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Abstract

Let F be a field and let R = F[x1, . . . , xn] be a polynomial ring. Given a polynomial
f ∈ R with a squarefree initial ideal (for some monomial order), one can build a class of
ideals in R call the Knutson ideals associated to f. Each Knutson ideal is radical and the
set of all Knutson ideals associated to f ∈ R is closed under summation, intersection, and
saturation. Each Knutson ideal Gröbner degenerates to a squarefree monomial ideal.

The goal of this thesis is to prove that certain classes of ideals are Knutson. The
classes we focus on are toric ideals of graphs. We prove that toric ideals of certain classes
of graphs are Knutson. We also show that if the toric ideal of a graph G is Knutson, and
H is obtained from G by gluing an even cycle to an edge of G, then the toric ideal of
H is Knutson. We also discuss the one-sided ladder determinantal ideals and prove that
every one-sided ladder determinantal ideal is Knutson. In the last chapter, we discuss
some future directions.
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CHAPTER 1

Introduction

Radical ideals are studied in commutative algebra and algebraic geometry. An ideal
I is radical if I = {r ∈ R | rm ∈ I for some m ∈ N}. We study a subset of radical
ideals, which are closed under summation, intersection, and saturation, in this thesis.
Notice, such a subset is proper when R is a polynomial ring, for example, consider the
ring R = Z[x], and let I = ⟨3⟩, J = ⟨x2 + 3⟩. Then x2 ∈ I + J while x /∈ I + J. Thus,
I + J is not radical.

Let F be a field of characteristic p > 0 and let R = F[e1, . . . , ed] be a polynomial
ring. The Frobenius map is defined as the pth power map R → R where r 7→ rp. A
Frobenius splitting is a map φ : R → R which satisfies φ(f1 + f2) = φ(f1) + φ(f2),
φ(fp1 f2) = f1φ(f2), and φ(1) = 1. An ideal I is said to be compatibly split under φ if
φ(I) ⊆ I. Every compatibly split ideal is radical.

The trace map Tr(fp−1•) : R → R is defined as

Tr(cp1m1 + · · ·+ cpsms) = c1Tr(m1) + · · ·+ csTr(ms),

where mi are monomials, ci ∈ R, and

Tr(m) =


p
√

m
∏d

i=1 ei∏d
i=1 ei

if m
∏d

i=1 ei is a pth power

0 otherwise
.

In [10], Knutson showed that Tr(fp−1•) defines a Frobenius splitting if there exists a

monomial order < such that init<(f) =
∏d

i=1 ei. In addition, the set of compatibly split
ideals is closed under summation, intersection, and prime decomposition. Relaxing the
constraint of p being prime, an ideal I ∈ R is said to be Knutson if it can be obtained
from some ⟨f⟩ using summation, intersection, and prime decomposition, and init<f is
square-free (See Definition 2.18).

The goal of this thesis is to study the Knutson property of the toric ideals of graphs
and ladder determinantal ideals. This is motivated by the following question:

Question 1.1. What families of ideals are Knutson?

In [10, Section 7.2], Knutson showed that every Schubert determinantal ideal is Knut-
son by analyzing the corresponding Schubert varieties. Seccia used a purely commutative
algebra approach to show that the determinantal ideal of every generic matrix is Knutson
in [14].
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Consider a graph G = (VG, EG) where VG = {x1, . . . , xn} is the vertex set and EG =
{e1, . . . , ed} is the edge set. The toric ideal IG of G is defined as the kernel of the ring
homomorphism K[EG] → K[VG] where ei is mapped to the vertices xjxk connected by
ei. In the third chapter, we will show two ways of constructing larger graphs while the
toric ideals of the new graphs remain Knutson. The first is gluing an even cycle along
one edge.

x1 x2

x3x4

x5

e1

e2

e3

e4

e5

e6

e7

e8 ⊔

y1 y2

y3y4

a2

a3

a4

a1

= x1 x2

x3x4

y2

y3

x5

e1

e2

e3

e4

e5

e6 = a1

e7

e8

a2

a3

a4 .

Figure 1. Gluing a 4-cycle along e6 in the left graph.

Theorem 1.2 (Theorem 3.2). Let G be a finite simple graph and assume that its toric
ideal IG is Knutson. Let C2n be an even cycle. Suppose H1 (resp. H2) is the subgraph in
G (resp. C2n) which only contains one edge and two vertices. Then we can construct a
new graph H as the disjoint union G ⊔φ C2n under the identification H1 ∼ φ(H1), where
φ : H1 → H2 is a graph homomorphism. Then the toric ideal IH of H is also Knutson.

We also prove a related result about Frobenius splittings. In particular, we can induce
an extension of the Frobenius splitting by gluing an even cycle along one edge.

Theorem 1.3 (Theorem 3.5). Define G, φ, and H as in Theorem 1.2. Then for any
Frobenius splitting Tr1(g•) over Fp[E(G)], which compatibly splits IG, we can extend it
to a new splitting Tr2((aC)

p−1g•) such that IH is compatibly split under Tr2((aC)
p−1g•),

and a, C only depends on φ and C2n.

We then study toric ideals of a special family of graphs which are obtained by attaching
an even path to the vertices of degree m in the complete bipartite graph K2,m. These
graphs were first introduced in [8].

Theorem 1.4 (Theorem 3.11). Assume we have a complete bipartite graph K2,m with
VK2,m = {x1, x2, y1, · · · , ym} where x1 and x2 are the only two vertices of degree m. Then
Gr,m is the graph obtained by attaching a path P2r−2 = ({x1, z1}, {z1, z2}, . . . , {z2r−3, x2})
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x1 x2

y1 y2 y3

z1

z2

z3

e1,1e1,2 e2,2e2,1 e3,1e3,2

c1

c2 c3

c4

Figure 2. Attaching a 4-path to x1 and x2 in K2,3

between x1 and x2 such that ci /∈ EK2,m for all 2 ≤ i ≤ 2r − 3. Then the toric ideal IGr,m

is Knutson.

In the last part of this thesis, we look at ladder determinantal ideals. The ladder deter-
minantal ideal is the ideal generated by all the k−minors of some matrices in the ladder
shape. For example, a ladder matrix M can have the shape

M =

a b c
d e f
g h

 ,
and the ladder determinantal ideal of M generated by 2-minors is

I2(M) = ⟨ae− bd, ah− bg, dh− eg, af − cd, bf − ce⟩.
The fourth chapter will focus on discussing the Plücker relation and proving the following
theorem.

Theorem 1.5 (Theorem 4.9). Every (one-sided) ladder determinantal ideal is Knut-
son.

The last chapter will give several related conjectures which may lead to further work
on this topic.



CHAPTER 2

Background

This chapter will introduce the relevant background that is required for this thesis.
We will first give some basic results about graph theory and toric ideals of graphs which
are discussed in [11] and [13]. Then we will review the needed definitions and theorems
about Frobenius splitting stated in [10] and [1].

1. Toric Ideals of Graphs

A graph G is defined by (VG, EG), where VG = {x1, . . . , xn} is the set of all vertices
in G, and

EG = {{xi, xj} ⊂ VG | xi and xj are connected by an edge in G}

is the complete collection of all edges in G. In this thesis, we will only consider finite
simple connected graphs, i.e., graphs with finitely many edges, connected, and do not
have more than one edge between any two vertices and no edge starts and ends at the
same vertex.

Let d = |EG| and n = |VG|, and label the elements in EG as e1, e2, . . . , ed. The incidence
matrix MG of G is an n× d matrix which is defined as

MG := (aij)1≤i≤n,
1≤j≤d

where aij =

{
1 if xi ∈ ej

0 otherwise
.

We can treat MG as a Z-module homomorphism which takes Zd to Zn, that is MG

defines a map Zd → Zn given by v 7→MGv.

One way to define the toric ideal of a graph is by treating it as the lattice ideal
associated with the kernel of MG as discussed in [11].

Definition 2.1. The toric ideal of a graph G is a homogeneous binomial ideal of
the form

IG := ⟨eu − ev | u,v ∈ Zd≥0,u− v ∈ ker(MG)⟩ ⊂ K[e1, . . . , ed],

where eu = eu11 · · · eudd and K is any field.

The paper [13] gives an alternative definition of the toric ideal as the kernel of the
ring homomorphism

φ : K[EG] → K[VG] by ei 7→ xjxk if ei = {xj, xk}.
4



Chapter 2. Background 5

Then IG = ker(φ) is a prime ideal.

Definition 2.2. Let R = K[e1, . . . , ed] be any polynomial ring, and I, J ⊂ R be
ideals. Then the saturation of I with respect to J is defined as

I : J∞ = ⟨f ∈ R | fJm ⊂ I for some m ∈ N⟩.

It can be computationally complicated to go through all the elements in ker(MG) to
guarantee that no generators of the toric ideal IG are missing. However, IG can be derived
as follows.

Lemma 2.3 ([11, Lemma 7.6]). Let G be a graph with d edges, let MG be the incidence
matrix of G, let IG be the toric ideal of G, and let M̃G be the Q−module homomorphism
whose matrix representation is the same as MG. Assume BG = {b1, . . . ,bk} is a basis of
ker(M̃G). Define

IL := ⟨eui − evi | ui,vi ∈ Zd≥0,ui − vi = bi, 1 ≤ i ≤ k⟩.

Then

IG = IL : ⟨e1 · · · ed⟩∞.

Example 2.4. Let G be the graph

x1 x2

x3x4

x5

e1

e2

e3

e4

e5

e6

e7

e8

.

The incidence matrix of G is

MG =


1 0 0 1 1 0 0 0
1 1 0 0 0 0 1 0
0 1 1 0 0 1 0 0
0 0 1 1 0 0 0 1
0 0 0 0 1 1 1 1

 .
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Define a linear Q−module homomorphism φ : Qd → Qn given by v 7→ M̃Gv where the
matrix representation of M̃G is the same as MG. Then

ker(M̃G) = span(BG) with BG =

{


−1
1
0
0
1
−1
0
0


,



0
0
−1
1
−1
1
0
0


,



1
0
0
−1
0
0
−1
1


}
.

Going through elements bi in BG to find pairs (u,v) ∈ Zn≥0 × Zn≥0 such that u− v = bi,
we get

u1 = (0, 1, 0, 0, 1, 0, 0, 0),v1 = (1, 0, 0, 0, 0, 1, 0, 0);

u2 = (0, 0, 0, 1, 0, 1, 0, 0),v2 = (0, 0, 1, 0, 1, 0, 0, 0);

u3 = (1, 0, 0, 0, 0, 0, 0, 1),v3 = (0, 0, 0, 1, 0, 0, 1, 0).

And,

eu1 − ev1 = e2e5 − e1e6, e
u2 − ev2 = e4e6 − e3e5, and eu3 − ev3 = e1e8 − e4e7.

Thus,

IL = ⟨e2e5 − e1e6, e4e6 − e3e5, e1e8 − e4e7⟩,
and

IG = IL : ⟨e1 · · · e8⟩∞ = ⟨e2e5 − e1e6, e4e6 − e3e5, e1e8 − e4e7, e3e7 − e2e8, e1e3 − e2e4⟩.

The toric ideal of a graph can be studied in a combinatorial way.

Definition 2.5. A walk W in G is a finite sequence of edges

W := ({xi1 , xi2}, {xi2 , xi3}, . . . , {xir−1 , xir}) where each {xij , xij+1
} ∈ EG.

A walk W is said to be even (resp. odd) if |W |, the length of W, is even (resp. odd),
and W is a closed walk if xi1 = xir . A primitive even walk is a minimal even closed
walk, i.e., does not contain any other proper even closed walk.

Definition 2.6. An n-path Pn in G is a walk with |Pn| = n and without repeated
vertices nor repeated edges. An n-cycle Cn in G is a closed walk of length n such that

xia = xib if and only if a = 1, b = n or a = n, b = 1.

H. Ohsugi and T. Hibi [13] showed that the toric ideal of a graph is generated by
walks of a special form.

Proposition 2.7 ([13, Lemma 3.2]). Given a graph G, a closed even walk W is a
primitive walk if it is in any of the following forms:
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(1) An even cycle.
(2) (C1, C2) where C1 and C2 are odd cycles and have exactly one vertex in common.
(3) (C1, p, C2,−p) where C1 and C2 are odd cycles which are disjoint and p is a path

running from a vertex of C1 to a vertex of C2.

Lemma 2.8 ([13, Lemma 3.2]). The toric ideal IG of a graph G is generated by

⟨
p∏

k=1

eik −
p∏

k=1

ejk | (ei1 , ej1 , . . . , eip , ejp) is a primitive closed even walk of G⟩.

Remark. The generators derived from the primitive closed even walks may not be a
minimal set of generators.

Example 2.9. Let G be the graph defined in Example 2.4.

x1 x2

x3x4

x5

e1

e2

e3

e4

e5

e6

e7

e8

.

The primitive closed walks in G are

{(e1, e2, e3, e4), (e1, e2, e6, e5), (e1, e4, e8, e7), (e2, e3, e8, e7), (e3, e4, e5, e6), (e8, e4, e5, e6, e2, e7)}.

Since

e8e5e2 − e4e6e7 = e8(e2e5 − e1e6)− e6(e4e7 − e1e8),

the toric ideal of G is

IG = ⟨e1e3 − e2e4, e2e5 − e1e6, e4e7 − e1e8, e3e7 − e2e8, e3e5 − e4e6, e8e5e2 − e4e6e7⟩
= ⟨e1e3 − e2e4, e2e5 − e1e6, e4e7 − e1e8, e3e7 − e2e8, e3e5 − e4e6⟩.

Up to sign, these generators as exactly the same as those derived in Example 2.4.
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2. Frobenius Splittings

Throughout this section, R will denote a commutative Fp-algebra for some field Fp
with prime characteristic p. The Frobenius map is defined as the pth power map

ψ : R → R where r 7→ rp,

whose image contains all elements of R that are of pth powers, and R acts on the domain
with a◦b = ab while R acts on the codomain with a∗b = apb. The map ψ is an R−module
homomorphism and ψ(a ◦ b) = (ab)p = a ∗ ψ(b). Then a splitting of ψ can be defined.

Definition 2.10. A Frobenius splitting of R is a map φ : R → R such that for all
f1, f2 ∈ R,

(1) φ(f1 + f2) = φ(f1) + φ(f2),
(2) φ(fp1 f2) = f1φ(f2) and,
(3) φ(1) = 1.

We say φ : R → R is a near-splitting if it only satisfies the first two conditions.

Indeed, φ splits ψ because the composition of maps

R
ψ−→ R

φ−→ R

is the identity map on R.

Definition 2.11. Consider the ring R = Fp[e1, . . . , en]. The trace map Tr(•) : R →
R is defined as

Tr(m) =


p
√

m
∏

i ei∏
i ei

if m
∏

i ei is a pth power

0 otherwise.

where m is a monomial. This map extends R-linearly to all g = cp1m1 + · · · + cpsms ∈ R
with ci ∈ Fp, i.e.,

Tr(g) = c1Tr(m1) + · · ·+ csTr(ms).

Since Fermat’s Little Theorem tells us that for any c ∈ Fp, cp ≡ c mod p. We have
g = cp1m1 + · · ·+ cpsms = c1m1 + · · ·+ csms in R. So,

Tr(g) = Tr(c1m1 + · · ·+ csms) = c1Tr(m1) + · · ·+ csTr(ms).

The trace map can induce another map φf : R → R given by g 7→ Tr(fp−1g), and
Knutson gave an easy way to decide if certain φf defines a Frobenius splitting.

Theorem 2.12 ([10, Theorem 2]). Let f ∈ R = Fp[e1, . . . , en] with deg f ≤ n and < be
a monomial order. If deg f < n, then no polynomial multiple of Tr(fp−1•) is a Frobenius
splitting. Denote the initial term of f under the monomial order < with init<(f). Then

Tr(fp−1) = Tr(init<(f)
p−1).
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Thus, Tr(fp−1•) defines a Frobenius splitting if and only if Tr(init<(f)
p−1•) does. More-

over, if init(f) =
∏n

i=1 ei, then Tr(fp−1•) defines a Frobenius splitting on Fp[e1, . . . , en]
with respect to which ⟨f⟩ is compatibly split.

Example 2.13. Let R = F3[e1, e2] and let m be any monomial in R. Then the module
homomorphism φ : R → R induced by Tr((e1e2)

2•) has the property that

φ(m) =

{
3
√

me31e
3
2

e1e2
= 3

√
m if m is a cube,

0 otherwise.

The map φ is indeed a Frobenius splitting. Let f1, f2 ∈ R, we can check the conditions
of Definition 2.10

(1) Since the map extends additively φ(f1 + f2) = φ(f1) + φ(f2).
(2) For any f1 = c1m1 + · · · + csms, and f2 = a1m1 + · · · + asms, we have f 3

1 =
c31m

3
1 + · · ·+ c3sm

3
s by the Freshman’s Dream. Also,

φ(f 3
1 f2) =

s∑
i=1

φ(c3im
3
i f2)

=
s∑
i=1

s∑
j=1

φ(c3im
3
i ajmj)

=
s∑
i=1

s∑
j=1

mj a third power

3

√
c3im

3
i ajmj

=
s∑
i=1

s∑
j=1

mj a third power

cimi
3
√
ajmj

=
s∑
i=1

cimiφ(f2)

= f1φ(f2).

(3) Since 1 is monomial and 13 = 1 is a third power. Then φ(1) = φ(13) = 1.

Definition 2.14. Let I be an ideal of R with a Frobenius (near-)splitting φ. Then I
is compatibly (near-)split with respect to φ if φ(I) ⊆ I.

A Frobenius splitting can define a collection of radical ideals which is closed under
intersection, summation and taking prime components.

Definition 2.15. An ideal Q of R is primary if for any a, b ∈ R with ab ∈ Q, either
a ∈ Q, or bn ∈ Q for some n ∈ N.
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The radical of a primary ideal P =
√
Q is prime, and Q is called P -primary. A

primary decomposition of an ideal I ⊆ R has the form:

I =
⋂
j∈J

Qj

where Qj are primary and J is a finite index set. The prime ideal
√
Qj is said to be a

prime component of I if it is a minimal prime over I.

Lemma 2.16 ([10, Section 1]). Let R be an Fp−algebra and let φ : R → R be a
Frobenius splitting. For any two compatibly split ideals I, J ⊂ R with respect to φ, the
ideals I + J , I ∩ J , and the prime components of I are all compatibly split. In addition,
every compatibly split ideal is radical.

Example 2.17. Define R and φ as in Example 2.13. Let I = ⟨e1e2⟩.We want to show
that φ(I) ⊆ I. Suppose m = cen1e

m
2 ∈ I with n,m ≥ 1, and c ∈ R. Then

φ(m) =

{
3
√
cen1e

m
2 = 3

√
ce

n
3
1 e

m
3
2 if 3 | n, 3 | m, and c is a cube

0 otherwise
∈ I.

Thus, I is compatibly split with respect to φ. Also, since

I = ⟨e1⟩ ∩ ⟨e2⟩,
Lemma 2.16 implies ⟨e1⟩ and ⟨e2⟩ are also compatibly split.

We now describe a closely related notion, which no longer requires that our base field
has prime characteristic.

Definition 2.18. Let R = F[e1, . . . , en] where F is a field of any characteristic. Let
f ∈ R be a polynomial of degree d ≤ n where init<(f) is square-free of degree d for some
monomial order <. Then the poset Pf of f , which is partially ordered by inclusion, is the
unique collection of ideals in R that satisfy

(1) ⟨f⟩ ∈ Pf .
(2) If I, J ∈ Pf , then I + J, I ∩ J ∈ Pf .
(3) If I ∈ Pf and J is a prime component of I, then J ∈ Pf .

An ideal I ∈ Pf is called a Knutson ideal.

We may compare two posets Pf and Pg if one of f, g divides the other.

Lemma 2.19. Let R = F[e1, . . . , en] where F is a field. Fix polynomials f, g ∈ R of
degree ≤ n such that init<(f) and init<(g) are square-free for some monomial order. If
f | g, then Pf ⊆ Pg.

Proof. Assume
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f = f1f2 · · · fs, and g = f1f2 · · · fsr1r2 · · · rt,

where fi, rj ∈ R are irreducible and i, j ∈ N. Then

⟨g⟩ = ⟨f1⟩ ∩ · · · ∩ ⟨fs⟩ ∩ ⟨r1⟩ ∩ · · · ∩ ⟨rt⟩.

So ⟨fi⟩ ∈ Pg for all 1 ≤ i ≤ s. And thus,

⟨f⟩ = ⟨f1⟩ ∩ · · · ∩ ⟨fs⟩ ∈ Pg.

By the construction of the poset, we have Pf ⊆ Pg. □

We next note that the principal ideal generated by any irreducible factor of f is an
element of Pf .

Lemma 2.20. Let R = F[e1, . . . , en] where F is a field. Fix a polynomial f ∈ R such
that init<(f) is square-free for some monomial order <. If g | f and g is irreducible, then
⟨g⟩ ∈ Pf .

Proof. Assume f = gh where g is irreducible and h is some polynomial. Then init<g
is square-free due to init<f = (init<g) · (init<h) is square-free. Lemma 2.19 yields that
⟨g⟩ ∈ Pg ⊆ Pf . □

Note that if the field F has positive character p, then the Knutson ideals are compatibly
split under an appropriately chosen Frobenius splitting.

Lemma 2.21. Let R = Fp[e1, . . . , en] where p is prime. Let < be a monomial order
on R. Let f ∈ R be a polynomial where init<(f) is square-free of degree deg f < n. Then
for any Knutson ideal I ∈ Pf , there exists a g ∈ R where f | g, such that I is compatibly
split under the Frobenius splitting Tr(gp−1•).

Proof. Suppose for some index set α ⊆ {1, 2, . . . , n} we have init<(f) =
∏

i∈α ei. Let
β = {1, 2, . . . , n}\α be the complementary index set of α. Define the polynomial

g := (
∏
i∈β

ei)f.

Since init<(g) =
∏n

i=1 ei, Tr(g
p−1•) defines a Frobenius splitting on R by Theorem 2.12.

Thus, ⟨g⟩ is compatibly split for this Frobenius splitting. Lemma 2.16 implies that every
Knutson ideal in Pg is a compatibly split under Tr(gp−1•). Since f | g, we can deduce that
I ∈ Pg using Lemma 2.19. Therefore, I is compatibly split under the Frobenius splitting
Tr(gp−1•). □
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Example 2.22. Let G be the graph defined in Example 2.9, and let IG be its toric
ideal. Recall, we have

IG = ⟨e1e3 − e2e4, e2e5 − e1e6, e4e7 − e1e8, e3e7 − e2e8, e3e5 − e4e6⟩.

Defining a lexicographic monomial order < with

e8 < e7 < e6 < e5 < e3 < e4 < e2 < e1.

Consider f ∈ Fp[e1, ..., e8] with

f = (e1e3 − e2e4)(e3e5 − e4e6)(e3e7 − e2e8).

Then

init<(f) = e1e2e3e4e6e8 is square-free.

Notice, we need e3 < e4 to guarantee that init<(f) is square-free. And thus, ⟨f⟩ is
Knutson.

The following is the list of prime components of ⟨f⟩. Notice, to get the full collection of
Pf , we only need to record all the intersections and summations of the prime components.

• ⟨e1e3 − e2e4⟩, ⟨e3e5 − e4e6⟩, and ⟨e3e7 − e2e8⟩: due to

⟨f⟩ = ⟨e1e3 − e2e4⟩ ∩ ⟨e3e5 − e4e6⟩ ∩ ⟨e3e7 − e2e8⟩.

• ⟨e3e5 − e4e6, e3e7 − e2e8⟩ : due to it being prime, and

⟨e3e5 − e4e6, e3e7 − e2e8⟩ = ⟨e3e5 − e4e6⟩+ ⟨e3e7 − e2e8⟩.

• ⟨e1e3 − e2e4, e3e5 − e4e6, e2e5 − e1e6⟩ and ⟨e3, e4⟩: due to

⟨e1e3 − e2e4, e3e5 − e4e6⟩ = ⟨e1e3 − e2e4, e3e5 − e4e6, e2e5 − e1e6⟩ ∩ ⟨e3, e4⟩.

• ⟨e1e3 − e2e4, e3e7 − e2e8, e4e7 − e1e8⟩ and ⟨e2, e3⟩: due to

⟨e1e3 − e2e4, e3e7 − e2e8⟩ = ⟨e1e3 − e2e4, e3e7 − e2e8, e4e7 − e1e8⟩ ∩ ⟨e2, e3⟩.

• ⟨e3, e4, e1e6 − e2e5⟩, ⟨e2, e3, e1e8 − e4e7⟩ : due to they are prime and

⟨e3, e4, e1e6 − e2e5⟩ = ⟨e1e3 − e2e4, e3e5 − e4e6, e2e5 − e1e6⟩+ ⟨e3, e4⟩,

⟨e2, e3, e1e8 − e4e7⟩ = ⟨e1e3 − e2e4, e3e7 − e2e8, e4e7 − e1e8⟩+ ⟨e2, e3⟩.
• IG, ⟨e3, e4, e8⟩, ⟨e2, e3, e4⟩, and ⟨e2, e3, e6⟩ : due to

⟨(e1e3−e2e4)⟩+⟨(e3e5−e4e6)⟩+⟨(e3e7−e2e8)⟩ = ⟨(e1e3−e2e4), (e3e5−e4e6), (e3e7−e2e8)⟩,

⟨(e1e3 − e2e4), (e3e5 − e4e6), (e3e7 − e2e8)⟩ = IG ∩ ⟨e3, e4, e8⟩ ∩ ⟨e2, e3, e4⟩ ∩ ⟨e2, e3, e6⟩.
• ⟨e1e6−e2e5, e3, e4, e8⟩, ⟨e1, e2, e3, e4⟩, ⟨e1e8−e4e7, e2, e3, e6⟩, ⟨e2, e3, e4, e6⟩ and ⟨e2, e3, e4, e8⟩ :
due to

IG + ⟨e3, e4⟩ = ⟨e1e6 − e2e5, e3, e4, e8⟩ ∩ ⟨e1, e2, e3, e4⟩,

IG + ⟨e2, e3⟩ = ⟨e1e8 − e4e7, e2, e3, e6⟩ ∩ ⟨e1, e2, e3, e4⟩,
⟨e2, e3, e4⟩+ ⟨e2, e3, e6⟩ = ⟨e2, e3, e4, e6⟩,
⟨e3, e4, e8⟩+ ⟨e2, e3, e4⟩ = ⟨e2, e3, e4, e8⟩.
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• ⟨e1, e2, e3, e4, e6⟩, ⟨e1, e2, e3, e4, e8⟩, and ⟨e2, e3, e4, e6, e8⟩ : due to

⟨e1, e2, e3, e4⟩+ ⟨e2, e3, e4, e6⟩ = ⟨e1, e2, e3, e4, e6⟩,
⟨e1, e2, e3, e4⟩+ ⟨e2, e3, e4, e8⟩ = ⟨e1, e2, e3, e4, e8⟩,
⟨e2, e3, e4, e6⟩+ ⟨e2, e3, e4, e8⟩ = ⟨e2, e3, e4, e6, e8⟩.

• ⟨e1, e2, e3, e4, e6, e8⟩ : due to

⟨e1, e2, e3, e4, e6⟩+ ⟨e1, e2, e3, e4, e8⟩ = ⟨e1, e2, e3, e4, e6, e8⟩
Then the toric ideal IG is in the poset Pf , thus it is Knutson.

The graph of the poset Pf is

.



CHAPTER 3

Graph constructions

In this chapter, we will give two ways of constructing larger graphs from those whose
toric ideals are Knutson, such that the new toric ideals are also Knutson. The first
approach is constructing a larger graph by gluing an even cycle along one edge. The
second approach is attaching an even path to two vertices with degree m in the complete
bipartite graph K2,m.

We will first explain the idea of “gluing” graphs. An example appears after the
construction.

Construction 3.1. Let G1, G2 be two graphs with induced subgraphs H1 ⊆ G1,
H2 ⊆ G2. Suppose φ : H1 → H2 is a graph homomorphism. Define G1 ⊔φ G2 to be the
disjoint union of G1 and G2 under the identification H1 ∼ φ(H1). We informally call this
construction gluing G1 and G2 along H where H1

∼= H ∼= H2.

Example 3.2. Let G1 be the graph defined in Example 2.4, and G2 be a 4−cycle.
Let H1 ⊆ G1, H2 ⊆ G2 be the subgraphs whose edges are highlighted by the dashed line
and the vertices are darkened.

G1 = x1 x2

x3x4

x5

e1

e2

e3

e4

e5

e6

e7

e8

;

G2 =

y1 y2

y3y4

a2

a3

a4

a1

Define a graph homomorphism φ : H1 → H2 with φ(x5) = y1, φ(x3) = y4. Then the
glued graph G1 ⊔φ G2 along H is given below

14
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G1 ⊔φ G2 = x1 x2

x3x4

y2

y3

x5

e1

e2

e3

e4

e5

e6 = a1

e7

e8

a2

a3

a4 .

The next result shows that if we glue an even cycle onto a graph, the Knutson property
is preserved.

Theorem 3.3. Let G be a finite simple graph and assume that its toric ideal IG is
Knutson. Let C2n denote an even cycle, for some n ∈ Z≥2. Let φ be a graph isomorphism
from a single edge in G to a single edge in C2n. Then, the toric ideal of the glued graph
G ⊔φ C2n is Knutson.

Proof. Let EG = {e1, . . . , ed} be the edge set of G and let f be the polynomial with
square-free initial term such that IG ∈ Pf . Without loss of generality, we can label the
edges in the even cycle EC2n = {a1, . . . , a2n} where a1 = ei for some 1 ≤ i ≤ d. Let φ be
a graph isomorphism from ei in G to a1 in C2n, and denote H = G⊔φC2n. We claim that
IH ∈ Pg for g = f · (a1a3 · · · a2n−1 − a2a4 · · · a2n) ∈ F[e1, . . . , ed, a2, . . . , a2n], and init<′(g)
is square-free for some monomial order <′ .

We first check that there exists a monomial order <′ such that init<′(g) is square-
free. Suppose ei1 < . . . < eid is the monomial order that makes init<(f) square-free.
Then define the new monomial order <′ to be the product order in the new ring R′ =
F[e1, . . . , ed, a2, . . . , a2n] such that

ei1 < . . . < eid < a2 < a3 < a4 < . . . < a2n.

Because init<(f) does not contain any variables in {a2, . . . , a2n}, we have

init<′(g) = init<(f)(a2a4 · · · a2n)

which is also square-free.

We now show that IH ∈ Pg. Since IG ∈ Pf and f | g, by Lemma 2.19, IG ∈ Pg. Also,
⟨a1a3 · · · a2n−1 − a2a4 · · · a2n⟩ ∈ Pg.

So using [7, Theorem 3.7] we have

IH = IG + ⟨a1a3 · · · a2n−1 − a2a4 · · · a2n⟩ ∈ Pg.

Thus, IH is Knutson. □
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Example 3.4. Let G be the graph of Example 2.4. As shown in Example 2.22, the
toric ideal IG of G is Knutson with the lexicographical order given by

<: e8 < e7 < e6 < e5 < e3 < e4 < e2 < e1,

and

f = (e1e3 − e2e4)(e3e5 − e4e6)(e3e7 − e2e8).

Attaching C4 to vertex 3 and 5 along the edge e6, the new graph H is

x1 x2

x3x4

y2

y3

x5

e1

e2

e3

e4

e5

e6

e7

e8

a2

a3

a4 .

Set the new monomial order to be the product order such that

<′: e8 < e7 < e6 < e5 < e3 < e4 < e2 < e1 < a2 < a3 < a4,

and set polynomial g to be

g = (e1e3 − e2e4)(e3e5 − e4e6)(e3e7 − e2e8)(e6a3 − a2a4).

Then

init<′(g) = a2a4e1e2e3e4e6e8

is square free, and

IH = IG + ⟨e6a3 − a2a4⟩ ∈ Pg.

Gluing an even cycle along one edge also gives a way to extend the Frobenius splitting.

Theorem 3.5. Assume G is a graph such that its toric ideal IG is compatibly split by
a Frobenius splitting

Tr1(g•) : Fp[E(G)] → Fp[E(G)],

where Tr1 is the trace map of Fp[E(G)] to itself and g is homogeneous. If we glue an even
cycle C2n, for some n ∈ Z≥2, to G along an edge e to get a new graph H, the toric ideal
of the new graph H is compatibly split by a Frobenius splitting

φ(•) = Tr2((aC)
p−1g•) : Fp[E(H)] → Fp[E(H)],
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where C = au − av is the binomial representation of the cycle C2n, a is the product of
some indeterminates in E(C2n) such that

a =

{
au

e
if e | au

av

e
otherwise

,

and Tr2 is the trace map of Fp[E(H)] to itself.

Proof. Let EG = {e1, . . . , ed} be the edge set of G. Then for some ci ∈ Fp nonzero
and distinct monomials mi, we can write g = c1m1 + · · · + csms ∈ Fp[e1, . . . , ed] such
that Tr1(gIG) ⊆ IG. Without loss of generality, we can label the edges in the even cycle
EC2n = {a1, . . . , a2n} where a1 = ei for some 1 ≤ i ≤ d. Let C = −a1a3 · · · a2n−1 +
a2a4 · · · a2n be the associated closed even walk C2n. We then have ei | a1a3 · · · a2n−1, and
a = a3a5 · · · a2n−1. We claim that ψ(•) = Tr2((aC)

p−1g•) is also a Frobenius splitting and
the toric ideal of the new graph IH is compatibly split by ψ, i.e., ψ(IH) ⊆ IH .

Let h1, h2 ∈ Fp[E(H)]. Since ψ is a module homomorphism as defined at the beginning
of Section 2, ψ(h1 + h2) = ψ(h1) + ψ(h2), and ψ(hp1h2) = h1ψ(h2). Since Tr(g•) is
a Frobenius splitting, Tr(g) = 1 implies that

∑s
k=1 ckTr(mk) = 1. Then there exists a

unique term in g such that ctTr(mt) = 1, i.e., ct = 1, mt = (
∏d

j=1 ej)
p−1, and mk

∏d
k=1 ej

is not a pth power if k ̸= t. Notice, aC = −(a1a
2
3 · · · a22n−1) +

∏2n
i=2 ai, and

(aC)p−1

2n∏
i=2

ai = (
2n∏
i=2

ai)
p +

p−1∑
k=1

(−1)p−1−k
(
p− 1

k

)
(
2n∏
i=2

ai)
k+1(a1a

2
3 · · · a22n−1)

p−1−k.

Since g does not involve any variable in {a2, . . . , a2n}, the only term in (aC)p−1g which

becomes a pth power upon multiplying by
∏2n

i=2 ai
∏d

j=1 ej is (
∏2n

i=2 a
p−1
i )(

∏d
j=1 ej)

p−1.
Therefore,

ψ(1) = Tr2((aC)
p−1g) =

p

√
(
∏2n

i=1 ai)
p−1(

∏d
j=1 ej)

p−1
∏2n

i=2 ai
∏d

j=1 ej∏2n
i=2 ai

∏d
j=1 ej

= 1,

and ψ is thus a Frobenius splitting.

To show ψ(IH) ⊆ IH , we first show that ψ(IG) ⊆ IG ⊆ IH . Let h ∈ IG. Since ψ extends
linearly on Fp[E(H)], we can assume h = ng where n is a monomial and g is a generator
in IG. Then Tr1(gh) ∈ IG. Expand (aC)p−1 we have

(aC)p−1 = (−(a1a
2
3 · · · a22n−1) +

2n∏
i=2

ai)
p−1

=

p−1∑
k=0

(−1)k
(
p− 1

k

)
(a1a

2
3 · · · a22n−1)

k(
2n∏
i=2

ai)
p−1−k,
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then

ψ(h) = Tr2(g(aC)
p−1h)

=

p−1∑
k=0

(−1)k
(
p− 1

k

)
Tr2(g(a1a

2
3 · · · a22n−1)

k(
2n∏
i=2

ai)
p−1−kh).

Suppose for some 0 ≤ k ≤ p− 1, (
∏2n

i=2 ai)
p−1 divides (a1a

2
3 · · · a22n−1)

k(
∏2n

i=2 ai)
p−1−kh,

then define a new polynomial

h′ :=
(a1a

2
3 · · · a22n−1)

k(
∏2n

i=2 ai)
p−1−kh

(
∏2n

i=2 ai)
p−1

.

Since g does not contain variables in {a2, . . . , a2n}, we can write h′ as a multiple of g.
Thus, h′ ∈ IG. Observe that for any monomial n ∈ Fp[E(H)],

Tr2(n(
2n∏
i=2

ai)
p−1) =

p

√
n(
∏2n

i=2 ai)
p−1

∏2n
i=2 ai

∏d
j=1 ej∏2n

i=2 ai
∏d

j=1 ej

=

p

√
n
∏d

j=1 ej∏d
j=1 ej

= Tr1(n).

Then

Tr2(g(a1a
2
3 · · · a22n−1)

k(
2n∏
i=2

ai)
p−1−kh) = Tr2(gh

′(
2n∏
i=2

ai)
p−1))

= Tr1(gh
′) ∈ IG.

For 0 ≤ k ≤ p−1 where (
∏2n

i=2 ai)
p−1 ∤ (g(a1a23 · · · a22n−1)

k(
∏2n

i=2 ai)
p−1−kh). Since g and

g does not contain any variable in {a2, . . . , a2n}, neither term in g(a1a
2
3 · · · a22n−1)

k(
∏2n

i=2 ai)
p−1−kh

can be divided by (
∏2n

i=2 ai)
p. Therefore,

Tr2(g(a1a
2
3 · · · a22n−1)

k(
2n∏
i=2

ai)
p−1−kh) = 0 ∈ IG.

Therefore, ψ(h) ∈ IG.

[7, Theorem 3.7] implies that IH = IG + ⟨C⟩, so it remains to check ψ(hC) ∈ IH for
any h ∈ Fp[E(H)]. Notice,

ψ(hC) = Tr2((aC)
p−1hC) = Tr2(a

p−1Cph) = CTr2(a
p−1h) ∈ IH .

Therefore, IH is compatibly split with respect to φCf . □

The authors of [8] studied toric ideals of a specific family of graphs denoted as
Gr,m. We now introduce this family. Assume we have a complete bipartite graph K2,m
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with VK2,m = {x1, x2, y1, . . . , ym} where x1 and x2 are the only two vertices of degree
m. Then Gr,m is the graph obtained by attaching a path P2r−2 = {c1, . . . , c2r−2} =
({x1, z1}, {z1, z2}, . . . , {z2r−3, x2}) between x1 and x2 such that zi /∈ VK2,m for all 1 ≤ i ≤
2r− 3. One of the reasons that we study this type of graphs is the existence of an explicit
formula for a Gröbner basis for each toric ideal in this family.

Lemma 3.6 ([8, Corollary 3.3]). For integers r ≥ 3 and m ≥ 2, a Gröbner basis for
IGr,m with respect to any monomial ordering is given by

{ei,1ej,2 − ej,1ei,2 | 1 ≤ i < j ≤ m} ∪ {ei,2c1 · · · c2r−3 − ei,1c2 · · · c2r−2 | 1 ≤ i ≤ m},
where ei,k is the edge between xk and yi, and {c1, c2, . . . , c2r−2} is the walk of the attached
path.

Example 3.7. The graph G3,3 is the graph obtained from attaching an even path
{c1, c2, c3, c4} between vertices x1 and x2 in K2,3. The graph is drawn as follows

x1 x2

y1 y2 y3

z1

z2

z3

e1,1e1,2 e2,2e2,1 e3,1e3,2

c1

c2 c3

c4

.

The toric ideal of G3,3 is

IG3,3 =⟨e1,1e2,2 − e1,2e2,1, e1,1e3,2 − e3,1e1,2, e2,1e3,2 − e3,1e2,2⟩+
+ ⟨e1,1c2c4 − e1,2e1e3, e2,1c2c4 − e2,2c1c3, e3,1c2c4 − e3,2c1c3⟩.

We will show that the ideal generated by the 2−minors of a generic n × 2 matrix is
Knutson.

Lemma 3.8. Let M = (eij) be an n × 2 matrix and let < be the anti-diagonal order
where

en,1 > en,2 > en−1,1 > · · · > e1,2.

Then for the polynomial f :=
∏n

i=2 di with di = det

[
ei−1,1 ei−1,2

ei,1 ei,2

]
, we have init<(f) is

square-free and the ideal generated by 2−minors of M is an element of Pf .

We will first quote the following two theorems.

Lemma 3.9 (Krull’s Height Theorem, [5, Corollary 10.5]). Let R be a Noetherian ring,
and let J ⊂ R be an ideal of height n. For some prime ideal I ⊂ R, if J ⊂ I and the
height ht(I) = n, then I is a minimal prime component over J.
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Lemma 3.10 ([6, Example 4.1]). Suppose M is a m × k matrix with full rank and
m > k. Let Ik be the ideal generated by the k−minors of M. Then

ht(Ik) = m− k + 1.

Now we shall prove Lemma 3.8.

Proof. Define the matrix M, monomial order < and f as in the statement. The
initial term init<(f) =

∏n
i=2 init<(di) =

∏n
i=2 ei−1,1ei,2 is square-free. Let I = I2(M) be

an ideal generated by the 2−minors ofM. [11, Section 16.4] yields that I is prime. Define
the ideal J to be

J := ⟨di | 2 ≤ i ≤ n⟩.
Since the initial terms of {d2, . . . , dn} are relatively prime, the given generators form a
Gröbner basis [4, Proposition 10.1, Corollary 10.7]. Then its initial ideal can be generated
by relatively prime monomials, and thus form a regular sequence {d2, . . . , dn}. Therefore,
ht(J) = n − 1. Also ht(I2) = n − 1 by Lemma 3.10. In addition, every generator of J is
contained in I. Therefore, J ⊆ I and I is a minimal prime component of J by Krull’s
Height Theorem. By Lemma 2.20, ⟨di⟩ ∈ Pf for all 2 ≤ i ≤ n. Then J = ⟨d2⟩+· · ·+⟨dn⟩ ∈
Pf , and so is I. □

Theorem 3.11. The toric ideal of Gr,m has the Knutson property for all r > 2 and
m ≥ 1.

Proof. Let G be a complete bipartite graph K2,m with the vertex set

VG = {x1, x2, y1, y2, . . . , ym}.

Label the edge in G as ei,j if it connects vertices xj and yi. Let Gr,m be obtained by joining
x1 and x2 along the path P2r−2 = (c1, c2, . . . , c2r−2).

The toric ideal of G is generated by the 2-minors whose column indices correspond to
the edges of G. See the proof of [3, Proposition 5.1]. Then

IG = minors(2, T ) where T =


e1,1 e1,2
e2,1 e2,2
· · · · · ·
em,1 em,2

 .
Lemma 3.8 gives a polynomial f such that IG ∈ Pf is Knutson:

f :=
m∏
i=2

(ei,1ei−1,2 − ei,2ei−1,1),

and < is the lexicographic order

e1,2 < e1,1 < e2,2 < e2,1 < · · · < em,2 < em,1.

Now define a new polynomial

g := f · (em,1c2c4 · · · c2r−2 − em,2c1c3 · · · c2r−3)
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and a new monomial product order <′

e1,2 < e1,1 < e2,2 < e2,1 < · · · < em,2 < em,1 < c2r−2 < c2r−3 < · · · < c2 < c1.

Then init<′(g) is a monomial. Indeed,

init<′(f) = em,1em−1,2em−1,1 · · · e2,2e2,1e1,2,

and

init<′(em,1c2c4 · · · c2k − em,2c1c3 · · · c2r−3) = c1c3 · · · c2r−1em,2.

Thus,

init<′(g) = init<′(f) · init<′(em,1c2c4 · · · c2r−2 − em,2c1c3 · · · c2r−3)

= e1,2e2,1e2,2 · · · em,1em,2c1c3 · · · c2r−1,

which is square-free.

Now it suffices to show that IGr,m ∈ Pg. Since we attached the path from x1 to x2,
Lemma 3.6 shows that the generators of IGr,m is either a 2−minor of T or ei,2c1c3 · · · c2r−3−
ei,1c2c4 · · · c2r−2 for some 1 ≤ i ≤ m. Thus, the toric ideal IGr,m is generated by the 2-
minors of the following matrix:

T ′ =


e1,1 e1,2
e2,1 e2,2
· · · · · ·
em,1 em,2

c1c3 · · · c2r−3 c2c4 · · · c2r−2

 .
Define a new ideal J = ⟨di | 1 ≤ i ≤ m⟩ where di is the determinant of the submatrix
of T ′ involving rows i and i + 1. Since ⟨di⟩ ∈ Pg for all 1 ≤ i ≤ m by Lemma 2.20,
we have J ∈ Pg. Since the monomials c1c3 · · · c2r−3 and c2c4 · · · c2r−2 do not contain any
variable ei,j, the initial terms of di are relative coprime under the monomial order <′.
Therefore, the given generators of J form a Gröbner basis [4, Proposition 10.1, Corollary
10.7] whose initial ideal can be generated by relatively prime monomials. Then we can
build a regular sequence S = {d1, d2, · · · , dn}. Therefore, ht(J) = length(S) = m. Since
J ⊆ IGr,m and the height of an ideal generated by 2−minors of a m + 1× 2 matrix is at
most m, ht(IGr,m) = m. By Krull’s Height Theorem, IGr,m is a minimal prime component
of J. Therefore, IGr,m ∈ Pg is Knutson. □

Example 3.12. Let G = K2,3 where VG = {x1, x2, y1, y2, y3} and EG = {ei,j | xj and
yi is adjacent}. Then the toric ideal of G is

IG = ⟨e1,1e2,2 − e1,2e2,1, e1,1e3,2 − e3,1e1,2, e2,1e3,2 − e3,1e2,2⟩

= minors

2,

e1,1 e1,2
e2,1 e2,2
e3,1 e3,2

 .

Define

f := (e1,1e2,2 − e2,1e1,2)(e2,1e3,2 − e3,1e2,2),



Chapter 3. Graph constructions 22

and the lexicographic order

<: e1,2 < e1,1 < e2,2 < e2,1 < e3,2 < e3,1.

Then, since by Macaulay2, we have the decomposition

IG ∩ ⟨e2,1, e2,2⟩ = ⟨e1,1e2,2 − e2,1e1,2⟩+ ⟨e2,1e3,2 − e3,1e2,2⟩
and

init<f = e3,1e2,2e2,1e1,2 is square-free,

we have IG ∈ Pf and IG is Knutson.

We join vertices x1 and x2 with a 4−path P4. Then the new graph G3,3 is isomorphic
to the following graph

x1 x2

y1 y2 y3

z1

z2

z3

e1,1e1,2 e2,2e2,1 e3,1e3,2

c1

c2 c3

c4

.

The toric ideal of G3,3 is

IG3,3 = IG + ⟨e1,1c2c4 − e1,2e1e3, e2,1c2c4 − e2,2c1c3, e3,1c2c4 − e3,2c1c3⟩.
Define the polynomial g be

g := f · (e3,1c2c4 − e3,2c1c3) = (e1,1e2,2 − e2,1e1,2)(e2,1e3,2 − e3,1e2,2)(e3,1c2c4 − e3,2c1c3)

and product order <′

<′: e1,2 < e1,1 < e2,2 < e2,1 < e3,2 < e3,1 < c4 < c3 < c2 < c1.

Then

init<′(g) = init<′(f)init<′(e3,1c2c4 − e3,2c1c3) = e3,1e2,2e2,1e1,2e3,2c1c3

is square-free. Using Macaulay2, we can see that the prime decomposition of ⟨e1e4 −
e2e3, e3e6 − e4e5, e5c2c4 − e6c1c3⟩ is

⟨e5, e6, e2e3 − e1e4⟩ ∩ ⟨e3, e4, e5c2c4 − e6c1c3⟩ ∩ IG3,3 .

Thus, we have the following deductions:

⟨e1e4 − e2e3⟩, ⟨e3e6 − e4e5⟩, ⟨e5c2c4 − e6c1c3⟩ ∈ Pg
=⇒ ⟨e1e4 − e2e3, e3e6 − e4e5, e5c2c4 − e6c1c3⟩ ∈ Pg
=⇒ ⟨e5, e6, e2e3 − e1e4⟩ ∩ ⟨e3, e4, e5c2c4 − e6c1c3⟩ ∩ IG3,3 ∈ Pg
=⇒ IG3,3 ∈ Pg.

Therefore, IG3,3 ∈ Pg and is thus Knutson.



CHAPTER 4

Ladder Determinantal Ideal

Many classes of determinantal ideals are Knutson. Knutson in [10] showed that ev-
ery Schubert determinantal ideal is Knutson using connections with Schubert varieties. A
one-sided ladder determinantal ideal, see [2, Section 1], is an example of a Schubert deter-
minantal ideal. Seccia used a commutative algebraic proof to show that the determinantal
ideal of every generic matrix is Knutson in [14]. In this chapter, we refer to the proof
in [14] and also give a commutative algebraic proof to show that a ladder determinantal
ideal is Knutson.

Definition 4.1. A λ1 × n matrix M is said to be a ladder if there is a partition
λ = (λ1, . . . , λn) for some n ∈ N, such that:

(1) For any 1 ≤ i < n, λi ≥ λi+1.
(2) The (i, j) entry of the matrix M satisfies:{

mij 1 ≤ j ≤ n and i ≤ λj

empty otherwise
,

where mij is an indeterminate.

Definition 4.2. An ideal I is said to be an (unmixed) ladder determinantal
ideal if there exists some ladder M such that I is generated by the k−minors of M for
some k ∈ N, i.e., I = minors(k,M).

Example 4.3. Let M be a ladder matrix which is defined by λ = (5, 5, 4, 3, 2). Then

M =


m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34

m41 m42 m43

m51 m52

 ,
and λi describes the number of nonempty entries of the i−th row in M. Let

I = minors(3,


m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43

) + minors(3,

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

).
Then I is a ladder determinantal ideal which is generated by the 3−minors of M.

23
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Before diving into the main theorem of this chapter, we introduce the Plücker relations.

Theorem 4.4 (Plücker relations, [11, Theorem 14.6]). Let T be a k× (k+n) matrix.
Given two strictly ascending sequence 1 ≤ i1 < · · · < ik−1 ≤ k + n and 1 ≤ j1 < · · · <
jk+1 ≤ k + n, we have the following equation:

(4.1)
k+1∑
l=1

(−1)kP T
[i1,...,ik−1,jl]

P T
[j1,...,ĵl,...,jk+1]

= 0,

where ĵl represents the omitted term jl, and P T
[c1,...,ck]

is the determinant of the k × k
submatrix of T which involves columns c1, c2, . . . , ck.

Notice if cs = ct for some s, t, then we have

P T
[c1,...,ck]

= 0,

since the submatrix does not have full rank.

Lemma 4.5 ([12, Lemma 3.2.20]). Let M be a k×n matrix, and let T be a k× (k+n)
matrix formed by concatenating a k × k identity matrix to the last column of M . For

1 ≤ p ≤ min{k, n}, let d[b1,b2,...,bp],M[a1,a2,...,ap]
denote the determinant of the p × p submatrix of M

which involves rows a1, . . . , ap and columns b1, . . . , bp, and let

S = {1 ≤ s ≤ k : s ̸= ai for all 1 ≤ i ≤ p} = {s1, . . . , sk−p}.

Then we have

d
[b1,b2,...,bp],M

[a1,a2,...,ap]
= (−1)kP T

[b1,...,bp,s1+n,...,sk−p+n]
,

where k is some integer, i.e., d
[b1,b2,...,bp],M

[a1,a2,...,ap]
is equal to P T

[b1,...,bp,s1+n,...,sk−p+n]
up to a sign.

For simplicity, we will omit M in d
[−],M
[−] and T in P T

[−].

Example 4.6. Let M ′ be the 5× 5 matrix with indeterminates as entries. Then

M ′ =


m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35

m41 m42 m43 m44 m45

m51 m52 m53 m54 m55

 ,
and we can construct T as

T =


m11 m12 m13 m14 m15 1 0 0 0 0
m21 m22 m23 m24 m25 0 1 0 0 0
m31 m32 m33 m34 m35 0 0 1 0 0
m41 m42 m43 m44 m45 0 0 0 1 0
m51 m52 m53 m54 m55 0 0 0 0 1

 .
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Then we notice

d
[1,5]
[1,2] = det

([
m11 m15

m21 m25

])
= det



m11 m15 0 0 0
m21 m25 0 0 0
m31 m35 1 0 0
m41 m45 0 1 0
m51 m55 0 0 1


 = P[1,5,8,9,10].

Now consider the ascending sequence

{i1, i2, i3, i4} = {5, 8, 9, 10}, and {j1, j2, j3, j4, j5, j6} = {1, 2, 6, 7, 8, 9}.

By the Plücker relations 4.1 in Lemma 4.4, we have

− P[5,8,9,10,1]P[2,6,7,8,9] + P[5,8,9,10,2]P[1,6,7,8,9] − P[5,8,9,10,6]P[1,2,7,8,9] + P[5,8,9,10,7]P[1,2,6,8,9]

− P[5,8,9,10,8]P[1,2,6,7,9] + P[5,8,9,10,9]P[1,2,6,7,8]

=− P[1,5,8,9,10]P[2,6,7,8,9] + P[2,5,8,9,10]P[1,6,7,8,9] + P[5,6,8,9,10]P[1,2,7,8,9] − P[5,7,8,9,10]P[1,2,6,8,9]

= d
[1,5]
[1,2]d

[2]
[5] − d

[2,5]
[1,2]d

[1]
[5] − d

[5]
[2]d

[1,2]
[1,5] + d

[5]
[1]d

[1,2]
[2,5] = 0.

And we can observe

(4.2) d
[1,5]
[1,2]d

[2]
[5] = d

[2,5]
[1,2]d

[1]
[5] + d

[5]
[2]d

[1,2]
[1,5] − d

[5]
[1]d

[1,2]
[2,5].

Considering the ladder matrix in Example 4.3:

M =


m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34

m41 m42 m43

m51 m52

 .
Since the equation 4.2 does not involve any empty entry inM, we call such relations valid

on the ladder matrix M. The determinant d
[b1,b2,...,bp]

[a1,a2,...,ap]
is valid on M if ai ≤ λmax{bj |1≤j≤p}

for all 1 ≤ i ≤ p. In Example 4.3, d
[2,3,4]
[1,2,3] = P[2,3,4,9,10] is valid onM, but d

[3,4,5]
[1,2,3] = P[3,4,5,9,10]

is not.

A Plücker relation is valid on the ladder matrix if every one of its terms is valid. There
is a criterion to test if Pα is valid given the sequence α = [i1, i2, . . . , im].

Lemma 4.7. Let M be a λ1 × n ladder matrix defined by λ = (λ1, . . . , λn), and let N
be a λ1 × (n + λ1) matrix formed by concatenating a λ1 × λ1 identity matrix to the last
column of M. Then for 1 ≤ i1, . . . , ip ≤ n and 1 ≤ s1, . . . , sλ1−p ≤ λ1, the determinant
P[i1,...,ip,s1+n,...,sλ1−p+n] is valid on M if and only if

{s1, . . . , sλ1−p} ⊇

{
{λip + 1, λip + 2, . . . , λ1} if λ1 > λip

∅ if λ1 = λip
.
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Proof. If iα = iβ or sα = sβ for some α, β in the range, then P[i1,...,ip,s1+n,...,sλ1−p+n] = 0
as the matrix is no longer full rank. Since the sign of P[i1,...,ip,s1+n,...,sλ1−p+n] does not
matter, we may assume 1 ≤ i1 < . . . < ip ≤ n, and 1 ≤ s1 < . . . < sλ1−p ≤ λ1. Define a
sequence b1 ≤ b2 ≤ . . . ≤ bp such that {b1, . . . , bp} is the complement of {s1, . . . , sλ1−p} in
{1, 2, . . . , λ}, i.e.,

{b1, . . . , bp} = {1 ≤ b ≤ λ1 : b ̸= sl for all l}.
Then, by Lemma 4.5, we have

P[i1,...,ip,s1+n,...,sλ1−p+n] = (−1)kd
[i1,...,ip]

[b1,...,bp]
for some k ∈ N.

If we assume that {s1, . . . , sλ1−p} ⊇ {λip + 1, . . . , λ1}, we have

{b1, . . . , bp} ⊆ {1, 2, . . . , λip}.

By construction of the ladder matrix M, we observe that there is no empty entry in
the submatrix of M which takes columns from i1 to ip and rows from 1 to λip . Thus,
P[i1,...,ip,s1+n,...,sλ1−p+n] is valid.

Now assume P[i1,...,ip,s1+n,...,sλ1−p+n] is valid. Then the submatrix of M which involves

columns {i1, . . . , ip} and rows {b1, . . . , bp} has no empty entry. By construction of the
ladder matrix, we must have

{b1, . . . , bp} ⊆ {1, 2, . . . , λip}.

Hence

{s1, . . . , sλ1−p} ⊇ {λip + 1, . . . , λ1}.
□

Lemma 4.8. Let M be a λ1 × n ladder matrix defined by λ = (λ1, . . . , λn), and let N
be a λ1 × (n + λ1) matrix formed by concatenating a λ1 × λ1 identity matrix to the last

column of M. Given two valid determinants D1 = d
[1,b2,...,bp−1,n]

[a1,...,ap]
and D2 = d

[d1,...,dp−1]

[c1,...,cp−1]
on

M with p > 1 and 1 < d1 < dp−1 < n, then D1D2 appears as a term in a Plücker relation
on N.

Proof. Define two strictly ascending sequences

S = {s1, . . . , sλ1−p} = {1, . . . , λ1} − {a1, . . . , ap},

S ′ = {s′1, . . . , s′λ1−p+1} = {1, . . . , λ1} − {c1, . . . , cp−1}.
Then for some k1, k2 ∈ N, we have

D1 = (−1)k1P[1,b2,...,bp−1,n,n+s1,...,n+sλ1−p], and D2 = (−1)k2P[d1,...,dp−1,n+s′1,...,n+s
′
λ1−p+1]

.

Since both of the expressions are valid, by Lemma 4.7, we have

{s1, s2, . . . , sλ1−p} ⊇ {λn + 1, . . . , λ1},

{s′1, s′2, . . . , s′λ1−p+1} ⊇ {λdp−1 + 1, . . . , λ1}.
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Now define two strictly ascending sequences with

(in) = {i1, . . . , iλ1−1} = {b2, . . . , bp−1, n, n+ s1, . . . , n+ sλ1−p},

(jn) = {j1, . . . , jλ1+1} = {1, d1, . . . , dp−1, n+ s′1, . . . , n+ s′λ1−p+1},
where we move the index 1 from D1 to D2. Then we claim that for all 1 ≤ l ≤ λ1 + 1,

P[i1,...,iλ1−1,jl]P[j1,...,ĵl,...,jλ1+1]
is valid on N.

We may assume that jl /∈ (in), otherwise P[i1,...,iλ1−1,jl] = 0. If l ≤ p, then

{s1, . . . , sλ1−p} ⊇ {λn + 1, . . . , λ1}, and

{s′1, . . . , s′λ1−p+1} ⊇ {λdp−1 + 1, . . . , λ1}.
While for l > p, i.e., jl > n, let s = jl−n. Then since jl /∈ (in), s ≤ λn ≤ λdp−1 . Therefore,

{s1, . . . , sλ1−p, jl − n} ⊇ {s1, . . . , sλ1−p} ⊇ {λn + 1, . . . , λ1}, and

{s′1, . . . , ŝ, . . . , s′λ1−p+1} ⊇ {λdp−1 + 1, . . . , λ1}.
By Lemma 4.7, we can conclude the claim, since D1D2 equals to

P[i1,...,iλ1−1,n]P[j1,...,ĵp,...,jλ1+1]

up to a sign, it is involved in a valid Plücker relation on N . □

We now come to our main theorem.

Theorem 4.9. Every ladder determinantal ideal is Knutson. In particular, consider
the ladder matrix M determined by λ = (λ1, . . . , λn). If I is a ladder determinantal ideal
with respect to M, then I ∈ Pf , where

f :=
n∏
j=1

λj+1∏
i=λj

d
min{i,j}
(i,j) ,

and dk(i,j) denotes the determinant of the k×k submatrix with the south-east corner located

at (i, j) and λn+1 = 1, together with the diagonal term order <, i.e., mi,j < mi,j+1 and
mi,n < mi+1,1.

We will first illustrate the proof with the following example.

Example 4.10. Let M be as defined in Example 4.3 with λ = (5, 5, 4, 3, 2) :

M =


m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34

m41 m42 m43

m51 m52


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Then the desired polynomial f will be

f =det
([
m51

])
· det

([
m41 m42

m51 m52

])
· det

([
m31 m32

m41 m42

])
· det

m21 m22 m23

m31 m32 m33

m41 m42 m43

 ·

det

m11 m12 m13

m21 m22 m23

m31 m32 m33

 · det

m12 m13 m14

m22 m23 m24

m32 m33 m34

 · det
([
m13 m14

m23 m24

])
·

det

([
m14 m15

m24 m25

])
· det

([
m15

])
= d1(5,1) · d2(5,2) · d2(4,2) · d3(4,3) · d3(3,3) · d3(3,4) · d2(2,4) · d2(2,5) · d1(1,5)

Set < be the lexicographic diagonal term order, i.e.,

m11 < m12 < . . . < m15 < m21 < · · · < m51 < m52.

Then

init<(f) = m51m52m41m42m31m43m32m21m33m22m11m34m23m12m24m13m25m14m15

is square-free.

Let Df = {d1(5,1), d2(5,2), d2(4,2), d3(4,3), d3(3,3), d3(3,4), d3(2,4), d2(2,5), d1(1,5)} andM [t1,t2] denote the
submatrix of M which involves the t1−th to t2−th columns. We have the following two
observations:

(1) Suppose

I = minors(2,M [3,4]) = minors

2,


m13 m14

m23 m24

m33 m34

m43




= ⟨m13m24 −m14m23,m13m34 −m14m33,m23m34 −m24m3⟩.

Let J be the ideal whose generators are of the form dk(i,j) ∈ Df where k ≥ 2 and the

matrix of dk(i,j) contains the 3-rd and the 4-th columns of M, i.e.,

J = ⟨d3(3,4), d2(2,4)⟩.

Then J ⊆ I since d2(2,4) = m13m24 −m14m23 ∈ I and

d3(3,4) = m12(m23m34 −m24m33)−m22(m13m34 −m14m33) +m32(m13m24 −m14m23) ∈ I.

Lemma 3.10 yields that ht(I) = 2. In addition, since init(d3(3,4)) = m12m23m34 and

init(d2(2,4)) = m13m24 are distinct, ht(J) = 2. By Krull’s height theorem, we have I is

a minimal prime ideal over J. Due to d3(3,4) and d2(2,4) are two irreducible factors of f,

Lemma 2.20 implies that d3(3,4) ∈ Pf and d2(2,4) ∈ Pf . Then J = ⟨d3(3,4)⟩+ ⟨d2(2,4)⟩ ∈ Pf .
Using similar technique, we have minors(2,M [t,t+1]) ∈ Pf for t = 1, 2, 3, 4.
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(2) One can claim that minors(2,M [1,5]) ∈ Pf by checking the followings using com-
putational program Macaulay2.

• minors(2,M [t,t+2]) ∈ Pf for all t = 1, 2, 3 due to

minors(2,M [t,t+1]) + minors(2,M [t+1,t+2]) = minors(2,M [t+1,t+3]) ∩minors(1,M [t+2,t+2]).

• minors(2,M [t,t+3]) ∈ Pf for all t = 1, 2 due to

minors(2,M [t,t+2]) + minors(2,M [t+1,t+3]) = minors(2,M [t,t+3]) ∩minors(1,M [t+1,t+2]).

• minors(2,M [1,5]) ∈ Pf due to

minors(2,M [1,4]) + minors(2,M [2,5]) = minors(2,M [1,5]) ∩minors(1,M [2,4]).

Therefore the determinantal ideal minors(2,M) = minors(2,M [1,5]) of M is Knutson.

Based on the observations in Example 4.10, we have the following properties.

Proposition 4.11. Assume M ,f , and < as in Theorem 4.9. Let I[t1,t2],p denote the
ideal generated by the p-minors of the submatrix which takes columns from t1 to t2 of M.
Then

(1) For any 1 ≤ t < n, I[t,t+p−1],p ∈ Pf .
(2) For any s, t ∈ N such that 1 ≤ t < t + s ≤ n, exactly one of the following

properties is satisfied:
• If p = 1, then

I[1,n],1 =
n∑
t=1

I[t,t],1 ∈ Pf .

• If p > 1, then

I[t,t+s−1],p+I[t+1,t+s],p =

{
I[t,t+s],p ∩ I[t+1,t+s−1],p−1 otherwise,

I[t,t+s],p if I[t,t+s−1],p = ⟨0⟩ or I[t+1,t+s],p = ⟨0⟩.

Thus, by induction on s, I[t,t+s],p ∈ Pf for all s, t, p ∈ N where 1 ≤ t < t+ s ≤ n.

Proof. (1) Let Df denote the set of dk(i,j) which divides f. We first define

Jt,p := ⟨dk(i,j) | dk(i,j) ∈ Df , t+ p− 1 ≤ j ≤ t+ k − 1⟩

and we can interpret the generators in Jt,p as the elements in Df whose matrices contain
columns from t to t+p−1. For λt+p−1 ≥ p, the number of generators of Jt,p is λt+p−1−p+1.
Notice, each pair of elements in Df have distinct indeterminates in their leading terms.
Therefore,

ht(Jt,p) = max{0, λt+p−1 − p+ 1}.

Then we claim that

I[t,t+p−1],p ⊇ Jt,p.
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Suppose dk(i,j) is a generator in Jt,p, then due to k ≥ p, the cofactor expansion of the

matrix of dk(i,j) is a combination of p-minors of the submatrix containing columns from t
to t+ p− 1 of M, i.e., the generators of I[t,t+p−1],p.

Now, we want to show that

ht(I[t,t+p−1],p) = max{0, λt+p−1 − p+ 1} = ht(Jt,p).

Let N[t,t+p−1] be the submatrix ofM which takes rows from 1 to λt+p−1, and columns from
t to t + p − 1, i.e., the largest rectangle matrix without empty entries contained in the
submatrix M [t,t+p−1]. Then it is easy to see that

I[t,t+p−1],p = minors(p,M [t,t+p−1]) = minors(p,N[t,t+p−1]).

Then we have the following two cases:

• λt+p−1 < p : Then the p-minors of N[t,t+p−1] are ⟨0⟩, and there does not exist such
(i, j, k) that dk(i,j) ∈ Df and t+ p− 1 ≤ j ≤ t+ k − 1. Thus,

ht(I[t,t+p−1],p) = 0 = ht(Jt,p).

• λt+p−1 ≥ p : Lemma 3.10 yields that

ht(minors(p,N[t,t+p−1])) = λt+p−1 − p+ 1.

And Jt,p is then non-zero. Thus,

ht(I[t,t+p−1],p) = λt+p−1 + 1− p = ht(Jt,p).

Notice, I[t,t+p−1],p is indeed a prime ideal by [11, Corollary 16.29]. Using Krull’s Height
Theorem 3.9, we can conclude that I[t,t+p−1],p is a minimal prime over Jt,p.Moreover, since
each dk(i,j) ∈ Df is an irreducible factor of f, Lemma 2.20 indicates that dk(i,j) ∈ Pf . Then
Jt,p ∈ Pf as it is a sum of some dk(i,j). Therefore, I[t,t+p−1],p is also in Pf , since it is a
minimal prime of Jt,p.

(2) First, we want to show that the 1−minor of M is in Pf . Since the generators of
I[t,k],1 are all the indeterminates in M, we have

I[1,n],1 = ⟨mij | 1 ≤ j ≤ n, 1 ≤ i ≤ λj⟩ =
n∑
t=1

⟨mi,t | 1 ≤ i ≤ λt⟩ =
n∑
t=1

I[t,t],1.

This shows I[1,n],1 ∈ Pf since each I[t,t],1 ∈ Pf by part (1).

For p-minors with p > 1, we first assume that both of I[t,t+s−1],p and I[t+1,t+s],p are
non-zero for some p > 1 and live inside Pf . We want to show

I[t,t+s−1],p + I[t+1,t+s],p = I[t,t+s],p ∩ I[t+1,t+s−1],p−1.

The direction ⊆ is easy. Without loss of generality, suppose d is a generator of I[t,t+s−1],p,
then d ∈ I[t,t+s],p. And the cofactor expansion of d shows that d is a combination of the
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generators of I[t+1,t+s−1],p−1, i.e., d ∈ I[t+1,t+s−1],p−1. Therefore,

I[t,t+s−1],p ⊆ I[t,t+s],p ∩ I[t+1,t+s−1],p−1.

Similarly, one has

I[t+1,t+s],p ⊆ I[t,t+s],p ∩ I[t+1,t+s−1],p−1.

Therefore,

I[t,t+s−1],p + I[t+1,t+s],p ⊆ I[t,t+s],p ∩ I[t+1,t+s−1],p−1.

To show the other direction I[t,t+s−1],p + I[t+1,t+s],p ⊇ I[t,t+s],p ∩ I[t+1,t+s−1],p−1, we first

show that I[t,t+s−1],p + I[t+1,t+s],p ⊇ I[t,t+s],pI[t+1,t+s−1],p−1. Let d
[b1,...,bp]

[a1,...,ap]
∈ I[t,t+s],p and

d
[d1,...,dp−1]

[c1,...,cp−1]
∈ I[t+1,t+s−1],p−1l be two generators. If bi ̸= t for all i, then

d
[b1,...,bp]

[a1,...,ap]
∈ I[t+1,t+s],p =⇒ d

[b1,...,bp]

[a1,...,ap]
d
[d1,...,dp−1]

[c1,...,cp−1]
∈ I[t+1,t+s],p.

Then I[t,t+s],pI[t+1,t+s],p−1 ⊆ I[t,t+s−1],p + I[t+1,t+s],p. Similarly for the cases when bi ̸= t + s
for all i. Now, without loss of generality, assume b1 = t and bp = t + s. Then applying
Lemma 4.8 to the submatrix M [t,t+s],p there exists a valid Plücker relation which involves
d
[t,b2,...,bp−1,t+s−1]

[a1,...,ap]
d
[d1,...,dp−1]

[c1,...,cp−1]
:

λt+1∑
l=1

(−1)lP[i1,...,iλt−1,jl]P[j1,...,ĵl,...,jλt+1]
= 0.

where

{s1, . . . , sλt−p} = {1, . . . , λt} − {a1, . . . , ap},
{s′1, . . . , s′λt−p+1} = {1, . . . , λt} − {c1, . . . , cp−1},

(in) = {i1, . . . , iλt−1} = {b2, . . . , bp−1, t+ s, t+ s+ s1, . . . , t+ s+ sλ1−p}, and
(jn) = {j1, . . . , jλt+1} = {t, d1, . . . , dp−1, t+ s+ s′1, . . . , t+ s+ s′λ1−p+1}.

For 1 < l ≤ p, P[i1,...,iλt−1,jl] equals to (up to a sign) the determinant of the p×p submatrix
which involves row b2, . . . , bp−1, t+s, dp−1, and is thus inside I[t+1,t+s],p. For p < l ≤ λt+1,
P[j1,...,ĵl,...,jλt+1]

equals to (up to a sign) the determinant of the p × p submatrix which

involves row t, d1, . . . , dp−1, and is thus inside I[t,t+s−1],p. Therefore,

λt+1∑
l=2

(−1)lP[i1,...,iλt−1,jl]P[j1,...,ĵl,...,jλt+1]
∈ I[t,t+s−1],p + I[t+1,t+s],p

Since for l = 1, P[i1,...,iλt−1,t]P[j2,...,jλt+1] equals to d
[t,b2,...,bp−1,t+s]

[a1,...,ap]
d
[d1,...,dp−1]

[c1,...,cp−1]
up to a sign, for

some m ∈ N, we have

d
[t,b2,...,bp−1,t+s]

[a1,...,ap]
d
[d1,...,dp−1]

[c1,...,cp−1]
= (−1)m

λt+1∑
l=2

(−1)lP[i1,...,iλt−1,jl]P[j1,...,ĵl,...,jλt+1]
,

and is thus contained in I[t,t+s−1],p + I[t+1,t+s],p ∈ I[t,t+s−1],p + I[t+1,t+s],p Therefore,

I[t,t+s],pI[t+1,t+s],p−1 ⊆ I[t,t+s−1],p + I[t+1,t+s],p.
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Since I[t,t+s−1],p and I[t+1,t+s],p are Knutson, they are radical by Lemma 2.16. Then√
I[t,t+s−1],p + I[t+1,t+s],p = I[t,t+s−1],p+I[t+1,t+s],p. In addition, [11, Section 16.4] yields that

the determinantal ideals I[t,t+s],p and I[t+1,t+s],p−1 are radical. So
√
I[t,t+s],p ∩ I[t+1,t+s],p−1 =

I[t,t+s],p ∩ I[t+1,t+s],p−1. One can thus derive that

I[t,t+s],p ∩ I[t+1,t+s],p−1 =
√
I[t,t+s],p ∩ I[t+1,t+s],p−1

=
√
I[t,t+s],pI[t+1,t+s],p−1

⊆
√
I[t,t+s−1],p + I[t+1,t+s],p

= I[t,t+s−1],p + I[t+1,t+s],p.

Now assume either I[t,t+s−1],p = ⟨0⟩ or I[t+1,t+s],p = ⟨0⟩. It is easy to see that I[t,t+s],p =
I[t,t+s−1],p + I[t+1,t+s],p. □

Now we shall prove Theorem 4.9.

Proof. Since < is the diagonal term order, we have

init<f = init(
n∏
j=1

λj+1∏
i=λj

d
min{i,j}
(i,j) )

=
n∏
j=1

λj+1∏
i=λj

init<(d
min{i,j}
(i,j) )

=
n∏
j=1

λj+1∏
i=λj

min{i,j}∏
p=0

mi−p,j−p

=
∏

1≤j≤n,1≤i≤λj

mij

which is square-free. Suppose I is some determinantal ideal of M which is generated by
p-minors. Then by Proposition 4.11, for t = 1, t + s = n, I = I[t,t+s],p ∈ Pf . Thus, I is
Knutson.

□
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Future Directions

In this chapter, we will discuss two observations that we were not able to prove. These
observations may lead to future work on this topic.

Given a graph G, there are various ways to find a polynomial f such that the toric ideal
IG ∈ Pf . However, in general, such f cannot be a product of a subset of the binomials
represented by the primitive walks in G.

Conjecture 5.1. Let Kn,m be the complete bipartite graph, and let IKn,m be the toric
ideal. When n ≥ 3 and m ≥ 4, there does not exist an f , which is a product of some
binomials represented by the primitive walks in Kn,m, together with a monomial order <,
such that init<f is square-free and IKn,m ∈ Pf .

This conjecture gives rise to another question.

Question 5.2. What properties of G need to hold so that we can write f as a product
of some of the binomials, which are represented by the primitive walks in G, such that
init<f is square-free for some monomial order < and IG ∈ Pf?

In Chapter 4, we showed that every unmixed one-sided ladder determinantal ideal is
Knutson. Such determinantal ideals are examples of the mixed two-sided ladder determi-
nantal ideal, which is first introduced in [9].

Definition 5.3. A λ1 ×n matrix M is said to be two-sided ladder if there are two
partitions λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) for some n ∈ N, such that:

(1) For any 1 ≤ i < n, λi ≥ λi+1, µi ≥ µi+1, and µi ≤ λi.
(2) The (i, j) entry of the matrix M satisfies:{

mij 1 ≤ j ≤ n and µj ≤ i ≤ λj

empty otherwise
,

where mij is an indeterminate.

Definition 5.4. Let M be a two-sided ladder defined by λ and µ. Let

Λ = ((λi1 , i1), . . . , (λis , is))

33
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be a sequence with λi1 > λi2 > · · · > λis a strictly descending subsequence of λ and for
all 1 ≤ k ≤ n, if ij < k then λij < λk. I.e., Λ records the positions of south-east corners
in M .

Define Lm to be a submatrix of M that contains columns from µm to λm and rows
from 1 to m, i.e.,

Lm :=M
[1,m]
[µm,λm].

Then the mixed ladder determinantal ideal defined on t = (t1, . . . , ts) is

It(M) =
∑

(λik ,ik)∈Λ

Itk(Lik),

where Itk(Lik) is the ideal generated by the tk−minors of Lik .

Example 5.5. LetM be a two-sided ladder matrix which is defined by λ = (5, 5, 4, 3, 3)
and µ = (3, 2, 1, 1, 1). Then

M =


m13 m14 m15

m22 m23 m24 m25

m31 m32 m33 m34 m35

m41 m42 m43

m51 m52

 .
We then have Λ = ((λ2, 2), (λ3, 3), (λ5, 5)) = ((5, 2), (4, 3), (5, 3)),

L2 =


m22

m31 m32

m41 m42

m51 m52

 , L3 =


m13

m22 m23

m31 m32 m33

m41 m42 m43

 , and L5 =

 m13 m14 m15

m22 m23 m24 m25

m31 m32 m33 m34 m35

 .
Let t = (2, 2, 3). Then the mixed ladder determinantal ideal defined on t is

It(M) = minors(2, L2) + minors(2, L3) + minors(3, L5).

Conjecture 5.6. Every mixed ladder determinantal ideal is Knutson. In particular,
consider the two-sided ladder M determined by λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn). If
I is a mixed ladder determinantal ideal with respect to M, then I ∈ Pf , where

f :=
n∏
j=1

λj+1∏
i=λj

d
max{k:i−k≥µj−k+1}
(i,j) ,

and dk(i,j) denotes the determinant of the k×k submatrix with the south-east corner located

at (i, j) and λn+1 = µn, together with the diagonal term order < .

Example 5.7. Define M and It(M) as in Example 5.5. Then the desired polynomial
f will be

f := d1(5,1) · d2(5,2) · d2(4,2) · d2(4,3) · d2(3,3) · d2(3,4) · d3(3,5) · d2(2,5) · d1(1,5).
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The initial term of f with respect to the diagonal term order is square-free since

init(f) =
n∏
j=1

λj+1∏
i=λj

init(d
max{k:i−k≥µj−k+1}
(i,j) ) =

n∏
j=1

λj∏
i=µj

mij.

Then we can show that minors(2, L2),minors(2, L3) ∈ Pf using a method similar to the
proof of part (1) in Proposition 4.11. The ideal minors(3, L5) = ⟨d33,5⟩ ∈ Pf due to the

fact that d33,5 is irreducible. Therefore,

It(M) = minors(2, L2) + minors(2, L3) + ⟨d33,5⟩ ∈ Pf ,
and is thus Knutson.

It has been tested in over 10 different cases that the mixed ladder determinantal ideal
is Knutson.
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Appendix

A bipartite graph is said to be chordal if it has no induced cycles of length six or more.
In other words, every closed primitive walk in the graph is of length four. This appendix
illustrates that the toric ideal of every chordal bipartite graph with vertices no more than
six is Knutson by providing an example for the desired f . The default lexicographic order
is e1 > e2 > e3 > · · · unless it is otherwise stated. With the help of Macaulay2, we can
check that IG ∈ Pf and init<(f) is square-free.

Chordal Bipartite Graph

|V | Graph IG f

1 1 (0) e1

2

1

2

e1 (0) e1

3

1 2

3

e1 e2 (0) e1e2

4

1 2

3 4

e1 e2 e3 (0) e1e2e3

4

1 2

3 4

e1 e2 e4e3 (e1e3 − e2e4) (e1e3 − e2e4)e2e4

36
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Chordal Bipartite Graph

|V | Graph IG f

5

1 2 3 4

5

e1
e2 e3

e4

(0) e1e2e3e4

5

1 2 3

4 5

e1
e2 e3

e4

(0) e1e2e3e4

5

1 2 3

4 5

e1
e2

e3 e4

(0) e1e2e3e4

5

1 2 3

4 5

e1
e2
e3 e4 e5

(e2e5 − e3e4) (e2e5 − e3e4)e1e2e5

5

1 2 3

4 5

e1e2e3 e4e5e6
(e1e4 − e2e5, e2e6 − e3e5,
e1e6 − e3e4)

(e1e4 − e2e5)(e2e6 − e3e5)e3e5

6

1 2 3 4 5

6

e1 e2 e3 e4 e5

0 e1e2e3e4e5

6

1 2 3 4

5 6

e1 e2 e3 e4 e5

0 e1e2e3e4e5
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Chordal Bipartite Graph

|V | Graph IG f

6

1 2 3 4

5 6

e1 e2 e3 e4 e5

0 e1e2e3e4e5

6

1 2 3 4

5 6

e1 e2
e3e4

e5 e6

(e2e5 − e3e4) (e2e5 − e3e4)e1e3e4

6

1 2 3 4

5 6

e4

e1
e2

e3
e5 e6

(e1e5 − e2e3) (e1e5 − e2e3)e2e3e4

6

1 2 3 4

5 6

e1e2e3 e4e5e6

e7

(e1e4 − e2e5, e2e6 − e3e5,
e1e6 − e3e4)

(e1e4 − e2e5)(e2e6 − e3e5)e3e5e7

6

1 2 3 4

5 6

e1e2e3e4

e5 e6 e7 e8

(e1e6 − e2e5, e1e7 − e3e5,
e1e8 − e4e5, e2e7 − e3e6,
e2e8 − e4e6, e3e8 − e4e7)

(e1e6 − e2e5)(e2e7 − e3e6)(e3e8 − e4e7)e4e5

6

1 2 3

4 5 6

e1 e2 e3 e4 e5

(0) e1e2e3e4e5

6

1 2 3

4 5 6

e1

e2 e3
e4
e5

(0) e1e2e3e4e5

6

1 2 3

4 5 6

e1

e2 e3
e4

e5

(0) e1e2e3e4e5
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Chordal Bipartite Graph

|V | Graph IG f

6

1 2 3

4 5 6

e1 e2e3e4e5 e6

(e1e4 − e2e3) (e1e4 − e2e3)e2e3e5

6

1 2 3

4 5 6

e1 e2e3e4 e5 e6

(e1e4 − e2e3) (e1e4 − e2e3)e2e3e5

6

1 2 3

4 5 6

e1 e2

e3e4e5
e6 e7

(e1e4 − e2e3, e4e7 − e5e6) (e1e4 − e2e3)(e4e7 − e5e6)e2e3e7

6

1 2 3

4 5 6

e1 e2 e3

e4
e5

e6 e7
(e1e5 − e2e4, e1e6 − e3e4,
e2e6 − e3e5)

(e1e5 − e2e4)(e2e6 − e3e5)e3e4e7

6

1 2 3

4 5 6

e1 e2 e3

e4e5e6 e7e8
(e1e5 − e2e4, e1e6 − e3e4,
e2e6 − e3e5, e4e8 − e5e7,
e1e2 − e7e8)

(e1e5 − e2e4)(e2e6 − e3e5)(e4e8 − e5e7)e3e7

6

1 2 3

4 5 6

e1 e2 e3

e4e5e6
e7e8e9

(e1e5 − e2e4, e1e6 − e3e4,
e2e6 − e3e5, e4e8 − e5e7,
e1e2 − e7e8, e2e9 − e3e8,
e5e9 − e6e8, e4e9 − e6e7,
e1e9 − e3e7)

(e1e5 − e2e4)(e1e8 − e2e7)
(e2e6 − e3e5)(e4e9 − e6e7)e9
with e8 > e3 > e6 > e2 > e1 > e4 > e5 > e7 > e9
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