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Abstract
Inspired by a planar partitioning problem involving multiple unbounded chambers, this the-

sis investigates using classical techniques what can be said of the existence, uniqueness, and
regularity of minimizers in a certain free-endpoint isoperimetric problem. In two cases, a full
existence-uniqueness-regularity result is proved using a convexity technique inspired by work
of Talenti. The problem studied here can be interpreted physically as the identification of the
equilibrium shape of a sessile liquid drop in half-space (in the absence of gravity). This is a well-
studied variational problem whose full resolution requires the use of geometric measure theory,
in particular the theory of sets of finite perimeter. A crash course on the theory required for the
modern statement of the equilibrium shape theorem is presented in an appendix.

Keywords: Calculus of variations · Isoperimetric problem · Geometric measure theory · Sets of
finite perimeter · Sessile drop · Equilibrium shape · Partitioning problem
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Chapter 1

Introduction

1.1 Partitioning Problems

The isoperimetric problem has its roots in antiquity [3]. The traditional setup is as follows:
given a compact domain S in the plane R2 with boundary ∂S of fixed length ℓ, what is the
configuration of the boundary ∂S for which the area enclosed is maximal? The answer, perhaps
unsurprisingly, is that ∂S should be a circle. This question, together with the brachistochrone
problem of Bernoulli, gave impetus to the mathematical field known as the calculus of variations.

One can “dualize” the traditional isoperimetric problem as follows: we may ask, given a
compact domain S of fixed area A in the plane R2, what is the configuration of the boundary
∂S for which the perimeter is minimal? The answer, once again, is that ∂S should be a circle.
In general, the term “isoperimetric problem” is given to any variational problem wherein one
geometrical quantity is maximized or minimized, while another is held fixed.

Similarly to the dual of the isoperimetric problem given above, the following question can be
posed about two compact domains S1, S2 in the plane R2, of fixed areas A1, A2 respectively:
which configuration of the boundaries of these domains yields minimal perimeter, if such a
configuration even exists? Note that we allow the two domains to reduce their total perimeter
by sharing a portion of their boundaries, so the minimal-perimeter configuration need not be
two disjoint discs. We remark that in this setup, the plane R2 is partitioned (almost disjointly,
i.e., with pairwise disjoint interiors) into three “chambers”: two compact, and one non-compact.
Such problems are known as partitioning problems, and their solutions are minimizing clusters.

The famed double bubble conjecture asserted that given two compact domains in Rn, each
with fixed n-dimensional volume, the so-called standard double bubble is the configuration which
uniquely minimizes perimeter. The first partial resolution of this conjecture came in work of Foisy
et al. [9] in 1993: they showed via ad hoc geometric methods that the standard double bubble
in R2 uniquely minimizes perimeter. A resolution of the 3-dimensional case [14] and then the
n-dimensional case [16, 23] followed not so long after. Beyond mere existence, further results
have demonstrated the regularity and stability of such minimizing clusters [20, 21].

The 2-bubble problem can be generalized to the q-bubble problem, q ≥ 2, but only the 3-
bubble case in R2 has been resolved to date [31]. Sullivan [28] conjectured that the optimal
configuration in all dimensions should be a certain “standard” bubble cluster. In 2022, Milman-
Neeman [19] announced a proof of the q-bubble conjecture in Rn and Sn for all q ≤ min(5, n+1).

Another natural partitioning problem is the following: given N compact domains S1, . . . , SN

in Rn, each with fixed n-dimensional volume V1, . . . , VN , andM unbounded domains U1, . . . , UM ,
with all domains having pairwise disjoint interiors, what is the configuration of the interfaces
which locally minimizes (n−1)-dimensional surface area? We say that a candidate configuration
is locally perimeter minimizing if it minimizes (n − 1)-dimensional surface area relative to any
other candidate configuration when tested within arbitrary compact sets.

1
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A
120± 120±

Figure 1.1: Conjectured optimal configuration for the planar partitioning problem with one
compact and two unbounded chambers

The simplest case of this problem is in dimension n = 2, with N = 1 compact chamber with
a fixed area A, and M = 2 unbounded chambers. We conjecture that the optimal configuration
for this problem is given by a vesica piscis (the intersection of two discs with equal radii) of the
desired area meeting a line at triple junctions with all angles equal to 120◦; see Figure 1.1.

This conjecture is motivated by several factors: in other partitioning problems, one finds that
the interfaces between the chambers are minimal surfaces (i.e. surfaces with zero mean curvature)
which meet at certain standard junctions; see Maggi [18]. Furthermore, in the work of Bellettini-
Novaga [1] and Schnürer et al. [25], this configuration appears as the limiting configuration of
a planar network with two triple junctions under curve-shortening flow. One may also observe
that it is conformally equivalent to the standard double-bubble via an inversion of the punctured
plane R2 \ {(0, 0)} through an appropriately chosen circle.

We are therefore interested in solving the following variational problem in R2. Given a
positive constant A > 0 (the area to enclose), we wish to partition the plane into almost disjoint
measurable sets Ω0, Ω+, and Ω− such that:

(i) Ω0 is compact with Lebesgue measure |Ω0| = A,

(ii) Ω+ and Ω− are unbounded, and

(iii) for any other almost disjoint partition (Ω̃0, Ω̃+, Ω̃−) satisfying properties (i) and (ii), the
local perimeter of the interfaces, as measured within any compact test set, is at least that
of (Ω0,Ω+,Ω−).

We will refer to the individual sets Ω0, Ω+ and Ω− as chambers, and the triple (Ω0,Ω+,Ω−) as
a cluster. In brief, we want to determine the configuration of the boundaries of (Ω0,Ω+,Ω−)
which locally minimizes the perimeter of the chambers. We may always rescale so that A = 2.

As posed, this variational problem raises several questions:

(i) What is meant by perimeter?

(ii) Does there exist a minimizer?

(iii) If a minimizer exists, is it unique? Are the chambers connected? Is there a line of symme-
try?

(iv) Are the interfaces between Ω+,Ω− and Ω0 smooth (i.e. 1-dimensional manifolds)?

(v) Is there a singular set where the interfaces fail to be 1-dimensional manifolds? If so, what
does the singular set look like?

2
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Figure 1.2: Symmetrized candidate configuration, with Ω0 centered at the origin O, symmetric
about the x-axis (dashed), and with γ = Γ+ (in black)

In answer to question (i), a very general framework in which to work would be the theory of
sets of finite perimeter ; see, for instance, Maggi [18]. These are sets E for which the characteristic
function χE has a distributional derivative representable by an R2-valued Radon measure with
finite total variation; that is, for which the characteristic function is of (locally) bounded variation,
χE ∈ BVloc(R2). For the relevant definitions, we refer the reader to Appendix A.

Towards a proof within the framework of sets of finite perimeter, assume we have a candidate
for such a locally perimeter minimizing cluster. We conjecture that the technique of Steiner
symmetrization (a measure-preserving, perimeter-diminishing symmetrization with respect to a
hyperplane; see Talenti [29]) would allow us to make the following simplifying assumptions:

• Assumption: away from Ω0, the unbounded sets Ω+, Ω− meet in a straight line. (This seems
intuitively plausible: deviations from straightness must necessarily increase arclength.)

• Assumption: Ω0 shares boundary with both Ω+ and Ω−. (Also intuitively plausible: we can
reduce the total arclength by having Ω0 share boundary with the unbounded chambers.)

• Assumption: Ω0 is convex, and is symmetrical about the axis formed by the interface
between Ω+ and Ω− away from Ω0.

• Assumption: By rotating and translating our coordinate system if necessary, we can assume
that Ω0 is centered at O = (0, 0), and that

Ω+ = {(x, y) : y ≥ 0} \ int(Ω0),

Ω− = {(x, y) : y ≤ 0} \ int(Ω0),

so that Ω+ and Ω− meet along the x-axis away from Ω0.

• Assumption: Denoting the boundary of Ω0 by ∂Ω0 = Γ+∪Γ−, where Γ+ = ∂Ω+∩∂Ω0 and
Γ− = ∂Ω−∩∂Ω0, we may assume that Γ+ is a continuous parametrizable curve symmetric
about the y-axis, lying in the upper half-space H = {(x, y) ∈ R2 | y ≥ 0}. Denote by γ
the upper curve Γ+; see Figure 1.2 above. (Note that it is unclear a priori how regular γ
would be after symmetrizing, so for the purposes of our discussion, we will assume it is at
least continuous.)

We would therefore like to determine the shape of γ. A priori, we do not know the location of
the endpoints of γ = Γ+, which we may assume are of the form (±p, 0) for some p > 0. We wish
to minimize the length of γ and its reflection through the x-axis, while simultaneously locally
minimizing the portion of the x-axis adjacent to γ, namely ∂Ω+ ∩ ∂Ω−. To achieve the latter, it
is equivalent to maximize the distance between the endpoints of γ.

3
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Denote the length of γ by ℓ(γ), and the length of ∂Ω0 by ℓ(∂Ω0); let A(γ) denote the area
enclosed by γ and the x-axis; and let d(γ) = 2p denote the distance along the x-axis between
the endpoints of γ. We therefore wish to minimize the functional

J [γ] = ℓ(γ)− 1

2
d(γ) =

1

2
(ℓ(∂Ω0)− d(γ)), (1.1)

for γ = (x, y) a sufficiently regular parametrized curve satisfying

y ≥ 0, x(t0) = −x(t1) = p > 0, A(γ) = 1. (1.2)

This is a free-endpoint isoperimetric problem in the calculus of variations.

As it turns out, the solution to this variational problem is well-known: using the theory of
sets of finite perimeter, the resolution to this problem appears in Maggi [18] in the following
form. To interpret the statement, we note the following:

• The open upper half-space H is defined by H = {x = (x1, . . . , xn) ∈ Rn | xn > 0}.

• The notation P (A;B) is to be read as “the perimeter of the set A as measured within the
set B,” while the notation P (E) denotes the total perimeter P (E;Rn).

• The notation B(x, r) indicates a ball of radius r > 0 centered at x ∈ Rn.

• The Euclidean space Rn is equipped with the standard basis e1, . . . , en, where ei is the
vector with a 1 in the ith slot and 0s elsewhere.

• The vector νE should be thought of as the measure-theoretic outward unit normal to the
set E of finite perimeter.

In our special case above, n = 2 and β = 1
2 .

Theorem 1.1 (Maggi Thm. 19.21, Liquid drops in the absence of gravity). For every β ∈ (−1, 1),
there exists a unique σ(β) > 0 with the following property: a set of finite perimeter E ⊂ H with
|E| = 1 is a minimizer in the variational problem

ψ(β) = inf{Fβ(E;H) : E ⊂ H, P (E) <∞, |E| = 1}, (1.3)

where
Fβ(E;H) = P (E;H)− βP (E; ∂H), (1.4)

if and only if, up to horizontal translation, E is equivalent to the set

Gβ = Fσ(β), (1.5)

where Fσ, σ > 0, is a set of the form

Fσ = B(sen, r) ∩H, (1.6)

with s ∈ R and r > 0 uniquely determined by the conditions

|Fσ| = 1, P (Fσ; ∂H) = σ. (1.7)

Moreover,
νGβ

· en = β, on bdry(H ∩ ∂Gβ). (1.8)

4
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To fully understand the statement and proof of this theorem, one must study a formidable
amount of modern analytical machinery. (Indeed, this theorem appears in Chapter 19 of the text
by Maggi!) For the interested reader, we present a crash course on this material in Appendix
A, consisting of just those definitions and results which enter into the statement and proof of
the theorem. This raises a question: can we find a setting where this machinery is not necessary
while still obtaining a meaningful result?

1.2 Thesis Outline

The goal of this thesis is to examine what may be said using classical methods about existence,
uniqueness, and regularity of minimizers in the variational problem addressed by Theorem 1.1,
for the special case n = 2. In particular, can we determine existence-uniqueness-regularity for
graphs of C1 functions? What about graphs of W 1,1 functions? Or C1 parametrized curves?

The outline of the thesis is as follows:

• In Chapter 2, as preparation, we derive general expressions for the first and second vari-
ation of a functional, for both graphs of functions and parametrized curves. The “naive”
Taylor expansion approach presented here was inspired by that of Gelfand-Fomin [11].
This approach can be refined significantly by considering 1-parameter families of nearby
admissible curves; see, for example, Morse [22].

• In Chapters 3 and 4, inspired by Talenti [29], we present existence-uniqueness-regularity
proofs in the first and second cases mentioned above: for graphs of C1 functions, the proof
is given in Chapter 3; for graphs of W 1,1 functions, the proof is given in Chapter 4. These
proofs are enabled by a strict convexity property of the integrand when the functional is
restricted to the class of curves given by graphs of functions.

• In Chapter 5 we present a uniqueness-regularity result for C1 parametrized curves. The
question of existence poses a difficult problem here. One might argue that this very question
motivated much of the development of the modern theory presented in Maggi; indeed, the
direct method in the calculus of variations was developed with the express purpose of
furnishing existence proofs.

As a final note, we remark that there is much to be said about the classical theory of the
calculus of variations which will not be presented here. In particular, the classical theory of
sufficient conditions for a minimizer received much attention in the first half of the 20th century.
For an introduction and a thorough bibliography, we refer the interested reader to the recent
text by Kot [15]. For more advanced developments, the reader should consult texts such as Bliss
[2], Bolza [4], Ewing [8], Fox [10], Gelfand-Fomin [11], Hestenes [13], Morse [22], and Sagan [24].

5
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Chapter 2

First and Second Variation

In this chapter, we derive formulae for the first and second variation of a functional in two
settings: for graphs of C1 functions, and for regular C1 parametrized curves. The formulae
derived are general in nature, allowing for one or both endpoints of the curve to vary.

Definition 2.1 (Big-O and little-o). Given functions f, g : R → R with g > 0, we say:

(i) f is big-O of g, and write f(x) = O(g(x)), if there exist M > 0 and x0 ∈ R such that

|f(x)| ≤Mg(x) for all x in a neighbourhood of x0. (2.1)

(ii) f is little-o of g, and write f(x) = o(g(x)), if for every ε > 0 there exists x0 ∈ R such that

|f(x)| ≤ εg(x) for all x in a neighbourhood of x0. (2.2)

Theorem 2.2 (Fundamental lemma of the calculus of variations). If M(x) ∈ C[a, b] and if∫ b

a

M(x)η(x)dx = 0 (2.3)

for every η(x) ∈ C1[a, b] such that η(a) = η(b) = 0, then

M(x) = 0 for all x ∈ [a, b]. (2.4)

Proof. We refer the reader to Kot [15], p. 39, for the proof.

2.1 Graphs of Functions

In this section we derive general formulae for the first and second variations of a functional
of the form

J [u] =

∫ x1

x0

F (x, u, u′)dx, u ∈ C2[x0, x1], (2.5)

where x0 < x1 are real numbers, and F : R3 → R is a C2 function.

Formulae for the first and second variation of such a functional can be obtained by using a
1-parameter family of nearby admissible curves; this approach is presented in Bliss [2], Fox [10],
and Morse [22]. The formulae presented in these sources allow for nonlinearities in the endpoint
variations, and include ours as a special case. Since we do not require this, we instead follow and
expand upon the Taylor expansion approach of Gelfand-Fomin [11].

Let I = [x0, x1] and I
∗ = [x∗0, x

∗
1]. Let u : I → R and u∗ : I∗ → R be C2 functions, that is, for

each 0 ≤ k ≤ 2 the derivative u(k) exists and is continuous on (x0, x1), and admits a continuous
extension to [x0, x1] (and similarly for u∗).

6
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Figure 2.1: Two nearby curves in R2, after Gelfand-Fomin [11]

The graph of u is defined by

Γ(u) = {(x, u(x)) ∈ R2 : x ∈ I} ⊂ R2 (2.6)

(and similarly for u∗).

Let P0, P1 (resp. P ∗
0 , P

∗
1 ) denote the left and right endpoints of Γ(u) (resp. Γ(u∗)). We set

P0 = (x0, y0), P ∗
0 = (x∗0, y

∗
0) = (x0 + δx0, y0 + δy0), (2.7)

P1 = (x1, y1), P ∗
1 = (x∗1, y

∗
1) = (x1 + δx1, y1 + δy1), (2.8)

where

δx0 = x∗0 − x0, δy0 = y∗0 − y0 = u∗(x0 + δx0)− u(x0), (2.9)

δx1 = x∗1 − x1, δy∗1 = y∗1 − y1 = u∗(x1 + δx1)− u(x1). (2.10)

To facilitate a comparison of u and u∗, we extend each quadratically at the necessary end-
points as indicated in the following steps. See Figure 2.1 for a diagram.

(i) If δx0 > 0, extend u∗ on [x0, x0+δx0] by the 2nd-order Taylor polynomial of u∗ at x0+δx0,
so that for x ∈ [x0, x0 + δx0], we have

u∗(x) = u∗(x0 + δx0) + u∗′(x0 + δx0)(x− x0 − δx0)

+
1

2
u∗′′(x0 + δx0)(x− x0 − δx0)

2. (2.11)

(ii) If δx0 < 0, extend u on [x0 + δx0, x0] by the 2nd-order Taylor polynomial of u at x0, so
that for x ∈ [x0 + δx0, x0], we have

u(x) = u(x0) + u′(x0)(x− x0) +
1

2
u′′(x0)(x− x0)

2. (2.12)

7
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(iii) If δx1 > 0, extend u on [x1, x1 + δx1] by the 2nd-order Taylor polynomial of u at x1, so
that for x ∈ [x1, x1 + δx1], we have

u(x) = u(x1) + u′(x1)(x− x1) +
1

2
u′′(x1)(x− x1)

2. (2.13)

(iv) If δx1 < 0, extend u∗ on [x1+δx1, x1] by the 2nd-order Taylor polynomial of u∗ at x1+δx1,
so that for x ∈ [x1 + δx1, x1], we have

u∗(x) = u∗(x1 + δx1) + u∗′(x1 + δx1)(x− x1 − δx1)

+
1

2
u∗′′(x1 + δx1)(x− x1 − δx1)

2. (2.14)

(v) For each i, if δxi = 0, neither u nor u∗ needs extension at the endpoint xi.

Having extended u and u∗ as needed, each is considered to be a function on the interval

K = [min{x0, x0 + δx0},max{x1, x1 + δx1}] = conv(I ∪ I∗), (2.15)

where conv denotes the convex hull. We will not distinguish between the original functions u, u∗

and their quadratic extensions. Note that K is a closed and bounded interval, and the extensions
of u, u∗ are both C2(K) functions.

Let F be the family of functions given by F =
⋃
C2(I), with the union taken over all closed

bounded intervals I ⊂ R. To quantify the distance between u ∈ C2(I) and u∗ ∈ C2(I∗), we
define a metric ρ : F × F → [0,∞) by the rule

ρ(u, u∗) = ∥u− u∗∥∞ +
∥∥u′ − u∗′

∥∥
∞ +

∥∥u′′ − u∗′′
∥∥
∞

+ ∥P0 − P ∗
0 ∥2 + ∥P1 − P ∗

1 ∥2. (2.16)

For the first trio of terms, we extend u and u∗ as above, and take the supremum norm ∥·∥∞ over
the set K = conv(I ∪ I∗). For the last pair of terms, ∥·∥2 is the usual Euclidean distance in R2.

Let u and u∗ be neighbouring curves in the sense of the distance defined by (2.16), that is,
ρ(u, u∗) << 1. Define the variation h : K → R by the rule

h(x) = u∗(x)− u(x), (2.17)

where K = conv(I ∪ I∗). We establish below some terminology about the variation h.

Definition 2.3. We call h a weak variation provided that its norm

∥h∥ := ∥h∥∞ + ∥h′∥∞ + ∥h′′∥∞ (2.18)

is small, say ∥h∥ << 1. We will only consider weak variations in what follows.

Definition 2.4. We call h a strong variation provided that ∥h∥∞ is small, say ∥h∥∞ << 1.

8
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Lemma 2.5. With the setup as above, we have

h(xi) = δyi − u′(xi)δxi − h′(xi)δxi −
1

2
u′′(xi)δx

2
i +O(δx3i , h

′′δx2i ). (2.19)

Proof. Fix i ∈ {1, 2} and consider the compatibility condition at the endpoint xi,

u∗(xi + δxi) = u(xi + δxi) + h(xi + δxi) = u(xi) + δyi. (2.20)

Since u and h are C2, we Taylor expand each to obtain

u(xi + δxi) = u(xi) + u′(xi)δxi +
1

2
u′′(xi)δx

2
i +O(δx3i ) , (2.21)

h(xi + δxi) = h(xi) + h′(xi)δxi +O(h′′δx2i ) . (2.22)

Substituting these into the compatibility condition and rearranging, we have

h(xi) = δyi − u′(xi)δxi − h′(xi)δx
2
i −

1

2
u′′(xi)δx

2
i +O(δx3i , h

′′δx2i ), (2.23)

as was to be shown.

The total variation from u to u∗ of the functional J [u] is the quantity

∆J := J [u∗|I∗ ]− J [u|I ] = J [(u+ h)|I∗ ]− J [u|I ]. (2.24)

In what follows, we consider ∆J as being computed from the following data:

• a fixed function u ∈ C2(I) with domain I = [x0, x1],

• the endpoint increments δx0, δx1, yielding an interval I∗ = [x0 + δx0, x1 + δx1],

• the endpoint value increments δy0, δy1, and

• a function h ∈ C2(K), with K = conv(I ∪ I∗), which satisfies the conditions

u(x0 + δx0) + h(x0 + δx0) = u(x0) + δy0, (2.25)

u(x1 + δx1) + h(x1 + δx1) = u(x1) + δy1, (2.26)

where u is extended quadratically to K as needed. We call such a function h an admissible
variation.

We wish to expand the total variation in the form

∆J = δJ + δ2J + o(∥h∥2), (2.27)

where:

• δJ consists of terms which are linear in the distance ρ(u|I , (u+ h)|I∗), and

• δ2J consists of terms which are quadratic in the distance ρ(u|I , (u+ h)|I∗).

Definition 2.6. We call δJ the first variation, and δ2J the second variation.
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Theorem 2.7 (First and Second Variation, Graphs). Denote the endpoint increments by δx|xi
=

δxi and δy|x=xi
= δyi. Then, with the setup as above,

(i) the first variation δJ is given by

δJ =

∫ x1

x0

[
Fu − d

dx
Fu′

]
hdx+ [(F − u′Fu′)δx+ Fu′δy]

∣∣∣x=x1

x=x0

, (2.28)

(ii) and the second variation δ2J is given by

δ2J =
1

2

∫ x1

x0

[
Fuuh

2 + 2Fuu′hh′ + Fu′u′h′2
]
dx

+
1

2

[
(Fx − u′Fu)δx

2 + 2Fuδxδy
] ∣∣∣x=x1

x=x0

, (2.29)

where F and its derivatives are evaluated at (x, u, u′) whenever the arguments are suppressed.

Proof. By definition of the functional J [u], we have

∆J = J [u∗|I∗ ]− J [u|I ]

=

∫ x1+δx1

x0+δx0

F (x, u∗, u∗′)dx−
∫ x1

x0

F (x, u, u′)dx

=

(∫ x0

x0+δx0

+

∫ x1

x0

+

∫ x1+δx1

x1

)
F (x, u+ h, u′ + h′)dx−

∫ x1

x0

F (x, u, u′)dx

=

∫ x1

x0

[F (x, u+ h, u′ + h′)− F (x, u, u′)]dx (2.30)

+

∫ x1+δx1

x1

F (x, u+ h, u′ + h′)dx−
∫ x0+δx0

x0

F (x, u+ h, u′ + h′)dx. (2.31)

Applying Taylor’s theorem to F (x, u+ h, u′ + h′), we have

F (x, u+ h, u′ + h′) = F (x, u, u′) + Fu(x, u, u
′)h+ Fu′(x, u, u′)h′

+
1

2
Fuu(x, u, u

′)h2 + Fuu′(x, u, u′)hh′ (2.32)

+
1

2
Fu′u′(x, u, u′)h′2 +O(h3, h2h′, hh′2, h′3),

Inserting (2.32) into (2.30), we obtain∫ x1

x0

[F (x, u+ h, u′ + h′)− F (x, u, u′)]dx

=
1

2

∫ x1

x0

[
Fuu(x, u, u

′)h2 + 2Fuu′(x, u, u′)hh′ + Fu′u′(x, u, u′)h′2
]
dx

+

∫ x1

x0

[Fu(x, u, u
′)h+ Fu′(x, u, u′)h′]dx+O(h3, h2h′, hh′2, h′3). (2.33)
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Integrating (2.33) by parts, we have∫ x1

x0

[Fuh+ Fu′h′]dx =

∫ x1

x0

[
Fu − d

dx
Fu′

]
hdx+ Fu′h|x=x1

− Fu′h|x=x0
. (2.34)

Thus (2.30) evaluates to∫ x1

x0

[F (x, u+ h, u′ + h′)− F (x, u, u′)]dx =

∫ x1

x0

[
Fu − d

dx
Fu′

]
hdx+ Fu′h

∣∣∣x=x1

x=x0

+
1

2

∫ x1

x0

[
Fuuh

2 + 2Fuu′hh′ + Fu′u′h′2
]
dx (2.35)

+O(h3, h2h′, hh′2, h′3).

Applying Lemma 2.5 to the boundary term, we obtain

Fu′h
∣∣∣x=x1

x=x0

= Fu′ [δy − u′δx− h′δx− 1
2u

′′δx2]
∣∣∣x=x1

x=x0

=
[
Fu′δy − u′Fu′δx− Fu′h′δx− 1

2u
′′Fu′δx2

] ∣∣∣x=x1

x=x0

.

Thus we have that∫ x1

x0

[F (x, u+ h, u′ + h′)− F (x, u, u′)]dx

=

∫ x1

x0

[
Fu − d

dx
Fu′

]
hdx+ [Fu′δy − u′Fu′δx]

∣∣∣x=x1

x=x0

+
1

2

∫ x1

x0

[
Fuuh

2 + 2Fuu′hh′ + Fu′u′h′2
]
dx−

[
Fu′h′δx+ 1

2u
′′Fu′δx2

] ∣∣∣x=x1

x=x0

(2.36)

+O(h3, h2h′, hh′2, h′3).

Fixing i and inserting (2.32) into a generic term of (2.31), we obtain∫ xi+δxi

xi

F (x, u+ h, u′ + h′)dx =

∫ xi+δxi

xi

F (x, u, u′)dx+

∫ xi+δxi

xi

Fu(x, u, u
′)hdx (2.37)

+

∫ xi+δxi

xi

Fu′(x, u, u′)h′dx+O(δxih
2, δxihh

′, δxih
′2).

We proceed to Taylor expand the integrands of each term in (2.37).

• First term. Since the domain of integration has length δxi, we need only expand the
integrand to first order. Centering the expansion at x = xi, we have

F (x, u, u′) = F (x, u, u′)|x=xi
+

d

dx
[F (x, u, u′)]|x=xi

(x− xi) +O((x− xi)
2).

Then we have that∫ xi+δxi

xi

F (x, u, u′)dx = F |x=xi
δxi +

1

2

dF

dx

∣∣∣
x=xi

δx2i +O(δx3i ).
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Computing the derivative in the second term, we have

d

dx
F (x, u(x), u′(x)) = Fx + Fuu

′ + Fu′u′′.

Therefore we have∫ xi+δxi

xi

F (x, u, u′)dx =

{
Fδx+

1

2
[Fx + Fuu

′ + Fu′u′′]δx2
} ∣∣∣

x=xi

+O(δx3i ).

• Second term. Since the domain has length δxi and the integrand contains the variation h,
we expand to 0th order. Centering the expansion at x = xi, we have

Fu(x, u, u
′)h = Fuh|x=xi

+O((x− xi)).

Then we have that∫ xi+δxi

xi

Fu(x, u, u
′)hdx = Fuhδx

∣∣∣
x=xi

+O(hδx2i , h
′δx2i , δx

3
i ).

Applying Lemma 2.5, it follows that∫ xi+δxi

xi

Fuhdx = Fu[δy − u′δx]δx
∣∣∣
x=xi

+O(hδx2i , h
′δx2i , δx

3
i ). (2.38)

Therefore we have∫ xi+δxi

xi

Fuhdx =
[
Fuδxδy − u′Fuδx

2
] ∣∣∣

x=xi

+O(hδx2i , h
′δx2i , δx

3
i ). (2.39)

• Third term. Since the domain has length δxi and the integrand contains the variation h,
we expand to 0th order. Centering the expansion at x = xi, we have

Fu′(x, u, u′)h′ = Fu′h′|x=xi
+O((x− xi)). (2.40)

Thus to second order∫ xi+δxi

xi

Fu′h′dx = Fu′h′δx
∣∣∣
x=xi

+O(h′δx2i , h
′′δx2i , δx

3
i ). (2.41)

As such, we can write (2.37) as∫ xi+δxi

xi

F (x, u+ h, u′ + h′)dx =

{
Fδx+

1

2
[Fx + Fuu

′ + Fu′u′′]δx2
} ∣∣∣

x=xi

+
[
Fuδxδy − u′Fuδx

2
] ∣∣∣

x=xi

+ Fu′h′δx
∣∣∣
x=xi

+O(δx3i , hδx
2
i , h

′δx2i , h
′′δx2i ).
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Therefore our expression for the total variation becomes

∆J =

∫ x1

x0

[
Fu − d

dx
Fu′

]
hdx+ [Fu′δy − u′Fu′δx]

∣∣∣x=x1

x=x0

+
1

2

∫ x1

x0

[
Fuuh

2 + 2Fuu′hh′ + Fu′u′h′2
]
dx−

[
Fu′h′δx+ 1

2u
′′Fu′δx2

] ∣∣∣x=x1

x=x0

+

{
Fδx+

1

2
[Fx + Fuu

′ + Fu′u′′]δx2
} ∣∣∣x=x1

x=x0

+
[
Fuδxδy − u′Fuδx

2
] ∣∣∣x=x1

x=x0

+ Fu′h′δx
∣∣∣x=x1

x=x0

+O(δx3i , hδx
2
i , h

′δx2i , h
′′δx2i ). (2.42)

Making note of the cancellations and regrouping the terms by order, we have

∆J =

∫ x1

x0

[
Fu − d

dx
Fu′

]
hdx+ [(F − u′Fu′)δx+ Fu′δy]

∣∣∣x=x1

x=x0

+
1

2

∫ x1

x0

[
Fuuh

2 + 2Fuu′hh′ + Fu′u′h′2
]
dx

+
1

2

[
(Fx − u′Fu)δx

2 + 2Fuδxδy
] ∣∣∣x=x1

x=x0

+O(δx3i , hδx
2
i , h

′δx2i , h
′′δx2i ). (2.43)

Thus the total variation can be written

∆J = δJ + δ2J + o(∥h∥2), (2.44)

where the first variation δJ is given by

δJ [h] =

∫ x1

x0

[
Fu − d

dx
Fu′

]
hdx+ [(F − u′Fu′)δx+ Fu′δy]

∣∣∣x=x1

x=x0

,

and the second variation δ2J is given by

δ2J [h] =
1

2

∫ x1

x0

[
Fuuh

2 + 2Fuu′hh′ + Fu′u′h′2
]
dx

+
1

2

[
(Fx − u′Fu)δx

2 + 2Fuδxδy
] ∣∣∣x=x1

x=x0

,

as was to be shown.
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2.2 Parametrized Curves

In this section we derive general formulae for the first and second variations of a functional
of the form

J [x, y] =

∫ t1

t0

F (x, y, x′, y′)dt, x, y ∈ C2[t0, t1], (2.45)

where t0 < t1 are real numbers, x, y satisfy x′(t)2+y′(t)2 > 0 for all t0 ≤ t ≤ t1, and F : R4 → R
is a C2 function which is (positively) homogeneous of degree 1 in x′ and y′. Here we follow and
expand upon the text of Kot [15].

Let I = [t0, t1]. Let γ = (x, y) : I → R2 and γ∗ = (x∗, y∗) : I → R2 be C2 functions, that
is, for each 0 ≤ k ≤ 2 the derivatives x(k), y(k) exist and are continuous on (t0, t1), and admit
continuous extensions to [t0, t1] (and similarly for (x∗, y∗)).

The trace of γ is defined by

Γ(γ) = {(x(t), y(t)) ∈ R2 : t ∈ I} ⊂ R2, (2.46)

(and similarly for γ∗).

Let P0, P1 (resp. P ∗
0 , P

∗
1 ) denote the initial and final endpoints of Γ(γ) (resp. Γ(γ∗)). Then

P0 = (x(t0), y(t0)), P ∗
0 = (x∗(t0), y

∗(t0)) = (x0 + δx0, y0 + δy0), (2.47)

P1 = (x(t1), y(t1)), P ∗
1 = (x∗(t1), y

∗(t1)) = (x1 + δx1, y1 + δy1), (2.48)

where

δx0 = x∗(t0)− x(t0), δy0 = y∗(t0)− y(t0), (2.49)

δx1 = x∗(t1)− x(t1), δy1 = y∗(t1)− y(t1). (2.50)

Compared to the graphs case, it is easier to compare γ and γ∗ since they are both defined
on the same interval I. This is without loss of generality, since we can always reparametrize γ∗

to have the same domain as γ, per Kot [15]. Homogeneity of the integrand F ensures that the
functional depends only on the trace, and not on the parametrization.

Let F be the family of curves γ given by F = C2(I) × C2(I). To quantify the distance
between γ ∈ F and γ∗ ∈ F , we define a metric ρ : F × F → [0,∞) by the rule

ρ(γ, γ∗) = ∥x− x∗∥∞ + ∥y − y∗∥∞ +
∥∥x′ − x∗′

∥∥
∞ +

∥∥y′ − y∗′
∥∥
∞

+
∥∥x′′ − x∗′′

∥∥
∞ +

∥∥y′′ − y∗′′
∥∥
∞ + ∥P0 − P ∗

0 ∥2 + ∥P1 − P ∗
1 ∥2, (2.51)

where ∥·∥∞ denotes the supremum norm on the interval I, and ∥·∥2 denotes the usual Euclidean
norm in the plane R2.

Let γ and γ∗ be neighbouring curves in the sense of the distance (2.51), that is, ρ(γ, γ∗) << 1.
Define the coordinate variations

ξ : I → R, ξ(t) = x∗(t)− x(t),

η : I → R, η(t) = y∗(t)− y(t).
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Definition 2.8. We call δ = (ξ, η) a weak variation provided that its norm

∥δ∥ := ∥ξ∥∞ + ∥ξ′∥∞ + ∥ξ′′∥∞ + ∥η∥∞ + ∥η′∥∞ + ∥η′′∥∞

is small, say ∥δ∥ << 1. We shall only consider weak variations in what follows.

Definition 2.9. We call δ = (ξ, η) a strong variation provided that ∥δ∥∞ := ∥ξ∥∞ + ∥η∥∞ is
small, say ∥δ∥∞ << 1.

The total variation from γ to γ∗ of the functional J [u] is the quantity

∆J := J [γ∗]− J [γ]. (2.52)

We wish to expand the total variation in the form

∆J = δJ + δ2J + o(∥δ∥2), (2.53)

where:

• δJ consists of terms which are linear in ρ(γ, γ∗), and

• δ2J consists of terms which are quadratic in ρ(γ, γ∗).

Definition 2.10. We call δJ the first variation, and δ2J the second variation.

Theorem 2.11 (First and Second Variation, Parametrized Curves). Denote the endpoint incre-
ments by δx|xi = δxi and δy|x=xi = δyi. Then, with the setup as above,

(i) the first variation δJ is given by

δJ =

∫ t1

t0

{
ξ

[
Fx − d

dt
Fx′

]
+ η

[
Fy −

d

dt
Fy′

]}
dt+ Fx′δx

∣∣∣t=t1

t=t0
+ Fy′δy

∣∣∣t=t1

t=t0
, (2.54)

(ii) and the second variation δ2J is given by

δ2J =
1

2

∫ t1

t0

(ξ, η, ξ′, η′) ·Hess(F )(ξ, η, ξ′, η′)dt,

where Hess(F ) denotes the Hessian matrix of F ,

and F and its derivatives are evaluated at (x, y, x′, y′) whenever the arguments are suppressed.

Proof. By definition of the functional J [γ], we have

∆J = J [γ∗]− J [γ] =

∫ t1

t0

[F (x+ ξ, y + η, x′ + ξ′, y′ + η′)− F (x, y, x′, y′)]dt.

Applying Taylor’s theorem to F (x+ ξ, y + η, x′ + ξ′, y′ + η′), we have

F (x+ ξ, y + η, x′ + ξ′, y′ + η′) = F +∇F · (ξ, η, ξ′, η′)

+
1

2
(ξ, η, ξ′, η′) ·Hess(F )(ξ, η, ξ′, η′) +O(δ3 · ∂3F ),

15

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


M.Sc. Thesis – S. Vriend McMaster University – Mathematics & Statistics

where δ3 · ∂3F denotes terms which are third order in both δ = (ξ, η) and in derivatives of F ;
∇F denotes the gradient of F , with entries

∇F = (Fx, Fy, Fx′ , Fy′); (2.55)

and Hess(F ) denotes the Hessian matrix of F , with entries

Hess(F ) =

(
∂2F

∂zi∂zj

)
, (2.56)

where zi, zj each range over {x, y, x′, y′}. Then we have that

∆J =

∫ t1

t0

∇F · (ξ, η, ξ′, η′)dt+ 1

2

∫ t1

t0

(ξ, η, ξ′, η′) ·Hess(F )(ξ, η, ξ′, η′)dt+O(δ3 · ∂3F ). (2.57)

Integrating the first term by parts, we find that∫ t1

t0

∇F · (ξ, η, ξ′, η′)dt

=

∫ t0

t0

[Fxξ + Fyη + Fx′ξ′ + Fy′η′] dt

=

∫ t1

t0

{
ξ

[
Fx − d

dt
Fx′

]
+ η

[
Fy −

d

dt
Fy′

]}
dt+ [Fx′ξ + Fy′η]

∣∣∣t=t1

t=t0

=

∫ t1

t0

{
ξ

[
Fx − d

dt
Fx′

]
+ η

[
Fy −

d

dt
Fy′

]}
dt+ Fx′δx

∣∣∣t=t1

t=t0
+ Fy′δy

∣∣∣t=t1

t=t0
. (2.58)

Thus the total variation can be written

∆J = δJ + δ2J + o(∥δ∥2), (2.59)

where the first variation δJ is given by

δJ =

∫ t1

t0

{
ξ

[
Fx − d

dt
Fx′

]
+ η

[
Fy −

d

dt
Fy′

]}
dt+ Fx′δx

∣∣∣t=t1

t=t0
+ Fy′δy

∣∣∣t=t1

t=t0
, (2.60)

and the second variation δ2J is given by

δ2J =
1

2

∫ t1

t0

(ξ, η, ξ′, η′) ·Hess(F )(ξ, η, ξ′, η′)dt, (2.61)

as was to be shown.
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Chapter 3

Proof for Graphs of C1 Functions

In this section, we present a classical existence-uniqueness-regularity proof for the variational
problem described in the introduction, with competition among graphs of C1 functions. The
variational problem is made precise in Table 3.1.

Theorem 3.1. If 0 < β < 1, then there exists a unique smooth minimizer u(x) for the variational
problem in Table 3.1. In particular, the unique minimizer u(x) is an arc of a circle of the form

u(x) =
√
R2 − x2 − βR, (3.1)

where the radius of curvature R > 0 is determined by

R−1 =

√
arccosβ − β

√
1− β2, (3.2)

and u(x) is defined on [−p, p] with p =
√
1− β2R. Furthermore, the graph of u meets the x-axis

at ±p with interior angle arccosβ.

Proof. (Uniqueness) Assume that a minimizer u ∈ C1[−p, p] exists for the problem in Table 3.1,
for some p > 0. Let v ∈ C1[−q, q] be a competitor curve for some q > 0, nearby to u in the sense
of the distance ρ(u, v). Since v vanishes at the endpoints of its symmetric domain, the endpoint
increments satisfy

δx(p) = −δx(−p), δy = 0. (3.3)

Since u is a constrained minimizer, there must exist a Lagrange multiplier λ ∈ R such that
the augmented functional

Λ[u] := J [u]− λK[u] (3.4)

is stationary at u, i.e., the first variation δΛ must vanish at u. Written out in full, we have

Λ[u] =

∫ p

−p

F (u, u′)dx, F (u, u′) =
√

1 + u′2 − β − λu. (3.5)

Table 3.1: Our isoperimetric problem with competition among graphs of C1 functions

among nonnegative C1 functions u : [−p, p] → R with p > 0 free

minimize J [u] =

∫ p

−p

[√
1 + u′2 − β

]
dx

subject to K[u] =

∫ p

−p

udx = 1

and u(p) = u(−p) = 0.
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Since Λ[u] is stationary at the minimizer u, the first variation δΛ of Λ at u must vanish for
all admissible variations. By Theorem 2.7, the first variation δΛ is given by

δΛ =

∫ p

−p

[
Fu − d

dx
Fu′

]
hdx+ [F − u′Fu′ ]δx

∣∣x=p

x=−p
(3.6)

where h = v − u is defined on K = [−p, p] ∪ [−q, q], and we extend u and v linearly at the
endpoints as needed so that h is well-defined. Then for all admissible variations h, we must have

δΛ = 0. (3.7)

In particular, this holds for admissible variations h with δx = 0. Hence for all h ∈ C1[−p, p]
with h(p) = h(−p) = 0, we have∫ p

−p

[
Fu(u, u

′)− d

dx
Fu′(u, u′)

]
hdx = 0.

By the fundamental lemma of the calculus of variations, it follows that u satisfies

Fu(u, u
′)− d

dx
Fu′(u, u′) = 0, (3.8)

the Euler-Lagrange equation of the functional Λ.

The remaining terms in the first variation yield the condition

δΛ = [F (u, u′)− u′Fu′(u, u′)]δx
∣∣∣x=p

x=−p
= 0 . (3.9)

for all admissible variations h ∈ C1(K) with δx(p) = −δx(−p) ̸= 0. This is the transversality
condition for our problem. Since δx(p) = −δx(−p) ̸= 0, u must satisfy the equation

[F (u, u′)− u′Fu′(u, u′)]
∣∣∣
x=p

+ [F (u, u′)− u′Fu′(u, u′)]
∣∣∣
x=−p

= 0.

Euler-Lagrange Equation

The Euler-Lagrange equation reads

0 = Fu − d

dx
Fu′ = −λ− d

dx

(
u′√

1 + u′2

)
. (3.10)

We can immediately integrate this to find that

C1 = −λx− u′√
1 + u′2

(3.11)

for some constant of integration C1. Solving for u′, we find that

u′2 =
(λx+ C1)

2

1− (λx+ C1)2
. (3.12)
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Integrating again, we see that

u(x) = ± 1

λ

√
1− (λx+ C1)2 + C2 (3.13)

for some constant of integration C2. Rearranging and absorbing the appropriate multiplicative
constants into C1 and C2, we see that u(x) must satisfy

(x+ C1)
2 + (u(x) + C2)

2 =

(
1

λ

)2

. (3.14)

Hence u(x) is an arc of a circle with radius 1
|λ| and centre (C1, C2).

We immediately see that C1 = 0 by symmetry considerations. In more detail, we apply the
endpoint conditions u(p) = u(−p) = 0 to obtain

(p+ C1)
2 + C2

2 = 1 = (−p+ C1)
2 + C2

2 =⇒ |p+ C1| = |−p+ C1|, (3.15)

from which we conclude that C1 = 0. Hence u(x) is an arc of a circle symmetric about the y-axis,

x2 + (u(x) + C2)
2 =

(
1

λ

)2

. (3.16)

Reapplying the endpoint condition u(±p) = 0, we see that

C2
2 =

(
1

λ

)2

− p2 ≥ 0. (3.17)

Note that this implies (
1

λ

)2

≥ p2 =⇒ 1

|λ|
≥ p. (3.18)

Thus u(x) is given by

u(x) = ±

√(
1

λ

)2

− x2 ∓

√(
1

λ

)2

− p2 for all x ∈ [−p, p], (3.19)

where the signs are such that u(±p) = 0. Since u ≥ 0, we must have

u(x) =

√(
1

λ

)2

− x2 −

√(
1

λ

)2

− p2. (3.20)

Returning to the Euler-Lagrange equation, we can determine the sign of λ: a computation
shows that

u′√
1 + u′2

= −|λ|x, (3.21)

from which we determine that

0 = −λ− d

dx

(
u′√

1 + u′2

)
= −λ− d

dx
(−|λ|x) = −λ+ |λ|, (3.22)
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so that we have |λ| = λ ≥ 0. Hence u(x) is an arc of a circle with radius 1
λ and centre

(0,
√
(1/λ)2 − p2), where λ ≥ 0 and 1

λ ≥ p > 0. The remaining two parameters are determined
by the area constraint and the transversality condition.

We now apply the area constraint. Computing the area functional using the change of variable
x = 1

λ sin θ, we have:

K[u] =

∫ p

−p

√(
1

λ

)2

− x2dx−
∫ p

−p

√(
1

λ

)2

− p2dx

= 2

∫ p

0

√(
1

λ

)2

− x2dx− 2p

√(
1

λ

)2

− p2

=
2

λ2

∫ arcsin(λp)

0

cos2 θdθ − 2p

√(
1

λ

)2

− p2

=
1

λ2
[θ + sin θ cos θ]|arcsin(λp)0 − 2p

√(
1

λ

)2

− p2

=
1

λ2
arcsin(λp)− p

√(
1

λ

)2

− p2.

We note that this is the area of the circular segment with arc u(x) and chord the x-axis. Hence
the area constraint reads

1 =
1

λ2
arcsin(λp)− p

√(
1

λ

)2

− p2. (3.23)

This is a transcendental equation in the variables λ, p, and is well-defined since 1
λ ≥ p. To

progress, we need the transversality condition.

Transversality condition

The transversality condition reads

[F (u, u′)− u′Fu′(u, u′)]
∣∣∣
x=p

+ [F (u, u′)− u′Fu′(u, u′)]
∣∣∣
x=−p

= 0. (3.24)

From the definition of the integrand F , we see that

F − u′Fu′ =
√
1 + u′2 − β − λu− u′2√

1 + u′2

=
1√

1 + u′2
− β − λu.

Furthermore, we see that from the expression

u′(x) =
−x√(

1
λ

)2 − x2
(3.25)
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that [u′(p)]2 = [u′(−p)]2. Since u(±p) = 0, the transversality condition yields

0 =

[
1√

1 + u′(p)2
− β − λu(p)

]
+

[
1√

1 + u′(−p)2
− β − λu(−p)

]
=

2√
1 + u′(p)2

− 2β, (3.26)

from which we derive the angle condition

1√
1 + u′(p)2

= β. (3.27)

Note that this shows the tangent vector (1, u′(p)) makes an angle of arccosβ with the positive
x-axis, as claimed. (Note also that this implies 0 < β < 1, so our assumption was necessary.)
From the definition of u′(x), we find that

1√
1 + u′(p)2

=
√
1− (λp)2 = β, (3.28)

from which we obtain
λp =

√
1− β2. (3.29)

Inserting this into the area constraint (3.23), we find that

λ2 = arcsin(λp)− λp
√
1− (λp)2 = arccosβ − β

√
1− β2, (3.30)

where we have used the identity arcsin
√
1− θ2 = arccos θ.

Define R = 1
λ , the radius of the circular arc. We may then identify λ as the curvature of the

arc, so that R = 1
λ is the radius of curvature. Written out explicitly, we have

R−1 =

√
arccosβ − β

√
1− β2. (3.31)

From (3.29), it follows that p =
√
1− β2R and

√
R2 − p2 = βR.

Therefore the minimizer u(x) must have the form

u(x) =
√
R2 − x2 − βR, (3.32)

where R is defined by (3.31), and u(x) is defined on [−p, p] where p =
√
1− β2R. This proves

uniqueness.

(Existence) To prove existence, we claim that the function u : [−p, p] → [0,∞) given by

u(x) =
√
R2 − x2 − βR (3.33)

with R and p as defined above, is a minimizer for the problem in Table 3.1.

To prove this, we first make some observations about the augmented functional Λ[u] given by

Λ[u] =

∫ p

−p

[
√
1 + u′2 − β − λu]dx. (3.34)
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By the above, we see that for a minimizer to exist, λ is necessarily of the form

λ =

√
1− β2

p
. (3.35)

This gives us a family of integrals

Λ[u, p] =

∫ p

−p

[√
1 + u′2 − β −

√
1− β2

p
u

]
dx, p > 0. (3.36)

By “Euler’s rule” (see Kot [15], p. 119) our constrained optimization problem in Table 3.1 is
equivalent to the problem of minimizing the augmented functional Λ[u, p], then selecting the
extremal which satisfies the area constraint K[u] = 1.

From the above, we know that the unique extremal of Λ[u, p] is

u(x) =
√
R2 − x2 − βR, R =

p√
1− β2

. (3.37)

It satisfies the Euler-Lagrange equations and the transversality conditions. This is our candidate
for a minimizer of Λ[u, p].

Since we are only considering functions which vanish at the endpoints of the interval [−p, p],
an integration by parts shows that

Λ[u, p] =

∫ p

−p

[√
1 + u′2 − β +

√
1− β2

p
xu′

]
dx. (3.38)

Observe now that the integrand of Λ[u, p] is strictly convex with respect to u′: denoting the
integrand by f(x, u′), we have

∂2f

∂u′2
(x, u′) =

1

(1 + u′2)
3
2

> 0. (3.39)

As such, for any function w ∈ C1[−p, p] satisfying w(−p) = w(p) = 0, we have

f(x,w′) ≥ f(x, u′) + (w′ − u′)
∂f

∂u′
(x, u′) (3.40)

with equality if and only if w′ = u′. Since w and u both vanish at the endpoints, w′ = u′ if and
only if w = u.

Then observe that for u(x) =
√
R2 − x2 − βR, we have

∂f

∂u′
=

u′√
1 + u′2

+

√
1− β2

p
x = 0. (3.41)

Therefore f(x,w′) ≥ f(x, u′) with equality if and only if w = u. Hence, for this choice of u,

Λ[w, p] ≥ Λ[u, p], (3.42)
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with equality if and only if w = u, so u is the unique minimizer of Λ[u, p].

This gives us a family of extremals u(x, p), each of which minimizes the corresponding integral
Λ[u, p]. It remains to select the extremal u(x, p) which satisfies the area constraint K[u] = 1.
Computing the integral of u(x, p), we have

K[u] =

∫ p

−p

u(x, p)dx =

∫ p

−p

[√
R2 − x2 − βR

]
dx

= 2

∫ p

0

√
R2 − x2dx− 2βRp

= R2[θ + sin θ cos θ]|arcsin
√

1−β2

0 − 2βp2√
1− β2

=
p2

1− β2
[arcsin

√
1− β2 + β

√
1− β2]− 2β

√
1− β2

1− β2
p2

=
arccosβ − β

√
1− β2

1− β2
p2,

where we have used the fact that arcsin
√
1− β2 = arccosβ. Setting K[u] = 1 and solving for p,

we obtain

p =

√
1− β2√

arccosβ − β
√
1− β2

=
√
1− β2R, (3.43)

where R is determined by

R−1 =

√
arccosβ − β

√
1− β2. (3.44)

Thus the extremal u(x) =
√
R2 − x2 − βR with R and p as given above is a minimizer of the

variational problem in Table 3.1. This proves existence.

(Regularity) We have shown that

u(x) =
√
R2 − x2 − βR (3.45)

is the unique minimizer of the problem in Table 3.1. The smoothness of u(x) follows immediately,
since |x| ≤ p < R and u(x) is a composition of smooth functions.

Remark 3.2. With respect to the parametrization t 7→ (t, u(t)), the graph of u(x) has (non-unit)
tangent vector (1, u′(x)). Normalizing and rotating the tangent vector 90◦ counter-clockwise, we
find that the outward unit normal ν of the graph of u(x) is given by

ν =

(
− u′(x)√

1 + u′(x)2
,

1√
1 + u′(x)2

)
. (3.46)

As such, we see that (3.27) tells us that

ν · e2 = β at x = ±p, (3.47)

in agreement with the modern statement of the theorem in Maggi [18]. For our special case of
β = 1

2 , we obtain an interior angle of 60◦, so the exterior angle is 120◦ as in Figure 1.1.
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Chapter 4

Proof for Graphs of W 1,1 Functions

4.1 Definitions

We recall some of the basic definitions relating to the Sobolev space W 1,1. We assume the
reader’s familiarity with the Lebesgue integral; for more on this, we refer the reader to the text
of Stein-Shakarchi [26]. A useful resource for the theory of Sobolev spaces is the book by Brezis
[5], from which we draw the definitions and results which follow.

Let I ⊂ R be an open interval, possibly unbounded. We recall that C1
c (I) denotes the set of

all C1(I) functions with compact support, i.e. functions for which the set

suppφ = {x ∈ I : φ(x) ̸= 0} ⊂ I (4.1)

is compact.

Definition 4.1. The Sobolev space W 1,1(I) is defined by

W 1,1(I) =

{
u ∈ L1(I) : ∃ g ∈ L1(I) such that

∫
I

uφ′dx = −
∫
I

gφ dx for all φ ∈ C1
c (I)

}
.

In the definition of W 1,1, we call the functions φ ∈ C1
c (I) test functions. We call the function

g the weak derivative of u, and write u′ := g.

If u ∈ C1(I) ∩ L1(I) and its classical derivative u′ ∈ L1(I), integration by parts shows that∫
I

uφ′dx = −
∫
I

u′φ dx for all φ ∈ C1
c (I), (4.2)

so that u ∈W 1,1(I). Hence our notation for u′ is consistent! (This integration by parts procedure
is what motivates the definition of a Sobolev space.)

In the language of distribution theory, we say that a function u ∈W 1,1(I) if u ∈ L1(I) and u
has a distributional derivative which is representable by an L1 function; for more on distribution
theory, see Strichartz [27].

There is in fact a 1-parameter family of Sobolev spaces, denoted W 1,p(I) for 1 ≤ p ≤ ∞,
which are defined as above, but with u, g ∈ Lp(I). Sobolev spaces of higher (weak) regularity,
denoted W k,p(I) for k ∈ N, are defined inductively. For more details, see Brezis [5].

Theorem 4.2. W 1,1(I) is a separable Banach space when equipped with the norm

∥u∥W 1,1(I) = ∥u∥L1(I) + ∥u′∥L1(I). (4.3)

Proof. For the proof, see Brezis [5].
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A significant advantage of working in 1 dimension is the following embedding theorem, which
allows us to talk about pointwise values for Sobolev functions, where otherwise we must talk
about equivalence classes of functions which agree almost everywhere.

Theorem 4.3. Let u ∈W 1,1(I). Then there exists a function ũ ∈ C(Ī) such that

u = ũ a.e. on I, (4.4)

and

ũ(y)− ũ(x) =

∫ y

x

u′(t)dt for all x, y ∈ Ī . (4.5)

As such, we may identify W 1,1(I) with a subset of C(Ī): symbolically,

W 1,1(I) ⊂ C(Ī). (4.6)

Proof. For the proof, see Brezis [5].

Note that this result is generally not true in higher dimensions. The question of whether a
Sobolev space W k,p(Ω) (with Ω ⊂ Rn open) embeds into a Lebesgue space Lq(Ω) or a classical
Hölder space Ck,α(Ω) is answered by the class of theorems known as Sobolev embedding theorems;
see Brezis [5]. (This tradeoff between regularity and integrability is lucidly described by Terence
Tao in an article on function spaces appearing in the Princeton Companion to Mathematics [30].)

In higher dimensions, Sobolev embedding theorems are highly dependent on the geometry
of the domain Ω, especially the regularity of the boundary ∂Ω. Since we are working with an
interval I ⊂ R, regularity of the boundary is a non-issue.

The following lemma allows us to enter into the discussion of our variational problem in the
context of the Sobolev space W 1,1(I).

Lemma 4.4. Fix 0 < β < 1 and p > 0, and let u ∈ W 1,1[−p, p] with u(p) = u(−p) = 0. Then
the functional

J [u] =

∫ p

−p

[√
1 + u′2 − β

]
dx (4.7)

is finite on u, i.e., |J [u]| <∞.

Proof. Let β, p, and u be as given. Then

|J [u]| ≤
∫ p

−p

∣∣∣√1 + u′2 − β
∣∣∣dx

≤
∫ p

−p

√
1 + u′2dx+ 2βp

≤
∫ p

−p

[1 + |u′|]dx+ 2βp

= 2(1 + β)p+ ∥u′∥L1 <∞

since u′ ∈ L1(−p, p).
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Table 4.1: Our isoperimetric problem with competition among graphs of W 1,1 functions

among nonnegative functions u ∈W 1,1[−p, p] with p > 0 free

minimize J [u] =

∫ p

−p

[√
1 + u′2 − β

]
dx

subject to K[u] =

∫ p

−p

u dx = 1

and u(p) = u(−p) = 0.

4.2 Proof of Existence-Uniqueness-Regularity

We wish to solve the variational problem in Table 4.1. Following the approach presented
in Talenti [29], we prove an isoperimetric inequality, from which we establish the existence of a
unique smooth minimizer.

Taken on its own, the proof below is perhaps a little philosophically unsatisfying, as it is
essentially a mathematical sleight of hand. However, the hard work of identifying a candidate
for a minimizer was carried out in Chapter 3, so we are free to pull the rabbit out of a hat!

Theorem 4.5 (Isoperimetric Inequality). Let 0 < β < 1, and let u ∈ W 1,1[−p, p] be a nonneg-
ative real-valued function defined in an interval [−p, p], with p > 0 a free parameter. Assume u
vanishes at both endpoints, i.e.,

u(−p) = u(p) = 0. (4.8)

Define the length of the graph of u and the area under the graph of u by

L =

∫ p

−p

√
1 + u′2dx and A =

∫ p

−p

udx, (4.9)

respectively. Then

L ≥

(
arccosβ√
1− β2

+ β

)
p+

√
1− β2

A

p
(4.10)

with equality if and only if the graph of u is an arc of a circle of the form

u(x) =
√
R2 − x2 − βR, (4.11)

where R is determined by

R =
p√

1− β2
. (4.12)

Proof. Let p > 0 be fixed, and consider the functional

Λ[u, p] =

√
1− β2

p

∫ p

−p

[√
1 + u′2 − β +

√
1− β2

p
xu′

]
dx. (4.13)

Note that the integrand f(x, u′) =
√
1 + (u′)2 − β+

√
1−β2

p xu′ is strictly convex with respect to

u′: we have
∂2

∂(u′)2
f(x, u′) =

1

(1 + u′2)
3
2

> 0. (4.14)
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Thus for any nonnegative u,w ∈ W 1,1[−p, p] with u(p) = u(−p) = 0 and w(p) = w(−p) = 0, we
have

f(x,w′) ≥ f(x, u′) + (w′ − u′)
∂

∂(u′)
f(x, u′) (4.15)

with equality if and only if w′ = u′.

Define
R =

p√
1− β2

and u(x) =
√
R2 − x2 − βR. (4.16)

Note since 0 < p < R that u(x) is smooth up the boundary of [−p, p], so u ∈ W 1,1[−p, p].
Furthermore, we have u(p) = u(−p) = 0 by construction, and

∂

∂u′
f(x, u′) =

u′√
1 + u′2

+

√
1− β2

p
x =

−x
R

+
x

R
= 0.

Therefore for any w ∈W 1,1[−p, p] with w(p) = w(−p) = 0, we have

f(x,w′) ≥ f(x, u′) (4.17)

with equality if and only if w′ = u′. Since w and u both vanish at the endpoints, w′ = u′ holds
if and only if w = u. As such, we have

Λ[w, p] =

√
1− β2

p

∫ p

−p

f(x,w′)dx ≥
√
1− β2

p

∫ p

−p

f(x, u′)dx = Λ[u, p] (4.18)

with equality if and only if w = u. Therefore u is the unique minimizer of the functional Λ[u, p].
A posteriori, we see that u is smooth on [−p, p], as noted above.

We wish to compute the value of the functional attained by the unique minimizer u(x) given

by (4.16). Recalling that p =
√
1− β2R, we have

Λ[u, p] =

√
1− β2

p

∫ p

−p

f(x, u′)dx

=
1

R

∫ p

−p

[√
1 + u′2 − β +

1

R
xu′
]
dx

=
1

R

∫ p

−p

[
R√

R2 − x2
− β +

1

R
x

(
− x√

R2 − x2

)]
dx

=
1

R

∫ p

−p

[
R2 − x2

R
√
R2 − x2

− β

]
dx =

1

R

∫ p

−p

[√
R2 − x2

R
− β

]
dx

=
2

R2

∫ p

0

√
R2 − x2dx− 2β

√
1− β2.

The remaining integral can be computed using the change of variables x = R sin θ. Note that
arcsin

√
1− β2 = arccosβ. We have∫ p

0

√
R2 − x2dx =

∫ arcsin(p/R)

0

√
R2 −R2 sin2 θR cos θdθ
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= R2

∫ arcsin
√

1−β2

0

cos2 θdθ =
R2

2

∫ arccos β

0

[1 + cos(2θ)]dθ

=
R2

2

[
θ +

1

2
sin(2θ)

] ∣∣arccos β
0

=
R2

2
[θ + sin(θ) cos(θ)]

∣∣arccos β
0

=
R2

2

[
arccosβ +

√
1− β2β

]
.

Inserting this into our expression for Λ[u, p], we obtain

Λ[u, p] = arccosβ − β
√
1− β2. (4.19)

Thus for all nonnegative w ∈W 1,1[−p, p] with w(−p) = w(p) = 0, we have

Λ[w, p] =

√
1− β2

p

∫ p

−p

[√
1 + w′2 − β +

√
1− β2

p
xw′

]
dx ≥ arccosβ − β

√
1− β2, (4.20)

with equality if and only if w = u as given in (4.16).

Integrating by parts, the inequality (4.20) yields√
1− β2

p

∫ p

−p

[√
1 + w′2 − β −

√
1− β2

p
w

]
dx ≥ arccosβ − β

√
1− β2, (4.21)

with equality if and only if w = u. Written in terms of L and A, we have√
1− β2

p

[
L− 2βp−

√
1− β2

p
A

]
≥ arccosβ − β

√
1− β2, (4.22)

with equality if and only if w = u. Rearranging, we obtain the isoperimetric inequality

L ≥

(
arccosβ√
1− β2

+ β

)
p+

√
1− β2

A

p
, (4.23)

with equality if and only if w = u as given in (4.16), as was to be shown.

Theorem 4.6 (Existence-Uniqueness-Regularity in W 1,1). For the variational problem in Table
4.1, there exists a unique smooth minimizer, given by

u(x) =
√
R2 − x2 − βR, (4.24)

where R is determined by

R−1 =

√
arccosβ − β

√
1− β2 (4.25)

and p =
√
1− β2R. Furthermore, the graph of u meets the x-axis at ±p with interior angle

arccosβ.
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Proof. Observe that the functional J [u] in Table 4.1 has the form

J [u] =

∫ p

−p

[
√
1 + u′2 − β]dx = L− 2βp. (4.26)

By the isoperimetric inequality (4.10), we have that

J [u] = L− 2βp ≥

(
arccosβ√
1− β2

− β

)
p+

√
1− β2

A

p
, (4.27)

with equality if and only if u is given by (4.16).

We wish to determine when the right-hand side of (4.27) is minimized. For the function g(p)
which defines the right-hand side, we have

g′(p) =

(
arccosβ√
1− β2

− β

)
−
√
1− β2

A

p2
,

g′′(p) = 2
√

1− β2
A

p3
> 0 for all p > 0,

so g(p) is concave up. Furthermore, g′(p) vanishes precisely when

p = p0 :=

√
(1− β2)A

arccosβ − β
√
1− β2

. (4.28)

Since g(p) is concave up, it follows that p = p0 yields a minimum of g(p). The minimum value
of g(p) is then

g(p0) = 2

√
A(arccosβ − β

√
1− β2). (4.29)

Therefore for p > 0 free and w ∈W 1,1[−p, p] with w(p) = w(−p) = 0, we have

J [u] = L− 2βp ≥ 2

√
A(arccosβ − β

√
1− β2), (4.30)

with equality if and only if p = p0 and w = u with

u(x) =
√
R2 − x2 − βR, R =

p0√
1− β2

=

√
A

arccosβ − β
√
1− β2

. (4.31)

As such, we see that among nonnegative functions w ∈ W 1,1[−p, p] with p > 0 free, u(p) =
u(−p) = 0, and A = 1, the functional J [u] = L− 2βp has the unique minimizer

u(x) =
√
R2 − x2 − βR, with R−1 =

√
arccosβ − β

√
1− β2, (4.32)

which a posteriori is smooth up to the boundary on the interval [−p, p] with

p =
√
1− β2R. (4.33)

Thus the variational problem in Table 4.1 has a unique smooth minimizer, as was to be shown.
The angle condition is satisfied per Remark 3.2.
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Chapter 5

Proof for C1 Parametrized Curves

In this section, we present a uniqueness-regularity proof for the variational problem described
in the introduction, with competition among C1 parametrized curves. The variational problem
is made precise in Table 5.1. The dot notation indicates a derivative with respect to t.

We remark that in this case, existence is harder to come by. To the best of the author’s
present knowledge, sufficient conditions for a problem of this type (parametric problem with one
isoperimetric constraint and free endpoints) are not given in the standard classical sources (see,
for example, Bliss [2] or Bolza [4]).

A recent article of Licea [17] provides sufficient conditions for a wide class of free endpoint
problems, including ones with isoperimetric and mixed inequality constraints, but our problem
fails to meet their criteria: the integrand of the objective functional does not have continuous
partial derivatives due to a singularity at (ẋ, ẏ) = (0, 0).

Theorem 5.1. If −1 < β < 1 and a minimizer exists for the variational problem in Table 5.1,
then that minimizer must be the smooth curve γ(t) = (x(t), y(t)) given by

x(t) = R sin

(
ℓ( 12 − t)

R

)
, (5.1)

y(t) = R cos

(
ℓ( 12 − t)

R

)
− βR, (5.2)

where R is the radius of curvature of the arc, determined by

R−1 =

√
arccosβ − β

√
1− β2, (5.3)

ℓ is the arclength of the arc, given by

ℓ = 2R arccosβ, (5.4)

and t ∈ [0, 1].

Table 5.1: Our isoperimetric problem with competition among C1 parametrized curves

among regular C1 curves γ(t) = (x(t), y(t)), t ∈ [0, 1], y ≥ 0,

minimize J [γ] =

∫ 1

0

[√
ẋ2 + ẏ2 + βẋ

]
dt

subject to K[γ] =

∫ 1

0

1

2
[xẏ − yẋ]dt = 1

and

{
x(0) = −x(1) > 0,

y(0) = y(1) = 0.
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Proof. (Uniqueness) Assume that β ∈ (−1, 1) and a minimizer γ = (x, y) exists for the problem
in Table 5.1. Let γ̃ = (x̃, ỹ) be a competitor curve, close to γ in the sense of the distance ρ(γ, γ̃).
We define the coordinate variations ξ, η ∈ C1[0, 1] by setting

ξ(t) = x̃(t)− x(t), η(t) = ỹ(t)− y(t). (5.5)

Since γ̃ must also have its endpoints on the x-axis, symmetric about 0, the coordinate variations
must satisfy

ξ(0) = −ξ(1), η(0) = η(1) = 0. (5.6)

Since γ is a constrained minimizer, there must exist a Lagrange multiplier λ ∈ R such that
the augmented functional

Λ[γ] := J [γ]− λK[γ] (5.7)

is stationary at γ, i.e., the first variation δΛ must vanish at u. Written out in full, we have

Λ[u] =

∫ 1

0

F (x, y, ẋ, ẏ)dt, F (x, y, ẋ, ẏ) =
√
ẋ2 + ẏ2 + βẋ− λ

2
[xẏ − yẋ]. (5.8)

Since Λ[γ] is stationary at the minimizer γ, the first variation δΛ must vanish for all admissible
variations. By Theorem 2.11, the first variation δΛ is given by

δΛ =

∫ 1

0

{
ξ

[
Fx − d

dt
Fẋ

]
+ η

[
Fy −

d

dt
Fẏ

]}
dt+ (Fẋξ + Fẏη)

∣∣t=1

t=0
. (5.9)

For all admissible variations δ = (ξ, η), we must have δΛ = 0.

In particular, this holds for admissible variations (ξ, η) with δx = 0. Hence for all ξ, η ∈
C1[0, 1] with ξ(0) = ξ(1) = 0, we have

δΛ =

∫ 1

0

{
ξ

[
Fx − d

dt
Fẋ

]
+ η

[
Fy −

d

dt
Fẏ

]}
dt. (5.10)

By separately considering variations where ξ = 0 or η = 0, the fundamental lemma of the calculus
of variations allows us to conclude that γ = (x, y) satisfies

Fx − d

dt
Fẋ = 0, Fy −

d

dt
Fẏ = 0,

the Euler-Lagrange equations of the functional Λ.

The remaining terms in the first variation yield the condition

δΛ = (Fẋξ + Fẏη) |
∣∣t=1

t=0
= 0, (5.11)

for all admissible variations (ξ, η) with ξ(0) = −ξ(1) and η(0) = η(1) = 0. This is the transver-
sality condition for our problem. Since ξ(0) = −ξ(1), it follows that γ = (x, y) satisfies

Fẋ|t=1 + Fẋ|t=0 = 0. (5.12)
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Euler-Lagrange equations

The Euler-Lagrange equations read

0 = Fx − d

dt
Fẋ = −λẏ

2
− d

dt

(
ẋ√

ẋ2 + ẏ2
+ β +

λy

2

)
,

0 = Fy −
d

dt
Fẏ =

λẋ

2
− d

dt

(
ẏ√

ẋ2 + ẏ2
− λx

2

)
.

Expanding and differentiating, we have

0 = −λẏ − d

dt

(
ẋ√

ẋ2 + ẏ2

)
= ẏ

[
λ− ẋÿ − ẍẏ

(ẋ2 + ẏ2)
3
2

]
, (5.13)

0 = λẋ− d

dt

(
ẏ√

ẋ2 + ẏ2

)
= ẋ

[
λ− ẋÿ − ẍẏ

(ẋ2 + ẏ2)
3
2

]
. (5.14)

Since γ is a regular curve, ẋ and ẏ are never simultaneously zero, so we conclude that

λ =
ẋÿ − ẋÿ

(ẋ2 + ẏ2)
3
2

(5.15)

for all t ∈ [0, 1]. The quantity on the right is the signed curvature of the curve γ, which we see is
constant. Hence we expect that γ is an arc of a circle with signed curvature λ and radius 1

|λ| . To

sweep out positive area, we can expect that γ must be oriented counter-clockwise, so we would
have λ > 0 (this will be proven below).

Since γ is a regular C1 curve, we are free to reparametrize it by arclength, so that it has unit
speed. Let s be the arclength parameter,

s(t) =

∫ t

0

√
ẋ(u)2 + ẏ(u)2du =⇒ ds

dt
=
√
ẋ2 + ẏ2. (5.16)

Multiplying the first expressions in (5.13) and (5.14) by dt/ds, we obtain

−λy′ − x′′ = 0 =⇒
(
y +

1

λ
x′
)′

= 0, (5.17)

λx′ − y′′ = 0 =⇒
(
x− 1

λ
y′
)′

= 0, (5.18)

where the prime notation indicates a derivative with respect to s. From these equations we
obtain the first integrals

x− 1

λ
y′ = a, y +

1

λ
x′ = b, (5.19)

where a, b are constants of integration. Substituting these back into the Euler-Lagrange equa-
tions, we obtain the uncoupled pair of equations

x′′ + λ2(x− a) = 0, y′′ + λ2(y − b) = 0. (5.20)
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The general solution to each of these ODEs is a sum of sinusoids of the form

c0 + c1 sin(λs) + c2 cos(λs), where c0, c1, c2 are some constants. (5.21)

As x and y are related by (5.19), we are free to take the solution to have the form{
x = a−R sin(λs+ φ),

y = b+R cos(λs+ φ),
(5.22)

where R > 0 and φ ∈ (−π, π] are constants to be determined. Hence γ is an arc of a circle with
radius R. Let ℓ denote the arclength of γ,

ℓ =

∫ 1

0

√
ẋ2 + ẏ2dt. (5.23)

We proceed to determine the constants a, b, R, ℓ and φ from the constraints of the problem.

First we establish the relationship between R and λ. Since the curve γ parametrized by
arclength has unit speed, we have

1 = x′2 + y′2 = (−Rλ cos(λs+ φ))
2
+ (−Rλ sin(λs+ φ))

2
= R2λ2, (5.24)

so we have R = 1
|λ| .

Next we apply the endpoint conditions. At the right endpoint s = 0, we have

y(0) = b+
1

|λ|
cos(φ) = 0, (5.25)

from which we determine that b = − 1
|λ| cos(φ). At the left endpoint s = ℓ, we have

0 = y(ℓ) =
1

|λ|
[cos(λℓ+ φ)− cos(φ)], (5.26)

from which we obtain the condition

cos(λℓ+ φ) = cos(φ). (5.27)

As such, we have either

λℓ+ φ ≡ φ (mod 2π) or λℓ+ φ ≡ −φ (mod 2π). (5.28)

From the condition x(0) = −x(ℓ) > 0, we see that

a− 1

|λ|
sin(φ) > 0 and a− 1

|λ|
sin(λℓ+ φ) < 0, (5.29)

from which we determine that

1

|λ|
sin(φ) < a <

1

|λ|
sin(λℓ+ φ). (5.30)
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Thus sin(φ) < sin(λℓ+ φ). Hence we cannot have λℓ ≡ 0 (mod 2π), so we must have λℓ ≡
−2φ (mod 2π). Then there exists k ∈ Z such that

λℓ = −2φ+ 2πk ⇐⇒ φ = −λℓ
2

+ πk. (5.31)

Applying the fact that x(0) + x(ℓ) = 0, we have

0 = a− 1

|λ|
sin

(
−λℓ

2
+ πk

)
+ a− 1

|λ|
sin

(
λℓ

2
− πk

)
= 2a+

1

|λ|

[
sin

(
λℓ

2
− πk

)
− sin

(
λℓ

2
+ πk

)]
= 2a.

Therefore a = 0, so the minimizer γ = (x, y) has the form

x(s) = − 1

|λ|
sin

(
λs− λℓ

2
+ πk

)
,

y(s) =
1

|λ|

[
cos

(
λs− λℓ

2
+ πk

)
− cos

(
−λℓ

2
+ πk

)]
.

It remains to determine sgn(λ), λ, ℓ, and k.

Returning to the endpoint conditions, the condition x(0) > 0 tells us that

− 1

|λ|
sin(φ) > 0 =⇒ sin(φ) < 0. (5.32)

Therefore φ ∈ (−π, 0). Since y(s) ≥ 0 for all s, we must have

cos(λs+ φ) ≥ cos(φ) (5.33)

for all 0 ≤ s ≤ ℓ. As φ ∈ (−π, 0), we must have λ > 0, for otherwise we have a contradiction.
As a further consequence, we must have

φ ≤ λs+ φ ≤ λℓ+ φ ≤ −φ, (5.34)

from which we determine that

0 < λℓ < 2π ⇐⇒ 0 <
λℓ

2
< π. (5.35)

Since φ = −λℓ
2 + πk ∈ (−π, 0) and −λℓ

2 ∈ (−π, 0), we must have k = 0. Putting it all together
and using the parity of cosine and sine, the minimizer γ = (x, y) must have the form

x(s) =
1

λ
sin

(
λ

(
ℓ

2
− s

))
,

y(s) =
1

λ

[
cos

(
λ

(
ℓ

2
− s

))
− cos

(
λℓ

2

)]
.

It remains to determine λ and ℓ.
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We apply the area constraint. Computing the area functional, we have

K[γ] =
1

2

∫ ℓ

0

[xy′ − yx′]ds

=
1

2

∫ ℓ

0

{
[ 1λ sin

(
λ( ℓ2 − s)

)
][sin

(
λ( ℓ2 − s)

)
]

− 1
λ [cos

(
λ( ℓ2 − s)

)
− cos

(
λℓ
2

)
][− cos

(
λ( ℓ2 − s)

)
]

}
ds

=
1

2λ

∫ ℓ

0

[
1− cos

(
λℓ
2

)
cos
(
λ( ℓ2 − s)

)]
ds

=
ℓ

2λ
− 1

2λ
cos

(
λℓ

2

)∫ ℓ

0

cos
(
λ( ℓ2 − s)

)
ds

=
ℓ

2λ
− 1

2λ
cos

(
λℓ

2

)[
− 1

λ
sin
(
λ( ℓ2 − s)

)] ∣∣∣∣ℓ
0

=
ℓ

2λ
+

1

2λ2
cos

(
λℓ

2

)[
sin

(
−λℓ

2

)
− sin

(
λℓ

2

)]
=

ℓ

2λ
− 1

λ2
cos

(
λℓ

2

)
sin

(
λℓ

2

)
=

ℓ

2λ
− 1

2λ2
sin(λℓ).

Since we require that K[γ] = 1, it follows that the area constraint reads

1 =
ℓ

2λ
− 1

2λ2
sin(λℓ). (5.36)

To proceed, we need the transversality condition.

Transversality condition

We recall from (5.12) that the transversality condition reads

Fẋ|t=1 + Fẋ|t=0 = 0. (5.37)

Written out in full, we have

0 =
ẋ(1)√

ẋ2(1) + ẏ2(1)
+ β +

ẋ(0)√
ẋ2(0) + ẏ2(0)

+ β, (5.38)

or in terms of the arclength parametrization,

0 = x′(ℓ) + x′(0) + 2β. (5.39)

Since we have x′(s) = − cos
(
λ( ℓ2 − s)

)
, the transversality condition yields the angle condition

cos

(
λℓ

2

)
= β. (5.40)
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Using the standard branch of arccos with values in [0, π], we have

λℓ = 2arccosβ. (5.41)

Plugging (5.41) into the area constraint, we have

1 =
λℓ

2λ2
− 1

2λ2
sin(λℓ)

=
2 arccosβ

λ2
− 1

λ2
sin

(
λℓ

2

)
cos

(
λℓ

2

)
=

arccosβ

λ2
− 1

λ2
sin(arccosβ) cos(arccosβ)

=
arccosβ

λ2
− 1

λ2

√
1− β2β.

Solving for λ, we find that

λ =

√
arccosβ − β

√
1− β2, (5.42)

so the arclength ℓ of the curve γ is given by

ℓ =
2arccosβ

λ
=

2arccosβ√
arccosβ − β

√
1− β2

. (5.43)

Setting R = λ−1, we conclude that a minimizer γ = (x, y) must have the form

x(s) = R sin

(
ℓ
2 − s

R

)
,

y(s) = R cos

(
ℓ
2 − s

R

)
− βR,

where 0 ≤ s ≤ ℓ with ℓ = 2R arccosβ. Reparametrizing by setting s = ℓt yields the expression
given in the statement. This proves uniqueness.

(Regularity) We have shown that the curve γ = (x, y) given by

x(t) = R sin

(
ℓ( 12 − t)

R

)
,

y(t) = R cos

(
ℓ( 12 − t)

R

)
− βR,

is the only candidate for a minimizer of the problem in Table 5.1. The smoothness of γ follows
immediately, since cos and sin are smooth.

Remark 5.2. One would like at this point to argue that the curve γ = (x, y) determined above
is a minimizer for the variational problem in Table 5.1. We will not do so here, and instead we
gather some observations about the problem. While not sufficient, they are worth noting.
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We recall that the augmented functional Λ[γ] is given by

Λ[γ] =

∫ 1

0

[√
ẋ2 + ẏ2 + βẋ− λ

2
[xẏ − yẋ]

]
dt. (5.44)

By the above, we see that for a minimizer to exist, λ is necessarily of the form

λ =
2arccosβ

ℓ
, (5.45)

for ℓ > 0 a fixed constant. This gives us a family of integrals

Λ[γ, ℓ] =

∫ 1

0

[√
ẋ2 + ẏ2 + βẋ− arccosβ

ℓ
[xẏ − yẋ]

]
dt. (5.46)

By “Euler’s rule” (see Kot [15], p. 119) our constrained optimization problem in Table 5.1 is
equivalent to the problem of minimizing the augmented functional Λ[γ, ℓ], and then selecting the
value of ℓ which yields an extremal satisfying the area constraint K[γ] = 1.

From the above, we know that the unique extremal of Λ[γ, ℓ] is

x(t) = R sin

(
ℓ( 12 − t)

R

)
,

y(t) = R cos

(
ℓ( 12 − t)

R

)
− βR,

where R = ℓ
2 arccos β . This is our candidate for a minimizer of Λ[γ, ℓ].

Since we are only considering curves for which y(0) = y(1) = 0, integration by parts shows
that

Λ[γ, ℓ] =

∫ 1

0

[√
ẋ2 + ẏ2 + βẋ+

2arccosβ

ℓ
yẋ

]
dt

=

∫ 1

0

[√
ẋ2 + ẏ2 +

(
β +

2arccosβ

ℓ
y

)
ẋ

]
dt.

We observe that the integrand is convex with respect to ẋ: denoting the integrand by
f(x, y, ẋ, ẏ), we have

∂2f

∂ẋ2
=

ẏ2

(ẋ2 + ẏ2)
3
2

≥ 0, (5.47)

with equality if and only ẏ ≡ 0. But since y(0) = y(1) = 0, we have ẏ ≡ 0 if and only if y ≡ 0,
and this does not occur for curves which satisfy the area constraint. Hence f is strictly convex
with respect to ẋ for the class of curves we are considering.

Furthermore, the integrand is convex with respect to ẏ: we have

∂2f

∂ẏ2
=

ẋ2

(ẋ2 + ẏ2)
3
2

≥ 0, (5.48)
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with equality if and only if ẋ ≡ 0. But ẋ ≡ 0 if and only if x ≡ C for some constant C, and since
we require x(0) = −x(1), the only possibility is that C = 0, and this does not occur for curves
which satisfy the area constraint. Hence f is strictly convex with respect to ẏ for the class of
curves we are considering. However, a computation of the Hessian with respect to ẋ, ẏ shows
that the determinant of the Hessian is 0, so we do not have strict convexity with respect to ẋ, ẏ.

We can compute the second variation of the given extremal. First we make the observation
that for a nearby competitor curve γ̃ = (x̃, ỹ) with x̃ = x+ εξ, ỹ = y + εη, and ε ∈ R small, we
have

1 =

∫ ℓ

0

[(x+ εξ)(y′ + εη′)− (y + εη)(x′ + εξ′)]ds

=

∫ ℓ

0

[xy′ − yx′]ds+ ε

∫ ℓ

0

[xη′ − yξ′ + ξy′ − ηx′]ds+ ε2
∫ ℓ

0

[ξη′ − ηξ′]ds

for all ε. Since γ = (x, y) satisfies the area constraint and this holds for all ε, it follows that∫ ℓ

0

[xη′ − yξ′]ds = −
∫ ℓ

0

[ξy′ − ηx′]ds and

∫ ℓ

0

[ξη′ − ηξ′]ds = 0. (5.49)

On the other hand, integration by parts shows that∫ ℓ

0

[xη′ − yξ′]ds =

∫ ℓ

0

[ξy′ − ηx′]ds, (5.50)

so we conclude that ∫ ℓ

0

[xη′ − yξ′]ds =

∫ ℓ

0

[ξy′ − ηx′]ds = 0. (5.51)

To compute the second variation, we compute the Hessian matrix of F (x, y, ẋ, ẏ). We have

Hess(F ) =

(
∂2F

∂zizj

)
zi,zj∈{x,y,ẋ,ẏ}

=


0 0 0 − 1

2
0 0 1

2 0

0 1
2

ẏ2

(ẋ2+ẏ2)
3
2

−ẋẏ

(ẋ2+ẏ2)
3
2

− 1
2 0 −ẋẏ

(ẋ2+ẏ2)
3
2

ẋ2

(ẋ2+ẏ2)
3
2

 . (5.52)

Then the second variation is given by

δ2J =
1

2

∫ 1

0

(ξ, η, ξ̇, η̇) ·Hess(F )(ξ, η, ξ̇, η̇)dt

=
1

2

∫ 1

0

{
− 1

2
ξη̇ +

1

2
ηξ̇ + ξ̇

[
1

2
η +

ẏ2

(ẋ2 + ẏ2)
3
2

ξ̇ − ẋẏ

(ẋ2 + ẏ2)
3
2

η̇

]
+ η̇

[
−1

2
ξ − ẋẏ

(ẋ2 + ẏ2)
3
2

ξ̇ +
ẋ2

(ẋ2 + ẏ2)
3
2

η̇

]}
dt

=
1

2

∫ 1

0

[
(ηξ̇ − ξη̇) +

(ẏξ̇ − ẋη̇)2

(ẋ2 + ẏ2)
3
2

]
dt
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=
1

2

∫ ℓ

0

[ηξ′ − ξη′]ds︸ ︷︷ ︸
=0

+
1

2

∫ ℓ

0

(y′ξ′ − x′η′)2ds

=
1

2

∫ ℓ

0

(x′η′ − y′ξ′)2ds ≥ 0.

Hence δ2J ≥ 0 for all admissible variations δ = (ξ, η), so γ is consistent with that necessary
condition of being a minimizer. However, from this computation, it is not apparent that the
second variation will be strictly positive for all nonnull variations (ξ, η).

As remarked upon above, we see in this setting that the classical theory can only take us
so far. An existence proof here would essentially require us to solve the variational problem of
Theorem 1.1 with competition among sets with C1 boundary, which form a proper subset of the
family of sets of finite perimeter.

The problem of proving the existence of minimizers spurred much development in the calculus
of variations, as can be seen in texts such as Dacorogna [6] and Maggi [18]. In particular, the
direct method and various symmetrization techniques play a key role in many modern existence
proofs, including that of the theorem on equilibrium shape under discussion in this thesis.
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Chapter 6

Conclusion

In this thesis, we set out to answer the following question: can we restrict the setting of
Theorem 1.1 to one where geometric measure theory is not necessary and still say something
meaningful about existence, uniqueness, and regularity of minimizers?

It was not clear a priori whether the answer was yes, but in Chapters 3 and 4 we saw
that restricting the setting to the class of curves which are expressible as graphs of C1 or W 1,1

functions gives the augmented functional a useful strict convexity property. In these restricted
settings, a full proof of existence-uniqueness-regularity is possible using only classical (i.e. non-
direct) methods, adapting work of Talenti [29].

However, in the setting of C1 parametrized curves, we saw that the corresponding convexity
property does not hold, so we were not able to prove the existence of a minimizer using the same
method. Furthermore, the classical literature surveyed by the author did not contain sufficient
conditions for this particular class of parametric free-endpoint isoperimetric problems. This begs
the question: are such sufficient conditions available?

We conclude with further open questions related to this research:

(i) Can Theorem 1.1 be proved using “classical” techniques in dimension n > 2?

(ii) For the partitioning problem with N = 1 compact chamber and M = 2 unbounded cham-
bers, we conjectured that Steiner symmetrization would allow us to reduce to the variational
problem solved by Theorem 1.1. Is this correct? Are our simplifying assumptions valid? Is
the same true in dimension n > 2?

(iii) What can be said about the planar partitioning problem with N = 1 compact chamber
and M = 3 unbounded chambers? We conjecture that the optimal configuration is the
one depicted in Figure 6.1; this configuration is given by stereographic projection of the
standard 4-bubble on the 2-sphere, with the point at infinity placed at one of the junctions.
What can be said in dimension n > 2?

(iv) What can be said about the planar partitioning problem with N = 2 compact chambers of
equal area andM = 2 unbounded chambers? We conjecture that the optimal configuration
is the one depicted in Figure 6.2; this configuration is given by stereographic projection of
the standard 4-bubble on the 2-sphere, with the point at infinity placed at the midpoint of
one of the interfaces. What can be said in dimension n > 2?

(v) What can be said in general about N compact chambers of equal area and M unbounded
chambers in n dimensions, with M,N ≥ 1 and n ≥ 2? Do minimizing clusters exist?

(vi) In problems with N ≥ 2 compact chambers, what is true in the unequal area case?

(vii) In all of the above problems, can the setting be generalized by adding a parameter like β
in Theorem 1.1 which controls the energetic preferences of the interfaces between regions?
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Figure 6.1: Conjectured optimal configuration for the planar partitioning problem with one
compact and three unbounded chambers
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Figure 6.2: Conjectured optimal configuration for the planar partitioning problem with two
compact chambers of equal area and two unbounded chambers
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Appendix A

Sets of Finite Perimeter

Here we present a crash course consisting of the definitions and theorems which are needed
to understand the statement and proof of Theorem 1.1, as presented in Maggi [18]. We assume
the reader’s familiarity with the construction of the Lebesgue integral; for more detail see Maggi
[18] or Stein-Shakarchi [26]. For more on the theory of functions of bounded variation, the reader
should consult texts such as Evans-Gariepy [7], Giusti [12], or Ziemer [32].

Note: A reference to “Maggi X.Y ” indicates that the corresponding definition or theorem is
found in Chapter X, Section Y of Maggi [18].

A.1 Borel and Radon Measures

Definition A.1 (Maggi 1, outer measure). An outer measure µ on Rn is a set function on Rn

with values in [0,∞], µ : P(Rn) → [0,∞], with µ(∅) = 0, and

E ⊂
⋃
h∈N

Eh =⇒ µ(E) ≤
∑
h∈N

µ(Eh). (A.1)

This property is called σ-subadditivity, and it implies the monotonicity of µ,

E ⊂ F =⇒ µ(E) ≤ µ(F ). (A.2)

Definition A.2 (Maggi 1.1, Dirac measure). The Dirac measure δx at x ∈ Rn is defined on
E ⊂ Rn as

δx(E) =

{
1, x ∈ E,

0, x /∈ E.
(A.3)

Definition A.3 (Maggi 1.1, Lebesgue measure). The Lebesgue measure of a set E ⊂ Rn is
defined as

Ln(E) = inf
F

∑
Q∈F

r(Q)n, (A.4)

where F is a countable covering of E by cubes with sides parallel to the coordinate axes, and
r(Q) denotes the side length of Q (the cubes Q are not assumed to be open, nor closed).

The Lebesgue measure Ln(E) is to be interpreted as the n-dimensional volume of E. Usually,
we write

Ln(E) = |E|, (A.5)

and refer to |E| as the volume of E.
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Definition A.4 (Maggi 1.1, k-dimensional Hausdorff measure). Given n, k ∈ N, δ > 0, the
k-dimensional Hausdorff measure of step δ of a set E ⊂ Rn is defined as

Hk
δ (E) = inf

F

∑
F∈F

ωk

(
diam(F )

2

)k

, (A.6)

where F is a countable covering of E by sets F ⊂ Rn such that diam(F ) < δ. The k-dimensional
Hausdorff measure of E is then

Hk(E) = sup
δ∈(0,∞]

Hk
δ (E) = lim

δ→0+
Hk

δ (E). (A.7)

Definition A.5 (Maggi 1.2, σ-additivity). Given a family F of subsets of Rn, we say that the
outer measure µ on Rn is σ-additive on F , provided

µ

(⋃
h∈N

Eh

)
=
∑
h∈N

µ(Eh), (A.8)

for every disjoint sequence {Eh}h∈N ⊂ F .

Definition A.6 (Maggi Rmk. 1.5, σ-algebra). We call M ⊂ P(Rn) a σ-algebra on Rn if E ∈ M
implies Rn \ E ∈ M, {Eh}h∈N ⊂ M implies ∪h∈NEh ∈ M, and Rn ∈ M.

Definition A.7 (Maggi Rmk. 1.5, measure). If M is a σ-algebra, then a set function µ : M →
[0,∞] is a measure on M if µ(∅) = 0 and µ is σ-additive on M.

Theorem A.8 (Maggi 1.4, Carathéodory’s theorem). If µ is an outer measure on Rn, and M(µ)
is the family of those E ⊂ Rn such that

µ(F ) = µ(E ∩ F ) + µ(F \ E), ∀F ⊂ Rn, (A.9)

then M(µ) is a σ-algebra, and µ is a measure on M(µ).

Definition A.9 (Maggi Rmk. 1.6, µ-measurable sets). Given an outer measure µ and the family
of sets M(µ) defined above, we call an element E ∈ M(µ) a µ-measurable set.

Definition A.10 (Maggi 1.3, µ-measurable functions). Let µ be a measure on the σ-algebra M.
A function u : E → [−∞,∞] is a µ-measurable function on Rn if its domain E covers µ-almost
all of Rn, that is µ(Rn \ E) = 0, and if, for every t ∈ R, the super-level sets

{u > t} = {x ∈ E : u(x) > t} (A.10)

belong to M.

Definition A.11 (Maggi 2.1, Borel sets). The Borel sets B(Rn) are defined as the σ-algebra
generated by the open sets of Rn.

Definition A.12 (Maggi 2.1, Borel measure). A Borel measure is an outer measure µ on Rn

such that B(Rn) ⊂ M(µ).
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Theorem A.13 (Maggi 2.1, Carathéodory’s criterion). If µ is an outer measure on Rn, then µ
is a Borel measure on Rn if and only if

µ(E1 ∪ E2) = µ(E1) + µ(E2), (A.11)

for every E1, E2 ⊂ Rn such that dist(E1, E2) > 0.

Definition A.14 (Maggi 2.2, regular Borel measure). We say that a Borel measure µ is regular
if for every F ⊂ Rn there exists a Borel set E such that

F ⊂ E, µ(E) = µ(F ). (A.12)

Definition A.15 (Maggi 2.3, locally finite measure). An outer measure µ on Rn is locally finite
if µ(K) <∞ for every compact set K ⊂ Rn.

Definition A.16 (Maggi 2.4, Radon measure). An outer measure µ is a Radon measure on Rn

if it is a locally finite, Borel regular measure on Rn.

Example A.17. The Dirac measure δx, the Lebesgue measure Ln, and the k-dimensional Haus-
dorff measure Hk are all important examples of Radon measures.

Definition A.18 (Maggi 2.4, restriction of an outer measure). Given an outer measure µ on
Rn, and E ⊂ Rn, the restriction of µ to E is the outer measure µ E defined as

(µ E)(F ) = µ(E ∩ F ), F ⊂ Rn. (A.13)

Definition A.19 (Maggi 2.4, concentration and support of a measure). An outer measure µ on
Rn is concentrated on E ⊂ Rn if µ(Rn \ E) = 0. The intersection of the closed sets E such that
µ is concentrated on E is denoted by sptµ, and is called the support of µ.

Definition A.20 (Maggi 4.2, total variation of a functional). We define the total variation |L|
of a linear functional L on C0

c (Rn;Rm) as the set function |L| : P(Rn) → [0,∞] such that, for
A ⊂ Rn open,

|L|(A) = sup
{
⟨L,φ⟩ : φ ∈ C0

c (A;Rm), |φ| ≤ 1
}
, (A.14)

and for E ⊂ Rn arbitrary,

|L|(E) = inf{|L|(A) : E ⊂ A and A is open}. (A.15)

Theorem A.21 (Maggi Thm. 4.7, Riesz’s theorem for the dual of C0
c (Rn;Rm)). If

L : C0
c (Rn;Rm) → R (A.16)

is a bounded linear functional, then its total variation |L| is a Radon measure on Rn and there
exists a |L|-measurable function g : Rn → Rm with |g| = 1 |L|-a.e. on Rn and

⟨L,φ⟩ =
∫
Rn

(φ · g)d|L|, ∀φ ∈ C0
c (Rn;Rm), (A.17)

that is, L = g|L|. Moreover, for every open set A ⊂ Rn,

|L|(A) = sup

{∫
Rn

(φ · g)d|L| : φ ∈ C0
c (A;Rm), |φ| ≤ 1

}
. (A.18)
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Definition A.22 (Maggi Rmk. 4.11, Rm-valued Radon measure). An Rm-valued Radon measure
on Rn is a bounded linear functional on C0

c (Rn;Rm). When m = 1 we speak of signed Radon
measures on Rn. We shall always adopt Greek symbols µ, ν, etc. in place of L to denote vector-
valued Radon measures, and also set

⟨µ, φ⟩ =
∫
Rn

φ · dµ (A.19)

to denote the value of the Rm-valued Radon measure µ on Rn at φ ∈ C0
c (Rn;Rm).

Definition A.23 (Maggi Rmk. 4.12, polar decomposition of a vector-valued Radon measure).
By Riesz’s theorem, every Rm-valued Radon measure µ on Rn admits a polar decomposition
µ = g|µ|, so that we can write

⟨µ, φ⟩ =
∫
Rn

(φ · g)d|µ|. (A.20)

A.2 Sets of Finite Perimeter

Definition A.24 (Maggi 12, set of locally finite perimeter). Let E be a Lebesgue measurable
set in Rn. We say that E is a set of locally finite perimeter in Rn if for every compact set K ⊂ Rn

we have

sup

{∫
E

div T (x)dx : T ∈ C1
c (Rn;Rn), sptT ⊂ K, sup

Rn

|T | ≤ 1

}
<∞. (A.21)

Definition A.25 (Maggi 12, set of finite perimeter). If the quantity above is bounded indepen-
dently of K, then we say that E is a set of finite perimeter in Rn.

Theorem A.26 (Maggi Prop. 12.1, Structure Theorem for Sets of Finite Perimeter). If E is
a Lebesgue measurable set in Rn, then E is a set of locally finite perimeter if and only if there
exists a Rn-valued Radon measure µE on Rn such that∫

E

div T =

∫
Rn

T · dµE , ∀T ∈ C1
c (Rn;Rn). (A.22)

Moreover, E is a set of finite perimeter if and only if |µE |(Rn) <∞.

Definition A.27 (Maggi Rmk. 12.2, Gauss-Green measure µE of a set of finite perimeter,
relative perimeter). We call µE the Gauss-Green measure of E, and define the relative perimeter
of E in F ⊂ Rn, and the perimeter of E, as

P (E;F ) = |µE |(F ), P (E) = |µE |(Rn), (A.23)

respectively.

Definition A.28 (Maggi 15, reduced boundary ∂∗E of a set of finite perimeter). The reduced
boundary ∂∗E of a set of locally finite perimeter E in Rn is the set of those x ∈ sptµE such that
the limit

lim
r→0+

µE(B(x, r))

|µE(B(x, r))|
(A.24)

exists and belongs to Sn−1.
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Definition A.29 (Maggi 15, outer unit normal νE to a set of finite perimeter). The (measure-
theoretic) outer unit normal to E is the Borel function νE : ∂∗E → Sn−1 defined by

νE(x) = lim
r→0+

µE(B(x, r))

|µE(B(x, r))|
, x ∈ ∂∗E. (A.25)

Theorem A.30 (Maggi Thm. 15.9, De Giorgi’s structure theorem). If E is a set of locally finite
perimeter in Rn, then the Gauss-Green measure µE of E satisfies

µE = νEHn−1 ∂∗E, |µE | = Hn−1 ∂∗E, (A.26)

and the generalized Gauss-Green formula holds true:∫
E

∇φ =

∫
∂∗E

φνEdHn−1, ∀φ ∈ C1
c (Rn). (A.27)

Moreover, there exist countably many C1-hypersurfaces Mh in Rn, compact sets Kh ⊂ Mh,
and a Borel set F with Hn−1(F ) = 0, such that

∂∗E = F ∪
⋃
h∈N

Kh, (A.28)

and, for every x ∈ Kh, νE(x)
⊥ = TxMh, the tangent space to Mh at x.

A.3 Equilibrium Shape of a Liquid Drop

Given β ∈ R, an open set A ⊂ Rn, and a set of finite perimeter E ⊂ A, we shall set

Fβ(E;A) = P (E;A)− βP (E; ∂A) (A.29)

for the total surface energy, and denote by

G(E) =

∫
E

g(x) dx (A.30)

the potential energy associated with a given Borel function g : Rn → R.

Theorem A.31 (Maggi Thm. 19.8, Young’s law). If β ∈ R, g ∈ L1(Rn), A is an open set
with C1-boundary in Rn, E ⊂ A is an open set with finite perimeter and measure, A ∩ ∂E is a
C2-hypersurface with boundary, and

Fβ(E;A) + G(E) ≤ Fβ(F ;A) + G(F ), (A.31)

for every F ⊂ A with |F | = |E|, then

νE · νA = −β on bdry(A ∩ ∂E). (A.32)

In particular, necessarily |β| ≤ 1.

Let H = {xn > 0} denote the open upper half-space in Rn.

46

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


M.Sc. Thesis – S. Vriend McMaster University – Mathematics & Statistics

Theorem A.32 (Maggi Prop. 19.15, constrained perimeter minimizers in half-space). If σ > 0,
then E is a minimizer in the variational problem

inf{P (E;H) : E ⊂ H, |E| = 1, P (E; ∂H) = σ} (A.33)

if and only if, up to horizontal translations, it is equivalent to the set

Fσ = B(sen, r) ∩H, (A.34)

where s ∈ R and r > 0 are uniquely determined by the constraints

|Fσ| = 1, P (Fσ; ∂H) = σ. (A.35)

Theorem A.33 (Maggi Thm. 19.21, Liquid drops in the absence of gravity). For every β ∈
(−1, 1), there exists a unique σ(β) > 0 with the following property: a set of finite perimeter
E ⊂ H with |E| = 1 is a minimizer in the variational problem

ψ(β) = inf{Fβ(E;H) : E ⊂ H,P (E) <∞, |E| = 1}, (A.36)

if and only if, up to horizontal translation, E is equivalent to the set

Gβ = Fσ(β), (A.37)

where Fσ, σ > 0, is defined as in Theorem A.32. Moreover,

νGβ
· en = β, on bdry(H ∩ ∂Gβ). (A.38)
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