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Lay Abstract

This thesis presents the weekly mortality time series of measles and whooping cough
between 1750 and 1900, and describes their epidemic patterns over time. We also
model the phenomenon of measles-induced immune amnesia (reduced pre-existing
immunity after a measles infection), and examine how it alters the recurrent patterns
of whooping cough at a population level. Additionally, we construct a plausible time
series of the birth and all-cause mortality rate over the same 150 years. Overall, our
analysis suggests immune amnesia alters the longer periodicities of whooping cough
to resemble that of measles. Furthermore, we show that this longer periodic structure
is similar to that of whooping cough in the late 19th century. Finally, the given
mortality, birth rate, and all-cause mortality rate time series can serve as tools for
other epidemiological studies, such as predicting long-term epidemic patterns of other
diseases.
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Abstract

Vaccine-preventable infectious diseases are still prevalent today. Hence, accurate data
and techniques such as mathematical modelling are required to better understand
their impact on a population level. This is especially the case for measles, as it has
been identified to cause immune amnesia (IA): the loss of pre-existing immunological
memory for other diseases after a measles infection. First, spectral analysis was used
to describe the recurrent patterns of measles and whooping cough (WC) using weekly
London mortality data between 1750–1900. Then, stochastic simulations of a model
incorporating IA were performed to understand the effect of IA on the recurrent pat-
terns of WC. The periodograms of the simulated model revealed that increasing IA
strength and duration caused the longer periodicities of WC to resemble those of
measles. This shift was seen for different population sizes, seasonal forcing ampli-
tudes, and mean transmission rates, suggesting this trend can be observed in different
ecological or social contexts. When the birth and death rates of London were used in
the model with IA duration of less than a year, the WC periodogram of the simula-
tions resembled that of the London mortality data between 1842–1900. Overall, the
simulations demonstrate that IA may have contributed to the longer period spectral
structure of WC that was found in the real data. Additionally, the mortality, birth
rate, and death rate data presented in this thesis provide new tools for future studies
in mathematical epidemiology.
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1 Introduction

Before the development of vaccines, airborne infectious diseases such as measles and
whooping cough (WC) contributed to a significant proportion of childhood mortality.
For example, measles was estimated to cause about 4 million deaths per year before the
introduction of vaccines in 1963 [1]. Despite the implementation of vaccinations, some
infectious diseases remain endemic across the world. Recently, measles was found to
cause more than 140000 deaths in 2018 [2], while more than 160000 WC deaths were
estimated in 2014 [3]. In addition, the emergence of new infectious diseases such as
COVID-19 and their global impact emphasize the continual need to investigate these
types of diseases.

A natural way to study infectious diseases is to analyze population-level data, such as
disease incidence or mortality. These data provide insight into how epidemiological
patterns and disease dynamics changed over time, which could be applied when trying
to control newly identified infectious diseases [4]. Furthermore, epidemiological data
can be used for the development of mathematical models in attempts to explain
or predict epidemic patterns and dynamics [5, 6]. Previous studies were able to
successfully describe the dynamics of measles using relatively simple models [5, 7].
However, some diseases, such as WC, have imposed challenges when trying to model
their patterns, especially during the pre-vaccination era [8, 9]. Hence, it is crucial
that high quality data is curated to generate accurate models and conclusions. Using
these models, the role of factors such as age structure, spatial dynamics, and contact
patterns on disease dynamics could be investigated [10]. Another relationship that
can be investigated through models is the immunological interaction between multiple
infectious diseases [11, 12, 13].

1.1 Measles-induced Immune Amnesia

Measles is a highly contagious respiratory disease caused by the measles virus, which
leads to symptoms such as fever, rash, coughs, and potentially death [1]. Measles in-
fections have also been thought to cause immunosuppresion for many years [14], and
secondary infections brought on after measles infections were described in the 18th
and 19th century [15, 16]. Charles Creighton’s tome from 1894 reported that children
recovering from measles in greatly weakened conditions were easier targets for small-
pox, and some years of measles epidemics were followed by high mortality of smallpox
and WC [16, pp. 640, 674-675]. Similarly, recent retrospective and cohort studies
have reported increased rates of hospital admission and risk of rehospitalization due
to infectious disease after hospitalization for measles [14, 17, 18, 19]. Furthermore,
studies analyzing population-level data found that measles incidence and mortality
was positively correlated with that of other infectious diseases, and the reduction of
measles due to vaccinations was temporally coupled with the reduction of other infec-
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tious diseases [19, 20, 21, 22, 23]. This correlation may be caused by measles-induced
immune amnesia (IA). Specifically, measles infections have been found to result in the
depletion of memory B cells, reduced B cell diversity, and decreased antibody reper-
toire [24, 25, 26], leading to diminished pre-existing immunological memory. These
immunological changes may be accompanied by increased susceptibility to diseases
for which immunity has previously been developed.

IA is an emerging concern as measles is considered endemic in some regions [27],
and declining vaccination rates due to vaccine hesitancy may reintroduce measles
to countries where it has been previously controlled [28, 29]. Through analytical
and computational analysis, Morales and Munoz [12] found that relaxing measles
vaccination could lead to the disappearance of heard immunity for the secondary
infectious disease, leading to severe outbreaks despite extensive vaccination for the
secondary disease. Yet, how IA influences the dynamics and epidemiological patterns
of other diseases, such as their recurrent patterns, is still not well understood. By
fitting a model incorporating measles-induced immunosuppression, Noori and Rohani
found that simulations with the fitted model had variable agreement with weekly
LondonWC incidence and mortality data across three time periods in the 20th century
[13]. However, they suggested that stochastic models may better explain periods with
irregular oscillations and emphasized the need for further work on understanding
IA. Despite consistent findings supporting this effect, studies have reported varying
estimates for how long measles may increase susceptibility to other diseases, ranging
between 1 month to 5 years [14, 17, 18, 20, 19, 21, 23]. In addition, the strength of
this effect is not known, as it may not fully deplete all memory B cells to fight against
immunity-developed diseases [12].

1.2 Objectives

Section 2 will introduce the weekly London mortality time series of measles and WC
spanning 150 years, and their long-term dynamics will be analyzed using spectral
analysis. Section 3 will present a two-disease model that includes measles-induced IA,
and investigate the role of IA on the recurrent epidemics of WC through stochastic
simulations. Finally, in Section 4, time-varying birth and death rates, pertaining to
the time period of the mortality time series in Section 2, will be incorporated into the
model to see if IA could have played a role in the observed dynamics of WC during
this period.

2
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2 Measles and Whooping Cough Mortality in Lon-

don

2.1 London Bills of Mortality

To explore the long-term patterns of measles and WC, weekly mortality data of these
diseases in London were analyzed. Previous studies looking at the dynamics of these
diseases in London used annual data or weekly data mainly from the 20th century
[6, 7, 8, 9, 30, 31, 32, 33, 34]. We used the London Bills of Mortality (LBoM) which
reported the number of baptisms, and church burials categorized by the cause of
death. The LBoM was aggregated from individual Anglican parish registers, with
weekly statistics reliably available starting in the 17th century [4]. However, there are
several factors which may have contributed to inaccuracies and underreporting in the
LBoM. Some of these summarized by Krylova and Earn [4] include:

• Omission of births or deaths outside of Anglican grounds, such as dissenters and
poor families unable to pay related fees [4, 35].

• Excluding the growth of certain parishes and failing to account for London’s
increasing geographic boundaries [4, 16, 36].

• The progressive collapse of the parish registration system starting in the early
19th century as the civil registration system took over [4, 16, 36]. However,
accompanying this collapse was the establishment of the Registrar General’s
Weekly Return (RGWR) in 1837, which included all births and deaths with
better geographical coverage by 1841 [4].

Even though LBoMmay not perfectly represent the true disease mortality due to these
issues, the LBoM was probably the most accurate account of London baptisms and
burials during its time [30]. For further analysis, we assume that temporal patterns
in burials reported by the LBoM were roughly proportional to the true mortality, and
that changes in the degree of underreporting were slow [4].

2.2 Classification of Diseases in LBoM

A key feature of the LBoM is that burials are categorized by cause of death, includ-
ing deaths due to diseases. However, due to the limitations of diagnostic techniques
and changes in medical conventions, the reliability of this categorization may be ques-
tioned. For example, due to similarities in symptoms, measles was commonly confused
with scarlatina during the late 18th century [16, p. 633]. Meanwhile, WC was initially
included under general “coughs” until its own category was created in the early 1700s
[16, p. 668]. In addition, a lot of infant deaths in the early 1700s may not reflect actual
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disease cases, as a majority of deaths under two years of age were listed under “con-
vulsions” and “teeth” [16, p. 669]. In fact, there was a substantial increase in recorded
WC deaths along with the decline of convulsion deaths in the latter half of the 18th
century, and Creighton suggests this is likely due to better classification [16, p. 669].
Aside from diagnostic issues, LBoM was also affected by changes in naming conven-
tions. For example, measles was listed jointly under “flox, smallpox and measles”
from 1687 to 1700 [16, p. 640], whereas WC was first listed under “chincough” [16,
p. 668].

2.3 Data Processing

Considering the problems with classification before the late 1700s, measles and WC
mortality data from the LBoM between 1750–1842 was used. Additionally, we joined
the LBoM data with the data from the RGWR between 1842–1900. Even though the
LBoM data was available until around 1845, the RGWR was more representative of
true London disease mortality during this overlap as mentioned in Section 2.1. The
time period used to analyze these diseases was also decided by that fact that previous
studies have reported both diseases to be endemic in London starting in the 1700s
[6, 30]. Weeks that were missing from the time series were identified manually, and
linearly interpolated since the gaps were only between 1 to 3 weeks (Figure 1).

4
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Figure 1: Weekly disease mortality of measles (top panel) and WC (bottom panel) in
London, 1750–1900. Data from the LBoM was used between 1750–1842, and data from the
RGWR was used between 1842–1900. The blue dashed line represents the year which the
data switches from LBoM to RGWR. Missing weeks were linearly interpolated as gaps were
at most three weeks.

The methodology of Krylova and Earn [4] was used to study the historical patterns of
these diseases. To check the quality of the data, the weekly data was aggregated by
year, then cross-validated with the annual disease mortality tabulated by Creighton
[16] from the annual Bills of Mortality and Registrar General’s Returns. Creighton’s
data was available from 1750 to 1837 for measles, and from 1750 to 1812 for WC. For
the respective time intervals, the annual mortality data aligned well between both
sources and showed little variation (Figure 2).
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Figure 2: Validation of aggregated weekly disease mortality against Creighton’s annual
tabulations [16]. White bars on the top means Creighton’s counts were larger, whereas
black bars means the aggregated weekly sums were larger for that year. Data consistency
was checked for both measles (top panel) and WC (bottom panel).

The weekly mortality series was then normalized to control for external factors that
may have affected the observed trends, such as population growth, changes in geo-
graphic sample area, and changes in registration system [4]. It is reasonable to assume
that these factors would have also affected the reporting of other causes of deaths in
a similar way, so we first extracted the trend in all-cause mortality (ACM) using
the EMD package in R [37, 38]. The package performs empirical mode decomposition
(EMD), which is well-suited for breaking down nonlinear and nonstationary signals
into intrinsic mode functions and an overall trend [38, 39]. The disease mortality time
series was then divided by the ACM trend for normalization (Figure 3). Note that the
ACM trends for the LBoM and RGWR sampling periods were calculated separately,
as a huge jump in reported mortality was seen during this transition.
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Figure 3: All-cause mortality and normalized weekly disease mortality of London, 1750–
1900. Top panel shows the weekly all-cause mortality and the trend (red line) computed
using empirical mode decomposition, as done previously by Krylova and Earn [4]. The
weekly measles (middle panel) and WC (bottom panel) disease mortality was normalized
by dividing by the trend in all-cause mortality.
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2.4 Spectral Analysis

Both diseases exhibited recurrent epidemics, as repeated peaks were seen in the time
series (Figure 1 & 3). However, the structure of these temporal patterns may differ
between diseases and vary over time [40]. This is hard to observe using just the time
series, so we used spectral methods to analyze the periodicity of measles and WC.

Spectral analysis involves decomposing a signal in terms of periodic functions such
as sines and cosines. For example, the time series {xt} may be written as a Fourier
series:

xt = a0 +

(N/2)−1∑
p=1

[ap cos(2πpt/N) + bp sin(2πpt/N)] + aN/2 cosπt (1)

for t = 1, 2, . . . , N [41]. Usually, the Fourier transform of the correlogram, known as
the periodogram, is computed

I(ωp) =
1

π

(
r0 + 2

N−1∑
k=1

rk cosωpk

)
(2)

for ωp = 2πp/N and p = 1, . . . , N/2 [40, 41]. This gives an estimate of the power
spectral density function, revealing information about periodicities in the data that
are hard to observe directly [40].

The period periodogram of the normalized, square-root-transformed mortality time
series was computed to understand the global dominant periods. This was done
through the spec.pgram function in R [37] which uses a fast Fourier transform with
a standard modified Daniell smoother.
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Figure 4: Periodogram of weekly measles and WC mortality time series in London, 1750–
1900. The square-root-transformed normalized time series was used to calculate the peri-
odograms for measles (top panel) and WC (bottom panel). Red points indicate prominent
peaks in the periodogram.

Both periodograms showed a strong signal near 1 year indicating annual periodicity
(Figure 4). This was likely due to seasonality of epidemics corresponding to yearly
weather patterns or other seasonal factors (e.g., school terms) that influenced contact
patterns [42]. Furthermore, measles showed peak signals near 0.5, 1.8, 2.7 and 5.9
years, whereas WC showed peaks near 2.0, 3.0, 3.9 and 5.5 years. Despite both being
respiratory diseases that affect similar age groups [13], these diseases showed differing
complex dynamics (as found for 20th century incidence data for these diseases [32]).

Although periodograms provide a useful overview of global patterns, they do not
show how these recurring patterns change over time [40, 43]. Traditional spectral
methods also assume the time series is stationary, which is usually not the case for
epidemiological data [43]. To address these concerns, we generated the wavelet spectra
of the disease mortality time series using the WaveletComp package in R [37, 44]. The
wavelet transform decomposes signals over wavelet functions which can vary in width,
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where narrower signals correspond to higher frequencies [4, 43, 45]. For a signal x(t)
and wavelet function ψ(t), it is defined as

Wx(a, τ) =
1√
a

∫ ∞

−∞
x(t)ψ∗((t− τ)/a)dt (3)

where a is the scaling factor and τ is the time shift, and gives the local wavelet power
spectrum by ∥Wx(f, τ)∥2 [43, 45]. The transform can roughly be interpreted as the
correlation between a signal and a set of functions with different widths [45]. It also
gives good localization of signals in the time-frequency domain with optimal trade-off
in resolution [43, 45], making it better suited for spectral analysis. The WaveletComp
package computes the wavelet transform using a Morlet wavelet for ψ(t):

ψ(t) = π−1/4 exp (i2ω0t) exp (−t2/2) (4)

where ω0 is the central angular frequency [43, 44]. The package assessed the signifi-
cance of signals by comparing against a white noise surrogate time series [44]. In the
wavelet spectra, the cone of influence was included, which indicates areas near the
edges where spectral information may be less accurate due to zero padding [43].

Early in the time series, measles showed strong signals near 3-year periods, which
progressively shifted to 2-year periods over time (Figure 5). Signals at 1- and 0.5-year
periods were also consistently present starting near 1870. Meanwhile, WC showed
strong signals at 1-year periods throughout most of the time series. Peaks also varied
greatly between 2- to 5-year periods before the late 19th century, suggesting multi-
ennial dynamics. Starting in the late 19th century, signals at longer periods were
localized near 2 and 3 years.

Overall, the spectral analysis that was performed describes the differing long term
patterns of measles and WC. Not only could the information be used for future studies
on measles and WC dynamics, but will be used as a reference when analyzing the
dynamics of the IA model in Section 3 and Section 4.

10
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Figure 5: Wavelet spectrum of weekly measles and WC mortality time series in London,
1750–1900. The square-root-transformed normalized time series was used to calculate the
wavelet spectra for measles (top panel) and WC (bottom panel). Black curves indicate local
peaks in wavelet power, and white solid curves indicate 95% confidence contours. White
dashed lines near the edges indicate the cone of influence.
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3 Modelling Immune Amnesia

To investigate how measles-induced IA affects the dynamics of secondary infectious
diseases, specifically with regards to recurrent epidemics, a two-disease model based
on the SEIR model [40, 46] was constructed.

3.1 The SEIR Model

The SEIR model is commonly used when modelling an infectious disease within a
population. It assumes that a host population can be divided into compartments
based on the progression of an infection for an individual [40]:

• Susceptible (S) individuals who may become infected.

• Exposed (E) individuals who have been infected, but are not yet infectious
themselves

• Infectious (I) individuals who can now transmit the infection to a susceptible
individual

• Removed (R) individuals who have recovered and are now immune to the infec-
tion. This means that they cannot become infected nor spread the infection.

According to the above assumption, N = S + E + I + R represents the total pop-
ulation size. The model also incorporates transition rates between the sequence of
compartments as shown in Figure 6.

S E I R

βSI/N σE γI

νN

µS µE µI µR

Figure 6: Flow diagram of SEIR model

β represents the transmission rate, or the average number of contacts between S and I
individuals that lead to new infections per unit time per susceptible per infective. 1/σ
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and 1/γ represent the mean latent and infectious periods, respectively. The model
may also incorporate vital statistics, specifically the per capita birth rate (ν) and
natural death rate (µ).

If it is further assumed that the population is large and homogeneously mixed, a
system of ordinary differential equations (ODEs) can be constructed to represent the
rate of change in each compartment 1:

dS

dt
= νN − βSI

N
− µS (5a)

dE

dt
=
βSI

N
− σE − µE (5b)

dI

dt
= σE − γI − µI (5c)

dR

dt
= γI − µR (5d)

An important quantity when determining the potential spread of an infectious dis-
ease is the basic reproduction number (R0). It is defined as the average number of
secondary cases generated by one infective individual introduced into a population of
susceptibles [40, 48]. For the SEIR model, the formula for R0 is given by:

R0 =
ν

µ

σ

µ+ σ

β

µ+ γ
(6)

[48]. Practically, R0 provides a threshold which dictates the trajectory of the disease.
If R0 < 1, then the exposed and infectious population fades out and approaches a
disease-free equilibrium. If R0 > 1, the disease persists and there exists an endemic
equilibrium with nonzero exposed and infectious populations [40, 48].

Another common extension of the SEIR model is to account for seasonal changes in the
transmission rate β(t). However, it is difficult to exactly know the structure of β(t).
Even when contact patterns can be deduced, a representative function for β(t) may
include abrupt changes (e.g., β(t) based on school term summarized in [49]), making
analysis difficult. Hence, an approximation with a sinusoidal function is commonly
used:

1Note that in these equations N refers to N(t), the total population size at time t. An alternative
would be to use N(t0), where t0 is an “anchor time” at which R0 is well estimated; see [47, §1.2].
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β(t) = ⟨β⟩(1 + α cos(2πt)) (7)

where ⟨β⟩ represents the mean transmission rate and α between 0 and 1 represents
the seasonal forcing amplitude.

Papst and Earn [49] have shown that the sinusoidally-forced β(t) with an approriately
chosen α can result in similar qualitative dynamics compared to other forcing functions
of radically different shapes (e.g., school term-time forced β(t)). Hence, studying
qualitative patterns in dynamics using eq. (7) is still relevant to epidemics in the real
world.

3.2 The Two-Disease Immune Amnesia Model

We construct a two-disease IA model to study the dynamics of WC under the influence
of measles-induced IA. Hypothetically, WC would have been influenced by IA as
both diseases affect similar age groups, and there exists historical records of their
association [13, 16].

A flow diagram of the IA model is shown in Figure 7. For state variables with two-
letter subscripts, the first letter represents the stage of infection for measles, while the
second letter represents the stage of infection for WC. Along with the assumptions for
the SEIR model, the IA model assumes that an individual recovers from one disease
before becoming susceptible once again to another disease. Individuals infected with
both diseases were likely rare in comparison due to relatively short recovery periods
[12]. Furthermore, co-infection of both diseases may be hindered by ecological inter-
ference, such as convalescence where infected individuals self-isolate and are shielded
from exposure to other diseases [50].

From the XSS compartment, the left path represents those who first had measles
before WC, whereas the right path represents those who had WC before measles.
However, individuals from the right path may become susceptible to WC again after
measles infection due to IA, and this is represented by a separate XA compartment
(A for amnesia). θ is the proportion of measles-recovered individuals who experience
IA as measles may compromise WC immunity to varying degrees. 1/κ describes the
mean duration of reduced immunity experienced due to IA. We refer to θ and 1/κ as
IA strength and IA duration respectively throughout the thesis.
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XSS

XES XSE

XIS XSI

XRS XSR

XRE XER

XRI XIR

XRR XA

βmXSS(XIS +XIR)/N βwXSS(XSI +XRI)/N

σmXES

γmXIS

βwXRS(XSI +XRI)/N

σwXRE

γwXRI

σwXSE

γwXSI

βmXSR(XIS +XIR)/N

σmXER

θγmXIR

κXA

βwXA(XSI +XRI)/N

(1− θ)γmXIR

νN

µXSS
µXES

µXIS

µXRS

µXRE

µXRI

µXRR

µXSE

µXSI

µXSR

µXER

µXIR

µXA

Figure 7: Flow diagram of the two-disease immune amnesia model. For two-letter com-
partments, the first letter represents the stage in measles infection, and the second letter
represents the stage in WC infection. The XA compartment represents those with decreased
immunity to WC due to measles-induced immune amnesia. Parameters with subscript m
are those pertaining to measles, and subscript w are those pertaining to WC.
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With these considerations, we can construct a system of ODEs for the IA model. Note
that the total number of infectious individuals for measles and WC are denoted as
Im = XIS +XIR and Iw = XSI +XRI respectively.

dXSS

dt
= νN − βmImXSS

N
− βwIwXSS

N
− µXSS (8a)

dXSE

dt
=
βwIwXSS

N
− σwXSE − µXSE (8b)

dXSI

dt
= σwXSE − γwXSI − µXSI (8c)

dXSR

dt
= γwXSI −

βmImXSR

N
− µXSR (8d)

dXER

dt
=
βmImXSR

N
− σmXER − µXER (8e)

dXIR

dt
= σmXER − γmXIR − µXIR (8f)

dXES

dt
=
βmImXSS

N
− σmXES − µXES (8g)

dXIS

dt
= σmXES − γmXIS − µXIS (8h)

dXRS

dt
= γmXIS − βwIwXRS

N
− µXRS (8i)

dXRE

dt
=
βwIw(XRS +XA)

N
− σwXRE − µXRE (8j)

dXRI

dt
= σwXRE − γwXRI − µXRI (8k)

dXA

dt
= θγmXIR − βwIwXA

N
− κXA − µXA (8l)

dXRR

dt
= γwXRI + κXA + (1− θ)γmXIR − µXRR (8m)

3.3 The Adaptive Tau Algorithm

When simulating epidemiological models, one consideration that arises is whether to
include noise, such as demographic stochasticity. Initial work by Barlett [51] showed
that the introduction of noise can sustain oscillations in a stochastic model. In fact,
noise may sustain transient oscillations at a period different from an attractor [40],
and better explain the dynamics of some diseases such as WC [32, 33]. Further-
more, demographic stochasticity recognizes the discrete nature of populations during
simulations.

A simple way of incorporating demographic stochasticity to compartmental models is
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by using Gillespie’s stochastic simulation algorithm (SSA) [40, 52, 53]. Let aj be the
rate at which a process involving a change in state occurs, and let a0 =

∑
aj be the

sum of the rates associated with the current system. Then, the probability that an
event associated with rate aj occurs in a small time interval [t, t + dt) is ajdt. The
time at which the next event occurs is given by t+ τ with τ = 1

a0
ln(1/u), where u is

sampled from a uniform distribution on (0, 1). The associated ith event that occurs
is selected by generating a point ar from a uniform distribution on (0, a0) and finding
the smallest integer i such that

∑i
l=1 al > ar. Despite this algorithm providing correct

realizations of stochastic processes that may occur, it is very slow since only one event
occurs at each time step [53].

To improve computational efficiency, Gillespie also proposed tau-leaping methods to
accelerate SSA [53, 54]. Specifically, the number of times an event occurs between
[t, t+ τ) is approximated by a Poisson random variable P (ajτ) for a small enough τ .
A value kj is then sampled from this distribution for the jth process, and the current
state is updated by kjvj for all possible processes where vj represents the state change
that occurs [53]. This is analogous to the explicit Euler formula, meaning it also
suffers from similar concerns such as the selection of a suitable τ , potential to drive
certain populations to negative values, and inefficient handling of stiff problems [53].
Stiffness is a major concern as the taken step size when using explicit methods needs
to be restricted to maintain numerical stability, but may lead to significantly longer
computational time [53]. To address this, implicit tau-leaping methods and different
tau selection algorithms have been proposed. However, it is difficult to determine
which method to use without initial knowledge about the system. Cao et al. [53]
proposed an adaptive tau-leaping algorithm that chooses either a non-negative explicit
or implicit method, by comparing the calculated τ ’s of each method to determine if
the problem is stiff or not for that timestep. Since we do not know whether our system
is stiff and the adaptive tau method can perform simulations faster than regular SSA
or explicit tau-leaping methods [53], this method was used to simulate the IA model.

3.4 Methods

Stochastic simulations of the IA model with seasonal forcing were performed using
the adaptivetau package in R [37, 55]. The parameter values that were used are
summarized in Table 1, and the state changes are summarized in Table 2.
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Parameter Measles WC
Mean latent period (1/σ) 8 days 8 days
Mean infectious period (1/γ) 5 days 14 days
Per capita birth rate & natural death
rate (ν, µ)

0.02 year−1

Basic reproduction number (R0) 17 17
Mean transmission rate (⟨β⟩) Calculated using eq. (6) (R0 for the SEIR model)
Seasonal forcing amplitude (α) 0.1 0.1
Initial population size (N) 800000
Immigration rate (η) 0.00005 year−1

IA strength (θ) & duration (1/κ) Varied for different simulations

Table 1: Parameters used in stochastic simulations unless specified otherwise.

Event Change Rate
Exposure (XSZ , XEZ) → (XSZ − 1, XEZ + 1)

(XZS, XZE) → (XZS − 1, XZE + 1)
(XA, XRE) → (XA − 1, XRE + 1)

βmImXSZ/N
βwIwXZS/N
βwIwXA/N

Infection (XEZ , XIZ) → (XEZ − 1, XIZ + 1)
(XZE, XZI) → (XZE − 1, XZI + 1)

σmXEZ

σwXZE

Recovery (XIS, XRS) → (XIS − 1, XRS + 1)
(XIR, XRR) → (XIR − 1, XRR + 1)
(XZI , XZR) → (XZI + 1, XZR + 1)

γmXIS

(1− θ)γmXIR

γwXZR

Immune amnesia (XIR, XA) → (XIR − 1, XA + 1) θγmXIR

Immune
restoration

(XA, XRR) → (XA − 1, XRR + 1) κXA

Birth XSS → XSS + 1 νN
Death XY → XY − 1 µXY

Immigration XIZ → XIZ + 1
XZI → XZI + 1

ηN
ηN

Table 2: List of state changes and rates in stochastic simulations of the IA model. Z = S
or R, and Y represents any compartment in the model.

The IA strength (θ ∈ [0, 1]) and duration (1/κ ∈ [0 months, 24 months]) were varied
for the same set of parameters to investigate their effect on overall epidemic pat-
terns. Simulations were also carried out after varying the initial total population
size, seasonal forcing amplitude, and mean transmission rate to investigate how these
parameters influence the effect IA has on WC patterns.

An immigration term that introduces a small number of infectious individuals to
the system was included, preventing the disease from fading out. This also reflected
the high immigration to London that occurred during the time periods which we
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focus on [36]. The immigration rate was chosen manually such that the diseases
consistently persisted in multiple simulations. In the simulations, the calculated rate
of immigration (ηN) with the parameter values used was small compared to the
unforced incidence rates (⟨β⟩SI) of the associated SEIR model at endemic equilibrium
for both diseases.

A total of 30 realizations were run for each set of parameters. For each realization,
we ran the simulation for 100 years initially to ensure that the system was near a
stationary state, then simulation data from the next 200 years were used for spectral
analysis. Using a long time series aimed to prevent spurious peaks [41], and avoid
aliasing where frequencies within the sampled time series may be captured at another
frequency in the power spectrum [41, 56].

To construct a weekly disease incidence time series from these simulations, an accu-
mulator compartment was included for each disease to keep track of the number of
new infectious individuals that entered the respective compartments. As the time
steps for the adaptive tau algorithm were not constant, we assumed the state was
constant between τ -leaps to get an evenly-spaced weekly time series of the accumu-
lator compartment. Finally, taking the first difference of the accumulator series gave
an incidence series reflected by the model (Figure 8). For future comparisons, we as-
sumed that the disease incidence from simulations was roughly proportional to disease
mortality from the real data.

Similar to how the disease mortality time series were normalized in Section 2.3, the
simulated incidence time series was normalized by dividing by the EMD trend. Then,
the square-root transform was applied to the noramlized time series before calculating
the period periodogram. The average periodogram and the 95% confidence interval
of the 30 realizations were calculated for each set of parameters.

3.5 Results

Initially, along with parameters from Table 1, an initial population size of N = 8×105

was used, which is close to the population of London in the late 18th century [4]. With
no measles-induced IA, the average periodogram for measles showed peaks near 1 and
2 years, while WC showed peaks near 1 year and in between 2.5–3 years (Figure
9). The periodogram for measles did not show significant changes when IA was
introduced to the system as expected (Figure 10 & Appendix B.1). However, for WC,
we observed a new peak at around 2 years, while the signal for the peak between 2.5–3
years decreased (Figure 9 & Appendix B.1). This shift in peak signal was greater when
the IA duration increased, and the shift was more prominent for shorter IA durations
when IA strength increased (Figure 11, Appendix B.1). With high IA strength and
duration, the magnitude of the new peak at around 2 years in the WC periodogram
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became comparable to the 2-year peak in the measles periodogram (Figure 10, 11,
Appendix B.1). Interestingly, the signal at 1 year did not change greatly for the WC
periodogram across different IA parameters. This suggests that the seasonality of the
disease is not overwhelmed by the effects of IA, and IA affects longer periodicities and
more complex dynamics.
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Figure 8: Disease incidence time series generated from one realization of the stochastic IA
model. Model parameters from Table 1 were used. The calculated weekly incidence of
measles (red) and WC (blue) for one stochastic simulation of IA model with no IA effects
(θ = 0, top panel) and strong IA effects (θ = 1, 1/κ = 24 mon, bottom panel) are shown.

20



M.Sc. Thesis - H.J. Lee; McMaster University - CSE

none
6 m

on
12 m

on
18 m

on
24 m

on

0 1 2 3 4

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

50

0

10

20

30

40

Period (Years)

Measles (θ = 0.5)

none
6 m

on
12 m

on
18 m

on
24 m

on

0 1 2 3 4

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

10.0

Period (Years)

WC (θ = 0.5)

Figure 9: Power spectra of disease incidence generated from IA model with N = 8 × 105

and θ = 0.5. Power spectra were computed using the square-root-transformed normalized
measles (left panels, red) and WC (right panels, blue) incidence weekly series extracted from
stochastic simulations of IA model with fixed θ = 0.5 (IA strength) and different 1/κ (IA
duration) between 6 to 24 months. The top panels represent simulations with no IA effects
(θ = 0). Grey lines represent the power spectra of 30 different realizations, while solid
colored lines indicate the average periodogram and colored bands represent 95% confidence
intervals.
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Figure 10: Average power spectra of disease incidence generated from IA model with N =
8 × 105 and θ = 0.5, 1. Power spectra were computed using the square-root-transformed
normalized measles (red) and WC (blue) incidence weekly series extracted from stochastic
simulations of IA model with fixed IA strength θ = 0.5 (left) and 1 (right), and different
1/κ (IA duration) between 6 to 24 months. The top panels represent simulations with no
IA effects (θ = 0). Solid colored lines indicate the average periodogram and colored bands
represent 95% confidence intervals.
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Figure 11: Longer period spectral structure of WC periodogram from the IA model using
N = 8× 105 with varying θ and 1/κ. Power spectra were computed using the square-root-
transformed normalized WC incidence weekly series extracted from stochastic simulations
of IA models. The top panel shows the locations of the peaks in the average periodogram
of 30 realizations between 2 and 3 years. The points connected by the bold line represent
the highest peak between this range for the associated pair of IA strength and duration,
and points not connected by this line represent other local peaks of lower magnitude that
were observed. The bottom panel shows the magnitude of the peak near 2 years in the WC
periodogram. In both panels, the dotted line represents the characteristics of the peak near
2 years in the measles periodogram with no IA effects.

One disadvantage of using a periodogram to analyze a time series is that different
temporal patterns in periodicities may lead to the same traditional periodogram [43].
Hence, to get a better picture of the temporal patterns in WC dynamics, the WC
wavelet spectrum was computed for one realization of simulations with no IA (θ = 0),
weaker IA (θ = 0.5, 1/κ = 6 months), and stronger IA effects (θ = 1, 1/κ = 24
months). The WC wavelet spectrum with no IA effects mainly showed a strong signal
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at around 3 years throughout time. However, when IA was introduced, the spectrum
frequently showed regions with peak signals near both 2 and 3 years (Figure 12).
These coexisting signals were analogous to the ones observed in the wavelet spectrum
of weekly WCmortality in London, especially during the latter half of the 19th century
(Figure 5). Note that these patterns were also regularly observed in other realizations.
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Figure 12: Wavelet spectra of WC weekly incidence from stochastic simulations with N =
8×105. The wavelet spectra of the square-root-transformed normalized WC weekly incidence
series were calculated for one realization of three simulated scenarios: no IA effects (θ = 0),
weak IA effects (θ = 0.5, 1/κ = 6 months), and strong IA effects (θ = 1, 1/κ = 24 months).
Solid black curves indicate local peaks in wavelet power, and white solid curves indicate
95% confidence contours. White dashed lines near the edges indicates the cone of influence.
Portions of the wavelet spectra between the black dotted lines display coexisting signals
near 2- and 3-year periods.

As population size determines the magnitude of demographic stochasticity, and has
been found to result in different qualitative features in the power spectra [57, 32, 56,
58], the same simulations were done usingN = 2.5×106. This reflects the approximate
population of London in the late 19th century [4]. Despite sharper peaks, the observed
trends for this population size were similar to that of N = 8 × 105. With increasing
IA strength and duration, the signal of the peak between 2.5–3 years decreased for
the WC periodogram, whereas the peak around 2 years increased to almost match the
signal in the measles periodogram (Figure 13, Appendix B.2). Meanwhile, the measles
periodogram, and the signal at 1 year in the WC periodogram remained unaffected.
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Figure 13: Longer period spectral structure of WC periodogram from the IA model using
N = 2.5×106 with varying θ and 1/κ. Power spectra were computed using the square-root-
transformed normalized WC incidence weekly series extracted from stochastic simulations
of IA models. The top panel shows the peaks of the average periodogram of 30 realizations
between 2 and 3 years. The points connected by the bold line represent the highest peak
between this range for the associated pair of IA strength and duration, and points not
connected by this line represent other local peaks of lower magnitude that were observed.
The bottom panel shows the magnitude of the peak near 2 years in the WC periodogram. In
both panels, the dotted line represents the characteristics of the 2-year peak in the measles
periodogram with no IA effects.

Up to now, we assumed that the seasonal forcing amplitude for both diseases was 0.1.
However, stochastic simulations using different seasonal forcing amplitudes [32, 59]
have been found to result in different qualitative features in the power spectra. To
investigate whether this would influence the patterns that were observed, simulations
were run with N = 8 × 105 for different pairs of seasonal forcing amplitudes where
αm, αw ∈ [0.05, 0.1, 0.15].
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Figure 14: Average power spectra of disease incidence from IA model with different sea-
sonal forcing amplitudes. Power spectra were computed using the square-root-transformed
normalized measles (red) and WC (blue) incidence weekly series extracted from stochas-
tic simulations of IA model for different scenarios: no IA effect (θ = 0), partial IA ef-
fect (θ = 0.5, 1/κ = 24 months and θ = 1, 1/κ = 12 months), and strong IA effect
(θ = 1, 1/κ = 24 months). αm was varied across columns of panels, whereas αw was varied
across rows of panels.. A total of 30 realizations were done for each set of parameters. Solid
colored lines indicate the average periodogram and colored bands represent 95% confidence
intervals

As expected, the magnitude of the periodogram peaks increased as the seasonal am-
plitude increased for the corresponding disease [32], especially at the 1 year peak.
Nevertheless, similar to the previous simulations, we saw an emergence of a 2-year
peak which increased with IA strength and duration, while the peak between 2.5 and
3 year decreased for the WC periodogram (Figure 14). However, the peak near 2.5
years in the WC periodogram was more prominent at greater IA strengths and du-
rations with a larger αm. Meanwhile, the measles periodogram consistently displayed
peaks in the 1- and 2-year periods.

Another parameter that affects the dynamics of diseases and the qualitative features
of the power spectra is the mean transmission rate [7, 32]. Hence, simulations with
N = 8 × 105 were performed using different pairs of mean transmission rate with
R0,m,R0,w ∈ [11, 14, 17]. Note that R0 refers to the basic reproduction number
for the SEIR model of the associated disease, and the mean transmission rate was
calculated using eq. (6).

Without IA effects, increasing the mean transmission rate shifted the dominant longer
period spectral peak towards shorter periods in the periodogram for both diseases
(Figure 15). Similar to previous simulations, with greater IA strength and duration,
the position of the peaks in the measles periodogram remained roughly the same.
Meanwhile, in the WC periodogram, a new peak arose at the same location as the
longer period peak in the measles periodogram, while the already existing longer
period peak decreased in magnitude. The newly formed peak in the WC periodogram
had a relatively weaker magnitude with a smaller transmission rate for WC, or a
larger transmission rate for measles.

Nevertheless, in all sets of parameters analyzed, introducing measles-induced IA made
the longer period spectral structure of WC resemble that of measles. However, the
extent to which this resemblance occurs may depend on the value of the parameters,
such as seasonal forcing or transmission rate.
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Figure 15: Average wavelet spectra of disease incidence from IA model with varying mean
transmission rate. Power spectra were computed using the square-root-transformed nor-
malized measles (red) and WC (blue) incidence weekly series extracted from stochastic
simulations of IA model for different scenarios: no IA effect (θ = 0), partial IA ef-
fect (θ = 0.5, 1/κ = 24 months and θ = 1, 1/κ = 12 months), and strong IA effect
(θ = 1, 1/κ = 24 months). R0,m was varied across columns of panels, whereas R0,w was
varied across rows of panels.. A total of 30 realizations were done for each set of parame-
ters. Solid colored lines indicate the average periodogram and colored bands represent 95%
confidence intervals

4 Modelling Immune Amnesia with Time-Varying

ν & µ

We have so far assumed that the parameters of the IA model were constant. However,
this is not reflective of what happens in the real world, making comparisons between
the simulations and real data questionable. Instead, time-varying parameters may be
needed to better understand how IA affected disease dynamics during the time period
in London discussed in section 2.

4.1 London Birth and Death Rates 1750–1900

As described in Section 2, the LBoM and RGWR reported the weekly number of
baptisms/births and burials/deaths between 1750 to 1900. Hence, these data were
used to estimate the per capita birth and death rates of London during this time
period. First, the overall trend in births and ACM was calculated using EMD (Figure
16) as previously done by Krylova and Earn [4]. This was done since the data were
noisy and likely affected by sampling errors such as heaping2 [4].

2Heaping refers to instances where backlogged entries were submitted together, resulting in an
unusually high number of deaths near the end of the reporting year.
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Figure 16: Weekly births (top panel) and all-cause mortality (bottom panel) in London,
1750–1900. Data from the LBoM was used between 1750–1842, and data from the RGWR
was used between 1842–1900. The blue dashed line represents the year which the data
switches from LBoM to RGWR. The solid red line represents the trend in the raw birth and
ACM data calculated using empirical mode decomposition, as done previously by Krylova
and Earn [4].

The trend was then divided by the London population size (Figure 17) to calculate the
weekly per capita birth and death rates. The population size estimates at these time
points were linearly interpolated from the annual London population data compiled
and estimated by Krylova and Earn (assuming that these values were reported at
the beginning of the year) [4]. To account for differences in geographical sampling
area between LBoM and RGWR, we used the inner London population for the LBoM
sampling period, and the total population for the RGWR sampling period (Figure
18).
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Figure 17: Population size of London, 1750–1900 estimated by Krylova and Earn [4]. The
annual population size of inner London (dashed black line) and London (solid black line) is
shown. To calculate per capita vital rates, the population of inner London was used before
1842 (indicated by dashed blue line), then all of London was used after 1842.

However, a sudden jump in both birth and ACM rate was found at the start of 1842
where the data transitioned from LBoM to RGWR. As discussed previously, this is
likely attributed to underreporting during the LBoM period, especially in the early
19th century as the parish system collapsed [4, 16]. Hence, the birth and ACM rates
from the LBoM period were transformed to produce a plausible continuous function
over time.

To do so, a linear function connecting the first point of the time series and the last
time point before the sudden jump in vital rates was fitted (lold(t)). This function
was then subtracted from the vital rates during this period, so that we were left with
yt = xt,old − lold(t) where xt,old is the original vital rate time series. Finally, a linear
function connecting the first point of the time series and the first point after the
sudden jump was fitted (lnew(t)). This was then added to yt to get a new vital rates
time series for the LBoM period xt,new = yt + lnew(t). The resulting series should
bridge the gap during the transition, and address the excessive downward trend at
the end of the LBoM period (Figure 18).
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Figure 18: The per capita rates after dividing the birth and ACM trends by the population
are shown with a solid black line (xt,old). To address the sudden jump in 1842, two linear
functions lold (black dashed line) and lnew (red dashed line) were derived to generate newly
transformed per capita rates (xt,new, red solid line)) as described in the main text.

However, the transformed birth rates still showed a sudden steep decrease near 1842
which was not necessarily tied with a historic event. It may instead be attributed to
the initial reluctance of the RGWR to report births, leading to the underreporting
of births when the RGWR first took over [16, p. 195]. Hence, this was addressed by
replacing it with a linear trend fitted between the closest two peaks (Figure 19).
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Figure 19: Correction of calculated per capita birth rate in London, 1750–1900. The solid
line shows the per capita weekly birth rate that was estimated from the data. The dotted
line was fitted to replace the sudden decrease in birth rate that may be due to sampling
errors.

The newly generated vital rates were compared with the annual England per capita
birth and death rates calculated by Wrigley and Schofield [36] to assess their plau-
sibility. The transformed London per capita ACM rate followed a similar downward
trajectory as the England rates (Figure 20). The transformed per capita birth rate also
followed a similar trend compared to the England rates, but was lower in value. As a
result, we decided to try two different measures of birth rate for further simulations
(Figure 20):

• The original transformed per capita birth rate calculated from the data (νlow(t)).

• The same per capita birth rate translated horizontally up to approximately
coincide with the England rates. This assumes regional homogeneity within
England (νhigh(t)).
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Figure 20: Comparing calculated per capita vital rates of London with estimated vital rates
of England. The dashed line represents the annual per capita birth (top panel) and death
(bottom panel) rates of England estimated by Wrigley and Schofield [36]. The solid red line
shows the per capita vital rates of London estimated as described in the main text. Note
for birth rate (top panel), another birth rate of London was obtained (νhigh, blue line) by
horizontal translation of the original rate (νlow, red line) such that νhigh coincided closely
with the England rates.

4.2 Methods

Stochastic simulations of the IA model with time-varying ν(t) (birth rate) and µ(t)
(ACM rate) were performed using the same procedure from Section 3.4. All other
parameter values were taken from Table 1 while varying 1/κ and θ. When necessary,
ν(t) and µ(t) were linearly interpolated from the London birth and ACM rates when
calculating the transition rates in the adaptive tau algorithm. Separate simulations
were carried out using νlow and νhigh for each set of parameters as well. Along with
the periodogram of the whole time series, periodograms were calculated separately
for the time intervals that correspond to the LBoM period (1750–1842) and RGWR
period (1842–1900) in the simulations.

38



M.Sc. Thesis - H.J. Lee; McMaster University - CSE

4.3 Results

For both νlow and νhigh, increasing IA strength (θ) and IA duration (1/κ) increased
the magnitude of the signal at 2 years in the WC periodogram, corresponding to
the location of the longer period peak in the measles periodogram (Figure 21, 22, 23
& Appendix B.3, B.4). Meanwhile, increasing IA strength and duration decreased
the signal at periods greater than 2 years, but did not affect the signal near 1 year.
Furthermore, the magnitude of the signal near 2 years in the WC periodogram ap-
proached the magnitude of the peak near 2 years in the measles periodogram. Peaks of
comparable magnitude at the 2-year period for measles and WC were also observed in
the periodograms of the London mortality data as well, especially during the RGWR
sampling period (Figure 24).

Compared to simulations with the same parameters but using constant ν and µ (Fig-
ures 9, 10, 11 & Appendix B.1), the WC periodograms when IA was absent showed
different spectral structures. While the WC periodograms from simulations with con-
stant vital rates showed a peak near 2.7 years, substituting the vital rates for the
London birth and ACM rate between 1750–1900 resulted in a dominant peak near
2 years. When IA was introduced, a similar change in the longer period spectral
structure of the WC periodogram was observed regardless of the ν and µ used, where
signals at 2 years became more prominent.

Simulations with time-varying ν and µ during the LBoM sampling period showed
significantly different periodogram structure compared to the real data for both dis-
eases regardless of the presence of IA (Figure 22, Appendix B.3.2, B.4.2). However,
simulations corresponding to the RGWR period showed local peaks near the same
position in the WC periodogram as the London data when a weak IA strength or IA
duration of less than 1 year was used, especially for νhigh (Figure 23, 25, Appendix
B.3.3, B.4.3).

The described trends in the periodogram were found for both νlow and νhigh. However,
comparing the total number of individuals N in the system over time, we found that
the trajectory of N for νhigh was closer to the growth of London population compared
to νlow (Figure 26).
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Figure 21: Longer period spectral structure of WC periodogram from the IA model using
time-varying ν(t) and µ(t) (estimated from section 4.1) and different θ and 1/κ. Power
spectra were computed using the square-root-transformed normalized WC incidence weekly
series extracted from stochastic simulations of IA models. The simulations were performed
for both νlow (top two panels) and νhigh (bottom two panels). For each set of two panels, the
top panel shows the peaks of the average periodogram of 30 realizations between 2 and 3
years. The points connected by the bold line represent the highest peak between this range
for the associated pair of IA strength and duration, and points not connected by this line
represent other local peaks of lower magnitude that were observed. The blue dashed lines
represent the peaks of the periodogram for the London WC mortality series. The bottom
panel shows the magnitude of the peak near 2 years in the WC periodogram. The dotted
black line represents the 2-year peak in the measles periodogram with no IA effects.
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Figure 22: Longer period spectral structure of WC periodogram from the IA model us-
ing time-varying ν(t) and µ(t) in LBoM sampling period (estimated from section 4.1) and
different θ and 1/κ. Power spectra were computed using the square-root-transformed nor-
malized WC incidence weekly series extracted from stochastic simulations of IA models.
The simulations were performed for both νlow (top two panels) and νhigh (bottom two pan-
els) between 1750–1842. For each set of two panels, the top panel shows the peaks of the
average periodogram of 30 realizations between 2 and 3 years. The points connected by
the bold line represent the highest peak between this range for the associated pair of IA
strength and duration, and points not connected by this line represent other local peaks
of lower magnitude that were observed. The blue dashed lines represent the peaks of the
periodogram for the London WC mortality series. The bottom panel shows the magnitude
of the peak near 2 years in the WC periodogram. The dotted black line represents the
2-year peak in the measles periodogram with no IA effects.
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Figure 23: Longer period spectral structure of WC periodogram from the IA model using
time-varying ν(t) and µ(t) in RGWR sampling period (estimated from section 4.1) and
different θ and 1/κ. Power spectra were computed using the square-root-transformed nor-
malized WC incidence weekly series extracted from stochastic simulations of IA models.
The simulations were performed for both νlow (top two panels) and νhigh (bottom two pan-
els) between 1842–1900. For each set of two panels, the top panel shows the peaks of the
average periodogram of 30 realizations between 2 and 3 years. The points connected by
the bold line represent the highest peak between this range for the associated pair of IA
strength and duration, and points not connected by this line represent other local peaks
of lower magnitude that were observed. The blue dashed lines represent the peaks of the
periodogram for the London WC mortality series. The bottom panel shows the magnitude
of the peak near 2 years in the WC periodogram. The dotted black line represents the
2-year peak in the measles periodogram with no IA effects.

44



M.Sc. Thesis - H.J. Lee; McMaster University - CSE

0.0

0.1

0.2

0.3

0 1 2 3 4

1750 − 1900

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4

LBoM

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4
Period (Years)

RGWR

Figure 24: Periodogram of weekly measles and WC mortality time series in London for
different time periods. The square-root-transformed normalized disease mortality time series
was used to calculate the periodograms for measles (red) and WC (blue). Top panel used
all the data between 1750–1900, middle panel used the LBoM sampling period (1750–1842),
and the bottom panel used the RGWR sampling period (1842–1900).
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Figure 25: Periodogram of weekly WC mortality in London and WC incidence from simula-
tions using time-varying νhigh(t) and µ(t) during the RGWR sampling period. The square-
root-transformed normalized WC mortality and incidence time series was used to calculate
the periodograms. The left panel shows the periodogram for the real London mortality data
during the RGWR sampling period, and the right panels show the periodograms from sim-
ulations with no IA effects (θ = 0, top panel) and weak IA effects (θ = 1, 1/κ = 3 months,
bottom panel). For periodograms of the simulations, grey lines represent the power spectra
of 30 different realizations, while solid colored lines indicate the average periodogram and
colored bands represent 95% confidence intervals.
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Figure 26: Total individuals within the system during stochastic simulations for νlow and
νhigh. The sum of all the compartments (N) over time were averaged over 30 realizations
for the model with no IA effects (θ = 0) and strong IA effects (θ = 1, 1/κ = 24 months).
The red dashed line is the N for the simulation with νlow, and the red solid line is the N for
the simulation with νhigh. The black dashed line is the population of inner London starting
1750, and the black solid line is the population of total London starting 1750.
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5 Discussion & Future Directions

5.1 Discussion

5.1.1 London measles and WC mortality, 1750–1900

We first analyzed the recurrent patterns of measles and WC mortality in London
between 1750–1900. Our analysis of the London data provides a weekly measles
and WC mortality time series which spans 150 years during the pre-vaccination era.
Previous work on the epidemic patterns of measles and WC in London during this
time period was carried out by Duncan et al. with a shorter annual time series [6, 30].
For WC, Duncan et al. [30] reported an interepidemic period of 3 years between 1750–
1785, and a basic periodicity of 5 years between 1785–1812. For measles, Duncan et
al. [6] reported a 3-year period beginning in 1750, which progressively decreased to
2 years at the beginning of the 19th century. The reported results agree with our
wavelet analysis of the two diseases, except for WC between 1785–1812 (Figure 5,
27). The WC wavelet spectrum showed peaks near 1 year and between 2 and 3 years
between 1785–1812, but not at 5 years. Beyond these time periods, the periodicities
of the diseases in the late 19th century were consistent with previous investigations of
recurrent patterns during the 20th century pre-vaccination era [34, 57]. The observed
changes in dynamical patterns over time may have resulted from a combination of
different factors such as population size, temperature, malnutrition, contact patterns,
and birth rates [5, 6, 7, 30, 32, 40, 60]. Overall, the organized data and the spectral
analysis could be used as resources for further studies on changes in epidemiological
and dynamical patterns.
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Figure 27: Comparison of wavelet analysis performed using London measles and WC data
with previous studies. The red dots show ridges found by the WaveletComp [44] package in
the wavelet spectra of the London disease mortality time series (computed in Section 2.4).
Blue lines represent the interepidemic intervals computed by Duncan et al. [6, 30].

5.1.2 IA and WC spectral structure

By running simulations incorporating demographic stochasticity, we found that measles-
induced IA influenced the complex recurrent epidemics of WC in our model. Simple
deterministic models have had difficulties predicting the multiennual dynamics of
WC during the pre-vaccination era [32, 56], as it mainly predicted annual dynam-
ics. Adding noise to the system was previously found to better account for longer
periodicities in WC [9, 32, 34, 56], where dominant cycles between 2–2.5 years or
near 2.7 years were usually reported apart from annual patterns. When similar pa-
rameters were used, the analyzed two disease model with no IA effects showed WC
periodograms that agreed with these previous findings (Figure 9 & 11). However,
when partial IA strength or a short IA duration was introduced to the system, the
WC periodogram showed a dominant peak at 2 years along with peaks between 2.5–3
years, exhibiting more complex patterns between 2–3-year periods (Figure 9 & 11).
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These two signals were also seen when the wavelet spectra of WC incidence was gener-
ated for simulations with IA effects (12). Interestingly, these spectra more resembles
what was seen in the WC periodogram and wavelet spectra of the London mortality
data, especially near the late 19th century (Figure 24). Furthermore, the magnitude
of the signal at 2 years in the WC periodogram became comparable to that of measles
when IA strength or duration increased (Figure 10 & 11), which is what was observed
in the London data. These results suggest that IA may better explain the observed
longer period recurrent patterns of WC in the real data, compared to other simple
models without this effect.

A possible explanation for this trend is that the IA compartment provides another
compartment of WC-susceptible individuals, the size of which depends on measles
dynamics. This may introduce a new flow of individuals controlled indirectly by
measles parameters into the wc-infected compartments, which is detected by signal
decomposition in Fourier or wavelet analysis [45]. The “mixing” of measles and WC
dynamics with IA may also be supported by wavelet analysis of some realizations
which showed coexisting signals near 2 and 3 years, as opposed to regions alternating
between 2 and 3 year signals (Figure 12).

5.1.3 IA with different disease parameters

The new longer period spectral structure of WC with the introduction of IA was also
observed when a larger population size was used for simulations (Figure 13). Smaller
population sizes increase the impact of demographic stochasticity [57], and studies
[32, 56, 58] have shown different population size lead to differing signal magnitudes
and potential shifts in peak location during spectral analysis. As expected, the ratio
between the signals of the peaks differed with larger population size [32], but increased
signal at 2-year period was still preserved in the WC periodograms of the simulations.
The effect of population size on IA has been commented by Mina et al. [61] previously,
suggesting that IA is hard to detect in small populations with large fluctuations
of mortality, where measles endemics cannot be sustained. All of the simulations
performed sustained a nonzero number of measles infectious individuals, so this is
likely not applicable to our results.

These trends were also found when the seasonal forcing amplitude of the disease trans-
mission rate was altered (Figure 14). It was very unlikely for the transmission rate
to be the same as contact patterns change, especially over the 150 years of weekly
disease mortality data that was previously described. For example, when considering
childhood infectious diseases, the seasonal forcing amplitude likely changed as more
students attended schools [31] due to changes in policies. Previous studies have as-
sessed the interplay between stochastic processes and seasonal forcing amplitude in
epidemiological models [33, 56, 62]. In our stochastic simulations, the relative magni-
tudes of the resonant peaks in the periodograms increased compared to nonresonant
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peaks as expected [32], especially at annual periods. Nevertheless, the increased sig-
nal at 2-year periods along with decreased signal between 2.5–3 years in the WC
periodogram was found to be robust to seasonal amplitude. However, with a larger
amplitude of seasonal forcing for measles transmission (αm), the signal between 2.5–3
years persisted for greater IA strengths and durations.

Similar patterns were observed when the mean transmission rate of the diseases were
altered (Figure 15). Regardless of the value of ⟨β⟩ that was chosen for measles and
WC, the emergence of a peak at a new location was found in the WC periodogram
with increased IA strength and duration. Furthermore, the location of the new peak
in the WC periodogram corresponded to the location of the longer period peak in
the measles periodogram, which varied with differing ⟨βm⟩. However, the amplitude
of the newly formed peak was relatively greater compared to the measles peak with
higher ⟨βw⟩ and/or smaller ⟨βm⟩. Overall, this demonstrates that the structure of the
altered WC recurrent epidemics depended on measles recurrent epidemics.

Previous studies analyzing immunological assays, population-level data, and hospital
records have provided evidence for the immunomodulatory effect of measles in various
countries and communities [14, 17, 18, 19, 20, 21, 22, 23, 26]. Similarly, the analyses
performed show that the resemblance of WC recurrent patterns to measles with the
introduction of IA can manifest in settings represented by different population sizes
and contact patterns.

5.1.4 IA with time-varying ν and µ

Using calculated vital rates of London in the simulations, the WC periodogram of
the simulated data with partial IA effects corresponding to the RGWR period had
similar peak locations between 2 and 3 years as the London mortality data. (Figure 23,
25). Furthermore, the magnitude of the signal at 2 years approached that of measles
when IA was introduced, similar to what was seen in the real data. However, the
resemblance occurred when IA strength was very weak, or the duration of reduced
immunity was less than a year. This duration was short compared to what some
experimental studies have reported [14, 18, 19, 20], but there are other studies which
have reported a duration of immunosuppression spanning less than a year [17, 21, 23].
Nevertheless, in conjunction with historic accounts noting the temporal association
between measles and WC epidemics [15, 16] and correlation studies providing evidence
for the immunosuppressive effect of measles [19, 20, 21, 22, 23], our results suggest IA
may have contributed to the observed epidemic patterns of WC to a certain extent.

Contrastingly, the WC periodogram for the simulations using vital rates in the LBoM
time period only showed a dominant 2-year peak regardless of IA, whereas the real
data showed peaks near both 2 and 3 years (Figure 22, 24). One reason for this dis-
agreement may be due to the demographic characteristics of London during this time
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period. Mina et al. [61] showed that IA effects were especially evident in countries
with low mortality and large populations such that outbreaks were associated with bi-
ological drivers and not stochastic events. However, in our case, it may also be because
of the discrepancies in the parameters used, especially for measles. While simulations
predicted a strong 2-year peak for the measles periodogram, the periodogram of the
real data during this time period showed a dominant peak near 2.7 years. As the
position of the peaks in the WC periodogram depend on the peaks in the measles
periodogram when IA is introduced (Figure 15), any differences in simulated measles
dynamics may have resulted in discrepancies in the WC periodograms.

5.1.5 Birth rate of London, 1750–1900

We calculated two estimates for the per capita birth rate of London (νlow and νhigh,
Figure 20) and found that similar trends in the periodograms were observed regard-
less of which birth rate was used in the simulation. However, the total number of
individuals in the system over time for νhigh more resembled the population growth of
London compared to νlow (Figure 26). Even though νlow better represented the actual
reported baptisms from the aggregated data, the simulations suggested that νhigh was
more plausible in this case. This may suggest the LBoM greatly underestimates bap-
tisms, likely attributed to the bills excluding individuals not part of the established
church, overlooking the increasing London geographic boundaries, and other potential
factors as the parish registration system progressively collapsed [4]. In fact, questions
regarding the reported baptisms and all-cause burials during the LBoM period were
raised by Creighton, stating that the bills may be inadequate to representing the
whole metropolitan area [16, p. 133].

According to the LBoM data, the total burials exceeded baptisms until the beginning
of the 19th century. Wrigley and Schofield [36, p. 166] suggested that this difference
was consistent with patterns of massive immigration and high mortality that occurred
in London during this time. However, they also believed that this deficit may be
reflected by under-registration between births and deaths. Other areas of England
such as Manchester, Sheffield, and York reported that births exceeded deaths at an
earlier time point than London [16, pp. 38, 64, 536]. As some demographic measures
such as martial fertility showed little regional variation in the pre-industrial era [63], it
may be more plausible that London also followed a similar trend as the other regions.

5.2 Future Directions

One main limitation when comparing the stochastic simulations to the real data was
that the used parameters may not reflect the true values during that time, especially
in the case of measles during the LBoM sampling period. For example, the R0’s used
were estimated from recent pre-vaccination data [46], whereas this quantity may differ
for the LBoM period, due to contrasting population characteristics such as birth rates
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or contact patterns. In addition, a constant value was chosen for the seasonal forcing
amplitude, but it likely varied throughout time. Another potential concern is that we
used the trends for vital statistics, but the raw values showed some oscillations which
may influence disease dynamics [60]. The model was also simplified by assuming
certain parameters were constant and lead to the same overall results for simplicity,
such as the case reporting probability and proportion of disease deaths. Furthermore,
we assumed similar qualitative results would be obtained when excluded from the
model as the general trend from the incidence time series would be retained. Overall,
using more representative parameters would help better understand whether IA played
an important role during this long pre-vaccination era. For example, obtaining a good
prior for β(t) using the SI method by Jagan et al. [64].

Alternatively, the model could be fitted to the London mortality data using methods
such as maximum likelihood [13, 65, 66]. Comparing the fitted two-disease IA model to
a regular SEIR model would help determine if IA explains the observed WC dynamics
better, and estimate the IA strength and duration if so. Initial work by Noori and
Rohani [13] found that their IA model did not explain the WC patterns in the pre-
vaccination era better compared to a regular SIR model. However, they suggested
that the additional challenge of fitting the model to both measles and WC data may
have contributed to their findings.

6 Conclusion

Overall, we described a measles and WC mortality series in London which spanned a
time period that was not analyzed thoroughly before to our knowledge. Furthermore,
a plausible estimate of the per capita birth and ACM rate were calculated for this
time period. These may function as tools when exploring the long-term dynamics of
these diseases and investigating how dynamical transitions may be linked to certain
historical events. It also provides a large data set to investigate better methods in
predicting dynamical transitions of diseases.

The analysis on IA showed that this measles-induced effect can have significant im-
pacts on the recurrent patterns of other diseases across different disease parameters. It
may provide a plausible alternative explanation for the longer periodicities of diseases
such as WC. However, further work is needed to better understand this mechanism
in other epidemiological contexts, so that it can be considered when implementing
vaccination and control strategies against non-measles infectious diseases under the
influence of IA.
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A Analysis of Disease-Free Equilibria

In this section, preliminary numerical analysis is presented for the immune amnesia
model used in the thesis. To do so, an SIR version of the model is considered for
simplicity:

XSS

XIS XSI

XRS XSR

XRI XIR

XRR XA

β1XSS(XIS +XIR) β2XSS(XSI +XRI)

γ1XIS

β2XRS(XSI +XRI)

γ2XRI

γ2XSI

β1XSR(XIS +XIR)

θγ1XIR

κXA

β2XA(XSI +XRI)

(1− θ)γ1XIR

ν

µXSS

µXIS

µXRS

µXRI

µXRR

µXSI

µXSR

µXIR

µXA

Figure 28: The SIR version of the two-disease immune amnesia model. For two-letter
compartments, the first letter represents the stage in measles infection, and the second
letter represents the stage in secondary disease infection. The XA compartment represents
those with decreased immunity to the secondary disease due to measles-induced immune
amnesia. Parameters with subscript 1 are those pertaining to measles, and subscript 2 are
those pertaining to the secondary disease affected by immune amnesia.
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Let each compartment represent the proportion of the total population in that com-
partment, such that N = XSS+XIS+XRS+XRI+XSI+XSR+XIR+XA+XRR = 1.
Then, we have the system of ODEs:

dXSS

dt
= ν − β1(XIS +XIR)XSS − β2(XSI +XRI)XSS − µXSS (9a)

dXSI

dt
= β2(XSI +XRI)XSS − γ2XSI − µXSI (9b)

dXSR

dt
= γ2XSI − β1(XIS +XIR)XSR − µXSR (9c)

dXIR

dt
= β1(XIS +XIR)XSR − γ1XIR − µXIR (9d)

dXIS

dt
= β1(XIS +XIR)XSS − γ1XIS − µXIS (9e)

dXRS

dt
= γ1XIS − β2(XSI +XRI)XRS − µXRS (9f)

dXRI

dt
= β2(XSI +XRI)(XRS +XA)− γ2XRI − µXRI (9g)

dXA

dt
= θγ1XIR − β2(XSI +XRI)XA − κXA − µXA (9h)

dXRR

dt
= γ2XRI + κXA + (1− θ)γ1XIR − µXRR (9i)

Analyzing the equilibria of the system helps us understand the long-term behaviour
of epidemics. When there are no infectious individuals such that XIS = XIR = XSI =
XRI = 0, then there exists a disease-free equilibrium (DFE) of:

(XSS
∗, XSI

∗, XSR
∗, XIR

∗, XIS
∗, XRS

∗,XRI
∗, XA

∗, XRR
∗) =

(ν/µ, 0, 0, 0, 0, 0, 0, 0, 0) (10)

To analyze its local stability, the Jacobian of the system was calculated and the DFE
was substituted to get

J(DFE) =



−µ −νβ2/µ 0 −νβ1/µ −νβ1/µ 0 −νβ2/µ 0 0
0 νβ2/µ− µ− γ2 0 0 0 0 νβ2/µ 0 0
0 γ2 −µ 0 0 0 0 0 0
0 0 0 −µ− γ1 0 0 0 0 0
0 0 0 νβ1/µ νβ1/µ− µ− γ1 0 0 0 0
0 0 0 0 γ1 −µ 0 0 0
0 0 0 0 0 0 −µ− γ2 0 0
0 0 0 γ1θ 0 0 0 −µ− κ 0
0 0 0 γ1(1− θ) 0 0 γ2 κ −µ


(11)
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The eigenvalues λ of this matrix are:

λ1,2,3,4 = −µ (12a)

λ5 = −γ1 − µ (12b)

λ6 = −γ2 − µ (12c)

λ7 = −κ− µ (12d)

λ8 = νβ1/µ− γ1 − µ (12e)

λ9 = νβ2/µ− γ2 − µ (12f)

As all parameters in the model are positive, the eigenvalues are always negative except
for λ8 and λ9. However, for i = 1, 2,

νβi/µ− γi − µ < 0 (13)

⇐⇒ν

µ

βi
γi + µ

< 1 (14)

⇐⇒R0,i < 1 (15)

where R0,i is the basic reproduction number of the SIR model with vital dynamics for
disease i. Hence, the DFE is asymptotically stable if the basic reproduction number
of the SIR model is less than 1 for both diseases.

As the model features two diseases, another equilibria of interest are partial DFEs
(PDFE), where only one disease is at DFE and the other disease has a nonzero
amount of infected individuals. Suppose disease 2 (secondary disease such as WC)
has no infectious individuals such that XSI = XRI = 0, then our system of equations
for finding the equilibrium becomes

ν − β1(XIS +XIR)XSS − µXSS = 0 (16a)

−β1(XIS +XIR)XSR − µXSR = 0 (16b)

β1(XIS +XIR)XSR − γ1XIR − µXIR = 0 (16c)

β1(XIS +XIR)XSS − γ1XIS − µXIS = 0 (16d)

γ1XIS − µXRS = 0 (16e)

θγ1XIR − κXA − µXA = 0 (16f)

κXA + (1− θ)γ1XIR − µXRR = 0 (16g)

Combining eq. (16b) and eq. (16c) we have that −µXSR − (γ1 + µ)XIR = 0. Since
µ, γ1 > 0 and XSR, XIR ≥ 0, we have that XSR = XIR = 0. Substituting this into
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eq. (16f) and eq. (16g) gives XA = 0 and XRR = 0, and the system now becomes

ν − β1XISXSS − µXSS = 0 (17a)

β1XISXSS − γ1XIS − µXIS = 0 (17b)

γ1XIS − µXRS = 0 (17c)

However, these equations are just the SIR model with vital dynamics which is known
to have an endemic equilibrium (EE). Solving this system gives PDFE1 of

(XSS
∗, XSI

∗,XSR
∗, XIR

∗, XIS
∗, XRS

∗, XRI
∗, XA

∗, XRR
∗) =

(
γ1 + µ

β1
, 0, 0, 0,

ν

γ1 + µ
− µ

β1
,
γ1
µ

(
ν

γ1 + µ
− µ

β1

)
, 0, 0, 0) (18)

Similarly, suppose that disease 1 (measles) has no infectious individuals such that
XIS = XIR = 0. Then the system of equations now becomes

ν − β2(XSI +XRI)XSS − µXSS = 0 (19a)

β2(XSI +XRI)XSS − γ2XSI − µXSI = 0 (19b)

γ2XSI − µXSR = 0 (19c)

−β2(XSI +XRI)XRS − µXRS = 0 (19d)

β2(XSI +XRI)(XRS +XA)− γ2XRI − µXRI = 0 (19e)

−β2(XSI +XRI)XA − κXA − µXA = 0 (19f)

γ2XRI + κXA − µXRR = 0 (19g)

From eq. (19f), we get that either XA = 0 or β2(XSI +XRI) = −κ − µ. Combining
the second equation with eq. (19b) gives XSI < 0 at equilibrium, which we are not
interested in. Alternatively, if XA = 0, then combining eq. (19d) and eq. (19e)
gives −µXRS − γ2XRI − µXRI = 0. Since µ, γ2 > 0 and all the compartments are
nonnegative, XRS = XRI = 0. This also means that XRR = 0 according to eq. (19g).
The system now simplifies to

ν − β2XSIXSS − µXSS = 0 (20a)

β2XSIXSS − γ2XSI − µXSI = 0 (20b)

γ2XSI − µXSR = 0 (20c)

which is once again just the SIR model with vital dynamics. This gives us PDFE2 of

(XSS
∗, XSI

∗,XSR
∗, XIR

∗, XIS
∗, XRS

∗, XRI
∗, XA

∗, XRR
∗) =

(
γ2 + µ

β2
,

ν

γ2 + µ
− µ

β2
,
γ2
µ

(
ν

γ2 + µ
− µ

β2

)
, 0, 0, 0, 0, 0, 0) (21)
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The Jacobian of the system was used again to analyze local stability. Substituting
PDFE1 into the Jacobian gives the matrix:

J(PDFE1) =

−µ− β1∆1 −∆2 0 −µ− γ1 −µ− γ1 0 −∆2 0 0
0 −µ− γ2 + δ2 0 0 0 0 ∆2 0 0
0 γ2 −µ− β1∆1 0 0 0 0 0 0
0 0 β1∆1 −µ− γ1 0 0 0 0 0

β1∆1 0 0 µ+ γ1 0 0 0 0 0
0 −β2γ1∆1/µ 0 0 γ1 −µ −β2γ1∆1/µ 0 0
0 β2γ1∆1/µ 0 0 0 0 −µ− γ2 − β2γ1∆1/µ 0 0
0 0 0 γ1θ 0 0 0 −µ− κ 0
0 0 0 γ1(1− θ) 0 0 γ2 κ −µ


(22)

where ∆1 =
ν

γ2+µ
− µ

β1
and ∆2 =

β2(γ1+µ)
β1

. The eigenvalues of this matrix are given by

λ1,2 = −µ (23a)

λ3 = −γ1 − µ (23b)

λ4 = −γ2 − µ (23c)

λ5 = κ− µ (23d)

λ6 = − νβ1
ν + γ1

(23e)

λ7 =
−νβ1 −

√
∆3

2(β1 + γ1)
(23f)

λ8 =
−νβ1 +

√
∆3

2(β1 + γ1)
(23g)

λ9 =
β2µ

2(µ+ γ1)− β1(µ(µ+ γ1)(µ+ γ2)− νβ2γ1)

β1µ(µ+ γ1)
(23h)

where ∆3 = ν2β2
1 − 4νβ1(µ + γ1)

2 + 4µ(µ + γ1)
3. As the parameters in the model

are positive, eigenvalues λ1 ∼ λ6 are always negative. We now consider sufficient
conditions for λ7 ∼ λ9 to be negative. λ7 will either be a negative real value or have
a negative real part depending on the sign of ∆3. Similarly, λ8 has negative real part
if ∆3 ≤ 0. If ∆3 > 0, then λ8 will be a negative real value if

νβ1 >
√
ν2β2

1 − 4νβ1(µ+ γ1)2 + 4µ(µ+ γ1)3 (24)

⇐⇒ 0 > −4νβ1(µ+ γ1)
2 + 4µ(µ+ γ1)

3 (25)

⇐⇒ νβ1 > µ(µ+ γ1) (26)

⇐⇒ ν

µ

β1
γ1 + µ

> 1 (27)

⇐⇒ R0,1 > 1 (28)
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For λ9, assume that R0,1 > 1 and R0,2 < 1. Then we have that

νβ1
µ(µ+ γ1)

> 1 ⇐⇒ νβ1β2γ1 > β2µγ1(µ+ γ1) (29)

and similarly putting together both expression gives

β1µγ1(µ+ γ2) > νβ1β2γ1 > β2µγ1(µ+ γ1) (30)

Hence, for λ9 < 0, it should satisfy

β2µ
2(µ+ γ1) < β1µ(µ+ γ1)(µ+ γ2)− νβ1β2γ1 (31)

⇐⇒ β2µ
2(µ+ γ1) < β1µ(µ+ γ1)(µ+ γ2)− β2µγ1(µ+ γ1) (32)

⇐⇒ β2µ < β1(µ+ γ2)− β2γ1 (33)

⇐⇒ β2(µ+ γ1) < β1(µ+ γ2) (34)

However, from the initial assumption, β1µγ1(µ+γ2) > β2µγ1(µ+γ1) ⇐⇒ β1(µ+γ2) >
β2(µ+γ1). Hence, all eigenvalues have negative real parts whenR0,1 > 1 andR0,2 < 1,
meaning PDFE1 is asymptotically stable when these conditions are met. Using similar
reasoning, it can also be concluded that PDFE2 is asymptotically stable if R0,1 < 1
and R0,2 > 1 (as it results in the eigenvalues of the same form with just a change of
variables).

This analysis showed that it is possible to reach a DFE where only one of the the
diseases, or both diseases, have faded out from the population. Furthermore, the
criteria for local stability of the DFEs closely resembles that of a simple SIR model
for these diseases.
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B Supplementary Figures

This section provides periodogram results for the simulations from Section 3.5 and
Section 4.3 for additional θ and 1/κ values.
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B.1 Simulations with N = 8× 105
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Figure 29: Periodograms of disease incidence from IA model withN = 8×105. Periodograms
were computed using the square-root-transformed normalized measles (red) and WC (blue)
incidence weekly series extracted from stochastic simulations. Simulations were done for
θ = 0.25, 0.5, 0.75, 1 with 1/κ values between 0 and 24 months. A total of 30 realizations
were done for each set of parameters. Solid colored lines indicate the average periodogram
and colored bands represent 95% confidence intervals
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B.2 Simulations with N = 2.5× 106
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Figure 30: Periodograms of disease incidence from IA model with N = 2.5 × 106. Peri-
odograms were computed using the square-root-transformed normalized measles (red) and
WC (blue) incidence weekly series extracted from stochastic simulations. Simulations were
done for θ = 0.25, 0.5, 0.75, 1 with 1/κ values between 0 and 24 months. A total of 30
realizations were done for each set of parameters. Solid colored lines indicate the average
periodogram and colored bands represent 95% confidence intervals
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B.3 Simulations with νlow(t) and µ(t)

B.3.1 1750–1900
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Figure 31: Periodograms of disease incidence from IA model with time-varying νlow and
µ. Time-varying parameters were calculated using London data between 1750 - 1900 as
described in Section 4.1. Periodograms were computed using the square-root-transformed
normalized measles (red) and WC (blue) incidence weekly series extracted from stochastic
simulations. Simulations were done for θ = 0.25, 0.5, 0.75, 1 with 1/κ values between 0 and
24 months. A total of 30 realizations were done for each set of parameters. Solid colored
lines indicate the average periodogram and colored bands represent 95% confidence intervals
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B.3.2 LBoM Period
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Figure 32: Periodograms of disease incidence from IA model with time-varying νlow and
µ corresponding to LBoM period. Time-varying parameters were calculated using London
data as described in Section Section 4.1. Periodograms were computed using the square-
root-transformed normalized measles (red) and WC (blue) incidence weekly series extracted
from stochastic simulations. Simulations were done for θ = 0.25, 0.5, 0.75, 1 with 1/κ values
between 0 and 24 months. A total of 30 realizations were done for each set of parame-
ters. Solid colored lines indicate the average periodogram and colored bands represent 95%
confidence intervals
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B.3.3 RGWR Period
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Figure 33: Periodograms of disease incidence from IA model with time-varying νlow and
µ corresponding to RGWR period. Time-varying parameters were calculated using Lon-
don data as described in Section 4.1. Periodograms were computed using the square-root-
transformed normalized measles (red) and WC (blue) incidence weekly series extracted from
stochastic simulations. Simulations were done for θ = 0.25, 0.5, 0.75, 1 with 1/κ values be-
tween 0 and 24 months. A total of 30 realizations were done for each set of parameters. Solid
colored lines indicate the average periodogram and colored bands represent 95% confidence
intervals
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B.4 Simulations with νhigh(t) and µ(t)

B.4.1 1750–1900
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Figure 34: Periodograms of disease incidence from IA model with time-varying νhigh and
µ. Time-varying parameters were calculated using London data between 1750 - 1900 as
described in Section 4.1. Periodograms were computed using the square-root-transformed
normalized measles (red) and WC (blue) incidence weekly series extracted from stochastic
simulations. Simulations were done for θ = 0.25, 0.5, 0.75, 1 with 1/κ values between 0 and
24 months. A total of 30 realizations were done for each set of parameters. Solid colored
lines indicate the average periodogram and colored bands represent 95% confidence intervals
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B.4.2 LBoM Period
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Figure 35: Periodograms of disease incidence from IA model with time-varying νhigh and
µ corresponding to LBoM period. Time-varying parameters were calculated using Lon-
don data as described in Section 4.1. Periodograms were computed using the square-root-
transformed normalized measles (red) and WC (blue) incidence weekly series extracted from
stochastic simulations. Simulations were done for θ = 0.25, 0.5, 0.75, 1 with 1/κ values be-
tween 0 and 24 months. A total of 30 realizations were done for each set of parameters. Solid
colored lines indicate the average periodogram and colored bands represent 95% confidence
intervals
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B.4.3 RGWR Period
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Figure 36: Periodograms of disease incidence from IA model with time-varying νhigh and
µ corresponding to RGWR period. Time-varying parameters were calculated using Lon-
don data as described in Section 4.1. Periodograms were computed using the square-root-
transformed normalized measles (red) and WC (blue) incidence weekly series extracted from
stochastic simulations. Simulations were done for θ = 0.25, 0.5, 0.75, 1 with 1/κ values be-
tween 0 and 24 months. A total of 30 realizations were done for each set of parameters. Solid
colored lines indicate the average periodogram and colored bands represent 95% confidence
intervals
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C Sample Codes

This section presents the basic R code used to generate the results in this thesis.

C.1 Processing & Analyzing London Mortality Data

The London mortality data was retrieved from the LBoM package, which was from
a private repository. The following code first cleans up and interpolates for missing
values in the time series of measles, WC, and ACM, then normalizes the disease
mortality time series as outlined in Section 2.3:

1

2

3

4

library(tidyverse)5

library(lubridate)6

library(LBoM)7

library(zoo)8

library(EMD)9

10

# Process acm data normalization11

acm_data <- get_data(category = "acm") %>%12

select(numdate, death.all.causes) %>%13

filter(numdate >= 1750 & numdate <= 1900) %>%14

rename(acm = death.all.causes)15

16

# Linear interpolation if necessary17

v <- acm_data$acm18

if (sum(is.na(v)) > 0){19

v <- na.approx(v, x = acm_data$numdate)20

v <- floor(v)21

}22

acm_data <- acm_data %>%23

mutate(acm = v)24

25

# Separate LBoM & GR (calculate trend separately)26

acm_lbom <- acm_data %>%27

filter(numdate < 1842)28

acm_gr <- acm_data %>%29

filter(numdate >= 1842)30

31

# Calculate acm trend using EMD32

e_lbom <- emd(acm_lbom$acm, acm_lbom$numdate, boundary = "wave")33

e_gr <- emd(acm_gr$acm, acm_gr$numdate, boundary = "wave")34

e <- c(e_lbom$residue, e_gr$residue)35

acm_data <- acm_data %>%36
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mutate(residue = e)37

38

# Retrieve wc time series from LBoM package39

# Clean up data first40

wc <- get_data(category = "diseaseMort", columns = "cough") %>%41

filter(numdate >= 1750 & numdate <= 1900) %>%42

mutate(from =43

ymd(year.from * 10000 + month.from * 100 + day.from)) %>%44

mutate(to = ymd(year.to * 10000 + month.to * 100 + day.to))45

wc <- wc[!wc$to == ymd(18731129), ] # Remove repeated date46

missing_wks <- read_csv("./17501900_missing_weeks.csv") %>%47

mutate(from = ymd(from)) %>%48

mutate(to = ymd(to))49

wc <- bind_rows(wc, missing_wks) %>%50

arrange(numdate)51

52

# Linear interpolation53

v1 <- wc$whooping.cough54

v2 <- wc$chincough55

v3 <- wc$hooping.cough56

v <- numeric(length(v1))57

58

for (i in 1:length(v1)) {59

if (!is.na(v1[i]) || !is.na(v2[i]) || !is.na(v3[i])) {60

v[i] <-61

replace_na(v1[i], 0) + replace_na(v2[i], 0) + replace_na(v3[i], 0)62

}63

else{64

v[i] <- NA65

}66

}67

68

if (sum(is.na(v)) > 0) {69

v <- na.approx(v, x = wc$numdate)70

v <- floor(v)71

}72

73

# Interpolate acm trend at listed dates if needed74

wc_lbom_date <- wc$numdate[wc$numdate < 1842]75

wc_gr_date <- wc$numdate[wc$numdate >= 1842]76

emd_lbom_inter <- approx(x = acm_lbom$numdate,77

y = e_lbom$residue, xout = wc_lbom_date)78
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emd_gr_inter <- approx(x = acm_gr$numdate,79

y = e_gr$residue, xout = wc_gr_date)80

emd_inter <- bind_rows(emd_lbom_inter, emd_gr_inter) %>%81

mutate(y = replace_na(y,82

emd_lbom_inter$y[length(emd_lbom_inter$y) - 1]))83

84

# Calculate normalized and sqrt normalized data85

wc <- wc %>%86

select(c("from", "to", "numdate")) %>%87

mutate(wc.deaths = v) %>%88

mutate(acm = emd_inter$y) %>%89

mutate(wc.norm = wc.deaths/acm) %>%90

mutate(wc.sqrt.norm = sqrt(wc.norm))91

92

# Retrieve measles time series from LBoM package93

# Clean up data94

m <- get_data(category = "diseaseMort", columns = "meas") %>%95

filter(numdate >= 1750 & numdate <= 1900) %>%96

mutate(from =97

ymd(year.from * 10000 + month.from * 100 + day.from)) %>%98

mutate(to = ymd(year.to * 10000 + month.to * 100 + day.to))99

m <- m[!m$to == ymd(18731129), ]100

m <- bind_rows(m, missing_wks) %>%101

arrange(numdate)102

103

# Linear interpolation104

v <- m$measles105

if (sum(is.na(v)) > 0) {106

v <- na.approx(v, x = m$numdate)107

v <- floor(v)108

}109

110

# Calculate normalized and sqrt normalized data111

m <- m %>%112

select(c("from", "to", "numdate")) %>%113

mutate(m.deaths = v) %>%114

mutate(acm = emd_inter$y) %>%115

mutate(m.norm = m.deaths/acm) %>%116

mutate(m.sqrt.norm = sqrt(m.norm))117

The normalized data was then used to perform the spectral analysis done in Sec-
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tion 2.4. The code for spectral analysis of the measles data is presented, but could be
modified to perform analysis on WC or simulation data.

118

119

120

library(tidyverse)121

library(WaveletComp)122

123

# Periodogram124

# Retrieve sqrt normalized data from previous code125

m_data <- m$m.sqrt.norm126

127

# Calculate periodogram128

m_pgram <- spec.pgram(m_data, log="no", plot = FALSE, taper = 0,129

kernel = kernel("modified.daniell",c(3,3))) %>%130

mutate(per = 1/(52*freq)) %>%131

select(per, spec)132

133

# Plot periodogram134

m_pgram_plt <- ggplot(m_pgram, aes(x = per, y = spec)) +135

geom_line() +136

scale_x_continuous(limits = c(0, 7), breaks = seq(0, 7, by = 1)) +137

scale_y_continuous(limits = c(0, NA)) +138

labs(x = "Period", y = "")139

140

# Wavelet Spectra141

m_data <- m %>%142

select(from, m.sqrt.norm) %>%143

mutate(date = as.Date(from))144

145

# Calculate wavelet spectra146

m_wav <- analyze.wavelet(data.frame(date = m.data$date,147

cases = m.data$m.sqrt.norm),148

"cases", loess.span = 0.0,149

dt = 1/52, dj = 1/200, lowerPeriod = 0.5,150

upperPeriod = 8, n.sim = 1000)151

152

# Plot wavelet spectra153

wt.image(m_wav,154

plot.coi = TRUE,155

n.levels = 250,156

siglvl = 0.05,157

show.date = TRUE,158

timelab = "Year",159

periodlab = "Period (Years)",160
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main = "Measles")161

C.2 Base Code for Stochastic Simulation of IA Model

The following base code was used to perform stochastic simulations of the IA model
using parameters from Table 1. This code was slightly modified to perform simulations
of other parameter combinations analyzed in this thesis.

162

163

164

library("tidyverse")165

library("adaptivetau")166

167

# Define realizations168

realizations = 30169

170

# Create data frame of IA parameters171

IA_str = c(0.25, 0.5, 0.75, 1)172

IA_str_fn = c("025", "05", "075", "1")173

IA_len = c(30, 90, 180, 270, 365, 455, 545, 635, 730, 1095, 1825)174

IA_len_fn = c("_1mon", "_3mon", "_6mon", "_9mon", "_12mon", "_15mon",175

"_18mon", "_21mon", "_24mon", "_36mon", "_60mon")176

177

IA_df <- as.data.frame(expand.grid(IA_len, IA_str)) %>%178

mutate(Var1 = 365/Var1)179

IA_df <- rbind(c(0, 0), IA_df)180

IA_fn_df <- as.data.frame(expand.grid(IA_len_fn, IA_str_fn)) %>%181

mutate(Var1 = as.character(Var1)) %>%182

mutate(Var2 = as.character(Var2))183

IA_fn_df <- rbind(c("", "0"), IA_fn_df)184

185

# Measles Parameters186

T_lat.m = 8/365187

T_inf.m = 5/365188

R0.m = 17189

beta.m = R0.m * ((lat.m + mu.m)/lat.m) * (inf.m + mu.m)190

alp.m = 0.1191

192

# wc Parameters193

T_lat.w = 8/365194

T_inf.w = 14/365195

R0.w = 17196

beta.w = R0.w * ((lat.w + mu.w)/lat.w) * (inf.w + mu.w)197

alp.w = 0.1198
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199

# Birth, death, and immigration rate200

b_rate = 0.02201

d_rate = 0.02202

imm.IS = 0.00005203

imm.IR = 0.00005204

imm.SI = 0.00005205

imm.RI = 0.00005206

207

# Initial conditions for sim208

N_0 = 800000209

e = 130210

q = round(1/R0.m*N_0)211

212

init.values = c(213

SS = q,214

ES = e,215

IS = e,216

RS = e,217

RE = e,218

RI = e,219

SE = e,220

SI = e,221

SR = e,222

ER = e,223

IR = e,224

A = 0,225

RR = N_0 - q - 10*e,226

N = N_0,227

Cm = 0, # Accumulator components228

Cw = 0229

)230

231

# State transitions232

transitions = list(c(SS = +1, N = +1),233

c(SS = -1, ES= +1),234

c(ES = -1, IS = +1, Cm = +1),235

c(IS = -1, RS = +1),236

c(RS = -1, RE = +1),237

c(RE = -1, RI = +1, Cw = +1),238

c(RI = -1, RR = +1),239

c(SS = -1, SE = +1),240
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c(SE = -1, SI = +1, Cw = +1),241

c(SI = -1, SR = +1),242

c(SR = -1, ER = +1),243

c(ER = -1, IR = +1, Cm = +1),244

c(IR = -1, A = +1),245

c(IR = -1, RR = +1),246

c(A = -1, RE = +1),247

c(A = -1, RR = +1),248

c(SS = -1, N = -1),249

c(ES = -1, N = -1),250

c(IS = -1, N = -1),251

c(RS = -1, N = -1),252

c(RE = -1, N = -1),253

c(RI = -1, N = -1),254

c(SE = -1, N = -1),255

c(SI = -1, N = -1),256

c(SR = -1, N = -1),257

c(ER = -1, N = -1),258

c(IR = -1, N = -1),259

c(RR = -1, N = -1),260

c(A = -1, N = -1),261

c(IS = +1, N = +1),262

c(IR = +1, N = +1),263

c(SI = +1, N = +1),264

c(RI = +1, N = +1)265

)266

267

# Rates268

lvrates <- function(x, params, t){269

return(c(params$nu * x["N"], #birth270

params$beta[1] * (1+params$alp[1]*cos(2*pi*t))271

* x["SS"] * (x["IS"] + x["IR"]) * 1/x["N"],272

params$lat[1] * x["ES"],273

params$inf[1] * x["IS"],274

params$beta[2] * (1+params$alp[2]*cos(2*pi*t))275

* x["RS"] * (x["SI"] + x["RI"]) * 1/x["N"],276

params$lat[2] * x["RE"],277

params$inf[2] * x["RI"],278

params$beta[2] * (1+params$alp[2]*cos(2*pi*t))279

* x["SS"] * (x["SI"] + x["RI"]) * 1/x["N"],280

params$lat[2] * x["SE"],281

params$inf[2] * x["SI"],282
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params$beta[1] * (1+params$alp[1]*cos(2*pi*t))283

* x["SR"] * (x["IS"] + x["IR"]) * 1/x["N"],284

params$lat[1] * x["ER"],285

params$inf[1] * params$ome * x["IR"],286

params$inf[1] * (1 - params$ome) * x["IR"],287

params$beta[2] * (1+params$alp[2]*cos(2*pi*t))288

* x["A"] * (x["SI"] + x["RI"]) * 1/x["N"],289

params$kappa * x["A"],290

(params$mu) * x["SS"],291

(params$mu) * x["ES"],292

(params$mu) * x["IS"],293

(params$mu) * x["RS"],294

(params$mu) * x["RE"],295

(params$mu) * x["RI"],296

(params$mu) * x["SE"],297

(params$mu) * x["SI"],298

(params$mu) * x["SR"],299

(params$mu) * x["ER"],300

(params$mu) * x["IR"],301

(params$mu) * x["RR"],302

(params$mu) * x["A"],303

params$imm[1] * x["N"],304

params$imm[2] * x["N"],305

params$imm[3] * x["N"],306

params$imm[4] * x["N"]307

))308

}309

310

# Adaptive tau for each IA parameters311

for(k in 1:nrow(IA_fn_df)){312

for(j in 1:realizations){313

params = list(314

lat = c(1/T_lat.m, 1/T_lat.w),315

inf = c(1/T_inf.m, 1/T_inf.w),316

R0 = c(Reff.m, Reff.w),317

mu = b_rate,318

nu = d_rate,319

beta = c(beta.m, beta.w),320

alp = c(alp.m, alp.w),321

ome = IA_df[k, 2],322

kappa = IA_df[k, 1],323

imm = c(imm.IS, imm.IR, imm.SI, imm.RI)324
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)325

326

coupled.sim <- as_tibble(ssa.adaptivetau(init.values, transitions,327

lvrates, params, tf = 300)) %>%328

mutate(Im = IS + IR) %>%329

mutate(Iw = SI + RI)330

331

# Save sim data332

fn <- paste0("./str", IA_fn_df[k, 2], IA_fn_df[k, 1],333

"_raw_", j, ".rds")334

saveRDS(coupled.sim, file = fn)335

}336

}337

The following code extracts evenly-spaced disease incidence time series from the sim-
ulation results. This was then used to perform spectral analysis using the previous
code from Appendix C.1.

library(tidyverse)338

library(EMD)339

340

realization = 30341

342

# IA parameters (for calling in sim data)343

IA_str_fn = c("025", "05", "075", "1")344

IA_len_fn = c("_1mon", "_3mon", "_6mon", "_9mon", "_12mon", "_15mon",345

"_18mon", "_21mon", "_24mon", "_36mon", "_60mon")346

347

# Define event spaced time points348

tpoints <- seq(7/365, 200, by = 7/365) + 100349

tpoints2 <- c(100, tpoints)350

351

for(ia_str in IA_str_fn){352

for(ia_len in IA_len_fn){353

for(d in 1:realization){354

# Read in raw sim data355

sim.data <- readRDS(paste0("./str", ia_str, ia_len,356

"_raw_", d, ".rds")) %>%357

select(time, Cm, Cw)358

359

# Interpolate accumulator for even timepoints360

C_m <- approx(x = sim.data$time,361
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y = sim.data$Cm,362

xout = tpoints2)363

C_w <- approx(x = sim.data$time,364

y = sim.data$Cw,365

xout = tpoints2)366

367

# Create data frame of incidence extracted from sim data368

df <- data.frame(t = tpoints,369

m = diff(floor(C_m$y)),370

w = diff(floor(C_w$y)))371

372

# Sqrt normalize incidence data373

e_m <- emd(df$m, df$t, boundary="wave")374

e_w <- emd(df$w, df$t, boundary="wave")375

df <- df %>%376

mutate(m.trend = e_m$residue) %>%377

mutate(m.sqnm = sqrt(m/m.trend)) %>%378

mutate(w.trend = e_w$residue) %>%379

mutate(w.sqnm = sqrt(w/w.trend))380

381

# Save data382

fn <- paste0("./str", ia_str, ia_len,383

"_clean_", d, ".rds")384

saveRDS(df, file = fn)385

}386

}387

}388
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