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Abstract
In recent years, deep learning-based image restoration neural networks have become the

methodology of choice, outperforming their traditional counterparts and being gradually

adopted in all systems that process, store, or display images. Despite the apparent

successes of these networks, rooms for improvements still exist, as demonstrated by

this thesis; particularly in terms of restoring sharp and clean high frequency details

and textures, which still remains a challenge for existing deep learning-based image

restoration methods.

To overcome the said weaknesses of existing methods, we study and try to identify the

common root causes for the lack of desired sharpness and clarity in the output images

of those learned deep restoration models against various types of degradations. Our

observations point to the necessity of incorporating into neural restoration models the

priors on viewer desired high frequency constructs.

In our study, we introduce several novel techniques to investigate and utilize informa-

tive high-frequency priors. These techniques include: (i) inducing convolutional neural

networks’ filters to extract valuable frequency information from images via a pre-designed

filter bank, (ii) modifying the loss function of the restoration model during training to

prioritize high-frequency textures, (iii) incorporating an auxiliary loss function on the

metadata to shape the neural network outputs according to the prior knowledge of the

input images, and (iv) integrating the desired priors within the model architecture.

In our first work, we propose to put additional hand-crafted constraints on the filters

in convolutional neural networks to train them in faster convergence and better perfor-

mance. We encourage the convolutional neural network kernels to conform to common

spatial structures and features of natural images. The proposed regularization tech-

nique aims to include structural image priors of traditional filter banks to improve the

robustness and generality of convolutional neural network solutions. The usefulness of

this approach is not limited to image restoration; it can also be applied to other image

processing and computer vision tasks.

ii



In our second work, we design a new training strategy to adjust the loss function of

image restoration neural networks adaptively. By formulating a classical optimization

problem, we are able to pinpoint the complex textures for the image restoration neural

network to recover. The resulting textures can be used in the loss function of the neural

network during training, which leads to better estimation of the high-frequency textures

and details.

We have also researched on the problem of improving optical flow estimation. Specif-

ically, we investigate how to increase the accuracy of deep learning based optical flow

estimators. We develop a test time adaptive method that efficiently uses motion vector

maps provided in H.264 encoders to alleviate the domain shift problem at the inference

time. It is critical to handle the out-of-domain inferences as deep learning-based optical

flow estimators are mostly trained on synthetic datasets.

Finally, we propose a novel asymmetric image compression system with a high through-

put real-time encoder and a heavy-duty neural network decoder that is responsible for

high rate-distortion performance. The key technical development of the above asymmet-

ric coding system is a special image restoration network that can remove compression

artifacts due to the aggressively streamlined encoder.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Image Restoration

In engineering practice, images acquired by all light-sensing modalities are far from

being ideal for most of downstream applications. Through all steps of the image acquisi-

tion and representation process, including sensing, sampling, analog-t-digital conversion,

compression and transmission, the original image signal is contaminated and distorted

successively, causing image quality degradation. There are many degradation causes.

For examples, light scattering due to the presence of aerosols in the air, sensor noises,

poor illuminations, motions between the object and camera, dirty lenses, improper use

of imaging equipment, etc. Some common types of image degradation are illustrated

in Figure 1.1. To human viewers the most noticeable visual quality deteriorations are

compression artifacts, insufficient resolution, and the effects of various noises. Image

restoration is the endeavor of recovering the clean latent image from its degraded ver-

sion. Image restoration algorithms are indispensable in all imaging systems and appli-

cations, playing vital roles in various imaging modalities and tasks of both human and

computer vision, ranging from the professional fields of medicine, sciences, astronomy,

precision engineering to the gamut of consumer applications, such as Internet, social

media, entertainment, etc.
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(a) noisy image (b) resized (c) blurred (d) clean image

Figure 1.1: Common degradation types (A, B, C) and the desired clean
image after image restoration (D)

The image degradation process can be modeled as a mapping that transforms a

clean image into a degraded counterpart. The mapping is, in general, not bijective, i.e.,

the degradation process is not invertible. Consequently, this multidimensional inverse

problem has an infinite number of solutions, complicating the task of image restoration.

The design objective of image restoration algorithms is to find a recovered image as close

as possible to the original clean image. For most applications the restored images are

presented to human viewers, thus the meaningful image quality metric should be based

on psychovisual perception. In other words, optimal image restoration is to find the

closest point to the clean image in human perception space.

Traditionally, most degradation processes are considered linear systems followed by

additive noise. Therefore the degraded image can be written as Î = I ∗ B + N where

∗ represents convolution operation, N is the additive noise, B is the convolution ker-

nel for the degradation process, and I and Î are clean and observed degraded images

respectively. To overcome the difficulty of under-determinism in solving the above in-

verse problem of recovering I, it is necessary to constrain the solution space using prior

knowledge about clean images.

Before deep learning, many conventional machine learning methods were proposed

for image restoration. They attempt to recover the clean image using the iterative

maximum likelihood estimation or Bayesian approaches Hong et al. 2016; Boudjelal et al.

2018. In such processes, the priors are incorporated into the solution by a regularization
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function. Different priors may be chosen for countering different types of degradation.

For instance, the regularization can put some statistical constraints on the probability

distribution of the latent clean image. On the other hand, prior-driven regularization

can also be applied in some transform space (e.g., sparsity space).

However, employing traditional machine learning methods to solve image restoration

problems has following disadvantages. First, not all degradation processes are amenable

to mathematical modeling, such as inpainting. In such cases, constructing a suitable

regularization (prior) is not always possible. Compared with modern deep learning

methods, a more serious limitation of traditional counterparts is that the latter cannot

build very large non-linear models for image restoration by taking advantage of the

hardware advances in computing power and storage capacity. These powerful non-linear

deep neural network models can be learnt using large training data to draw statistical

inferences based on underlying distributions of the images. In contrast, due to their

much limited model size compared to deep neural networks, the traditional machine

learning models will prematurely saturate as the amount of training data increases, and

thus incapable of fully benefiting from the big data.

1.1.2 Deep Learning

As pointed out above, a hallmark of Deep Neural Networks (DNN) is their large model

size, having millions or even billions of parameters. The vast parameter space of DNNs

and the freedom of network architectures allow DNNs to learn highly non-linear com-

plex mappings, as the Vapnik-Chervonenkis dimensions for such models are very high.

Therefore, the performance curve of DNNs versus the number of training data does not

saturate quickly, as demonstrated in Figure 1.2.
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Figure 1.2: Comparison of deep learning and traditional machine learn-
ing generalization performance

Like in the early neural network architecture of multi-layer perceptrons (MLP), DNNs

are comprised of many sequential layers, each of which transforms the previous layer’s

output to another representation of the input image. In a properly trained DNN, the

representation of a given layer has more relevant information on the intended task than

the previous layer representation (Figure 1.3).

Figure 1.3: Sequential Structure of Deep Neural Networks

In the literature, the term "Deep" originally refers to the large number of layers of

such neural networks, i.e., the network depth, and subsequently also to corresponding

learning strategies and techniques for successfully training these deep neural networks.

One of the most popular DNNs is Convolutional1 Neural Networks (CNN). In CNNs,

each layer consists of some learnable filters (kernels) that extract features from the
1the notion of convolution here is slightly different from mathematical convolution operation

4

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Seyed Mehdi Ayyoubzadeh; McMaster University–
Department of Electrical and Computer Engineering

previous layer output (feature map). Finally, a non-linear activation function is applied

to the output of each layer to make it non-linear and increase the model complexity.

CNNs have demonstrated their superiority over MLPs in almost all computer vision

and image restoration tasks. The primary difference between these two types of neural

networks is in their structural organization. CNNs have neurons connected to a specific

local region from the preceding layers, and the network’s weights are shared across

multiple regions. Convolution layers in CNNs are designed based on two fundamental

assumptions about their input. Firstly, important visual patterns should be identified

regardless of their spatial location. Secondly, visual patterns tend to appear in local

regions of the input. These assumptions are reasonable for image inputs since detecting

edges or textures are generally useful for various computer vision and image processing

tasks, irrespective of their occurrence position.

The inductive bias in the CNN architecture results in convolution layers having sig-

nificantly fewer parameters than fully connected layers. As a result, deep CNNs can be

trained without overfitting, leading to their superior performance compared to MLPs.

The parameters of the CNNs, which are the weights of the convolution filters, are learned

via backpropagation algorithm Rumelhart et al. 1986 that minimizes a loss function. For

image restoration tasks, the typical loss functions are Mean Squared Error (MSE), Mean

Absolute Error (MAE), SSIM, and MS-SSIM loss (Zhao et al. 2015). In other words,

the CNN filters are fine tuned for the specific task and the training data, instead of

being prefixed as in traditional methods of image processing and computer vision. This

partially explains the superior performances of the former to the latter, particularly on

image restoration and computer vision tasks (Lim et al. 2017a; Yu et al. 2018b; Tian

et al. 2019; Liu et al. 2018), in the interest of this thesis.

1.1.3 Challenges of Deep Learning for Image Restoration Tasks

Despite their current successes in image restoration, CNN methods still face some tech-

nical challenges that hinder further progress of the field if not overcome.
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• First, although minimizing common losses such as MSE and MAE usually results in

a faster and more smooth convergence for most of the first-order optimizers, they

are not well-aligned metrics for perceptual quality of the human visual system

(Ayyoubzadeh and Royat 2021).

• Second, from the statistical point of view, MSE and MAE attempt to approxi-

mate the mean and median of the output image distribution given a certain input.

The solution usually results in a blurry output image when the latent image has

a multimodal distribution. To address this issue, the training framework of Gen-

erative Adversarial Networks (GANs) Goodfellow et al. 2014a can be employed

to tune the parameters of neural networks so that the restored image agrees with

the latent image in distribution space rather than in signal space. By adding the

probability diversity loss of GAN in the objective function, deep learning based

image restoration methods can regenerate much sharper details. However, GANs

have the following weaknesses of its own. (i) GANs are notoriously difficult to

train and converge. They are overly sensitive to parameters and hyperparameters.

(ii) although GAN-produced results are sharp, they usually contain artifacts that

are absent in natural scenes. (iii) since GANs have a mode-seeking tendency, they

may get trapped into one mode of the multimodal distribution (mode collapse).

• Third, a very large amount of data is required for CNNs to prevent overfitting and

have good generalization performance, which may not be always attainable for all

image restoration tasks.

1.1.4 Priors in Restoration CNNs

Just like for traditional image restoration methods, effective use of priors is critical for

successful recovery of the latent image. Using priors of the latent image can reduce the

risk of CNN overfitting without materially limiting the CNN learning capacity. Properly

chosen priors can improve the generalization performance of the CNN and make the

convergence process faster and smooth by "regularizing" the hypothesis space. A common

type of regularization methods assume the well-known signal sparsity prior to constrain
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the network weights or outputs. For example, using lq norm penalty favors models whose

weights have small magnitude. Krogh and Hertz 1992 proposed a regularization term

that penalizes large weights via the ℓ2 norm minimization to improve generalization

capability of neural networks.

Most of the regularization methods do not reduce the number of model parameters

but rather control the model complexity by adjusting the variance of the model and its

parameters. This is because simply reducing the number of parameters in a network risks

removing the true hypothesis from the hypothesis space. Safely simplifying hypothesis

space is challenging. In this regard, prior knowledge on the relationship between model

parameters is particularly valuable as it can be used to reduce the number of model

parameters.

Some of the regularization methods are procedural. For example, Ioffe and Szegedy

2015 proposed to perform batch normalization in each layer to reduce the internal covari-

ate shift in the network and improve the generalization and performance of the network.

Srivastava et al. 2014 used a dropout technique to regularize the network stochastically;

they showed that the dropout works like an ensemble of simpler models. In Chapter

3, we have proposed a procedural regularization method that iteratively optimizes the

choice of priors to prioritize the reconstruction of sharp details and textures in image

restoration CNNs.

Some priors can be implicitly induced in the network architecture. For example,

convolution kernels are subsets of fully connected dense layers. Two assumptions are

necessary to convert fully connected dense layers to convolution kernels (which have far

fewer parameters): (i) relevant input information can be extracted from pixel correlations

in spatial locality; (ii) extracting the same pattern is valuable irrespective of its location

in the input, which results in using the same set of weights at various locations. Many

of the research works attempt to incorporate meaningful priors into image restoration

networks, for example, using wavelets in the network architecture Liu et al. 2018 for

image restoration as they can capture both spatial and frequency information of the
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input efficiently. In Chapter 2, we have proposed a novel regularization technique for

CNNs. It uses, as a prior, a set of filters known for their capability of extracting image

features to regulate the shape of the learnable CNN kernels. This improves the learning

efficiency by guiding weight optimization with statistically significant 2D structures of

natural images.

Some priors can be represented in the form of auxiliary data or metadata. We have

also investigated ways of using this type of priors in learning of image restoration. The

auxiliary data can be either provided by another algorithm for another purpose or can

be generated specifically to help boost the performance of the CNN. For the former, in

Chapter 4, we have used the motion vectors to improve the optical flow estimation of

a CNN optical flow estimator. The H.264 encoder already provides the motion vector

information for compressed videos. The motion vector map contains information that

can guide optical flow estimators and reduce the impact of domain shifting (Sun et al.

2020) at the inference time. For the latter, in Chapter 5, we have proposed a method to

generate efficient metadata to compress images. These metadata can help the decoder

to recover details and delicate textures of the original image.

1.1.5 Contributions and Thesis Organization

The thesis is in a sandwich thesis format following the terms and regulations of Mc-

Master University. It consists of four published/submitted journal articles; we studied

techniques of incorporating prior knowledge into the design and training of CNNs for

various image restoration tasks to improve the performance, efficiency and robustness

of these network models. Articles are listed in the preface of Chapter 2, Chapter 3,

Chapter 4, and Chapter 5. Here is the reference information for the four articles:

• Seyed Mehdi Ayyoubzadeh, Xiaolin Wu, "Filter Bank Regularization of Convolu-

tional Neural Networks".

arxiv:1907.11110. 2019 November 26.

• Seyed Mehdi Ayyoubzadeh and Xiaolin Wu, "High Frequency Detail Accentuation
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in CNN Image Restoration".

IEEE Transactions on Image Processing. 10.1109/TIP.2021.3120678. 21 October

2021.

• Seyed Mehdi Ayyoubzadeh, Wentao Liu, Irina Kezele, Yuanhao Yu, Xiaolin Wu,

Yang Wang and Tang Jin, "Test-Time Adaptation for Optical Flow Estimation

Using Motion Vectors".

Submitted to IEEE Transactions on Image Processing.

• Seyed Mehdi Ayyoubzadeh, Xiaolin Wu and Xi Zhang, "Asymmetric Coding for

Ultra-high Throughput Encoding (ACUTE)".

Submitted to IEEE Transactions on Image Processing.

In Chapter 2, we propose a novel approach to regularize DCNN convolutional ker-

nels by utilizing a predetermined filter bank, which differs from existing methods that

do not consider spatial correlations between samples in a kernel. This technique allows

for molding of DCNN kernels to the spatial structures and features found in natural

images. Unlike other methods, the proposed approach still permits DCNN weights to

be optimized through backpropagation. This strategy combines traditional structural

image priors with modern deep learning capabilities to enhance the robustness and gen-

eralization of DCNN solutions.

In Chapter 3, we propose a new framework to restore complex textures and details in

image restoration tasks. Existing CNN image restoration methods suffer from blurred

details, so we suggest a new training methodology to sensitize CNNs to desired events,

even if they are atypical. We introduce a high-frequency feature accentuation space

to promote image sharpness and clarity, and use an auxiliary loss term in training to

ensure agreement between the ground truth image and the CNN-restored image in this

feature accentuation space. Our proposed approach aims to penalize image blurs and

has been implemented and tested for image super-resolution and denoising tasks, with

experimental results demonstrating success in achieving my design objective.
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In Chapter 4, we propose a method to address the domain shift issue for optical flow

estimators. We suggest a self-supervised learning approach to adjust the optical flow

estimation model during testing. We make use of the fact that most videos are stored

in compressed formats, which provide compact information on motion in the form of

motion vectors and residuals. We use the motion vector prediction as a self-supervised

task and connect it to optical flow estimation. The proposed Test-Time Adaption guided

with Motion Vectors (TTA-MV) is the first attempt, to our knowledge, to perform such

adaptation for optical flow. The experimental results indicate that TTA-MV can enhance

the generalization capability of several popular deep learning methods for optical flow

estimation.

In Chapter 5, we introduce an Asymmetric Coding scheme for Ultrahigh Throughput

Encoding (ACUTE), which includes a simple and fast encoder capable of compressing

raw sensor data as fast as it is read out. In contrast, the ACUTE decoder is a deep

decompression CNN model that can achieve good rate-distortion performance. The key

innovation of this approach is gradient coding using fast 2D lattice vector quantization

at the encoder, and optimized deep dequantization and super-resolution at the decoder.
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Chapter 2

Filter Bank Regularization of

Convolutional Neural Networks

2.1 Abstract

Regularization techniques are widely used to improve the generality, robustness, and

efficiency of deep convolutional neural networks (DCNNs). In this Chapter, we propose

a novel approach of regulating DCNN convolutional kernels by a structured filter bank.

Comparing with the existing regularization methods, such as ℓ1 or ℓ2 minimization of

DCNN kernel weights and the kernel orthogonality, which ignore sample correlations

within a kernel, the use of filter bank in regularization of DCNNs can mold the DCNN

kernels to common spatial structures and features (e.g., edges or textures of various

orientations and frequencies) of natural images. On the other hand, unlike directly mak-

ing DCNN kernels fixed filters, the filter bank regularization still allows the freedom of

optimizing DCNN weights via deep learning. This new DCNN design strategy aims to

combine the best of two worlds: the inclusion of structural image priors of traditional fil-

ter banks to improve the robustness and generality of DCNN solutions and the capability

of modern deep learning to model complex non-linear functions hidden in training data.

Experimental results on object recognition tasks show that the proposed regularization

approach guides DCNNs to faster convergence and better generalization than existing

regularization methods of weight decay and kernel orthogonality.
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2.2 Introduction

2.2.1 Regularization

Deep convolutional neural networks (DCNNs) have rapidly matured as an effective tool

for almost all computer vision tasks (Zoph et al. 2017; Szegedy et al. 2014; Howard

et al. 2017; Huang et al. 2016; He et al. 2015; Simonyan and Zisserman 2014), including

object recognition, classification, segmentation, superresolution, etc. Compared with

traditional vision methods based on analytical models, DCNNs are able to learn far

more complex, non-linear functions hidden in the training images. However, DCNNs

are also known for their high model redundancy and susceptibility to data overfitting.

When having a very large number of parameters, DCNNs have high Vapnic-Chervonenkis

(VC) dimension. If trained on limited amount of samples from the data generating

distribution, DCNNs are less likely to choose the correct hypothesis from the large

hypothesis space (Caruana et al. 2000). In other words, there should be a balance

between information in the training examples and the complexity of the network (Krogh

and Hertz 1992). The simplest model that could perform the task and generalize well

on the real world data is the best one. But choosing the simplest model is not an easy

task; simply reducing the number of parameters in a network runs the risk of removing

the true hypothesis from the hypothesis space. To prevent overfitting and improve the

generalization capability, a common strategy is to use a complex model but put some

constraints on the model to make it overlook noise samples. In this way reducing the

model complexity is not achieved by reducing the number of free parameters in the

network, but rather by controlling the variance of the model and its parameters. This

strategy is known as regularization (Khan et al. 2018).

Regularization methods for DCNNs fall into two categories. The regularization meth-

ods of the first category are procedural. For example, Ioffe and Szegedy proposed to

perform batch normalization in each layer to reduce the internal covariate shift in the

network and improve the generalization and performance of the network ( Ioffe and

Szegedy 2015).
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Srivastava et al. 2014 used a dropout technique to stochastically regularize the net-

work; they showed that the dropout works like an ensemble of simpler models. Khan

et al. 2018 proposed a so-called Bridgeout stochastic regularization technique , and they

proved that their method is equivalent to the Lq norm penalty on the weights for a

generalized linear model, where norm q is a learnt hyperparameter.

All regularization methods of the first category are implicit and quite weak in the

sense that they do not directly act on the CNN loss function, nor they require the

convolutional kernels to have any spatial structures.

The methods in the second category explicitly add a regularization term in the loss

function to penalize the CNN weights. One example is the weight decay method by

Krogh and Hertz 1992 that penalizes large weights via the ℓ2 norm minimization. Among

the published methods weight decay is the most common one to regularize CNNs. For

simple linear models, it can be shown, using Bayesian inference, that weight decay sta-

tistically means that the weights obey a multivariate normal distribution with diagonal

covariance prior. In this case, maximum a posterior probability (MAP) estimation with

Gaussian prior on the weights is equivalent to the maximum likelihood estimation with

the weight decay term (Goodfellow et al. 2016). However, weight decay regularization

can be justified only if the weights within a CNN kernel have no correlation with each

other. This assumption is obviously false, as it is well known that the CNN kernels,

upon convergence, typically exhibit strong spatial structures. To illustrate our point,

the kernels of the Alexnet after training are shown in Figure 2.1, where the weights in a

kernel are clearly correlated.
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Figure 2.1: 96 convolutional kernels of size 11 × 11 × 3 learned by the
first convolutional layer (AlexNet) Krizhevsky et al. 2017

Another form of penalty term in the cost function for regularizing CNN weights is

the orthogonality of the kernels (Xie et al. 2017). But the requirement of mutually

orthogonal kernels also ignores the spatial structures.

In summary, all existing CNN regularization methods overlook spatial structures of

images. This research sets out to rectify the above common problem. Our solution to

it is a novel approach of regularizing CNN convolutional kernels by a structured filter

bank. The idea is to encourage the CNN kernels to conform to common spatial structures

and features (e.g., edges or textures of various orientations and frequencies) of natural

images. But this is different from simply making the CNN kernels fixed structured filters;

the filter bank regularization still allows the CNN filters to be fine-tuned based on input

data. This new CNN design strategy aims to combine the best of two worlds: the

inclusion of structural image priors of traditional filter banks to improve the robustness

and generality of CNN solutions and the capability of modern deep learning to model

complex non-linear functions hidden in training data. More specifically, our technical

innovations are

• Considering a convolutional kernel as a set of correlated weights and penalize them

based on their structural difference from adaptively chosen reference 2D filters.
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• Using filter banks as guidance for the convolutional kernels of DCNNs but at the

same time allowing the kernel weights to deviate from the reference filters, if so

required by data.

The remainder of the Chapter is structured as follows. The next section briefly review

related works. Section 3 is the main technical body of this Chapter, in which we present

the details and justifications of the proposed new regularization method. In Section 4,

we report experimental results on object recognition tasks. The proposed regularization

approach is shown to lead to faster convergence and better generalization than existing

regularization methods of weight decay and kernel orthogonality.

2.2.2 Related Work

Xie et al. 2017 proposed an orthonormal regularizer for each layer of the CNNs, as a

means to improve the accuracy and convergence of the network. Except being free of

redundancy, orthogonal kernels do not consider spatial correlation between the weights

within a given kernel, and hence irrespective of spatial structures. Some attempts were

made to reduce the complexity of model by including priors in the kernels. Bruna

and Mallat 2012 proposed a method called convolutional scattering networks in which

they used fixed cascaded wavelets to decompose images . Although the method had

good performance on specific datasets, it reduces the capability of CNNs. The wavelet

prior is too rigid to effectively characterize a great variety of unknown image structures.

Similarly, Chan et al. 2014 proposed a network architecture called PCANet in order to

create filter banks in the layers based on a PCA decomposition of input images. This

method can learn convolutional kernels from the inputs, but the output cannot affect

the filter bank design. This is in conflict with the design objective of DCNNs, which

is to learn convolutional kernels with respect to outputs not just inputs. For instance,

for classification tasks, the goal is to learn conditional probabilities of output data in

relation to the input. To gain flexibility over the scattering network and also to use

the wavelet features, Jacobsen et al. 2016 proposed a method called structured receptive

fields. They make every kernel a weighted sum of filters in a fixed filter bank that
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consists of Gaussian derivative basis functions. However, this method works under the

assumption that every kernel filter is smooth and can be decomposed into a compact

filter basis (Jacobsen et al. 2016), which may not hold in all layers. Keshari et al. 2018

published a method to learn a dictionary of filters in an unsupervised manner. Then

they made DCNN convolutional kernels linear combinations of the dictionary words with

weights optimized by training data. Although this method reduces number of parameters

of the network significantly, it limits the network performance, because the dictionary

is not fine tuned by the training dataset. The implementation of this network is not an

easy task because it needs a customized backpropagation for updating the weights. By

combining pre-determined filters to form DCNN kernels, both of the mentioned methods

severely limit the solution space of convolutional kernels when optimizing the DCNN for

the given task. Sarwar et al. 2017 proposed a combination of Gabor filters and learnable

filters when choosing convolutional kernels of DCNN . For each layer they fixed some

filters to be Gabor filters and allowed others to be trained. Luan et al. 2017 proposed a

so-called Gabor convolutional network (GCN). The Gabor filters are used to modulate

convolutional kernels of the DCNN. The modulated filter kernels are optimized via back

propagation. These two methods try to take advantage of the spatial structures of Gabor

filters, but they are not used in regularization as we do in this Chapter.

2.3 Proposed Method

In this section, we explain our new filter bank regularization (FBR) technique for DCNNs

in detail. In the FBR method, we include in the DCNN objective function a penalty

term that encourages the convolutional kernels of the DCNN to approach some member

filters of a filter bank. In addition to controlling the model complexity of DCNNs to

prevent overfitting and expedite convergence, the FBR strategy has a multitude of other

advantages. 1. It is a way of incorporating into the DCNN design priors of spatial

structures that are interpretable and effective; 2. The filter bank approach allows the

DCNN kernels to be chosen from a large pool of candidate 2D filters suitable for a given

computer vision application; 3. It is a general regularization mechanism that can be
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applied to any DCNN architecture without any modification.

2.3.1 Filter banks

Filter banks have proven their effectiveness for extracting useful features to facilitate

many computer vision tasks. Being a set of different filters a filter bank can be used as

bases (often overcomplete) to decompose images into meaningful construction elements.

Arguably the best known filter bank used in computer vision is Gabor filter bank, as

the family of Gabor filters are noted for their power to characterize and discriminate

texture and edges, thanks to their parameterization in orientation and frequency. This

is why the Gabor filter bank is a main construct used in the development of our FBR

method. In addition to their mathematical properties, Gabor filters can also, in view

of many vision researchers, model simple cells in the visual cortex of mammalian brains

(Marĉelja 1980).

The generic formula of Gabor filter is:

g(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y′2

2σ2 )exp(i(2πx
′

λ
+ ψ)) (2.1)

where:

x′ = xcos(θ) + ysin(θ)

y′ = −xsin(θ) + ycos(θ)

Typically, the real part of this filter is used for filtering images. The Gabor filter

enables us to extract orientation-dependent frequency contents of the image (Luan et

al. 2017). Transforming an image with Gabor filter bank decomposes it in a way that

can enhance the separation capability of the machine learning model between different

classes. Also, using the Gabor filter bank may be justified cognitively as some researchers

showed that simple visual cortex cells of mammals could be modeled by Gabor filters

(Daugman 1985).
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To further enrich the DCNN model, we augment the Gabor filters in the regularization

filter bank by adding the Leung-Malik (LM) filter bank (Leung and Malik 2001) that

has shown potential for extracting textures. LM filter bank consists of first and second

derivatives of Gaussians at 6 orientations and 3 scales, 8 Laplacian of Gaussian (LoG)

filters, and 4 Gaussians filters. This filter bank is shown in Figure 2.2.

Figure 2.2: LM filter bank

Using filter banks can increase robustness of the model for small varations. In the

context of deep learning it has been shown that first layer kernels in the DCNNs that

are trained on relatively large datasets such as VGGNet, ResNet and AlexNet are very

similar to Gabor filters. Scale-space theory (Witkin 1987) gives a method for convolving

an image with filters that have different scales, this method can be used to extract useful

descriptors from general signals. Similarly, we try to use filter banks as a guidance for

CNN filters, but as previously mentioned, the filter banks are suitable for general signals,

so we guide DCNN kernels to be close to the filter bank. In what follows, we give detail

about the implementation of this regularization.

2.3.2 Filter bank regularization as a Maximum A Posteriori Estima-

tion (MAP) Problem

Using Bayesian statistics is a common approach to derive the regularized loss functions.

We use MAP estimation to make the Bayesian posterior tractable. Consider the simple
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case of regression (IRn → IR). The model parameter is w (w ∈ IRn). The dataset

contains N pairs of datapoints denoted by (x1, y1), · · · , (xN , yN ), in which xis are 1-D

vectors and yis are scalers. In the presense of Gaussian noise we could write y(x) =

ŷ(x) + ϵ, where ϵ is the Gaussian noise, and ŷ is the model output. The conditional

distribution of y can be written as follows:

P (y|x) = N (ŷ, IN ) (2.2)

where IN is the N ×N identity matrix. The MAP estimation for the model parameters

w is defined by:

w∗ = argmax
w

P (w|x, y)

= argmax
w

log(P (y|x,w)) + log(P (w)) (2.3)

where P (w) is the prior distribution of the model parameters. Substituting (2) into

(3) gives us:

w∗ = argmax
w

−(y − ŷ)T (y − ŷ) + log(P (w))

= argmin
w

∥y − ŷ∥22 − log(P (w)) (2.4)

Therefore, the cost function can be derived as follows:

E(w) = ∥y − ŷ∥22 − log(P (w)) (2.5)

This result can be easily extended for 2-D datasets and parameters. As we discussed

earlier in this paper, many researchers use the Gabor filters to model simple cells in the

visual cortex of mammalian brains. We Can use this information to presume a reasonable

prior distribution for the model parameters. We assume that the model parameters have

a Gaussian distribution around a vectorized filter f in the Gabor filter bank. In other
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words, we could write the prior distribution of the parameters as follows:

P (w) = N (f , 1
λ
In) (2.6)

λ determines the deviation of the model kernel from f . So, we can write the loss function

as:

E(w) = ∥y − ŷ∥22 + λ∥w − f∥22 (2.7)

2.3.3 Kernel regularization using a filter bank

Denote by F = {f1, f2, · · · , fN} a 2D filter bank of dimension W ×H. For a DCNN of

L convolution layers, let Ml be the number of kernels in layer l, 1 ≤ l ≤ L. Denote the

Ml convolutional kernels of layer l by kl,1,kl,2, · · · ,kl,Ml
. Each kernel in the DCNN is a

three-dimensional tensor of dimension W ×H ×Dl, where Dl is the number of channels

in layer l. In each iteration of the learning process, for layer l of the DCNN we find the

filter in the filter bank F that best matches kernel m in channel d, namely,

f∗
l,m,d = argminf∈F∥f − kl,m,d∥2 (2.8)

where kl,m,d is the 2D cross section of the 3D kernel kl,m in channel d. Accordingly, the

FBR regularizer produces the penalty term

Ωl,m,d = ∥kl,m,d − f∗
l,m,d∥22 (2.9)

Therefore, the total loss function of the DCNN is

E(w) = 1
N

N∑
n=1

L(x(n), y(n),w) + λ
L∑

l=1

Ml∑
m=1

Dl∑
d=1

Ωl,m,d (2.10)

where w is the total weights of the DCNN, L(x(n), y(n), w) is the per sample classification

loss for the input x(n) and corresponding output y(n). The interactions between the
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DCNN convolutional kernels and the regularization filter bank are depicted in Figure

2.3.

…
…

…

…

…

… …

…

Figure 2.3: Finding best matches in F for kernels in layer l

As one could see, in FBR, kernels choose the reference regularizer adaptively, more-

over, the reference filters are well structured in the spatial domain. The proposed algo-

rithm is shown in Algorithm 1.

Algorithm 1 DCNN regularization using FBR
for each iteration do
reg ← 0
for all layers in the DCNN do
l← layer index
for all filters in lth layer do
m← kernel index
for all channels in mth kernel do
d← channel index
i← argmini∥k[l][m][d]− f [i]∥2
reg += ∥k[l][m][d]− f [i]∥22

end for
end for

end for
(X,Y ) ← Select N random samples from the dataset
LN (X,Y,w) ← Calculate average classification loss on (X,Y )
E(w) ← Add reg to LN (X,Y,w)
w ← Update w via backpropagation

end for
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2.3.4 Adding orthogonality regularization

Due to the random initialization of the DCNN, it is likely that some of the kernels tend

to select the same reference filter from the filter bank F . This can create redundant

or correlated kernels after DCNN training stage. To resolve this issue, we introduce an

orthogonality regularization term (Huang et al. 2017) to encourage uncorrelated kernels.

Adding the orthogonality term can change the reference regularizer filters and as a result,

enables the DCNN to learn a richer set of kernels. Letting wl be the kernel weight

matrix of DCNN layer l in which each column is a vectorized kernel, the orthogonality

regularization term for this layer can be written as

ψl = ∥wT
l wl − I∥F (2.11)

where I is the identity matrix and F denotes Frobenius norm. By adding the orthgonality

regularization, we can rewrite the final loss function as follows:

E(w) = 1
N

N∑
n=1

L(x(n), y(n),w) + λ
L∑

l=1

Ml∑
m=1

Dl∑
d=1

Ωl,m,d + γ
L∑

l=1
ψl (2.12)

where ψl is the orthogonality regularization for layer l of the DCNN.

Figure 2.4: CNN baseline model
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2.4 Experiments and Discussions

We implemented the proposed FBR method with classification DCNNs and evaluated

its performances in comparison with existing regularization methods, including ℓ1, ℓ2
penalty norm on the weights and pure orthogonality regularization. Two commonly

used benchmark datasets CIFAR 10 (Krizhevsky et al. n.d.) and Caltech-101 (Li et al.

2003) are used in our evaluations. In our experiment setup, the filter bank is the union

of the Gabor and LM filter banks. These filter banks are shown in Figure 2.2 and 2.5.

We designed the Gabor filter bank using 10 different orientations and 7 frequencies with

σ = 1
f resulting 70 Gabor member filters.

Figure 2.5: Gabor filter bank (7 orientations and 10 frequencies)

2.4.1 Results on MNIST benchmark

First, we report our experimental results on the benchmark dataset MNIST (LeCun and

Cortes 2010). We apply Double Soft Orthogonality (DSO) regularization (Bansal et al.

2018) to the DCNN model. The model consists of 5 convolution layers. The first 3

convolutional layers are regularized. The learning rate of 0.001 is used, and we make

it half every 10 epoch. We compare our method with Gabor Convolutional Networks
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(GCNs). As one could see in table 2.1, FBR has the best accuracy with much fewer

parameters in comparison with GCNs.

Reg. Type Err. (%) #Params (M)

Baseline 0.52 0.61

Ortho. (γ = 10−5) 0.49 0.61

Ortho. (γ = 0.01) 0.53 0.61

GCN4 (with 3× 3) 0.56 0.78

GCN4 (with 5× 5) 0.48 1.86

GCN4 (with 7× 7) 0.42 3.17

FBR (λ = 0.0001, γ = 0.0001) 0.40 0.61

FBR (λ = 0.0001, γ = 0.0) 0.34 0.61

Table 2.1: Error percentage on test dataset (MNIST)

2.4.2 Performance evaluation on CIFAR-10 benchmark

we report our experimental results on the benchmark dataset CIFAR-10. CIFAR-10

contains 50000 training images and 10000 testing images from 10 different categories.

The images dimensions are 32× 32. The architecture that we used for DCNN is shown

in Figure 2.4. We applied regularization on the 7 × 7 and 5 × 5 convolution kernels

and trained the model for 300 epochs, using the RMSProp optimizer with learning rate

10−3 and decay of 10−6. The batch size was set to 128, and data augmentation was

used. We also used step decay to half the learning rate after every 25 epochs. It is

worth mentioning that we employed regularization only for 4 layers of the DCNN when

dimension of kernels were larger than 3×3, in order to have an effective filter bank with

reasonable representational capability. To make the comparisons fair, we used the same

weight initialization for all experiments.
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Figure 2.6: Cross entropy (CE) loss on test dataset (CIFAR-10)

Discussions

The cross entropy loss results of different regularization methods on the test dataset are

plotted in Figure 2.6. In the figure, the baseline curve is for the classification DCNN

of Figure 4 without any regularization. As shown, the FBR method has the lowest

cross entropy loss (0.341) among all tested methods. An interesting observation is that,

the reduction in cross entropy with respect to the baseline is almost the same for the

orthogonal regularization, ℓ1 and ℓ2 regularization. And the FBR method can reduce

the cross entropy further from the above three methods by approximately same margin.

Additionally in Table 2.3, we tabulate the experiments results in more details, including

both the classification accuracy and cross entropy numbers in relationship to hyperpa-

rameters λ and γ. The table demonstrates that the FBR method outperforms all other

regularization methods, in both the classification accuracy and cross entropy loss for

suitable λ and γ.

Also, one can see the effects of γ on the spatial structures of DCNN kernels in Figure

2.7. Emphasizing the orthogonality of the DCNN kernels can reduce the degree of kernel

redundancy, i.e., preventing similar kernels from being chosen.
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(a) Initialzed kernel
weights.

(b) Learned kernel
weights (γ = 0).

(c) Learned kernel
weights (γ = 10−3)

Figure 2.7: Effects of γ on the learned convolutional kernel weights (the
second layer of the DCNN.)

2.4.3 Effect of kernel size

In the FBR method, as opposed to other regularization techniques, the DCNN kernel size

affects both the DCNN architecture and the regularization filter bank F . Increasing the

kernel size improves the spatial resolution of the filter bank while sacrificing the locality

of the feature maps. In practice, we need to trade off between the spatial resolution

and the locality by varying the kernel size. Decreasing the kernel size can reduce the

representational power of the filter bank, but on the other hand, improve the locality.

To examine how much the kernel size can affect the DCNN model, we trained the DCNN

baseline with different kernel sizes. The results of these experiments are shown in Table

2.2.

Kernel Size Accuracy (%) CE Loss

5 90.39 0.350

7 90.90 0.346

9 90.24 0.384

11 88.41 0.426

Table 2.2: The effect of the kernel size in the first DCNN layer on the
performance.

As one can see, the aforementioned trade-off creates an optimal kernel size for the

DCNN. In fact, this can be achieved by optimizing a hyperparameter in a cross validation

approach.
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Reg. Type γ λ L1 or L2 Coeff. Acc. (%) CE Loss

Baseline 0 0 0 89.43 0.439

L1 0 0 10−6 89.93 0.417

L1 0 0 10−5 89.89 0.398

L1 0 0 10−4 87.87 0.432

L2 0 0 10−5 89.32 0.465

L2 0 0 10−4 90.75 0.394

L2 0 0 10−3 90.51 0.347

Ortho. 10−3 0 0 90.55 0.393

Ortho. 10−4 0 0 90.23 0.405

FBR 10−2 10−5 0 91.06 0.358

FBR 10−4 10−5 0 89.68 0.472

FBR 0 10−5 0 89.14 0.435

FBR 10−2 10−4 0 90.89 0.374

FBR 10−4 10−3 0 90.7 0.341

Table 2.3: Accuracy and cross entropy loss on test dataset (CIFAR-10)

2.4.4 Results on Caltech-101

As discussed above, applying a large kernel to very small images like CIFAR-10 (32×32),

can lead to poor locality. To avoid the problem and evaluate the performance of the FBR

method with larger kernel sizes, we conduct the above experiments using the Caltech-101

dataset (Li et al. 2003) and compare different regularization methods. Caltech-101 has

101 categories and each class contains 40 to 800 images. We resized all of the images to

128× 128 and used the DCNN baseline architecture with two extra max pooling at the

first and third convolutional layers to control the number of DCNN parameters.
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Reg. Type γ λ L1, L2 Coeff. Acc. (%) CE Loss

Baseline 0 0 0 72.35 1.578

L1 0 0 10−6 74.27 1.561

L1 0 0 10−5 70.81 1.660

L1 0 0 10−4 70.62 1.505

L1 0 0 10−3 56.45 1.951

L2 0 0 10−6 71.69 1.670

L2 0 0 10−5 73.11 1.659

L2 0 0 10−4 72.84 1.597

L2 0 0 10−3 71.62 1.469

Ortho. 10−4 0 0 73.54 1.567

Ortho. 10−3 0 0 73.65 1.654

Ortho. 10−2 0 0 75.65 1.453

Ortho. 10−1 0 0 75.34 1.437

FBR 10−1 10−5 0 75.84 1.448

FBR 10−2 10−5 0 74.15 1.619

FBR 10−3 10−4 0 76.65 1.556

FBR 10−3 5 ∗ 10−5 0 75.72 1.410

FBR 10−2 10−4 0 75.84 1.480

Table 2.4: Accuracy and cross entropy loss on test dataset (Caltech-101)

The experimental results with the Caltech-101 dataset are presented in Table 2.4. By

comparing Table 2.4 with Table 2 (CIFAR-10), we can see that not only the FBR method

achieves the best performance in the comparison group, but also its performance gain

over others increases by a significant margin with larger kernel sizes and higher resolution

images. In other words, the FBR method is more advantageous on high resolution images

of greater variations, because it can adapt the kernel size.

The classification accuracy results on the test dataset for different methods are plotted

in Figure 2.8. As one can observe in Figure 2.8, the ℓ2 regularization method improves

the generalization of the model over the baseline by a very small amount, the ℓ1 regular-

ization performs much better than the ℓ2 regularization. The orthogonal regularization

outperforms both ℓ1 and ℓ2, because the orthogonality prevents the choice of highly
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correlated kernels and promotes more diverse kernels to extract more novel features.
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Figure 2.8: Accuracy on test dataset (Caltech-101)

2.5 Conclusion

Regularization techniques are widely used to prevent DCNNs from overfitting. While

the importance of regularization is generally accepted, no previously existing explicit

regularization techniques take into account the spatial correlation of the weights of a

convolution kernel in DCNNs. This oversight has been addressed and it is corrected by

our novel approach of filter bank regularization of DCNNs. This regularization approach

allows us to incorporate into the network training process interpretable feature extractors

such as Gabor filters to improve the convergence, robustness and generality of DCNNs.
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Chapter 3

High Frequency Detail

Accentuation in CNN Image

Restoration

3.1 Abstract

Given its nature of statistical inference, machine learning methods incline to downplay

relatively rare events. But in many applications statistical outliers carry disproportional

significance; they can, if being left without special treatment as of now, cause CNNs to

perform unsatisfactorily on instances of interests. This is the reason why existing CNN

image restoration methods all suffer from the problem of blurred details. To overcome

this weakness, we advocate a new training methodology to sensitize the CNNs to desired

events even they are atypical. Specifically for image restoration, we propose a so-called

high frequency feature accentuation space that promotes image sharpness and clarity

by maximally discriminating the ground truth image and the CNN-restored image in

atypical but semantically important features. Then we force the restored image to agree

with the ground truth image in the feature accentuation space by including an auxiliary

loss term in the training process. This aims at a high degree of agreement of the two

images on high frequency constructs such as sharp edges and fine textures, i.e., penalizes

image blurs. The new CNN design method is implemented and tested for tasks of image
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super-resolution and denoising. Experimental results demonstrate the achievement of

our design objective.

3.2 Introduction

Thanks to rapid advances of deep learning research, convolutional neural networks

(CNN) have become a ubiquitous method for image restoration and enhancement tasks,

including super resolution, denoising, deblurring, etc (Yu et al. 2018b; Lim et al. 2017c;

Tian et al. 2019; Nah et al. 2017). However, the existing CNN image restoration methods

all have a common weakness: the restored images have blurred details or low contrast

compared with the latent pristine images.

There are two reasons for the lack of fidelity in high frequency features of CNN

restored images. Foremost, deep learning is an approach of statistical inference; hence

CNNs, by nature, favor statistically dominant features. As low-frequency patterns have

much higher probabilities of occurrence in natural images, they set a bias of smoothness.

The second reason is the use of differentiable norms of error vectors in the objective

functions in the CNN training. Minimizing error norms tends to average out similar

image waveforms and hence smooth sharp details.

But the occurrence probability is not necessarily proportional to the level of signifi-

cance in terms of semantics or subjective perception. Neuroscience studies indicate that

human vision is built upon fundamental components of the scene encoded by edges (re-

gion boundaries), similar to a quick sketch drawn by an artist as an impression (Weale

1983; Zhaoping 2014). In other words, high frequency features, although having lower

probability of occurrence, are nonproportionally important to perception and cogni-

tion; therefore, they should be emphasized in image restoration. The standard counter

measure to mitigate the over-smoothing artifacts of the CNN restoration methods is to

argument the error norm by a probabilistic divergency loss term. The latter is computed

by a generative adversary neural network (GAN) (Goodfellow et al. 2014a) to penalize

deviations of the signal distribution of the reconstructed image from that of the ground
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truth image. But GAN introduces two problems of its own. First, it makes the training

process difficult to converge (Kodali et al. 2017); second, it tends to fabricate unnatural

image structures (Zhang et al. 2019). Troubled by the above weaknesses of the existing

GAN methods for image restoration tasks, we set out to find a more effective technique

to boost high frequency features in the CNN-restored images without introducing ob-

jectionable artifacts. We share the core idea of GANs and search for a space in which

the discrimination of the output image of the CNN and the ground truth image is max-

imized. But unlike GANs, we do not discriminate the two images in the probability

distribution space. Instead, we want to find a space in which the CNN restored image

and the ground truth image exhibit the maximum discrimination with respect to desired

features (e.g., high frequency spatial structures) in the pixel domain. Therefore, suc-

cessfully passing the discrimination test in this space means a high degree of agreement

of the two images in targeted features such as sharp edges and fine textures. The above

idea leads to the main innovation of this work: the use of a so-called feature accentuation

space (FAS), which is spanned by a set of spatially adaptive filters, to promote image

sharpness and clarity. The member filters of FAS are designed to maximally discrimi-

nate the ground truth image and the CNN-restored image in atypical but semantically

important features. These filters are optimized by sample data of the desired features,

instead of being manually crafted. Also, the FAS is made to have certain properties so

that it is suited for an auxiliary loss function to be combined with the main CNN objec-

tive for whatever the restoration task. The novel FAS-guided CNN restoration system

is called feature accentuation network (FANet). The FAS construction is formulated as

an optimization problem. This optimization problem needs to be solved multiple times

during the training of the image restoration FANet. Thus, we have to have a fast solu-

tion of the underlying optimization problem to facilitate the FAS construction. One of

technical contributions of this work is to convert the original optimization problem to an

equivalent one that can be solved efficiently by semi-definite relaxation (Luo et al. 2010).

In the design of CNNs for image restoration tasks, adding to the objective function an

auxiliary loss term defined in the proposed FAS has the following advantages:
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• More faithful recovery of sharp edges and fine textures in the restored images

without fabricated features.

• A flexible mechanism of incorporating explicit constraints (prior knowledge) into

the CNN design, by designing filters to emphasize on the high-frequency structures

that are important for given tasks.

• As opposed to GANs, the training process is stable and does not depend on the

architecture of the restoration CNN.

More significantly, the way we use an auxiliary loss term in a carefully chosen accen-

tuation space suggests a new training methodology to sensitize the CNN methods to

desired events even they have low probability. As all machine learning methods perform

statistical inferences using large data, they tend to devote modeling resources mostly to

dominant trends in the data at the expense of atypical events. For example, in natural

image statistics, smooth transitions are much more common than abrupt discontinu-

ities in the 2D image signal waveform. But in many applications of image processing

and computer vision, statistical outliers in the form of rare and unique discontinuous

pixel patterns often carry disproportionally important information; they warrant spe-

cial attention. This research introduces a mechanism to force the CNN methods not to

overlook atypical cases that are nevertheless crucial to the intended tasks. In this initial

study in the above line of investigation, we focus on image super resolution and denoising

tasks; however, our FANet methodology can be easily applied to other image restoration

tasks such as deblurring and demoireing. The proposed strategy of sensitizing CNNs for

targeted features is general and it may be explored further to boost CNN performances

in solving other problems of much biased statistics. Our feature accentuation method

is independent of the network architecture and can be coupled with any architecture of

CNN.
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3.3 Related Work

Training CNNs with imbalanced datasets (skewed data distributions) is a well-known

issue for classification tasks. Masko and Hensman 2015, Mako and Henseman proposed

over-sampling of the under-represented classes to mitigate this issue. In Lin et al. 2017,

Lin et. al altered cross-entropy loss to derive a cost function called Focal loss to sensitize

the CNN for hard examples. They have used Focal loss for object detection and shown

it enforces the CNN to focus more on objects rather than the background while the

background is the majority class. However, for image restoration tasks the subject of

skewed datasets is quite underdeveloped. Most of the existing works add a fixed term to

the loss function that does not depend on the statistical characteristics of the training

data. In Johnson et al. 2016, Johnson et. al suggested an auxiliary loss term based on

MSE in the high level feature representation space of the images derived by pretrained

VGG network Simonyan and Zisserman 2014. They called it perceptual loss. There are

three concerns about perceptual loss for image restoration tasks: (i) if the distribution

of the training images are different from the distribution of the pretrained VGG, then

employing this loss is illogical. (ii) One of the incentives about using CNNs is that they

are shift invariant to some degree. Therefore, the alignment in the high level feature

representation space does not guarantee the alignment in the high frequency components

of the signals. (iii) This high level feature representation is fixed and it does not depend

on the training data. In Liu et al. 2021, Liu et al. show that the perceptual loss

function can be computed using the networks without any training. However, their so-

called Generic Perceptual Loss still suffers from the same weakness as perceptual loss

for image restoration tasks.

In Pandey et al. 2018, Krishna et al. have proposed an auxiliary loss function in the

edge space for single image super resolution task. They have applied Canny operator to

derive the edge map of high-resolution images and ground truths, then computed MSE

on these maps. This loss function can recover more details in comparison with MSE.

However, this high frequency domain is not optimized based on the outputs of the CNN.

Particularly, different frequencies and textures are not considered in designing this loss.

36

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Seyed Mehdi Ayyoubzadeh; McMaster University–
Department of Electrical and Computer Engineering

Some researchers have used the loss function of Generative Adversarial Networks

(GANs) (GAN loss) Goodfellow et al. 2014b for super-resolution task Ledig et al. 2016 as

the auxiliary loss function. Besides the disadvantages of GAN loss for image restoration

tasks previously mentioned in 5.2, the GAN discriminator typically has a complex ar-

chitecture. The training time increases considerably since the only practical approaches

to train the CNNs are the first-order optimization methods. In Nazeri et al. 2019 Nazeri

et al. used two stages of adversarial networks for single image super resolution task.

One adversarial stage is used for edge enhancement and the other for image completion.

The edge enhancement stage tries to match the distribution of the outputs edges to the

distribution of training data edges. In Yang et al. 2021, Yang et al. pretrained a GAN

network and then tried to embed it into another CNN design for face restoration task. In

their proposed loss function, one goal is to minimize the difference between the outputs

of the discriminator for authentic and restored images (LF ). In fact, LF is similar to

the perceptual loss, but the distance is measured in a discriminator space rather than

by a pre-trained network. Both above methods also suffer from the same issues of GANs

including unintended artifacts and training complexity. In Zhao et al. 2015, Zhao et

al. used structural similarity index (SSIM) and multi-scale structural similarity index

(MS-SSIM) as the loss function of image restoration CNNs. SSIM and MS-SSIM are

designed to be more aligned with the sensitivity of Human Visual System (HVS). Using

SSIM and MS-SSIM as the loss function of the image restoration CNN can lead to more

pleasing results for HVS, but still the loss function fails to stress high-frequency details.

Before the deep learning counterpart, there were traditional methods that tried to

preserve sharpness of high-frequency features. Banham and Katsaggelos 1996 proposed

filtering of the images in the 2-D wavelet domain. They adjusted the parameters of the

filters based on the local information to restore sharp edges. In Naik and Patel 2013,

Naik and Patel proposed a method to promote image sharpness for single image super-

resolution and denoising. Their algorithm iteratively used wavelet and spatial domains

to minimize the reconstruction error of the back-projected image. In Li et al. 2014, Li

et al. proposed a method to enhance an image based on a dictionary learning. Their
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method learnt a dictionary for each block of the image separately. Finally, they try to

reconstruct the enhanced image by using adjusted dictionaries for each block. These

methods were typically tailored for some niche applications. Very recently, Liu et al.

developed a hybrid method that combines traditional and CNN approaches. The idea

was to use a Weiner-type filter to produce a cartoon-like clean-and-sharp version of the

latent image to replace the ground truth in CNN training (Liu et al. 2020). Some authors

studied the effects of different error norms on perceptual image quality, which is related to

the sharpness of details (Zhao et al. 2017; Seif and Androutsos 2018). For ℓp error norm,

a larger value of p exerts a heavier penalty on large errors, regardless of the structure of

the image. Which p is most suited for visual quality depends on image structures and on

the space in which the error is calculated. This is one of the reasons for us to advocate

FAS. Other papers were published to discuss the high-frequency representation learning

for image restoration, such as MWCNN (Liu et al. 2018) and ENet (Sajjadi et al. 2017).

In terms of basic mechanism, the proposed FAS method, which will be detailed in the

next section, is similar to Liu et al.’s Orthogonal Network (Liu et al. 2019a); however,

their focus is on network pruning/acceleration in image classification.

3.4 FAS Properties

The FAS is the central piece of the proposed CNN image restoration system, because

minimizing a loss function in this space promotes the sharpness and clarity of high-

frequency details in the restored images. To this end we need to construct the FAS in

a way such that it manifests even small differences between the CNN recovered image

and the ground truth image in high frequency domain. The FAS is represented by a set

of basis filters (F = {f1, f2, · · · , fM}). The filters in this filter bank have the following

three key properties:

• Each filter should have band pass or high pass frequency characteristic. This is

a necessary feature of the filters in order to extract or emphasize fine details and
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textures of the images. In absence of the DC component, these filters should satisfy

∑
j

fm,j = 0 ∀m (3.1)

where fm,j is the jth element of fm.

• In order to minimize the redundancy between the member filters, or require each

member filter to carry new information, we would like to make the set of filters

{f1, f2, · · · , fM} a basis that is as orthogonal as possible, namely,

|fT
i fj | ≤ ϵ ∀i, j, i ̸= j (3.2)

With this property, vectors f1, f2, · · · , fM will span the high frequency domain

efficiently, and thus they can represent a rich set of sharp spatial patterns that the

existing CNN methods are somewhat inept.

• The filters are learnt from the training data rather than predetermined by an

artificial design.

the goal is to learn/discover high frequency structures in natural images in general,

or a targeted class of images in particular.

• Finally, we want to make FAS unitary so it is invariant to energy level of member

filters. In other words, all basis filters need to be of unit norm:

∥fm∥22 = 1 ∀m (3.3)

In this way the FAS filters preserve the energy of the signals.

3.5 Construction of FAS

In this section, we formulate the construction of the FAS as an optimal filter bank

design problem. The design objective is to make the estimated and ground truth images
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maximally differ from each other in the high frequency domain. Let y and ŷ be the

ground truth and the output of the CNN in pixel patch of size W ×H, for a fixed filter

bank size (|F| = M), the filter bank F∗ constituting the FAS is determined by

F∗ = argmax
F

M∑
m=1

Ns∑
n=1
∥fm ∗ (yn − ŷn(w))∥22

subject to ∑
j

fm,j = 0 ∀m

|fT
i fj | ≤ ϵ ∀i, j, i ̸= j

∥fm∥22 = 1 ∀m

(3.4)

where w is the parameters of the CNN and Ns is a small fraction of the total number of

the training data (N). The size of each member of the filter bank is k2. As the FAS is

much smaller than CNN in terms of the number of parameters, the optimization of the

constraining FAS is less prone to overfitting than the optimization of the network itself; a

much smaller amount of training data is sufficient to design the FAS. A standard way of

solving the non-convex optimization problem Eq(3.4) is the interior-point (IP) method.

However, the IP method for non-convex problems is inefficient and time consuming.

One of our main contributions in this paper is to convert the optimization problem

Eq(3.4) to a form that can be solved more efficiently using mathematical manipulation.

This step is necessary since the optimization problem for determining the FAS is required

to be solved repeatedly. We transform and simplify Eq(3.4) in a way so that the FAS

construction problem can be solved efficiently by the Semi-Definite Relaxation (SDR)

method (Luo et al. 2010).

In the following, we outline the required steps for this transformation. We start by

simplifying the objective function. To write the objective function of Eq(3.4) in a more
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compact form, let Yn denotes yn − ŷn . Therefore, the objective function is:

M∑
m=1

Ns∑
n=1
∥fm ∗ Yn∥22, fm ∈ Rk2

, Yn ∈ RW ×H (3.5)

For further simplification of Eq(3.5), it is necessary to write the convolution in the

matrix multiplication form. Let DYn denotes the doubly block circulant matrix of Yn,

the objective function can be rewritten as:

M∑
m=1

Ns∑
n=1
∥DYnfm∥22, fm ∈ Rk2

, DYn ∈ Rl×k2

l = (W + k − 1)× (H + k − 1)

(3.6)

We can simply write Eq(3.6) in the quadratic form as follows:

M∑
m=1

Ns∑
n=1

fT
mD

T
Yn
DYnfm (3.7)

Since DT
Yn
DYn is a Positive Semi Definite (PSD) matrix, the objective function in Eq(3.7)

is convex with respects to the parameters of the filters. Next, we need to simplify the

orthogonality constraint in order to be able to convert the problem to the standard

form. To handle this constraint, we design the FAS filters one by one and then add

the orthogonality constraint. In other words, at the time when we want to design fm,

{f1, · · · , fm−1} are determined. In this case, the optimization problem is a nonconvex

quadratically constrained quadratic programming (QCQP). To develop mth filter, we

use the method described in Luo et al. 2010 to convert the inhomogeneous QCQP to the
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homogeneous form.

minimize
fm

−
Ns∑

n=1
fT
mD

T
Yn
DYnfm

subject to

(
fT
m tm

) fm

tm

 = 2 ∀m

t2m = 1(
fT
m tm

) 0 1
2

1
2 0


fm

tm

 = 0 ∀m

(
fT
m tm

)  0 fi
2

fT
i
2 0


fm

tm

 ≤ ϵ , i < m

(
fT
m tm

)  0 fi
2

fT
i
2 0


fm

tm

 ≥ −ϵ , i < m

(3.8)

Let Cn = −DT
nDn, xm =

fm

tm

 and Xm = xmxT
m, we can rewrite the problem as

follows:
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minimize
Xm

Ns∑
n=1

Tr(CnXm)

subject to Tr(Xm) = 2

Rank(Xm) = 1

Xm ⪰ 0

Tr(

0 1
2

1
2 0

Xm) = 0

Tr(

 0 fi
2

fT
i
2 0

Xm) ≤ ϵ , i < m

Tr(

 0 fi
2

fT
i
2 0

Xm) ≥ −ϵ , i < m

(3.9)

where Tr() represents the trace operator. The problem Eq(3.9) can be solved efficiently

using well-known convex optimization techniques SDR or Convex Concave Programming

(Shen et al. 2016). In the worst case scenario, SDR complexity isO(max{m,n}4n 1
2 log(1

ϵ )),

where m is the number of constraints, n is the dimension of the problem and ϵ is the

given solution accuracy (Luo et al. 2010).

3.6 FANet Construction

Having the FAS basis filters, we are now ready to describe how to train the feature

accentuation network FANet for image restoration. In order to train FANet to learn a

restoration mapping that avoids blurred high-frequency details, we add an accentuation

penalty term to the objective function that is the discrepancy between the output and

ground truth in FAS. As the disagreement level in FAS drops in the iterative training

process, the reconstruction fidelity of the desired high-frequency patterns increases. The

above FAS loss function for the CNN restoration task is:

LFAS(w) = 1
MN

N∑
n=1

M∑
m=1
∥fm ∗ yn − fm ∗ ŷn(w)∥2 (3.10)
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where Fm is the mth filter of the FA filter bank. The final loss function of the CNN is

a convex combination of the main loss LMSE (e.g., the ubiquitous Euclidean norm) and

the FA auxiliary loss term LFAS:

L(w) = (1− α)LMSE + αLFAS (3.11)

The CNN is trained by minimizing Eq(3.11) concerning its parameters via backpropa-

gation.

The entire procedure to design the FAS and train the FANet is summarized in Figure

3.1. As shown, it is a two-stage iterative training process. In the first stage, we design the

accentuation control module by solving Eq(3.9) and adjust the loss function LFAS of the

FANet; afterwards, we sensitize the FANet to chosen textures and patterns by training

it with the adjusted loss function described in Eq(3.11). We repeat this procedure to

continue the training process. Note that the architecture of the restoration CNN can be

any type of neural networks, as the application sees fit.

Figure 3.1: Schematic description of the FANet construction process.

Since EDSR (Lim et al. 2017a) is one of the best CNN architectures for image super-

resolution, we adopt it in our experiments. It is helpful to appreciate the advantage

of feature accentuation by observing the changes of the FAS filters during the training
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process, as shown in Figure 3.2. In the initial stages of the training, outputs of the CNN

lacks the capability to recover complex types of textures and details; accordingly the

beginning states of the FAS filters are random bandpass and highpass. As the FANet

learns to restore high-frequency details with increasing sharpness and clarity, the FAS

member filters gradually adjust themselves to fit target textures of certain frequencies

and orientations, which the existing CNN methods fail to recover properly.

(a)
epoch
0

(b)
epoch
50

(c)
epoch
200

Figure 3.2: The changes of FAS member filters during the FANet training
process.

3.7 Experiments and Evaluations

In this section, we present empirical evidences to establish the validity of our feature

accentuation method and the practical value of FANet. The proposed FANet is tested

and evaluated on two of the most investigated image restoration tasks: super resolution

and denoising. For both tasks, we use the DIV2K dataset (Agustsson and Timofte

2017a; Timofte et al. 2017) to train the FANet. In addition to the common PSNR and

SSIM image quality metrics, we introduce two other high-pass metrics to quantify the

clarity or the detail sharpness of the restored images. The first metric is the so-called

high frequency error Eh that is defined as below:

Eh(y, ŷ) = 1
W ×H

∥((1−Gσ) ∗ y− (1−Gσ) ∗ ŷ)∥2 (3.12)
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where y and ŷ are the ground truth and output images of the CNN respectively, Gσ is

the Gaussian low-pass filter of standard deviation σ and W and H are the width and

height of the image. Eh is a measure for the fidelity of restored high frequency features,

such as very sharp and ultra fine details and textures.

By varying the parameter σ, we can choose the width of the high frequency subband

to emphasize. For instance, increasing σ will force the resorted image to match the

ground truth image on higher frequency features. The second quality metric is for the

overall sharpness of restored images. It is defined to be the absolute energy level of the

restored high frequency components:

∆ = 20 log10(∥(1−Gσ) ∗ ŷ∥) (3.13)

3.7.1 Super Resolution

Experiment Setting

For the superresolution task, we accentuate the EDSR model in FAS. Adam (Kingma

and Ba 2014b) optimizer is used to train the FANet of 16 residual blocks, with learning

rate 10−4. Specifically in our experiments, FANet for supersolution of scaling factor 4 is

implemented; the paired training data are generated by bicubic downsampling process.

To focus on local textures, we train FANet with relatively small square patches of width

48. This has the side benefit of faster convergence. Only a subset (100 samples) of the

training set are used to design the FAS (Ns = 100). The training process is carried

out for 200 epochs, with batch size 8. Orthogonality error (ϵ in Eq(3.4)) is set to 0.1.

For solving the optimization probm 3.9, we use the CVXPY framework (Diamond and

Boyd 2016; Agrawal et al. 2018). The CNN tool Keras (Chollet et al. 2015) is used

in our implementation. The filter support for the FAS bases (k) is set to 7 × 7 and

the number of filters in FAS (M) is 9. In the interest of statistical significance, we

have tested the proposed FANet on as many as five different datasets: DIV2K, Set5

(Bevilacqua et al. 2012a), Set14 (Zeyde et al. 2012a), Urban100 (Martin et al. 2001a)
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and BSD100 (Martin et al. 2001c). The last four datasets are unseen by the FANet

at the training stage at all. The test results are tabulated for different datasets and

different levels of accentuation in Table 3.1. The level of high-frequency accentuation is

quantified by parameter value α in Eq 3.11. For each dataset the FANet is tested at four

levels of accentuation, α = 0, 0.01, 0.1, 0.5; for α = 0 the FANet reduces to the original

EDSR model of no accentuation. Four image quality metrics are used to evaluate the

test results, the two ubiquitous metrics PSNR and SSIM, plus the two just introduced

high-frequency focused metrics Eh and ∆.

Effect of accentuation coefficient (α)

As shown in the Table 3.1, the energy of the high frequency components in the restored

images is higher by 0.61dB on average if feature accentuation is applied when training

the restoration network than if only the MSE loss function is used. We can see that for

some values of α, the FAS loss function not only improves the HFA, but also it increases

PSNR value. In fact, the accentuation term acts as the regularizer of the CNN in such

cases.
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Dataset α PSNR(db) SSIM Eh ∆(db)

DIV2K (x4)

0.0 27.21 0.79 88.10 39.71

0.01 27.26 0.79 86.96 39.91

0.1 27.22 0.79 87.44 40.12

0.5 27.11 0.78 87.20 40.22

Urban100 (x4)

0.0 22.82 0.72 226.03 38.81

0.01 22.83 0.73 223.14 39.11

0.1 22.79 0.72 225.46 39.31

0.5 22.68 0.71 227.95 39.18

BSD100 (x4)

0.0 24.87 0.68 142.07 29.72

0.01 24.85 0.69 141.36 29.99

0.1 24.87 0.69 140.92 30.09

0.5 24.82 0.68 141.09 30.11

Set14 (x4)

0.0 24.48 0.71 130.22 31.72

0.01 24.46 0.71 128.85 32.23

0.1 24.51 0.71 128.61 32.14

0.5 24.33 0.70 129.04 32.63

Set5 (x4)

0.0 27.54 0.83 59.28 29.19

0.01 27.53 0.83 58.94 29.51

0.1 27.49 0.83 58.12 29.95

0.5 27.36 0.82 59.34 29.57

Table 3.1: Super-resolution performance results on various datasets for
different accentuation level α’s (α = 0 corresponds to the MSE loss function).

Evaluation of other networks and by other quality metrics

We further compare FANet with three other networks for high-frequency representation

learning, ENet-PAT (Sajjadi et al. 2017), MWCNN (Liu et al. 2018) and SRGAN (Ledig

et al. 2017a). We also add the EDSR network trained under various perceptual loss

functions into the comparison group. In addition to PSNR and SSIM, we include the
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following image quality metrics: NIQE (Mittal et al. 2013), Multi-scale Structural Sim-

ilarity Index (MS-SSIM) (Wang et al. n.d.), LPIPS (Zhang et al. 2018a), and Universal

Quality Image Index (UQI) (Wang and Bovik 2002). Note that, except for the ENet-

PAT (Sajjadi et al. 2017) and MWCNN (Liu et al. 2018) in which we adopt the original

architectures proposed by the authors, the architectures for all EDSR variants are the

same as FANet. The results are shown in Table 3.2 for different datasets.
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Table 3.2: Comparison of various loss functions and methods (Perceptual
Loss (LVGG (johnson2016perceptual), SSIM Loss (LSSIM) Zhao et al. 2017,
MS-SSIM Loss (LMS-SSIM) (Zhao et al. 2017), Adversarial Loss (Ladv) (Sajjadi
et al. 2017), Texture Loss (Ltexture) (Sajjadi et al. 2017)))

Network EDSR ENet-PAT MWCNN SRGAN

Metric LMSE LMSE + LSSIM LMSE + LMS-SSIM LMSE + LVGG LMSE + LFAS LVGG + Ladv + Ltexture LMSE LVGG + Ladv

DIV2K

PSNR 27.19 26.82 26.98 24.67 27.14 27.13 24.37 18.70

SSIM 0.81 0.83 0.82 0.75 0.82 0.82 0.78 0.69

MS-SSIM 0.93 0.94 0.93 0.91 0.93 0.94 0.91 0.86

∆ 39.85 40.25 39.69 41.45 40.51 39.79 41.08 39.23

UQI 0.96 0.96 0.96 0.93 0.96 0.97 0.95 0.84

LPIPS (Lower is better) 0.26 0.26 0.24 0.19 0.26 0.12 0.13 0.23

NIQE (Lower is better) 4.38 4.66 4.66 7.64 4.13 4.47 4.88 3.41

Urban100

PSNR 22.74 22.55 22.56 21.22 22.73 22.33 19.37 17.52

SSIM 0.77 0.78 0.77 0.71 0.77 0.73 0.69 0.64

MS-SSIM 0.91 0.91 0.91 0.89 0.91 0.91 0.85 0.83

∆ 38.85 39.25 38.73 39.30 39.59 37.89 40.06 37.50

UQI 0.95 0.96 0.95 0.92 0.95 0.95 0.93 0.86

LPIPS (Lower is better) 0.24 0.25 0.24 0.20 0.25 0.20 0.22 0.20

NIQE (Lower is better) 4.18 4.41 4.45 8.33 4.22 4.63 4.98 3.57

BSD100

PSNR 24.84 24.53 24.72 23.10 24.84 24.78 22.43 19.72

SSIM 0.73 0.75 0.74 0.67 0.73 0.71 0.69 0.64

MS-SSIM 0.90 0.90 0.90 0.87 0.90 0.90 0.86 0.86

∆ 29.94 30.48 29.81 31.89 30.56 30.41 31.29 30.65

UQI 0.97 0.97 0.97 0.95 0.98 0.97 0.96 0.90

LPIPS (Lower is better) 0.34 0.33 0.32 0.28 0.35 0.17 0.17 0.23

NIQE (Lower is better) 6.54 6.96 7.06 10.23 5.91 5.21 6.47 4.42

Set14

PSNR 24.34 24.25 24.33 22.73 24.39 24.40 22.00 19.30

SSIM 0.76 0.78 0.78 0.70 0.77 0.75 0.73 0.68

MS-SSIM 0.91 0.92 0.92 0.89 0.91 0.91 0.88 0.87

∆ 32.16 32.33 32.17 33.48 32.89 32.25 33.14 31.71

UQI 0.96 0.97 0.97 0.95 0.97 0.97 0.95 0.89

LPIPS (Lower is better) 0.28 0.27 0.25 0.22 0.28 0.17 0.16 0.19

NIQE (Lower is better) 6.02 6.47 6.57 9.92 5.46 5.25 6.66 3.88

Set5

PSNR 27.52 27.13 27.39 24.77 27.59 26.57 24.59 21.41

SSIM 0.88 0.89 0.88 0.81 0.88 0.85 0.83 0.77

MS-SSIM 0.96 0.96 0.96 0.95 0.96 0.95 0.93 0.92

∆ 29.26 28.88 28.55 30.03 30.18 30.42 30.04 27.32

UQI 0.97 0.97 0.97 0.90 0.97 0.97 0.96 0.84

LPIPS (Lower is better) 0.18 0.18 0.16 0.12 0.18 0.13 0.11 0.12

NIQE (Lower is better) 6.61 6.85 7.11 11.47 6.44 6.87 7.51 3.88

As we can see, FANet outperforms other methods in most of the performance metrics.
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NIQE and our sharpness metric ∆ are two non-reference image quality metrics, and

they can be used for assessing subjective image quality. On the other hand, PSNR

and SSIM are widely used objective image quality metrics. Therefore, (NIQE,PSNR)

and (∆,SSIM) can be used as subjective vs. objective quality metric pairs to evaluate

different restoration methods. Figure 3.3 compares the performances of the evaluated

methods in the subjective-objective quality plane (averaged over all datasets).
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Figure 3.3: Objective vs. subjective performance of different methods (lower
NIQE values indicate more natural hence better perceptual quality).

As illustrated, FANet strikes a better balance between the subjective and objective

image quality than other methods, which typically sacrifice one to improve the other.

In Figure 3.4, one can see clear advantage of using FAS loss over other loss functions;

FANet can recover sharp details with a negligible amount of artifacts compared to other

methods.
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Figure 3.4: Comparison between EDSR networks trained with different met-
rics

Comparison of perceptual quality

The provided performance metrics are not always the best indicator of the visual quality

of the images.
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EDSR

(a) 23.29 / 0.67

FANet

23.87 / 0.72

Ground Truth

PSNR / SSIM

(b) 14.74 / 0.63 16.08 / 0.74

(c) 18.70 / 0.54 19.85 / 0.66

(d) 17.80 / 0.73 19.23 / 0.76

Figure 3.5: Visual comparison of EDSR vs. FANet for ×4 super resolution

Therefore, in addition to the quantitative results, let us visually compare the results

of the restoration CNN coupled with and without high-frequency feature accentuation.

53

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Seyed Mehdi Ayyoubzadeh; McMaster University–
Department of Electrical and Computer Engineering

We present some sample output images in Figure 3.5. As can be seen, when the images

contain rich and sharp edges and textures, the CNN trained without accentuation fails

to recover them, whereas FANet restores such details successfully. In Figure 3.5 (a), the

EDSR trained with the MSE loss fails to recover the true slope of the lines on the roof

as opposed to FANet. In fact, the plain EDSR generates false structures that do not

exist at all in the original scene. In Figures 3.5 (b) and 3.5 (c), one can see that for

more complex textures that are not simple lines, the plain EDSR produces blurry and

alias patterns, whereas the corresponding reconstruction of FANet is far superior. Also

in Figure 3.5 (d), the plain EDSR has produced much more artifacts in comparison with

FANet. In all of these examples, the FAS accentuation forces the network to recover

high-frequency details in order to minimize the FAS loss.

Removal of GAN artifacts by FAS

When motivating this research in the introduction, we criticised the common practice of

using GAN to generate high-frequency features in image restoration CNNs. Although

GAN can alleviate the problem of oversmoothing in CNN-superresolved images by im-

planting some details, it tends to fabricate false non-existing structures. The FANet

method is proposed to fix the above problem, as a new way of restoring sharp details

faithfully without the artifacts of GAN. To verify the advantage of FANet over GAN,

we need to compare the super-resolution results of FANet and GANs in terms of percep-

tual quality. To this end, we train a GAN network, in which the generator architecture

is the same as the FANet of the previous section, and the discriminator architecture

is borrowed from SRGAN (Ledig et al. 2017a). In terms of network size FANet is far

more compact than GAN, because the GAN discriminator is an extra part that FANet

does not need. Also, the number of parameters in FAS filter bank is far fewer than

the number of GAN discriminator parameters. The superresolution output images of

GAN and FANet are presented in Figure 3.6. As evidently in these figures, the FANet

results are visually superior to those of GAN; in particular, FANet is free of the false,

objectionable structures that are fabricated by GAN. No users will accept semantically
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erroneous features in the output image solely for the illusion of more details.

GAN

20.05 / 0.48

FANet

20.78 / 0.57

Ground Truth

19.08 / 0.56 23.19 / 0.82

21.69 / 0.44 26.45 / 0.68

Figure 3.6: Visual comparison of GAN vs. FANet for ×4 super resolution
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Performance for lighter network architecture

To demonstrate that the successful learning of high-frequency details is primarily credited

to the adoption of FAS loss function rather than a large network size, we test a lighter

version of EDSR that has only 4 residual blocks and 32 filters as opposed to 16 residual

blocks and 64 filters in the original model. This reduced EDSR is trained on DIV2K

dataset for the ×4 super-resolution task. To compare with GAN, we additionally train

the GAN counterpart of the reduced network with the same generator architecture and

the discriminator of SRGAN. In Figure 3.7, one can visually compare some results of

this experiment. As shown, using FAS loss to train the reduced network also improves

the network’s ability to recover fine details and textures. The objective quality metric

values of different methods are reported in Table 3.3, in which they are compared with

the counterpart numbers before network simplification. One can see that network size

reduction does cause performance numbers to drop, but it does not change the relative

ranking of different methods. This agrees with the visual comparison in Figure 3.7. The

FAS criterion still delivers higher contrast (∆) and lower high-frequency error (Eh) than

MSE.

Note that GAN scores higher in sharpness metric ∆ but has a significantly lower

PSNR and SSIM. Although GAN generates high-frequency textures, it performs too

poorly in objective quality metrics to keep image semantics intact.
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LMSE

15.59 / 0.61

LVGG + Ladv

9.85 / 0.04

LMSE + LFAS

16.17 / 0.64

Ground Truth

PSNR / SSIM

25.53 / 0.77 20.08 / 0.57 27.12 / 0.76

23.19 / 0.85 19.06 / 0.64 24.53 / 0.87

Figure 3.7: Comparison of different methods for reduced networks for ×4
super resolution.
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Table 3.3: Performance numbers for reduced networks for ×4 super-
resolution. The numbers in brackets are changes due to network reduction.

Network EDSR GAN

Metric LMSE LMSE + LFAS LVGG + Ladv

DIV2K

PSNR 26.36 [-0.83] 26.35 [-0.79] 22.05

SSIM 0.77 [-0.04] 0.76 [-0.06] 0.60

Eh 92.23 [4.13] 91.76 [4.8] 98.74

∆ 37.65 [-2.2] 37.88 [-2.53] 39.77

Urban100

PSNR 21.56 [-1.18] 21.57 [-1.16] 17.98

SSIM 0.68 [-0.09] 0.68 [-0.09] 0.47

Eh 246.14 [20.11] 245.35 [22.21] 270.4

∆ 36.69 [-2.16] 36.95 [-3.56] 38.03

BSD100

PSNR 24.06 [-0.78] 24.06 [-0.78] 20.56

SSIM 0.66 [-0.07] 0.66 [-0.07] 0.48

Eh 142.04 [-0.03] 142.03 [1.11] 141.03

∆ 27.79 [-2.15] 27.98 [-2.58] 30.99

Set14

PSNR 23.77 [-0.57] 23.76 [-0.63] 20.06

SSIM 0.68 [-0.08] 0.68 [-0.09] 0.5

Eh 129.10 [-1.12] 129.31 [0.7] 130.06

∆ 30.28 [-1.88] 30.34 [-2.55] 31.24

Set5

PSNR 26.49 [-1.03] 26.45 [-1.14] 21.48

SSIM 0.80 [-0.08] 0.80 [-0.08] 0.60

Eh 66.88 [7.6] 66.83 [8.71] 91.95

∆ 27.68 [-1.58] 28.00 [-2.18] 28.13
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Results on structured datasets

The gains made by the proposed FAS criterion over GAN discriminator in perceptual

quality become more pronounced, if the images have some known priors. For example,

when superresolving face images, the training process can make use of prior knowledge

on the structure, shape and textures of the object in question. We use the Flickr Faces

HQ dataset (FFHQ) consisting of 70, 000 human face images to evaluate the perfor-

mances of FAS and GAN. For the ×4 super-resolution task on this dataset, we have

used 4 residual blocks for FANet and the generator network. The discriminator has the

same architecture as SRGAN. The results are presented in Figure 3.8. As illustrated, the

GAN-based results appear unnatural and suffer from severe distortions (note the recon-

structed noses, mouths and teeth). On the other hand, using EDSR with the MSE loss

function alone cannot reconstruct sharp details (see the areas around eyes and mouths).

In contrast, FANet successfully recovers these details with clarity and largely free of

objectionable artifacts.
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LMSE

26.69 / 0.82

LVGG + Ladv

21.37 / 0.60

LMSE + LFAS

26.92 / 0.82

Ground Truth

PSNR / SSIM

26.98 / 0.82 21.43 / 0.57 27.09 / 0.82

24.51 / 0.86 18.28 / 0.64 24.80 / 0.87

25.96 / 0.68 21.25 / 0.44 26.11 / 0.68

Figure 3.8: Results of different methods on a structured dataset (FFHQ) for
×4 super resolution.

3.7.2 Denoising

Experiment Setting

Another intensively researched image restoration task is denoising. For image denoising

methods, including those of deep learning, blurring artifacts are inevitable; they or lack
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of them largely determine the quality of denoised images. We let our FANet method

take up the challenge of preserving the sharpness and clarity of high-frequency details

in the CNN denoising process. Specifically, to build the FANet for image denoising,

we accentuate the EDSR model without upsampling layers (modified EDSR). The same

hyperparameters in the super-resolution experiments are used to train the denoising

FANet. The training data are generated by adding zero-mean Gaussian noise with

variance (σ2) 0.1 to the images. The trained denoising FANet is tested and evaluated

below. These experimental results validate the effectiveness of the FAS accentuation

method when being applied to CNNs for other image restoration tasks besides super-

resolution.

Quantitative Results

To evaluate the efficacy and robustness of the denoising FANet, we add Gaussian noises

of different variances to the validation images. This allows us to check how well the

denoising FANet, which is designed for a fixed noise level, performs against different

noise levels. The results are presented in Table 3.4. As shown in the table, when

the CNN is integrated with FAS accentuation, all quality metrics improve for image

denoising. This is consistent with our observations in the super-resolution case.
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Noise level (σ2) α PSNR(db) SSIM Eh ∆(db)

0.01

0.0 24.27 0.66 24.40 38.40

0.01 24.25 0.67 24.31 38.79

0.07 24.03 0.66 24.30 38.75

0.1 24.45 0.67 24.10 38.51

0.02

0.0 24.71 0.68 24.16 38.66

0.01 24.64 0.68 24.08 38.90

0.07 24.45 0.68 24.08 38.84

0.1 24.84 0.69 23.85 38.68

0.05

0.0 26.38 0.73 23.79 38.66

0.01 26.27 0.73 23.69 39.10

0.07 26.08 0.72 23.74 38.95

0.1 26.38 0.73 23.44 38.97

0.1

0.0 27.68 0.78 23.09 39.70

0.01 27.66 0.78 23.01 39.85

0.07 27.66 0.78 23.17 39.85

0.1 27.68 0.78 22.85 39.89

Table 3.4: Denoising performance results on various noise levels for different
accentuation levels α’s (α = 0 corresponds to the MSE loss function).

Qualitative Results

We illustrate samples of the denoised images in Figure 3.9.
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Noisy Input

(a) 12.67 / 0.09

Modified EDSR

25.43 / 0.43

FANet

26.30 / 0.53

(b) 12.47 / 0.09 27.41 / 0.83 29.50 / 0.88

(c) 21.64 / 0.49 21.68 / 0.36 22.56 / 0.43

(d) 10.63 / 0.04 26.57 / 0.65 27.23 / 0.70

Figure 3.9: Samples of denoising results

As can be seen, the denoising FANet can effectively remove noises and at the same

time it also keeps edges and high-frequency textures sharp and clean. In perceptual

quality FANet is clearly superior to the denoising CNN without FAS accentuation (the
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modified EDSR model of α = 0). For example, in Figure 3.9 (a), the modified EDSR

model fails to recover the sea wave texture and flattens the water surface, while FANet

has much less over smoothing artifacts and recovers the wave structure approximately.

In Figures 3.9 (b) and (c), the modified EDSR model is not able to recover the thin lines,

which do not trouble FANet nearly as much. Similarly, in Figure 3.9 (d), FANet works

equally well in restoring both low-frequency and high-frequency regions; the FANet re-

covered image is visually much more pleasant than that of the modified EDSR. Although

the above comparison studies between with and without feature accentuation are car-

ried out only on the EDSR architecture, the same conclusions should hold for other

network architectures, simply because the FAS affects the optimization criterion that is

independent of CNN architectures.

3.8 Conclusion

In this chapter, we propose a novel design method for image restoration CNNs to achieve

sharpness and clarity of high-frequency details. The key innovation is to construct a fea-

ture accentuation space that defines desired features and sensitizes reconstruction errors

in these features. The FAS construction is done by efficient optimization techniques. As

opposed to GANs, which is commonly used to generate high-frequency details in recov-

ered images, the proposed FAS method has lower computational complexity, and more

importantly it does not generate nonexistent features as GANs are prone to. Experi-

ments show that our method can improve visual quality of restored images, especially

on edges and high textures. The new method is general and it can be applied to many

different restoration tasks, including super-resolution, denoising, deblurring, and etc.
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Chapter 4

Test-Time Adaptation for Optical

Flow Estimation Using Motion

Vectors

4.1 Abstract

Due to the prohibitive cost as well as technical challenges in annotating ground-truth

optical flow for large-scale realistic video datasets, the existing deep learning models for

optical flow estimation mostly rely on synthetic data for training, which in turn may

lead to significant performance degradation under test-data distribution shift in real-

world environments. In this work, we propose the methodology to tackle this important

problem. We design a self-supervised learning task for adjusting the optical flow estima-

tion model at test time. We exploit the fact that most videos are stored in compressed

formats, from which compact information on motion, in the form of motion vectors and

residuals, can be made readily available. We formulate the self-supervised task as motion

vector prediction, and link this task to optical flow estimation. To the best of our knowl-

edge, our Test-Time Adaption guided with Motion Vectors (TTA-MV), is the first work

to perform such adaptation for optical flow. The experimental results demonstrate that

TTA-MV can improve the generalization capability of various well-known deep learning

methods for optical flow estimation, such as FlowNet, PWCNet, and RAFT.
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4.2 Introduction

Optical flow estimation refers to the problem of estimating apparent motion velocities

of brightness patterns between two images (most of the time, two consecutive frames of

a video) at the pixel level, which plays a critical role in a wide range of computer vision

applications, such as action recognition (Feichtenhofer et al. 2016), video denoising (Xue

et al. 2019), frame interpolation (Niklaus and Liu 2018), etc. As a fundamental vision

task, optical flow estimation has been heavily studied in the past several decades and

tackled mainly in two ways. Traditional approaches, such as the Lucas-Kanade (Lucas

and Kanade 1981) and Gunner-Farneback methods (Farnebäck 2003), model optical flow

estimation as an optimization problem for a pair of images, generating a sparse/dense

displacement map that best matches similar visual patterns between the two images.

Approaches of this type rely on hand-crafted priors, which are often challenged in real-

world applications, leading to mediocre performance. On the other hand, deep neural

networks (DNN) have demonstrated outstanding competence in learning many pixel-

level computer tasks, including super-resolution (Ledig et al. 2017b; Lim et al. 2017b),

semantic segmentation (Long et al. 2015), image deblurring (Kupyn et al. 2018), image

generation (Kataoka et al. 2016) and stylization (Gatys et al. 2016). Recently, DNNs

have been exploited to estimate the optical flow from two consecutive frames (Ilg et al.

2017; Ranjan and Black 2017; Sun et al. 2018; Teed and Deng 2020) and achieved the

state of the art performances on benchmark datasets such as KITTI 2015 (Menze and

Geiger 2015), and MPI Sintel (Butler et al. 2012). One main issue for DNN-based meth-

ods is that the models trained on data from one distribution often exhibit a significant

performance drop on some other distribution. This distribution shift issue is particularly

relevant for DNN-based optical flow estimation models at the test time. We, humans,

are good at perceiving movement but less successful in estimating the magnitude or form

of the underlying motion vector field. To obtain accurate ground-truth optical flow for

natural videos, 3D motion trajectories of each pixel need to be captured and projected

to the camera plane, which is practically impossible for in-the-wild videos. Therefore,

a common practice is to use synthetic datasets such as FlyingChairs (Dosovitskiy et al.
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2015) or FlyingThings3D (Mayer et al. 2016) to train DNN-based optical flow estima-

tors, with an expectation that those would generalize well on real-world videos. One

procedure to bridge the discrepancy between the training on synthetic and testing on

real-world data is to finetune the pre-trained model on real-world annotated test data

(Dosovitskiy et al. 2015; Sun et al. 2018; Teed and Deng 2020). However, this approach

may not be practical in the real-world deployment. First, it is difficult to obtain the

ground-truth optical flow in an uncontrolled environment, even for a small dataset. Sec-

ond, it is hard to verify that the small dataset for finetuning is representative of the

test distribution. Third, the world we are faced with is constantly evolving, and the

visual distribution drifts with time. One common approach to combat the distribution

shift is the test-time adaptation (TTA) (Sun et al. 2020), a method that can adjust a

model based on the test data it encounters. This approach has been shown effective in

improving the robustness of DNN models to distribution shifts in some computer vision

(CV) tasks, such as image classification (Sun et al. 2020; Wang et al. 2021) and image

deblurring (Chi et al. 2021). In this work, we propose a novel TTA method for optical

flow estimation based on compressed-domain information readily available in encoded

video streams. Thanks to the similarity between neighboring frames of a video, future

picture frames can be effectively predicted by motion-compensating previously coded

frames with motion vector (MV) maps. By encoding the MV maps and prediction resid-

uals only, modern video codecs, including H.264 (Wiegand et al. 2003), H.265 (Sullivan

et al. 2012), etc., can compress video data at very high compression ratios.

Conceptually, these MV maps resemble the optical flow fields (Young et al. 2020)

and have been found to act similarly to optical flow in many CV tasks such as action

recognition (Shou et al. 2019; Wu et al. 2018) or semantic segmentation (Chen et al.

2021b; Huynh et al. 2021). However, the potential value of the MV map has been largely

ignored in previous studies of optical flow estimation. In particular, we create a self-

supervised learning task, i.e., motion vector prediction, to adapt the pre-trained DNN

optical flow estimation model to better fit the characteristics of the input test video at the

test time. Intuitively, if the model can adapt to predict the MV map drawn from the test
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video distribution competently at the inference time, the fine-tuned model parameters

will adapt to the new data distribution, leading to an improved optical-flow estimation

task. The schematic overview of our proposed approach is illustrated in Figure 4.1.

Figure 4.1: This figure illustrates an overview of the proposed method.
Our TTV-MV framework uses the MV map extracted from the com-
pressed video, to adjust the optical flow estimator at test time. The
dashed line outlines the classic way for optical flow estimation. The red
block depicts the adjustment process

As manifested, the motion vector information is exploited to adjust the parameters

of the optical flow estimator to the test data distribution. However, the MV maps from

video codecs cannot be directly used to supervise the flow. Since the goal of video

coding is data compression, a single MV may be assigned to all pixels in a block for

efficient storage, and incorrect MVs may be deliberately used as long as it improves the

overall coding efficiency. Therefore, the MV map from video coding can be viewed as a

rough and sparse estimation of the optical flow as exhibited in Figure 4.2. Nonetheless,

the motion characteristics related to the specific test data distribution are encoded in

MV maps, despite them following the distinctive point-block pattern compared to dense
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optical flow.

Figure 4.2: We illustrate the overlay of two consecutive frames (left),
the corresponding MV map (middle), and the optical flow (right). The
MV map provides a rough and sparse estimation of the optical flow

We argue that these data-related motion characteristics encoded in MV maps can

be successfully exploited towards adjusting the parameters of the optical flow estimator,

assuming we are able to model the functional relationship between the flow and MV fields

(Young et al. 2020). To make use of the MV maps, an assisting CNN module dubbed

Flow2MV is designed. This module is appended to the end of the optical flow estimator,

and aims to transform the estimated optical flow map to its MV counterpart. The MV

loss for self-supervision is defined as the error between the predicted MV map and the

ground truth from the compressed video. Since both the optical flow estimator and the

Flow2MV module are end-to-end trainable, the weights of the optical flow estimator can

be effectively adjusted by the gradient flow from the MV prediction task. Occasionally,

the motion vector map can be very sparse compared to the optical flow, meaning that

we could only have supervision for a tiny portion of pixels. For those reasons, in addition

to the MV loss, we propose to use another auxiliary loss, e.g. the photometric loss (Liu

et al. 2019b), to further stabilize the process of test-time adaptation. This auxiliary

loss is also beneficial for gradient alignment of the MV loss. The contributions of this

chapter are as follows:

• Based on the MV prediction task, we propose the first test time adaptation frame-

work, dubbed as TTA-MV, to combat the distribution shift issue in optical flow
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estimation. To the best of our knowledge, this is also the first work that exploits

compressed-domain information in the test-time adaptation setting.

• The proposed framework is not restricted to specific network architecture, and can

be applied to any DNN-based optical flow estimation models, such as Flownet (Ilg

et al. 2017), PWCNet (Sun et al. 2018), and RAFT (Teed and Deng 2020).

Experimental results show that our method can consistently improve the performance

of several popular optical flow estimators under the distribution shift.

4.3 Related Work

4.3.1 Optical flow estimation

Traditional methods often treat optical flow estimation in a variational framework and

solve an energy minimization problem to encourage brightness pattern alignment and

extra flow field regularities. Since the seminal work of Lucas et al. (Lucas and Kanade

1981), this computational framework has achieved remarkable success and is further

strengthened by techniques like coarse-to-fine refinement and descriptor matching in a

series of follow-up works (Brox et al. 2004; Brox and Malik 2010; Revaud et al. 2015; Sun

et al. 2014). Nevertheless, these methods are typically designed for short-range motion

estimation. They are vulnerable to incomplete correspondences, making them unsuitable

for real-world examples with large motions and naturally occurring occlusions.

Another line of optical flow estimation research resorts to data-driven approaches and

has flourished with the development of deep learning techniques. In the ground-breaking

work Dosovitskiy et al. 2015, Dosovitskiy et al. proposed the first DNN-based models,

known as FlowNet, that can directly predict a dense optical flow map from a pair of

images in a feed-forward manner. Without complex variational optimization steps, the

FlowNet models achieve on-par or even superior performance than many traditional

optical flow estimation methods. The promising result of FlowNet thus triggered a

huge wave of research in the field of DNN-based optical flow estimation (Ilg et al. 2017;
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Ranjan and Black 2017; Sun et al. 2018; Yang and Ramanan 2019; Zhao et al. 2020), and

some recent networks, such as RAFT (Teed and Deng 2020), are able to outperform the

best traditional method (Xu et al. 2017) by a sizeable margin on standard benchmark

datasets (Butler et al. 2012; Menze and Geiger 2015). Despite their different network

architectures, all these models are trained with supervised learning and follow a similar

learning schedule due to the lack of sufficient realistic training data. Specifically, the

model is first trained on a large-scale synthetic dataset before being finetuned to a target

small-scale dataset of realistic videos. This experimental setting may not be practical in

real-world deployment as it can be extremely difficult to obtain ground-truth optical flow

even for a small number of natural videos. Without finetuning on the target distribution,

these supervised-learning methods are susceptible to the distribution shift issue in the

test phase.

Closely related to our approach is the unsupervised-learning method for optical flow

estimation, such as SelFlow (Liu et al. 2019b). This method does not require annotations

of optical flow for training but still assumes that training videos are sampled from the

same distribution of test data. However, this assumption may not hold as test data dis-

tribution often evolves with time. In contrast, our method only utilizes the information

from the test data to adjust the model and is more practical in real applications. More-

over, SelFlow employs unsupervised learning in the training process, while our method

adopts self-supervised learning only at test time. Lastly, note that supervised training of

optical flow estimators, even with the synthetic data, leads to better performance than

training optical flow estimators in a fully unsupervised manner (Liu et al. 2019b; Teed

and Deng 2020).

4.3.2 Computer vision with compressed videos

Videos are normally compressed by video codecs for efficient storage and thus represented

by compressed domain information rather than raw pixels in standard video files. More

compact, in terms of information density and more representative for temporal varia-

tions, the compressed domain information, such as motion vectors and/or the residual
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maps, find themselves useful in a variety of video CV tasks. For instance, many studies

(Wu et al. 2018; Shou et al. 2019; Hu et al. 2021; Zhang et al. 2016; Cao et al. 2019)

find that compressed domain information may stand in for the costly optical flow in

action recognition tasks and can accelerate two-stream models by several hundred folds.

Similar acceleration potential of compressed domain information is also observed in se-

mantic segmentation (Feng et al. 2020), human pose estimation (Fan et al. 2021), and

video super-resolution (Chen et al. 2020). Besides, compressed domain information is

also employed in designing self-supervised pretext tasks for video representation learn-

ing (Huang et al. 2021; Yu et al. 2020b), while their target downstream tasks are action

recognition or video retrieval. Motion vector maps contain rich motion information of a

video and are readily available when decoding a video, before applying a CV model to

the decoded picture frames. The authors of Young et al. 2020 prove that motion vector

maps may be regarded as a blocky version of optical flow and propose a fast method for

optical flow estimation by filtering the motion vector map in a traditional framework

(Revaud et al. 2015). Our proposed method substantially differs from the approach

in Young et al. 2020, in our work we use the motion vectors to improve the robustness

of data-driven optical flow estimation models in an unknown test distribution and in the

context of DNN-based models.

4.3.3 Test-time adaption

Test-time adaptation (TTA), or test-time training, is a technique that adjusts a model

based only on the unlabeled test sample presented at test time in order to improve the

out-of-distribution performance of the model. A key step of TTA is designing a mean-

ingful self-supervised learning task based on the test sample. Shocher et al. 2018 propose

to learn a sample-specialized image super-resolution model by enforcing the model to

upsample a down-scaled version of the test image back to the original. Similarly, Chi

et al. 2021 propose an auxiliary task of reconstructing the blurry input image from deep

features to adapt the model towards each test sample. Sun et al. 2020 improve the robust-

ness of image classification models by predicting the rotation angle of test images, while
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Wang et al. 2021 approach a similar goal via directly minimizing prediction entropy. In

this chapter, we propose the first TTA framework for optical flow estimation models and

design the self-supervised learning task using representations from compressed videos.

4.4 Proposed Framework

In this section, we present our proposed test time adaptation framework that aims at

improving the performance of pretrained optical flow estimators on out-of-distribution

test samples.

4.4.1 Overview of the proposed framework

An overview of our proposed TTA-MV framework for optical flow estimation is shown

in Fig. 4.1. The framework is built upon the normal optical flow inference pipeline for

compressed videos, as illustrated in the dashed black box at the left bottom corner of

Fig. 4.1. Specifically, the normal inference pipeline first decodes two consecutive frames,

denoted by It and It+1, from the compressed video and then passes them to a pre-

trained DNN-based optical flow estimator to obtain the optical flow map between the

two frames. In contrast, the proposed TTA-MV approach further decodes the motion

vector map M between the two frames from the compressed video and uses it to adjust

the parameters of the optical flow estimator at test time, with which an improved optical

flow prediction may be achieved. Fig. 4.3 depicts the detailed pipeline of the proposed

TTA-MV approach.
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Figure 4.3: This figure illustrates a schematic block diagram of TTA-
MV. The Flow2MV module links the optical flow prediction to the MV
map. An MV loss is thus defined as the error of MV prediction. In
addition, a warping loss is defined based on the optical flow prediction.
We perform gradient alignment to combine gradients from the two losses
into one, which is then used to update the parameters of the optical
flow estimator. Green arrows represent feed-forward inference, while red
arrows indicate gradient back-propagation

The decoded image pair is fed into a DNN-based Optical Flow Estimator, denoted

by f(It, It+1; θ), to generate an optical flow prediction F̂ , where θ denotes the network

weights of the optical flow estimator collectively.

Next, the predicted optical flow map is transformed to a motion vector prediction M̂

by the proposed Flow2MV module g(F ; ϕ) with ϕ denoting its weights collectively.

The predicted motion vector map is then compared with the previously decoded,ground-

truth motion vector map M , and a motion vector prediction loss is calculated. We im-

plement the Flow2MV module as a neural network, so the gradient of the motion vector

loss with respect to θ can be obtained by back-propagating the gradient flow through

the Flow2MV module. In addition, we design a warping loss based on the input image

pair and the predicted optical flow, whose gradient with respect to the weights θ of

the optical flow estimator is also calculated. The gradients from both losses are then

combined to update the optical flow model, where a gradient alignment technique (Yu
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et al. 2020a) is adopted to solve potential conflicts between the two descent directions

in some cases.

4.4.2 Flow2MV module

In the following, we introduce the architecture of the Flow2MV module and how we

train it for test time adaptation.

Network architecture. The Flow2MV module takes an optical flow map F ∈

RH×W ×2 as its input and produces a corresponding motion vector map M̂ ∈ RH×W ×2,

where H ×W is the spatial resolution. Since the motion vector map may be regarded

as a degraded version of the optical flow map, with a comparably lower and spatially

variable resolution related to the underlying scene content (Young et al. 2020), we let

the lightweight Flow2MV module learn this spatially and scene dependent degradation

process. Therefore, we adopt a lightweight UNet-like (Ronneberger et al. 2015a) archi-

tecture with an explicit bottleneck to mimic the information loss. The detailed network

architecture is shown in Figure 4.4.
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Figure 4.4: Flow2MV architecture. Flow2MV module is a simplified
version of the U-Net (Ronneberger et al. 2015b) architecture. All convo-
lutional layers except the last one have the filter size of 3×3 and followed
by ReLU activation function. The last convolution layer filters are 1× 1.

Motion vector loss. We compare the predicted motion vector map M̂ with the

ground-truth map M from the decoder by a masked ℓ1 loss:

LMV =
∥∥∥B ⊙ (M̂ −M)

∥∥∥
1
, (4.1)

Where B is a binary mask defined as below, and ⊙ represents element-wise multiplica-

tion. Since video codecs may encode a pixel in either inter- or intra-mode (Wiegand et al.

2003; Sullivan et al. 2012; Mukherjee et al. 2013), not all pixels have associated motion

vectors even in a P- or B-frame. Therefore, the entries of M are actually undefined for

such pixels. By assigning zero weights in the mask B to these positions and unit weights

to others, we avoid the bias that may be introduced by any preset default values in M .
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Two-stage training. The Flow2MV module is trained in a two-stage manner before

being used for test-time adaptation. We first use ground-truth optical flow F as the input

and pre-train the module with the motion vector loss LMV (F,M ; ϕ). In the second stage,

we initialize the module with pre-trained weights and attach it to a baseline optical flow

estimator. Assuming that the baseline optical flow estimator was trained with a loss

function Lflow(It, It+1, F ; θ), we jointly finetune both modules with a combined loss:

Ltotal = αLflow(It, It+1, F ; θ) + LMV (f(It, It+1; θ),M ; ϕ), (4.2)

With α being the trade-off weight between the two losses. The joint training process

serves two purposes. First, it encourages the Flow2MV module to better predict motion

vector maps from the optical flows generated by the specific optical flow estimator.

Second, it mitigates the potential risk of the contrapositive of the self-defeating effect

(Wu et al. 2021): "optimizing the downstream task loss may not necessarily improve

the performance of the upstream task", by adapting the Flow2MV module to the actual

output distribution of the baseline optical flow estimator.

4.4.3 Test-time adaptation

With the help of the pre-trained Flow2MV module, we are now able to make use of the

motion vector information from compressed videos to perform test-time adaptation for

optical flow estimation. A naïve way of doing this is directly updating the weights θ of

the optical flow estimator based on the motion vector loss:

θk+1 ← θk − γ∇θk
LMV (f(It, It+1; θk),M), (4.3)

Where γ is the step size of gradient descent and k indicates the iteration index during

test-time adaptation. Note that the parameters ϕ are omitted from LMV in Eq. (4.3)

since we freeze the Flow2MV module in the inference phase. However, for a minor portion

of data, we have observed the “catastrophic forgetting” phenomenon (McCloskey and

Cohen 1989), where our self-supervision may degrade the main task performance, as
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modern video encoders may occasionally generate sparse MV data to achieve a high

compression ratio. To hand those marginal cases, we propose to regularize the gradient

descent direction with a warping loss. Given the test image pair It and It+1 and the

optical flow prediction F̂k = f(It, It+1; θk), the warping loss is defined as

Lwarp =
∥∥∥T (It)−W(T (It+1), F̂k)

∥∥∥
1
, (4.4)

Where T andW represent an arbitrary image transformation and the backward warping

operation. In our experiments, we have tried both identity mapping and the feature

extractor of the RAFT encoder as T . Note that, in the case of identity transformation,

the warping loss is equal to the photometric loss (Liu et al. 2019b). The gradient of the

warping loss is thus obtained by ∇θk
Lwarp(It, It+1; θk). However, simply combining the

two gradients may not always be constructive for optical flow estimation as they may be

conflicting with each other (Yu et al. 2020a). Therefore, we perform gradient alignment

following the method in (Yu et al. 2020a) to obtain

∇θk
LMV =


∇θk
LMV if ∇θk

LMV .∇θk
Lwarp ≥ 0

∇θk
LMV −

∇θk
LMV .∇θk

Lwarp

∥∇θk
Lwarp∥2

2
∇θk
Lwarp otherwise

(4.5)

and update the parameters of the optical flow estimator by

θk+1 ← θk − γ
(
∇θk
Lwarp + β∇θk

LMV

)
, (4.6)

Where β is a weighting hyper-parameter. We repeat this process to update the optical

flow estimator parameters K times before performing optical flow estimation.
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4.5 Experiments

4.5.1 Evaluation datasets and optical flow estimators

In order to simulate the distribution shift between training and test phases, we deliber-

ately design the experiment protocol so that the training and test data are sampled from

significantly different distributions. Specifically, we train baseline optical flow estimators

on the FlyingChairs (Dosovitskiy et al. 2015) dataset, and compare the performances

of the baseline estimators with and without the MV-TTA on three other widely-used

benchmark datasets, i.e. MPI Sintel (Butler et al. 2012) (both final and clean passes),

KITTI 2012 (Geiger et al. 2012), and KITTI 2015 (Menze and Geiger 2015). Specifica-

tions of the four employed datasets are summarized in Table 4.1, from which we can see

that the data distribution of the FlyingChairs dataset is completely different from those

of the other three. In addition, the average endpoint error (AEPE) is used to quantify

the performance of each model on each dataset.

Table 4.1: Specifications of employed optical flow estimation benchmark
datasets

Name FlyingChairs SintelClean SintelFinal KITTI2012 KITTI2015

Split Train Test Test Test Test

Type Synthesized Animation Animation Realistic Realistic

Sample # 22872 1041 1041 194 200

4.5.2 Implementation details

We conduct all the experiments with Tensorflow 2.3 on an NVIDIA TITAN X GPU.

Data preprocessing. We train the Flow2MV module on the FlyingChairs (Doso-

vitskiy et al. 2015) dataset, and the trained module is then used for adapting the baseline

model at the test time. Both training the Flow2MV module and test-time adaptation

require motion vector maps as supervision signals. Therefore, we need to generate mo-

tion vector maps for the four involved datasets, FlyingChairs, MPI Sintel, KITTI 2012,
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and KITTI 2015. Training samples of FlyingChairs, KITTI2012, and KITTI 2015 are

given as independent image pairs, denoted by It and It+1.

We then encode each image pair into a 2-frame video and then extract the motion

vector map between them by decoding the encoded video stream. For MPI Sintel, we

encode a sequence of images belonging to the same clip (e.g. alley_1) into a single video

and extract motion vectors for all frames except the first one. Since the encoded videos

in MPI Sintel contain more than two frames, the extracted motion vectors of the same

frame may refer to different reference frames, a feature supported by many modern video

codecs. Therefore, an extra normalization step is taken to re-scale motion vectors for

the MPI Sintel dataset as if the motion vectors still refer to the immediately previous

frame as in the other three datasets.

Another issue is that the extracted motion vector map after re-scaling always points

from It+1 to It, while the provided optical flow map points to the opposite direction.

We hence propose to reverse the direction of motion vector maps before using them for

training and test-time adaptation. Denote the raw motion vector map by M r
t+1→t(x),x ∈

V , where V represents the set of pixels in the second image that have associated motion

vectors. We thus obtain the reversed motion vector map Mt→t+1 and the corresponding

binary mask B by

M(x) =


−M r(x′) if ∃x′ ∈ V , s.t. x = ⌊x′ +M r(x′)⌉

none otherwise
(4.7)

B(x) =


1 M(x) exists

0 otherwise
(4.8)

where we drop the subscripts of Mt→t+1 and M r
t+1→t for simplicity, and where ⌊·⌉ is an

operator rounding every entry of the input vector to the nearest integer. The reversed

motion vector map Mt→t+1 and associated binary mask are then used to calculate the
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motion vector loss in (4.1) for both training the Flow2MV module and performing the

test-time adaptation for baseline optical flow estimation models.

In the experiments, we choose to encode videos with H.264 (Wiegand et al. 2003),

since it is by far the most popular video codec in the world. However, the data pre-

processing pipeline applies to most video codecs, such as H.264 (Wiegand et al. 2003),

HEVC (Sullivan et al. 2012), MPEG2 (Tudor 1995), VP9 (Mukherjee et al. 2013), etc.

Training procedure. We first pre-train the Flow2MV module using the ground-

truth optical flow map as input and the processed motion vector map as supervision

on the FlyingChairs dataset with Adam optimizer (Kingma and Ba 2014a). The loss

function used for pre-training is as defined in (4.1). We set the mini-batch size to 16 and

the learning rate to 10−4 for the whole pre-training process. In the end, the total pre-

training process takes 600k iterations to converge. The pre-trained Flow2MV module

is then attached to a baseline optical flow estimator, and the two parts are finetuned

together in an end-to-end manner. Note that the finetuning is also performed on the

FlyingChairs dataset, so both the Flow2MV module and the optical flow estimator are

still blind to the test distribution. Adam optimizer (Kingma and Ba 2014a) is used with

the learning rate of 10−5 and batch size is set to 8 for finetuning the modules. The

finetuning process ends after 15000 iterations. We continue to use the motion vector

loss for finetuning, but regularize it with the loss function that was used to train each

baseline optical flow estimator in the original papers (Ilg et al. 2017; Sun et al. 2018;

Teed and Deng 2020) , resulting a total loss as shown in (4.2).

Test-time adaptation. The weights of the Flow2MV module are fixed at the infer-

ence time. Adam optimizer is used to perform test-time adaptation on the optical flow

estimator with a small learning rate of 5× 10−6.

The hyper-parameter β in Eq. (4.6) is determined experimentally as shown in next

section.
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4.5.3 Ablation study

To determine the contribution of each component in improving the generalization of the

optical flow estimator, we have conducted several experiments on the Sintel Final dataset

with FlowNet (Ilg et al. 2017) being the baseline model. Training strategy. In this

experiment, we show that the two-stage training strategy is crucial for the Flow2MV

module to be able to guide TTA of the optical flow estimator effectively. We compare

three different training strategies, including the two-stage training strategy we currently

take. First, we drop the first stage, and train both modules jointly from scratch. We

find it difficult for the two modules to converge within a reasonable period of time,

indicating the necessity of the pre-training stage. Then we pre-train both the FlowNet

and the Flow2MV module, and evaluate the performances of MV-TTA before and after

the second-stage finetuning, respectively. We observe that, adding the second-stage

finetuning reduces the AEPE of MV-TTA from 5.51 to 5.32, accounting for 3.44% relative

improvement.

Table 4.2: Ablation study on α (left) and β (right). Performances are
evaluated on the Sintel Final dataset with the FlowNet

α 0.1 1 5 10 20 ∞

AEPE 5.35 5.37 5.32 5.32 5.36 5.41

β 0 0.01 0.1 1 10 100

AEPE 5.62 5.32 5.31 5.32 5.32 5.32

Ablation study on α. The purpose of the second-stage finetuning is to couple the

Flow2MV with the optical flow estimator to be adapted. However, without carefully

balancing the importance of the regularization term, the fine-tuning may be pulled away

more strongly from the main task, leading to an impaired performance. In order to

investigate the influence of the hyper-parameter α, we evaluate the AEPE performance

of TTA-MV with different α values on the Sintel Final dataset as listed in Table 4.2

(left). The column α = ∞ corresponds to the case where the optical flow estimator is

kept frozen during finetuning. From Table 4.2 (left), we can see that the AEPE changes
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with α gracefully and reaches the minimum when α is set to 5 or 10. We then set α = 5

for the rest of the experiments unless otherwise stated. Note that no matter which value

α is set to, a smaller AEPE is achieved than that without finetuning (5.51), reconfirming

the necessity of the two-stage training strategy.

Ablation study on β. We also evaluate the performance of MV-TTA with different

β values, and summarize the results in Table 4.2 (right). From the results, we can

see that including the gradient from the MV loss for TTA significantly improves the

performance regardless the exact value of β. A possible reason for this phenomenon is

that erroneous optical flow prediction may lead to zero warping loss, but should lead to

inaccurate MV prediction. Therefore, combining the two losses, which turn out to be

complementary to each other, leads to more stable TTA results. While different β values

scale the gradients differently, we adjust the number of iterations K until the process

of TTA converges, so similar AEPE performances are achieved across a relatively wide

value range of β. Nevertheless, we choose β = 0.1 (where K = 10) as it achieves a

slightly better performance.

Table 4.3: We report the reduction of AEPE (↓) and the relative im-
provement compared to the baseline (↑) under different settings of the
proposed TTA-MV framework on the Sintel Final dataset with FlowNet

Exp ID LMV Lwarp Grad. Alignment AEPE Rel. improvement

0 - - - 5.68 0%

1 ✗ ✓ - 5.62 1.06%

2 ✓ ✗ - 5.49 3.34%

3 ✓ ✓ ✗ 5.36 5.63%

4 ✓ ✓ ✓ 5.31 6.51%

Contributions of each component in MV-TTA. In this experiment, we investi-

gate the contributions of each individual component in the proposed TTA-MV framework

as shown in Table 4.3, from which we have several observations. First, compared to the

baseline without any adaptation (Exp 0), both the warping loss (Exp 1) and the MV loss
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(Exp 2) can help adapt the optical flow estimator to the test distribution. Second, using

the MV loss (Exp 2) alone for TTA yields a better result than the warping loss (Exp 1),

implying that the MVs from the compressed domain encode rich motion characteristics

which are necessary for adapting the optical flow estimator to the test video. Third, we

observe that simply combining both losses without gradient alignment (Exp 3) provides

better results than using only one loss (Exp 1 and 2), indicating the complementary

properties of the two losses as we discussed in the previous paragraph. Last, with the

gradient alignment module (Exp 4), the prediction AEPE is further reduced to 5.31,

translating to 6.51% improvement relative to the baseline (Exp 0).

Examples of MV validity mask (B(x)). The validation mask for the motion

vector (MV) map can be easily determined from the information provided by the encoder.

The mask value is 1 for the places where the motion vector exists and 0 otherwise. Some

examples of the motion vector maps and their corresponding masks from the Sintel Final

dataset are shown in Figure 4.5.
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(a) MV (b) B(x) (c) GT

Figure 4.5: Visualization of MV maps, MV validity masks and
optical flow maps. We show (a) the MV maps, (b) their corresponding
validity masks, and (c) the optical flows of four samples from the Sintel
Final dataset. Each row represents one sample. Despite the apparent
similarity between the MV and the optical flow maps, motion vectors
may exist only on a portion of pixels in the whole image field, indicating
the necessity of including the MV validity mask in the calculation of the
MV loss.

Optical flow prediction vs. number of iterations (K) To understand how the

iterative update of the optical flow module improves the optical flow prediction. We

have visualized the refinement of the optical flow versus the number of update iterations

(K) in Figure 4.6, for some instances of the iteration number K, on an example from

the Sintel Final dataset, adapting the baseline FlowNet model.
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K=0
AEPE=22.36

K=2
AEPE=20.73

K=4
AEPE=19.33

K=6
AEPE=18.18

K=8
AEPE=17.29

K=10
AEPE=16.68

K=12
AEPE=16.25

K=15
AEPE=15.95

GT
AEPE=0

Figure 4.6: Optical flow prediction vs K. We show the adaptation
process over iterations K. For each iteration, we indicate the current
average end point error (AEPE). The bottom right panel depicts the
ground truth optical flow.

Performance vs. Constant Rate Factor (CRF) The available videos for optical

flow prediction are stored with various compression ratios. To determine how TTA-

MV can perform on the compressed videos compared to the baseline approach, we have

evaluated the videos in the Sintel Final dataset compressed with different Constant Rate

Factors (CRF). With a higher CRF, the video encoder can encode a source video at a

higher compression ratio, resulting in worse visual quality of the encoded video. We can

see how different CRFs affect the frame quality in Figure 4.7, first column. Note that

the CRF impacts not only the quality of decoded frames but also that of the motion

vector maps, as shown in Figure 4.7, second column. We have visualized the output of the

FlowNet and TTA-MV FlowNet in the last two columns of Figure 4.7. As demonstrated,

when the FlowNet is equipped with the TTA-MV framework, the optical flow prediction

is more robust for all tested CRFs.
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Compressed
frame

Lossless

MV FlowNet

AEPE=3.31

MV-TTA FlowNet

AEPE=2.96

CRF=10 AEPE=3.30 AEPE=2.91

CRF=20 AEPE=3.33 AEPE=2.92

CRF=30 AEPE=3.39 AEPE=2.96

CRF=40 AEPE=6.77 AEPE=3.42

Figure 4.7: TTA-MV improvement in optical flow estimation
over different CRFs. We can see the optical flow prediction is better
for the TTA-MV FlowNet compared with the FlowNet for all the CRF
levels. The improvement is particularly significant for higher CRF levels.
Note that the result for CRF=10 is better than CRF=0. The reason lies
in the provided information by the motion vector map. The motion vector
map for CRF=10 is richer compared to CRF=0. When CRF=0, most of
the pixels are encoded in intra-prediction mode. Thus the motion vector
map has less information.

4.5.4 Main results

We evaluate our TTA-MV framework with three popular DNN-based optical flow esti-

mators, i.e. FlowNet (Ilg et al. 2017), PWCNet (Sun et al. 2018), and RAFT (Teed and

Deng 2020) on four standard benchmark datasets. We compare the prediction accuracy

in terms of AEPE with or without TTA-MV for all the four datasets in Table 4.4, from

which we have two observations. First, the performance is improved for all three baseline
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models with TTA-MV, indicating that our proposed TTA-MV framework is compati-

ble with any DNN-based optical flow estimator. Second, the estimator performance is

also consistently improved for all four datasets, showing that the proposed TTA-MV

framework may generalize well to any unknown test distribution.

AEPE=19.72 AEPE=16.16

AEPE=23.91 AEPE=18.73

AEPE=12.72 AEPE=6.61

AEPE=15.07 AEPE=11.49

AEPE=16.03 AEPE=9.34

Figure 4.8: Visual comparison between the results from the same optical
flow estimator with and without the TTA-MV framework (first column:
result without TTA-MV, second column: result with TTA-MV, third col-
umn: ground truth)
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Table 4.4: AEPE performances of three baseline optical flow estimators
with or without TTA-MV on benchmark datasets. The relative improve-
ment for each case is measured in percentages and shown in green

Method
Sintel

Clean

Sintel

Final

KITTI

2012

KITTI

2015

FlowNet 5.29 5.68 9.51 14.82

with TTA-MV 4.64 5.31 6.79 12.48

12.28% 6.51% 28.60% 15.78%

PWCNet 2.67 3.89 5.63 10.05

with TTA-MV 2.63 3.86 5.44 9.94

1.49% 0.77% 3.37% 1.09%

RAFT 2.55 4.80 4.52 9.81

with TTA-MV 2.40 4.29 4.32 9.27

5.88% 10.62% 4.42% 5.50%

In order to gain an intuitive impression of MV-TTA, we visually compare the optical

flow predictions with or without the proposed framework in Figure 4.8, from which we

can see that TTA-MV helps correct large prediction errors as highlighted by the red

boxes.

4.6 Conclusion

In this Chapter, we have presented a novel test-time adaption framework to combat the

test distribution shift issue of DNN-based optical flow estimation models. Leveraging

the fact that most videos are stored in compressed format, we utilize the motion vector

map as a hint to adjust the pre-trained optical flow estimator towards the direction that

better fits the test data. Albeit at a lower resolution compared to the dense optical flow,

the motion vector map encodes the motion characteristics, specific to the given test data

distribution, which we capitalize on. Specifically, we propose a lightweight Flow2MV

module to link the two motion representations, optical flow and motion vector. Through

joint training with the baseline optical flow estimation model, the Flow2MV captures

the data-specific motion characteristics of the predicted optical flow map and effectively
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extracts related motion information to reconstruct a motion vector counterpart. At

the test time, the Flow2MV is fixed, and adaptation is performed on the optical flow

estimator only. Through the self-supervised task of motion vector map prediction, the

optical flow estimator is encouraged to extract relevant motion features from the test

data. The gradient alignment operation further facilitates the convergence of the test-

time adaptation process and improves the performance of the optical flow estimator.

Experiments on standard benchmark datasets show the effectiveness of the proposed

framework.
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Chapter 5

Asymmetric Coding for Ultrahigh

Throughput Encoding (ACUTE)

5.1 Abstract

Thanks to steady advancement of the imaging sensor technology, modern cameras can

achieve very high precision in space and time. However, increasing the video frame

rate while maintaining high spatial resolution is an arduous task because of the limited

memory bandwidth to handle the huge data flow from the sensor array. The compres-

sion algorithms for high speed cameras must have an encoder whose throughput at least

matches camera’s data rate. Also, the encoder needs to be simple enough for implemen-

tation in camera’s hardware pipeline. On the other hand, the decoder is not constrained

by the limited on-camera computational resources and battery life; it can work off line

and use powerful computers, such as GPUs, to reconstruct high speed videos. In this

research, we propose an Asymmetric Coding scheme for Ultrahigh Throughput Encod-

ing (ACUTE). ACUTE consists of a simple and fast encoder that can compress raw

sensor data as fast as they are read out. In contrast to the light-duty encoder, the

ACUTE decoder is a heavy-duty deep decompression CNN model that can achieve good

rate-distortion performance. The key technical innovation is gradient coding by fast

2D lattice vector quantization at the encoder and optimized deep dequantization and

super-resolution at the decoder.
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5.2 Introduction

Thanks to ever increasing sophistication and capabilities of imaging technologies, pro-

fessionals of many technical fields can now acquire images of very high resolutions si-

multaneously in spatial, spectral and temporal domains. One example is the wide use

of high-speed cameras that can reach peak frame rate 1000 Hz and above; they find

applications in safety studies (e.g., crash tests of automobiles), studies of high speed

phenomena, aerospace, manufacturing and production, entertainment, etc. High speed

in vivo imaging and ultrafast functional medical imaging are other examples. In re-

mote sensing, hyper-spectral images need to offer high resolutions in both spatial and

spectral domains. The above high-end imaging processes all require an ultrahigh data

throughput. The total generated data volume per unit time is the product of the three

resolutions in space, time and wavelength. As a result, the limiting factor for the total

achievable precision over all domains is the memory bandwidth of the imaging device.

This is why high speed cameras are compelled to sacrifice spatial resolution for higher

temporal resolution.

In order to push the envelop of achievable precision in all imaged dimensions, one

has to overcome the memory bandwidth bottleneck and hence comes the necessity of

image compression. But unlike conventional image compression tasks, multidimensional

high-resolution image compression faces a special challenge: the encoder throughput has

to be high enough to match or exceed the memory bandwidth; it is the lower of the

two speed specifications that determines how high a data rate can be sustained for a

long duration of continuous shooting of high fidelity multidimensional cameras. A case

in point is compression for ultrahigh speed video cameras. Conventional image and

video compression methods, such as H.264/H.265 (Wiegand et al. 2003; Sullivan et al.

2012), JPEG (Wallace 1992), JPEG 2000, are not suited for the task. Although offering

high compression, their encoding throughput is not high enough to sustain continuous

operations of high speed cameras.
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Figure 5.1: Schematic diagram of the ACUTE system. The encoder
is exceptionally lightweight to achieve very high throughput. The compressed
data consists of a downsampled image I↓ and a lattice quantized gradient image
I∇. Decompression is done by a dual task CNN model (SR-LQ−1) that performs
soft gradient dequantization and superresolution.

The encoders of these compression methods all require a 2D signal transform (either

DCT or wavelet), transform coefficient quantization, entropy coding (either Huffman or

arithmetic coding), and in the case of H.264/H.265 motion compensation. Even if the

2D signal transformation can be implemented fast enough to keep up with the required

throughput, it still must buffer many rows of the pixels in the image (8 in the case of

DCT) in the readout process, generating a serious blockage of the data pipeline of high

speed cameras. Apparently, none of existing image compression methods is designed

to handle the ultrahigh data rate of video cameras running at 1000 Hz or above. In

theory, compressive sensing (CS) is a possible solution to the problem. CS can greatly

reduce the sampling rate and hence generate a much smaller amount of data in the first

place. But none of CS-based compression techniques can match the rate-distortion per-

formance of conventional image coding methods. In Wang et al. 2012, Wang et al. tried

to mitigate the issue by a more efficient quantization technique; however, their encoder

still cannot match the high throughput of high speed cameras. Another strategy to

reduce the encoder complexity without sacrificing rate-distortion performance much is
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distributed source coding (Dragotti and Gastpar 2009). The idea is not to aim at full

removal of high-order statistical redundancies at the light encoder, but rather exploit

such redundancies to make coding gains by the LZ-type algorithm (Ziv and Lempel

1977) at the heavy decoder. In fact, distributed video coding (DVC) has been thor-

oughly investigated. Compared with conventional hybrid video coding paradigm, DVC

escapes the expensive motion estimation step and hence greatly reduces the encoder

complexity (Girod et al. 2005). But the DVC encoder is still too expensive to meet the

stringent throughput requirement of high speed cameras. To our best knowledge, the

highest encoder throughput of digital cameras is achieved by what we propose in this

paper, called the strategy of Asymmetric Coding for Ultrahigh Throughput Encoding

(ACUTE). As outlined in Figure 5.1, the ACUTE image compression system employs,

based on the principle of distributed source coding, a light-duty, hardware-friendly en-

coder and a coupled heavy-duty decoder. In an ACUTE system, the encoder complexity

is reduced to minimum by forgoing prediction or transform, and by using fixed length

code without entropy coding. The compression is performed by simple downsampling

by a factor of 2 and storing a small piece of prior information on the original. The prior

information is used to assist the decoder to solve an essentially image superresolution

problem. Here we stress that the decoder of ACUTE should be expected to outperform

SR methods, because the encoder knows the exact HR ground truth image, which is un-

known for the conventional SR task, and sends the decoder the prior information on the

original HR image. The rest of the paper is structured as follows. We propose the design

procedure for a high-speed encoder. Then we introduce our deep learning-based decoder

(SR-LQ−1), followed by the experiments that show the effectiveness of ACUTE. Finally,

we do the ablation study to demonstrate the effectiveness of each designed module.

5.3 Deep Learning based ACUTE Paradigm

In the ACUTE system design, the computation burdens of achieving high rate-distortion

performance are shifted from encoder to decoder. No variable-length entropy coding

greatly simplifies the code stream organization and parsing at the hardware level. Such
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a maximally streamlined encoder can be integrated into an image sensor, and so it

can achieve a coding speed as fast as sensor array readout speed, while still achieving

compression ratio from 2:1 to 3:1. If the ACUTE decoder can recover the original image

in perceptually lossless quality, then the real-time ACUTE encoder effectively doubles

the camera’s raw data throughput without loss of image quality. The key issue when

image compression is done by downsampling is how to recover high frequency features.

An obvious treatment of the problem is to make downsampling scheme adaptive to local

gradients and signal waveform, as suggested by Wu et al. (Wu et al. 2009). This will

facilitate the recovery of details at the decoder, however, also inevitably increase the

encoder complexity and hence defeat our original purpose of making the complexity of

the ACUTE encoder as low as possible. Therefore, we deliberately leave the technical

challenge to the decoder of the ACUTE image compression system and meet it like in

distributed source coding. As such, all technical innovations and developments of this

work are with respect to the ACUTE decoder. The task of the ACUTE decoder appears

to be one of image superresolution (SR); but unlike in common SR setting, not only

the downsampling kernel is exactly known to the ACUTE decoder, more importantly

the ACUTE encoder also transmits some prior information (say local gradient, as to be

elaborated in Section 5.4) on the very latent image. Now with the extra information

and ample computation resources available to the decoder, we can strive for much higher

reconstruction quality than the current state of the art methods of image superresolution.

In Shu and Wu 2018, Shu and Wu proposed an ACUTE image compression method for

ultrahigh speed cameras. They treated ACUTE decoding as a classical inverse problem

and solved it via convex programming with the constraints of the prior information

provided by the encoder.

In this work, encouraged by recent successes of deep learning in image restoration,

we tap the power of CNN in nonlinear mapping to squeeze out extra coding gains from

the ACUTE image compression paradigm. Our main innovation is to incorporate into

the CNN a hexagonal A2 lattice quantizer to code the 2D gradient prior information.

Thanks to optimal space packing property and high regularity of A2 lattice (Conway
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and Sloane 1998), it improves quantization precision without materially increasing the

ACUTE encoder complexity. More importantly, we design a soft lattice dequantization

module to enforce a feasible region of all local gradients, and in this way aid the CNN su-

perresolution module at the decoder. The two modules are end-to-end optimized in the

training process. We denote by SR-LQ−1, the above novel CNN architecture consisting

of a superresolution (SR) subnetwork and a lattice dequantization (LQ−1) subnetwork.

To further enhance the performance of the SR-LQ−1 network, we couple the A2 lattice

quantizer wih a companding mapping (Ogunfunmi and Narasimha 2010; Sonawane and

Khobragade 2013) to compensate for biases in source distributions. Although the pro-

posed SR-LQ−1 CNN has a training phase that involves a computationally expensive

deep learning process, at the inference stage, the decoding speed is substantially higher

than the classical convex programming solver (Andersen et al. 2011). Unlike the pure

CNN end-to-end compression methods, the proposed SR-LQ−1 method combines deep

learning and hand-crafted modeling. To appreciate the advantages of our algorithm

design, it should be noted that in foreseeable future, due to its sheer size, the CNN ar-

chitecture for pure end-to-end compression (Nakanishi et al. 2019; Toderici et al. 2017;

Chen et al. 2021a) cannot achieve the ultra high encoder throughput required by high

frame rate cameras.

5.4 Compression by Downsampling and Lattice Quantiza-

tion

In the proposed ACUTE image compression system, the encoder uses the basic idea

presented in Shu and Wu 2018. In each 2× 2 non-overlapping window of the image, the

average value and diagonal gradients are computed. Let the i-th block in the image be

xi =

xi,1 xi,3

xi,2 xi,4

 (5.1)
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The average value and diagonal gradients are denoted by

zi = xi,1 + xi,2 + xi,3 + xi,4
4 (5.2)

gi = xi,1 − xi,4 (5.3)

hi = xi,2 − xi,3 (5.4)

To minimize the encoder complexity, we quantize z uniformly into 8 bits for 8-bit pixel

values, keeping the quantization distortion of z below 0.5.

Figure 5.1 presents the downsampled image I↓ and the corresponding gradient image

I∇. In Shu and Wu 2018 the gradient components gi and hi are each uniformly quantized

into 4 bits. In this work we replace the old scheme by a two-dimensional hexagonal A2

lattice quantizer to code the gradient vector ∇i = (gi, hi) as a whole. The regular struc-

ture of the A2 vector lattice (shown in Figure 5.4) still retains low encoder complexity,

while reducing quantization distortion by more efficient hexagonal space packing (Con-

way and Sloane 1998). However, one problem remains, that is the mismatch between

the uniform cell size of the A2 lattice and the highly skewed distribution of ∇i, as shown

in Figure 5.2.

Figure 5.2: Statistics of g and h. Images in the DIV2K dataset
(Agustsson and Timofte 2017b; Timofte et al. 2018) are sampled. The
plots are all in log scale.

Compensating for distribution biases before quantization is one way of mitigating the

coding loss of nonadaptive quantization. A simple and yet effective technique to even out
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biased sample distribution is companding, such as the mu-law and A-law companding

algorithms. They are used to improve the dynamic range of highly biased data (e.g.,

speech). For the task of ACUTE image compression, we choose the A-law algorithm

to expand the gradient values near the origin, because it increases the quantization

precision for values of high probability. This not only contributes to the ℓ2 objective

image quality but also has the perceptual benefit of making quantization distortions in

smooth areas less noticeable.

Specifically, we apply the following A-law companding transformation to g and h

before quantization:

F (x) = 255× sgn(x)


α|x|

1 + ln(α) |x| ≤ 1
α

1 + ln(α|x|)
1 + ln(α)

1
α
≤ |x| ≤ 1

(5.5)

where x is the normalized g and h between −1 and 1. F (x) is illustrated for the unnor-

malized input in Figure 5.3. To reverse the expanding effect of the A-law transformation

done by the encoder, the decoder uses inverse function F−1 to compress the received

signal again and recover the actual values of g and h. To simplify notations, hereafter,

the curly letters G = F (g) and H = F (h) are used to represent the expanded signals of

the corresponding originals.

Figure 5.3: A-Law companding functions for α = 17.62. The input
x is unnormalized. Expansion function (left) versus compression function
(right).
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After the A-law mapping the next step is to quantize transformed gradient vector ∇i

in A2 lattice. To achieve 2:1 compression ratio we encode each vector ∇i with 8 bits,

i.e., adopting a codebook of 256 lattice codewords. Unlike other vector quantization

methods, the nearest neighbor encoding of A2 lattice can be carried out in constant time

independent of the codebook size. This is because the A2 codewords are the centers of

regularly structured hexagonal lattice cells. The generator matrix of these A2 codewords

is:

GA2 = s

1 1
2

0
√

3
2

 (5.6)

In which s is a hyperparameter and can scale the qunatizaion cells (hexagons) in the

2D space. A2 lattice encoding process can be simply implemented by using the uniform

quantizer. The lattice centroids are the union of two cosets linked by a global translation

vector. The centroids in each coset are evenly distributed in the 2D space. Therefore, to

find the corresponding centroid for an arbitrary point in the lattice quantizer, one can

use two scaler quantizers to find two candidates in each coset and then pick one with the

better distortion. The proposed encoding procedure for A2 lattice ensures that time and

space complexities are nearly as low as the uniform quantizer, while making significant

performance gains as we will report and discuss in Figure 5.12.

Aiming to achieve the best possible performance under the stringent real-time through-

put constraint, we jointly optimize the scaling factor s and the companding parameter

α, by solving the following optimization problems in an off-line design step.

s∗

α∗

=argmin
s,α

N∑
i=1

∥∥∥∥∥∥∥
F−1(Q(Gi; s)

F−1(Q(Hi; s)

−∇i

∥∥∥∥∥∥∥
2

2

(5.7)

Note that both G and H depends on the parameter α. The optimized values for s and

α are 31.38 and 17.62 respectively. The Voronoi diagram of the designed quantizer are

illustrated in Figure 5.4. The corresponding quantizer codebook consists of the 256

closest centroids to the origin (in ℓ1 norm) produced by the generator matrix G. In

effect, each of g and h is encoded into 8 bits by this lattice qunatizer.
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(a) Data points
before expansion

(b) Data points
after expansion

Figure 5.4: Voronoi diagram of the quantizer. Shown are the boundaries of the A2 lattice
quantizer and the expanded samples of g and h.

Finally, the encoder sends, for each 2 × 2 block i, the qunatized block average zi in

8 bits, and the 8-bits codeword index of the corresponding gradient ∇i. The design and

algorithmic flow of the ACUTE encoder are schematically depicted in Figure 5.5.
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Figure 5.5: Schematic diagram of the ACUTE encoder. The input image is partitioned
into 2× 2 blocks. The gradient vector (g, h) goes through the expanding function F and then is
coded by the A2 lattice quantizer into 8 bits (the 2D lattice codebook has 256 codewords). These
8 bits are concatenated to the quantized 2× 2 block average value z to form the code stream.

5.5 SR-LQ−1 Decoder

Fortunately, for many applications of image/video compression, the decoder or receiver

side is not limited by computational resources. Therefore, we can exploit the power of

Deep Convolutional Neural Networks to remove or alleviate compression errors and hence

achieve significantly higher reconstruction fidelity than conventional decoding. Specif-

ically in the ACUTE compression diagram, we develop a CNN decoder to reverse two

encoding operations, down sampling and quantization. This novel decoder is called here-

after the SR-LQ−1 method or network for it solves the two underlying inverse problems

of superresolution (SR) and lattice dequantization (LQ−1) and optimize the solutions

jointly. Unlike conventional decoders, the SR-LQ−1 method can be a highly complex

nonlinear mapping, if so required to recover the original image best possible. Also, it
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should be noted that the LQ−1 lattice dequantization is a more sophisticated soft de-

coding operation than the conventional hard decoding of simply choosing the center of

lattice cell.

In designing the SR-LQ−1 decoder, the challenge is how to maximally profit from the

prior knowledge on the local average zi and gradient ∇i of each pixel i. These priors tie

the four samples x1, x2, x3 and x4 by three linear equations. Such strong constraints

cannot be exploited by existing super-resolution CNN architectures when upsampling

the local average value of the original image; even the best of SR CNNs do not respect,

in general, the priors of zi and ∇i. In the next subsections, we present the SR-LQ−1

CNN decoder in detail and justify our architecture design and optimization strategy.

As schematically illustrated in Figure 5.6, the SR-LQ−1 CNN decoder consists of two

subnetworks: (i) a super-resolution CNN (SR) and (ii) a Soft Lattice Dequantization

CNN (LQ−1).

Figure 5.6: Schematic diagram of the SR-LQ−1 decoder. The downsampled image I↓ is
fed to a super-resolution subnetwork to make an estimate of the original resolution. In parallel,
the lattice dequantization subnetwork LQ−1 embarks on removing quantization errors in Q(I∇)
to restore the gradient image I∇. The results of these two subnetworks are combined to refine
the final reconstruction image.

5.5.1 Super-resolution Module

In the SR-LQ−1 method, any SR CNN can play the role of upsampling the 2× 2 block

average z to x1, x2, x3, and x4. We choose the EDSR CNN, one of the best known SR
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architectures, in the place of SR module in our SR-LQ−1 design. As well known, SR

results, regardless produced by traditional or CNN methods, tend to be somewhat too

smooth and less capable of recovering sharp details, representing a low-pass approxima-

tions of the original HR image. Precisely for overcoming this difficulty and recovering

high-frequency features, the ACUTE encoder sends the quantized gradient image Î∇

to aid the decoder. The SR-LQ−1 decoder does not use the quantized gradient image

Q(I∇) directly when refining high frequency details. Instead, it tries to reduce quan-

tization errors and use an improved estimate Î∇ of the gradient image I∇. To recover

I∇, we design a soft lattice dequantization LQ−1 subnetwork that is jointly end-to-end

optimized with the SR subnetwork. This is the main technical innovation of SR-LQ−1

to be detailed in the following subsection.

5.5.2 Soft Lattice Dequantization

One can easily observe from Figure 5.7 that the downsampled image I↓ and the corre-

sponding gradient image I∇ have structural cross correlations, and also local correlations

exist within I∇ itself. Accordingly, we set out to restore the gradient image I∇ from its

lattice quantized version Q(I∇) via supervised deep learning, and use the restored gra-

dient image Î∇ to facilitate the final CNN reconstruction of the latent image I.

Figure 5.7: Structural correlation between I↓ and I∇. The gradient image has both
angle and magnitude which is color coded by value and hue in HSV space respectively. The
presence of specific structures and shapes in I∇ exhibits the local correlation in the gradient
image. Moreover, the similarity between I↓ and I∇ shows the cross-correlation between these
two images.

Arguably, even more beneficial is the lattice structure of the A2 quantizer, which ef-

fectively confines the solution space for gradient vector ∇i at each pixel i. As depicted in

Figure 5.9 (left), after the expanding operation, the actual vector (Gi,Hi) is bounded by
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Figure 5.8: The architecture of soft lattice dequantization LQ−1. LQ−1 extracts fea-
tures from quantized downsampled image Q(I↓) and lattice quantized gradient image Q(I∇),
separately. These two sets of features are then fused by convolution and upsampling layers to
estimate the original gradient vector (r, θ) in polar coordinates.

the hexagon quantizer cell. For algorithm amenability, we approximate this hexagonal

domain by its inscribing circle with a negligible error near the vertices. In the training

of the soft lattice dequantization LQ−1 CNN, we impose the above circular feasibility

region. For easy implementation of the circular constraint we switch to polar coordinates

of two parameters, radius r and angle θ, where the origin of the coordinate system is the

center of the inscribed circle of each quantizer cell. This approximation can introduce

small errors for points close to the hexagon vertices, and for the points laying outside of

the maximum and minimum allowable values for the quantization (boundaries). How-

ever, the probabilities of these occurrences are negligible.

The proposed LQ−1 network module estimates the true gradient vector after expand-

ing operation F in polar coordinates (r, θ), namely,

G
∧

= Q(G) + rcos(θ) (5.8)

H
∧

= Q(H) + rsin(θ) (5.9)
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and back to the original scale by applying F−1:

ĝ = F−1(G
∧

) (5.10)

ĥ = F−1(H
∧

) (5.11)

The valid range for r is [0, Rmax], where Rmax is the radius of the inscribed circle of each

cell of the lattice quantizer (our optimal design of Eq(7) finds Rmax = 15.69). The θ value

is in the range [0, 2π]. The lower and upper bounds on r can be conveniently implemented

in the LQ−1 CNN architecture by using the scaled sigmoid as the activation function

in the subnetwork’s last layer. The architecture of the LQ−1 module is illustrated in

Figure 5.8.

5.5.3 Solving Linear Equations

For the i-th 2 × 2 pixel block, each of the values zi, gi and hi defines a linear equation

in terms of the four pixel values xi,1, xi,2, xi,3 and xi,4. We have three equations for

four unknowns. If the value of one pixel in the block is fixed, the other pixels can be

determined uniquely by solving the linear equations for that block. Therefore, there are

four different solutions depending on which pixel value in block i is known:

Î1 =



xi,1

2zi − xi,1 + gi+hi
2

2zi − xi,1 + gi−hi
2

xi,1 − gi


Î2 =



2zi − xi,2 + hi+gi
2

xi,2

xi,2 − hi

2zi − xi,2 + hi−gi
2


(5.12)

Î3 =



2zi − xi,3 + gi−hi
2

xi,3 + hi

xi,3

2zi − xi,3 − gi+hi
2


Î4 =



xi,4 + gi

2zi − xi,4 + hi−gi
2

2zi − xi,4 − hi+gi
2

xi,4


(5.13)

Îj , j = 1, 2, 3, 4, is an estimate of block i by setting the value of xi,j to the output
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Figure 5.9: Left: lattice quantizer cells; Right: the inscribed circle for one of the
cells. In the right image, P is the actual expanded gradient vector (G,H) in terms of r and θ;
the cell center PQ is the quantized P (Ĝ, Ĥ).

value of the upsampling network at location j of block i and using the quantized block

average zi and the estimated gradient vector (ĝi, ĥi). We average the above four esti-

mated images to obtain the final soft decoded image. This fusion strategy is motivated

by our observation that all the operations in the proposed soft decoder work flow are

differentiable, thus we can train the decoder network end-to-end with an appropriate loss

function (refer to Figure 5.6). In the training stage, we use both the original image I and

the gradient image (g, h) to supervise the learning of the SR-LQ−1 model. Specifically,

the loss function per image in terms of Îj and the restored expanded gradients G
∧

and H
∧

is

L(I, Î)= ||I − 1
4

4∑
j=1

Îj ||1 + λ

∥∥∥∥∥∥∥
 G

∧
− G

H
∧
−H


∥∥∥∥∥∥∥

1

where I is the ground truth, Î is the output of the SR-LQ−1 model and λ determines

the importance of the recovery of true gradients.

5.6 Experiments and Evaluations

This section presents empirical evidences for the competitive rate-distortion performance

of the proposed ACUTE CNN soft decoding system despite the extremely simplistic

encoder. We compare ACUTE with three competing image compression methods of

two categories. In the first category, the compression and decompression are simply

downsampling and upsampling operations, like ACUTE. Two different methods of this
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category are included in the comparison group. The first one is to replace the SR-LQ−1

decoder by a deep learning-based upsampler, the EDSR network (Lim et al. 2017b), with

the upsampling factor of 2. EDSR is among the best performing image super-resolution

CNN models. The second method shares the same encoder as ACUTE, but it adopts a

convex programming approach to solve the inverse problem of soft decoding (Shu and

Wu 2018), instead of deep learning. The second category includes traditional image

compression methods without machine learning in either the encoder or the decoder.

JPEG is selected to represent this category because it is most widely used and it offers

both good rate-distortion performance and high speed.

Various datasets are used to validate the generalization capability of the learnt SR-

LQ−1 soft decoder, which is trained by the DIV2K dataset, over different types of images.

They are the DIV2K validation set (excluded from the training set), BSD100 (Martin et

al. 2001b), Set 14 (Bevilacqua et al. 2012b), Set5 (Zeyde et al. 2012b), CLIC (Toderici et

al. 2020) and KODAK (Kodak Image Set n.d.). Two well-known image quality metrics,

PSNR and SSIM, are used to evaluate the quality of the decoded images.

5.6.1 Experiment Setting

The upsampler module in SR-LQ−1 has the same architecture as EDSR with upscaling

factor 2. Randomly selected 256× 256 patches are used to train the SR-LQ−1 network;

the training is carried out by the Yogi optimizer (Zaheer et al. 2018), with an initial

learning rate of 10−4. The training process takes 50000 iterations and sets the minibatch

size to 8.

At the inference time, we use the self-ensembling technique similar to the proposed

method in Lim et al. 2017b to increase the performance of ACUTE. Specifically, each test

image goes through multiple geometric transforms (rotation by 0, 90, 180, 270 degrees,

flipping vertically and horizontally) to have different versions. Each of these transformed

versions is fed to the SR-LQ−1 network and restored. Then the inverse geometrical

transform is applied to bring each restored version back to the original geometry. The

median over all of these restored results is taken as the final output.
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When compressing the images with the JPEG algorithm, we run for three different

quality factors, 85, 90, and 92. The quality factor of 85 is typically used as the default

value in practice. The quality factors of 90 and 92 roughly give the average compression

ratio of 2:1 for the natural images. It should be stressed that JPEG has much higher

encoder complexity than the encoder of ACUTE. The former is not suited for extremely

high throughput imaging devices, such as very high frame rate video cameras, while the

latter is.

5.6.2 Results

The performance results of tested compression methods in quantitative quality metrics

of PSNR and SSIM are tabulated in Table 5.1. As exhibited, our method outperforms

EDSR, Shu and Wu 2018 and JPEG (QF=85) for all the datasets, which proves the

generalization capability of ACUTE. ACUTE even surpasses JPEG of a high-quality

factor (QF=90) for all of the datasets except Set14. For QF=92, as can be seen, the

JPEG starts to beat ACUTE in reconstruction quality, while yielding compression ratio

around 2:1. However, keep in mind that the JPEG algorithm is too complex and too

slow to run in ultra-high speed camera data processing pipeline.

JPEG compression involves two computationally demanding steps: DCT and entropy

encoding. DCT requires 64 multiplications and 56 additions for each 8× 8 block, while

entropy encoding (using either arithmetic or Huffman coding) requires expensive op-

erations to estimate the probability distribution and encode the block. In contrast,

the ACUTE encoder only requires 16 multiplications and 80 additions to encode each

8× 8 block, and it does not require the entropy encoding step. This makes the ACUTE

encoder much faster than JPEG in terms of processing time. In addition, JPEG com-

pression requires buffering 8 lines of the image during the encoding process. On the

other hand, the ACUTE encoder only requires 2 lines of the image to begin encoding,

making it more memory-efficient than JPEG.

A comparison between the results of EDSR and ACUTE indicates that sending gra-

dient information can significantly improve the quality of the decoded images. Figure
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5.10 compares different compression methods in visual quality. We choose scenes of

high speed movements considering that the ultra-high throughput ACUTE encoder is

designed for sustained shooting of high frame rate videos. As illustrated, our method can

preserve important details for fast-moving objects (e.g., edges and fine textures) better

than other methods, with a greater degree of sharpness and clarity.

5.6.3 Ablation Study

In this section, we conduct various experiments to verify the role and evaluate the

effectiveness of the individual components of the ACUTE system.
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Original Image EDSR Shu and Wu 2018 ACUTE (Ours) JPG (QF=90)

27.37 / 0.94 31.56 / 0.97 37.56 / 0.99 38.67 / 0.99

26.60 / 0.92 28.32 / 0.96 35.73 / 0.99 38.25 / 0.98

31.77 / 0.93 34.65 / 0.98 41.20 / 0.99 40.48 / 0.98

24.01 / 0.83 28.21 / 0.94 33.06 / 0.98 37.13 / 0.98

Figure 5.10: Visual comparison of different compression meth-
ods for scenes of very fast motions (PSNR/SSIM).
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Table 5.1: Comparison of different compression methods in quan-
titative image quality for common test image sets.

EDSR Shu and Wu 2018 JPEG ACUTE
Lim et al. 2017b QF=85 QF=90 QF=92

DIV2K
PSNR 33.40 36.59 39.26 41.27 42.42 41.82
SSIM 0.93 0.97 0.97 0.98 0.98 0.99
Ratio 4 2 3.19 2.5 2.26 2

BSD100
PSNR 29.96 33.96 37.33 38.81 42.04 39.08
SSIM 0.89 0.96 0.97 0.98 0.99 0.99
Ratio 4 2 2.76 2.05 1.85 2

Set14
PSNR 31.32 34.22 38.54 41.25 42.66 39.68
SSIM 0.90 0.96 0.96 0.98 0.98 0.99
Ratio 4 2 2.73 2.17 1.98 2

Set5
PSNR 35.66 37.55 40.49 42.38 44.0 42.97
SSIM 0.96 0.98 0.98 0.98 0.98 0.99
Ratio 4 2 2.92 2.37 2.19 2

CLIC (test)
PSNR 35.61 38.13 40.61 42.35 43.33 42.87
SSIM 0.94 0.97 0.97 0.98 0.98 0.99
Ratio 4 2 3.77 2.87 2.57 2

CLIC (val)
PSNR 35.06 38.50 40.13 41.91 42.91 43.16
SSIM 0.93 0.97 0.97 0.98 0.98 0.99

Ratio 4 2 2 3.54 2.72 2.44 2

KODAK
PSNR 31.67 35.40 38.18 40.23 41.42 40.83
SSIM 0.90 0.97 0.96 0.97 0.98 0.99
Ratio 4 2 2.97 2.33 2.11 2

Average
PSNR 33.24 36.33 39.22 41.17 42.68 41.48
SSIM 0.92 0.96 0.96 0.97 0.98 0.99
Ratio 4 2 3.12 2.43 2.2 2
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Soft Lattice Dequantization Module (LQ−1)

To appreciate how effective the LQ−1 soft dequantization is to reduce the quantization

error, we present, in Figure 5.11, four examples of the lattice quantized gradient image

(Q(g), Q(h)), the LQ−1 restored gradient image (ĝ, ĥ), and the original gradient image

(g, h), so one can visualize the accuracy improvements of LQ−1 over hard dequantization

in both angle (coded by color) and amplitude (coded by intensity) of the local gradients.

As an objective error metric, the mean absolute errors (MAE) for each sample image

are also given in the Figure 5.11.
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I

(
Q(g)
Q(h)

)

MAE=4.98

(
ĝ

ĥ

)

MAE=1.35

(
g
h

)

MAE=6.17 MAE=1.62

MAE=2.57 MAE=1.34

MAE=3.21 MAE=1.36

Figure 5.11: Visualizing the improved precision of quantized gradient images I∇ by soft
lattice dequantization (LQ−1) module for some test samples. From left to right: the original
images, quantized gradient images, improved gradient images after soft dequantization LQ−1, the true
gradient images.

Different Upsampling Modules

The proposed method can use any available super-resolution network as the upsampler

as long as they are differentiable. We have tested our method with three well-known

super-resolution networks: RCAN (Zhang et al. 2018b), EDSR (Lim et al. 2017b), and

WDSR (Yu et al. 2018a). The results are reported in Table 5.2.
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Table 5.2: Comparison of various super resolution networks as
the upsampler module in SR-LQ−1.

SR-LQ−1(EDSR) SR-LQ−1(WDSR) SR-LQ−1(RCAN)
DIV2K
PSNR 41.82 41.49 41.53
SSIM 0.99 0.99 0.99

BSD100
PSNR 39.00 38.83 38.90
SSIM 0.99 0.99 0.99

Set14
PSNR 39.61 39.43 39.57
SSIM 0.99 0.99 0.98

Set5
PSNR 42.92 42.81 42.85
SSIM 0.99 0.98 0.99

Comparing various quantizers

To demonstrate the advantages of the A2 lattice quantizer for encoding the gradient

image I∇ in the proposed ACUTE compression system, we compare it, in Figure 5.12,

against various other quantizers in quantization precision (PSNR), including 1D Lloyd-

Max quantizer (1D K-means), 2D Lloyd-Max quantizer (2D K-means), and uniform

quantizer. In the case of 1D K-means, we design two optimal scale quantizers for g and

h separately with K = 16. In the case of 2D K-means, we design a 2D vector quantizer

of K = 256 codewords by clustering g and h in the 2D space. As exhibited, the proposed

lattice quantizer coupled with companding has the best performance in the comparison

group.
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20.00 30.00 37.85 44.67
PSNR (db)

A2 Lattice∗ (s=31.38, α=17.62)

2D KMeans (K=256)

1D KMeans (K=16)

Uniform∗ (α=17.62)

Uniform

A2 Lattice (s=31.38)

Figure 5.12: PSNR of different quantizers. ∗ means A-law com-
panding is performed before quantization.

Do companding and A2 quantization matter?

One may question the necessity of employing the A2 quantizer coupled with companding

at the encoder, considering that a powerful deep learning-based decoder like SR-LQ−1

can be made highly nonlinear and complex to compensate for the rigidity of uniform

quantization. To clear any doubt, we train the deep decoder separately for the scheme

of companding followed by A2 2D lattice quantization and for simple uniform scalar

quantization of z, g, h. PSNR and SSIM values of reconstructed images, averaged over

the DIV2K validation data, are plotted and compared in Figure 5.13 for the two schemes.

The same architecture for the SR module is used in the two cases to have a fair com-

parison. These results show that the latter is considerably inferior to the former in

reconstruction quality.
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Figure 5.13: PSNR and SSIM trends vs the number of training
epochs for DIV2K validation data. The red graphs are for scalar
qunatizer without companding. The green graphs demonstrate the higher
performance of SR-LQ−1.

5.7 Conclusion

We have developed an asymmetric image compression system (ACUTE) of an ultra-high

throughput encoder coupled with a powerful deep soft decoder. The proposed ACUTE

system can sustain long duration of real-time video compression at very high frame rates

or similar scenarios, while offering competitive rate-distortion performance. The light,

hardware-friendly but efficient encoder is made possible by simple down sampling and

2D lattice quantization of gradients with companding. The learnt SR-LQ−1 decoder

thoroughly exploits the gradient information transmitted by the encoder to superresolve

the downsampled image in good precision.
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Chapter 6

Conclusion

While deep learning-based image restoration neural networks have made remarkable

progress in recent years, they still face challenges in restoring sharp, clean high-frequency

details and textures. This thesis identifies the lack of suitable priors on high-frequency

information as the leading cause of this deficiency.

The thesis introduces novel techniques for incorporating informative high-frequency

priors into neural restoration models, including encouraging convolutional neural net-

works’ filters to extract valuable frequency information from images using a pre-designed

filter bank, modifying the loss function of the restoration model to emphasize the vi-

tal high-frequency details, incorporating an auxiliary loss function on the metadata to

reduce the domain shift issue, and integrating the desired priors within the model archi-

tecture.

The proposed techniques enhance the frequency characteristics of neural networks’

produced images. To support the effectiveness of our proposed approaches, we conduct

extensive experiments for various image restoration tasks.
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Appendix A

Chapter 2 Supplement

A0.1 Results on image super resolution

To show that FBR is an effective method to regularize the DCNN in image restora-

tion tasks, we evaluated different regularization strategies for image super-resolution on

EDSR Lim et al. 2017a architecture. We trained the models with random 64×64 patches

of DIV2K dataset with the batch size of 8 for 200 epochs. The regularization is applied

to the convolutional layers in the residual blocks of EDSR architecture. PSNR and SSIM

for different strategies on the validation split of DIV2K dataset are shown in Table . As

presented, FBR outperforms other regularization methods in image super-resolution.

Reg. Type PSNR SSIM

Baseline 24.8 0.68

Ortho. (γ = 10−4) 24.95 0.68

ℓ1 (γ = 0.01) 24.7 0.67

ℓ2 (γ = 10−6) 24.9 0.68

FBR (λ = 0.0001, γ = 10−5) 25.29 0.69

Table A1.1: PSNR and SSIM on DIV2K validation dataset

A0.2 Large Size Image Classification

To show that FBR is an effective method to regularize the DCNN on the large scale

images as well as the small scale images, we use ImageNet Russakovsky et al. 2015

dataset. It contains color images (224 × 224) from 1000 different objects. We use 100
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classes from the objects to train the DCNN. We use ResNet-50 architecture He et al.

2015 as our baseline model. We could see the training loss and top-5 accuracy on the

validation data in the Figure A1.1 (A) and (B) respectively.
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(b) Top-5 Accuracy on validation
dataset (ImageNet) .

Figure A1.1

As shown in Figure A1.1 (A), both models that regularized with FBR have the lower

training loss in comparison with L2 regularization or baseline model without regular-

ization. For the validation, as one could see in Figure A1.1 (B), the model with FBR

regularization has the best accuracy. In addition, the abrupt changes in validation ac-

curacy for FBR model is less than other models.

A0.3 Results of using a VGG-derived filter bank as the regularizer

We can also construct the regularization filter bank using the lower layer convolutional

kernels of some pretrained DCNNs, for example, those of VGG16. As mentioned pre-

viously, Gabor filters do not work effectively if the filter kernel is small. One way of

creating a regularization filter bank of a small kernel size is to choose a subset of pre-

trained VGG convolutional kernels at first few front layers. Specifically, we randomly

select 256 VGG16 kernels of the first two layers pre-trained on Imagenet to form the

regularization filter bank, which is shown in Figure A1.2.
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Figure A1.2: 256 sampled filters (3× 3) from pretrained VGG16

For comparison purposes, we train the DCNN of Figure 2.4 to classify the Caltech 101

dataset, with the above VGG-derived filter bank regularization, the ℓ2 regularization,

and without any weight regularization at all (the baseline), and compare the perfor-

mances of these methods. The classification accuracy and cross entropy results are

displayed in Figures A1.3 (a) and (b), respectively. As shown, the DCNNs regularized

by the VGG16-derived 3 × 3 filter bank outperform the ℓ2-regularized DCNN and the

baseline model without regularization.
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Figure A1.3

Comparison of different regularization methods based on feature maps

In order to understand how the proposed FBR method works and its advantages over

the other methods, we examine the DCNN feature maps generated under different and

without regularizations. First we compare the baseline model without regularization

and the FBR regularization method. Let us examine two examples from the Caltech 101

test dataset on which the baseline model misclassifies whereas the FBR method correctly

classifies. The two test images after normalization (mean subtracted and then divided

by standard deviation) are shown in Figures A1.4.
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(a) FBR prediction:
"lamp", Baseline Pre-
diction: "nautilus"

(b) FBR prediction:
"headphone", Baseline
Prediction: "scissors"

Figure A1.4: Example images

The feature maps of layer 1 and layer 3 for the baseline and the FBR method are

displayed in Figure A1.5 and Figure A1.6 respectively. The similar feature maps of the

baseline model are marked in these Figs/fbr
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(a) First layer, baseline
model

(b) First layer, CNN using
FBR

(c) Third layer, baseline
model

(d) Third layer, CNN us-
ing FBR

Figure A1.5: Feature maps for the first test image (Very similar feature
maps are marked with red and blue colors)
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(a) First layer, baseline model (b) First layer, CNN using FBR

(c) Third layer, baseline model (d) Third layer, CNN using FBR

Figure A1.6: Feature maps for the second test image

As can be easily observed in the figures, the feature maps of the FBR method are

more sparse than those of the baseline model without regularization. This increased

sparsity improves the robustness of the FBR method. Also, we bring the reader’s at-

tention to interpreting the feature maps of the FBR method in Figures A1.5 and A1.6.

Thanks to the Gabor filters included in the regularization filter bank, the FBR method

extracts features of strong directionality and high frequency that may explain the supe-

rior classification performance of the FBR method.
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(a) FBR prediction: "flamingo", ℓ2 Predic-
tion: "ibis"

(b) FBR prediction: "pagoda", ℓ2 Predic-
tion: "accordion"

Figure A1.7: Example images

Next, we compare the FBR method and the ℓ2 regularization. Again, two sample

images of the CalTech 101 dataset are selected and shown in Figures A1.7. For these

two images the FBR method correctly classifies, whereas the ℓ2 regularization does not.

The feature maps of layer 1 and layer 3 for the two methods are shown in Figures A1.8

and A1.9.
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(a) First layer, baseline model with ℓ2 (b) First layer, CNN using FBR

(c) Third layer, baseline model with ℓ2 (d) Third layer, CNN using FBR

Figure A1.8: Feature maps for the first test sample (FBR in comparison
with ℓ2)
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(a) First layer, baseline model with ℓ2 (b) First layer, CNN using FBR

(c) Third layer, baseline model with ℓ2 (d) Third layer, CNN using FBR

Figure A1.9: Feature maps for the first test sample (FBR in comparison
with ℓ2)

Here, the observations are very similar to what we discussed about Figures A1.5 and

A1.6. The feature maps of the FBR method appear to be sparser and exhibit greater

discriminating power in high frequency and directionality than the ℓ2 regularization.

This explains the superior performance of the former over the latter.
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