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Abstract

Let F be a field and let R = F[zy,...,x,] be a polynomial ring. Given a polynomial
f € R with a squarefree initial ideal (for some monomial order), one can build a class of
ideals in R call the Knutson ideals associated to f. Each Knutson ideal is radical and the
set of all Knutson ideals associated to f € R is closed under summation, intersection, and
saturation. Each Knutson ideal Grobner degenerates to a squarefree monomial ideal.

The goal of this thesis is to prove that certain classes of ideals are Knutson. The
classes we focus on are toric ideals of graphs. We prove that toric ideals of certain classes
of graphs are Knutson. We also show that if the toric ideal of a graph G is Knutson, and
H is obtained from G by gluing an even cycle to an edge of GG, then the toric ideal of
H is Knutson. We also discuss the one-sided ladder determinantal ideals and prove that
every one-sided ladder determinantal ideal is Knutson. In the last chapter, we discuss
some future directions.
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CHAPTER 1
Introduction

Radical ideals are studied in commutative algebra and algebraic geometry. An ideal
I is radical if I = {r € R | r™ € [ for some m € N}. We study a subset of radical
ideals, which are closed under summation, intersection, and saturation, in this thesis.
Notice, such a subset is proper when R is a polynomial ring, for example, consider the
ring R = Z[z], and let I = (3),J = (2? + 3). Then z*> € I + J while z ¢ I + J. Thus,
I + J is not radical.

Let F be a field of characteristic p > 0 and let R = Fley,...,e4] be a polynomial
ring. The Frobenius map is defined as the pth power map R — R where r — rP. A
Frobenius splitting is a map ¢ : R — R which satisfies p(f; + f2) = ©(f1) + ¢(f2),
o(f1f2) = fie(f2), and (1) = 1. An ideal I is said to be compatibly split under ¢ if
©(I) C I. Every compatibly split ideal is radical.

The trace map Tr(f? 'e): R — R is defined as
Tr(dmy + -+ 4+ &my) = ¢y Tr(my) + - - - + ¢ Tr(my),

where m; are monomials, ¢; € R, and
R/ m ngl i

Tr(m) = ngl €i
0 otherwise

if m H?Zl e; is a pth power

In [10], Knutson showed that Tr(f?~'e) defines a Frobenius splitting if there exists a
monomial order < such that init_(f) = H?Zl e;. In addition, the set of compatibly split
ideals is closed under summation, intersection, and prime decomposition. Relaxing the
constraint of p being prime, an ideal I € R is said to be Knutson if it can be obtained
from some (f) using summation, intersection, and prime decomposition, and init. f is

square-free (See Definition [2.18)).

The goal of this thesis is to study the Knutson property of the toric ideals of graphs
and ladder determinantal ideals. This is motivated by the following question:

QUESTION 1.1. What families of ideals are Knutson?

In [10] Section 7.2], Knutson showed that every Schubert determinantal ideal is Knut-
son by analyzing the corresponding Schubert varieties. Seccia used a purely commutative
algebra approach to show that the determinantal ideal of every generic matrix is Knutson
in [14].
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Consider a graph G = (Vig, E¢) where Vi = {21, ...,2,} is the vertex set and Eg =
{e1,...,eq} is the edge set. The toric ideal I5 of G is defined as the kernel of the ring
homomorphism K[Eg] — K|[Vi| where e; is mapped to the vertices z;z; connected by
e;. In the third chapter, we will show two ways of constructing larger graphs while the
toric ideals of the new graphs remain Knutson. The first is gluing an even cycle along
one edge.

F1GURE 1. Gluing a 4-cycle along eg in the left graph.

THEOREM 1.2 (Theorem. Let G be a finite simple graph and assume that its toric
ideal 1 is Knutson. Let Co, be an even cycle. Suppose Hy (resp. Hy) is the subgraph in
G (resp. Cs,) which only contains one edge and two vertices. Then we can construct a
new graph H as the disjoint union G U, Cy, under the identification Hy ~ p(H;), where
@ : Hy — Hy is a graph homomorphism. Then the toric ideal I of H is also Knutson.

We also prove a related result about Frobenius splittings. In particular, we can induce
an extension of the Frobenius splitting by gluing an even cycle along one edge.

THEOREM 1.3 (Theorem . Define G, ¢, and H as in Theorem . Then for any
Frobenius splitting Tr1(ge) over F,[E(G)], which compatibly splits I, we can extend it
to a new splitting Tro((aC)P~tge) such that Iy is compatibly split under Try((aC)P~1ge),
and a,C only depends on ¢ and Cs,.

We then study toric ideals of a special family of graphs which are obtained by attaching
an even path to the vertices of degree m in the complete bipartite graph Ks,,. These
graphs were first introduced in [8§].

THEOREM 1.4 (Theorem [3.11)). Assume we have a complete bipartite graph Ks ,, with
Vi = {z1,29,y1, -+ ,Ym} where 1 and x5 are the only two vertices of degree m. Then
Gyr.m 1s the graph obtained by attaching a path Py,_o = ({x1,21}, {z1, 22}, - - -, {2203, 2})
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FIGURE 2. Attaching a 4-path to x; and 3 in Ko 33

between x1 and xy such that c; & Fr,,, for all 2 <1 < 2r — 3. Then the toric ideal Ig,,,,
1s Knutson.

In the last part of this thesis, we look at ladder determinantal ideals. The ladder deter-
minantal ideal is the ideal generated by all the k—minors of some matrices in the ladder
shape. For example, a ladder matrix M can have the shape

a b c
M= |d e f|,
g h

and the ladder determinantal ideal of M generated by 2-minors is
I(M) = {(ae — bd,ah — bg,dh — eg,af — cd,bf — ce).

The fourth chapter will focus on discussing the Pliicker relation and proving the following
theorem.

THEOREM 1.5 (Theorem [1.9). Every (one-sided) ladder determinantal ideal is Knut-
son.

The last chapter will give several related conjectures which may lead to further work
on this topic.



CHAPTER 2
Background

This chapter will introduce the relevant background that is required for this thesis.
We will first give some basic results about graph theory and toric ideals of graphs which
are discussed in [11] and [13]. Then we will review the needed definitions and theorems
about Frobenius splitting stated in [10] and [1].

1. Toric Ideals of Graphs

A graph G is defined by (V, Eg), where Vg = {z1,...,2,} is the set of all vertices
in GG, and

Eq¢ = {{zi,z;} C Vi | z; and z; are connected by an edge in G}

is the complete collection of all edges in G. In this thesis, we will only consider finite
simple connected graphs, i.e., graphs with finitely many edges, connected, and do not
have more than one edge between any two vertices and no edge starts and ends at the
same vertex.

Let d = |Eg| and n = |Vg|, and label the elements in Eq as ey, ea, . . ., 4. The incidence
matrix Mg of G is an n X d matrix which is defined as

1 ifz; €e;
MG = (aij)lgign, Where aij = { ’ J

1<j<d 0 otherwise

We can treat Mg as a Z-module homomorphism which takes Z? to Z", that is Mg
defines a map Z¢ — Z" given by v — Mgv.

One way to define the toric ideal of a graph is by treating it as the lattice ideal
associated with the kernel of Mg as discussed in [11].

DEFINITION 2.1. The toric ideal of a graph G is a homogeneous binomial ideal of

the form
Ig = (e"—e" |u,veZlju—veker(Mg)) C Kley,...,ed,

where e = ¢]* - - - ej? and K is any field.

The paper [13] gives an alternative definition of the toric ideal as the kernel of the
ring homomorphism

¢ K[Eg| = K[Vg] by e; = xjxy if e; = {z;, 2}
4
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Then I = ker(y) is a prime ideal.

DEFINITION 2.2. Let R = Kley,...,eq] be any polynomial ring, and I,J C R be
ideals. Then the saturation of I with respect to J is defined as

I:J*=(feR]| fJ"™ CIfor some m € N).

It can be computationally complicated to go through all the elements in ker(Mg) to
guarantee that no generators of the toric ideal I; are missing. However, I can be derived
as follows.

LEMMA 2.3 ([11, Lemma 7.6]). Let G be a graph with d edges, let Mg be the incidence
matriz of G, let I be the toric ideal of G, and let Mg be the Q—module homomorphism
whose matriz representation is the same as Mqg. Assume Bg = {b1,...,by} is a basis of

ker(Mg). Define
I = (e —e¥ |u;,v; € 28y, u; — v =b;, 1 <i < k).

Then

IG:[L : <€1"'€d>oo.

EXAMPLE 2.4. Let G be the graph

Ty

A

T T2

1

€4 €9
Ty x3
€3
The incidence matrix of G is
10011000
11000010
Ma=10 11 0 0 1 00
00110001
00001111
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Define a linear Q—module homomorphism ¢ : Q¢ — Q" given by v Mgv where the
matrix representation of My is the same as M. Then

-11 707 [1
1 0 0
0

ker(Mg) = span(Bg) with Bg = {

—_
| =
—_
o |
—_
N——

-1 1 0

0
0] LO1 L1]
Going through elements b; in Bg to find pairs (u,v) € ZZ%, x Z%, such that u — v = b,
we get
u; = (0,1,0,0,1,0,0,0),v; = (1,0,0,0,0,1,0,0);
Uy = (070707 1707 1,0,0),V2 = (0707 1707 1707()’0);
uz = (1,0,0,0,0,0,0,1),vs = (0,0,0,1,0,0,1,0).

And,
e — eVl = ege5 — e166, "2 — eV? = e e — €365, and €™ — e¥? = ejeg — eqey.
Thus,
I, = (6265 — €164, €4€6 — €3€5,€1€8 — €4€7>,
and

. [o SR
I =1y : <€1 te 68) = <€265 — €166, €466 — €365, €168 — €4€7, €3E67 — €2€g8,€1€63 — €2€4>-

The toric ideal of a graph can be studied in a combinatorial way.

DEFINITION 2.5. A walk W in G is a finite sequence of edges
W= ({@i, Ty s {Zin, T}, - - -, {20, 1, 24, }) Where each {z;;, ;.. } € Eq.

A walk W is said to be even (resp. odd) if |W|, the length of W, is even (resp. odd),
and W is a closed walk if x;, = z;.. A primitive even walk is a minimal even closed
walk, i.e., does not contain any other proper even closed walk.

DEFINITION 2.6. An n-path P, in G is a walk with |P,| = n and without repeated
vertices nor repeated edges. An n-cycle C, in G is a closed walk of length n such that

x;, =, ifandonlyifa=1,b=nora=mn,b=1.

a

H. Ohsugi and T. Hibi [13] showed that the toric ideal of a graph is generated by
walks of a special form.

ProposITION 2.7 ([13, Lemma 3.2]). Given a graph G, a closed even walk W is a
primitive walk if it is in any of the following forms:
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(1) An even cycle.

(2) (C1,Cy) where Cy and Cy are odd cycles and have exactly one vertex in common.

(3) (Cy,p,Cy, —p) where Cy and Cy are odd cycles which are disjoint and p is a path
running from a vertex of Cy to a vertex of Cs.

LEMMA 2.8 ([18] Lemma 3.2]). The toric ideal I of a graph G is generated by
p P
<H €, — H ej. | (€€, .-, €i,,€5,) is a primitive closed even walk of G).
k=1 k=1

REMARK. The generators derived from the primitive closed even walks may not be a
minimal set of generators.

ExXAMPLE 2.9. Let G be the graph defined in Example [2.4]

Ty
€5 €7
€1
T i)
ey €g €6 es
Ty c T3
3

The primitive closed walks in G are
{(617 €2, €3, 64)7 (617 €2, €6, 65)7 (617 €4, €8, 67)7 (627 €3, €3, 67)7 (637 €4, €5, 66)7 (687 €4, €5, €6, €2, 67)}’

Since
egesen — eqeger = eg(eses — ereg) — egleger — eres),

the toric ideal of G is

Ig = <€1€3 — €2€4, €265 — €1€6, €4€7 — €1€g, €3€7 — €2€8, €3€5 — €4€6, €8€5€2 — €4€6€7>

= (e1e3 — €26y, €265 — €166, €4€7 — €1€5, €367 — €2€5, €35 — €4€6).

Up to sign, these generators as exactly the same as those derived in Example [2.4]
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2. Frobenius Splittings
Throughout this section, R will denote a commutative F,-algebra for some field F,
with prime characteristic p. The Frobenius map is defined as the pth power map
¥ : R — R where r +— 7P,

whose image contains all elements of R that are of pth powers, and R acts on the domain
with aob = ab while R acts on the codomain with axb = aPb. The map v is an R—module
homomorphism and ¢ (a o b) = (ab)? = a * 1 (b). Then a splitting of 1) can be defined.

DEFINITION 2.10. A Frobenius splitting of R is a map ¢ : R — R such that for all
f17 f2 € R7

(1) w(f1+ f2) = @(f1) + w(f2),
(2) 90(fff2) = fip(f2) and,
(3) »(1) =1.

We say ¢ : R — R is a near-splitting if it only satisfies the first two conditions.
Indeed, ¢ splits 1 because the composition of maps
RLY RS R
is the identity map on R.

DEFINITION 2.11. Consider the ring R = F,[ey, ..., e,]. The trace map Tr(e) : R —

R is defined as
ﬁ/m]_[i e;
Tr(m) = [Liei
0 otherwise.

if m[],e; is a pth power

where m is a monomial. This map extends R-linearly to all ¢ = dfm; + -+ + ?m, € R
with ¢; € F,, i.e.,
Tr(g) = c1Tr(my) + - - - + ¢ Tr(my).

Since Fermat’s Little Theorem tells us that for any ¢ € F),, ¢ = ¢ mod p. We have
g:c’fm1+---+c§ms:clm1+---+csms in R. SO,

Tr(g) = Tr(cimy + - - - + comy) = ¢ Tr(my) + - - - 4 ¢ Tr(my).

The trace map can induce another map ¢; : R — R given by g — Tr(fP'g), and
Knutson gave an easy way to decide if certain ¢, defines a Frobenius splitting.

THEOREM 2.12 ([10, Theorem 2|). Let f € R=TF,eq,...,e,] withdeg f < n and < be
a monomial order. If deg f < m, then no polynomial multiple of Tr(fP~'e) is a Frobenius
splitting. Denote the initial term of f under the monomial order < with init-(f). Then

Tr(fP~1) = Tr(init (f)P ).
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Thus, Tr(fP~'e) defines a Frobenius splitting if and only if Tr(init-(f)P~'e) does. More-
over, if init(f) = [[_, e;, then Tr(fP~'e) defines a Frobenius splitting on Flei,. .., e,]
with respect to which (f) is compatibly split.

EXAMPLE 2.13. Let R = Fsey, e2] and let m be any monomial in R. Then the module
homomorphism ¢ : R — R induced by Tr((e;ez)?e) has the property that

o(m) = { Vmeiey = /m if mis a cube,

€1€e2

0 otherwise.

The map ¢ is indeed a Frobenius splitting. Let fi, fo € R, we can check the conditions
of Definition 2.10]

(1) Since the map extends additively e(f1+ fo) = p(f1) + ¢(f2).
(2) For any f1 = cmy + -+ +camy, and fo = aymy + -+ - + a;m,, we have f} =
Am? 4 -+ + 2m? by the Freshman’s Dream. Also,

f1f2 ZSO 3f2
:ZZgo cm Ja;m;)
i=1 j=1

S S
_ 3/ 3.3
= § § c;mya;m;
i= —

m; a third power

s s
= E E cm; \3/ ajmj
i -

m; a third power

S

= Z CimiSO(fz)

i=1
= fip(fo).
(3) Since 1 is monomial and 1% = 1 is a third power. Then (1) = ¢(13) = 1.

DEFINITION 2.14. Let I be an ideal of R with a Frobenius (near-)splitting . Then I
is compatibly (near-)split with respect to ¢ if ¢(I) C I.

A Frobenius splitting can define a collection of radical ideals which is closed under
intersection, summation and taking prime components.

DEFINITION 2.15. An ideal ) of R is primary if for any a,b € R with ab € (), either
a€ @, or b e (@ for some n € N.
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The radical of a primary ideal P = /@ is prime, and @ is called P-primary. A
primary decomposition of an ideal I C R has the form:

I — ﬂ Qj
jeJ
where (), are primary and J is a finite index set. The prime ideal |/Q); is said to be a

prime component of [ if it is a minimal prime over [.

LEMMA 2.16 ([10, Section 1]). Let R be an F,—algebra and let ¢ : R — R be a
Frobenius splitting. For any two compatibly split ideals I, J C R with respect to o, the
ideals I + J, I N J, and the prime components of I are all compatibly split. In addition,
every compatibly split ideal is radical.

EXAMPLE 2.17. Define R and ¢ as in Example[2.13, Let I = (eje3). We want to show
that p(/) C I. Suppose m = cefel’ € I with n,m > 1, and ¢ € R. Then

o(m) = {W: \3/661%62% if 3| n,3|m, and ¢ is a cube el
0 otherwise
Thus, I is compatibly split with respect to . Also, since
I'=(e1) N (e2),
Lemma implies (e;) and (es) are also compatibly split.

We now describe a closely related notion, which no longer requires that our base field
has prime characteristic.

DEFINITION 2.18. Let R = Fley,...,e,] where IF is a field of any characteristic. Let
f € R be a polynomial of degree d < n where init-(f) is square-free of degree d for some
monomial order <. Then the poset P; of f, which is partially ordered by inclusion, is the
unique collection of ideals in R that satisfy

(1) {f) € Py.
(2) It I,J € Py, then I+ J,INJ e Py
(3) If I € Py and J is a prime component of I, then J € Py.

An ideal I € Py is called a Knutson ideal.

We may compare two posets Py and Py if one of f, g divides the other.

LEMMA 2.19. Let R = Fley,...,e,| where F is a field. Fiz polynomials f,g € R of
degree < n such that init-(f) and init-(g) are square-free for some monomial order. If

f g, then Py CP,.

PROOF. Assume



Chapter 2. Background 11

f:flfQ"'fs; andg:f1f2'"f$7”17“2'--7’t7
where f;,7; € R are irreducible and ¢, 7 € N. Then

{g) = (-0 (f) N {r) NN (r).
So (fi) € P, for all 1 <i <'s. And thus,

(f) ={f) NN (fs) € Py
By the construction of the poset, we have Py C P,. O

We next note that the principal ideal generated by any irreducible factor of f is an
element of Py.

LEMMA 2.20. Let R = Fley,...,e,| where F is a field. Fix a polynomial f € R such
that init (f) is square-free for some monomial order <. If g | f and g is irreducible, then

(9) € Py.

PROOF. Assume f = gh where g is irreducible and h is some polynomial. Then init_g
is square-free due to init- f = (init.g) - (init-h) is square-free. Lemma yields that
(9) € Py C Py O

Note that if the field F has positive character p, then the Knutson ideals are compatibly
split under an appropriately chosen Frobenius splitting.

LEMMA 2.21. Let R = Fples, ..., e,| where p is prime. Let < be a monomial order
on R. Let f € R be a polynomial where init-(f) is square-free of degree deg f < n. Then
for any Knutson ideal I € Py, there exists a g € R where f | g, such that I is compatibly
split under the Frobenius splitting Tr(gP~'e).

PROOF. Suppose for some index set o € {1,2,...,n} we have init(f) =[], ei- Let

8 ={1,2,...,n}\a be the complementary index set of . Define the polynomial
g = (H e)f.

Since init<(g) = [[;_, e;, Tr(g?~'e) defines a Frobenius splitting on R by Theorem m
Thus, (g) is compatibly split for this Frobenius splitting. Lemma implies that every
Knutson ideal in P, is a compatibly split under Tr(g?~'e). Since f | g, we can deduce that
I € P, using Lemma . Therefore, I is compatibly split under the Frobenius splitting
Tr(gPe). O
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EXAMPLE 2.22. Let G be the graph defined in Example [2.9] and let I be its toric
ideal. Recall, we have

Ig = (e1e5 — egey, €965 — €164, €467 — €163, €367 — €268, €365 — €4€4).

Defining a lexicographic monomial order < with

eg < ep < eg<es<ey<ey<ey<er.
Consider f € Fey, ..., es] with

f = (e1e3 — ezeq)(e3es — eseq)(ezer — eaes).

Then

init- (f) = ejesezeqepes is square-free.
Notice, we need e3 < e4 to guarantee that init-(f) is square-free. And thus, (f) is
Knutson.

The following is the list of prime components of (f). Notice, to get the full collection of
Py, we only need to record all the intersections and summations of the prime components.

o (e1e3 — egey), (ezes — eqeq), and (eser — egeg): due to
(f) = (e1e3 — egeq) N (eges — egeq) N (ezer — eaes).
o (e3e5 — eqeq, €367 — ezeg) : due to it being prime, and
(eses — eqeq, €367 — egeg) = (eze5 — eqeq) + (eser — eqeg).
o (e1e3 — €96y, €365 — €46q, €265 — e166) and (es, eq): due to
(€163 — €9€y, €365 — €465) = (€163 — €26y, €365 — €466, €265 — €166) M (€3, €4).
o (e1e3 — egey, €367 — egeg, eqe7 — eqeg) and (eq, e3): due to
(e1€3 — e9ey, €367 — €9eg) = (€163 — €964, €367 — €363, €467 — €163) N (€3, €3).
o (3,64, 166 — €265), (€9, €3, 165 — eqe7) : due to they are prime and
(€3, €4, €166 — €265) = (€163 — €964, €365 — €4€6, €265 — €166) + (€3, €4),
(€q, €3, 168 — e4e7) = (€13 — €9€4, €367 — €€, €467 — €1€8) + (€2, €3).
o I, (e3,e4,6e5), (€2,€3,€4), and (eq, e3,¢€5) : due to
((ere3—egeq)) +((ese5—e4e6)) +((eser —eaeg)) = ((e1€3—eaes), (€365 —e€4es), (€367 —e268)),
((e1e3 — e9ey), (ezes5 — e4e), (€3e7 — eaes)) = I M (€3, eq, e3) N (eq, €3, €4) N (€9, €3, €6).

o <6166_62€5a €3, €4, €8>’ <617 €2, €3, e4>7 <€168_64677 €2, €3, 66>7 <62a €3, €4, 66> a’nd <62a €3, €4, €8> :
due to

IG + <€37 €4> = <€166 — €2€5, €3, €4, 68> N <€17 €2, €3, €4>,
Ig + (2, e3) = (e1eg — eqer, €2, €3,€6) N (€1, €2, €3, €4),
<62a 63)64> + <€27€3766> - <627€37647 66>7

(e3, €4, €5) + (€2, €3,€4) = (€2, €3, €4, €5).
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L4 <617627€37€4766>7 <€1762763764768>7 and 62763764766768> : due to

<€17 €2, 63764> + <627€37647 €6) — <617627 €3, 64766>7
- <€1,€2,€3,€4,€8>,

= <€27 €3, €4, €¢, 68>'

<€17 €2, €3, €4> + <627 €3,€4, €38
<€27 €3, €4, 66> + <627 €3,€4, €3

e (e1,69,€e3,€4,66,¢e3) : due to

e~ —~—

<617 €2, €3, €4, 66> + <617 €9, €3, €4, 68) = <€17 €2, €3, €4, C¢, 68>
Then the toric ideal I; is in the poset Py, thus it is Knutson.
The graph of the poset Py is

)

(ere3 — eze,) (eses — e,e6) (ese; — eyeg)

(e1€3 — €3€4,€385 — €466, €265 — €1€¢) (€3,€4) (€ — €3€4,€3€7 — €,€g,8,4€7 — €1€g) (€3, €3) (ezes — eueq, €387 — €reg)

(e3,€4,€185 — €385) (e1e3 — eye4, €385 — 406,038, — €,€5) (€2, 3, €185 — €407)
Ig (e3,e4,€g) (€2 €3, €4) (€2, €3,€6)
(83, €4,€1€¢6 — €365, eB) (elleZI 63,64) (eZI e3,€¢, €16 — 8487) (eZI €3, €4, 86) (eZIe3I €4, 88)
(e1,€2, €3, €4, €6) {e1, €3, €3, €4, €3) (€2, €3, €4, €, €5)

(elr €2, €3,84, €, eS)



CHAPTER 3
Graph constructions

In this chapter, we will give two ways of constructing larger graphs from those whose
toric ideals are Knutson, such that the new toric ideals are also Knutson. The first
approach is constructing a larger graph by gluing an even cycle along one edge. The
second approach is attaching an even path to two vertices with degree m in the complete
bipartite graph Ky ,,.

We will first explain the idea of “gluing” graphs. An example appears after the
construction.

CONSTRUCTION 3.1. Let G1,Gy be two graphs with induced subgraphs H; C Gy,
H, C Gy. Suppose ¢ : Hi — Hj is a graph homomorphism. Define G L, G to be the
disjoint union of G; and G9 under the identification H; ~ ¢(H;). We informally call this
construction gluing G7 and G4 along H where Hy & H = H,.

EXAMPLE 3.2. Let G; be the graph defined in Example 2.4] and Gy be a 4—cycle.
Let H, C Gy, Hy C G5 be the subgraphs whose edges are highlighted by the dashed line
and the vertices are darkened.

a
G, = ‘72 Y2
GQ = a i as
ta Ys

Define a graph homomorphism ¢ : H; — Hs with ¢(z5) = y1, ¢(x3) = y4. Then the
glued graph G U, G along H is given below

14
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Gy Uy, Gy = (11 as

Y3

The next result shows that if we glue an even cycle onto a graph, the Knutson property
is preserved.

THEOREM 3.3. Let G be a finite simple graph and assume that its toric ideal I is
Knutson. Let Cy, denote an even cycle, for some n € Z=y. Let ¢ be a graph isomorphism
from a single edge in G to a single edge in Cy,. Then, the toric ideal of the glued graph
G U, Oy, 1s Knutson.

PROOF. Let Eg = {ey,...,eq} be the edge set of G and let f be the polynomial with
square-free initial term such that /g € Py. Without loss of generality, we can label the

edges in the even cycle F¢, = {ai,...,as,} where a; = ¢; for some 1 < i < d. Let ¢ be
a graph isomorphism from e; in G to a; in Cyy,, and denote H = G'U, Cs,. We claim that
Iy € Pyfor g=f-(aras - asm—1 — azaq---as,) € Fley, ..., eq,a9,...,a2,], and init./(g)

is square-free for some monomial order <’ .

We first check that there exists a monomial order <’ such that init./(g) is square-
free. Suppose e;; < ... < ¢;, is the monomial order that makes init.(f) square-free.
Then define the new monomial order <’ to be the product order in the new ring R’ =
Fle,...,eq,as,...,as,] such that

e <...<gy<ay<az<ayg<...<Aa.
Because init-(f) does not contain any variables in {as, ..., as,}, we have
init<(g) = init<(f)(azas - - azn)

which is also square-free.

We now show that Iy € P,. Since I € Py and f | g, by Lemma [2.19, I € P,. Also,
<CL16L3 cerQop—1 — Q204 - - - a2n> € Pg.

So using [7, Theorem 3.7] we have
IH = IG + <CL16L3 e dop—1 — A2Q4 a2n> c Pg.

Thus, Iy is Knutson. O]
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EXAMPLE 3.4. Let G be the graph of Example 2.4] As shown in Example [2.22] the
toric ideal I of G is Knutson with the lexicographical order given by

<teg<er<eg<es<ez<es<er<ep,
and
f = (6163 - 6264)(6365 - 6466)(636’7 - 6268)-

Attaching Cy to vertex 3 and 5 along the edge eg, the new graph H is

a2
Zs Y2
. / ¥7
e
T T2 as

€g €g

€4 €2

Hoy) xs3 Ys
€3 ay

Set the new monomial order to be the product order such that
<ieg<er<eg<es<es<es<e<e <ay<as< ag,
and set polynomial g to be
g = (e1e3 — egey)(eses — eqe6)(ezer — exes)(egag — asay).
Then
init<(g) = azasereseseseses

is square free, and

[H = [G + <€6(l3 — a2a4> € Pg.

Gluing an even cycle along one edge also gives a way to extend the Frobenius splitting.

THEOREM 3.5. Assume G is a graph such that its toric ideal 1 is compatibly split by
a Frobenius splitting

Tri(ge) : F[E(G)] = F,[E(G)],

where Tty is the trace map of Fy[E(G)] to itself and g is homogeneous. If we glue an even
cycle Cyy,, for some n € Zsq, to G along an edge e to get a new graph H, the toric ideal
of the new graph H 1is compatibly split by a Frobenius splitting

p(e) = Tra((aC)" "' ge) : F,[E(H)] — F,[E(H))],
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where C' = a" — a¥v is the binomial representation of the cycle Cs,, a is the product of

some indeterminates in E(Cy,) such that

2 ifela®
a=1q 5
e

. )
otherwise

and Try is the trace map of F,[E(H)] to itself.

PROOF. Let Eg = {e1,...,eq} be the edge set of G. Then for some ¢; € F, nonzero
and distinct monomials m;, we can write ¢ = ¢;my + -+ + ¢;m, € Fyleq, ..., e4] such
that Try(glg) C Ig. Without loss of generality, we can label the edges in the even cycle
Ec,, = {a1,...,a2,} where a; = ¢; for some 1 < i < d. Let C = —ajaz---ag,—1 +
asay - - - agy, be the associated closed even walk Cs,. We then have e; | ajas - - - ag,—1, and
a = asas - - as,_1. We claim that ¢)(e) = Try((aC)P~'ge) is also a Frobenius splitting and
the toric ideal of the new graph [y is compatibly split by ¥, i.e., ¥ (Ig) C Ig.

Let hy, he € F,[E(H)]. Since v is a module homomorphism as defined at the beginning
of Section 2, ¥(hy + hy) = ¥(h1) + ¥(h2), and ¥(h{hy) = hytp(hg). Since Tr(ge) is
a Frobenius splitting, Tr(g) = 1 implies that > ;_, ¢xTr(mg) = 1. Then there exists a
unique term in g such that ¢;Tr(m;) =1, ie, ¢, =1, my = (H;j Le)Pt and my [0, ¢
is not a pth power if k # t. Notice, aC' = —(aya2---a3, ;) + [[", a;, and

2n 2n p—1 2n
—1
ey ] Jas= Lo+ 2 (-1 k( k )(] [ ) (@as - a5, )P

i=2 =2 k=1 1=2

Since g does not involve any variable in {as, ..., as,}, the only term in (aC)?~'g which

becomes a pth power upon multiplying by [1", a; [T, ¢; is ([T a2 (T, ;)P

7j=1 7j=1
Therefore,

<H1221 ai)p_l(nj L €)1 Hz 2 @i H] 165
v = TrZ((aO)p_lg) - </ H?Zz a; H}i=1 €j -t

and v is thus a Frobenius splitting.

To show ¢(1g) C Iy, we first show that ¥(Ig) C I C Iy. Let h € I. Since ¢ extends
linearly on F,[E(H)], we can assume h = ng where n is a monomial and g is a generator
in Ig. Then Try(gh) € Ig. Expand (aC)P~! we have

2n

(a(])p—l — (—((116L§ .. .agn_l) + H ai)p—l
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then

W(h) = Try(g(aC)?~'h)
=) (-1)* (p . 1) Tra(g(ara- - ain_l)’“(g 0P k).

Suppose for some 0 < k < p—1, ([[2", a;)?~" divides (a1a? - -- a3, )" ([1:"y a:)?~ A,
then define a new polynomial
2n 11—
aa3 - a%n—l)k(nz‘:Q a;)P~ " h
(H?Zz a;)P~!
Since g does not contain variables in {as,...,as,}, we can write b’ as a multiple of g.
Thus, i’ € I¢. Observe that for any monomial n € F,[E(H)],

2 _ 2 d
= -1 </H(H122 a;)P 25 ai Hj:l €
Tr2 (n(H ai)p ) = 2n d
Pl [Ti=s a Hj:l €

C/ d
nHj:l €j

d
Hj:l €j

o

= TI'1 (l’l)
Then
2n 2n
Tra(g(aras -+ a3, )" (] @)’ 7*h) = Tra(gh/ (] [ ai)”™))
=2 =2

= Tri(gh') € Ig.

For 0 < k < p—1 where ([]7", a:)?" 1 (g(ara3 - - - a3, )*([17", a;)?~**h). Since g and

. . . . . 2 1=
g does not contain any variable in {ay, . . ., az, }, neither term in g(a1a3 - - - a3, _)"([1:"y a:)?*~*h

can be divided by ([]:", a;)?. Therefore,

2n

Try(g(aras - 'agn—l)k(H a;)P"' " h) =0 € Ig.

i=2
Therefore, 1(h) € Ig.

[7, Theorem 3.7] implies that Iy = I + (C'), so it remains to check ¢ (hC') € Iy for
any h € F,[E(H)]. Notice,

Y(hC) = Try((aC)P hC) = Try(aP *CPh) = CTry(aP~ h) € Iy.
Therefore, Iy is compatibly split with respect to ¢c . O

The authors of [8] studied toric ideals of a specific family of graphs denoted as
Gym. We now introduce this family. Assume we have a complete bipartite graph K,
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with Vi, ,. = {®1,22,91,...,ym} where z; and wz, are the only two vertices of degree
m. Then G,,, is the graph obtained by attaching a path Pa._o = {c1,...,c0 2} =
({z1, 21}, {21, 22}, .- -, {z2r—3, 12}) between z; and x, such that z; ¢ Vi, ,, for all 1 <i <
2r — 3. One of the reasons that we study this type of graphs is the existence of an explicit
formula for a Grobner basis for each toric ideal in this family.

LEMMA 3.6 ([8, Corollary 3.3]). For integers r > 3 and m > 2, a Grobner basis for

Ig, . with respect to any monomial ordering is given by

{einejo—ejiein | 1 <i<j<mpU{eact oz —e€i1C2- - Cora | 1 <i <m},
where e; i, is the edge between xy, and y;, and {c1,ca, ..., Cor—a} is the walk of the attached
path.

EXAMPLE 3.7. The graph G535 is the graph obtained from attaching an even path
{c1, 2, c3, ¢4} between vertices z1 and x5 in Ky 3. The graph is drawn as follows

Z2

The toric ideal of G 3 is

IG3,3 —<€1,1€2,2 — €1,2€21,€1,1€32 — €31€12,€21€32 — 63,162,2>+

+ <6’1,1C2C4 — €12€1€3, €21C2C4 — €29C1C3, €3 1C2C4 — 63,20103>-

We will show that the ideal generated by the 2—minors of a generic n x 2 matrix is
Knutson.

LEMMA 3.8. Let M = (e;;) be an n x 2 matriz and let < be the anti-diagonal order
where

€nl > €2 > €Cp_11 > " > €12.
Then for the polynomial f = [, d; with d; = det {6@'—1,1 6i_1’2} , we have init<(f) is

€i1 €i,2
square-free and the ideal generated by 2—minors of M is an element of Ps.

We will first quote the following two theorems.

LEMMA 3.9 (Krull’s Height Theorem, [5, Corollary 10.5]). Let R be a Noetherian ring,
and let J C R be an ideal of height n. For some prime ideal I C R, if J C I and the
height ht(I) = n, then I is a minimal prime component over J.
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LEMMA 3.10 ([6l Example 4.1]). Suppose M is a m X k matriz with full rank and
m > k. Let I, be the ideal generated by the k—minors of M. Then

Now we shall prove Lemma [3.8|

PROOF. Define the matrix M, monomial order < and f as in the statement. The
initial term init<(f) = [[;_,init<(d;) = [[;_, €i—1,1€:2 is square-free. Let I = Io(M) be
an ideal generated by the 2—minors of M. [11], Section 16.4] yields that [ is prime. Define
the ideal J to be

J:={(d;|2<i<n).
Since the initial terms of {ds,...,d,} are relatively prime, the given generators form a
Grobner basis [4], Proposition 10.1, Corollary 10.7]. Then its initial ideal can be generated
by relatively prime monomials, and thus form a regular sequence {ds, ..., d,}. Therefore,
ht(J) =n — 1. Also ht(l;) =n — 1 by Lemma [3.10] In addition, every generator of J is
contained in I. Therefore, J C [ and [ is a minimal prime component of J by Krull’s
Height Theorem. By Lemma[2.20] (d;) € Py for all2 <i <n.Then J = (dy)+---+(d,) €
Py, and so is 1. O

THEOREM 3.11. The toric ideal of G, ,, has the Knutson property for all r > 2 and
m > 1.

PROOF. Let G be a complete bipartite graph K ,, with the vertex set
VG = {371, T2,Y1,Y2, - - 7ym}

Label the edge in G as e, j if it connects vertices x; and y;. Let G, ,,, be obtained by joining
x1 and xo along the path P, = (¢1,¢9,...,¢C2r—2).

The toric ideal of GG is generated by the 2-minors whose column indices correspond to
the edges of G. See the proof of [3| Proposition 5.1]. Then

€11 €12
) e e
Ig = minors(2, T) where T = | 2! 727
€m,1 ©€m2
Lemma [3.8| gives a polynomial f such that I € Py is Knutson:
m
f= H(ei,lei—1,2 - 6i,2€¢—1,1),
=2
and < is the lexicographic order
1o < e <ega< ez < "< €Cp2<ECnpi-

Now define a new polynomial

g=f- (em,10204 corCop—2 — €y 2C1C3 - - - 627'73)
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and a new monomial product order <’
€1 <er1 <egp<eg] < "< elpo <€yl <Cyog<Cyg3g<--<C <.
Then init_/(g) is a monomial. Indeed,
inite (f) = em1€m—126m—1,1 " €2,2€2,1€12,
and
init </ (€m,1C2C4 * + * Cop — € 2C1C3* * Cop3) = C1C3** Cop_1€m 2.
Thus,
init./(g) = init</(f) - init<s(em,1c2¢s - - - C2p—2 — €m2C1C3 - - - Cop_3)
= €12€21€22 "€ 16, 2C1C3 * * - Cor—1,
which is square-free.

Now it suffices to show that Ig, , € P,. Since we attached the path from z; to w,,
Lemmashows that the generators of I, ,, is either a 2—minor of T or e; 2¢1¢3 - - - Cor—3—
€4,1C2C4 - - - Cop—o for some 1 < ¢ < m. Thus, the toric ideal Ig,,, is generated by the 2-
minors of the following matrix:

€11 €1,2

€21 €22
T =

€m,1 €m,2

C1C3 - Cor—3 C2Cq "+ Cor—2
Define a new ideal J = (d; | 1 < ¢ < m) where d; is the determinant of the submatrix
of T" involving rows ¢ and ¢ + 1. Since (d;) € P, for all 1 < ¢ < m by Lemma ,
we have J € P,. Since the monomials cjc3 - - - co,—3 and cacy - - - cor—2 do not contain any
variable e; ;, the initial terms of d; are relative coprime under the monomial order <'.
Therefore, the given generators of J form a Grobner basis [4, Proposition 10.1, Corollary
10.7] whose initial ideal can be generated by relatively prime monomials. Then we can
build a regular sequence S = {dy,dy, - ,d,}. Therefore, ht(J) = length(S) = m. Since
J C Ig,,, and the height of an ideal generated by 2—minors of a m + 1 X 2 matrix is at
most m, ht(Ig, ) = m. By Krull's Height Theorem, I, ,, is a minimal prime component
of J. Therefore, Ig, ,, € P, is Knutson. O

EXAMPLE 3.12. Let G = Ky 3 where Vg = {x1,22,y1, Y2, y3} and Eg = {e;; | x; and
y; is adjacent}. Then the toric ideal of G is

-[G = <61716272 — €12€21,€11€32 — €31€12,€21€32 — 63,162,2>
€11 €12
=minors | 2, [ea1 €29
€31 €32
Define

f = (61,162,2 - 62,161,2)(62,163,2 - 63,162,2)7
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and the lexicographic order
<terp <ern <ega<egy <ezz<e31.
Then, since by Macaulay2, we have the decomposition
I <€2,1, 62,2> = (61,162,2 - 62,161,2> + (62,163,2 - 63,162,2>
and
init< f = e31€29€21€1 2 is square-free,
we have I € Py and I is Knutson.

We join vertices x; and xo with a 4—path P;. Then the new graph Gj 3 is isomorphic

to the following graph
/C/ C3
C1 Cy

21— X Tyog — 23

61/41,2
1

]Gg,g = Ig+ <€1,1C2C4 — €1,2€1€3,€21C2C4 — €9 2C1C3, €3 1C2C4 — 63,201€3>~

Y

The toric ideal of G5 3 is

Define the polynomial g be
g:=f- (63,10204 - 63,20103) = (61,162,2 - 62,161,2)(62,163,2 - 63,162,2)(63,10204 - 63,20103)
and product order <’
< el < e <ego<eg] <egzg<ez) <Cq<cC3<C <.
Then
init</(g) = init</(f)il’lit</<€3’1CQC4 — 63720163) = 6371627262’1617263’20163
is square-free. Using Macaulay2, we can see that the prime decomposition of (ejeq —
€9€3, €36 — €4€5,€5C2C4 — 660163> 1S
<€5, €6, €2€3 — 6164> N <€3, €4,€5C2C4 — 660103> N IGS,B'
Thus, we have the following deductions:
(e1e4 — ege3), (€36 — €4€5), (e5c2c4 — €gC1C3) € Py
— <€1€4 — €9€3, €36 — €4€5, €5C2C4 — 660103> € Pg
= (€5, €6, €263 — €164) N (€3, €4, €562¢4 — €gC1C3) NI, , € Py
- ]G3,3 S 7)9.

Therefore, I, , € P, and is thus Knutson.



CHAPTER 4

Ladder Determinantal Ideal

Many classes of determinantal ideals are Knutson. Knutson in [10] showed that ev-
ery Schubert determinantal ideal is Knutson using connections with Schubert varieties. A
one-sided ladder determinantal ideal, see |2 Section 1], is an example of a Schubert deter-
minantal ideal. Seccia used a commutative algebraic proof to show that the determinantal
ideal of every generic matrix is Knutson in [14]. In this chapter, we refer to the proof
in [14] and also give a commutative algebraic proof to show that a ladder determinantal
ideal is Knutson.

DEFINITION 4.1. A A\; X n matrix M is said to be a ladder if there is a partition
A= (A1,..., \,) for some n € N, such that:

(1) For any 1 <i<m, \; > N\y1.
(2) The (i, 7) entry of the matrix M satisfies:

9

{mij I1<j<nandi<)\

empty  otherwise
where m;; is an indeterminate.

DEFINITION 4.2. An ideal I is said to be an (unmixed) ladder determinantal
ideal if there exists some ladder M such that [ is generated by the k—minors of M for
some k € N, i.e., [ = minors(k, M).

ExXAMPLE 4.3. Let M be a ladder matrix which is defined by A = (5,5,4,3,2). Then

mir My M1z Mig Mas

Ma1 Mo Moz Mg M5
M = |m3; m3zs mzz mazy )

MMyg1 My TN43

mMs1 M52

and \; describes the number of nonempty entries of the :—th row in M. Let

mi1 Mo M3
mi1 Miy2 Mg Mig
) +minors(3, [ma1 Moy Mz Moyl ).

m31 M3z 133 1M34

Moy Moz 123
mg3; Mgz 133
My MMy 1143

I = minors(3,

Then [ is a ladder determinantal ideal which is generated by the 3—minors of M.

23
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Before diving into the main theorem of this chapter, we introduce the Pliicker relations.
THEOREM 4.4 (Pliicker relations, [11, Theorem 14.6]). Let T' be a k x (k+n) matriz.

Given two strictly ascending sequence 1 < iy < -+ < i1 <k+nandl <j < --- <
Jk+1 < k4 n, we have the following equation:

k+1
k pT T —
(4‘1) Z(_l) P[il7”"7:k_l’jl]P[jlw'w]?lv“)jk“rl] - 07
=1

where j; represents the omitted term j;, and P[z;l n] 18 the determinant of the k x k

- Ck
submatriz of T' which involves columns ¢y, co, ..., Cp.

Notice if ¢, = ¢; for some s, t, then we have
T _
P[Clw“zck] o O’
since the submatrix does not have full rank.

LEMMA 4.5 ([12, Lemma 3.2.20]). Let M be a k x n matriz, and let T be a k x (k+n)
matriz formed by concatenating a k X k identity matrix to the last column of M. For
1 <p < min{k,n}, let d{zlll;";bjj}M denote the determinant of the p X p submatriz of M
which involves rows ay, ..., a, and columns by, ..., b,, and let

S={1<s<k:s#a; foralll <i<p}={s1,...,8p}

Then we have

[blbe:-wbp]:M_ k pT
la1,a2,...,ap] (_]‘) P[b1,.A.,bp,sl—l-n,...,sk,p—l—n]7

d[bl,bz,...,bp},M

where k 1s some integer, i.e., a1, o]
bl e p

15 equal to P[fl up to a sign.

yeeesDp 814N, S p 1]
For simplicity, we will omit M in dﬂ’M and 7" in P[:C]

EXAMPLE 4.6. Let M’ be the 5 x 5 matrix with indeterminates as entries. Then

miy; My Mz Mig Mas
mMo1 Mo Moz M4 Mas
!
M = |m31 mszz Mmszz Mz Mmass| ,
My Mya 1My3 Myq  Mys
Mms1 Mg M3 Msa Mss

and we can construct T as

my; Mg myz myy mys 10 0 0 0
Moy Moy Moz Moy Mos 0 1 0 0 0
T = |m3 mg m33 mg mgs 0 0 1 0 0O
M4 Mgz Mgz Mg mys 0 0 0 1 0
ms1 Msy Msz Msy msz 0 0 0 0 1
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Then we notice

mi1 Mg 0 0 0
m m may mgs 0 0 0
A9 — det 5 —det | |magr mss 10 0] | = Pussoio.
[172} mo1 Mos [ T ]
my mys 0 1 0
™ms1  1Ms5 0 01

Now consider the ascending sequence

{Z.la 12,13, 14} - {57 8,9, 10}7 and {jlu j27 j37j47j57 ]6} = {17 2,6, 77 8, 9}
By the Pliicker relations 4.1 in Lemma [£.4] we have

— P589,1011P2,6,7,89 T P5,89,1021F1,6,7,8,9) — Pl5,8.9,10,61F71,2,7,8.9 T F15,8,9,10,71F1,2,6,8,9]
— P58.9108P1,2,679 + Pps5.89,10,9 F11,2,6,7.5]
= — Pl1589,10 26,789 T P2,589101,6.7.89 T 568910 1,2,789 — P5,789,10 71,2689
_ d[175]d[2% _ dF’E’}d[l] _ d[5]d[1’2] + dﬂd[lﬂ] -0

[1,2]™[5 1,2]7[5] [2]7[1,5] 1]72,5) = 7
And we can observe
L8] 2 28] ), 5] 2] s (12
(4.2) dpy ) dps) = diy g dps) + A dins) — dydppls)-

Considering the ladder matrix in Example 1.3}

mi1 Miz M1z Mig Mas

Ma1 Mg T2z Mg Mg
M = |m31 m3 m33 m3y

My My 143

ms1 Ms2

Since the equation does not involve any empty entry in M, we call such relations valid

on the ladder matrix M. The determinant d”*2~%
[a1,a2,...,ap]

forall 1 <i < p. In Example , dﬁgé} = P34,9,10 1s valid on M, but dﬁ’gg} = Pj3.45,9.10]

is not.

is valid on M if a; < )\max{bj\lgjﬁp}

A Pliicker relation is valid on the ladder matrix if every one of its terms is valid. There
is a criterion to test if P, is valid given the sequence o = [iy, g, . .., ipm].

LEMMA 4.7. Let M be a Ay X n ladder matriz defined by X = (A\y,...,\,), and let N
be a A\ X (n+ A1) matriz formed by concatenating a Ay X A1 identity matriz to the last
column of M. Then for 1 < iy,...,i, < n and 1 < s1,...,5\,—p < A1, the determinant
+n) 18 valid on M if and only if

P[il7"'77:])731“1‘774,...,8)\171)

D LA 2,00 if A >,

S1y-evySai—pf 2 .
{1 A1 p} {Q if)\lz)\ip
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ProOOF. Ifi, =igor s, = sg for some «,  in the range, then P[z-l,”,Vip,sﬁn,,_’%_p+n] =0
as the matrix is no longer full rank. Since the sign of P[Z-l7,,_7ip751+n7m7%_p+n] does not

matter, we may assume 1 <i4; < ... <4, <n,and 1 <s; <...<sy_p < A1 Define a
sequence by < by < ... < b, such that {by,...,b,} is the complement of {s1,...,s),_,} in
{1,2,..., A}, ie,

{b1,....b,} ={1<b< A :b+# s forall [}.
Then, by Lemma 4.5 we have

Blisosipys14+n,msn, ptn] = (—1)kd{;2’;}] for some k € N.
If we assume that {si,...,sxp} 2 {\i, +1,..., A1}, we have
{b1,...,0 € {1,2,..., A, }

By construction of the ladder matrix M, we observe that there is no empty entry in
the submatrix of M which takes columns from i; to i, and rows from 1 to A;,. Thus,
P[il7._.72-%81_,_”7__.’8)\1_p+n] iS Valid.

Now assume P[il,..‘,z'p,sl+n,...,s>\1,p+n] is valid. Then the submatrix of M which involves
columns {i1,...,%,} and rows {by,...,b,} has no empty entry. By construction of the

ladder matrix, we must have

(b, b} C{L2,.. A )
Hence
{81, ce 78/\1—;0} 2 {)\Zp + 1, .. .,)\1}.

LEMMA 4.8. Let M be a Ay X n ladder matriz defined by A = (A1, ..., \y), and let N
be a A1 X (n+ Ay) matriz formed by concatenating a Ay X A\ identity matriz to the last

column of M. Given two valid determinants D, = d{ilbza:f_ln] and Dy = d{il""'."f::]] on

M withp > 1 and 1 < dy < d,—1 <n, then D1 Dy appears as a term in a Plicker relation
on N.

PROOF. Define two strictly ascending sequences
S={s1,.. .m0 =4{L..., M} —{a1,...,a,},

S =A{s1, .8y et =L My —{a, )
Then for some k1, ko € N, we have

Since both of the expressions are valid, by Lemma 4.7, we have
{51, S92, ..., 8)\1717} 2 {)\n + 1, ey )\1},
{1, 85, 8N, pf 2 { Mg, + 1, A1)
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Now define two strictly ascending sequences with
(Zn) = {il, Ce 7iA1—1} = {bg, Ce 7bp—17 n,n + S1y...,1 + 8)\1_p},
(]n) = {jlu s 7j>\1+1} = {1’ d17 s 7dp—17 n+ 8/17 St Sl)\l—p+1}7
where we move the index 1 from D; to Dsy. Then we claim that for all 1 <1 < A\ + 1,

P,.... dags] is valid on V.

Z‘)\l—lvjl}P[jl,...,jAl,..
We may assume that j; ¢ (i,), otherwise Py s, = 0. If 1 < p, then

{s1,..ysn—pt 2{ A+ 1,..., A}, and

{51 sy pt 2 { g, + 1, M)

While for [ > p, i.e., j; > n, let s = j;—n. Then since j; ¢ (in), s < A\, < Ag,_,. Therefore,
{s1,- -y Sa—ps i —n} 2451,y Sa—pt 2 { A+ 1,..., A1}, and
{818, 8 it 2{ g + 1, )

By Lemma |4.7] we can conclude the claim, since Dy D5 equals to
P[il7"'7’51*17”]P[j1,---7j;77--~7jxl+1}

up to a sign, it is involved in a valid Pliicker relation on V. O

We now come to our main theorem.

THEOREM 4.9. Fvery ladder determinantal ideal is Knutson. In particular, consider
the ladder matriz M determined by A = (A1, ..., \,). If I is a ladder determinantal ideal
with respect to M, then I € Py, where

n /\j+1 e
=TT 45
j=1i=)x;

and d@j) denotes the determinant of the k x k submatriz with the south-east corner located
at (i,7) and M\,y1 = 1, together with the diagonal term order <, i.e., m;; < m; 11 and

My < Miy1,1-

We will first illustrate the proof with the following example.
ExAMPLE 4.10. Let M be as defined in Example [4.3| with A = (5,5,4,3,2) :

mi1 My M1z Mig M5

Ma1 Mo Moz Mg M5
M = |m31 m3zs mzz mazy

g1 My TN43

Ms1 M52
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Then the desired polynomial f will be

M M Mt ma1 Moz o3
f =det ([m51]) - det ([ 4 42:|) - det (|: 31 32:|> - det ms31 M3 133

ms1  Ms2 My My2
Mgy 142 1143

mi1 Miz2 My3 myo M3 My

det o1 12y 123 - det Moo T2z Moy - det <|:m13 m14:|) .
Mo3 Moy
m31 Mgz 133 M3z M3z M3g
det ([mM m15D det ([mm})
Maog  Mas
Set < be the 1ex1cographlc dlagonal term order, ie.,
My <M < ... <M < Moy < -+ < Mpyp < Msa.

Then

1n1t<(f) = M51M52MM 41142131 110437M0321021 1103370221011 1103470231101 211024 1101312511141 5

is square-free.

submatrix of M Wthh 1nv01ves the ti—th to t—th Columns We have the followmg two
observations:

(1) Suppose

mi3 Mg
. . Ma3 Mgy
I = minors(2, MB4) = minors | 2,
mss3 134
my3

= <m13m24 — 1423, 11131134 — TN147133, TM2371134 — m24m3>.

Let J be the ideal whose generators are of the form d’f € Dy where k£ > 2 and the

matrix of dku (i) contains the 3-rd and the 4-th columns of M, i.e.,
J = {di3.4), dio)-

Then J C [ since d%2,4) = My3Maoy — MyaMas € I and

d?374) = m12(m23m34 - m24m33) - m22(m13m34 - m14m33) + m32(m13m24 - m14m23) el

Lemma w yields that ht(/) = 2. In addition, since 11r11t(d(3 4)) = Mizmazmsy and

init(d%m)) = myzmay are distinct, ht(J) = 2. By Krull’s height theorem, we have I is

a minimal prime ideal over J. Due to di; » and df,,, are two irreducible factors of f,

Lemma implies that df; ) € Py and df, 5y € Py. Then J = (ds 4)) + (df, ) € Py
Using similar technique, we have minors(2, M1y € P; for t = 1,2, 3, 4.
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(2) One can claim that minors(2, M) € P, by checking the followings using com-
putational program Macaulay?2.

e minors(2, M+2)) € P; for all t = 1,2,3 due to
minors(2, M)+ minors(2, M1+ = minors(2, MUHH3) A minors(1, MIF+21+2)),
e minors(2, M®+3) € Py for all t = 1,2 due to
minors(2, M2 + minors(2, M43 = minors(2, M3) A minors(1, ML),
e minors(2, M%) € P; due to
minors(2, MU4) + minors(2, M?®) = minors(2, M®) N minors(1, MZ4).

Therefore the determinantal ideal minors(2, M) = minors(2, M15)) of M is Knutson.

Based on the observations in Example [4.10, we have the following properties.

PROPOSITION 4.11. Assume M,f, and < as in Theorem[{.9 Let Iy, 1), denote the
1deal generated by the p-minors of the submatriz which takes columns from ty to ty of M.
Then

(1) For any 1 <t <mn, Iyip1yp € Py
(2) For any s,t € N such that 1 < t < t+ s < n, exactly one of the following
properties is satisfied:
o I[fp=1, then

Inmy = Z I € Py

t=1
o I[fp>1, then

I[t,t+s],p N I[t+1,t+s—1},p—1 otherwise,

Tt ivs)p if Tars—1yp = (0) o7 i1 46, = (0).
Thus, by induction on s, Ij4q, € Py for all s,t,p € N where 1 <t <t+s<n.

[[t,t—ks—l} D + I[t—l—l,t—&—s} D {

PRrROOF. (1) Let Dy denote the set of d’(“iyj) which divides f. We first define
Jop =iy | diy €Dt +p—1<j<t+k—1)

and we can interpret the generators in J;, as the elements in Dy whose matrices contain
columns from ¢ to t+p—1. For A\iy,_1 > p, the number of generators of J; ,, is Ay -1 —p+1.
Notice, each pair of elements in Dy have distinct indeterminates in their leading terms.
Therefore,

ht(g]t,p) = Il'laX{O, /\t+p—1 —p+ 1}

Then we claim that

I[t,t-‘y—p— 1],p 2 Jt,p-
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Suppose d’(“i ;) 1s a generator in Jip, then due to & > p, the cofactor expansion of the

matrix of d’(“i ) Isa combination of p-minors of the submatrix containing columns from ¢
tot+p—1of M, ie., the generators of Ij;p—1]p-

Now, we want to show that
ht([[t,t—l-p—l},p) = max{(), )\terfl —p+ 1} = ht(Jt’p).

Let N 44p—1) be the submatrix of M which takes rows from 1 to A;;,_1, and columns from
ttot+p—1,ie., the largest rectangle matrix without empty entries contained in the
submatrix MBHP=1 Then it is easy to see that

t,t+p—1])

It t4p-1),p = minors(p, M = minors(p, Nt t4p—1])-

Then we have the following two cases:

® \ip—1 < p: Then the p-minors of Ny 4,1 are (0), and there does not exist such
(i,,k) that df; ) € Dy and t +p —1 < j <t 4k — 1. Thus,

ht(Liee4p-11p) = 0 = ht ().
® \ip-1 > p: Lemma yields that
ht(minors(p, N s4p-1])) = Aegp—1 — D + L.
And J;,, is then non-zero. Thus,

Dt (L 4p-1)p) = Mp-1 + 1 —p =ht(Jpp).

Notice, /[ 11p-1]p is indeed a prime ideal by [11], Corollary 16.29]. Using Krull’s Height
Theorem , we can conclude that I}, ; 1,1, is a minimal prime over J; ,. Moreover, since
each d’é} ) € Dy is an irreducible factor of f, Lemma indicates that dﬁ‘, i) € P;. Then

Jip € Py as it is a sum of some d’(‘; i)- Therefore, Ij44p1), is also in Py, since it is a
minimal prime of .J; .

(2) First, we want to show that the 1—minor of M is in Py. Since the generators of
It 1,1 are all the indeterminates in M, we have

n

Tpgpa = (mi | 1< <0 1<i<A) =) (miy [1<i<N) = Ty
t=1

t=1
This shows Ij ;1 € Py since each Iy, € Py by part (1).

For p-minors with p > 1, we first assume that both of Iy ;4 s1), and Ijqq44), are
non-zero for some p > 1 and live inside P;. We want to show

It ivs—11p + L6450 = Litgs)p O Li41,045—1)p—1-

The direction C is easy. Without loss of generality, suppose d is a generator of I ;1 s_1),,
then d € Ij;44,.- And the cofactor expansion of d shows that d is a combination of the
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generators of Iy ¢4s—1)p—1, i-€., d € Ijp41445-1]p—1. Therefore,

T pvs—11p © Littrs)p O Ljp41,045-1] p—1-
Similarly, one has
Tty 1vsp € Littrs)p D Ljpg1,64s—1]p-1-
Therefore,
Tt rs—11p + Lprttrsp € Litas)p N L[e41,64s—1p-1-

To show the other direction Iy ;1 s—1p + Lj41448p 2 Litats)p N Ljp41,44s—1)p—1, We first

b,....b
show that Tjpirs1)p + Jsravslp 2 Lparspli1trs—1)p-1- Let d{all’m’;j] € 45, and
d{ilif_’ll]] € Iji41,445-1)p—1u be two generators. If b; # ¢ for all 4, then

) biyebp] gldiye.dp
dirtl Tiv1i4s)p = d{alh___zj]d{cll,”_,cf_ll]] € Tjtr1,045)p-

[alv'“vap}
Then I[t,t+8]7p-[[t+1,t+5],p—1 g I[t,t—&-s—l},p + I[t+17t+s],p- Slmllal"ly for the cases when bz % t+ s
for all <. Now, without loss of generality, assume b; = ¢ and b, = ¢ + s. Then applying

Lemma [4.8 to the submatrix MEt+5P there exists a valid Pliicker relation which involves
[t,bg,...,bp_l,ﬂksfl] [dl,...,dp_l] .

la1,...,ap] le1seep—1] °
Ae+1
E : l _
( 1) P[Zly”wl)\tflv]l}P[jl,...,jl,...,jkt_,_l] - O
=1
where

{s1,. -, sn—pt={L ..., N} —{a1,...,qp},
{518y, iy = {1, A —{en, o),
(in) = i1, in—1} =9{bo,.. ., bp1,t + 5,6+ 5+ 51,...,t+ 5+ 5x5_p}, and
(Jn) ={J1 - dany =1{tdi, . dy gt + s+ 8], t s+ sy )

For 1 <1 <p, Py i, _,j) equals to (up to a sign) the determinant of the p x p submatrix
which involves row b, ..., b, 1,t+5,d,_1, and is thus inside Ij;41,444) . For p <l < A +1,

B iingsn] equals to (up to a sign) the determinant of the p x p submatrix which
involves row ¢,dy,...,d,_1, and is thus inside I ;1 ,_1),. Therefore,

A+l

Z(_1)l]3[2'1,~~-,i>\t71Jz]P[jl,...,jl,...,jktﬂ] € I[t,tJrsfl],p + I[t+1,t+s],p

1=2

d[t,bQ yeesbp—1 8] 4lda ,...,dpfl]

(o1, osp] ercr ] UP to a sign, for

Since for | =1, P, iy, _1.0Fs.....js,41] €quals to
some m € N, we have
Ae+1
[t,b2,esbp—1,t+s] gld1,sdp1] _ m Ip ' X
d[a‘lv"'?apz]; d[clr"vclzj—l] o (_1) Z(_l) _P[Zl7""1/>\t_l’]l]_P[jlv"'vjlﬂ"wj)\t-‘-l]7
1=2
and is thus contained in I yys—1]p + Ljt1,t48p € L[tt4s—1]p T L[t+1,0+5p Therefore,

It iqs) p Lt 1,0451p—1 € Tittrs—1p + Ljpg1,04] -
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Since I yqs-1)p and Ijqq 444, are Knutson, they are radical by Lemma . Then
Vttrs—1p T lirrirsp = lirs—1)p+ e41,04),p- In addition, [11], Section 16.4] yields that
the determinantal ideals I ;4. , and Ij;11 444 p—1 are radical. So \/I[t7t+s]7p O 41,4 p—1 =
It i46)p N 441,046 p—1- One can thus derive that

Tt s)p NV 1,45 p—1 = \/I[t,t+s],p O T4 1,645) p—1

= \/ I [t,t+s],pf [t+1,t+s],p—1
- \/I[t,t+s—1],p + Ly 16480

= Iy its—1)p T Lji+1,044p-

Now assume either Ij11s-11p = (0) or Jyp1¢44, = (0). It is easy to see that Ij 14, =
It pvs—11p + Ljp1,t4s] - ]

Now we shall prove Theorem [£.9]

PROOF. Since < is the diagonal term order, we have

n Aji1
init f = init( H H dmm{w )
J=1i=),
n Aj+1

— H H init.(d mm{z’]})
J=11

J

Aj+1 min{s,5}

n
=111 1T s

]:1 =\ j p:O
1<j<n,1<i<),

which is square-free. Suppose [ is some determinantal ideal of M which is generated by
p-minors. Then by Proposition {.11], for t = 1,t +s = n, I = Iy44q, € Py. Thus, I is
Knutson.

O



CHAPTER 5
Future Directions

In this chapter, we will discuss two observations that we were not able to prove. These
observations may lead to future work on this topic.

Given a graph G, there are various ways to find a polynomial f such that the toric ideal
I € Py. However, in general, such f cannot be a product of a subset of the binomials
represented by the primitive walks in G.

CONJECTURE 5.1. Let K, ,, be the complete bipartite graph, and let Ir, . be the toric
tdeal. When n > 3 and m > 4, there does not exist an f, which is a product of some
binomials represented by the primitive walks in I, ,, together with a monomial order <,
such that init. f us square-free and I, , € Py.

This conjecture gives rise to another question.

QUESTION 5.2. What properties of G need to hold so that we can write f as a product
of some of the binomials, which are represented by the primitive walks in G, such that
init. f is square-free for some monomial order < and Ig € Ps?

In Chapter 4, we showed that every unmixed one-sided ladder determinantal ideal is
Knutson. Such determinantal ideals are examples of the mixed two-sided ladder determi-
nantal ideal, which is first introduced in [9].

DEFINITION 5.3. A A\ x n matrix M is said to be two-sided ladder if there are two
partitions A = (A1,...,A\,) and = (u1, ..., i,) for some n € N, such that:

(1) For any 1 <@ <mn, \i > Nit1, fi > fiv1, and p; < ;.
(2) The (i,7) entry of the matrix M satisfies:

9

My I1<j<nandp; <i<)\
empty  otherwise
where m;; is an indeterminate.

DEFINITION 5.4. Let M be a two-sided ladder defined by A and pu. Let

A= (Nisin)s -5 (Niyyis))
33
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be a sequence with \;; > \;, > --- > \;, a strictly descending subsequence of A and for
all 1 <k <mn,ifi; <k then \;; <A Le., A records the positions of south-east corners
in M.

Define L,, to be a submatrix of M that contains columns from u,, to A, and rows
from 1 to m, i.e.,

— il
L, = M[Hm)\m}.

Then the mixed ladder determinantal ideal defined on t = (¢4, ...,t,) is

It(M) = Z Itk(le>7

()\ik,ik)EA
where I, (L;,) is the ideal generated by the ¢y—minors of L;, .

EXAMPLE 5.5. Let M be a two-sided ladder matrix which is defined by A = (5, 5,4, 3, 3)
and p = (3,2,1,1,1). Then

miz Mg M5
Mag M3 MMgg Mas
M = |m31 m3zs m3z M3y m3s
g1 My T4z
ms1 M52

We then have A = (A, 2), (A3, 3), (\s,5)) = ((5,2), (4,3), (5,3)),

Mmag mis
m m m m mi3z M4 Mas
31 32 22 23
Ly = , L3 = , and L5 = Moo M3 TMgg Mos
My My2 mg3y g2 133
mg3y Mgz M3z M34 135
Mms1  Ms2 My Mag 143

Let t = (2,2,3). Then the mixed ladder determinantal ideal defined on t is
I;(M) = minors(2, Ly) + minors(2, L) + minors(3, Ls).

CONJECTURE 5.6. Fvery mized ladder determinantal ideal is Knutson. In particular,
consider the two-sided ladder M determined by X = (A,..., A\n) and g = (1, ..., pn). If
I is a mized ladder determinantal ideal with respect to M, then I € Py, where

n Ajr1
f — H H dznaX{k:i_kZMj_k+l}
' Z‘,j) ’
j=1i=);

and d@j) denotes the determinant of the k x k submatriz with the south-east corner located
at (i,7) and Apy1 = pin, together with the diagonal term order < .

EXAMPLE 5.7. Define M and [;(M) as in Example . Then the desired polynomial
f will be

= d%5,1) ) d%5,2) ) d?4,2) : d%4,3) ) d?3,3) ) d%3,4) ) d?3,5) ) d?z,s) ) d%1,5)-
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The initial term of f with respect to the diagonal term order is square-free since

n Aj+1 ( ) no A
.. .. max{k:i—k>p;_
() = T T (™) = T T s
J=li=\; J=1i=p;

Then we can show that minors(2, Ly), minors(2, L3) € Py using a method similar to the
proof of part (1) in Proposition 4.11} The ideal minors(3, Ls) = (d3 ;) € Py due to the
fact that d§75 is irreducible. Therefore,

I,(M) = minors(2, Ly) + minors(2, Ls) + (d3 ;) € Py,

and is thus Knutson.

It has been tested in over 10 different cases that the mixed ladder determinantal ideal
is Knutson.



CHAPTER 6
Appendix

A bipartite graph is said to be chordal if it has no induced cycles of length six or more.
In other words, every closed primitive walk in the graph is of length four. This appendix
illustrates that the toric ideal of every chordal bipartite graph with vertices no more than
six is Knutson by providing an example for the desired f. The default lexicographic order
is e; > ey > e3 > --- unless it is otherwise stated. With the help of Macaulay2, we can
check that I € Py and init(f) is square-free.

Chordal Bipartite Graph
\4 ‘ Graph ‘IG ‘ f
1 1 (0) €1
1
2 €1 (0) €1
2
1 2
3 61\ /62 (0) €162
3
1 2
4 €1 |ey |€3 (0) e1€2€3
3 4
1 2
4 €1|e 3 €4 (6163 — 6264) (6163 - 6264)6264
3 4

36
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Chordal Bipartite Graph

V]| Graph | I | f
1 2 3 4
€9 €3
€1
€4
5 5 (0) €1€2€3€4
1 2 3
€9 €3
€1
€4
5 4 5 (0) €1€2€3€4
1 2 3
€2
€1
€3 | €4
5 4 5 (0) e1e963ey
1 2 3
€2
€1 3)€4 €5
5 4 5 (ege5 — €3€4) (ege5 — e3€4)e169€5
1 2 3
61&(6 4%66
€1€4 — €9€5, €266 — €3€5,
5 4 5 ( 174 275, 7276 35 (6164 —6265)(6266 —€3€5>€3€5
€166 — 6364)
1 2 3 4
616\% %5
6 6 0 €1€2€3€4€5
1 2 3 4
€1\ €9 €3 | €4 /€5
6 5 6 0 €1€2€3€4€5
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Chordal Bipartite Graph

V]| Graph | I | f

4

1 2 3
€1\ €2 7// €5
5) 6

6 0 €1€2€3€4€5
1 2 3 4
€1\ €e2 €5 /€6
€3¢C4
5 6
6 (ese5 — e3ey4) (ese5 — e3e4)er1e3€4
1 2 4
3
€4 €5 /€q
€1
6 6 (e1e5 — e9€3) (e1e5 — ese3)esesey
1 2 3 4
€7
€16eC3 506
(e1e4 — eges, €266 — e3es,
6 5 6 (e1e4 — ege5)(e2e6 — e3€5)eseser
€166 — 6364)
1 4
€5 €6 MAr
€166

£ Ne (e1e6 — €265, €167 — €3es,
6 €168 — €4€5, €267 — €3€¢, (6166 — 6265)(6267 — 6366)(6368 - 6467)6465
€268 — €466, €368 — 6467)

1 2 3
€1 e 6//64 €5
6 4 5) 6 (0) €1€9€3€E4€5
1 2 3
3
€1 €5
6 4 5) 6 (0) €1€9€3€E4€5
1 2 3

6 4 5) 6 (0) €1€2€3€E4€5
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Chordal Bipartite Graph

V]| Graph I | f
1 2 3
€1 | egestue
€6
6 4 5 6 (6164 — 6263) (6164 — 6263)626365
1 2 3
€1 | egestu
€5 | €6
6 4 5 6 (e164 — e9€e3) (e1€4 — ege3)eqeses
1 2 3
N €
7
36ue
4
6 5 6 (e1e4 — e9€3, €467 — €5€6) (e1e4 — ese3)(e4e7 — es6g)ese3e7
1 2 3
N\ € €3
€6 | €7
€165 — €264, €166 — €364
6 4 5 6 ( ’ ’ (e1e5 — egey)(e2e6 — e3€5)eseqer
€266 — 6365)
1 2 3
N\ € €3
5€
7€8
5 & & (e1e5 — ezey, €166 — eey,
6 €266 — €3€5, €468 — €5€7, (e1e5 — egeq)(e2e6 — e3€5)(eses — eze7)ezer
€162 — 6768)
1 2 3
INNE €3
ey | (€165 —€eq,ere6 — ezeq,
4 5 6 €2€6 — €365, €468 — €5€7, (6165 - 6264)(6168 - 6267)
6 €162 — €7€g, €269 — €3€g, (6266 - 6365)(8469 - e667)69
€569 — €4€g, €469 — €gC7, | With eg > €3 > e > €9 > €1 > e4 > e5 > e7 > eg
€169 — 6367)
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