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Abstract
We provide �rst a purely VOA-theoretic guide to the theory of coordinate transformations for
a VOA in direct accordance with its �rst appearance in a paper of Zhu. Among these results,
we are able to obtain new closed-form expressions for the square-bracket Heisenberg modes. We
then elaborate on the connection to p-adic modular forms which arise as characters of states in
p-adic VOAs. In particular, we show that the image of the p-adic character map for the p-adic
Heisenberg VOA contains in�nitely-many p-adic modular forms of level one which are not quasi-
modular. Finally, we introduce a new VOA structure obtained from the Artin-Hasse exponential,
and serving as the p-adic analogue of the square-bracket formalism.
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Chapter 1

Introduction

It is well known that vertex operator algebras (VOAs) occupy a central position in various devel-
opments in both pure mathematics and two-dimensional conformal �eld theory. Among these,
we are presently interested in their somewhat-recent connection to modular forms established
�rst in a celebrated paper of Zhu [Zhu96] and outlined in many works such as [DLM00], [Hua97],
[MT10]. That is, characters of states in a VOA give rise to modular forms. Instrumental to prov-
ing this result was the idea of "rescaling" the elements of a VOA according to the holomorphic
map ez − 1 which in turn de�nes new vertex operators, the "square-bracket formalism":

Y (a, ez − 1)ez = Y [a, z] = ∑
n∈Z

[a]nz
−n−1.

Geometrically, this formulates the vertex operators as existing on a torus instead of a sphere (cf.
[FBZ04]), and operationally it greatly illuminates the link to modular forms. For example, in
Section 5.2 we will see that the character of the conformal state ω yields the ambiguous formal
power series given in eq. (5.10) whereas the square-bracket conformal state [ω] gives rise to the
Eisenstein series quasi-modular form G2(q).

The aim of this discussion is twofold. We �rst wish to provide a rigorous ��ll in the blanks� treat-
ment of the theory of coordinate transformations for VOAs in direct accordance with [Zhu96].
Though this is a well-known idea which �nds itself within many texts concerned with VOAs
and modular forms, the only complete framework is provided in [FBZ04] wherein the authors
emphasize a geometric viewpoint. Furthermore, a di�erent expression (eq. (3.20)) for the co-
ordinate transformation φ(z) is used than that (eq. (3.3)) given initially in [Zhu96]. Hence we
make use of results given in [FBZ04] directly to the assumptions in [Zhu96] in order to obtain
a purely VOA-theoretic guide to the theory of coordinate transformations. This in turn can
be followed by those without expertise on algebraic geometry. We then proceed to outline the
process of transforming the Heisenberg VOA via the exponential function yielding the aforemen-
tioned square-bracket formalism, and also give expressions for the transformed modes which have
not appeared in print in such an explicit form prior to this work. These expressions (eqs. (4.5)
and (4.9)) are combinatorial in �avour as they are constructed via the use of integer compositions
(cf. [HM04]) as well as Stirling numbers of both kinds.

Our second goal is to shed light on the ties to modular forms from a p-adic perspective. The
authors of [FM22] motivate and introduce the study of p-adic VOAs which arise via the p-adic
completion of the axioms for �usual� VOAs. It is also shown that there exist p-adic variants of the
Heisenberg, Virasoro and Monster VOAs. Notably, and what will be the focus of later discussion,
the character map is extended such that p-adic states then give rise to p-adic modular forms.
First introduced in [Ser73b], p-adic modular forms are p-adic limits of "classical" modular forms
such as Gk(q). In particular, they are power series with p-adic coe�cients. One such example
which emerges as the character of a state in the p-adic Heisenberg VOA is the p-adic Eisenstein
series

G⋆
2(q) =

p − 1

24
+ ∑
n≥1

σ⋆(n)qn (1.1)

where σ⋆(n) denotes the sum of all divisors of n which are coprime to p. Unlike the algebraic
case in which it is known that every modular form of level one is realized as the character of some
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state in a VOA (cf. [MT10]), it is yet undetermined whether every p-adic modular form arises
as the character of some state from a p-adic VOA. Until now we knew only that the image of the
p-adic character map for the p-adic Heisenberg contains G⋆

2(q), a result established in Section 10
of [FM22]. In Section 6.2 of this discussion, we expand on this fact. Using the theory established
on the coordinate transformation, we show (Theorem 6.2.5) the following:

Theorem. The image of the p-adic character map f ∶ S → Qp[E2,E4,E6] for the p-adic Heisen-
berg VOA S contains in�nitely many p-adic modular forms of level one which are not quasi-
modular.

Further inquiry into this subject via the square-bracket formalism rapidly becomes cumbersome
and so we proceed to introduce a new formalism in the following way: The Artin-Hasse expo-
nential series has product expansion given by

AHp(z) = ∏
gcd(p,i)=1

(1 − zi)
−
µ(i)
i (1.2)

where p is a �xed prime and µ is the familiar Mobius function. For ∣z∣ < 1, one has the identity

ez =∏
i≥1

(1 − zi)
−
µ(i)
i

and so the Artin-Hasse exponential can be seen as the p-adic analogue of the usual exponential
function. Transforming a VOA via AHp(z) − 1 then yields a structure parallel to the square-
bracket formalism which we call the angle-bracket formalism. For simpler computations, it is
shown that these two formalisms often coincide, however in most cases one obtains additional
structure. This makes the angle-bracket formalism the p-adic extension of the square-bracket
formalism. These kinds of computations hint at more sophisticated patterns and thus a more
intricate theory which could be used to explore further the ties to p-adic modular forms.

At last, this discussion serves the third and �nal goal of being an entirely self-contained overview
for anyone interested in VOAs, the coordinate transformation, and their connection to modular
forms. In fact, Chapter 2 gives the necessary operational background for many aspects of VOA
theory, as well as the full construction of the simplest non-trivial example of a VOA. Chapter 3
serves to explain the coordinate transformation, with a concrete example provided in the subse-
quent Chapter 4. Chapter 5 then outlines the ties to modular forms, with Chapter 6 providing
the p-adic perspective to the theory.

2
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Chapter 2

Preliminaries

2.1 Formal Calculus

An overview of formal calculus and its usage is given �rst in [FLM88] and explored in great detail
in [LL04]. As such, we provide the facts necessary to keep in mind when performing computations
in VOA theory. Let V be a vector space and z a formal variable. Using the notation given in
[LL04], the following spaces will be used throughout:

The space of formal power series:

V [[z]] = {∑
i≥0

vnz
n ∣ vn ∈ V } , (2.1)

the space of V-valued polynomials in z:

V [z] = {∑
i≥0

vnz
n ∣ vn ∈ V, all but �nitely many vn = 0 } , (2.2)

the space of formal Laurent series:

V [[z, z−1]] = {∑
n∈Z

vnz
n ∣ vn ∈ V } , (2.3)

the space of V-valued Laurent polynomials in z:

V [z, z−1] = {∑
n∈Z

vnz
n ∣ vn ∈ V, all but �nitely many vn = 0 } , (2.4)

the space of truncated formal Laurent series:

V ((z)) = {∑
n∈Z

vnz
n ∣ vn ∈ V, vn = 0 for n su�ciently negative } . (2.5)

As we will see, the most important identity (eq. (2.28)) for a vertex operator algebra involves
the formal delta series given by

δ(z) = ∑
n∈Z

zn ∈ V [[z, z−1]]. (2.6)

This is no more than the Laurent series expansion of the well-known Dirac-delta function dis-
tribution at z = 1, and in fact δ(z) carries the analogous property that v(z)δ(z) = v(1)δ(z) for
v(z) ∈ V [[z, z−1]], (observe that znδ(z) = δ(z) for n ∈ Z and the result follows).

Operations involving formal series are commonplace in the theory and so should be examined in
detail. Though one may take the product of a formal Laurent series with a Laurent polynomial
for example, the product δ(z)δ(z) is troublesome since there are in�nitely many terms zn for

3
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all n ∈ Z. To remedy this, one must ensure that within operations involving formal series,
only �nitely-many terms are added together when computing any single one of the resulting
coe�cients of the formal variables. With this rule in place, we can make sense of the product
δ(z)δ(z) by instead considering δ(z1)δ(z2) for commuting formal variables z1, z2. This trick
of using multiple formal variables is quite common, and as such, eqs. (2.1) and (2.5) extend
naturally to their multi-variable analogues. For example, one has the space

V [[z1, z
−1
1 z2, z

−1
2 ]] =

⎧⎪⎪
⎨
⎪⎪⎩
∑

m,n∈Z
vmnz

m
1 z

n
2

RRRRRRRRRRR

vmn ∈ V

⎫⎪⎪
⎬
⎪⎪⎭

.

As the axioms of a vertex operator algebra are written in terms of formal generating series, the
ability to extract speci�c coe�cients will be of crucial importance. For v(z) ∈ V [[z, z−1]], there
are the operators

Coe�zn v(z) = the coe�cient of the term zn in v(z) (2.7)

Resn v(z) = the coe�cient of the term z−1 in v(z). (2.8)

It is not di�cult to see for example that for v(z) ∈ V [[z]], we have the operator equality

Resn z
−nv(z) = Coe�zn−1 v(z),

an identity which will appear extensively in Chapters 4 and 6. The following "change of variable"
lemma serves to further internalize these concepts, and will also be used when deriving expressions
for the square-bracket Heisenberg modes in Chapter 4. We use the notation zV [[z]] to denote
the space of formal Laurent series with non-zero linear term.

Lemma 2.1.1. Let f(z) = ∑n vnz
n ∈ V ((z)) and g(z) ∈ zV [[z]]. Then for another formal

variable w, we have Resz (f(g(z))g′(z) = Resw f(w).

Proof. First write f(z) = v−1z−1 + F ′(z) for some F (z) ∈ V [[z, z−1]]. With this, compute

Resz (f(g(z))g′(z) = Resz ((v−1(g(z))
−1 + F ′(g(z))) g′(z))

= Resz (v−1
g′(z)

g(z)
+ (F (g(z))′) ,

where the rightmost term in the last equality comes from the chain rule for derivatives. Since
F (g(z)) ∈ V [[z, z−1]], its derivative consists of no powers of −1 and so

Resz (f(g(z))g′(z) = v−1Resz
g′(z)

g(z)
.

Let g(z) = zG(z) for some G(z) ∈ V [[z]] with non-zero constant term. The expression becomes

Resz (f(g(z))g′(z) = v−1Resz (
1

z
+
G′(z)

G(z)
)

Finally, since G(z) has non-zero constant term, its multiplicative inverse also lies in V [[z]] and
so Resz G

′(z)/G(z) = 0. This establishes the result.

We will be also considering the case where the coe�cients of eqs. (2.1), (2.3) and (2.5) are in the
space End(V ). Once again, care must be taken with operations involving such series. Here, we
must ensure that coe�cients of the formal variables act as �nite sums of operators when applied
to any �xed but arbitrary vector v ∈ V . The main objects of consideration here then, are �elds:

F(V ) = {A(z) ∈ End(V )[[z, z−1]] ∣ A(z)v ∈ V ((z)) for all v ∈ V } . (2.9)

4
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Equivalently, A(z) = ∑anz
n is a �eld if, for any v ∈ V , anv = 0 for n su�ciently large. Vertex

operators which are central to us are �elds themselves, which warrants the de�nition.

Finally, a convention which we will be using throughout is the expansion of a binomial series in
non-negative powers of the second variable:

(z1 + z2)
n =∑

i≥0

(
n

i
)zn−i1 zi2 (2.10)

where n ∈ Z. Though usually it will not be explicitly written out, the case when n < 0 in eq. (2.10)
should always be kept in mind during calculations. One such reason is the following: For n > 0,
it is enough to remember the identity

(
−n

i
) = (−1)i(

n + i − 1

i
) (2.11)

Applied to eq. (2.10) we see that unlike the positive case, (z1 + z2)
−n is not necessarily equal to

(z2 + z1)
−n for n > 0.

2.2 The Witt and Virasoro Lie Algebras

We introduce two important Lie algebras which appear extensively in VOA theory. In particular,
the coordinate invariance of vertex operators discussed in Sections 3.2 to 3.4 hinge on the action
of the Virasoro algebra. We �rst describe the construction of the Witt algebra.

A derivation of an algebra A over a �eld k is de�ned as a k-linear map D ∶ A→ A satisfying the
Leibniz rule:

D(ab) = aD(b) +D(a)b, a, b ∈ A.

Proposition 2.2.1. The space of derivations of formal Laurent series C[[z, z−1]] forms the Witt
algebra, de�ned as

w = { v(z)∂z ∣ v(z) ∈ C[[z, z−1]] } . (2.12)

Proof. Let D ∈ Der(C[[z, z−1]]). Notice �rst that for an arbitrary constant c ∈ C we have

D(c) = cD(1) = cD(1 ⋅ 1) = c(1 ⋅D(1) +D(1) ⋅ 1) = 2cD(1) = 2D(c)

and so D(c) = 0. Note also that

D(z2) =D(z ⋅ z) = zD(z) +D(z)z = 2zD(z).

It is then natural to speculate that for n ≥ 1, we have D(zn) = nzn−1D(z). Indeed inductively,

D(zn+1) =D(zn ⋅ z) = znD(z) + z(nzn−1D(z)) = (n + 1)znD(z).

Likewise

0 =D(1) =D(zn ⋅ z−n) = znD(z−n) +D(zn)z−n = znD(z−n) + nz−1D(z).

It follows that D(z−n) = −nz−n−1D(z) and so

D(zn) = nzn−1D(z) n ∈ Z.

5
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Let f(z) ∈ C[[z, z−1]]. Then, by linearity

D(f(z)) = ∑
n∈Z

fnD(zn) = ∑
n∈Z

nfnz
−n−1D(z) =D(z)∂zf(z)

and so by setting D(z) = v(z) ∈ C[[z, z−1]], we have the operator equality D = v(z)∂z which is
what we wanted to show.

Notice w is in 1-1 correspondence with C[[z, z−1]] as v(z)↔ v(z)∂z and so we may choose the
basis {−zn+1∂z ∣ n ∈ Z} for w. It is easily seen that w is non-commutative. Then with the basis
chosen above, for �xed m,n ∈ Z and v(z) ∈ C[[z, z−1]],

[−zi+1∂z,−z
j+1∂z] v(z) = (zi+1∂z) (z

j+1∂zv(z)) − (zj+1∂z) (z
i+1∂zv(z))

= zi+j+1(j + 1)∂zv(z) − z
i+j+1(i + 1)∂zv(z)

= (j − i)zi+j+1∂zv(z)

and so the Witt algebra has the structure of a Lie algebra with bracket

[−zi+1∂z,−z
j+1∂z] = (j − i)zi+j+1∂z. (2.13)

The Virasoro Lie algebra v = w ⊕ Ck is then de�ned as the unique central extension of w (cf.
Chapter 5 of [Sch08]), with a basis given by

{ k, Ln ∣ n ∈ Z } , (2.14)

and bracket relations

[Lm, Ln] = (m − n)Lm+n +
k

12
(m3 −m)δm+n,0

[Ln,k] = 0

where k is a central element and δm,n is the Kronecker delta function. Comparing eq. (2.13)
with the above relations, we have the representation zn+1∂z ↦ −Ln. Of course, specializing k = 0
returns eq. (2.13). The Virasoro Lie algebra is signi�cant in two-dimensional conformal �eld
theory, and for our purposes, it is enough to know that it stems as the unique central extension
of w. Finally, given a vector space V , de�ne the set of primary vectors of weight n as

Pn(V ) = {a ∈ V ∣ Lia = 0 for i ≥ 1, L0a = na}. (2.15)

That is, a ∈ Pn(V ) is a highest weight vector of weight n. Notice here how L0 ∈ v plays the
special role of a gradation operator with integral eigenvalues n.

2.3 Vertex Operator Algebras

A vertex operator algebra is a quadruple {V,Y,1, ω} consisting of a Z-graded vector space V , the
Fock space

V =∐
n∈Z

V(n) (2.16)

where we call vectors v ∈ V states and say v ∈ V(n) if wt(v) = n. These subspaces satisfy

dimV(n) <∞ for all n ∈ Z (2.17)

V(n) = 0 for n su�ciently negative,. (2.18)

6
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There is also a linear map called the vertex operator

Y (⋅, z) ∶V → F(V )

v ↦ Y (v, z) = ∑
n∈Z

vnz
−n−1 (2.19)

where the vn ∈ End(V ) are referred to as the modes of v. For u, v ∈ V , the truncation condition
holds:

unv = 0 for su�ciently large n. (2.20)

There are two distinguished states: The vacuum state 1 ∈ V(0) satis�es the vacuum property and
the creation property, respectively

Y (1, z) = IV (2.21)

Y (v, z)1 ∈ V [[z]] and lim
z→0

Y (v, z)1 = v, (2.22)

where IV is the identity of V viewed as an element of End(V ). The conformal state ω ∈ V(2)

spans a copy of the Virasoro Lie algebra v

Y (ω, z) = ∑
n∈Z

Lnz
−n−2 (= ∑

n∈Z
ωnz

−n−1) (2.23)

i.e. Ln = ωn+1 where the Ln ∈ End(V ) satisfy the Virasoro bracket relations

[Lm, Ln] = (m − n)Lm+n +
cV
12

(m3 −m)δm+n,0 (2.24)

[Ln, cV ] = 0 (2.25)

where cV ∈ C is the central charge of V . The L0-eigenspace decomposition of V coincides with
the grading of V

L0v = nv = wt(v)v v ∈ V(n) (2.26)

and we also have the L−1-derivative property

Y (L−1v, z) = ∂zY (v, z) ⇐⇒ L−11 = 0. (2.27)

Finally, the Jacobi identity holds: for u, v ∈ V and formal variables z0, z1, z2,

z−10 δ (
z1 − z2
z0

)Y (u, z1)Y (v, z2) − z
−1
0 δ (

z2 − z1
−z0

)Y (v, z2)Y (u, z1) (2.28)

= z−12 δ (
z1 − z0
z2

)Y (Y (u, z0)v, z2).

The Jacobi identity is the most crucial expression in VOA theory, and as we will see in the next
section, it can be expanded to illustrate an in�nite list of intricate identities which the modes
must satisfy. This completes the de�nition.

2.4 Consequences of the De�nition

Here we provide and prove a selection of well-known identities, chosen for their relevance and
use in future discussion. As a slight abuse of notation, we sometimes denote by the Fock space
V the whole VOA {V,Y,1, ω}, though it will be made clear when V is simply a vector space.

7
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Proposition 2.4.1. For a, b ∈ V , we have

[am, Y (b, z)] =∑
i≥0

(
m

i
)Y (aib, z)z

m−i.

Proof. We expand the three terms in the Jacobi identity as follows. Expanding the �rst term
gives

(∑
i≥0

∑
l∈Z

(−1)i(
l

i
)z−l−10 zl−i1 zi2)(∑

m∈Z
amz

−m−1
1 )(∑

n∈Z
bnz

−n−1
2 )

and equating the coe�cient of z−l−10 and z−m−1
1 yields

∑
i≥0

(−1)i(
l

i
)am+l−iY (b, z2)z

n+i
2 . (2.29)

Likewise, expanding the second term of the Jacobi identity gives

−(∑
i≥0

∑
l∈Z

(−1)l+i(
l

i
)z−l−10 zi1z

l−i
2 )(∑

n∈Z
bnz

−n−1
2 )(∑

m∈Z
amz

−m−1
1 )

and equating the coe�cient of z−l−10 and z−m−1
1 yields

−∑
i≥0

(−1)l+i(
l

i
)Y (b, z2)am+iz

n+l−i
2 . (2.30)

Finally, expanding the third term of the Jacobi identity and equating the coe�cient of z−l−10 and
z−m−1
1 yields

∑
i≥0

(
m

i
)Y (al+ib, z2)z

m+n−i
2 . (2.31)

Putting together eqs. (2.29) to (2.31), the Jacobi identity is equivalent to

∑
i≥0

(−1)i(
l

i
)am+l−iY (b, z)zn+i −∑

i≥0

(−1)l+i(
l

i
)Y (b, z)am+iz

n+l−i (2.32)

=∑
i≥0

(
m

i
)Y (al+ib, z)z

m+n−i.

Note we have set z2 = z, since we now deal with only one formal variable. Finally, set l = 0 and
n = 0 in eq. (2.32) to obtain

[am, Y (b, z)] =∑
i≥0

(
m

i
)Y (aib, z)z

m−i.

Note that we may also take the coe�cient of z−1 in eq. (2.32) to obtain the following expression
purely in terms of the modes of a and b, one which is sometimes employed in the literature:

∑
i≥0

(−1)i(
l

i
)am+l−ibn+i −∑

i≥0

(−1)l+i(
l

i
)bn+l−iam+i (2.33)

=∑
i≥0

(
m

i
)(al+ib)m+n−i.

The following corollary of Proposition 2.4.1 will be useful in Chapter 3:
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Corollary 2.4.2. For a ∈ V(n) and Li ∈ End(V ) for i ∈ Z, we have

[Li, Y (a, z)] = zi+1∂zY (a, z) +∑
j≥0

1

(j + 1)!
(∂j+1z zi+1)Y (Lja, z).

Proof. We use Proposition 2.4.1, the L−1-derivative property (eq. (2.27)), and Ln = ωn+1:

[Li, Y (a, z)] =∑
j≥0

(
i + 1

j
)Y (Lj−1a, z)z

i+1−j

= ∑
j≥−1

(
i + 1

j + 1
)Y (Lja, z)z

i−j

= ∑
j≥−1

(i + 1)!

(i − j)!(j + 1)!
zi−jY (Lja, z)

= ∑
j≥−1

1

(j + 1)!
(∂j+1z zi+1)Y (Lja, z)

= zi+1∂zY (a, z) +∑
j≥0

1

(j + 1)!
(∂j+1z zi+1)Y (Lja, z).

By specializing Corollary 2.4.2 to i = −1,0, we obtain the two important identities

[L−1, Y (a, z)] = ∂zY (a, z) (2.34)

[L0, Y (a, z)] = z∂zY (a, z) + nY (a, z). (2.35)

Proposition 2.4.3. Let v ∈ V(k) and m ∈ Z. Then,

vn ∶ V(m) → V(m+k−n−1).

Proof. Let w ∈ V(m) and consider the product

L0vnw = ([L0, vn] + vnL0)w (2.36)

Setting l = 0 in eq. (2.33) or taking the coe�cient of z−n−1 in Proposition 2.4.1 gives the bracket

[am, bn] =∑
i≥0

(
m

i
)(aib)m+n−i. (2.37)

Using this alongside the fact that Ln = ωn+1, eq. (2.36) becomes

L0vnw = (∑
i≥0

(
1

i
)(ωiv)1+n−i + vnL0)w

= ((ω0v)n+1 + (ω1v)n + vnL0)w

= ((L−1v)n+1 + (L0v)n + vnL0)w. (2.38)

In order to simplify eq. (2.38), use the L−1-derivative property (eq. (2.27)) to establish

(L−1v)n = Coe�z−n−1 Y (L−1v, z)

= Coe�z−n−1
d

dz
Y (v, z)

= Coe�z−n−1 ∑
n∈Z

(−n − 1)vnz
−n−2

= Coe�z−n−1 ∑
n∈Z

−nvn−1z
−n−1

= −nvn−1.
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Using this derived relation on n + 1,

(L−1v)n+1 = −(n + 1)vn.

Now, since v ∈ V(k) and w ∈ V(m), eq. (2.38) becomes

L0vnw = (−(n + 1)vn + kvn + vnL0)w

= −nvnw − vnw + kvnw + vnL0w

= −nvnw − vnw + kvnw +mvnw

= (m + k − n − 1)vnw.

Therefore by the L0-eigenspace decomposition (eq. (2.26)), the above relation asserts that for
homogeneous v ∈ V(k),

vn ∶ V(m) → V(m+k−n−1).

2.5 The Heisenberg VOA

We construct and outline perhaps the simplest non-trivial example of a VOA. It is useful to note
that this process can be seen as a special case of the construction of a VOA from the representation
theory of an a�ne Lie algebra. An overview of the Heisenberg can also be found in many texts
such as [FLM88], [LL04], [MT10], [FBZ04], however for generalities on Lie algebras, including
the construction of the universal enveloping algebra and its properties, we follow Chapter 9 of
[Car05].

Let h be a �nite-dimensional vector space, viewed as an abelian Lie algebra i.e. [h,h] = 0. To h,
we associate the (untwisted) a�ne Lie algebra

ĥ = (h⊗C[t, t−1])⊕Ck (2.39)

where k is a central vector, and with basis given by

{ h1 ⊗ t
n ∣ α ∈ h, n ∈ Z } ∪ {k}

and bracket relations

[h1 ⊗ t
m, h2 ⊗ t

n] =mδm+n,0k (2.40)

[k, ĥ] = 0, (2.41)

for h1, h2 ∈ h and m,n ∈ Z. Once again, note the similarities with the a�nization of a more
general Lie algebra g where the bracket relations are given in that case as

[a⊗ tm, b⊗ tn] = [a, b]⊗ tm+n +m⟨a, b⟩δm+n,0k (2.42)

for a, b ∈ g and m,n ∈ Z where ⟨⋅, ⋅⟩ is the bilinear symmetric invariant (Killing) form. The vector
space ĥ, now viewed as an a�ne Lie algebra, is equipped with a clear Z-grading structure:

ĥ =∐
n∈Z

ĥ(n)

where we will denote the subspaces

ĥ(n) = h⊗ t−n, n ≠ 0

ĥ(0) = h⊕ k.
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In view of eq. (2.40), there are two graded subalgebras which we write with respect to the notation
given in [LL04] (by weights) as:

ĥ+ = h⊗ t−1C[t−1] (2.43)

ĥ− = h⊗ tC[t]. (2.44)

In some texts, the notation above is inverted so that the sign in ĥ± corresponds to the sign in
t±n, rather than the weight. Note the bracket (eq. (2.40)) vanishes when restricting to these two
subspaces. We wish to embed ĥ into an associative polynomial algebra-like structure, while still
respecting the Lie bracket relations (eqs. (2.40) and (2.41)). This is precisely the purpose of the
universal enveloping algebra which is constructed as the quotient

U(ĥ) = T (ĥ)/I (2.45)

where T (ĥ) is the tensor algebra of ĥ

T (ĥ) =⊕
i≥1

ĥ⊗i = C⊕ ĥ⊕ (ĥ⊗ ĥ)⊕ (ĥ⊗ ĥ⊗ ĥ)⊕⋯

and I is the ideal

I = ⟨h1 ⊗ h2 − h2 ⊗ h1 − [h1, h2]ĥ⟩

for h1, h2 ∈ ĥ. We will write h1h2 for h1⊗h2 from now on. The universal property of U(ĥ) asserts
that there is a 1-1 correspondence between representations of ĥ and U(ĥ)-modules. As well, when
passing from ĥ to U(ĥ), subalgebras are preserved via the canonical inclusion mapping. Now, we
want to take U(ĥ) and turn it into a subalgebra of End(H) for some underlying (Fock) space H.
First we let

ĥ≤0 = ĥ− ⊕ ĥ(0),

and let C1 be the 1-dimensional ĥ≤0-module acting trivially as

k ⋅ 1 = 1 (2.46)

ĥ− ⋅ 1 = 0. (2.47)

Lift this to an action of U(ĥ≤0) and construct the induced module

H ∶= Ind
U(ĥ)

U(ĥ≤0)
C1 = U(ĥ)⊗U(ĥ≤0) C1. (2.48)

This gives an action of U(ĥ) on H given by left multiplication, and given a total ordering of ĥ,
elements of U(ĥ≤0) "pass through" the tensor above and act on C1 in the previous manner given
by eqs. (2.46) and (2.47). Denote henceforth by hn the action of the element h ⊗ tn ∈ U(ĥ) on
H, for h ∈ h and n ∈ Z. That is, let hn ∈ End(H). Also identify the vacuum 1 with 1⊗ 1. Using
the Poincare-Birkho�-Witt theorem (cf. [Car05]) and eq. (2.47), elements H are of the form

h−n1⋯h−nr1

where ni > 0, r > 0. This, along with the fact that ĥ+ is abelian, gives

H = U(ĥ+) = S(ĥ+), (2.49)

and so we may think of H as the commutative algebra of polynomials in the variables hn = a⊗ t
n

for n < 0. The Fock spaceH (which we will also refer to as the Heisenberg VOA itself) is equipped
with a Z-grading (by weights) given by

wt(h−n1⋯h−nr1) =∑
i

ni (2.50)
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From eq. (2.47), we see there are no elements of negative weight in H, satisfying eq. (2.17). The
hn for n > 0 act on the elements of positive weight in the following way. Let hn, h−m1 , h−m2 ∈
End(H) where n,m1,m2 > 0. We compute the following product, making use of the Lie bracket
relations (eqs. (2.40) and (2.41)) and noting both eqs. (2.46) and (2.47):

hnh−m1h−m21 = ([hn, h−m1] + h−m1hn)h−m21

= nδn−m1,0h−m21 + h−m1 ([hn, h−m2] + h−m2hn)1

= nδn−m1,0h−m21 + nδn−m2,0h−m11.

From here we observe that

hnh−m1h−m21 =

⎧⎪⎪
⎨
⎪⎪⎩

m1h−m21, n =m1

m2h−m11, n =m2

and so the hn for n > 0 act as operators n∂h−n . Notice this implies that h0 acts as 0 on H. It
is because of this that elements of negative weight are sometimes called annihilation operators
whereas elements of positive weight which form a basis for H are called creation operators.

We construct the vertex operators on H following brie�y the discussion given in Chapter 2.2 of
[FBZ04]. First we assign Y (1, z) = IV , the identity element of H. De�ne the Heisenberg Field as

h(z) = Y (h−11, z) = ∑
n∈Z

hnz
−n−1 ∈ End(H)[[z, z−1]]. (2.51)

This is no more than a generating function for the operators hn ∈ End(H), and so the vertex
operator maps for arbitrary states hn1⋯hnr1 ∈ H will be given in terms of h(z). Recall that H
may be viewed as a polynomial ring in the variables h−n for n > 0. With this analogy, we take
h−21 ∼ t

−2 = −∂tt
−1. Thus

Y (h−21, z) = ∑
n∈Z

(−n − 1)hnz
−n−2

and so inductively

Y (h−n, z) =
1

(n − 1)!
∂n−1z h(z), n > 0.

Vertex operators of more complex states in H require the normally ordered product

∶A(z1)B(z2)∶ = A(z1)+B(z2) +B(z2)A(z1)− (2.52)

for A(z),B(z) ∈ F(V ) where, for v(z) ∈ V [[z]], we have de�ned

v(z)+ = ∑
n≥0

vnz
n, v(z)− = ∑

n<0

vnz
n.

This operation ensures that annihilation operators always appear to the right of creation opera-
tors. The normally ordered product of a �eld A(z) with itself is given as

∶A(z)2∶ = ∑
n∈Z

( ∑
k+l=n

∶akal∶ ) z
−n−2

where

∶akal∶ =

⎧⎪⎪
⎨
⎪⎪⎩

alak, l = −k, k ≥ 0

akal, otherwise.
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This only changes the coe�cient of z−2 which becomes

∑
k∈Z

∶aka−k ∶ = 2 ∑
k≤−1

−kak∂ak . (2.53)

This allows us to construct vertex operators for arbitrary states in H as

Y (hn1hn2⋯hnk , z) =
1

(−n1 − 1)!⋯(−nk − 1)!
∶∂−n1−1
z h(z)⋯∂−nk−1z h(z)∶ (2.54)

for n < 0. In what remains of this section, we describe the Virasoro subalgebra v in H. Given
λ ∈ C, take

ωλ =
1

2
h2−11 + λh−21

as the conformal state with central charge cV = 1 − 12λ2. This gives a family of representations
of v on H, and though it is common to take λ = 0 to obtain a representation of central charge 1,
we �nd it illustrative to keep λ as a variable. Then,

Y (ωλ, z) =
1

2
∶h(z)2∶ +λ∂zh(z) = ∑

n∈Z
Lλ,nz

−n−2 (2.55)

and so we must show that the modes Lλ,n satisfy the Virasoro relations (eqs. (2.24) and (2.25)).
This is equivalent to establishing the L−1-derivative property (eq. (2.27)) and the L0-eigenspace
decomposition property (eq. (2.26)). First, using eq. (2.55),

Lλ,n = Coe�z−n−2 (
1

2
∶h(z)2∶ +λ∂zh(z))

=
1

2
∑
m∈Z

∶hmhn−m∶ +(−n − 1)λhn. (2.56)

Setting n = −1 in eq. (2.56), one obtains the operator equality

Lλ,−1 =
1

2
∑
m∈Z

∶hmh−m−1∶ = ∑
m≥0

h−m−1hm.

For hj ∈ End(H) where j ∈ Z,

[Lλ,−1, h−j] = (∑
m≥0

h−m−1hm)hj − hj (∑
m≥0

h−m−1hm) = −jhj−1.

Thus [Lλ,−1, h(z)] = ∂zh(z). In fact, [Lλ,−1, ∂
n
z h(z)] = ∂n+1z h(z) and with the fact that the

Leibniz rule holds for the normally ordered product, looking at eq. (2.54) we see that the L−1-
derivative property is satis�ed. Also from eq. (2.56) at n = 0, using eq. (2.53) and the de�nition
of the annihilation operators,

Lλ,0 = ∑
m≤−1

−mhm∂hm = ∑
m≥1

h−mhm.

Applying this to h−n1⋯h−nr1 ∈H with ni > 0 gives

Lλ,0 (h−n1⋯h−nr1) = ∑
m≥1

h−mhm (h−n1⋯h−nr1) = (
r

∑
i=1

ni)h−n1⋯h−nr1,

thus the L0-eigenspace decomposition property is satis�ed.

The following lemma gives closed-form expressions for certain Virasoro modes of H of central
charge 1. Though it does not appear in the literature, it may be known to experts. From
eq. (2.56):

Ln =
1

2
∑
m∈Z

∶hmhn−m∶ . (2.57)
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Lemma 2.5.1. Fix n ≥ 0 and let a = h−k1⋯h−kr1 ∈H where cV = 1 and ki > 0 for 1 ≤ i ≤ r. If n
is even, then

Lna =
r

∑
i=1

kihn−ki
h−ki

h−k1⋯h−kr1 +
⎛

⎝

n/2−1

∑
m=1

hmhn−m +
1

2
h2n/2

⎞

⎠
h−k1⋯h−kr1,

and if n is odd then

Lna =
r

∑
i=1

kihn−ki
h−ki

h−k1⋯h−kr1 +
⎛

⎝

⌊n/2⌋

∑
m=1

hmhn−m
⎞

⎠
h−k1⋯h−kr1.

Proof. Fix n ≥ 0. We apply eq. (2.57) to a and break up the sum in cases. First when m < 0,

1

2
(∑
m<0

hmhn−m)h−k1⋯h−kr1.

Note hn−mh−ki = ki if n −m = ki for each 1 ≤ i ≤ r, and zero otherwise. In the former case,
hm = hn−ki , a creation operator, and so

1

2
(∑
m≤0

hmhn−m)h−k1⋯h−kr1 =
1

2
(k1hn−k1⋯h−kr1 +⋯ + krh−k1⋯hn−kr1)

=
1

2

r

∑
i=1

kihn−ki
h−ki

h−k1⋯h−kr1. (2.58)

When m = 0, the operator h0 annihilates a. When m > n, then

1

2
(∑
m>n

hn−mhm)h−k1⋯h−kr1.

Note again that hmh−ki = ki if m = ki for 1 ≤ i ≤ r, and zero otherwise. In the former case,
hn−m = hn−ki , a creation operator, and so

1

2
(∑
m>n

hn−mhm)h−k1⋯h−kr1 =
1

2
(k1hn−k1⋯h−kr1 +⋯ + krh−k1⋯hn−kr1)

=
1

2

r

∑
i=1

kihn−ki
h−ki

h−k1⋯h−kr1, (2.59)

which is the same as the casem < 0. Finally, if 0 ≤m ≤ n then both hm and hn−m are annihilation
operators. Hence ki = n and kj = m − n in a for at least one i and j, or else a vanishes here.
Notice that as m ranges from 0 to n, we get both hmhn−m and hn−mhm, and these operators
commute. If m = n = 0 then this particular sum vanishes entirely since we get h0. Thus if n is
even, we get

1

2
(

n

∑
m=0

hmhn−m)h−k1⋯h−kr1 =
⎛

⎝

n/2−1

∑
m=1

hmhn−m +
1

2
h2n/2

⎞

⎠
h−k1⋯h−kr1, (2.60)

and if n is odd we get

1

2
(

n

∑
m=0

hmhn−m)h−k1⋯h−kr1 =
⎛

⎝

⌊n/2⌋

∑
m=1

hmhn−m
⎞

⎠
h−k1⋯h−kr1. (2.61)

By combining eqs. (2.58) to (2.61) we obtain the desired formulas.
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Chapter 3

The Coordinate Transformation

This chapter follows both Section 4.2 of [Zhu96] and Chapter 5 of [FBZ04]. Denote by O the set
C[[z]] which we regard as the formal coordinate ring of the a�ne plane at the origin. De�ne a
coordinate transformation φ ∈ Aut(O) as a formal power series or holomorphic map about 0 ∈ C

φ(z) =
∞

∑
n=1

knz
n ∈ C[[z]], k1 ≠ 0. (3.1)

Indeed, every element in Aut(O) can be represented in the way above. The constant term being
equal to zero ensures the origin is mapped to itself, however it gives the composition action for
Aut(O), making it a in�nite-dimensional Lie group. In order to illustrate this, we brie�y recall
the discussion on pages 42-44 of [Lan99].

Let f, g ∈ V [[z]] (recall eq. (2.1)) where f = ∑anz
n and g = ∑anz

n. The power series f and g
are equal if f ≡ g mod zr for all r ≥ 1, i.e. if an = bn for all 0 ≤ n ≤ r − 1. Then, for both f and
g, there are unique polynomials P (z) and Q(z) such that f ≡ P mod zr and g ≡ Q mod zr. In
particular,

P (z) = a1z + a2z
2 +⋯ + ar−1z

r−1

Q(z) = b1z + b2z
2 +⋯ + br−1z

r−1.

Proposition 3.0.1. Let f1, f2, g1, g2 ∈ V [[z]] where f1 ≡ f2 mod zr and g1 ≡ g2 mod zr, and
suppose that g1, g2 have zero constant term. Then, f1○g1 ≡ f2○g2 mod zr and so the composition
of such power series is a well-de�ned operation.

Proof. Let P1, P2 be the polynomials of degree r − 1 such that f1 ≡ P1 mod zr and f2 ≡ P2

mod zr. Clearly then, P1 = P2 = P , the same polynomial. Furthermore, for arbitrary g ∈ V [[z]]
with zero constant term,

f1(g) ≡ P1(g) = P2(g) ≡ f2(g) mod zr. (3.2)

The assertion that g has a zero constant term is used in the above line. If g had non-zero
constant term, then as quotients of a higher power of z are taken, the constant terms from g
would contribute to the constant term of f1, yielding a di�erent constant term for f1(g) at each
subsequent quotient. The same is for f2(g). Let Q(z) be the polynomial of degree r − 1 such
that Q(z) ≡ g1(z) ≡ g2(z) mod zr. Then

P (g1) = a0 + a1g1 +⋯ + ar−1g
r−1
1

≡ a0 + a1Q +⋯ + ar−1Q
r−1 mod zr

≡ a0 + a1g2⋯+ ar−1g
r−1
2 mod zr

≡ P (g2) mod zr.

Combining this result with eq. (3.2) gives f1 ○g1 ≡ f2 ○g2 mod zr and so the composition of such
series is indeed a well-de�ned operation.
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Let V be a vertex operator algebra. Given such a φ ∈ Aut(O), it is natural to transform the
variable z ↦ φ(z) to obtain a new vertex operator Y (a,φ(z)) and hence a new VOA structure
entirely. In order to �nd an expression for Y (a,φ(z)), we relate it to Y (Tφ(a), z) for some action

Aut(O) × V → V

(φ(z), v)↦ Tφ(a).

That is, we wish to "rescale" the elements of V according to the action of φ, via the use of
some operator Tφ associated to φ. Following [Zhu96], we do this by writing φ as the exponent of
elements zi+1∂z ∈ zC[[z]]∂z; the Lie algebra coupled to Aut(O). In particular, we wish to write

φ(z) = exp(∑
i≥0

liz
i+1∂z) z. (3.3)

Once we have done this, using both the representation zi+1∂z ↦ −Li (cf. Section 2.2) and the
fact that the Li are endomorphisms of V , we construct in Section 3.2 the Aut(O)-action on V
in the form of the operator Tφ ∶ V → V (cf. eq. (3.21)).

Of course, if this technique is to be employed, we must show that the writing of φ as in eq. (3.3) is a
well-de�ned procedure, something which is not given in [Zhu96]. This is given in Proposition 2.1.1
of [Hua97], however we provide an alternative proof (Lemma 3.1.3) in Section 3.1 below. This
new method yields expressions which will prove useful in establishing the coordinate invariance
for the Virasoro �eld in Section 3.4. Then, Sections 3.2 to 3.4 are concerned with the operator
Tφ and each conclude with expressions for the coordinate invariance of certain vertex operators.

3.1 Zhu's Equation

Here we establish that eq. (3.1) may be written as eq. (3.3). Looking at the latter, since liz
i+1∂z

are elements of the Witt algebra acting here on the space zC[[z]], we have the grading

zC[[z]] =∐
j≥1

Czj

and so for i ≥ 0 and �xed j ≥ 1, it is easy to see that

liz
i+1∂z ∶ Czj → Czj+i. (3.4)

In order to come to eq. (3.3), we establish relations between the coe�cients li and ki by viewing
both eq. (3.1) and eq. (3.3) over the quotient ring

Qr = zC[[z]]/⟨zr⟩ (3.5)

for r ≥ 2. We then extract the coe�cient of zr−1 and obtain our relations. These obtained
relations (eqs. (3.6), (3.13) and (3.14)) will prove subsequently useful when establishing the
coordinate invariance of the Virasoro �eld in Section 3.4. Because of eq. (3.4), working over Qr
ensures the operators liz

i+1∂z are locally nilpotent for large enough i. The same is true for high
enough powers of these operators.

The relation between l0 and k1 is established �rst. From eq. (3.1), k1 is the coe�cient of z in φ
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and so we work over Q2 and look at

exp(∑
i≥0

liz
i+1∂z) z ≡ exp(l0z∂z)z mod z2

= ∑
n≥0

1

n!
(l0z∂z)

n(z)

= ∑
n≥0

1

n!
ln0 z

= el0z,

and so in terms of k1 and l0 respectively, we have

k1 = e
l0 (3.6)

l0 = log k1. (3.7)

Notice l0 is uniquely determined by k1 by choosing the principal branch 0 ≤ im(l0) ≤ 2π of the
complex logarithm. This assumption is stated explicitly in [Zhu96] and we assume it henceforth.

We will continue to derive relations such as eq. (3.6) in the same way, however the case where
k1 = 1 must be treated separately beforehand. In this case, eq. (3.7) indicates that l0 = 0 and so
eq. (3.3) reduces to

φ(z) = exp(∑
i≥1

liz
i+1∂z) z

= z + (∑
i≥1

liz
i+1) +

1

2
(∑
i≥1

liz
i+1∂z) ⋅ (∑

i≥1

liz
i+1) +⋯ (3.8)

and so we may directly obtain relations between the li and ki by equating coe�cients:

k1 = 1 (3.9)

k2 = l1 (3.10)

k3 = l2 + l
2
1 (3.11)

⋮

Recall brie�y that an m-composition of n is an ordered m-tuple (n1, . . . , nm) with ni ≥ 1 for each
i and ∑i ni = n. A detailed overview of integer compositions as well counting such compositions
can be found in [HM04]. For example, the 2-compositions of 4 are

(1,3), (3,1), (2,2).

The following proposition gives a closed-form expression for these relations. Though it may be
known to experts, since it is not given in either [Zhu96] or [FBZ04] it is likely new.

Proposition 3.1.1. Set n ≥ 1. Let l(n1,n2,...,nm) = ln1 ln2⋯lnm where (n1, n2, . . . , nm) is an m-
composition of n, and let C(n,m) be the set of all such m-compositions of n. Then with n0 = 1,

kn+1 = ∑
m≥1

1

m!
∑

(n1,n2,...,nm)∈C(n,m)

⎛

⎝

m

∏
i=1

i−1

∑
j=0

nj
⎞

⎠
l(n1,n2,...,nm).

Proof. Fix n, and consider the m-th term in the series expansion eq. (3.8):

1

m!
(∑
i≥1

liz
i+1∂z)

m

z.
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For each m ≥ 1, we aim to �nd the coe�cient of zn+1. For integers n1, . . . , nm all at least 1 and
n0 = 1, the functional composition of m of these operators applied to z is

lnmz
nm+1 (⋯ (ln1z

n1+1∂zz)) =
⎛

⎝

m

∏
i=1

i−1

∑
j=0

nj
⎞

⎠
ln1⋯lnmz

n1+⋯nm+1. (3.12)

For kn+1, we aim to �nd the coe�cient of zn+1 in the m-th term for each m ≥ 1. From eq. (3.12),
the number of ways to construct a term of degree n + 1 from m operators corresponds to the
number of m-compositions (n1, n2, . . . , nm) of n. Thus we sum over the set C(n,m) of all such
compositions for each m. Note C(n,m) = 0 for m > n. Finally, the sum is taken over all m ≥ 1
and the factorial term comes from the exponential in eq. (3.8).

Note that ∣C(n, k)∣ = (n−1
k−1

) and so the second sum in Proposition 3.1.1 consists of this many
terms. To prove this, write

1 ◻ 1 ◻⋯◻ 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

and note that out of these n− 1 boxes, by choosing k − 1 boxes to write a comma and by adding
a "+" in the remaining boxes, we obtain a k-composition of n.

For the rest of the section, assume that k1 ≠ 1 (or equivalently that l0 ≠ 0). We establish the
relation between k2 and l1, l0 by working over Q3:

exp(∑
i≥0

liz
i+1∂z) z ≡ exp (l0z∂z + l1z

2∂z) z mod z3

= ∑
n≥0

1

n!
(l0z∂z + l1z

2∂z)
n
z.

It can be shown inductively for n ≥ 0 that

(l0z∂z + l1z
2∂z)

nz ≡ ln0 z + (2n − 1)ln−10 l1z
2 mod z3,

Using this,

Coe�z2 exp(∑
i≥0

liz
i+1∂z) z ≡ ∑

n≥0

1

n!
(2n − 1)ln−10 l1 mod z3

= ∑
n≥0

2n

n!

ln0
l0
l1 − ∑

n≥0

1

n!

ln0
l0
l1

= e2l0
l1
l0
− el0

l1
l0
.

Thus we have the relation

k2 = e
2l0 l1
l0
− el0

l1
l0
. (3.13)

It should now be clear as to why the case l0 = 0 was treated separately. Of course setting l0 = 0
in eq. (3.13) is an invalid operation, but notice by rearranging eq. (3.13) and taking the limit as
l0 → 0 gives

lim
l0→0

(
l1
l0

(e2l0 − el0)) = l1 lim
l0→0

(2el0 − el0) = l1
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which coincides precisely with eq. (3.10) which is the case when we had let l0 = 0 from the outset.
We give one further relation, namely between k3 and l2, l1, l0. Working over Q4 now:

exp(∑
i≥0

liz
i+1∂z) z ≡ exp (l0z∂z + l1z

2∂z + l2z
3∂z) z mod z4

= ∑
n≥0

1

n!
(l0z∂z + l1z

2∂z + l2z
3∂z)

n
z.

Again, it can be shown inductively that (l0z∂z + l1z
2∂z + l2z

3∂z)
n
z for n ≥ 0 is equivalent to

ln0 z + (2n − 1)ln−10 l1z
2 + ((3n − 2n+1 + 1)ln−20 l21 + (

3n − 1

2
) ln−10 l2) z

3 mod z4.

Then, by extracting the appropriate coe�cient,

Coe�z3 exp(∑
i≥0

liz
i+1∂z) z ≡ ∑

n≥0

1

n!
((3n − 2n+1 + 1)ln−20 l21 + (

3n − 1

2
) ln−10 l2) mod z4

= e3l0
l21
l20
− e2l0

2l21
l20

+ el0
l21
l20
+ e3l0

l2
2l0

− el0
l2
2l0

= e3l0 (
l21
l20
+
l2
2l0

) − e2l0
2l21
l20

+ el0 (
l21
l20
−
l2
2l0

) .

Thus we have the relation

k3 = e
3l0 (

l21
l20
+
l2
2l0

) − e2l0
2l21
l20

+ el0 (
l21
l20
−
l2
2l0

) . (3.14)

Notice as with the previous relation that by rearranging eq. (3.14) and taking the limit as l0 → 0,
one obtains

lim
l0→0

l21 (9e3l0 − 8e2l0 + el0)

2
+ lim
l0→0

l2 (3e3l0 − el0)

2
= l21 + l2

which again coincides precisely with eq. (3.11) which was the case where l0 = 0.

The computations necessary to establish relations between kr and li for r ≥ 4 will henceforth
always involve deriving formulae for expressions of the form

(l0z∂z + l1z
2∂z +⋯ + lr−1z

r∂z)
nz mod zr+1

for n ≥ 0. This is a tricky combinatorial problem, where it is di�cult to determine emerging
patterns without the aid of computer software. We conjecture that for n ≥ 0, the full expression
is of the form

Coe�zr (l0z∂z + l1z
2∂z +⋯ + lr−1z

r∂z)
nz ≡ ⋯+

rn − 1

r − 1
ln−10 lr−1 mod zr+1

where the expression on the right hand side involves r terms.

We now implement more Lie-theoretic results in order to establish the main result of this section.
First, if X and Y are commuting elements of the space z(End V )[[z]] for some vector space V ,
then one may write

eX+Y = eXeY . (3.15)
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The goal is to deconstruct eq. (3.3) using the above property. We have seen that the liz
i+1∂z ∈

zC[[z]]∂z form a representation of the Virasoro Lie algebra, and the bracket here is given by

[liz
i+1∂z, ljz

j+1∂z] = (j − i)liljz
i+j+1∂z. (3.16)

Clearly the operators liz
i+1∂z do not commute. We remedy this by working over Qr as before.

In this case, two operators liz
i+1∂z and ljz

j+1∂z commute if i + j + 1 ≥ r by eq. (3.16). Not all
operators will commute, however. We require an extension of eq. (3.15), which is given in the
form of the Zassenhaus formula

eX+Y = eXeY e−
1
2 [X,Y ]e

1
6 (2[Y,[X,Y ]]+[X,[X,Y ]])e−

1
24 ([X,[X,[X,Y ]]]+3[[[X,Y ],X],Y ]+⋯

where X and Y are elements of a Lie algebra, and the exponent consists of Lie monomials of
higher and higher degree. A broader discussion on the Zassenhaus formula can be found in
[CMN12]. Directly applying this formula will not be very useful. With our current assumptions
in place however, there are signi�cant simpli�cations to be made to the Zassenhaus formula.
First, taking eq. (3.3) over Qr gives

φ(z) = exp(∑
i≥0

liz
i+1∂z) z ≡ exp(

r−2

∑
i=0

liz
i+1∂z) z mod zr,

and so de�ne the terms

X =
r−3

∑
i=0

liz
i+1∂z, Y = lr−2z

r−1∂z.

Since the l1z
2∂z, . . . , lr−3z

r−2∂z commute with lr−2z
r−1∂z, by eq. (3.16),

[X,Y ] = [l0z∂z, lr−2z
r−1∂z] = (r − 2)l0lr−2z

r−1 d

dz
= (r − 2)l0Y. (3.17)

Here is a useful observation. If we assign ∼ to mean "scalar multiple modulo zr", then by
eq. (3.17)

[Y, [X, [X,Y ]]] ∼ [Y, [X,Y ]] ∼ [Y,Y ] = 0.

In fact, is is not di�cult to see that any Lie monomial as above containing more than one Y
vanishes when working over Qr.

This observation is applied to the Zassenhaus formula. In [CMN12], the following recursive
equation is given: De�ne

eX+Y = eXeY eC2(X,Y )eC3(X,Y )⋯

where Cn(X,Y ) is a homogeneous Lie polynomial of degree n in arbitrary X and Y . Then for
n ≥ 1, we have

Cn+1(X,Y ) =
1

n + 1
∑

(i0,i1,...,in)∈In

(−1)i0+i1+⋯+in

i0!i1!⋯in!
adinCn⋯ad

i2
C2
adi1Y ad

i0
XY,

where adjAB = [A,adj−1A B] denotes the adjoint representation (ad0AB is to represent B) and

In = {(i0, i1, . . . , in) ∈ Nn+1 ∣ i0 + i1 + 2i2 +⋯ + nin = n, i0 ≥ 1}.

Notice that for any n ≥ 1, there is a unique tuple of the form

(n,0, . . . ,0) ∈ In

20

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


M.Sc. Thesis � D. Barake McMaster University � Mathematics & Statistics

i.e. there exists a unique tuple with i1 = i2 = ⋯ = in = 0. Thus for any n ≥ 1, within the expression
for Cn+1, there is always precisely one term of the form

1

n + 1
(
(−1)n

n!
adnXY ) =

(−1)n

(n + 1)!
[X, [X, . . . [X,Y ]]]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

and all other terms involve a Lie monomials containing more than one Y . Therefore over Qr and
with our X and Y de�ned as before, the Zassenhaus formula reduces to

eX+Y ≡ eXeY e−
1
2 [X,Y ]e

1
6 [X,[X,Y ]]e−

1
24 [X,[X,[X,Y ]]]⋯ mod zr. (3.18)

Proposition 3.1.2. Let X and Y be de�ned as above. Then for k ≥ 1,

[X, [X, . . . [X,Y ]]]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

≡ ((r − 2)l0)
k
Y mod zr

where the Lie monomial on the left hand side is of degree k.

Proof. We proceed by induction on k. The case k = 1 has been established in eq. (3.17). For
k = 2,

[X, [X,Y ]] = [
r−3

∑
i=0

liz
i+1∂z, (r − 2)l0lr−2z

r−1∂z]

= [l0z∂z, (r − 2)l0lr−2z
r−1∂z] +⋯ + [lr−3z

r−2∂z, (r − 2)l0lr−2z
r−1∂z]

= (r − 2)l0[l0z∂z, lr−2z
r−1∂z] +⋯ + (r − 2)l0[lr−3z

r−2∂z, lr−2z
r−1∂z]

≡ ((r − 2)l0)
2
Y mod zr.

Suppose the result holds for k = n. Then

[X, [X, . . . [X,Y ]]]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n+1

≡ [X, ((r − 2)l0)
n
Y ] mod zr

= ((r − 2)l0)
n
[X,Y ]

≡ ((r − 2)l0)
n+1

Y mod zr,

where we have used eq. (3.17) in the last line.

Using Proposition 3.1.2 allows us to write eq. (3.18) as

eXeY ≡ eXeY e−
1
2 (r−2)l0Y e

1
6 ((r−2)l0)

2Y e−
1
24 ((r−2)l0)

3Y⋯ mod zr

= eX ⋅ exp(
1 − e−(r−2)l0

(r − 2)l0
Y ) .

Applying this to eq. (3.3) mod zr, we obtain

φ(z) ≡ exp(
r−3

∑
i=0

liz
i+1∂z) ⋅ exp(

1 − e−(r−2)l0

(r − 2)l0
lr−2z

r−1∂z) z mod zr

≡ exp(
r−3

∑
i=0

liz
i+1∂z)(z +

1 − e−(r−2)l0

(r − 2)l0
lr−2z

r−1) mod zr

≡ exp(
r−3

∑
i=0

liz
i+1∂z) z + exp(l0z∂z)(

1 − e−(r−2)l0

(r − 2)l0
lr−2z

r−1) mod zr

≡ exp(
r−3

∑
i=0

liz
i+1∂z) z + (e(r−1)l0 (

lr−2
(r − 2)l0

) − el0 (
lr−2

(r − 2)l0
)) zr−1 mod zr. (3.19)
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With eq. (3.19), we are ready to state the main result of this section which has been implicitly
used in [Zhu96].

Lemma 3.1.3. For each r ≥ 1, there is a unique expression for kr, written in terms of l0, . . . , lr−1
where el0 = k1 with 0 ≤ im(l0) ≤ 2π.

Proof. Consider the case where l0 = 0. From Proposition 3.1.1, the terms in the expression for
kr come from the m-compositions of r − 1 for m ≥ 1. These are unique for each r, and so the
expressions for kr are unique for each r.

Now consider the case where l0 ≠ 0. Notice that the rightmost term in eq. (3.19) consists of
some, but not all, of the coe�cients of zr−1. This can be seen by comparison with the relations
eqs. (3.6), (3.13) and (3.14). Nevertheless we have extracted the lr−2 terms from eq. (3.3), with
the leftmost term in eq. (3.19) consisting of li for 0 ≤ i ≤ r − 3. Also from eq. (3.19) we see that
for r ≥ 2 and after having equated coe�cients with eq. (3.1), each expression for kr−1 is written
precisely in terms of l0, . . . , lr−2. In other words, no further li occur within the expression. We
can also see that within the expression for kr−1, an lr−2 must appear. Thus each expression for
kr is unique.

The �rst three relations eqs. (3.6), (3.13) and (3.14) are:

k1 = e
l0

k2 = e
2l0 l1
l0
− el0

l1
l0

k3 = e
3l0 (

l21
l20
+
l2
2l0

) − e2l0
2l21
l20

+ el0 (
l21
l20
−
l2
2l0

) .

We prove the following fact which is a more precise statement about the rationality of the li than
that given in Proposition 2.1.1 of [Hua97].

Corollary 3.1.4. Let φ(z) = ∑∞i=1 kiz
i ∈ Q[[z]]. Then, lr ∈ Q[l0, e

l0] for all r ≥ 1.

Proof. Suppose l0 = 0. It is clear that by re-arranging the expressions de�ned in Proposition 3.1.1,
we obtain expressions for the lr which are made up of at most rational coe�cients.

Now let l0 ≠ 0. Since eqs. (3.13) and (3.14), for example, involve terms li0 and ejl0 for i, j ∈ Z
with j ≥ 1, so do all expressions kr for r ≥ 2. We can re-arrange these to get expressions for the
lr−1 which still contain these terms. If k1 = e

l0 ∈ Q, then we still have terms li0 in the expression,
and these are not integral unless l0 = 0. Thus in this case, the expression for lr−1 lies in Q[l0].
Likewise if l0 ∈ Q or even Q[i], then we have terms ejl0 which are not integral unless l0 = 0. Thus
in this case, the expression for lr−1 lies in Q[el0].

We may re-write the relations eqs. (3.6), (3.13) and (3.14) to get expressions for the lr−1 in order
to illustrate the proof of Corollary 3.1.4:

l0 = lnk1

l1 =
l0k2

e2l0 − el0

l2 =
−2l21e

3l0 + 4l21e
2l0 − 2l21e

l0 + 2l20k3
l0e3l0 − l0el0

.
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The expression for l2 above can be written in terms of li0 and ejl0 for integers i ∈ Z and j ≥ 1 by
inserting the expression for l1 accordingly. In fact, by Lemma 3.1.3, the expressions for the lr−1
can all be written in this way.

3.2 Coordinate Invariance for Primary Fields

Let V be a vertex operator algebra. As mentioned in the introduction, the results in this section
and in the next are adapted from those [FBZ04], however the motivation and process is purely
VOA-theoretic. We return to our discussion of Tφ. Though we will continue to use eq. (3.3), it
is important to note that in [FBZ04] the authors instead work with the similar expression

φ(z) = exp(∑
i≥1

liz
i+1∂z) l

z∂z
0 ⋅ z. (3.20)

It is shown there that any coordinate transformation may be written in this way, and the relations
derived between the li and ki in this case are similar to eqs. (3.6), (3.13) and (3.14), when l0 = 0.
In fact, they are

k1 = l0

k2 = l1l0

k3 = l2l0 + l
2
1l0

⋮

The results of Lemma 3.1.3 and Corollary 3.1.4 hold if one adopts instead the conventions of
[FBZ04], and the proofs are the same as when we dealt with the case l0 = 0.

As explained in the beginning of this chapter, Lemma 3.1.3 and the representation zi+1∂z ↦ −Li
allow us to de�ne the linear operator Tφ ∶ V → V giving the Aut(O)-action on V as

Tφ = exp(−∑
i≥0

liLi) (3.21)

Equivalently, and along with the following Proposition, φ↦ Tφ gives a representation of Aut(O)
on V i.e. for φ,ψ ∈ Aut(O), we have Tφ(ψ(z)) = TφTψ.

Proposition 3.2.1. For any a ∈ V , Tφ(a) is a �nite sum and so Tφ ∶ V → V is well-de�ned.

Proof. Let a ∈ V(n). Proposition 2.4.3 with k = 2 gives

Ln = ωn+1 ∶ V(m) → V(m−n)

for m ∈ Z and so the operators −Li for i > 0 are locally nilpotent (cf. eq. (2.18)) and so su�cently
high powers of Li for i > 0 vanish. The truncation condition (eq. (2.20)) ensures that Lia = 0 for
i su�ciently large.

Since L0 ∶ V(m) → V(m), it remains to show that L0 doesn't cause Tφ(a) to diverge. We expand
Tφ(a) and extract the terms involving the operator L0:

Tφ(a) = exp(−∑
i≥0

liLi)a

= a + (−l0L0 −⋯)a +
1

2
(−l0L0 −⋯)2 +

1

6
(−l0L0 −⋯)3a +⋯

= a − nl0 +
(nl0)

2

2
−

(nl0)
3

6
+⋯

= a + e−nl0 − 1 +⋯
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Therefore Tφ(a) is indeed a �nite sum.

Recall the space of primary vectors Pn(V ) seen in eq. (2.15). The corresponding vertex operators
Y (a, z) for a ∈ Pn(V ) are then called primary �elds. We derive an explicit equation for the
invariant Aut(O)-action of φ on these primary �elds, giving clarity on this result which is stated
in [Zhu96]. Another account of this result is stated in Proposition 5.3.4 of [FBZ04], and so we
go over these details here. For A(z) ∈ F(V ) and φ ∈ Aut(O), de�ne the linear operator ∆φ on
F(V ):

∆φ ⋅A(z) = TφA(φ(z))T −1φ (φ′(z))n (3.22)

Lemma 3.2.2. The following hold for ∆φ:

(a). A(φ(z)) is a well-de�ned element of F(V ),

(b). φ↦∆φ gives a representation of Aut(O) on F(V ).

Proof. Let A(z) ∈ F(V ) and φ,ψ ∈ Aut(O).

(a). For φ(z) = ∑j kjz
j ,

A(φ(z)) =∑
i∈Z
Ai (k1z + k2z

2 +⋯)
i
.

For i ≥ 0, it is clear that A(φ(z)) ∈ F(V ) is well-de�ned, as the sum splits linearly. The
case i < 0 is made clear when we write

φ(z)−1 = (k1z + k2z
2 +⋯)

−1
= k−11 z−1 (1 + k2k

−1
1 z +⋯)

−1
∈ z−1C[[z]]

and so A(φ(z)) ∈ F(V ) is a well-de�ned element.

(b). Using the fact that Tφ gives a representation of Aut(O) on V , let A(z) ∈ F(V ) and compute

∆φ(ψ(z))A(z) = Tφ(ψ(z))A(φ(ψ(z)))T −1φ(ψ(z)) ((φ(ψ(z)))
′
)
n

= TφTψA(φ(ψ(z)))T −1ψ T −1φ (φ′(ψ(z)))
n
(ψ′(z))

n

= ∆φ (TψA(ψ(z))T −1ψ (ψ′(z))n)

= ∆φ (∆ψA(z)) .

Thus we have the operator equality ∆φ(ψ(z)) = ∆φ∆ψ which establishes the result.

So far, F(V ) has been shown to be an Aut(O)-module with action ∆φ. We now show that the
subspace of primary �elds of F(V ) is Aut(O)-invariant, that is, ∆φ ⋅ Y (a, z) = Y (a, z).

Proposition 3.2.3. Let a ∈ Pn(V ) and Y (a, z) its associated primary �eld. Then,

Y (a, z) = TφY (a,φ(z))T −1φ (φ′(z))
n

Proof. We establish a general expression for [Li, Y (a, z)] where i ∈ Z. Corollary 2.4.2 gives the
commutator

[Li, Y (a, z)] = zi+1∂zY (a, z) + n∂zz
i+1Y (a, z).
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Let v(z) = ∑i≥0 liz
i+1. Assign, then, the operator v = −∑i≥0 liLi for v(z)∂z. Summing over the

li, we get

[v, Y (a, z)] = −v(z)∂zY (a, z) − n∂zv(z)Y (a, z). (3.23)

Now, the equation for ∆φ is given in terms of the operators Tφ and φ which each give an action
of Aut(O) from elements zC[[z]]∂z by exponentiation. The exponential map is surjective, and
so we need not evaluate higher than linear terms in the exponents of Tφ and φ in order to show
the invariance of Y (a, z) under ∆φ. With this in mind, let R(ε) denote the dual numbers

R(ε) = R[ε]/⟨ε2⟩,

that is, numbers of the form a+ bε where a, b ∈ R and ε2 = 0. Let a ∈ Pn(V ). Then by expanding
both φ and Tφ in powers of ε,

φ(z) = exp (εv(z)∂z) z = z + εv(z)

Tφ = exp (εv) = Id + εv.

With this, we have the expression

∆φY (a, z) = (Id + εv)Y (a, z + εv(z)) (Id − εv) (∂z(z + εv(z)))
n
. (3.24)

Notice for i ∈ Z that

(z + εv(z))i =∑
j≥0

(
i

j
)zi−j (εv(z))

j
= zi + ∂zz

iεv(z)

and so

Y (a, z + εv(z)) = Y (a, z) + εv(z)∂zY (a, z)

which is a familiar property of R(ε). Thus by expanding eq. (3.24) and using the commutator
eq. (3.23), we get

∆φY (a, z) = Y (a, z) + ε (vY (a, z) − Y (a, z)v + v(z)∂zY (a, z) + n∂zv(z)Y (a, z))

= Y (a, z) + ε ([v, Y (a, z)] + v(z)∂zY (a, z) + n∂zv(z)Y (a, z))

= Y (a, z)

which proves the result.

Proposition 3.2.3 outlines the conditions for the coordinate invariance of a primary �eld. Recall
that in Lemma 3.1.3 we have established that φ ∈ Aut(O) can be written uniquely as exponents
of elements in zC[[z]]∂z, giving a representation of Aut(O) on V . The associated operator
Tφ ∶ V → V constructed via the representation zi+1 ↦ −Li is thus an automorphism of V . We
can then de�ne the transformed vertex operator

Yφ(a, z) = TφY (a, z)T −1φ ∈ End(V )[[z, z−1]]. (3.25)

Then immediately from Proposition 3.2.3, we obtain equation (4.2.13) in [Zhu96]:

Theorem 3.2.4. Let φ ∈ Aut(O). If a ∈ Pn(V ) and Y (a, z) is its associated primary �eld, then

Yφ(a, z) = Y (a,φ(z))(φ′(z))n

de�nes a new �eld obtained from the action of φ.
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3.3 Coordinate Invariance for General Vertex Operators

It is here that we generalize the �ndings of the previous section by deriving an expression for Yφ
for any vertex operator. The main result here is a modi�cation of Lemma 5.4.6 in [FBZ04], a
result which is attributed to [Hua97].

With v(z) and v de�ned as before and for any Y (a, z) ∈ F(V ) with a ∈ V(n), we can compute as
in Proposition 3.2.3 the natural transformation

TφY (a,φ(z))T −1φ = Y (a, z) − ε∑
j≥0

(∂j+1z v(z))

(j + 1)!
Y (Lja, z).

Without the assumption that a ∈ Pn(V ) i.e. that Lia = 0 for i ≥ 1 and without the term (φ′(z))n,
the rightmost sum above does not vanish. Thus, we must work with a di�erent operator than
∆φ if we are to establish coordinate invariance in a general case. We wish to �nd an operator
similar to ∆φ such that expansion by powers of ε gives the negative of rightmost sum above.
Notice that we may view the rightmost sum as the ε-linear term of the operator

Tφz = exp
⎛

⎝
−ε∑

j≥0

(∂j+1z v(z))

(j + 1)!
Lj

⎞

⎠
= Id − ε∑

j≥0

(∂j+1z v(z))

(j + 1)!
Lj +⋯ (3.26)

acting on Y (a, z) for some yet undetermined coordinate transformation φz, when expanding in
powers of ε. One would naively take the representation zi+1∂z ↦ −Li as in eq. (3.21) to obtain
φz, however this would not yield a valid coordinate transformation since the resulting φz would
not be in the form eq. (3.3). Take instead the representation ti+1∂t ↦ −Li for some new formal
variable t to obtain the coordinate transformation

φz(t) = exp
⎛

⎝
ε∑
j≥0

(∂j+1z v(z))

(j + 1)!
tj+1∂t

⎞

⎠
t

= t + ε∑
j≥0

(∂j+1z v(z))

(j + 1)!
tj+1 +⋯

The next lemma relates φz(t) to φ(z).

Lemma 3.3.1. Let φz(t) be de�ned as above, and let φ = exp (∑i liz
i+1∂z) z as before. Then,

the sum in φz is the ε-linear term of φ(z + t) − φ(z).

Proof. By expanding in powers of ε, and with v(z) de�ned as in Proposition 3.2.3,

φ(z + t) − φ(z) = (z + t) + εv(z + t) +⋯ − z − εv(z) −⋯

= t + ε
⎛

⎝
∑
i≥0

li
⎛

⎝
∑
j≥0

(
i + 1

j
)zi−j+1tj − zi+1

⎞

⎠

⎞

⎠
+⋯

= t + ε
⎛

⎝
∑
i≥0

li
⎛

⎝
∑
j≥0

(
i + 1

j + 1
)zi−jtj+1

⎞

⎠

⎞

⎠
+⋯

= t + ε
⎛

⎝
∑
i≥0

li
⎛

⎝
∑
j≥0

(i + 1)!

(i − j)!(j + 1)!
zi−jtj+1

⎞

⎠

⎞

⎠
+⋯

= t + ε
(∂j+1z v(z))

(j + 1)!
tj+1 +⋯

which establishes the result.
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Proposition 3.3.2. Let a ∈ V(n) and φ ∈ Aut(O). Then with φz(t) = φ(z + t) − φ(z),

Y (a, z) = TφY (T −1φz (a), φ(z))T
−1
φ .

Proof. We proceed as in Proposition 3.2.3. De�ne the operator Θφ on Hom(V,F(V )) by

Θφ ⋅ Y (a, z) = TφY (T −1φz (a), φ(z))T
−1
φ .

Let ψ ∈ Aut(O) and thus ψz(t) = ψ(z + t) − ψ(z). Note that

φψ(z)(ψz) = φ(ψ(z) + (ψ(z + t) − ψ(z))) − φ(ψ(z)) = φ(ψ(z))z.

Using this,

Θφ(ψ(z))Y (a, z) = Tφ(ψ(z))Y (T −1φ(ψ(z))z
(a), φ(ψ(z)))T −1φ(ψ(z))

= TφTψY (T −1φψ(z)(T
−1
ψz (a)), φ(ψ(z)))T

−1
ψ T −1φ

= Θφ (TψY (T −1ψz (a), ψ(z))T
−1
ψ )

= Θφ (ΘψY (a, z))

and so Θφ is a representation of Aut(O) on Hom(V,F(V )). Finally, by expanding in powers of
ε and with the aid of Lemma 3.3.1 and with v(z) and v de�ned as before,

ΘφY (a, z) = (Id + εv)Y (T −1φz (a), (z + εv(z)))(Id − εv)

= Y (a, z) + ε
⎛

⎝
[v, Y (a, z)] +∑

j≥0

1

(j + 1)!
∂j+1z v(z)Y (Lja, z) + v(z)∂zY (a, z)

⎞

⎠

= Y (a, z)

where the last equality comes directly from Corollary 2.4.2. Therefore Y (a, z) is invariant under
Θφ, which establishes the result.

As in the primary �eld case, we are able to reformulate the statement of Proposition 3.3.2 in
terms of Yφ:

Theorem 3.3.3. Let φ ∈ Aut(O). Then, with Yφ de�ned as in Theorem 3.2.4,

Yφ(a, z) = Y (T −1φz (a), φ(z))

de�nes a new vertex operator algebra isomorphic to V obtained from the action of φ.

3.4 Coordinate Invariance for the Virasoro Field

The main result of this section provides the necessary computations required for deriving the
expression of the transformed Virasoro �eld Yφ(ω, z) under the action of φ. Use of the relations
eqs. (3.6), (3.13) and (3.14) established in Chapter 3 is central to the proof.
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Lemma 3.4.1. For φ(z) = exp(v(z)∂z)z ∈ Aut(O) and v(z) = ∑i≥0 liz
i+1, we have

φ′(z) = exp(∂zv(z))

φ′′(z) = (φ′(z))2
∂2zv(z)

∂zv(z)
− φ′(z)

∂2zv(z)

∂zv(z)

φ′′′(z) = (φ′(z))3 (
3(∂2zv(z))

2

2(∂zv(z))2
+
∂3zv(z)

2∂zv(z)
)

− (φ′(z))2 (
3(∂zv(z))

2

(∂zv(z))2
)

+ φ′(z)(
3(∂2zv(z))

2

2(∂zv(z))2
−
∂3zv(z)

2∂zv(z)
) .

Proof. Recall the coordinate transformation φz(t) = φ(z + t) − φ(z). Let φz(t) = ∑i≥1 k̃it
i and

φz(t) = exp(∑i≥0 l̃it
i+1∂t)t for some coe�cients k̃i and l̃i analogous to those in eqs. (3.1) and (3.3).

Notice for n ≥ 1 that

∂nt φz(0) = ∂
n
t (∑

i≥1

ki(z + t)
i −∑

i≥1

kiz
i) ∣

t=0

= φ(n)(z).

That is, φ(n)(z) = n!k̃n. Thus we may use the aforementioned relations eqs. (3.6), (3.13)
and (3.14) along with the expressions

l̃0 = ∂zv(z)

l̃1 =
1

2
∂2zv(z)

l̃2 =
1

6
∂3zv(z)

which are seen directly from eq. (3.26) to obtain the required derivatives.

As a short remark, we are now able to give a corollary showing that the two previous theorems
on coordinate invariance are consistent.

Corollary 3.4.2. Theorem 3.2.4 is a special case of Theorem 3.3.3.

Proof. Let a ∈ Pn(V ). Then,

T −1φz (a) = exp (∂zv(z)L0)a = exp (n∂zv(z))a

and so using Theorem 3.3.3 and φ′(z) = exp(∂zv(z)) from Lemma 3.4.1, we obtain

Yφ(a, z) = Y (exp (n∂zv(z))a,φ(z)) = Y (a,φ(z))(φ′(z))n.

De�ne the Schwarzian derivative of φ with respect to z as

{φ(z), z} =
φ′′′(z)

φ′(z)
−

3

2
(
φ′′(z)

φ′(z)
)

2

.

Lemma 3.4.3. Let φ(z) = exp(v(z)∂z)z ∈ Aut(O) where v(z) = ∑i≥0 liz
i+1. Then,

{φ(z), z} =
∂3zv(z)

2∂zv(z)
((φ′(z))2 − 1) .
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Proof. Computing directly using the results of Lemma 3.4.1 gives

−
3

2
(
φ′′(z)

φ′(z)
)

2

= −(φ′(z))2
3(∂2zv(z))

2

2(∂zv(z))2
+ φ′(z)

3(∂2zv(z))
2

(∂zv(z))2
−

3(∂2zv(z))
2

2(∂zv(z))2
,

and so from the de�nition of {φ(z), z} and the expression for φ′′′(z), it follows that

{φ(z), z} =
∂3zv(z)

2∂zv(z)
((φ′(z))2 − 1) .

We may now use the results of this section along with Theorem 3.3.3 to derive the desired
expression for the transformed Virasoro �eld Y (ω, z) under the action of φ. This is stated
without proof, in equation (4.2.14) of [Zhu96].

Theorem 3.4.4. Let φ ∈ Aut(O). Then, with Yφ de�ned as in Theorem 3.2.4,

Yφ(ω, z) = Y (ω,φ(z))(φ′(z))2 +
cV
12

{φ(z), z}.

Proof. The creation property (eq. (2.22)) applied in our case

lim
z→0

Y (ω, z)1 = ω

gives L−11 = L01 = Ln1 = 0 for n ≥ 1. Also from the creation property, we see that ω = ω−11 =
L−21. These facts along with the Virasoro bracket relations (eqs. (2.24) and (2.25)) allow us to
compute the following:

L0ω = L0L−21 = 2L−21 = 2ω

L1ω = L1L−21 = 3L−11 = 0

L2ω = L2L−21 = (4L0 +
cV
2

)1 =
cV
2
1

Liω = 0 for i ≥ 3.

Using these relations alongside Theorem 3.3.3, we have

T −1φz (ω) = exp(∂zv(z)L0 +
1

6
∂3zv(z)L2)ω

=∑
j≥0

1

j!
(∂zv(z)L0 +

1

6
∂3zv(z)L2)

j

ω

= exp(2∂zv(z))ω +
cV
12
∂3zv(z)∑

j≥0

(2∂zv(z))
j

(j + 1)!
1

= exp(2∂zv(z))ω +
cV
12

(
∂3zv(z)

2∂zv(z)
((φ′(z))2 − 1))1.

Thus using Lemma 3.4.3 and the vacuum property (eq. (2.21)) we obtain

Yφ(ω, z) = Y (ω,φ(z))(φ′(z))2 +
cV
12

{φ(z), z}.
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Chapter 4

The Square-Bracket Formalism

We apply the results of the previous chapter to construct a vertex operator algebra structure
from (and isomorphic to) the Heisenberg VOA of central charge cV = 1. This resulting algebra is
well-known and �rst introduced in [Zhu96] with details of the construction provided in [MT10].
We will also be using this algebra extensively in order to prove the results of Chapter 6.

4.1 Heisenberg Modes

Recall the Heisenberg VOA H de�ned in Section 2.5, and set cV = 1. The creation operators
h−n ∈ End(H) which form a basis for H exist as coe�cients of the Heisenberg �eld h(z), or
equivalently, the vertex operator of the state h−11. Applying Lemma 2.5.1 to the state h−11
gives the relation Ln(h−11) = hn−11 and so h−11 is a primary state of weight 1. We can thus use
the result of Theorem 3.2.4 to de�ne

Yφ(h−11, z) = Y (h−11, φ(z))φ
′(z). (4.1)

Let φ(z) = ez − 1 ∈ Aut(O). Denote the square-bracket vertex operator transformed under φ(z)
as the series

Y [a, z] = ∑
n∈Z

[a]nz
−n−1. (4.2)

Using eq. (4.1), we may proceed to derive explicit expressions for the square-bracket modes
[h]n = [h−11]n of the square-bracket Heisenberg �eld h[z] �rst by writing

Yφ(h−11, z) = Y (h−11, e
z − 1)ez,

then by multiplying eq. (4.2) by zn to obtain the formula

[h]n = Resz Y (h−11, e
z − 1)(ez)(zn). (4.3)

By Lemma 3.2.2 (a), Y (h−11, e
z−1) ∈ F(V ), and so eq. (4.3) truncates when applied to any state

in H. We can then extend Lemma 2.1.1 to this case with w = ez − 1, noting that ez − 1 ∈ zC[[z]]:

[h]n = Resw h(w) (log(w + 1))
n

De�ne for k ∈ Z, k ≠ 0 the coe�cient

c(n, k) = Coe�wk (log(w + 1))
n
.

With this, we can set c(0, k) = 1 for all k and so [h]0 = h0, where h0 acts as the zero operator
on H (we shall omit writing h0 and its coe�cient from now on). If we can �nd expressions for
c(n, k), then we can write

[h]n = Resw (∑
m∈Z

hmw
−m−1)(log(w + 1))

n
= ∑
k∈Z
k≠0

c(n, k)hk.

Consider �rst the case where n ≥ 1. The geometric series is used to show that

1

1 +w
= ∑
k≥0

(−1)kwk
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and so by integrating, shifting indices, and taking the n-th power we obtain

(log(w + 1))
n
= (∑

k≥1

(−1)k−1wk

k
)

n

(4.4)

From eq. (4.4), c(n, k) = 0 for k ≤ −1, since the expansion above never consists of any negative
powers of w. To �nd c(n, k) given a �xed value n, eq. (4.4) tells us that we must consider all
possible ways to multiply n summands to produce a term of degree k. Then, we take the sum of
these terms and extract the necessary coe�cient. All such possible ways are in correspondence
with the set C(k,n) of all n-compositions (k1, k2, . . . , kn) of k (cf. Proposition 3.1.1), and so for
n ≥ 1 we have

c(n, k) = ∑
(k1,k2,...,kn)∈C(k,n)

(
n

∏
i=1

(−1)ki−1

ki
) .

Hence for n ≥ 1, we have the following possibly new expression for the square-bracket modes:

[h]n = ∑
k≥1

⎛

⎝
∑

(k1,k2,...,kn)∈C(k,n)

(
n

∏
i=1

(−1)ki−1

ki
)
⎞

⎠
hk (4.5)

Finally, note that c(n, k) = 0 for n > k, as one cannot form a composition of k of n parts here.
The modes can then computed simply using eq. (4.5):

[h]1 = h1 −
1

2
h2 +

1

3
h3 −

1

4
h4 +⋯

[h]2 = h2 − h3 +
11

12
h4 −

1

6
h5 +⋯

[h]3 = h3 −
3

2
h4 +

7

4
h5 −

15

8
h6 +⋯

⋮

Next we have the following Laurent series expansion, raised to the n-th power for n ≥ 1:

1

(log(w + 1))
n =

⎛

⎝

1

w
−∑
k≥0

⎛

⎝

k+1

∑
j=1

Bjs
(j−1)
k

k!j

⎞

⎠
wk

⎞

⎠

n

(4.6)

where Bj are the Bernoulli numbers, de�ned by the following Laurent series expansion about
z = 0

1

ez − 1
=∑
j≥0

Bj

j!
zj−1, (4.7)

and s
(j)
k are the signed Stirling numbers of the �rst kind given by

s
(j)
k = (−1)k−j(# of permutations of length k with j disjoint cycles). (4.8)

Finding c(n, k) for n < 0 requires some combinatorial techniques, as we have terms of degree −1
and 0 appearing above.

We introduce here a very weak k-composition of n ∈ Z as a k-composition of n where we allow
for the parts −1 and 0. These are related to weak k-compositions, (in which the parts are non-
negative (cf. [HM04])), and so we have extended the de�nition here. For example, the very weak
2-compositions of 3 are

(2,1), (1,2), (3,0), (0,3), (4,−1), (−1,4).

Note case where n < 0. Let C′(n, k) denote the set of all very weak k-compositions of n.
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Lemma 4.1.1. Let n ∈ Z and k ≥ 0.

(a). If n ≥ 0 then ∣C′(n, k)∣ = (n+2k−1
k−1

).

(b). If n < 0 and k ≥ ∣n∣ then ∣C′(n, k)∣ = (n+2k−1
k−1

).

(c). If n < 0 and k < ∣n∣ then ∣C′(n, k)∣ = 0.

Proof. Suppose n ≥ 0. A very weak k-composition of n can be written as

(n1 − 2) + (n2 − 2) +⋯ + (nk − 2) = n

for integers n1, . . . , nk ≥ 1. Rearranging gives

n1 + n2 +⋯ + nk = n + 2k

which is a k-composition of n+2k. Recall from the note following Proposition 3.1.1 that ∣C(n, k)∣ =
(n−1
k−1

) and so ∣C′(n, k)∣ = (n+2k−1
k−1

) which proves (a). The same argument works for n < 0 provided
that we do not have k < ∣n∣. In this case,

−1 − 1 −⋯ − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

≠ n

and so ∣C′(n, k)∣ = 0 here. This proves (b) and (c).

From Lemma 4.1.1 above, we may also see that for integers n1, . . . , nk ≥ 1 we have

(n1 − 2) + (n2 − 2) +⋯ + (nk − 2) = n

(n1 − 1) + (n2 − 1) +⋯ + (nk − 1) = n + k

and so the number of very weak k-compositions of n is the same as the number of weak k-
compositions of n + k. In subsequent arguments, it will be useful to retain the −1 parts and so
we continue to use very weak compositions despite the above relation between the two concepts.

De�ne the function g ∶ Z→ Q by the rules

g(x) =

⎧⎪⎪
⎨
⎪⎪⎩

−∑
x+1
j=1

Bjs
(j−1)
x

x!j
, x ≥ 0

1, x < 0.

We are then able to de�ne the following expression for n ≥ 1:

[h]−n = ∑
k≥−n

⎛

⎝
∑

(k1,k2,...,kn)∈C′(k,n)

(
n

∏
i=1

g(ki))
⎞

⎠
hk (4.9)

where the lower bound on the �rst sum above comes from Lemma 4.1.1. We can then compute
the modes algorithmically:

[h]−1 = h−1 −
1

12
h1 +

1

24
h2 −

19

720
h3 +⋯

[h]−2 = h−2 + h−1 −
1

240
h2 +

1

240
h3 −⋯

[h]−3 = h−3 +
3

2
h−2 +

1

2
h−1 +

1

240
h1 +⋯

⋮

Computations involving the square-bracket modes will usually not be this cumbersome; we have
found explicit expressions for the modes in their entirety, however in most cases these expressions
will be heavily truncated. One such computation (which will be of importance in Chapter 6) is
the proof of Lemma 10.2 of [FM22] which gives an expression for (r − 1)![h]−r[h]−11 for an odd
integer r ≥ 1.
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4.2 Virasoro Modes

It should be noted that the process of obtaining square-bracket modes for certain primary states in
a VOA is also possible (cf. Section 2.7 of [MT10]) and the idea is similar to previous computations
and to what will follow. Since further discussion will only involve the Heisenberg VOA, we do not
concern ourselves extensively with these generalized computations. In this short section however,
we do mention brie�y some facts about the square-bracket Virasoro modes.

Proposition 4.2.1. Let [ω] denote the conformal state transformed under the action of φ = ez−1
for any VOA {V,Y,1, ω}. We have [ω] = ω − (cV /24)1.

Proof. We apply the statement of Theorem 3.4.4 to 1 and extract the constant term. It is easy
to see that {ez − 1, z} = −1/2. Moreover, the constant term of Y (ω, ez − 1)(e2z) is just ω−11. It
follows then, that [ω] = ω − (cV /24)1.

We obtain expressions for the square-bracket Virasoro modes using Theorem 3.4.4. Doing so,
and then applying Lemma 2.1.1 we get

[L]n = Resz (Y (ω, ez − 1)(e2z)(zn+1) − (cV /24) (zn+1))

= Resw (Y (ω,w) (log(w + 1))
n+1

(w + 1) − (cV /24) (log(w + 1))
n+1

) . (4.10)

It is not hard to see that [L]−1 = L−1 +L0. More generally, using eq. (4.4) we can write log(w +
1)n+1 = wn+1 + o(wn+2) and so if n > −2,

[L]n = Ln +∑
i≥1

c(n, i)Ln+i (4.11)

for some coe�cients c(n, i). In fact, this expression appears in [Zhu96]. The square-bracket
mode [L]0 is of importance. Using eq. (4.10), we get that

[L]0 = Resw ((∑
k≥1

(−1)k−1wk

k
)(Y (ω,w) + Y (ω,w)w))

= L0 +∑
k≥1

(−1)k−1

k(k + 1)
Lk. (4.12)

Deriving expressions for other square-bracket Virasoro modes involves extracting coe�cients from
integer powers of the logarithmic series above, and is similar to what was done in the Heisenberg
case. Noteworthy to us is the fact that a square-bracket VOA, which we will denote henceforth
by [V ], is equipped with a di�erent grading than that of the original VOA structure: If v is
homogeneous in [V ], then de�ne

[V ](n) = { v ∈ [V ] ∣ [L]0v = nv } . (4.13)

That is, we write v ∈ [V ](n) to mean v has square-bracket weight n. It will be important to
distinguish between which grading is being used in later discussions, and so care must be taken
when discussing weights. The following short fact about the square-bracket grading is stated
without proof in [DLM00]:

Lemma 4.2.2. For any N ∈ Z, we have

⊕
n≤N

V(n) = ⊕
n≤N

[V ](n).

Proof. Using 2.18 in the de�nition of a VOA, letM ∈ Z be the smallest integer such that V(M) ≠ 0.
Recall from Proposition 2.4.3 that Ln ∶ V(m) → V(m−n). If v ∈ V(M), then using eq. (4.12) we get
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[L]0v = L0v =Mv and so V(M) = [V ](M). If v ∈ V(M+S) for some S > 0, then also from eq. (4.12)
we get

[L]0v = L0v + (
S

∑
k=1

(−1)k+1

k(k + 1)
Lk) v ∈

M+S

⊕
i=M

V(i).

It is also worth noting that since the square-bracket Virasoro �eld is constructed via Theo-
rem 3.4.4, and thus is isomorphic to the "regular" Virasoro �eld, the square-bracket Virasoro
modes satisfy their respective properties, i.e. we have the analogous relations

[[L]m, [L]n] = (m − n)[L]m+n +
cV
12

(m3 −m)δm+n,0

[[L]n, cV ] = 0.
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Chapter 5

The Relation To Number Theory

Up until now, our discussion has been almost purely VOA-theoretic. Many papers cited here
such as [Zhu96], [MT10] and [FM22] however, are primarily interested in the connection between
VOAs and modular forms. As such, we follow [Ser73a] and [MT10] to introduce elementary
notions on modular forms of level one and characters of VOAs, and then proceed to outline how
the coordinate transformation plays an important role in the theory. As in many related texts,
we adopt henceforth the following q-convention:

qz = e
z, q = q2πiτ = e

2πiτ . (5.1)

5.1 Modular Forms

De�ne the modular group as the space of all 2 × 2 matrices consisting of integer entries and
determinant one

Γ = SL2(Z) = { (
a b
c d

) ∣ ad − bc = 1 } (5.2)

generated by the matrices

S = (
0 −1
1 0

) , T = (
1 1
0 1

) .

Let H denote the complex upper-half plane i.e. { z ∈ C ∣ im(z) > 0 } and de�ne the action of Γ on
H as

(γ, z)↦
az + b

cz + d
, γ = (

a b
c d

) ∈ Γ.

With z = x + iy for x, y ∈ R, it is easy to see that

im(
az + b

cz + c
) =

y

(cx + d)2 + (cy)2
=

im(z)

∣cz + d∣2
,

and so H is invariant under the action of Γ. A modular form of weight k ∈ Z of level one is a
function f ∶ H→ C satisfying the following conditions:

(a). f is holomorphic

(b). For τ ∈ H,

f (
aτ + b

cτ + d
) = (cτ + d)kf(τ), (

a b
c d

) ∈ Γ

(c). As im(z)→∞, f(z) is bounded.

For τ ∈ H, inserting the generators S and T into condition (b) above (often called the modularity
condition) we obtain, respectively, the relations

f(τ + 1) = f(τ) (5.3)

f(−1/τ) = zkf(τ) (5.4)
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and so this condition can be veri�ed if the above two relations hold for all τ ∈ H. As a short
remark, notice that by inserting the negative of the identity matrix, we obtain the relation
f(z) = (−1)kf(z) and so the only modular forms of odd weight k are those identically equal
to zero. Equation (5.3) asserts that modular forms are periodic and so we may consider their
Fourier series expansion, or q-expansion

f(τ) = ∑
n∈Z

αnq
n,

for some coe�cients αn (note the use of 5.1). The simplest and perhaps most uninteresting
examples of modular forms are the identically zero and constant functions on C, (it is not
di�cult to see that they are modular forms of weight 0 and satisfy the necessary conditions
(a)-(c)). For even k ≥ 4, the simplest non-trivial examples of modular forms are the Eisenstein
Series

Gk(τ) = ∑
(m,n)∈Z2

(m,n)≠(0,0)

1

(mτ + n)k
(5.5)

These are indeed modular forms, and as an example, it is not di�cult to establish the modularity
condition, which we do via eqs. (5.3) and (5.4). Using the absolute convergence of the sum in
eq. (5.5) and summing over the pair (m,m + n), we get

Gk(τ + 1) = ∑
(m,n)∈Z2

(m,n)≠(0,0)

1

(mτ +m + n)2
= Gk(τ)

Gk(−1/τ) = ∑
(m,n)∈Z2

(m,n)≠(0,0)

1

((−m/τ) + n)k
= ∑

(m,n)∈Z2

(m,n)≠(0,0)

τk

(nτ −m)k
= τkGk(τ).

After normalizing, it can be shown (Proposition 8, pg. 92 of [Ser73a]) that Gk(τ) has the
following Fourier series expansion for k ≥ 2 even:

Gk(q) = −
Bk
2k

+ ∑
n≥1

σk−1(n)q
n (5.6)

where σk−1(n) = ∑d∣n d
k−1 is the classical divisor function. Notice how we write the series now in

the variable q rather than τ . Since Bk never vanishes for k even, we may de�ne the normalized
weight k Eisenstein series as

Ek(q) = −
2kGk(q)

Bk
= 1 −

2k

Bk
∑
n≥1

σk−1(n)q
n. (5.7)

Note also that in eq. (5.5), k ≥ 4 and so G2(q) and E2(q) are indeed not modular forms but
rather quasi-modular forms. These satisfy slightly di�erent modularity conditions which we will
not discuss here, since E2(q) is the only quasi-modular form of relevance to this discussion. The
�rst few normalized modular Eisenstein series are

E4(q) = 1 + 240q + 2160q2 + 6720q3 +⋯

E6(q) = 1 − 504q − 16632q2 − 122976q3 −⋯

E8(q) = 1 + 480q + 61920q2 + 1050240q3 +⋯

E10(q) = 1 − 264q − 135432q2 − 5196576q3 −⋯

It is not hard to see that the expressions E4(q)E2(q) = E10(q) and E4(q)
2 = E8(q) should hold,

for example. The following theorem con�rms our suspicions:

Theorem 5.1.1 ([MT10], Theorem 3.9). The weighted polynomial algebra Q = C[E2,E4,E6]
is the algebra of quasi-modular forms of level one. Its graded subalgebra M = C[E4,E6] is the
algebra of all holomorphic modular forms of level one.
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5.2 The Character of a VOA

Recall the statement of Proposition 2.4.3: if v ∈ V(k) and w ∈ V(m) are homogeneous states, then

vn ∶ V(m) → V(m+k−n−1).

For any v ∈ V(k), de�ne the zero mode o(v) as vk−1. By extending the de�nition of o(v) to all of
V additively, for any states v and integers m, we get

o(v) ∶ Vm → Vm. (5.8)

The zero mode is thus an endomorphism on each graded piece V(m) and as such, we may consider
its trace which we write in the form of a generating function in q:

ZV (v, q) = TrV o(v)q
L0−cV /24.

For each subspace V(n) we have the operator equality q
L0 = qn and so by standard properties of

the trace, we may re-write the above expression as

ZV (v, q) = q−cV /24
∑
n∈Z

TrV(n)o(v)q
n. (5.9)

The property (eq. (2.18)) in the de�nition of a VOA ensures the sum above is truncated i.e.
ZV (v, q) ∈ q−cV /24C[[q]][q−1]. The character of V is then the linear map

ZV ∶V → q−cV /24C[[q]][q−1]

v ↦ ZV (v, q).

Take v = 1. Then due to the vacuum property (eq. (2.21)) it is easy to see that o(1) = IV . Since
TrV(n)IdV = dimV(n), we obtain

Z(1, q) = q−cV /24
∑
n∈Z

dimV(n) q
n.

This is often called the graded dimension of V or the partition function of V .

Proposition 5.2.1. For the Heisenberg VOA of central charge cV = 1,

ZH(1, q) = η(q)−1

where η(q)−1 is the inverse eta-function

η(q)−1 = q−1/24 ∑
n≥0

p(n)qn

and where p(n) is the unrestricted partition function.

Proof. Recall that H ≅ C[h−1, h−2, h−3, . . .]. As such, H(n) = 0 for n < 0. The weight of a state in
H written in this basis is then

wt(h−n1h−n2⋯h−nr1) =∑
i

ni

for integers ni > 0. The number of elements having weight k ≥ 0 corresponds to the number of
ways in which ∑i ni = k for integers ni > 0. This is precisely the de�nition of the unrestricted
partition function p(n) and so it follows that dimH(n) = p(n). This gives

ZH(1, q) = q−1/24 ∑
n≥0

p(n)qn = η(q)−1.
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Despite having discussed much of the theory of coordinate transformations, we are just now able
to explore its intended purpose outlined �rst in [Zhu96]. Suppose we wish to take characters
of more complicated states in order to obtain further results akin to that of Proposition 5.2.1.
Following [MT10], consider the conformal state ω of an arbitrary VOA. Clearly, o(ω) = L0 and
TrV(n)L0 = ndimV(n) thus

ZV (ω, q) = q−cV /24
∑
n∈Z

TrV(n)L0q
n = q−cV /24

∑
n∈Z

ndimV(n)q
n. (5.10)

Unfortunately, it is di�cult to see the desired phenomenon by using the standard conformal state
ω. Consider instead the square-bracket conformal state [ω] = ω−(cV /24)1 (cf. Proposition 4.2.1).
We require the zero mode of [ω], that is, the mode which preserves the grading of V (not the
grading of [V ]). As such, compute the zero mode of [ω] using the usual vertex operator to obtain
o([ω]) = L0 − cV /24. Then, TrV(n)cV /24 = cV /24 dimV(n) which gives

ZV ([ω], q) = q−cV /24
∑
n∈Z

(n − cV /24)dimV(n)q
n.

This result along with a small observation can be summarized in the following lemma:

Proposition 5.2.2. Let [ω] be the square-bracket conformal state for an arbitrary VOA. Then,

ZV ([ω], q) = q∂qZV (1)

It can be shown (cf. Exercise 3.18 of [MT10]) that q∂qη(q) = (−1/2)η(q)G2(q). We can apply
this to the Heisenberg case using the statement of Proposition 5.2.1 and obtain

ZH([ω], q) = q∂qη(q)
−1 = (−η(q)−2) ((−1/2)η(q)G2(q)) =

G2(q)

2η(q)
.

Thus characters of square-bracket states outline the connection to modular forms, this being the
central result of [Zhu96]. In fact, in the Heisenberg case, we have:

Theorem 5.2.3 ([MT10], Theorem 4.5). Denote by [H] the Fock space of the Heisenberg VOA
equipped with the square-bracket grading. Let Q be the graded algebra of quasi-modular forms of
level one. There is a surjection of graded linear spaces

[H]→Q

v ↦ Qv(q)

such that ZH(v, q) = Qv(q)/η(q) and Qv(q) is the quasi-modular form of weight k attached to
v ∈ [V ](k).

Thus after normalization by η(q)−1, characters of states in the Heisenberg VOA give rise to
quasimodular forms. In Proposition 5.2.1 we obtained the constant modular form 1 of weight
zero, and in Proposition 5.2.2 we obtained the quasi-modular form G2(q)/2 of weight 2.

An explicit description of the quasi-modular form Qv(q) above is given by equation (44) of
[MT10] in the following way. For the state v = [h]−k1[h]−k2⋯[h]−kr1 with ki ≥ 1, we have

Qv(q) = ∑
ϕ=...(s,t)...

∏
(s,t)

2(−1)s+1

(s − 1)!(t − 1)!
Gs+t(q). (5.11)

The equation is read as follows: Take the set Φ = {k1, k2, . . . , kr} and consider all �xed-point-free
involutions ϕ in the symmetric group Σ(Φ). Represent each ϕ as a product of transpositions
. . . (s, t) . . . where s, t ∈ Φ, and take the product over all such transpositions.

38

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


M.Sc. Thesis � D. Barake McMaster University � Mathematics & Statistics

For example, let r ≥ 1 be odd and consider the square-bracket state [h]−r[h]−11. We have
Φ = {r,1} and clearly out of the two elements of Σ(Φ), only (r,1) is a �xed-point-free involution.
Since it is already a single transposition, we get that

ZH([h]−r[h]−11, q) =
2(−1)r+1

(r − 1)!(1 − 1)!
Gr+1(q) =

2

(r − 1)!
Gr+1(q).
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Chapter 6

The p-adic Perspective

The following aforementioned lemma gives an expression for a family of square-bracket states in
terms of the usual basis of the Heisenberg VOA:

Lemma 6.0.1 ([FM22], Lemma 10.2). For an odd integer r ≥ 1, we have

(r − 1)![h]−r[h]−11 = ∑
n≥0

n!S(n+1)
r h−n−1h−11 −

Br+1
r + 1

1,

where

S(n+1)
r =

1

n!
∑
j≥0

(
n

j
)(−1)n+j(j + 1)r−1 (6.1)

denote Stirling numbers of the second kind.

With r = {pa(p−1)+1}a≥0, the authors take the p-adic limit of this sequence of states and obtain
a state u1 in the p-adic Heisenberg VOA S. When considering p-adic VOAs, the character map
is extended to a map giving rise to p-adic modular forms. In the Heisenberg case, the process is
as follows. Theorem 9.6 of [FM22] �rst states that there is a surjective Qp-linear map

f ∶H → Qp[E2,E4,E6] (6.2)

v ↦ η(q)ZH(v, q)

By taking p-adic limits, it is then shown that f (u1) = 2G⋆
2(q) where G

⋆
2 is the p-adic Eisenstein

series seen in eq. (1.1). Such series are constructed in [Ser73b] as follows: Let {ki}i≥0 be a
sequence of natural numbers with ki ≥ 4 for each i and with p-adic limit k ≥ 2. Then, in the
p-adic topology we have

lim
i→∞

Gki(q) = G
⋆
k(q) =

(1 − pk−1)ζ(1 − k)

2
+ ∑
n≥1

σ⋆k−1(n)q
n (6.3)

where ζ(1−k) denotes the Riemann Zeta function and σ⋆k(n) is the sum of all divisors of n raised
to the power k, which are coprime to p.

6.1 Some Square-Bracket States

We �rst generalize Lemma 10.2 of [FM22] in order to obtain a broader family of states. To do
this, we require two technical lemmas.

Lemma 6.1.1. For an odd integer t ≥ 1, we have

[h]t−11 = ∑
k≥0

(
t

2k
)

(2k)!

k!(−24)k
ht−2k−1 1.

Proof. We proceed by induction. Recall the derived expression for the square-bracket state
encountered in Section 4.1:

[h]−1 = h−1 −
1

12
h1 +

1

24
h2 −

19

720
h3 +⋯
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For t = 1 it is clear that [h]−11 = h−11 which agrees with

[h]−11 = ∑
k≥0

(
1

2k
)

(2k)!

k!(−24)k
h1−2k−1 1 = h−11.

Suppose the claim holds up to some t > 1. Then, we have

[h]−1∑
k≥0

(
t

2k
)

(2k)!

k!(−24)k
ht−2k−1 1

= ∑
k≥0

(
t

2k
)

(2k)!

k!(−24)k
ht−2k+1−1 1 +∑

k≥0

(
t

2k
)

2(2k)!(t − 2k)

k!(−24)k+1
ht−2k−1−1 1

= ∑
k≥0

(
t

2k
)

(2k)!

k!(−24)k
ht−2k+1−1 1 +∑

k≥0

2(t!)(t − 2k)

k!(t − 2k)!(−24)k+1
ht−2k−1−1 1

= ∑
k≥0

(
t

2k
)

(2k)!

k!(−24)k
ht−2k+1−1 1 +∑

k≥0

2(t!)(k + 1)

(k + 1)!(t − 2k − 1)!(−24)k+1
ht−2k−1−1 1

= ∑
k≥0

(
t

2k
)

(2k)!

k!(−24)k
ht−2k+1−1 1 +∑

k≥0

(
t

2k + 1
)

(2k + 2)!

(k + 1)!(−24)k+1
ht−2k−1−1 1.

Re-indexing the second sum, and making use of Pascal's rule, we get

= ht+1−1 +∑
k≥1

(
t

2k
)

(2k)!

k!(−24)k
ht−2k+1−1 1 +∑

k≥1

(
t

2k − 1
)

(2k)!

k!(−24)k
ht−2k+1−1 1

= ht+1−1 +∑
k≥1

(
t + 1

2k
)

(2k)!

k!(−24)k
ht−2k+1−1 1

= [h]t+1−1 1

which is what we wanted to show.

It is interesting to note that the expression given in Lemma 6.1.1 is related to Hermite polynomials
Hen(x). These can be written in the form

Hen(x) = (x − ∂x)
n
⋅ 1

for n ≥ 0. By adding the factor 1/12 to the partial derivative operator, and expanding via the
binomial formula one obtains the desired expression.

Lemma 6.1.2. For odd integer t ≥ 1, we have

h1[h]
t
−11 = ∑

k≥0

(
t

2k + 1
)
(2k + 1)!

k!(−24)k
ht−2k−1−1 1.

Proof. The proof is similar to the computation of the second sum in Lemma 6.1.1.

We may now give the desired generalization which makes use of this new parameter t. Aside
from some extra coe�cients which we have already calculated above, the process is similar to
that of the original lemma.

Proposition 6.1.3. For odd integers r, t ≥ 1, we have

(r − 1)![h]−r[h]
t
−11 = ∑

n≥0
∑
k≥0

(
t

2k
)
n!S

(n+1)
r (2k)!

k!(−24)k
h−n−1h

t−2k
−1 1

−∑
k≥0

(
t

2k + 1
)
Br+1(2k + 1)!

k!(r + 1)(−24)k
ht−2k−1−1 1
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Proof. First, using Lemma 6.1.1 we compute

(r − 1)![h]−r[h]
t
−11

= (r − 1)![h]−r ∑
k≥0

(
t

2k
)

(2k)!

k!(−24)k
ht−2k−1 1

= (r − 1)!Resz z
−rez ∑

n∈Z
hn (∑

k≥0

(
t

2k
)

(2k)!

k!(−24)k
ht−2k−1 1)(ez − 1)

−n−1
.

Applying Lemma 6.1.2, we obtain the expression

= (r − 1)!Resz z
−rez (∑

n≥0
∑
k≥0

(
t

2k
)

(2k)!

k!(−24)k
h−n−1h

t−2k
−1 1 (ez − 1)

n
)

+ (r − 1)!Resz z
−rez ∑

k≥0

(
t

2k + 1
)
(2k + 1)!

k!(−24)k
ht−2k−1−1 1 (ez − 1)

−2
,

and so we must compute the coe�cients of the terms

∑
n≥0
∑
k≥0

(
t

2k
)

(2k)!

k!(−24)k
h−n−1h

t−2k
−1 1 (6.4)

∑
k≥0

(
t

2k + 1
)
(2k + 1)!

k!(−24)k
ht−2k−1−1 1. (6.5)

For the coe�cient of eq. (6.4), we have

(r − 1)!Resz z
−rez(ez − 1)n = (r − 1)!Resz z

−r
n

∑
j=0

(
n

j
)(−1)n+je(j+1)z

= (r − 1)!Coe�zr−1
n

∑
j=0

(
n

j
)(−1)n+j (∑

i≥0

(j + 1)i

i!
zi)

= (r − 1)!
n

∑
j=0

(
n

j
)(−1)n+j (

(j + 1)r−1

(r − 1)!
)

=
n

∑
j=0

(
n

j
)(−1)n+j(j + 1)r−1

= n!S(n+1)
r

which agrees with the statement. For the coe�cient of eq. (6.5), we make use of eq. (4.7) to
obtain

(r − 1)!Resz z
−rez(ez − 1)−2 = −(r − 1)!Resz z

−r∂z (e
z − 1)

−1

= −(r)!Coe�zr
⎛

⎝
∑
j≥0

Bj

j!
zj−1

⎞

⎠

= −
Br+1
r + 1

which agrees with the statement and we are done.

6.2 Characters and p-adic Convergence

We will now take the character of the family of states considered in Proposition 6.1.3 by using
eq. (5.11). Then under a suitable choice of sequence in r, we establish the p-adic convergence of
these of states, giving rise to the main result of this chapter. First, a combinatorial lemma:
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Lemma 6.2.1. Let n ≥ 0 be an integer. The number of ways of partitioning a set of 2n elements
into exactly n pairs is (2n − 1)!!. This is the product of all odd integers no greater than 2n − 1,
and if n = 0 then (−1)!! = 1.

Proof. Clearly if n = 0 then there is only one way of partitioning a set of no elements into no
pairs, and so (2(0) − 1)!! = (−1)!! = 1. Now let n ≥ 1. We begin with 2n elements and choose
2. From the remaining 2n − 2, we choose another 2 and so on, until there are no elements left.
Since there are n! ways of doing this and we are not concerned with order, we obtain

1

n!
(
2n

2
)(

2n − 2

2
)⋯(

2

2
) =

1

n!
(
(2n)!(2n − 2)!(2n − 4)!⋯2!

2n(2n − 2)!(2n − 4)!⋯2!
)

=
(2n)!

2nn!

=
(2n)(2n − 1)(2n − 2)(2n − 4)⋯(2)

2nn!
.

Since the numerator consists of 2n terms starting with 2n which is even, each even term is divided
preciely by one of the 2s in the denominator. After rearranging, we get

=
(n)(2n − 1)(n − 1)(2n − 3)⋯(1)(1)

n!
= (2n − 1)(2n − 3)⋯(1)

= (2n − 1)!!

which is what we wanted to show.

Proposition 6.2.2. For odd integers r, t ≥ 1, we have

η(q)ZH([h]−r[h]
t
−11, q) =

2(t+1)/2t(t − 2)!!

(r − 1)!
G

(t−1)/2
2 (q)Gr+1(q).

Proof. We make use of eq. (5.11). In this case, we have the set

Φ = {r,11,12, . . . ,1t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t times

}

where we have labelled the 1s for clarity, and we wish to consider all �xed-point-free involutions
of Σ(Φ). That is, we want all ways of partitioning Φ into parts of size 2, something which can
be done since t is odd here.

Suppose �rst that r is paired with 11, and the remaining 12, . . . ,1t are paired amongst themselves.
Each way of partitioning these remaining 1s into parts of size 2 yields a �xed-point-free involution.
For one such partition (and thus involution), since there are t − 1 remaining 1s which get put in
(t − 1)/2 parts of size 2, we get

(
2

(r − 1)!
Gr+1(q))(

2

(1 − 1)!
G2(q))

(t−1)/2

=
2(t+1)/2

(r − 1)!
G

(t−1)/2
2 (q)Gr+1(q)

where we recall that r is odd here. Using Lemma 6.2.1, there are then (t − 2)!! distinct ways
of partitioning the remaining 12, . . . ,1t into (t − 1)/2 parts of size 2. Each way yields the same
expression as above and so we multiply by the factor (t−2)!!. Finally, we may repeat this process
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t times, since r can be paired with 12 then with 13 and so on, until r is paired with 1t. This
yields the expression

2(t+1)/2t(t − 2)!!

(r − 1)!
G

(t−1)/2
2 (q)Gr+1(q)

which establishes the result.

With this, we denote (in the notation of [FM22]) the state

vr,t =
(r − 1)!

2(t+1)/2t(t − 2)!!
[h]−r[h]

t
−11

and so it is now immediate for Proposition 6.1.3 that

vr,t =
1

2(t+1)/2t(t − 2)!!

⎛

⎝
∑
n≥0
∑
k≥0

(
t

2k
)
n!S

(n+1)
r (2k)!

k!(−24)k
h−n−1h

t−2k
−1 1

− ∑
k≥0

(
t

2k + 1
)
Br+1(2k + 1)!

k!(r + 1)(−24)k
ht−2k−1−1 1)

and

f (vr,t) = G
(t−1)/2
2 (q)Gr+1(q)

where f is the map de�ned in eq. (6.2). The goal is now to consider sequences in r of these states
for some �xed odd t ≥ 1, and assess convergence in the p-adic topology. We rescale the states
vr,t as in [FM22] by de�ning ur,t = (1 − pr)(2(t+1)/2t(t − 2)!!)vr,t for some odd prime p. That is,
de�ne

ur,t = (1 − pr)
⎛

⎝
∑
n≥0
∑
k≥0

(
t

2k
)
n!S

(n+1)
r (2k)!

k!(−24)k
h−n−1h

t−2k
−1 1

− ∑
k≥0

(
t

2k + 1
)
Br+1(2k + 1)!

k!(r + 1)(−24)k
ht−2k−1−1 1)

We will be considering the sequence of states (upa(p−1)+1,t)a≥0, again for r, t ≥ 1 odd. The
following is an extension of Lemma 10.4 of [FM22]:

Lemma 6.2.3. Fix t ≥ 1 odd, and let p be an odd prime with r = pa(p − 1) + 1, s = pb(p − 1) + 1
and a ≤ b. Then for any �xed k within the range 0 ≤ k ≤ ⌊t/2⌋ and any n ≥ 0 we have

(1 − pr)(
t

2k
)
n!S

(n+1)
r (2k)!

k!(−24)k
≡ (1 − ps)(

t

2k
)
n!S

(n+1)
s (2k)!

k!(−24)k
mod pa+x+1.

for some �xed integer x.

Proof. Let ∣ ⋅ ∣p denote the p-adic absolute value. We have

RRRRRRRRRRR

(
t

2k
)
n!S

(n+1)
r (2k)!

k!(−24)k
− (

t

2k
)
n!S

(n+1)
s (2k)!

k!(−24)k

RRRRRRRRRRRp
= ∣n!S(n+1)

r − n!S(n+1)
s ∣

p
∣(
t

2k
)

(2k)!

k!(−24)k
∣
p

.

The rightmost term is dependent only on t and k which are �xed, and so denote by x the p-adic

valuation of this term, which is also �xed. We show now that n!S
(n+1)
r ≡ n!S

(n+1)
s mod pa+1.

Recall the formula

n!S(n+1)
r =

n

∑
j=0

(
n

j
)(−1)n+j(j + 1)r−1.
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There are two cases to consider. If p ∣ (j + 1) then of course (j + 1)r−1 ≡ 0 mod pa+1. Suppose
p ∤ (j + 1). This means that p and (j + 1) are coprime, and subsequently that pa+1 and (j + 1)
are coprime. Recall that the classical Euler totient function ϕ(n) counts the number of positive
integers up to n which are coprime to n, and that ϕ(pa+1) = pa(p − 1). So by Euler's theorem,

(j + 1)p
a(p−1) = (j + 1)r−1 ≡ 1 mod pa+1.

which means that in this case we have

n!S(n+1)
r ≡

n

∑
j=0

p∤(j+1)

(
n

j
)(−1)n+j mod pa+1

and since the right hand side above does not depend on r, this establishes that n!S
(n+1)
r ≡ n!S

(n+1)
s

mod pa+1. Putting everything together, we get

(
t

2k
)
n!S

(n+1)
r (2k)!

k!(−24)k
≡ (

t

2k
)
n!S

(n+1)
s (2k)!

k!(−24)k
mod pa+x+1.

Finally since x is �xed, for su�cently large a we have

1 − pp
a(p−1)+1 ≡ 1 − pp

b(p−1)+1 mod pa+x+1,

and so by combining the above two congruences together, we obtain the desired result.

The convergence of the terms of ur,t involving the Bernoulli numbers requires Kummer's con-
gruence (cf. [Kum51]) which states that if r + 1 and s+ 1 are positive even integers not divisible
by p − 1, (or equivalently, r, s /≡ −1 mod p − 1) then

(1 − pr)
Br+1
r + 1

≡ (1 − ps)
Bs+1
s + 1

mod pm+1

whenever r + 1 ≡ s + 1 mod ϕ(pm+1).

Lemma 6.2.4. Fix t ≥ 1 odd and let p > 3 be a prime with r = pa(p− 1)+ 1, s = pb(p− 1)+ 1 and
a ≤ b. Then for k in the range 0 ≤ k ≤ ⌊(t − 1)/2⌋, we have

(1 − pr)(
t

2k + 1
)
Br+1(2k + 1)!

k!(r + 1)(−24)k
≡ (1 − ps)(

t

2k + 1
)
Bs+1(2k + 1)!

k!(s + 1)(−24)k
mod pa+y+1

for some �xed integer y.

Proof. We proceed similarly to Lemma 6.2.3. First write

∣(1 − pr)
Br+1
r + 1

− (1 − ps)
Bs+1
s + 1

∣
p
∣(

t

2k + 1
)
(2k + 1)!

k(−24)k
∣
p

.

Once again the rightmost term is dependent only on t and k which are �xed, and so denote by
y the p-adic valuation of this term, which is also �xed. Notice that

pa(p − 1) + 2 ≡ pb(p − 1) + 2 mod pa(p − 1)

and pa(p − 1) = ϕ(pa+1). Since r + 1 and s + 1 are even and clearly not divisible by p − 1 (since
p > 3), by Kummer's congruence we obtain

∣(1 − pr)
Br+1
r + 1

− (1 − ps)
Bs+1
s + 1

∣
p
∣(

t

2k + 1
)
(2k + 1)!

k(−24)k
∣
p

=
1

pa+y+1

which gives us the right congruence.
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Putting everything together thus far, we are able to establish the following theorem:

Theorem 6.2.5. Denote by Q the ring of quasi-modular forms and im(f) the image of the p-adic
character map for the Heisenberg VOA in the ring of p-adic modular forms. Then, the quotient
im(f)/Q is an in�nite dimensional vector space.

Proof. The congruences established in Lemmas 6.2.3 and 6.2.4 imply that the sequence of states
(upa(p−1)+1,t)a≥0 for any odd t ≥ 1 and prime p > 3 converges to some state which we will denote
ut, following [FM22]. Then, using Proposition 6.2.2 and in the p-adic topology, we get

f (ut) = lim
a→∞

(1 − pp
a(p−1)+1)2(t+1)/2t(t − 2)!!G

(t−1)/2
2 (q)Gpa(p−1)+2(q)

= 2(t+1)/2t(t − 2)!!G
(t−1)/2
2 (q) lim

a→∞
(1 − pp

a(p−1)+1)Gpa(p−1)+2(q).

Notice that lima→∞ 1 − pp
a(p−1)+1 = 1 and lima→∞ pa(p − 1) + 2 = 2 in the p-adic sense. Making

use of 6.3 we obtain

f (ut) = 2(t+1)/2t(t − 2)!!G
(t−1)/2
2 (q)G⋆

2(q)

where G⋆
2(q) is the p-adic modular form encountered in eq. (1.1). After taking the quotient by

Q, any linear combination ∑j αjf (utj) for odd tj ≥ 1 and scalars αj is never quasi-modular.
Thus we have shown that in the Heisenberg case, im(f ) contains in�nitely many p-adic modular
forms of level one which are not quasi-modular.

6.3 The Angle-Bracket Formalism for the Heisenberg VOA

In this �nal section, we introduce a new kind of VOA structure obtained from a slight modi�cation
of the Artin-Hasse exponential :

AHp(z) = AHp(z) − 1 = exp
⎛

⎝
∑
i≥0

zp
i

pi
⎞

⎠
− 1 ∈ Aut(O) (6.6)

for a �xed prime p. Denote by Y ⟨a, z⟩ the vertex operator transformed under the coordinate
transformation AHp(z). Then

Y ⟨a, z⟩ = ∑
n∈Z

⟨a⟩nz
−n−1. (6.7)

We wish to proceed in a similar fashion as in the square-bracket formalism, that is, we would
like to obtain expressions for certain states in the angle-bracket Heisenberg VOA ⟨H⟩. We use
eq. (4.1) to write

h⟨z⟩ = Y ⟨h−11, z⟩ = Y (h−11,AHp(z))AH
′
p(z). (6.8)

We immediately conclude the following facts, the second holding true for any VOA V .

Lemma 6.3.1. Let h⟨z⟩ be the Heisenberg �eld transformed under the action of AHp(z). Then,
⟨h⟩−11 = h−11.

Proof. We compute

⟨h⟩−11 = Resz z
−1AH′

p(z)∑
n∈Z

hn1 (AHp(z))
−n−1

= Coe�z0 AH
′
p(z)∑

n≥0

h−n−11 (AHp(z))
n

= h−11

since only n = 0 gives a constant term and AH′
p(z) = 1 + o(z) in the last equality.
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Lemma 6.3.2. Let ⟨ω⟩ denote the conformal state transformed under the action of AHp(z).
We have ⟨ω⟩ = ω − (cV /24)1.

Proof. The n-th derivative of AHp(z) for n ≥ 1 is given by the expression

AH(n)
p (z) =

⎛

⎝
∑
i≥0

zp
i−1

pi
⎞

⎠

n

AHp(z).

Using this, we compute

{AHp(z), z} =
⎛

⎝
∑
i≥0

zp
i−1

pi
⎞

⎠

2

−
3

2

⎛

⎝
∑
i≥0

zp
i−1

pi
⎞

⎠

2

= −
1

2

⎛

⎝
∑
i≥0

zp
i−1

pi
⎞

⎠

2

Making use of the statement of Theorem 3.4.4 results in

Y (ω,AHp(z))
⎛

⎝
∑
i≥0

zp
i−1

pi
AHp(z)

⎞

⎠

2

−
cV
24

⎛

⎝
∑
i≥0

zp
i−1

pi
⎞

⎠

2

,

and applying this to 1 and extracting the constant term as in Proposition 4.2.1 gives the desired
expression ⟨ω⟩ = ω − (cV /24)1.

Unlike the square-bracket case, deriving explicit expressions for the angle-bracket modes them-
selves is a much more di�cult task, even when working with the Heisenberg VOA. We illustrate
the di�culties here. To obtain expressions for ⟨h⟩n = ⟨h−11⟩n, we multiply eq. (6.7) by zn to get

⟨h⟩n = Resz Y (h−11,AHp(z))AH
′
p(z)z

n. (6.9)

Once again, by Lemma 3.2.2 (a), Y (h−11,AHp(z)) ∈ F(V ), and so eq. (6.8) truncates when
applied to any element of H. We may thus extend Lemma 2.1.1 to this case with w = AHp(z),
noting that AHp(z) ∈ zC[[z]], which gives

⟨h⟩n = Resw h(w) (AH−1
p (w))

n
(6.10)

where AH−1
p (w) denotes the compositional inverse. Theorem 5.4.2 of [Sta99] gives the following

variant of the Lagrange inversion theorem for formal power series: If v(z) ∈ zV [[z]] then for
n, k ∈ Z with k ≠ 0,

Coe�zk (v−1(z))
n
=
n

k
Coe�z−n v(z)

−k

Applied to our case, one would have to look at

c(n, k) = Coe�wk (AH
−1
p (w))

n
=
n

k
Coe�w−n (AHp(w))

−k
.

Notice from above and from eq. (6.10) that we can set c(n,0) = 1 for all n ∈ Z, as a term w
of degree zero is multiplied by h0w

−1 to yield a term z−1 of degree −1 and h0 acts as the zero
operator on H. If we can obtain c(n, k) given any k, then we can write

⟨h⟩n = ∑
k∈Z
k≠0

c(n, k)hk.

If n = 0, then ⟨h⟩0 = h0. Due to the complicated behaviour of the Artin-Hasse exponential, these
c(n, k) are challenging to compute for general n, and so we go no further in attempting to derive
such explicit expressions.

If we are interested in computations done in the angle-bracket formalism rather than explicit
expressions for the modes, we are capable of obtaining the following results. These are done
within the context of Section 6.2.
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Proposition 6.3.3. Let h⟨z⟩ be the Heisenberg �eld transformed under the action of AHp(z)
for a �xed odd prime p. Then,

(p − 1)!⟨h⟩−p1 = ∑
n≥0

n!S(n+1)
p h−n−11.

Proof. Using Lemma 6.3.1, we compute

(p − 1)!⟨h⟩−p1

= Resz z
−pAH′

p(z)∑
n∈Z

hn1 (AHp(z))
−n−1

= Resz z
−pAH′

p(z)∑
n≥0

h−n−11 (AHp(z))
n
.

We compute the coe�cient of ∑n≥0 h−n−11 as follows:

(p − 1)!Resz z
−pAH′

p(z) (AHp(z))
n

= (p − 1)!Resz z
−p ⎛

⎝
∑
i≥0

zp
i−1

pi
⎞

⎠
AHp(z) (AHp(z) − 1)

n

= (p − 1)!Resz z
−p ⎛

⎝
∑
i≥0

zp
i−1

pi
⎞

⎠
(∑
m≥0

(
n

j
)(−1)n+m (AHp(z))

m+1
)

= (p − 1)!Coe�zp−1
⎛

⎝
∑
i≥0

zp
i−1

pi
⎞

⎠

⎛

⎝
∑
m≥0

(
n

m
)(−1)n+m

⎛

⎝
exp

⎛

⎝
(m + 1)∑

l≥0

zp
l

pl
⎞

⎠

⎞

⎠

⎞

⎠
.

There are two instances above where one obtains a term zp−1: First, when the summand corre-
sponding to i = 1 is multiplied with the constant term 1 from the exponential series, and second
when the summand corresponding to i = 0 (which is 1) is multiplied with the p−1-th term in the
exponential series with l = 0. Thus the coe�cient of ∑n≥0 h−n−1h−11 becomes

(p − 1)!(
1

p

n

∑
m=0

(
n

m
)(−1)n+m +

n

∑
m=0

(
n

m
)(−1)n+m

(m + 1)p−1

(p − 1)!
)

=
n

∑
m=0

(
n

m
)(−1)n+m(m + 1)p−1

= n!S(n+1)
p

which agrees with the statement and we are done.

Once again, along with Lemmas 6.3.1 and 6.3.2 we see that the two formalisms seem to agree:

(p − 1)!⟨h⟩−p1 = (p − 1)![h]−p1

where we have made use of a simpli�ed version of the result from Proposition 6.1.3. This is not
always the case, as the following result will establish. In order to show this, we require a simple
preliminary lemma:

Lemma 6.3.4. For any integer n ≥ 3 and l = (n + 1)/(n − 1), l ∈ Z if and only if n = 3.

Proof. Clearly if n = 3 then l = 2. If l ∈ Z and n > 3, notice that (n + 1)/(n − 1) is a decreasing
function and that limn→∞(n + 1)/(n − 1) = 1. Thus l /∈ Z if n > 3 and so l ∈ Z implies n = 3.

Now compare the following result with that of Proposition 6.1.3 where t = 0:
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Proposition 6.3.5. Let h⟨z⟩ be the Heisenberg �eld transformed under the action of AHp(z)
for a �xed odd prime p ≠ 3. Then,

(p − 1)!⟨h⟩−p⟨h⟩−11 = ∑
n≥0

n!S(n+1)
p h−n−11 − (

Bp+1

p + 1
+

(p − 1)!

12
)1.

Proof. Using Lemma 6.3.1 once again,

(p − 1)!⟨h⟩−p⟨h⟩−11

= (p − 1)!⟨h⟩−ph−11

= (p − 1)!Resz z
−pAH′

p(z)∑
n∈Z

hnh−11 (AHp(z))
−n−1

= (p − 1)!Resz z
−pAH′

p(z)(∑
n≥0

h−n−1h−11 (AHp(z))
n
+ (AHp(z))

−2
1) .

Computing the coe�cient of the term ∑n≥0 h−n−1h−1 is the same as in Proposition 6.3.5, and the
resulting term is identical. For the coe�cient of 1, we proceed as in Proposition 6.1.3:

(p − 1)!Resz z
−pAHp(z) (AHp(z))

−2

= −(p − 1)!Resz z
−p∂z (AHp(z))

−1

= −(p)!Coe�zp
⎛
⎜
⎝
∑
j≥0

Bj

j!

⎛

⎝
∑
i≥0

zp
i

pi
⎞

⎠

j−1
⎞
⎟
⎠
.

Consider the case j = 0. Using the geometric series we get

⎛

⎝
∑
i≥0

zp
i

pi
⎞

⎠

−1

=
1

z
∑
l≥0

⎛

⎝
−∑
i≥1

zp
i−1

pi
⎞

⎠

l

.

Looking above, for i ≥ 2, we know that l(pi − 1) − 1 = lpi − l − 1 > p and so no terms zp appear
here. If i = 0, then we need to see if l(p − 1) − 1 = p, which is equivalent to the condition that
l = (p + 1)/(p − 1). By Lemma 6.3.4, we must have that p = 3, since l ∈ Z, however we have
omitted this case. Thus there are no terms zp when j = 0.

Now, if j = 1, then certainly there are no terms zp. For j ≥ 2, we have

⎛

⎝
∑
i≥0

zp
i

pi
⎞

⎠

j−1

=
⎛

⎝
z +

zp

p
+
zp

2

p2
+⋯

⎞

⎠

j−1

.

Thus terms zp only appear when j = 2 and when j = p + 1. The coe�cient of 1 is therefore

−(p)!(
1

12p
+

Bp+1

(p + 1)!
) = −(

Bp+1

p + 1
+

(p − 1)!

12
)

which agrees with the statement and we are done.

The above computation establishes that the angle-bracket formalism might bring about new
results when considering sequences of states which give rise to p-adic modular forms. Such
computations are tedious, however, and so it is natural to speculate whether there exists an
ameliorated theory which is better suited to this task.

One such possibility is to develop a theory of Hecke operators arising from H. These play an
important role in the theory of modular forms as well as p-adic modular forms, and so a natural
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realization of Hecke operators on H (or equivalently [H] or ⟨H⟩) would greatly assist in these
kinds of computations. Though this is only hypothetical, the authors of [KSU89a], [KSU89b],
and [KSU91] have shown that such operators do arise algebraically in the context of conformal
�eld theory, namely out of the Fock space of the Fermionic algebra. It is then an open question
whether similar structures exist in the Heisenberg algebra, in any of its various incarnations.

50

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


List of Symbols

Notation Description

V [[z]] space of formal power series. (2.1)
V [z] space of V -valued polynomials in z. (2.2)
V [[z, z−1]] space of formal Laurent series. (2.3)
V [z, z−1] space of V -valued Laurent polynomials in z. (2.4)
V ((z)) space of truncated formal Laurent series. (2.5)
δ(z) formal delta series. (2.6)
Coe�zn coe�cient of the term zn. (2.7)
Resn coe�cient of the term z−1. (2.8)
F(V ) space of �elds on V . (2.9)
D derivation on a ring. (see Proposition 2.2.1)
w Witt Lie algebra. (2.12)
v Virasoro Lie algebra. (2.14)
Ln element of Virasoro Lie algebra. (2.14)
k central element of Virasoro Lie algebra. (2.14)
δm,n Kronecker delta function. (2.14)
Pn(V ) space of primary states of weight n. (2.15)
Y (⋅, ⋅) vertex operator map. (2.19)
1 vacuum state. (2.21)
ω conformal state. (2.23)
IV identity of V . (2.21)
cV central charge of VOA. (2.24)

ĥ a�ne Lie algebra associated to h. (2.39)

ĥ+ subalgebra of ĥ of elements of positive weight. (2.43)

ĥ− subalgebra of ĥ of elements of negative weight. (2.44)
U(V ) tensor algebra of V . (2.45)
S(V ) symmetric algebra of V . (2.49)
H Fock space of Heisenberg VOA. (2.48)
h(z) Heisenberg �eld. (2.51)
hn element of End(H). (2.48)
Ind induced module. (2.48)
wt weight. (2.5)
∶A(z)B(z)∶ normally ordered product of �elds A(z),B(z). (2.52)
O the set C[[z]]. (3.1)
φ(z) coordinate transformation, element of Aut(O). (3.1)
Tφ linear isomorphism associated to φ. (3.21)
Yφ vertex operator transformed under the action of φ. (3.25)
C(n,m) set of all m-compositions of n. (see Proposition 3.1.1)
C′(n,m) set of all very weak m-compositions of n. (see

Lemma 4.1.1)
Qr the quotient ring zC[[z]]/⟨zr⟩. (3.5)
v(z) the power series ∑i≥0 liz

i+1 in the exponent of φ. (see
Proposition 3.2.3)

v the operator −∑i≥0 liLi associated to v(z). (see Proposi-
tion 3.2.3)

R(ε) dual numbers. (see Proposition 3.2.3)
∆φ representation of Aut(O) on F(V ) associated to φ. (3.22)
Θφ representation of Aut(O) on Hom(V,F(V )) associated to

φ. (see Proposition 3.3.2)
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List of Symbols

Notation Description

φz(t) the coordinate transformation φ(z + t) − φ(z). (see
Lemma 3.3.1)

{φ(z), z} Schwarzian derivative of φ(z) with respect to z. (see
Lemma 3.4.3)

[V ] Fock space of square-bracket VOA. (4.13)
[H] Fock space of square-bracket Heisenberg VOA. (see The-

orem 5.2.3)
Y [⋅, ⋅] vertex operator transformed under the action of ez − 1.

(4.2)
h[z] Heisenberg �eld transformed under the action of ez − 1.

(4.2)
[h]n element of End([H]). (4.3)
[ω] square-bracket conformal state. (see Proposition 4.2.1)
Bn n-th Bernoulli number. (4.7)

s
(k)
n signed Stirling number of the �rst kind on n permutations

with k disjoint cycles. (4.8)

S
(m)
n Stirling number of the second kind on n objects in m sub-

sets. (6.1)
H complex upper-half plane. (see Section 5.1)
Γ the modular group SL2(Z). (5.2)
Gk(q) weight k Eisenstein series. (5.5)
Ek(q) normalized weight k Eisenstein series. (5.7)
Q algebra of quasi-modular forms of level one. (see Theo-

rem 5.1.1)
M algebra of holomorphic modular forms of level one. (see

Theorem 5.1.1)
Qv(q) quasi-modular form of weight k attached to the state v.

(see Theorem 5.1.1)
ZV (⋅, q) character map of VOA. (5.9)
Tr trace. (5.9)
o(v) zero mode of v. (5.8)
σk(n) divisor function. (5.6)
η(q) Dedekind eta-function. (see Proposition 5.2.1)
ϕ(⋅) Euler totient function. (see Lemma 6.2.3)
µ(⋅) mobius function. (1.2)
p(n) unrestricted partition function on n elements. (see Propo-

sition 5.2.1)
σ⋆(n) sum of divisors of n coprime to a prime p. (1.1)
Σ(A) symmetric group on the set A. (5.11)
Qp ring of p-adic numbers. (6.2)
f p-adic character map η(q)ZH(⋅, q). (6.2)
S p-adic Heisenberg VOA. (6.2)
G⋆
k(q) weight k p-adic Eisenstein series. (1.1)

n!! product of all odd integers no greater than n. (see
Lemma 6.2.1)

∣ ⋅ ∣p p-adic absolute value. (see Lemma 6.2.3)
AHp(z) Artin-Hasse exponential. (1.2)
AHp(z) coordinate transformation AHp(z) − 1. (6.6)
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List of Symbols

Notation Description

⟨H⟩ Fock space of angle-bracket Heisenberg VOA. (6.7)
Y ⟨⋅, ⋅⟩ vertex operator transformed under the action of AHp(z).

(6.7)
h⟨z⟩ Heisenberg �eld transformed under the action of AHp(z).

(6.8)
⟨h⟩n element of End(⟨H⟩). (6.9)
⟨ω⟩ angle-bracket conformal state. (see Lemma 6.3.2)
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