̄ = x∗. Since S(x∗) = x∗, S(x) = rh(x) only at E∗ = (x∗, x∗).

Lemma 4.1.12. Consider (4.3) with A > α. Then:

a) S(x) > rh(x) > k(x) > rk(x) for x ∈ (0, x∗) and S(x) < rh(x) < k(x) < rk(x) for
x ∈ (x∗, 1).

b) S(x) > x∗ for x ∈ (0, x∗) and S(x) < x∗ for x ∈ (x∗, 1).

Proof. a) Since y = S(x) is decreasing and y = rh(x) is increasing and by Lemma 4.1.11 they
only intersect at (x∗, x∗), S(x) > rh(x) for x ∈ (0, x∗) and S(x) < rh(x) for x ∈ (x∗, 1). By
Proposition 4.1.4, S(x) > rh(x) > k(x) > rk(x) for x ∈ (0, x∗) and S(x) < rh(x) < k(x) < rk(x)
for x ∈ (x∗, 1).

b) Since S(x) is strictly decreasing and S(x∗) = x∗, S(x) > x∗ for x ∈ (0, x∗) and S(x) < x∗

for x ∈ (x∗, 1).

Using the properties discussed in Lemmas 4.1.9 and 4.1.12 we are able to include generic
curves for y = Q(x) and y = S(x) in the augmented phase portrait. We portray this in Figure
4.3. We need to redefine regions R41 and R21 . We separate them into three regions, bounded
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Figure 4.3: The augmented phase portrait of (4.3) with A > α, updated to include y = Q(x),
as the dotted blue curve, y = S(x), as the dashed grey line and x = x∗ as the solid grey line.
The regions R21 and R41 are separated into three regions each, R21a , R21b , and R21c , and R41a ,
R41b , and R41c , respectively.
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by adding x = x∗ and y = S(x). We define R41a , R41b , R41c , R21a , R21b , and R21c as follows:

R41a = R41 ∩ {(x, y) : y > S(x), x ≥ x∗},
R41b = R41 ∩ {(x, y) : y > S(x), x < x∗},
R41c = R41 ∩ {(x, y) : y ≤ S(x), x < x∗},
R21a = R21 ∩ {(x, y) : y < S(x), x ≤ x∗},
R21b = R21 ∩ {(x, y) : y < S(x), x > x∗},
R21c = R21 ∩ {(x, y) : y ≥ S(x), x > x∗}.

(4.11)

Consider a solution {(xn, yn)}n∈N0 that oscillates between R21 and R41 indefinitely. Without
loss of generality, we let (x2n, y2n) ∈ R41 and (x2n+1, y2n+1) ∈ R21 for all n ∈ N0. We can show
that both subsequences, {(x2n, y2n)}n∈N0

and {(x2n+1, y2n+1)}n∈N0
, converge to the equilibrium.

Lemma 4.1.13. i) If {(x2n, y2n)}n∈N0 ∈ R41 and {(x2n+1, y2n+1)}n∈N ∈ R21 , then for all
n ∈ N0,

a)x2n < x2n+2,

b) y2n > y2n+2,

c)x2n+1 > x2n+3,

d) y2n+1 < y2n+3.

ii) If {(x2n+1, y2n+1)}n∈N0
∈ R41 and {(x2n, y2n)}n∈N ∈ R21 , then for all n ∈ N0,

a)x2n+1 < x2n+3,

b) y2n+1 > y2n+3,

c)x2n > x2n+2,

d) y2n < y2n+2.

Proof. For this proof, we assume {(x2n, y2n)}n∈N0
∈ R41 and {(x2n+1, y2n+1)}n∈N ∈ R21 since

the equivalent statement in ii) is a trivial change in notation.

a) Using a contrapositive argument, we assume x2n ≥ x2n+2. This is equivalent to

y2n+1 ≥ α+ y2n+1 + x2n+1

A+ y2n+1 + x2n+1
,

y2n+1A+ y22n+1 + y2n+1x2n+1 ≥ α+ y2n+1 + x2n+1,

y22n+1 + y2n+1(A+ x2n+1 − 1) ≥ (α+ x2n+1),(
y2n+1 +

(A+ x2n+1 − 1)

2

)2

≥ (A+ x2n+1 − 1)2

4
+ (α+ x2n+1),

y2n+1 ≥ − (A+ x2n+1 − 1)

2
+

√
(A+ x2n+1 − 1)2

4
+ (α+ x2n+1) ,

y2n+1 ≥ rh(x2n+1).

By the definition of R21 (4.7), this implies that (x2n+1, y2n+1) /∈ R21 .
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b) Using a contrapositive argument, we let y2n ≤ y2n+2. This is equivalent to

y2n ≤ x2n+1 =
α+ x2n + y2n
A+ x2n + y2n

,

y2n(A+ x2n + y2n) ≤ α+ x2n + y2n,

y2nA+ y2nx2n + y22n ≤ α+ x2n + y2n,

y22n + y2n(A+ x2n − 1) ≤ α+ x2n,

(y2n +
(A+ x2n − 1)

2
)2 ≤ (A+ x2n − 1)4

4
+ α+ x2n,

y2n ≤ − (A+ x2n − 1)

2
+

√
(A+ x2n − 1)4

4
+ α+ x2n ,

y2n ≤ rh(x2n).

By the definition of R41 , (x2n, y2n) /∈ R41 .

The proofs for c) and d) are similar to a) and b), respectively.

We now explain the following notation for a solution {(xn, yn)}n∈N0 :

• If a solution oscillates between two regions for a finite number of time steps, (x2n, y2n) ∈ Ri

and (x2n+1, y2n+1) ∈ Rj for all n = 0, 1, . . . , N − 1 < ∞, where (x2N , y2N ) ∈ Rj , and

(x2N+1, y2N+1) ∈ Rk, we write, Ri
∗∗
⇌ Rj → Rk.

Lemma 4.1.14. Consider a solution of (4.3) with A > α. Then the following holds.

i) If (xn, yn) ∈ R21a , then either (xn+1, yn+1) ∈ R42 or (xn+1, yn+1) ∈ R41c and the solution
oscillates between R21a and R41c for a finite number of steps and then eventually enters R42

from R21a , i.e., (x2n, y2n) ∈ R21a and (x2n+1, y2n+1) ∈ R41c for all n = 0, 1 . . . , N − 1 < ∞
with (x2N , y2N ) ∈ R21a and (x2N+1, y2N+1) ∈ R42 . Solutions in R21a and R41c converge to
E∗ = (x∗, x∗).

ii) If (xn, yn) ∈ R41a , then either (xn+1, yn+1) ∈ R22 or (xn+1, yn+1) ∈ R21c and the solution
oscillates between R41a and R21c for a finite number of steps and eventually enters R22 from
R41a , i.e., (x2n, y2n) ∈ R41a and (x2n+1, y2n+1) ∈ R21c for all n = 0, 1 . . . , N − 1 < ∞ with
(x2N , y2N ) ∈ R41a and (x2N+1, y2N+1) ∈ R22 . Thus, solutions in R41a and R21c converge to
E∗ = (x∗, x∗).

We first include a figure that will help the reader follow the proof.

a) R41c

∗∗
⇌ R21a → R42 .

b) R21c

∗∗
⇌ R41a → R22 .

Figure 4.4: The behaviour of solutions in R21a and R41a . Path a) corresponds to i) from Lemma
4.1.14 and path b) corresponds to ii) Lemma 4.1.14.

Proof. i) If (xn, yn) ∈ R21a , then since R21a ⊂ R21 , by Lemma 4.1.6, (xn+1, yn+1) ∈ R41 ∪
R42 . By the definition of R21a , xn ∈

( 1−A+
√

(A−1)2+4α

2 , x∗] and by the definition of R21 and
Proposition 4.1.4, yn < rk(xn) < rh(xn). Since by Lemma 4.1.9, Q(xn) < rk(xn), we consider
two cases: Q(xn) ≤ yn < rk(xn) and yn < Q(xn) < rk(xn).
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First assume that Q(xn) ≤ yn < rk(xn). By Lemma 4.1.7, yn+1 ≤ rh(xn+1) and so
(xn+1, yn+1) /∈ R41 . Thus (xn+1, yn+1) ∈ R42 .

Now assume that yn < Q(xn) < rk(xn). By Lemma 4.1.7, yn+1 > rh(xn+1) and so
(xn+1, yn+1) /∈ R42 . Thus, (xn+1, yn+1) ∈ R41 . Recall that by the definition of R21a , xn ≤ x∗.
This is equivalent to yn+1 ≤ x∗. Thus, by Lemma 4.1.12 b), yn+1 ≤ x∗ < S(xn+1) and by
definition of the new regions (4.11) (xn+1, yn+1) ∈ R41c .

If (xn, yn) ∈ R41c ⊂ R41 , then sinceR41c ⊂ R41 , from Lemma 4.1.6, (xn+1, yn+1) ∈ R22∪R21 .
By definition of R41c (4.11), xn < x∗ and yn ≤ S(xn). Thus, by Lemma 4.1.10, xn+1 ≤ x∗

and so (xn+1, yn+1) /∈ R22 . Additionally, from the definition of the sub-regions of R21 (4.11),
(xn+1, yn+1) ∈ R21a .

Thus, without loss of generality, suppose towards a contradiction that (x2n, y2n) ∈ R21a such
that y2n < Q(x2n) < rk(x2n) for all n ∈ N and (x2n+1, y2n+1) ∈ R41c . By Lemma 4.1.13,
y2n < y2n+2 and x2n > x2n+2 and so there exists a point (x̄, ȳ) ∈ R21a with ȳ < Q(x̄) where
lim
n→∞

y2n = ȳ and lim
n→∞

x2n = x̄. This implies that there exists a point (x̃, ỹ) ∈ R41c such that

lim
n→∞

y2n+1 = ỹ and lim
n→∞

x2n+1 = x̃. Thus the solution will converge to a prime-period 2 orbit.

However, this is not possible since by Lemma 4.1.13, y2n < y2n+2 and x2n > x2n+2 for any point
in R21a , including (x̄, ȳ) ∈ R21a . Thus, there must exist N such that Q(x2N ) ≤ y2N < rk(x2N ).
Thus, (x2N+1, y2N+1) ∈ R42 . From Lemma 4.1.6, the solution converges to E∗ = (x∗, x∗).

Thus the solution can only oscillate between R21a and R41c for a finite number of steps before
entering R42 from R21a . From Figure 4.4 we write path a) as

a) R41c

∗∗
⇌ R21a → R42 .

ii) If (xn, yn) ∈ R41a , then since R41a ⊂ R41 , from Lemma 4.1.6, (xn+1, yn+1) ∈ R21 ∪ R22 .

By the definition of R41a (4.11), x ∈
(
x∗, −A+

√
A2+4+4α
2

)
. By definition of R41 , yn > rk(xn) >

rh(xn). By Lemma 4.1.9, Q(x) > rk(x) for x ∈
(
x∗, −A+

√
A2+4+4α
2

)
. Thus for (xn, yn) ∈ R41a ,

there are two cases: rk(xn) < yn ≤ Q(xn) and rk(xn) < Q(xn) < yn.

First consider rk(xn) < yn ≤ Q(xn). By Lemma 4.1.7, yn+1 ≥ rh(xn+1). Thus by definition
of the regions (4.7), (xn+1, yn+1) /∈ R21 and so (xn+1, yn+1) ∈ R22 .

If (xn, yn) ∈ R41a such that rk(xn) < Q(xn) < yn, then by Lemma 4.1.7, yn+1 < rh(xn+1).
Thus, (xn+1, yn+1) /∈ R22 and so (xn+1, yn+1) ∈ R21 . By the definition of R41a , xn ≥ x∗ and
hence, yn+1 ≥ x∗. Thus by Lemma 4.1.12 b), yn+1 ≥ x∗ > S(xn+1). Thus, by the definition of
the sub-regions of R21 (4.11), (xn+1, yn+1) ∈ R21c .

If (xn, yn) ∈ R21c , then since R21c ⊂ R21 , from Lemma 4.1.6, (xn+1, yn+1) ∈ R42 ∪R41 . By
the definition of R21c (4.11), yn ≥ S(xn) and so by Lemma 4.1.10, xn+1 ≥ x∗. Thus by the
definition of the regions (4.11), (xn+1, yn+1) /∈ R42 and so by the definition of the sub-regions of
R41 (4.11), (xn+1, yn+1) ∈ R41a .

Thus, without loss of generality, suppose or the sake of contradiction that (x2n, y2n) ∈ R41a

with y2n > Q(x2n) > rk(x2n) and (x2n+1, y2n+1) ∈ R21c . By Lemma 4.1.13, y2n > y2n+2

and x2n < x2n+2 for all n ∈ N0. Thus, similar to the proof in i), there exists N such that
(x2N , y2N ) ∈ R41a with rk(x2N ) < y2N ≤ Q(x2N ) and so (x2N+1, y2N+1) ∈ R22 . From Lemma
4.1.6, the solution converges to the equilibrium.

Thus the solution can oscillate between R41a and R21c for a finite number of steps before
entering R22 from R41a . From Figure 4.4 we write path b) as,

b) R21c

∗∗
⇌ R41a → R22 .
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Theorem 4.1.15. Consider (4.3) with A > α. The nontrivial unique positive equilibrium,
E∗ = (x∗, x∗) is globally asymptotically stable.

Proof. Using Lemma 4.1.6, all solutions converge to the equilibrium except those oscillating in
R21 ∪ R41 indefinitely. From Lemma 4.1.14, solutions that enter R21a , R21c , R41a , and R41c ,
converge to the equilibrium, E∗ = (x∗, x∗). Thus, we need to show that if a solution oscillates
between R21b and R41b indefinitely, it converges to the equilibrium.

If (xn, yn) ∈ R21b ⊂ R21 , then by Lemma 4.1.6, (xn+1, yn+1) ∈ R41∪R42 . By definition of the
region R21b , yn < S(xn). By Lemma 4.1.10, xn+1 < x∗. Thus, (xn+1, yn+1) ∈ R41b ∪R41c ∪R42 .
By Lemma 4.1.14, solutions in R41c and R42 converge to the equilibrium, E∗ = (x∗, x∗). We
only need to see what happens when (xn+1, yn+1) ∈ R41b .

If (xn, yn) ∈ R41b ⊂ R41 , then by Lemma 4.1.6, (xn+1, yn+1) ∈ R21 ∪ R22 . By definition of
the region R41b , yn > S(xn), and so by Lemma 4.1.10, xn+1 > x∗. Thus, by definition of the
sub-regions (4.11) (xn+1, yn+1) ∈ R21b ∪R21c ∪R22 . From Lemma 4.1.14, solutions in R21c and
R22 converge to the equilibrium, E∗ = (x∗, x∗). Thus, we only need to consider a solution that
oscillates between R41b and R21b for all n ∈ N0.

Without loss of generality, let {(x2n, y2n)}n∈N0
∈ R41b and {(x2n+1, y2n+1)}n∈N0

∈ R21b .
From the definition of R21b (4.11), y2n+1 < S(x2n+1) < x∗ and x2n+1 > x∗. From the definition
of R41b (4.11), y2n > S(x2n) > x∗ and x2n < x∗.

From Lemma 4.1.13, the subsequence in R21b increases in the y-coordinate and decreases in
the x-coordinate. Thus, x2n+1 > x2n+3 > x∗ and y2n+1 < y2n+3 < x∗ for all n ∈ N0. Thus, the
subsequence in R21b converges to E∗ = (x∗, x∗).

By Lemma 4.1.13 the subsequence in R41b decreases in the y-coordinate and increases in
the x-coordinate. Thus, x2n < x2n+2 < x∗ and y2n > y2n+2 > x∗ for all n ∈ N0. Thus the
subsequence in R41b also converges to the equilibrium E∗ = (x∗, x∗).

Thus, if a solution oscillates between in R21b and R41b indefinitely, then the solution must
converge to the equilibrium. Thus, every solution of (4.3) converges to the equilibrium (x∗, x∗),
given by (4.5) and the equilibrium is globally asymptotically stable.

In Figure 4.5, we show an example of two solutions that converge to the equilibrium.

4.2 Case 2: A < α

In this section we analyze (4.3) for 0 < A < α using the augmented phase portrait. Due
to a lack of invariant regions, proving global asymptotic stability of the positive equilibrium,
E∗ = (x∗, x∗) using only the augmented phase portrait was not possible. However, we provide
the augmented phase portrait so that we can compare it with the case of A > α.

We first remark that for A < α,

1 <
α+ xn + yn
A+ xn + yn

= xn+1 =
α−A

A+ xn + yn
+

A+ xn + yn
A+ xn + yn

≤ α−A

A
+ 1 =

α

A
,

implying that solutions with non-negative and non-trivial initial conditions, enter the interval
(1, α

A ) within one iteration, and so (xn, yn) ∈ (1, α
A ) × (1, α

A ) for all n ≥ 2. Thus, it suffices to
only consider solutions with initial conditions (x0, y0) ∈ (1, α

A )× (1, α
A ).

Since A < α, the unique positive equilibrium (4.4),

1 <
α+ 2x∗

A+ 2x∗ = x∗ =
α−A

A+ 2x∗ +
A+ 2x∗

A+ 2x∗ ≤ α−A

A
+ 1 =

α

A
.
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Figure 4.5: The augmented phase portrait of (4.3) with A = 2 and α = 1. Depicted are five
iterations of two solutions converging to (x∗, x∗). One solution begins at the green dot in R42

and the other at the green dot in R22 .
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The root-curves and their associated nullclines do not change from the A > α case, however
the direction field does. We find that,

xn+1 − xn


> 0, yn < h(xn),

= 0, yn = h(xn),

< 0, yn > h(xn),

and, yn+1 − yn


> 0, yn < k(xn),

= 0, yn = k(xn),

< 0, yn > k(xn).

and the details of the calculations for this can be found in Chapter 6, Section 6.2.1.

Proposition 4.2.1. Assume that A < α. Then the following hold.

a) If yn < rh(xn), then yn+1 > h(xn+1) and equivalently Lh(xn, yn) > 0.

b) If yn > rh(xn), then yn+1 < h(xn+1) and equivalently Lh(xn, yn) < 0.

c) If yn < rk(xn), then yn+1 < k(xn+1) and equivalently Lk(xn, yn) < 0.

d) If yn > rk(xn), then yn+1 > k(xn+1) and equivalently Lk(xn, yn) > 0.

The details of the proof can be found in Chapter 6, Section 6.2.2.

We now prove the following lemma in order to create a figure with generic root-curves and
their associated nullclines.

Proposition 4.2.2. If A < α then:

a) rk(x) and rh(x) are decreasing for all x ∈ (1, α
A ) and k(x) is increasing for all x ∈ (1, α

A ).

b) k(x) < rh(x) < rk(x) for x ∈ (1, x∗) and rk(x) < rh(x) < k(x) for x ∈ (x∗, α
A ).

Proof. a) Since A− α < 0 and −(x− 1)2 < 0,

r′k(x) =
A− α− (x− 1)2

(1− x)2
< 0.

If rh(x) is decreasing, then,

r′h(x) =
1

2

(
1 +A+ x−

√
4(α+ x) + 1− 2(A+ x) + (A+ x)2√
4(α+ x) + (1−A− x)2

)
< 0.

Since A < α,

r′h(x) <
1

2

(
1 +A+ x−

√
4(A+ x) + 1− 2(A+ x) + (A+ x)2√
4(A+ x) + (1−A− x)2

)
,

=
1

2

(
1 +A+ x−

√
(1 +A+ x)2√

4(A+ x) + (1−A− x)2

)
,

= 0.

Since k(x) = x, it is increasing.

b) By Property 4.1.3, any two of k(x), rh(x), and rk(x) can only intersect at x = x∗.
Since k(x) is increasing and rh(x) and rk(x) are decreasing, k(x) < min{rh(x), rk(x)} for every
x ∈ (1, x∗) and k(x) > max{rh(x), rk(x)} for every x ∈ (x∗, α

A ).

If we show that for some x ∈ [1, x∗), rh(x) < rk(x) then rh(x) < rk(x) for all x ∈ (1, x∗).
Similarly, if we show that rk(x) < rh(x) for some x ∈ (x∗, α

A ], then rk(x) < rh(x) for every
x ∈ (x∗, α

A ].
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Thus we evaluate rh(x) and rk(x) at x = 1. Since,

lim
x→1+

rk(x) = lim
x→1+

x2 + (A− 1)x− α

1− x
−→ +∞,

rh(1) =
−A+

√
(−A)2 + 4α+ 4

2
<

−A+
√
A2 + 4A+ 4

2
= 1,

k(x) < rh(x) < rk(x) for all x ∈ (1, x∗).

We evaluate rh(x) and rk(x) at x = α
A . Since,

rk

(
α

A

)
=

( αA )2 + (A− 1)( αA )− α

1− α
A

=
( αA )2 + α− α

A − α

1− α
A

=
( αA )( αA − 1)

1− α
A

= −α

A
,

rh

(
α

A

)
=

1−A− α
A +

√
(1−A− α

A )2 + 4(α+ α
A )

2
>

1−A− α
A +

√
(1−A− α

A )2

2
> 0,

rk(x) < rh(x) < k(x) for all x ∈ (x∗, α
A ).

Using Proposition 4.2.2, we make Figure 4.6 with generic root-curves and their associated
nullclines. Furthermore, we define the following regions.

R1 = {(x, y) ∈ R2| y ≤ k(x), y < rk(x), y < rh(xn), 1 < x <
α

A
},

R21 = {(x, y) ∈ R2| rk(x) ≤ y ≤ rh(x) < k(x), x∗ < x <
α

A
},

R22 = {(x, y) ∈ R2| rk(x) < rh(x) < y < k(x), x∗ < x <
α

A
},

R3 = {(x, y) ∈ R2| y ≥ k(x), y > rk(x), y > rh(x), 1 < x <
α

A
},

R41 = {(x, y) ∈ R2| k(x) < rh(x) < y ≤ rk(x), 1 < x < x∗}
R42 = {(x, y) ∈ R2| k(x) < y ≤ rh(x) < rk(x), 1 < x < x∗}.

(4.12)

Unfortunately, we cannot obtain any conclusive results about the behaviour of solutions using
the augmented phase portrait in this case. This is because no region is positively invariant like
in the case where A > α. However, if the reader is interested, we have included an additional
lemma and proof in Chapter 6, Section 6.2.3 that shows no region is positively invariant.

4.2.1 Global Stability

To complete the analysis of (4.3), we prove global stability of the positive equilibrium using
Theorem 2.2.13 from [8]. We note that proving global asymptotic stability of E∗ = (x∗, x∗)
using this Theorem 2.2.13 and method was done in [1]. We provide this proof for the sake of
completeness, but acknowledge that we adapted it from [1].

Theorem 4.2.3. All solutions of (4.3) with A < α converge to the equilibrium (x∗, x∗), given
by (4.5). Thus, the equilibrium is globally stable.

Proof. Theorem 2.2.13 requires that F (x, y) = α+x+y
A+x+y with F : [1, α

A ] × [1, α
A ] → [1, α

A ], be
non-increasing in each of its arguments. Thus,

∂F

∂x
=

(A+ x+ y)− (α+ x+ y)

A+ x+ y
=

A− α

A+ x+ y
< 0 and,

∂F

∂y
=

∂f

∂x
< 0,
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Figure 4.6: The augmented phase portrait of (4.3) with A < α. The x-nullcline, representing
y = h(x) is in dashed blue. The y-nullcline, k(x) = x is in dashed red. The associated root-
curves, y = rh(x) and y = rk(x) are the curves in solid blue and red, respectively. Recall
that h(x) = rk(x). The vertical and horizontal arrows represent the component-wise monotone
regions. Finally, regions containing a ‘+’ (‘−’) have that the next-iterate can be found above
(below) the same colour nullcline.
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as required. Furthermore, Theorem 2.2.13 requires that if (m,M) ∈ [1, α
A ] × [1, α

A ] such that
M = F (m,m) and m = F (M,M), then m = M . Thus, assume that (m,M) ∈ [1, α

A ] × [1, α
A ]

with,

α+ 2m

A+ 2m
= M and

α+ 2M

A+ 2M
= m.

The first equation is equivalent to α+2m = AM +2mM and so m = AM−α
2(1−M) . Using the second

equation, this is equivalent to,

α+ 2M

A+ 2M
=

AM − α

2(1−M)
.

Thus, (AM − α)(A+ 2M) = 2(1−M)(α+ 2M) and we obtain,

A2M − αA+ 2AM2 − 2αM = 2α+ 4M − 2Mα− 4M2,

M2(2A+ 4) +M(A2 − 4) + (−αA− 2α) = 0,

2M2 +M(A− 2)− α = 0.

This yields the only positive solution, M =
(2−A)+

√
(A−2)2+8α

4 = x∗. Thus,

x∗ =
α+ 2m

A+ 2m
,

can be rearranged so that m = 1
2

(
x∗A−α
1−x∗

)
. From the proof of Lemma 4.1.14, x∗A−α

1−x∗ = 2x∗. Thus
m = x∗ and so M = m. By Theorem 2.2.13 the equilibrium, E∗ = (x∗, x∗) is globally stable.
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4.3 Case 3: A = α

Since A = α, the system of difference equations simplifies to,

F (xn, yn) = 1, G(xn, yn) = xn.

where the equilibrium is x∗ = 1.

Theorem 4.3.1. All solutions of (4.3) with A = α converge to the equilibrium (x∗, x∗) given by
(4.4). Thus, the equilibrium is globally stable.

Proof. Let (x0, y0) ∈ R2
+. Thus, (x1, y1) = (1, x0) and (x2, y2) = (1, 1).

To complete the analysis of (4.3) we plot the root-curves and their associated nullclines.
When A = α, the y-nullcline is k(x) = x. From Definition 2.3.2, the x-nullcline is a function
that satisfies F (x, y) = x. Thus we obtain the x-nullcline

h(y) = 1.

Thus the component-wise monotone regions are,

xn+1 − xn


> 0, xn < 1,

= 0, xn = 1,

< 0, xn > 1,

and, yn+1 − yn


> 0, yn < k(xn),

= 0, yn = k(xn),

< 0, yn > k(xn).

The calculations are in Chapter 6, Section 6.3.1.

Since the nullcline x = 1 is a vertical line, we cannot find its root-curve as defined in Definition
2.3.7. However, using Remark 2.2 from [10], we find a root-curve x = rh(y) that satisfies
F (rh(y), y) = h(G(rh(y), y)). Since F (x, y) = h(y) = 1 for every (x, y), the root-set is {(x, y) ∈
R2}.

Now, we find a function that satisfies, G(x, y) = k(F (x, y)). This is equivalent to x = k(1)
and so the root-curve of y = k(x) is,

rk(y) := 1.

Proposition 4.3.2. Consider (4.3) with A = α. Then,

a) If xn < 1, then yn+1 < k(xn+1) and equivalently, Lk(xn, yn) < 0.

b) If xn > 1, then yn+1 > k(xn+1) and equivalently, Lk(xn, yn) > 0.

The proof is in Chapter 6, Section 6.3.2. We now plot the root-curves and their associated
nullclines in Figure 4.7.
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Figure 4.7: The augmented phase portrait of (4.3) with A > α. The x-nullcline, x = 1 is in
dashed blue. The y-nullcline, k(x) = x is in dashed red and its associated root-curves y = rk(x)
is the solid blue line, x = 1. The vertical and horizontal arrows represent the component-wise
monotone regions. Finally, regions containing a ‘+’ (‘−’) have that the next-iterate can be found
above (below) the same colour nullcline.
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4.4 Comparison of all three cases

Having analyzed all three cases, A > α, A = α, and A < α, we summarize our results by
comparing the figures from each case.

Figure 4.8: The augmented phase portrait for the three cases of (4.3). The solid red line is rk(x)
and the dashed red line is the associated nullcline, k(x). The solid blue line is rh(x) and the
dashed blue line is the associated nullcline, h(x).

In all three cases, it was possible to show global stability of the equilibrium. Holding α con-
stant, as A increases, rk(x) rotates counter-clockwise and changes from increasing, to a vertical
line, to decreasing and rh(x) changes from increasing to decreasing. However, at the transition it
is no loner a single function. Instead, the root-set associated with h(x) includes all of the points
in the x − y plane. We were able to use the augmented phase portrait from [10] to prove the
global stability for A > α. In the case of A = α, since the root-set associated with the nullcline
h(x) contains all of the points in the x− y plane and rk(x) = h(x), it follows immediately from
the augmented phase portrait that every initial point is eventually fixed. However, the global
stability in this case also follows immediately from the equations, noting that F (xn, yn) = 1. For
the case with A < α, we used existing theorems as was done in [1].
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Chapter 5

Additional Proofs for Chapter 3

In this section we provide supplementary proofs to show various calculations, propositions,
and lemmas from Chapter 3. This chapter is not meant to be read through as the previous ones;
it is meant to be used and accessed at the interest of the reader and to clarify earlier results.
The proofs and calculations in this chapter add the rigour necessary to show the main results
from Chapter 3, but would have taken away from the overall story.

5.1 Proof of Theorem 3.0.1

Proof. We use Theorem 2.2.9 and Theorem 2.2.10 to show that the equilibrium of (3.2) is locally
asymptotically stable when A > 1 and is an unstable saddle point when A < 1. To linearize
(3.2) about the equilibrium we find the partial derivatives of F (x, y) = α+y

A+x as,

∂F

∂x
=

−(α+ y)

(A+ x)2
, and

∂F

∂y
=

1

A+ x
.

The associated characteristic equation is given by (2.4) as λ2−pλ−q = 0 where p = ∂F
∂x (x

∗, x∗)

and q = ∂F
∂y (x

∗, x∗). Thus, λ2 + x∗

A+x∗λ− 1
A+x∗ = 0 and equivalently,

(A+ x∗)λ2 + x∗λ− 1 = 0.

As such, we get two roots, λ+ =
−x∗+

√
(x∗)2+4(A+x∗)

2(A+x∗) and λ− =
−x∗−

√
(x∗)2+4(A+x∗)

2(A+x∗) .

Firstly, assume that A > 1 and by Theorem 2.2.9, to show (x∗, x∗) is locally asymptotically
stable, we need to show that |λ+| < 1 and |λ−| < 1. Note that since |λ+| < |λ−|, we only need
to show that |λ−| < 1 or equivalently,

x∗ +
√
(x∗)2 + 4(A+ x∗) < 2(A+ x∗).

Beginning with A > 1, multiply both sides by (4A+ 4X∗) and add (x∗)2 to obtain,

(x∗)2 + 4A+ 4x∗ < 4A2 + 4Ax∗ + (x∗)2.

The right hand side is a perfect square and so by taking the square root of both sides we get
that

√
(x∗)2 + 4(A+ x∗) < 2A+ x∗. Adding x∗ to both sides, we obtain,

x∗ +
√
(x∗)2 + 4(A+ x∗) < 2(A+ x∗), as required.

Thus when A > 1, by Theorem 2.2.9 (x∗, x∗) is locally asymptotically stable.

Now assume A < 1 and by Theorem 2.2.10, to show E∗ = (x∗, x∗) is a saddle point, we show
that |p| > |1− q| and p2 + 4q > 0. Since A− 1 < 0,

|p| = x∗

A+ x∗ >
x∗ +A− 1

A+ x∗ .
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From the definition, x∗ = α+x∗

A+x∗ ,

A+ x∗ =
α+ x∗

x∗ =
α

x∗ + 1.

As such, x∗ +A− 1 > 0 and,

|p| = x∗

A+ x∗ ≥ x∗ +A− 1

A+ x∗ = 1− 1

A+ x∗ =

∣∣∣∣1− 1

A+ x∗

∣∣∣∣ = |1− q|.

Since p2 > 0 and q > 0, we have p2 + 4q = (x∗)2

(A+x∗)2 + 4
A+x∗ > 0. Thus, by Theorem 2.2.10,

the positive equilibrium E∗ = (x∗, x∗) is a saddle point when A < 1.

5.2 Nullcline calculation

To find the x-nullcline, we find a function y = h(x) that satisfies F (x, y) = x as,

α+ y

A+ x
= x,

h(x) := y = x2 +Ax− α.

Thus h(x) = x2 +Ax−α is the x-nullcline. By Remark 2.3.3, y = x, satisfies G(x, y) = x so the
y-nullcline is k(x) = x.

5.3 Component-wise monotone regions

We want to show that:

xn+1 − xn


> 0, yn > h(xn),

= 0, yn = h(xn),

< 0, yn < h(xn),

and yn+1 − yn


> 0, yn < k(xn),

= 0, yn = k(xn),

< 0, yn > k(xn).

If yn < h(xn), then this is equivalent to yn < x2
n +Axn − α and,

α+ yn
A+ xn

< xn,

F (xn, yn) < xn,

∆xn < 0.

By the definition of the x-nullcline, the equality case is obvious and showing that yn > h(xn)
implies xn+1 − xn < 0 is similar to the above proof. Now, if yn < k(xn), then yn < xn and so,

yn < G(xn, yn),

∆yn > 0.

Similarly, yn > k(xn) implies yn+1− yn > 0. The equality case comes out of the definition of the
y-nullcline.
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5.4 Root-curve associated with x-nullcline

We show the calculation for the root-curve associated with the h(x) nullcline. We want to
find a function y = rh(x) that satisfies, G(x, y) = h(F (x, y)). Equivalently,

x = F (x, y)2 +AF (x, y)− α,

x+ α =

(
α+ y

A+ x

)2

+A

(
α+ y

A+ x

)
,

x+ α+
A2

4
=

(
α+ y

A+ x
+

A

2

)2

.

Solving for y, we find that,

y =
1

2

(
−2α−A2 −Ax± (A+ x)

√
4α+A2 + 4x

)
.

We only take the positive square root since (x, y) ∈ (0,∞)× (0,∞) and so,

rh(x) := y =
1

2

(
−2α−A2 −Ax+ (A+ x)

√
4α+A2 + 4x

)
.

5.5 Proof of Lemma 3.1.2

Proof. a) If yn < rh(xn), then equivalently,

2yn < −2α−A2 −Axn + (A+ xn)
√

4α+A2 + 4x,

2yn + 2α+A2 +Axn < (A+ xn)
√

4α+A2 + 4x.

Simplifying the left hand side and squaring both sides, we obtain,

(2(yn + α) +A(A+ xn))
2
< (A+ xn)

2(4α+A2 + 4xn),(
2(yn + α) +A(A+ xn)

(A+ xn)

)2

< (4α+A2 + 4xn).

Substituting xn+1 = α+yn

A+xn
, we obtain (2xn+1 +A)2 < (4α+A2 + 4xn) and,

4x2
n+1 + 4Axn+1 +A2 < 4α+A2 + 4xn,

x2
n+1 +Axn+1 < α+ xn,

x2
n+1 +Axn+1 − α < yn+1.

Thus, yn+1 > h(xn+1). The proof for b) is similar so we leave it out.

c) If yn < rk(xn), then equivalently yn < x2
n +Axn − α and,

α+ yn
A+ xn

< xn,

xn+1 < yn+1.

As such, yn+1 > k(xn+1). The proof for d) is similar.
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5.6 Proof of Property 3.1.3

Proof. From Lemma 2.3.9, if rk(x̄) = k(x̄), then x̄ is an equilibrium point, and so x̄ = x∗. Since
k(x̄) = x̄, then the two functions intersect at E∗ = (x∗, x∗).

From Lemma 2.3.11, if rk(x̄) = rh(x̄), then x̄ is an equilibrium point, and so x̄ = x∗. Since
rk(x

∗) = x∗, the two functions intersect at E∗ = (x∗, x∗).

Assume that rh(x̄) = k(x̄), then equivalently 2x̄ = −2α−A2 −Ax̄+(A+ x̄)
√

4(α+ x̄) +A2

and,

2(x̄+ α) +A(A+ x̄) = (A+ x̄)
√
4(α+ x̄) +A2,

2F (x̄, x̄) +A =
√

4(α+ x̄) +A2,

4F (x̄, x̄)2 + 4AF (x̄, x̄) +A2 = 4(α+ x̄) +A2,

F (x̄, x̄)2 +AF (x̄, x̄) = α+ x̄,(
α+ x̄

A+ x̄

)2

+A
α+ x̄

A+ x̄
= α+ x̄,

α+ x̄

(A+ x̄)2
+

A

A+ x̄
= 1,

α+ x̄+A(A+ x̄) = (A+ x̄)2,

α+ x̄+A2 +Ax̄ = A2 + 2Ax̄+ x̄2,

α+ x̄ = x̄2 +Ax̄,

0 = x̄2 + x̄(A− 1)− α,

x̄ =
−(A− 1)±

√
(A− 1)2 + 4α

2
.

Thus the only positive value of x̄ =
−(A−1)+

√
(A−1)2+4α

2 = x∗ Since k(x) = x, the two functions
intersect at E∗ = (x∗, x∗) .

5.7 Proof of Lemma 3.1.11

Proof. i) If yn < S(xn), then yn < xnx
∗ +Ax∗ − α which is equivalent to,

yn + α < x∗(xn +A),

xn+1 < x∗.

Similarly, if yn < S(xn), then xn+1 > x∗.

ii) Since S(x) and k(x) are both linear functions that by Lemma 3.1.10 intersect only at
x = x∗, we compare the values of S(x) and k(x) at one point where x ̸= x∗. At x = −A < x∗,

S(−A) = −α

k(−A) = −A.

Since α > A, S(−A) = −α < −A = k(−A). Since −A < x∗ and the functions are linear and
intersect at (x∗, x∗), S(x) < k(x) for x < x∗. Additionally, S(x) > k(x) for x > x∗.
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Chapter 6

Additional Proofs for Chapter 4

This section provides supplementary proofs and calculations of various propositions and lem-
mas from Chapter 4. Like Chapter 5, this chapter is not meant to be read in order, rather, it is
made to complement and provide the necessary rigour for the claims in Chapter 4. These proofs
were omitted earlier because they hindered the presentation of the arguments; many of these
proofs are long and tedious algebraic manipulations. However, they are necessary to ensure the
mathematical rigour, hence we included them in this section.

6.1 Equation (4.3) with A > α

6.1.1 Component-wise monotone regions

For (4.3) with A > α, we want to show that,

∆xn = xn+1 − xn


> 0, yn > h(xn),

= 0, yn = h(xn),

< 0, yn < h(xn),

and ∆yn = yn+1 − yn


> 0, yn < k(xn),

= 0, yn = k(xn),

< 0, yn > k(xn).

Proof. Assuming that yn > h(xn), this is equivalent to yn >
x2
n+(A−1)xn−α

1−xn
and so,

yn − ynxn > xn(A+ xn)− (xn + α),

α+ xn + yn > xn(A+ xn + yn),

xn+1 − xn > 0.

Similarly, yn < h(xn) implies xn+1 − xn < 0. Finally the equality case holds directly from the
definition of an x-nullcline.

Next, assume yn > k(xn), then equivalently yn > xn and,

yn > yn+1,

yn+1 − yn < 0.

Similarly, yn < k(xn) implies yn+1 − yn > 0. The equality case come directly from the definition
of a y-nullcline.

57



M.Sc. Thesis – K. Sacka McMaster University – Mathematics & Statistics

6.1.2 Calculating root-curves

To find a root-curve associated with the y = h(x) nullclines, by Definition 2.3.7, we find a
function y = rh(x) that satisfies, G(x, y) = h(F (x, y)). Solving for y,

x = h

(
α+ x+ y

A+ x+ y

)
,

=

(
α+x+y
A+x+y

)2

+ (A− 1)

(
α+x+y
A+x+y

)
− α(

A−α
A+x+y

) ,

=

( −α(A+x+y)2+(α+x+y)2+(A−1)(α+x+y)(A+x+y)
(A+x+y)2

A−α
A+x+y

)
,

=

(
−α(A+ x+ y)2 + (α+ x+ y)2 + (A− 1)(α+ x+ y)(A+ x+ y)

(A− α)(A+ x+ y)

)
,

=

(
(A− 1)(A− α)(x+ y) + (A− α)(x+ y)2 − α(A− α)

(A− α)(A+ x+ y)

)
,

=

(
(A− 1)(x+ y) + (x+ y)2 − α

(A+ x+ y)

)
,

Multiplying both sides by (A+ x+ y), this yields,

Ax+ x(x+ y) = (A− 1)(x+ y) + (x+ y)2 − α,

0 = (x+ y)2 + (A− 1− x)(x+ y)− (α+Ax),

0 = y2 + y(A− 1 + x)− (α+ x),

0 =

(
y +

(A− 1 + x)

2

)2

− (A− 1 + x)2

4
− (α+ x),

y +
(A− 1 + x)

2
= ±

√
(A− 1 + x)2

4
+ (α+ x) ,

y =
1−A− x±

√
(1−A− x)2 + 4(α+ x)

2
.

Thus, the only positive root-curve is,

rh(x) := y =
1−A− x+

√
(1−A− x)2 + 4(α+ x)

2
.

6.1.3 Proof of Proposition 4.1.2

Proof. a) By a contrapositive argument, we show that yn+1 ≤ h(xn+1) implies yn ≥ rh(xn).
Thus yn+1 ≤ h(xn+1) is equivalent to,( −α(A+xn+yn)

2+(α+xn+yn)
2+(A−1)(α+xn+yn)(A+xn+yn)

(A+xn+yn)2

A−α
A+xn+yn

)
≥ xn,(

−α(A+ xn + yn)
2 + (α+ xn + yn)

2 + (A− 1)(α+ xn + yn)(A+ xn + yn)

(A− α)(A+ xn + yn)

)
≥ xn,

(A− 1)(A− α)(xn + yn) + (A− α)(xn + yn)
2 − α(A− α)

(A− α)(A+ xn + yn)
≥ xn.
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Multiplying both sides by (A+ xn + yn), we obtain,

(A− 1)(xn + yn) + (xn + yn)
2 − α ≥ xn(A+ xn + yn),

(xn + yn)
2 + (A− 1− xn)(xn + yn)− (α+Axn) ≥ 0,

y2n + yn(A− 1 + xn)− (α+ xn) ≥ 0.

Solving for yn,(
yn +

(A− 1 + xn)

2

)2

≥ (A− 1 + xn)
2

4
+ (α+ xn),

yn +
(A− 1 + xn)

2
≥
√

(A− 1 + xn)2

4
+ (α+ xn) ,

yn ≥
1−A− xn +

√
(1−A− xn)2 + 4(α+ xn)

2
,

yn ≥ rh(xn).

Equivalently, if yn < rh(xn), then yn+1 > h(xn+1). The proof for b) is similar so we leave it out.

c) If yn < rk(xn), then equivalently, yn <
x2
n+(A−1)xn−α

1−xn
and since xn ∈ (0, 1),

yn − ynxn < x2
n +Axn − xn − α,

α+ xn + yn < xn(A+ xn + yn),

α+ xn + yn
A+ xn + yn

< xn,

k(xn+1) < yn+1.

The proof of d) is similar.

6.1.4 Proof of Property 4.1.3

Proof. From Lemma 2.3.9, if rk(x̄) = k(x̄), then x̄ is an equilibrium point, and so x̄ = x∗. Since
k(x̄) = x̄, then the two functions intersect at E∗ = (x∗, x∗).

From Lemma 2.3.11, if rk(x̄) = rh(x̄), then x̄ is an equilibrium point, and so x̄ = x∗. Since
rk(x

∗) = x∗, we know that the two functions intersect at E∗ = (x∗, x∗).

Suppose that rh(x̄) = k(x̄). Then, G(x̄, k(x̄)) = G(x̄, rh(x̄)). Since both G(x̄, rh(x̄)) =
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h(F (x̄, rh(x̄))) and G(x̄, k(x̄)) = k(x̄) are satisfied,

k(x̄) = h(F (x̄, rh(x̄))),

x̄ = h(F (x̄, k(x̄))),

= h(F (x̄, x̄)),

= h

(
α+ 2x̄

A+ 2x̄

)
,

=

(
α+2x̄
A+2x̄

)2

+ (A− 1)

(
α+2x̄
A+2x̄

)
− α(

A−α
A+2x̄

) ,

=

( −α(A+2x̄)2+(α+2x̄)2+(A−1)(α+2x̄)(A+2x̄)
(A+2x̄)2

A−α
A+2x̄

)
,

=

(
−α(A+ 2x̄)2 + (α+ 2x̄)2 + (A− 1)(α+ 2x̄)(A+ 2x̄)

(A− α)(A+ 2x̄)

)
,

=

(
(A− 1)(A− α)(2x̄) + (A− α)(2x̄)2 − α(A− α)

(A− α)(A+ 2x̄)

)
,

=

(
(A− 1)(2x̄) + (2x̄)2 − α

(A+ 2x̄)

)
.

Multiplying both sides by (A+ 2x̄), this yields,

Ax̄+ x̄(2x̄) = (A− 1)(2x̄) + (2x̄)2 − α,

0 = (2x̄)2 + (A− 1− x̄)(2x̄)− α−Ax̄,

0 = 4x̄2 + 2Ax̄− 2x̄− 2x̄2 − α−Ax̄,

0 = 2x̄2 + x̄(A− 2)− α,

x̄ =
−(A− 2)±

√
(A− 2)2 + 8α

2
.

Thus the only positive solution is x̄ =
−(A−2)+

√
(A−2)2+8α

2 = x∗. Since k(x) = x, we have that
the two functions intersect at E∗ = (x∗, x∗).

6.1.5 Pre-image of the root-curve

By Definition 2.3.12, we want to find a function y = Q(x) that satisfies G(x, y) = rh(F (x, y)).

Equivalently, x =
1−A−F (x,y)+

√
(1−A−F (x,y))2+4(α+F (x,y))

2 , and so,

(2x− (1−A− F (x, y)))2 = (1−A− F (x, y))2 + 4(α+ F (x, y)),

4x2 − 4x(1−A− F (x, y)) = 4(α+ F (x, y)),

x2 − x(1−A− F (x, y)) = (α+ F (x, y)),

x2 − x(1−A)− α = F (x, y)(1− x),

h(x) = F (x, y),

h(x) =
α+ x+ y

A+ x+ y
,

y(h(x)− 1) = α+ x− h(x)(A+ x),

Q(x) := y =
h(x)(A+ x)− (α+ x)

1− h(x)
.
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6.1.6 Proof of Lemma 4.1.7

Proof. We first show that if x <
√
4+4α+A2−A

2 , then equivalently,

2x+A <
√
4 + 4α+A2,

4x2 + 4Ax+A2 < 4 + 4α+A2,

x2 +Ax < 1 + α,

x2 +Ax− x− α < 1− x.

Since x ∈ (0, 1), we divide both sides by 1− x and h(x) = x2+(A−1)x−α
1−x < 1.

Now, let yn > Q(xn), then yn > h(xn)(A+xn)−(α+xn)
1−h(xn)

. Since xn <
√
4+4α+A2−A

2 , we have that

h(xn) < 1. Thus,

yn(1− h(xn)) > h(xn)(A+ xn)− (α+ xn),

α+ xn + yn > h(xn)(A+ xn + yn),

α+ xn + yn
A+ xn + yn

> h(xn),

xn+1 >
x2
n + xn(A− 1)− α

1− xn
.

Since xn ∈ (0, 1), we multiply both sides by (1− xn) and obtain,

xn+1(1− xn) > x2
n + xn(A− 1)− α,

xn+1 + α > x2
n − xn(1−A− xn+1),

(1−A− xn+1)
2 + 4(α+ xn+1) > (2xn − (1−A− xn+1))

2,

1−A− xn+1 +
√
(1−A− xn+1)2 + 4(α+ xn+1)

2
> xn,

rh(xn+1) > yn+1.

Showing yn < Q(xn) implies yn+1 > rh(xn+1) is similar and the proof for the equality case come
from the definition of y = Q(x).

6.1.7 Calculation of y = S(x)

We want to find a function y = S(x) that satisfies F (x, y) = x∗. Thus we rearrange,

F (x, y) = x∗,

α+ x+ y

A+ x+ y
= x∗,

α+ x+ y = x∗(A+ x) + x∗y,

y(1− x∗) = x∗(A+ x)− x− α,

y(1− x∗) = x∗(A+ x)− x− α,

y =
x∗A+ x(x∗ − 1)− α

1− x∗ ,

S(x) := y = −x+
x∗A− α

1− x∗ .
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6.2 Additional Proofs for Chapter 4: A < α

6.2.1 Component-wise monotone regions

We want to show that,

xn+1 − xn


> 0, yn < h(xn),

= 0, yn = h(xn),

< 0, yn > h(xn),

and, yn+1 − yn


> 0, yn < k(xn),

= 0, yn = k(xn),

< 0, yn > k(xn).

Proof. Assuming that yn > h(xn), this is equivalent to,

yn >
Axn + x2

n − (α+ xn)

(1− xn)
,

Note that 1− xn < 0 and thus,

yn(1− xn) < Axn + x2
n − (α+ xn),

α+ xn + yn < Axn + x2
n + xnyn,

α+ xn + yn < xn(A+ xn + yn),

xn+1 < xn.

Similarly, yn < h(xn) implies that ∆xn > 0. The equality case comes from the definition of
an x-nullcline. For the y-component monotone regions, refer to previous calculations for the
direction field in the A > α case in Chapter 6, Section 6.1.1.

6.2.2 Proof for Proposition 4.2.1

Proof. a) We argue by the contrapositive; we show that yn+1 ≤ h(xn+1) implies yn ≥ rh(xn).
Starting with yn+1 ≤ h(xn+1), we have that,

−α(A+xn+yn)
2+(α+xn+yn)

2+(A−1)(α+xn+yn)(A+xn+yn)
(A+xn+yn)2

A−α
A+xn+yn

≥ xn,

−α(A+ xn + yn)
2 + (α+ xn + yn)

2 + (A− 1)(α+ xn + yn)(A+ xn + yn)

(A− α)(A+ xn + yn)
≥ xn,

(A− 1)(A− α)(xn + yn) + (A− α)(xn + yn)
2 − α(A− α)

(A− α)(A+ xn + yn)
≥ xn,

(A− 1)(xn + yn) + (xn + yn)
2 − α

(A+ xn + yn)
≥ xn.

Thus, we have that,

(A− 1)(xn + yn) + (xn + yn)
2 − α ≥ xn(A+ xn + yn),

(xn + yn)
2 + (A− 1− xn)(xn + yn)− (α+Axn) ≥ 0,

y2n + yn(A− 1 + xn)− (α+ xn) ≥ 0.

Solving for yn,(
yn +

(A− 1 + xn)

2

)2

≥ (A− 1 + xn)
2

4
+ (α+ xn),

yn ≥
1−A− xn +

√
(1−A− xn)2 + 4(α+ xn)

2
,

yn ≥ rh(xn).
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Similarly, we show can b) by the contrapositive.

c) If yn < rk(xn), then equivalently, yn <
x2
n+(A−1)xn−α

1−xn
. Since 1− xn < 0,

yn − ynxn > x2
n +Axn − xn − α,

α+ xn + yn > xn(A+ xn + yn),

α+ xn + yn
A+ xn + yn

> xn,

k(xn+1) > yn+1.

The proof of d) is similar.

6.2.3 Additional Lemma

Lemma 6.2.1. Consider (4.3) with A < α and the regions defined in (4.12). Then, no region
defined in (4.12) by the augmented phase portrait is positively invariant.

Proof. If (xn, yn) ∈ R1, by definition (4.12), yn ≤ k(xn), yn < rk(xn), and yn < rh(xn) for
x ∈ (1, α

A ). By Lemma 4.2.1, h(xn+1) = rk(xn+1) < yn+1 < k(xn+1). Hence, by definition of the
regions (4.12), (xn+1, yn+1) ∈ R21 ∪R22 and R1 is not positively invariant.

If (xn, yn) ∈ R21 , then by definition (4.12), rk(xn) < yn ≤ rh(xn). From Lemma 4.2.1,
yn+1 ≥ h(xn+1) = rk(xn+1) and yn+1 > k(xn+1). Thus by definition of the regions (4.12)
(xn+1, yn+1) ∈ R3 and R21 is not positively invariant.

If (xn, yn) ∈ R22 , then by definition (4.12), rk(xn) < rh(xn) < yn < k(xn) for xn ∈ (x∗, α
A ).

By Lemma 4.2.1, k(xn+1) < yn+1 < h(xn+1) = rk(xn+1) and by definition of the regions (4.12),
(xn+1, yn+1) ∈ R41 ∪R42 . Thus, R22 is not positively invariant.

If (xn, yn) ∈ R3, then by definition (4.12) yn ≥ k(xn), yn > rh(xn), and yn > rk(xn) for
x ∈ (1, α

A ). By Lemma 4.2.1, k(xn+1) < yn+1 < h(xn+1) = rk(xn+1) and by definition of the
regions (4.12), (xn+1, yn+1) ∈ R42 ∪R41 . Thus, R3 is not positively invariant.

If (xn, yn) ∈ R41 , by definition of the region (4.12) we have rh(xn) < yn ≤ rk(xn) for
x ∈ (1, x∗). By Lemma 4.2.1, yn+1 < h(xn+1) = rk(xn+1) and yn+1 ≤ k(xn+1). Thus, by
definition of the regions (4.12) (xn+1, yn+1) ∈ R1 and R41 is not positively invariant.

Letting (xn, yn) ∈ R42 , by the definition of the region (4.12) that yn ≤ rh(xn) < rk(xn)
for x ∈ (1, α

A ). By Lemma 4.2.1 yn+1 ≥ h(xn+1) = rk(xn+1) and yn+1 < k(xn+1) and, by the
definition of the regions, (xn+1, yn+1) ∈ R21 ∪R22 . Thus, R42 is not positively invariant.

6.3 Additional Proofs for Chapter 4: A = α

6.3.1 Component-wise monotone regions

We want to show,

xn+1 − xn


> 0, xn < 1,

= 0, xn = 1,

< 0, xn > 1,

and, yn+1 − yn


> 0, yn < k(xn),

= 0, yn = k(xn),

< 0, yn > k(xn).

Proof. If xn < 1, then xn < xn+1 since xn+1 = 1. Similarly, xn > 1 implies xn+1 − xn < 0. The
equality case comes from the definition of x-nullclines.

If yn < k(xn), then yn < xn and yn < yn+1. Similarly, yn > k(xn) implies yn+1 − yn < 0.
The equality case comes from the definition of y-nullclines.
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6.3.2 Proof for Proposition 4.3.2

Proof. a) Let xn < 1. Then yn+1 < xn+1 and so

yn+1 < k(xn+1).

b) The proof of b) is similar to a).

64

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


Chapter 7

Conclusion

Applying the methods introduced by Streipert and Wolkowicz in [10], we were able to analyze
various cases of

xn+1 =
α+ βxn + γyn
A+Bxn + Cyn

, and yn+1 = xn,

with n ∈ N0, parameters A,B,C, α, β, γ ≥ 0, and initial conditions, x0, y0 > 0. Using nullclines
and their associated root-curves as defined in [10] allowed us to prove that for the case,

xn+1 =
α+ yn
A+ xn

, and yn+1 = xn,

with parameters α > 0, A,≥ 0, and initial condition x0, y0 > 0, there exist solutions that increase
and decrease monotonically to the equilibrium. By using the augmented phase portrait, we were
able to determine regions in the plane where such solutions could exist. Furthermore, since the
unique positive equilibrium is a saddle point, we determined the regions in which the stable
manifold lies. Since the stable manifold is found in the regions where monotonically increasing
and decreasing solutions could exist, we proved that such solutions exist along the stable manifold
and converge to the equilibrium.

As a consequence, we were able to show Conjecture 1 since this would be a special case. While
this conjecture has been previously shown by [5] and [12], the methods we used to show this
conjecture were unlike any previous methods. Our method was visually intuitive and provided a
holistic understanding of the behaviour of solutions of this equation. Additionally, the methods
themselves are elementary. This thesis can be read as a guide to applying these methods.

While showing Conjecture 1 motivated the theorem stating the existence of solutions that
increase and decrease monotonically towards the equilibrium, we also provide a new proof for
Theorem 3.1.12 from [3] and [8] for a particular case. This theorem discusses the behaviour of
solutions that do not converge monotonically to the equilibrium. Specifically, it says that after
the first semi-cycle, every oscillatory solution oscillates about the equilibrium with semi-cycle of
length one. Furthermore, we find that non-oscillatory solutions must converge monotonically to
the equilibrium. The dynamics of this system become clear with the augmented phase portrait.
While Theorem 3.1.12 is an existing theorem from [3] and [8], our proof shows the power in using
the augmented phase portrait, from [10], to analyze recursions.

The second case we analyzed,

xn+1 =
α+ xn + yn
A+ xn + yn

, and yn+1 = xn,

with parameters α > 0, A,> 0, and initial conditions x0, y0 > 0, offered a different problem
when showing the behaviour of the solutions. We examined various cases and were able to prove
global asymptotic stability of the unique positive equilibrium by understanding the behaviour
of solutions from the augmented phase portrait. For some cases, we also introduced two new
curves, the pre-image of the line (x∗, y), with y arbitrary, and the pre-image of the root-curve
associated with the nullcline. Using these two new curves in conjunction with the phase portrait,
we proved the global asymptotic stability of the equilibrium.

In some cases, the planar analysis was less effective and left inconclusive results. However, we
were still able to give a full picture of the behaviour of solutions since we could invoke theorems
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from [8] and proofs from [1] to show that the unique positive equilibrium is globally stable.
Despite the inability to fully determine the behaviour of solutions using the augmented phase
portrait in all cases, we still provided insight into how the system was changing as the parameters
changed.

From this inquiry into applying nullclines and their associated root-curves, we found that
augmented phase portraits are a powerful tool for understanding the general behaviour of so-
lutions of difference equations. Similar to the existing theory on phase portraits for differential
equations, the theory being develop by Streipert and Wolkowicz in [10] offers a new and promis-
ing method to better understand difference equations. This fresh perspective provided accurate
visual intuition for the problems laid out in this thesis and allowed us to determine information
about the behaviour of solutions of planar systems.
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