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Abstract

The dependence between multiple lines of business has an important impact on determining

loss reserves and risk capital, which are crucial elements of risk management for an insurance

portfolio. In this work, we show that the Sarmanov family of multivariate distribution can

be used for dependent lines of business using a rank-based method estimation. In fact, an

inadequate choice of the dependence structure may negatively impact the estimation of the

marginals, which might lead to an undesirable effect on reserve computation. Thus, we

propose a two-stage inference strategy in this thesis. We show that this strategy leads to

robust estimation and better capture the dependence between the risks. We also show that

it leads to smaller risk capital and a better diversification benefit.

We introduce the two-stage inference using the Sarmanov distribution. First, we fit the

marginals with generalized linear models (GLMs) and obtain the corresponding residuals.

Secondly, the Sarmanov family of bivariate distributions links these marginals through the

rank of residuals. We also show that this can be extended to a multivariate case.

To illustrate this method, we analyzed two sets of data. For the bivariate case, we considered

an insurance portfolio consisting of personal and commercial auto lines provided by a major

US property-casualty insurer. We also used the data from three lines of business of a large

Canadian insurance company for the multivariate dependence case.
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Chapter 1

Introduction

For insurance companies, the production cycle is inverted because the insurer receives the

price (premium) of the product before knowing the cost (claim). So the insurer needs to

estimate the cost and ensure there is enough money aside to meet its commitments to its

policyholders and claimants, which constitutes the reserve. Classical reserving methods are

often determined under an independent assumption between the portfolio risk components.

However, risks are related to each other in practice, and this dependence needs to be con-

sidered as a correlation exists between multiple lines of business. Therefore, it plays an

important role in determining the reserve for the whole portfolio and, more importantly,

calculating the risk capital. The risk capital is the amount that property & casualty insurers

set aside as a buffer against potential losses from extreme and adverse events.

In order to get the loss reserves, we have the original loss triangles for each line of busi-

ness with rows assigned as accident years and columns as development periods, which we

can use to predict future claims and complete the lower part of the loss triangle.

To capture the dependencies between different loss triangles, the mainly used method in-

volves the copula model. For example, Shi and Frees (2011) analyzed the dependent loss

reserving between two lines of business using Gaussian and Frank copula. In this research

we explore and study the Sarmanov family of distribution, which has also been used in lit-

erature. For example, Abdallah et al. (2016) used bivariate Sarmanov distributions with

random effects taking into account the correlation between two lines of business. The original

method using the Sarmanov distribution is to perform a one-stage inference, by simultane-

ously estimating the marginals and the dependence parameters. However, a change in the
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dependence structure would lead to different parameters estimation for the marginals, and

thus, to a different total reserve. Consequently, this method has the undesirable effect of

violating the linear property of the mean.

In this research, we propose to use a two-step inference method. In the first step, generalized

linear models are fitted to the marginals, which will fix the parameters of the marginals and

the estimations of the reserves. Then we link the dependence of GLMs using the rank-based

method for bivariate and trivariate Sarmanov. This approach has been used in the copula

model. For example, Côté et al. (2016) used the rank-based method in the Archimedean

copula model with six lines of business. However, the rank-based method has never been

introduced in the literature with the Sarmanov family of multivariate distributions, which is

more flexible than copulas.

Some background knowledge about loss reserves, loss triangles and dependence between

lines of business are reviewed in Chapter 2. Next, we introduce the data we used for this

thesis in Chapter 3, which includes real data of an insurance portfolio consisting of personal

and commercial auto lines provided by a major US property-casualty insurer, and three lines

of business data from a large Canadian insurance company. The data will be analyzed in the

next two chapters. Then we present the bivariate and multivariate Sarmanov distribution

and introduce the rank-based method comparing it with the classical (one-stage inference)

method in Chapter 4. In Chapter 5, we present the importance of risk capital and show

a better diversification benefit with the two-stage inference method, using simulation and

bootstrapping. Finally, Chapter 6 concludes and summarizes the comparison between the

rank-based method and the one-stage inference method.
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Chapter 2

Background

2.1 Loss Reserve in property and casualty insurance

A property and casualty insurance policy is a contract between two parties, the insurer and

the insured, where the insurer is usually an insurance company and the insured purchase

insurance product from the insurer. After receiving the premium paid from the insured, the

insurer need to pay amounts of money to the insured once the accident or events mentioned

in the agreement occurs. The amount of money the insurer needs to pay is called the claim

amount. Therefore, the insurer needs to reserve amounts of money for the claim amount

they need to pay in the future. The reserved amount of money is called the loss reserve,

which is an estimation of an insurer’s liability from future claims. The estimation procedure

and technique are called loss reserving. Loss reserving is crucial for risk management, as it

quantifies and predicts potential losses and controls the financial impact of risks.

Figure 2.1 shows the Lexis diagram for the lifetime of claims. The x-axis is the calen-

dar time, while the y-axis is the years of development. The dot “•” in the figure shows the

date that claims occur. The plus sign “+” gives the date that the claims have been declared

to the insurer, and the claims are closed on date “×”. The red vertical line is the current

date, which in this figure is year 2011. The dotted blue line after the current date is the

future claims the insurer will need to pay. So loss reserving is to predict the future claims

that are needed to be paid by the insurer, given past open claims.

The loss reserving process normally involves analyzing historical claim data using statistical

3



Figure 2.1: Lexis diagram for the lifetime of claims

models to predict future losses. The historical claim is often presented in the form of a loss

triangle. It is a triangular-shaped table that shows the development of losses over a period

of time for each accident year, which is the year that the accident occurs and the issuer

requires to claim. The following shows an example of loss triangle:

X1,1 X1,2 ... X1,n−1 X1,n

X2,1 X2,2 ... X2,n−1

...
... . .

.

Xn−1,1 Xn−1,2

Xn,n

where for Xi,j, i indicates the accident year and j indicates the development period. Xi,j

gives the loss incurred during the ith accident year and jth development period.

Loss triangles may show incremental claims or cumulative claims. The incremental claims

represent additional claims that are needed to be paid during a given period of time, i.e., the

net increase in claim over a development period, while the cumulative claims are the total

amount of claims that have been reported or reserved over the period of time, i.e., the sum

of current and previous incremental claims. In this thesis, we will use loss triangles with

incremental claims.
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In order to analyze the loss triangles and estimate loss reserves, we will need to complete the

lower part of the loss triangle, i.e., predict the incremental claims for the future development

period of a certain accident year. Several methods are used for loss reserving, for instance, the

chain-ladder method and the Bornhuetter-Ferguson method, the most basic claims reserving

and the most frequently used techniques in practice. The chain-ladder method predicts the

future claims based on the pattern of historical claims and assumes the pattern will continue

into the future, which might not always be accurate. The Bornhuetter-Ferguson method

proposed by Bornhuetter and Ferguson (1972) is a hybrid approach that combines historical

data with judgment and experience to produce more accurate estimations.

2.2 Dependence between lines of business

For now, we have been talking about loss reserving for one single line of business, but in prac-

tice, insurance company has multiple lines of business. Therefore, while estimating the loss

reserve, we need to consider the dependence between different lines of business. This means

that the loss reserves and risks of two or more loss triangles can be correlated with each

other. To capture dependence between loss triangles, there exist two different approaches.

Various literature have been proceeding on studying distribution-free multivariate reserv-

ing methods. Braun (2004) showed the effectiveness of the multivariate chain-ladder method

using simulated data and found it provides an accurate estimation of prediction error when

taking the correlation between loss triangles into account. Merz and Wüthrich (2008) also

considered the prediction error of a modified multivariate chain-ladder model proposed by

Schmidt (2006) and incorporated the dependence structure in to their model.

The other approach to modeling the dependence between lines of business is using para-

metric methods based on various distributional families, which involves assuming a specific

distribution for the loss for each line of business, then modeling the dependence between the

distributions. This approach allows greater flexibility in modeling the dependence and can

provide more information to the actuaries by giving a reasonable range of loss reserves rather

than only a mean square prediction error. Therefore, our thesis will focus on the parametric

approach.

One commonly used method for parametric loss reserving is the copula model to capture

dependence between lines of business. Copula can be used to describe the dependence struc-
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ture between two or more random variables. Modelling using copula often starts by selecting

appropriate copula functions and then estimating the dependence parameter based on the

marginal distribution fitted into each line of business. Future claims can then be simulated

using the copula model, and loss reserves can be estimated.

A lot of literature have studied on these reserving methods. Brehm (2002) proposed us-

ing a Gaussian copula to model the joint distribution of unpaid losses. Moreover, De Jong

(2012) used a Gaussian copula correlation matrix to model the dependence between lines of

business. Although, the Gaussian copula assumes the marginals to follow a normal distribu-

tion, both Brehm and De Jong assumed the loss distribution of each line of business follows

a log-normal distribution, which is a commonly used distribution in modelling the losses

in the insurance industry. Shi et al. (2012) and Wüthrich et al. (2013) used multivariate

Gaussian copula to capture correlation due to accounting years using loss triangles, while

Wüthrich et al. (2013) allowed the correlation matrix to vary over time and produces more

accurate modeling of dependence.

Bootstrapping is also a popular parametric approach used for loss reserving, which involves

resampling the historical data to simulate and generate new datasets (pseudo-responses).

Bootstrapping is the method we will use to estimate the predictive distribution for unpaid

losses. Kirschner et al. (2008) proposed the synchronized bootstrap, which aimed to esti-

mate the prediction error of a multivariate dependence model. Taylor and McGuire (2007)

modified their approach to account for the additional complexity introduced by the general-

ized linear model framework.

Shi and Frees (2011) used Frank and Gaussian copula to model the dependence between

lines of business, and introduced a parametric bootstrapping method to estimate the pre-

diction error. Frank Copula can capture both positive and negative dependence between

the lines of business, as its parameter controls the strength and direction of the dependence.

Shi and Frees (2011) used the bootstrap method to compare between Frank and Gaussian

copula. Abdallah et al. (2015) used hierarchical Archimedean copulas (HAC) to model the

dependence and correlation between loss triangles. They found it outperformed several other

methods, including the Gaussian copula and multivariate chain-ladder method. Hierarchical

Archimedean copulas can capture complex dependence structure by combining Archimedean

copulas in a hierarchical manner. Futhermore, it can accommodate various types of marginal

distribution and can capture both positive and negative dependence.

In this thesis, we will consider the Sarmanov family of a multivariate distribution. This
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family of distribution was first introduced in Sarmanov (1966) and Lee (1996) proposed us-

ing bivariate Sarmanov distribution to model dependence between bivariate random vectors.

One of the reasons we selected this distribution instead of copula is that the Sarmanov dis-

tribution can easily provide closed-form expressions for loss reserves, while it is very complex

for copula. The closed-form mean, variance, and covariance for loss reserves generated using

the Sarmanov distribution is in Appendix 2.

Bahraoui et al. (2015) performed the bivariate Sarmanov distribution and copula, show-

ing that the bivariate Sarmanov is more flexible than copulas in modeling dependence. In

fact, in addition to the possibility of capturing both positive and negative dependencies, the

bivariate Sarmanov model also provides more flexibility for tail dependence. As such, the

paper showed bivariate Sarmanov distribution models skewed data, which is inappropriate

for Gaussian copula. The author also proposed a method for estimating the dependence pa-

rameter for Sarmanov distribution based on maximum likelihood estimation. Furthermore,

the applicability of Sarmanov’s distribution results from its versatile structure that offers us

flexibility in the choice of marginals and allows a closed form for the joint density. Abdallah

et al. (2016) showed the potential of this family of distributions in a loss reserving con-

text. The paper used random effects to accommodate the correlation between loss triangles.

Ratovomirija et al. (2016) proposed a new method based on multivariate Sarmanov mixed

Erlang distribution to model the joint distribution for lines of business. Bolancé and Vernic

(2017) also provided three approaches based on multivariate Sarmanov distribution to model

dependence loss reserving.

In this research, we propose to use a two-step inference method called the rank-based method.

This approach uses the rank of the observations rather than the actual values of data in the

analysis. We will link the dependence of GLMs using the rank-based method for Sarmanov

distribution. This approach has been used in the copula model. Genest and Neschléhova

(2012) discuss the rank-based methods for copula estimation. Côté et al. (2016) used the

rank-based method that replaced the loss data with the rank of residuals in the Archimedean

copula model with six lines of business. Residuals are the differences between the observed

claim of the dependent variable and the predicted loss reserve. Further, the rank of residuals

are the order of magnitude of the residuals. To our knowledge, the rank-based method has

not been applied to Sarmanov distribution.

The rank-based method is robust to outliers and non-normality. Thus, we propose to use this

method to accommodate the correlation between loss triangles using bivariate and trivariate

Sarmanov distribution.
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2.3 Modelling and Notation

In this research, we use the generalized linear model (GLM) as the marginals for each lines

of business. GLM is a type of regression analysis that allows various distributions of the

response variable, while there is linear or non-linear relationships between the response and

predictor variables.

In our case, we will take the accident year and development period as the predictor variable

when fitting the generalized linear model for a loss triangle, and for the response variable, we

will use the loss ratio. The loss ratio is a key performance metric used to measure the prof-

itability and loss for an insurance portfolio. It is used to represent the ratio of incurred losses

to premiums earned, where the losses include paid insurance claims and adjustment expenses.

As mentioned above, in a loss triangle, the row would represent the year which an acci-

dent occurs, the column represents each year passed since the accident happened. We will

use i to indicate the accident year and j as the development period, which are the row and

column respectively. Let ℓ be the different lines of business, then we will denote X
(ℓ)
ij as

the incremental payments in the loss triangle. Let p
(ℓ)
i be the premium for the ℓth lines of

business and ith accident year, then y
(ℓ)
ij = X

(l)
ij /p

(ℓ)
i is the loss ratio.

After calculating the loss ratio, we can fit the generalized linear model with accident year

and development period as factor, using different types of independent distributions, to find

out which distribution model fits the marginals well. The inference method used to choose

the better model will be mentioned in the next chapter.

In order to fit the generalised linear model, we use the procedure shown in Abdallah et

al. (2016), let s
(ℓ)
i be the effect of accident year, t

(ℓ)
j be the effect of development period,

i, j ∈ {1, 2, ..., n} then the systematic component for the ℓth line of business can be shown

as:

η
(ℓ)
ij = u(ℓ) + s

(ℓ)
i + t

(ℓ)
j ,

where u(ℓ) is the intercept and for parameter identification, s
(ℓ)
i and t

(ℓ)
j are set to 0 for i, j = 1.

Here we will give two examples of distributions. If we fit the log-normal distribution, then

a
(ℓ)
ij = η

(ℓ)
ij

8



where a
(ℓ)
ij is the mean of the log-normal distribution with standard deviation b(ℓ). If we fit

the Gamma distribution, we will have

τ
(ℓ)
ij = exp(η

(ℓ)
ij )/α

(ℓ)

where the non-zero α(ℓ) is the shape parameter and τ
(ℓ)
ij is the scale parameter of the gamma

distribution. We use maximum likelihood estimation for the parameter estimation of all the

models.

With the estimated parameters, the total reserve can be estimated using∑
ℓ

∑
i

∑
j

p
(ℓ)
i E(y

(ℓ)
ij )

where E(y
(ℓ)
ij ) is the mean of unpaid loss ratio. For log-normal distribution, we have

E(y
(ℓ)
ij ) = exp

[
a
(ℓ)
ij +

(b(ℓ))2

2

]
,

and for the gamma distribution, we have

E(y
(ℓ)
ij ) = τ

(ℓ)
ij α

(ℓ)

9



Chapter 3

Data

There are two sets of data we used in this thesis. Both of them come from real life data

which have different lines of business that may be dependent with each other and can be

analysed in this project.

3.1 Shi and Frees (2011) Data

The data we used for Bivariate case are the same as the ones used in Shi and Frees (2011)

and Abdallah et al. (2016), which is an insurance portfolio consisting of two business lines

personal and commercial automobile lines from a major US property casualty insurer. The

data were collected from Schedule P of the National Association of Insurance Commission-

ers (NAIC) database. The NAIC is an organization created and governed by the head of

insurance regulators from the whole US. It was created in 1871 to be used as a forum for in-

formation exchanging and is one of the largest insurance regulatory database. The Schedule

P provides losses and aggregated claims within 10 years time, which can be arranged into

loss triangles. It also gives the unpaid losses, premium earned for all lines of business.

Personal auto line is the insurance on personal vehicle, while the commercial automobile

line is insurance for physical damage and liability coverages for the situation not covered by

the personal auto line. The loss triangle of this dataset can be found in Appendix 1.
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3.1.1 Inference for the marginals

Shi and Frees (2011) assumed that the personal auto line follows log-normal distribution and

the commercial auto line follows gamma distribution. Here we will introduce some inference

methods to check whether the data fits better with log-normal and gamma model.

Akaike information criterion (AIC)

The Akaike information criterion is an estimator of prediction error, which can be used

to check the quality of statistical models, given a set of data and provide a means for model

selection. It can also be used for non-nested model. When fitting models, adding parameters

may cause increasing of the loglikelihood which would lead to overfitting, AIC adds a penalty

term to resolve this problem.

Let k be the number of estimated parameters in the statistic model, let L be the maxi-

mum value of the likelihood function of the model, then the AIC can be expressed as

AIC = 2k − 2ln(L̂)

where L̂ represents the estimated value of the maximum likelihood. The lower AIC value

gives the better model.

We fitted log-normal and gamma distribution to both personal line and commercial auto

line of business, and the corresponding Akaike information criterion (AIC) is in Table 3.1.

The AIC results shows that personal line has lower AIC when fitted to log-normal model

and therefore (i.e., is more fitted to a log-normal model) and commercial auto line is more

fitted to gamma distribution.

Table 3.1: Fit statistics for marginals of personal and commercial Lines

Lines of business/AIC Lognormal Gamma
Personal Line -395.095 -384.453

Commercial Auto Line -214.495 -218.083

We can also use goodness-of-fit test to check if the data follows the distribution.

Kolmogorov-Smirnov (KS) test
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The Kolmogorov-Smirnov (KS) test is a non-parametric test that can compare the observed

data with a theoretical distribution for one-sample KS test. The two-sample KS test can

compare two sets of observed data with each other.

The KS test produces a empirical cumulative distribution function for the non-parametric

data, and measures the distance between the cumulative distribution function (cdf) of two

distributions and provides whether they are from the same family of distribution.

The null hypothesis of KS test is that the data follows the specified distribution, or the

two sets of data comes from the same distribution, while the alternative hypothesis is the

opposite. The KS statistics with given cdf F(x) is calculated as:

Dn = supx|Fn(x)− F (x)|

where the supx is the supremum.

If the p-value for the KS test is bigger than the significance level, we cannot reject the

null hypothesis, and there is no enough evidence that the data do not come from the given

distribution. If the p-value is very small, then we reject the null hypothesis and say that the

data is not from the given distribution or the two sets of data does not come from the same

distribution.

We do the KS test for the residuals of personal auto line with log-normal distribution and

commercial auto line with gamma distribution. Table 3.2 shows that there is no strong evi-

dence against saying personal auto line follows log-normal distribution and commercial auto

line follows gamma distribution, although the fit of the Commercial auto is borderline.

Table 3.2: KS Test for marginals of personal and commercial Lines

Lines of business/p-value Personal Auto(Log-normal) Commercial Auto(Gamma)
Kolmogorov-Smirnov (KS) test 0.8732 0.077
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3.2 Côté et al. (2016) Data

The data we used for both Bivariate and Trivariate case are the same ones used in Côté et al.

(2016) which is real data from a large Canadian property and casualty insurance company. It

includes the loss triangle, loss ratio, rank of residuals, gamma model with parameters of six

lines of business: Atlantic Bodily injury, Ontario Bodily injury, West Bodily injury, Ontario

Accident benefits excluding disability income, Ontario Accident benefits with disability in-

come only and Country-wide Liability. For the trivariate case, we pick lines 2,4 and 5, which

are Ontario Bodily injury, Ontario Accident benefits excluding disability income and Ontario

Accident benefits with disability income only. We will also use line 2 and 4 for the bivariate

case. This is because in all six lines of business, line 2, 4 and 5 are in the Ontairio Region

and their products are auto insurance, which would lead to stronger dependence between

these lines of business. A descriptive summary of the three lines of business is given in Table

3.3.

Table 3.3: Descriptive summary of three lines of business from a Canadian insurance com-
pany

LOB Region Product Coverage
2 Ontario Auto Bodily injury
4 Ontario Auto Accident benefits excluding disability income
5 Ontario Auto Accident benefits: disability income only

Bodily injury coverage gives payments to the insured if they are injured or killed by an

automobile accident which occurs through the fault of the vehicle owner who has no insur-

ance, or by unidentified vehicles. The accident benefits coverage provides compensation for

injury or death involved in a vehicle collision regardless of fault, including if the insured’s

role during the accident is the driver, passenger or a pedestrian. Disability income provides

compensation if the accident results in a disability and the insured could not continue work

at their regular employment because of this disability. The data is in Appendix 1.

3.2.1 Inference for the marginals

Côté et al. (2016) assumed that all three lines of business Ontario Bodily injury, Ontario

Accident benefits excluding disability income and Ontario Accident benefits with disability

income only follow gamma distribution. We check this using AIC comparing with log-normal
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distribution and KS test to see if they fit well enough for gamma distribution.

Table 3.4: Fit statistics for marginals of Line 2,4 and 5

Lines of business/AIC Lognormal Gamma
2 -262.1514 -270.1587
4 -267.3952 -276.1508
5 -436.7875 -443.9719

Table 3.5: KS Test for marginals of Line 2, 4 and 5

Lines of business/p-value 2 4 5
Kolmogorov-Smirnov (KS) test (Gamma) 0.6443 0.1356 0.4787

Table 3.4 and Table 3.5 shows that the three lines of business fit well for the gamma distri-

bution.
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Chapter 4

Sarmanov distribution and estimation

4.1 One-stage inference for the Dependence Structure

4.1.1 Bivariate distribution

Let y
(ℓ)
ij be the element from each line of business, where ℓ ∈ {1, 2}, f (ℓ) be the univariate prob-

ability density function, and ψ(ℓ)(y
(ℓ)
ij ) be nonconstant functions such that

∫∞
−∞ ψ(ℓ)(t)f (ℓ)(t)dt =

0. If we use line 2 and 4 from Côté et al. (2016) data, y
(ℓ)
ij follow Gamma distribution, i.e.,

y
(ℓ)
ij ∼ Gamma(α(ℓ), τ

(ℓ)
ij ). Here for convenience, we write α(ℓ) as αℓ, and τ

(ℓ)
ij as τℓ. Then the

bivariate Sarmanov joint distribution can be expressed as

fS(y
(1)
ij , y

(2)
ij ) = f (1)

(
y
(1)
ij ;α1, τ1

)
f (2)
(
y
(2)
ij ;α2, τ2

)(
1 + ωψ(1)(y

(1)
ij )ψ(2)(y

(2)
ij )
)
, (4.1)

with the mixing function:

ψ(ℓ)(y
(ℓ)
ij ) = exp(−y(ℓ)ij )− (1 + τℓ)

−αℓ , ℓ = 1, 2. (4.2)

This is because that Corollary 2 in Lee (1996) proposed that a mixing function can be defined

as ψ(ℓ)(y
(ℓ)
ij ) = exp(−y(ℓ)ij )− L(ℓ)(1), where L(ℓ) is the Laplace transform of f (ℓ), evaluated at

1. Thus we get (4.2), as y
(ℓ)
ij , ℓ ∈ {1, 2}, follow gamma distribution.

Similarly, if we use Personal and commercial auto lines from Shi and Frees (2011) data,

our first lines of business follows normal distribution where the response variable is pos-
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itive in order to acquire the logarithm, while the second lines of business follows gamma

distribution, we will have:

fS(y
(1)
ij , y

(2)
ij ) = f (1)

(
y
(1)
ij ; a1, b1

)
f (2)
(
y
(2)
ij ;α2, τ2

)(
1 + ωψ(1)(y

(1)
ij )ψ(2)(y

(2)
ij )
)
, (4.3)

with the mixing function:

ψ(1)(y
(1)
ij ) = exp(−y(1)ij )− exp

(
− a1 +

b21
2

)
(4.4)

and

ψ(2)(y
(2)
ij ) = exp(−y(2)ij )− (1 + τ2)

−α2 .

The variable ω in (4.1) should be a real number, which requires the constraint

1 + ωψ(1)(y
(1)
ij )ψ(2)(y

(2)
ij ) ≥ 0 (4.5)

for all y
(1)
ij , y

(2)
ij . This is also a very important condition when coding the Sarmanov model.

As Theorem 2 in Lee (1996) mentioned, the correlation coefficient of y
(1)
ij , y

(2)
ij is given as

ρ =
ων1ν2
σ1σ2

,

where

µℓ =

∫ ∞

−∞
tf (ℓ)(t)dt, σ2

ℓ =

∫ ∞

−∞
(t− µℓ)

2f (ℓ)(t)dt, νℓ =

∫ ∞

−∞
tψ(ℓ)(t)f (ℓ)(t)dt,

therefore, if both lines of business follows gamma distribution, then

σℓ =
√
αℓτℓ, νℓ = αℓτ

2
ℓ (1 + τℓ)

−αℓ−1.

As we know that −1 ≤ ρ ≤ 1, then we can obtain the lower and upper bound of ω,

− 1
√
α1τ1(1 + τ1)−α1−1

√
α2τ2(1 + τ2)−α2−1

≤ ω ≤ 1
√
α1τ1(1 + τ1)−α1−1

√
α2τ2(1 + τ2)−α2−1

.

(4.6)

Similarly, if the two lines of business follows normal and gamma distribution, then

σ1 = b1, ν1 = −b2exp
(
− a1 +

b21
2

)
.
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Therefore the lower and upper bound of ω can be obtained as

− 1

b1exp(−a1 + b21/2)
√
α2τ2(1 + τ2)−α2−1

≤ ω ≤ 1

b1exp(−a1 + b21/2)
√
α2τ2(1 + τ2)−α2−1

.

(4.7)

The full proof of the bounds of ω can be found in Appendix 3.

4.1.2 Trivariate distribution

The trivariate distribution is similar to the bivariate distribution. We now have three lines

of business, thus y
(ℓ)
ij with ℓ ∈ {1, 2, 3}. Here we assume we use the three lines of business

from Côté et al. (2016) data, then the distribution function is given as follows.

fS(y
(1)
ij , y

(2)
ij , y

(3)
ij ) = f (1)(y

(1)
ij ;α1, τ1)f

(2)(y
(2)
ij ;α2, τ2)f

(3)(y
(3)
ij ;α3, τ3)

×
(
1 + ω12ψ

(1)(y
(1)
ij )ψ(2)(y

(2)
ij ) + ω13ψ

(1)(y
(1)
ij )ψ(3)(y

(3)
ij )

+ ω23ψ
(2)(y

(2)
ij )ψ(3)(y

(3)
ij ) + ω123ψ

(1)(y
(1)
ij )ψ(2)(y

(2)
ij )ψ(3)(y

(3)
ij )
)
.

Here is a simpler version of the formula, where we write ψ(i)(y
(i)
ij ) as ψ

(i) :

fS(y
(1)
ij , y

(2)
ij , y

(3)
ij ) = f (1)(y

(1)
ij ;α1, τ1)f

(2)(y
(2)
ij ;α2, τ2)f

(3)(y
(3)
ij ;α3, τ3)

× (1 + ω12ψ
(1)ψ(2) + ω13ψ

(1)ψ(3) + ω23ψ
(2)ψ(3) + ω123ψ

(1)ψ(2)ψ(3)).

(4.8)

However, as proposed in Ratovomirija et al. (2017), it is often assumed that ωi1,...,in = 0 for

n ≥ 3, so (4.8) can be written as follows.

fS(y
(1)
ij , y

(2)
ij , y

(3)
ij ) = f (1)(y

(1)
ij ;α1, τ1)f

(2)(y
(2)
ij ;α2, τ2)f

(3)(y
(3)
ij ;α3, τ3)

× (1 + ω12ψ
(1)ψ(2) + ω13ψ

(1)ψ(3) + ω23ψ
(2)ψ(3)).

(4.9)

Its mixing function ψ(ℓ)(y
(ℓ)
ij ) is the same as the bivariate case, so for gamma distribution,

the mixing function can be written as follows.

ψ(ℓ)(y
(ℓ)
ij ) = exp(−y(ℓ)ij )− (1 + τ

(ℓ)
ij )−α(ℓ)

, ℓ = 1, 2, 3.

The four variables ω12, ω13, ω23, and ω123 in (4.8) should be a real number, which requires

the condition

1 + ω12ψ
(1)ψ(2) + ω13ψ

(1)ψ(3) + ω23ψ
(2)ψ(3) + ω123ψ

(1)ψ(2)ψ(3) ≥ 0, (4.10)
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for all y
(1)
ij , y

(2)
ij , y

(3)
ij . After setting ω123 = 0, we have the following condition.

1 + ω12ψ
(1)ψ(2) + ω13ψ

(1)ψ(3) + ω23ψ
(2)ψ(3) ≥ 0. (4.11)

Bolancé and Vernic (2017) showed that the conditions in bivariate case still need to be

applied, so we add the following restrictions for trivariate distribution.

1 + ωcdψ
(c)(y

(c)
ij )ψ

(d)(y
(d)
ij ) ≥ 0, 1 ≤ c < d ≤ 3. (4.12)

Similarly, if the lines of business follow gamma distribution, the bound of the correlation

coefficient of each ωcd, 1 ≤ c < d ≤ 3 need to be considered. We should also apply the

following condition.

− 1
√
αcτc(1 + τc)−αc−1

√
αdτd(1 + τd)−αd−1

≤ ω ≤ 1
√
αcτc(1 + τc)−αc−1

√
αdτd(1 + τd)−αd−1

(4.13)

for 1 ≤ j < k ≤ 3.

4.1.3 One-stage inference

We use one-step inference method for the estimation, which estimates the marginals and the

ω simultaneously using maximum likelihood estimation.

The loglikelihood of the bivariate Sarmanov distribution when using loss ratio as y
(1)
ij , y

(2)
ij is

given below.

ℓ =
n∑

i=1

n+1−i∑
j=1

log f (1)(y
(1)
ij , α1, τ1)f

(2)(y
(2)
ij , α2, τ2) +

n∑
i=1

n+1−i∑
j=1

log h(y
(1)
ij , y

(2)
ij , ω), (4.14)

where h(y
(1)
ij , y

(2)
ij , ω) = 1 + ωψ(1)(y

(1)
ij )ψ(2)(y

(2)
ij ) is the density of the Sarmanov distribution.

Similarly, we can also calculate the loglikelihood of the trivariate Sarmanov distribution

when using loss ratio y
(1)
ij , y

(2)
ij , y

(3)
ij by the formula below. Here ω⃗ includes {ω12, ω13, ω23}.

ℓ =
n∑

i=1

n+1−i∑
j=1

log f (1)(y
(1)
ij , α1, τ1)f

(2)(y
(2)
ij , α2, τ2)f

(3)(y
(3)
ij , α3, τ3)+

n∑
i=1

n+1−i∑
j=1

log h(y
(1)
ij , y

(2)
ij , y

(3)
ij , ω⃗),

(4.15)
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where

h(y
(1)
ij , y

(2)
ij , y

(3)
ij , ω⃗) = 1+ω12ψ

(1)(y
(1)
ij )ψ(2)(y

(2)
ij )+ω13ψ

(1)(y
(1)
ij )ψ(3)(y

(3)
ij )+ω23ψ

(2)(y
(2)
ij )ψ(3)(y

(3)
ij )

is the density of the Sarmanov distribution.

We optimize the loglikelihood function to estimate ω⃗, αi, and τi (i = 1, 2, 3) in the Sarmanov

distribution.

Here we can use this one-stage estimation method to estimate the dependence parameters

ω for the bivariate Sarmanov model for the Personal and Commercial Auto lines from Shi

and Frees data (2011). The results are shown in Table 4.1.

Table 4.1: Estimated omega for bivariate Sarmanov model with Personal and Commercial
lines using one-step inference method

Lines Estimated omega Loglikelihood Standard error
Personal and Commercial -0.0000837 346.5932 0.6403

As shown in Table 4.1, the estimated omega is smaller than the standard error, which

means the estimated omega is unlikely to be significant, but we still need to test whether

the Sarmanov model is better than the independent model. Apart from the AIC methods

we mentioned above, there are some other inference methods we used in this thesis to check

the significance of the dependence parameter.

Bayesian information criterion (BIC)

The Bayesian information criterion is one of the methods for model selection. BIC has

larger penalty term than AIC, and it cannot deal with overfitting.

Let k be the number of estimated parameters in the statistic model, n be the number of data

points in the model, and L̂ be the estimated likelihood. Then, the BIC can be expressed as

follows.

BIC = k × ln(n)− 2ln(L̂).

The lower BIC value gives the better model.

Likelihood-ratio test

The likelihood-ratio test, also known as likelihood-ratio chi-squared test, evaluates the good-
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ness of fit between two nested statistical models using the ratio of their likelihood, where

the nested model means that one of the models is the special case of the other.

The null hypothesis is that the model with fewer parameters is the better model, and the

alternative hypothesis is that the full model is a good fit. The test statistic is expressed as

follows.

LRT = −2ln
Ls(θ̂)

Lg(θ̂)
,

where Ls(θ̂) is the likelihood of the model with fewer parameter and Lg(θ̂) is the likelihood of

model with more parameters. The likelihood ratio can also be shown as a difference between

the log-likelihoods.

LRT = −2
[
ℓs(θ̂ − ℓg(θ̂))

]
.

We set the significance level and the difference in the degree of freedom between the two

models, check using the chi-square table and compare the result with our calculated test

statistics. If the test statistic is larger, then we reject the null hypothesis. We also can

calculate the p-value and compare it with the significance level α. If the p-value is smaller

than α, then we reject the null hypothesis and say the model with more parameters has a

significant improvement over the simpler model.

The likelihood-ratio test can also be used to determine the significance of the parameter.

For example, for the trivariate model, in (4.9), we know that there are three parameters

ω12, ω13, ω23 in the model. We can test the significance of a certain parameter by setting a

new model with the certain parameter equal to 0 and compare with the original full model.

If the p-value is small, we would conclude the parameter is significant for the model. If the

p-value is large, then the parameter is not significant, and we can consider it as 0 in the model.

Wald Test

The Wald test is also one of the hypothesis tests used to determine whether the estimated

parameters in a model are significant. Unlike the likelihood-ratio test, it only requires the

estimation of the model and has a shorter computational time. The Wald statistic can be

written as follows.

W 2 =
(β̂ − β0)

2

V ar(β̂)
∼ χ2

1,

where β̂ is the maximum-likelihood estimation of the parameter, and β0 is usually set to 0 be-

cause we want to test whether the parameter is significant or not. If the p-value of the Wald

test is small or equal 0, we can reject the null hypothesis and say the parameter is significant.
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We can use these statistical inference tests to determine whether bivariate Sarmanov distribu-

tion with one-stage estimation improves the independent model of personal and commercial

auto lines.

Table 4.2: AIC and BIC for bivariate Sarmanov model with Personal and Commercial lines
using one-step inference method

Model AIC BIC
Independent -613.1788 -532.8931

Bivariate Sarmanov with one-step inference -611.1864 -500.5932

From the AIC and BIC result in Table 4.2, we can see that the bivariate Sarmanov model

using one-step inference method is not better than the independent case. We can also use

likelihood-ratio test to check whether it is useful to add the dependence parameter in this

model, and use Wald test to check whether the dependence parameter ω is significant:

Table 4.3: Significant tests for bivariate Sarmanov model with Personal and Commercial
lines using one-step inference method

Significant tests likelihood-ratio test Wald test
Test statistic 7.1009 · 1e− 06 1.1 · 1e− 08

p-value 0.9979 1.0

In Table 4.3, we see that the test statistic for both test is small with large p-values, which

indicates that we cannot reject the null hypothesis in both cases, meaning the independent

model is better than the bivariate Sarmanov model using loss ratio.

However we have other sets of data, we can check if the Sarmanov model with one-step

inference method captures the dependence and improves other independent models. Table

4.4 gives the dependence paarameter ω estimation for line 2 & 4 from Côté et al. (2016)

data.

Lines Estimated omega Loglikelihood
2&4 436.9040 315.1206

Table 4.4: Estimated omega for bivariate Sarmanov model with Line 2 & 4 using one-step
inference method
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In this case, the standard error of ω̂ is not computable, therefore we cannot use the Wald

test to check the significance. We can still use AIC, BIC and likelihood-ratio test to see if the

bivariate Sarmanov model with one-step inference method is better than the independent

model.

Table 4.5: AIC and BIC for bivariate Sarmanov model with line 2&4 using one-step inference
method

Model for line 2&4 AIC BIC
Independent -546.3281 -438.3089

Bivariate Sarmanov with one-step inference -548.2413 -437.5216

We see that as BIC has larger penalty term than AIC. It shows that the bivariate Sar-

manov model with one-inference method is not much better than the independent model,

while AIC shows it provides better fit than the independent case. We use the likelihood-ratio

test to check whether it is a better model.

Table 4.6: Significant tests for bivariate Sarmanov model with line 2&4 using one-step
inference method

Significant tests likelihood-ratio test
Test statistic 3.91314

p-value 0.04791

Table 4.6 shows the null hypothesis of independence is rejected at the 5% level. We conclude

that the bivariate Sarmanov model with one-step inference provides a better fit than the

independent model for line 2&4.

For the trivariate case, we use line 2, 4 and 5 from the Côté et al.(2016) data. We need to

estimate the three ω’s, ω12, ω13, ω23 in (4.9) using the one-step inference method. We use the

maximum log-likelihood estimation where the log-likelihood function is given in (4.15).

We first use Wald test to check if the three parameters are significant.
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Table 4.7: Estimated omega for trivariate Sarmanov model with Line 2 & 4 & 5 using one-
step inference method

Lines 2&4&5 ω24 ω25 ω45

Estimated omega 374.7942 -110.3272 -165.7813
Log-likelihood 556.4291

Table 4.8: Significant tests for trivariate Sarmanov model with line 2&4&5 using one-step
inference method

likelihood-ratio test ω24 ω25 ω45

Test statistic 2.2803 -0.1351384 1.061
p-value 0.1310 1.00 0.3030

Table 4.8 shows that all three parameters are not significant. Next, we compare the AIC

and BIC to see if the trivariate Sarmanov model using one-step inference is better than the

independent model.

Table 4.9: AIC and BIC for trivariate Sarmanov model with line 2&4&5 using one-step
inference method

Model for line 2&4&5 AIC BIC
Independent -1026.6996 -837.2370

Trivariate Sarmanov with one-step inference -986.8582 -791.1837

Result from Table 4.9 shows that the trivariate Sarmanov model using one-step inference

method is not better than the independent model for line 2, 4 and 5, i.e. it does not provides

better fit in capturing the dependence.

After obtaining the estimated parameters, we use them to calculate reserve as follows.∑
ℓ

∑
i

∑
j

p
(ℓ)
i E[y

(ℓ)
ij ]

which is mentioned in Section 2.3. For the one-step inference method, we get the estimated

reserves for the bivariate and trivariate cases.

As the dependence parameter of bivariate Sarmanov for Personal Commercial Line and

trivariate Sarmanov for line 2, 4 and 5 are not significant, the reserve is close to the indepen-

dent reserve. Once the dependence becomes significant, such as line 2&4 bivariate Sarmanov,

the total reserve differs more from the reserve obtained in the independent case.

23



Table 4.10: Reserve calculation of one-method inference vs. independent

Models Reserve 1st line Reserve for 2nd line Reserve for 3rd line Total Reserve
Independent P&C 6,464,075 490,652 - 6,954,727
Bivariate P&C 6,464,318 490,702 - 6,955,020

Independent 2&4&5 132,919 73,220 18,288 224,426
Bivariate 2&4 129,397 71,457 - 219,144

Trivariate 2&4&5 135,061 70,857 18,752.67 224,671

4.2 Two-stage rank-based inference for the Dependence

Structure

Rank-based methods replace the actual value with the ranks of observation in the depen-

dence structure. This method is often used when the distribution of data is not normal or

unknown, or the data have outliers that may affect the results. It is more robust for the

non-normal distributions, provides more accurate and reliable results in such circumstances.

Rank-based methods do not need to re-estimate the marginals, which is required for the

one-step inference method. Re-estimating the marginals may cause big effect to the loss

reserves. First of all, it might cause violation for linear property of the mean. As mentioned

above, with the estimated parameters, the total reserve can be estimated using∑
ℓ

∑
i

∑
j

p
(ℓ)
i E[y

(ℓ)
ij ].

But re-estimating the marginals could cause the parameters to deviate from the original

parameters, then the new E[
∑

ℓ

∑
i

∑
j y

(ℓ)
ij ] produced using dependence model will not be

equal to the original
∑

ℓ

∑
i

∑
j E[y

(ℓ)
ij ]. This violates the linear property of the mean. As

shown in Table 4.10, the estimation of the reserve changed for the one-step inference method,

but it stays the same if we use rank-based method.

Also, while using the dependence model with distribution, if we re-estimate the marginals

not knowing if we chose the correct distribution or correct dependence model, it will cause

much bigger error, and hard to check whether the error comes from the incorrect dependence

structure or the marginal distribution.

Rank-based method avoids re-estimating the parameters, separate the marginals from the

dependence structure and directly estimate the dependence parameter. This method is more
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robust than the one-step inference method.

In loss reserving, rank-based method involves using the rank of residuals to perform sta-

tistical inference or create statistical models, rather than using the loss data, such as loss

ratio.

4.2.1 Bivariate and Trivariate distribution

For rank-based method, we use rank of residuals Rij instead of loss ratio yij in the depen-

dence structure, to separate it from the marginals. The residual for each observation is the

difference between predicted values of dependent variable and observed values of it. If we use

the data from Shi and Frees (2011) with log-normal and gamma distribution, the bivariate

Sarmanov distribution will be written as

fS(y
(1)
ij , y

(2)
ij ) = f (1)

(
y
(1)
ij ; a1, b1

)
f (2)
(
y
(2)
ij ;α2, τ2

)(
1 + ωψ(1)(R

(1)
ij )ψ(2)(R

(2)
ij )
)
, (4.16)

where the loss ratio yij in the mixing function is changed to the rank of residuals Rij as

below.

ψ(1)(R
(1)
ij ) = exp(−R(1)

ij )− exp
(
− a1 +

b21
2

)
,

ψ(2)(R
(2)
ij ) = exp(−R(2)

ij )− (1 + τ2)
−α2 .

Therefore the bound of the parameter ω will become:

1 + ωψ(1)(R
(1)
ij )ψ(2)(R

(2)
ij ) ≥ 0 (4.17)

The lower and upper bound given in (4.6) and (4.7) still remains the same for rank-based

method.

For the trivariate Sarmanov distribution, the distribution function using rank-based method

follows.

fS(y
(1)
ij , y

(2)
ij , y

(3)
ij ) = f (1)(y

(1)
ij ;α1, τ1)f

(2)(y
(2)
ij ;α2, τ2)f

(3)(y
(3)
ij ;α3, τ3)

∗
(
1 + ω12ψ

(1)(R
(1)
ij )ψ(2)(R

(2)
ij ) + ω13ψ

(1)(R
(1)
ij )ψ(3)(R

(3)
ij )

+ ω23ψ
(2)(R

(2)
ij )ψ(3)(R

(3)
ij )
)
,

25



where we have the mixing function

ψ(ℓ) = ψ(ℓ)(R
(ℓ)
ij ) = exp(−R(ℓ)

ij )− (1 + τ
(ℓ)
ij )−α(ℓ)

, ℓ = 1, 2, 3. (4.18)

Also, the bound of ω should include (4.13) for each ωcd, 1 ≤ c < d ≤ 3, and the following

constraint need to be satisfied.

1 + ω12ψ
(1)(R

(1)
ij )ψ(2)(R

(2)
ij ) + ω13ψ

(1)(R
(1)
ij )ψ(3)(R

(3)
ij ) + ω23ψ

(2)(R
(2)
ij )ψ(3)(R

(3)
ij ) >= 0,

and

1 + ωcdψ
(c)(R

(c)
ij )ψ

(d)(R
(d)
ij ) ≥ 0, 1 ≤ c < d ≤ 3. (4.19)

4.2.2 Rank-based Estimation method (Two-stage inference)

When using Rank-based method, two-step inference method is used. Here we assume line

1 follows normal distribution and line 2 follows gamma distribution. We first estimate the

parameters of the marginals a1, b1, α2, τ2, and use the estimated marginals to calculate the

rank of residuals. Then ω can be estimated. We use maximum likelihood estimation method

in both stages.

The loglikelihood of the marginals of the bivariate Sarmanov distribution is written as below,

where y
(1)
ij and y

(2)
ij are the loss ratios of line of business (1) and (2).

ℓmarginals =
n∑

i=1

n+1−i∑
j=1

log f (1)(y
(1)
ij , a1, b1)f

(2)(y
(2)
ij , α2, τ2) (4.20)

Then we calculate the residuals for line ℓ = 1, 2 as follows.

r
(1)
ij =

ln(y
(1)
ij )− a

(1)
ij

b(1)
,

r
(2)
ij =

y
(2)
ij

τ
(2)
ij

.

From the residuals, the rank of residuals is obtained as follows.

R
(ℓ)
ij =

1

55 + 1

10∑
i∗=1

11−i∗∑
j∗=1

1⃗(r
(ℓ)
i∗j∗ ≤ r

(ℓ)
ij ). (4.21)
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Here 1⃗(A) is the indicator function.

Then, we optimize the pseudo-likelihood with new obtained Rank of residuals, where the

pseudo-likelihood is given as below.

ℓ =
∑∑

log h(R
(1)
ij , R

(2)
ij , ω). (4.22)

(4.22) gives the loglikelihood of Sarmanov distribution, where

h(R
(1)
ij , R

(2)
ij , ω) = f (1)(y

(1)
ij , a1, b1)f

(2)(y
(2)
ij , α2, τ2)(1 + ωψ(1)(R

(1)
ij )ψ(2)(R

(2)
ij )).

But in this case we do not re-estimated the marginals. The mixing (4.4) and (4.2) are used.

The estimated ω can be obtained by optimizing the loglikelihood function.

Similarly, for the trivariate case, if we have all three lines of business follow gamma dis-

tribution, then we estimate the parameters using maximum loglikelihood.

ℓmarginals =
n∑

i=1

n+1−i∑
j=1

log f (1)(y
(1)
ij , α1, τ1)f

(2)(y
(2)
ij , α2, τ2)f

(3)(y
(3)
ij , α3, τ3). (4.23)

Then, we calculate the rank of residual from the estimated parameters, optimize the pseudo-

likelihood of trivariate Sarmanov distribution and obtain the estimation of ω12, ω13, ω23:

ℓ =
∑∑

log h(R
(1)
ij , R

(2)
ij , R

(3)
ij , ω12, ω13, ω23). (4.24)

For the rank-based method, we first use Kendall’s tau test to check the dependence between

the residuals of two lines of business.

Kendall’s τ Test

Kendall’s τ coefficient is used to measure the dependence between two sets of data. Kendall’s

τ test is a non-parametric hypothesis test for the dependence based on the τ coefficient. As

shown in Genest and Neschléhova (2011) and summarized in Côté et al. (2016), the formula

used to calculate Kendall’s τ for multiple sets of data, such as residuals of multiple lines of

business is given as below.

τd,n =
1

2d−1 − 1

[
− 1 +

2d

n(n− 1)

∑
(i,j) ̸=(i∗,j∗)

1
(
r
(1)
i∗j∗ ≤ r

(1)
ij , ..., r

(d)
i∗j∗ ≤ r

(d)
ij

)]
, (4.25)
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where d is the number of sets of data and n is the number of data in each set. The variance

of τ given d and n can be calculated by:

V ar(τd,n) =
n(22d+1 + 2d+1 − 4 ∗ 3d) + 3d(2d + 6)− 2d+2(2d + 1)

3d(2d−1 − 1)2n(n− 1)
,

as shown in Section 2.2 of Côté et al.(2016). As the Kendall’s test use chi-square test to

determine the p-value, we calculate the p-value of kendall’s test by:

p = 2 ∗

(
1− cdfnormal

(∣∣τd,n/√V ar(τd,n)
∣∣)).

Here, we first check the dependence between the residuals of personal and commercial auto

line from Shi and Frees (2011) data.

Table 4.11: Kendall tau for Personal and Commercial lines

LOB Personal&Commercial Auto Line
Kendall tau -0.1556

Kendall test p-value 0.09355

Based on the p-value of the Kendall’s test given in Table 4.11, we conclude that the null

hypothesis of independence is rejected at the 10% level. Therefore, we can say that there

exists a significant but small dependency between the two lines of business. However, as the

Kendall’s τ statistic in Table 4.11 is negative, which indicates a negative association between

the two lines of business, we need to use the negative of rank of residuals for the second line

of business when estimating ω. Thus, we optimize the following pseudo-likelihood in this

case:

ℓ =
∑∑

log h(R
(1)
ij ,−R

(2)
ij , ω).

This allows us to obtain the estimated ω in Table 4.12.

Table 4.12: Estimated omega for bivariate Sarmanov model with Personal and Commercial
lines using rank-based method

Lines Estimated omega Pseudo-likelihood Standard error
Personal and Commercial -10.14954 609.7023 1.3985

For the rank-based method, we maximize the pseudo-likelihood instead of log-likelihood

function while estimating ω. We cannot use the AIC, BIC and likelihood-ratio test as we

do not use the same data as the independent case and we do not re-estimate the marginals.
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But we can still use Wald Test to check the significance of the dependence parameter ω in

this case.

Table 4.13: Wald Test for bivariate Sarmanov model with Personal and Commercial lines
using rank-based method

Significant tests Wald test
Test statistic 73.7

p-value 0.0

From Table 4.13, we see that Wald test shows the estimated ω is significant.

Bootstrap method can also be used to check whether a parameter is significant as pointed

out in Côté et al. (2016). If we simulate and estimate the parameter 5,000 times, then we

can check if the 95% confidence interval of the 5,000 estimation includes 0. If it does not

include 0, then the estimated parameter is significant.

We can also use the bootstrapping method to check whether the dependence parameter

ω is significant. We simulate the loss ratio using bivariate Sarmanov with ω estimated using

rank-based method for 5,000 times, and estimate the new dependence parameter ω∗ each

time. The simulation and bootstrapping procedure will be illustrate throughly in the next

chapter.

Figure 4.1 shows the distribution of the 5,000 ω’s, the blue line gives the 95% confidence

interval and we can see that the confidence interval does not include 0. This indicates that

the estimation of ω is significant in the bivariate Sarmanov model using rank-based method

for personal and commercial auto line.

We can also work the similar procedure with line 2, 4 and 5 from the Côté et al.(2016)

data. Table 4.14 gives the Kendall’s τ test between all three lines of business.

Table 4.14: Kendall tau for line 2&4&5

LOB Line 2&4 Line 2&5 Line 4&5 Line 2&4&5
Kendall tau 0.2444 0.2094 0.2000 0.2180

Kendall test p-value 0.0084 0.0240 0.0311 4.7064e-05

Table 4.14 shows that the three lines of business are positively correlated. The fact the three

lines of business are positively correlated is due in part to exogenous common factors such
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Figure 4.1: 5,000 ω∗ estimations using bootstrap for bivariate Sarmanov Personal & Com-
mercial lines with rank-based method

as inflation and interest rates. Furthermore, strategic decisions can impact several portfo-

lios, e.g., the acceleration of payments on all lines of the insurance sector could induce some

positive dependence. At a granular level, the positive association between Ontario AB and

BI can be explained by the fact that the same accident will often arise in both coverage.

We will still take line 2 & 4 as another demonstration for bivariate case and then talk

about the trivariate case.

In this bivariate case, we use (4.20) and (4.21) in the gamma-gamma version to compute the

rank of residuals which we plug in (4.22) to estimate the omega. Table 4.15 gives the result

of ω estimation using rank-based method for line 2 & 4.

Table 4.15: Estimated omega for bivariate Sarmanov model with line 2&4 using rank-based
method

Lines Estimated omega Pseudo-likelihood Standard error
2&4 24.5244 369.2047 0.7632144

We can then use Wald test to check the significance of the dependence parameter ω.
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Table 4.16: Wald Test for bivariate Sarmanov model with line 2&4 using rank-based method

Significant tests Wald test
Test statistic 788.0

p-value 0.0

The Wald test result in Table 4.16 shows strong significance of omega. We can also use the

bootstrapping method to check the significance of ω. Similarly, we simulate the loss data

using bivariate Sarmanov with ω estimated using rank-based method for 5,000 times, and

estimate the new ω∗ each time.

Figure 4.2: 5,000 ω∗ estimations using bootstrap for bivariate Sarmanov line 2&4 with rank-
based method

In figure 4.2, the blue lines give the 95% confidence interval, and we can see from the figure

that it does not include 0. This means that the estimation of ω is significant in the bivariate

Sarmanov model using rank-based method for line 2&4.

For the trivariate case, we estimate the ω12, ω13, ω23 from (4.24) after calculating the rank of

residuals using (4.23) and (4.21). Table 4.17 gives the result of estimated omegas.

As shown in Table 4.14, Kendall tau test shows the three lines of business are dependent

with each other, we will also use bootstrapping method directly to check the significance of
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Table 4.17: Estimated omega for trivariate Sarmanov model with Line 2 & 4 & 5 using
rank-based method

Lines 2&4&5 ω24 ω25 ω45

Estimated omega 25.2962 30.4092 61.4528
Pseudo-likelihood 678.9434

the three dependence parameters.

Figure 4.3: 5,000 ω∗
24 estimations using bootstrap for trivariate Sarmanov line 2&4&5 with

rank-based method

From the bootstrap result given in Figure 4.3, 4.4, 4.5, we can conclude that the depen-

dence parameters are all significant for the trivariate Sarmanov distribution using rank-based

method.
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Figure 4.4: 5,000 ω∗
25 estimations using bootstrap for trivariate Sarmanov line 2&4&5 with

rank-based method

Figure 4.5: 5,000 ω∗
45 estimations using bootstrap for trivariate Sarmanov line 2&4&5 with

rank-based method
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Chapter 5

Risk Capital

In addition to reserves, companies also set aside some amount of fund as a buffer, in case of

potential losses caused by extreme events, this is the risk capital. It represents the amount

of money that the company can lose without causing significant harm for the financial sit-

uation. If a dependence model provides lower risk capital, then it means using this model

produces lower risks, i.e. the better model will have lower risk capital. In order to measure

risk capital, we use two numerical measurement, value at risk (VaR) and tail value at risk

(TVaR).

The V aRk is calculated as the 100(1-k) percentile of the loss distribution, where k ∈ (0, 1)

is the risk tolerance. The risk of potential losses can be quantified by this statistic.

The TV aR is also known as tail conditional expectation, which calculates the expectation

of potential loss when an event outside of certain probability occurs. In order to calculate

the tail value at risk, we have:

TV aRk(X) = E[X|X > V aRk(X)].

Capital allocation is the share of the risk capital to be allocated to each line of business,

which was first introduced in Tasche (1999), and also summarized in Bargès et al. (2009).

After n simulations, we get n sets of simulated data, then given

y(ℓ) =
∑
i

∑
j

p
(ℓ)
i y

(ℓ)
ij
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is the unpaid loss for ℓth line of business, S =
∑

ℓ y
(ℓ) is the total unpaid loss, TVaR- based

capital allocation can be written as

TV aRk(y
(ℓ);S)

=
1

n(1− k)

[
n∑

j=1

y
(ℓ)
j 1(Sj > V aRk(X)) +

Fn(V aRk(X))− k
1
n

∑n
i=1 1(Si = V aRk(X))

n∑
j=1

y
(ℓ)
j 1(Sj = V aRk(X))

]
,

where Fn is the empirical cumulative distribution function of S.

In order to calculate the risk capital of independent case, we obtain the risk capital sep-

arately, ”Silo” method introduced in Ajne (1994) is put to use:

• Calculate the risk measure V aR(silo), TV aR(silo) for each line of business.

• Obtain the sum:
∑

i V aR
(i) = V aR(silo) where i ∈ {1, ..., n}.

• Then obtain the Risk Capital using RC(i) = TV aR
(i)
99% − TV aR

(i)
60%, where i = 1, ..., n.

• Obtain the sum of the risk capitals:RCsilo =
∑

iRC
(i), where i ∈ {1, ..., n}.

For Sarmanov method, we obtain the risk capital simultaneously:

• Calculate the risk measure V aR(Sarmanov), TV aR(Sarmanov) for the dependent model.

• Obtain the risk capital: RC(Sarmanov) = TV aR
(Sarmanov)
99% − TV aR

(Sarmanov)
60% .

If we have RCsilo−RCSarmanov > 0, then this means the risk capital of the dependent case is

smaller than the independent case, so using Sarmanov distribution decreases the risk capital

of the lines of business and increases diversification benefit.

5.1 Simulation procedure

The simulation procedures are the same for both one-step inference method and rank-based

method. We only use the rank-based method to estimate the dependence parameter ω.

To geneerate realizaions from the multivariate Sarmanov distrubtion, we use the inversion

method, based on the conditional cumulative distrbution function, as described in Pelican

and Vernic (2013).
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5.1.1 Bivariate Sarmanov simulation (one-step inference and rank-

based method)

We generate the bivariate Sarmanov distribution using the conditional simulation method

which has the following steps:

• Generate a set of observed values y
(1)
ij from a random variable that follows Gamma

distribution y
(1)
ij ∼ Gamma(α1, τ1).

• Calculate the cumulative distribution function of the conditional distribution FCDF (y
(2)
ij |y(1)ij )

The density function of the conditional distribution can be written as:

f(y
(2)
ij |y(1)ij ) =

f (1)
(
y
(1)
ij ;α1, τ1

)
f (2)
(
y
(2)
ij ;α2, τ2

)(
1 + ωψ(1)(y

(1)
ij )ψ(2)(y

(2)
ij )
)

f (1)
(
y
(1)
ij ;α1, τ1

)
= f (2)

(
y
(2)
ij ;α2, τ2

)(
1 + ωψ(1)(y

(1)
ij )ψ(2)(y

(2)
ij )
)

= f (2)
(
y
(2)
ij ;α2, τ2

)
+ ωf (2)

(
y
(2)
ij ;α2, τ2

)
ψ(1)(y

(1)
ij )ψ(2)(y

(2)
ij ).

Therefore the cumulative distribution can be calculated as:

F (y
(2)
ij |y(1)ij ) = F

(
y
(2)
ij ;α2, τ2

)
+ ωψ(1)(y

(1)
ij )

∫
f (2)
(
y
(2)
ij ;α2, τ2

)
ψ(2)(y

(2)
ij ) dy

(2)
ij . (5.1)

• Generate a set of observed values y
(2)
ij from the conditional distribution of a random

variable (y
(2)
ij |y(1)ij = y

(1)
ij ).

5.1.2 Trivariate Sarmanov simulation (one-step inference and rank-

based method)

For the texts below, ψ(k)(y
(k)
ij ) will be writen as ψk for short, f (k)

(
y
(k)
ij ;αk, τk

)
will be written

as f(y
(k)
ij ).

• Generate a set of observed values y
(1)
ij from a random variable that follows Gamma

distribution y
(1)
ij ∼ Gamma(α1, τ1).
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• Calculate the cumulative distribution function of the conditional distribution

FCDF (y
(2)
ij |y(1)ij ) = F (y

(2)
ij ) + ω12ψ1

∫
f(y

(2)
ij )ψ2 dy

(2)
ij ,

where ω12 is from the trivariate Sarmanov distribution between y
(1)
ij and y

(2)
ij , as the

joint distribution f(y
(1)
ij , y

(2)
ij ) is from the trivariate model.

• Generate a set of observed values y
(2)
ij from the conditional distribution of a random

variable (y
(2)
ij |y(1)ij = y

(1)
ij ).

• Calculate the cumulative distribution function of the conditional distribution FCDF (y
(3)
ij |y(1)ij , y

(2)
ij ),

f(y
(3)
ij |y(1)ij , y

(2)
ij ) =

f(y
(1)
ij , y

(2)
ij , y

(3)
ij )

f(y
(1)
ij , y

(2)
ij )

=
f(y

(1)
ij )f(y

(2)
ij )f(y

(3)
ij )(1 + ω12ψ1ψ2 + ω13ψ1ψ3 + ω23ψ2ψ3)

f(y
(1)
ij )f(y

(2)
ij )(1 + ω12ψ1ψ2)

=
f(y

(3)
ij )(1 + ω12ψ1ψ2)

1 + ω12ψ1ψ2

+
f(y

(3)
ij )ω13ψ1ψ3

1 + ω12ψ1ψ2

+
f(y

(3)
ij )ω23ψ2ψ3

1 + ω12ψ1ψ2

= f(y
(3)
ij ) +

f(y
(3)
ij )ω13ψ1ψ3

1 + ω12ψ1ψ2

+
f(y

(3)
ij )ω23ψ2ψ3

1 + ω12ψ1ψ2

.

Therefore the cumulative distribution can be calculated as:

FCDF (y
(3)
ij |y(1)ij , y

(2)
ij ) =

∫ y
(3)
ij

−∞
f(y

(3)
ij |y(1)ij , y

(2)
ij ) dy

(3)
ij

= F (y
(3)
ij ) +

ω13ψ1

∫
f(y

(3)
ij )ψ3 dy

(3)
ij

1 + ω12ψ1ψ2

+
ω23ψ2

∫
f(y

(3)
ij )ψ3 dy

(3)
ij

1 + ω12ψ1ψ2

.

• Generate a set of observed values y
(2)
ij from the conditional distribution of a random

variable (y
(3)
ij |y(1)ij = y

(1)
ij , y

(2)
ij = y

(2)
ij ).

The following are the steps of the simulation procedure for bivariate or multivariate case.

• The original loss ratio can be written in the following loss triangle:
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y
(1)
1,1 ... y

(1)
1,10

... . .
.

y
(1)
10,1

y
(2)
1,1 ... y

(2)
1,10

... . .
.

y
(2)
10,1

...

• Estimation of ω⃗, α1, τ1, ..., αk, τk, k ≥ 2 (or a1, b1 based on the distribution) where ω is

from the Sarmanov distribution and α1, τ1, ..., αk, τk are the marginals for two lines of

business. Bounds of ω⃗ are based on estimated marginals α1, τ1, ..., αk, τk.

For one-step inference method, we estimate ω⃗, α1, τ1, ..., αk, τk simultaneously.

For rank-based method, we use two-step inference method, which α1, τ1, ..., αk, τk are

estimated first, then we estimate ω⃗.

• Simulate the lower part (45 observations) of the triangle with the estimated parameters

ω⃗, α1, τ1, ..., αk, τk obatianed above.

y
(1)
2,10

. .
. ...

y
(1)
10,2 ... y

(1)
10,10

y
(2)
2,10

. .
. ...

y
(2)
10,2 ... y

(2)
10,10

...

• Calculate the reserve from the simulated lower part of the triangle.

Now we use the simulation method to simulate the lower part of the loss triangle and com-

pute the risk capital. For the Personal and commercial auto lines in Shi and Frees (2011),

we calculate the TVaR99% and risk capital for using rank of residuals, comparing it with

Silo method and other used Copula model in Shi and Frees (2011). Table 5.1 and 5.2 gives

the TVaR 99% and risk capital after 50,000 simulations for the lower part of the loss triangle.

Table 5.1: 50,000 Simulations TVaR 99% comparison Personal Commercial

Model TVaR 99%
Silo Method 7,594,465

Sarmanov with one-step inference method 7,526,434
Sarmanov with rank-based method 7,279,902

Gausian Copula (From Shi & Frees (2011)) 7,453,552

The comparison shows that bivariate Sarmanov model using rank of residuals produces

lower risk measures than the silo method and Gaussian Copula model, which means it out-
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Table 5.2: 50,000 Simulations risk capital comparison Personal Commercial

Model Risk Capital Gain
Silo Method 436,433 -

Sarmanov with one-step inference method 375,361 13.99%
Sarmanov with rank-based method 367,510 15.79%

performed the other two method.

We then compare the Risk Capital for trivariate case line 2&4&5 and line 2&4 bivariate

case for both one-step inference method and rank-based method.

Table 5.3: 50,000 Simulations Risk Capital comparison 245

Model Line 2 Line 4 Line 5 Total Gain
Silo 16,163 11,301 2,455 29,920 -

Biv 24 one-step inference 13,474 5,972 - 21,902 26.80%
Biv 24 rank-based method 13,549 5,820 - 21,825 27.06%

Triv 245 one-step inference method 14,034 6,144 232 20,411 31.78%
Triv 245 rank-based method 13,458 5,800 246 19,505 34.81%

Table 5.3 shows that the bivariate Sarmanov with rank-based method is better than the silo

method and one-step inference method, the trivariate Sarmanov shows lower risks than the

bivariate case, with low risk capital in total and higher gain.

5.2 The Bootstrap procedure

In order to calculate reserves and risk capital, we use bootstrapping method to generate

sample data and estimate the parameters. We use the same bootrstrap algorithm as Taylor

and McGuire (2007), which is also shown in Shi and Frees (2011) and Abdallah et al. (2016).

The following are the steps included in the bootstrapping method for bivariate or multivariate

case.

• The original loss ratio can be written in the following loss triangle:

y
(1)
1,1 ... y

(1)
1,10

... . .
.

y
(1)
10,1

y
(2)
1,1 ... y

(2)
1,10

... . .
.

y
(2)
10,1

...
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• Estimation of ω⃗, α1, τ1, ..., αk, τk, k ≥ 2 (or a1, b1 based on the distribution) where ω is

from the Sarmanov distribution and α1, τ1, ..., αk, τk are the marginals for two lines of

business. Bounds of ω⃗ are based on estimated marginals α1, τ1, ..., αk, τk.

For one-step inference method, we estimate ω⃗, α1, τ1, ..., αk, τk simultaneously.

For rank-based method, we use two-step inference method, which α1, τ1, ..., αk, τk are

estimated first, then we estimate ω⃗.

• Simulate a sample (of 55 observations) from the Sarmanov distribution using the pa-

rameters ω⃗, α1, τ1, ..., αk, τk estimated above.

Then we have simulated data (pseudo-response):

y
∗(1)
1,1 ... y

∗(1)
1,10

... . .
.

y
∗(1)
10,1

y
∗(2)
1,1 ... y

∗(2)
1,10

... . .
.

y
∗(2)
10,1

...

• Estimate parameters ω⃗∗, α∗
1, τ

∗
1 , ..., α

∗
k, τ

∗
k from the new simulated data (Different cal-

culation for different method).

• Simulate the lower part (45 observations) of the triangle with the new estimated pa-

rameters ω⃗∗, α∗
1, τ

∗
1 , ..., α

∗
k, τ

∗
k obatianed above.

y
∗(1)
2,10

. .
. ...

y
∗(1)
10,2 ... y

∗(1)
10,10

y
∗(2)
2,10

. .
. ...

y
∗(2)
10,2 ... y

∗(2)
10,10

...

• Calculate the reserve from the simulated lower part of the triangle.

Now we can use the bootstrap method with estimation and simulations which provides us

the lower part of the simulated loss triangles and compute the risk capital.

We use the Kolmogorov-Smirnov test to check whether simulation procedure produces ade-

quate datasets, as shown in Table 5.4. We observe that the null hypothesis is not rejected,

except for the Commercial line of business from Shi and Frees (2011) data. This is not

surprising, as both the goodness of fit test (Gamma for Commerical line of business) and

dependence (Kendall tau test) were borderline for this dataset.

For Personal and commercial auto lines, Table 5.5 and Table 5.6 gives the TVaR 99% and

risk capital after 5,000 times of bootstrap, which including simulation of the upper part of
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Table 5.4: ks test for simulated vs original loss ratios

Model/ p-value 1st line 2nd line 3rd line
Bivariate Personal & Commercial 0.9989 0.0005792 -

Bivariate 2 & 4 0.9031 0.9789 -
Trivariate 2 & 4 & 5 0.9031 0.9789 0.9789

the loss triangle, estimating ω∗ for all the simulations and then using the new ω∗ in the

bivariate Sarmanov distribution to simulate the lower part of the loss triangle. As bootstrap

is more computationally intensive, we use less simulations for this part.

Table 5.5: 5,000 Bootstrap TVaR 99% comparison Personal Commercial

Model TVaR 99%
Silo Method 8,399,543

Sarmanov with rank-based method 7,913,426
Gausian Copula (From Shi & Frees (2011)) 7,923,715

Table 5.6: 5,000 Bootstrap risk capital comparison Personal Commercial

Model Risk Capital Gain
Silo Method 962,251 -

Sarmanov with rank-based method 790,212 17.88%

The comparison shows that bivariate Sarmanov model using rank of residuals produces lower

risk measures than the silo method and Gaussian Copula model, which leads to the conclu-

sion that it outperform the other two methods for this dataset.

We then use the bootstrap method to compare the Risk Capital for trivariate case line 2&4&5

and line 2&4 bivariate case for both one-step inference method and rank-based method.

Table 5.7: 5,000 Bootstrap Risk Capital comparison 245

Model Line 2 Line 4 Line 5 Total Gain
Silo 35,471 26,899 5,563 67,934 -

Biv 24 one-step inference 28,233 18,320 - 52,117 23.28%
Biv 24 rank-based method 24,717 17,978 - 48,258 28.96%
Triv 245 rank-based method 24,548 17,970 1,591 44,110 35.07%
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The bootstrap result also confirms the result we get from the simulation only method, that

the trivariate Sarmanov distribution with rank-based method provides a better fit than the

silo and bivariate Sarmanov model.
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Chapter 6

Disscussion and Conclusion

We explored the use of bivariate and trivariate Sarmanov distribution with original one-step

inference method, introduced a new rank-based method for Sarmanov distribution, showed

the difference of both estimation procedure and analyzed two sets of data using such meth-

ods. We also provided and used the method to simulate the data using Sarmanov model,

gave the bootstrap method and used it to calculate the risk capital.

The two sets of data we used are the real-life data from credible resources, the first set

of data is from a major US property casualty insurer which provides personal and commer-

cial auto lines of business. This data set has been widely used in the reserving literature,

and we have checked that the personal auto line follows log-normal distribution, while the

commercial auto line follows the gamma distribution. The second set of data is provided

by a large Canadian property and casualty insurance company, where we chose 3 lines of

business, which are Ontario Bodily injury, Ontario Accident benefits excluding disability

income and Ontario Accident benefits with disability income only, and showed that all three

lines of business follows gamma distribution.

Then we introduced the Sarmanov distribution, and showed using one-step inference method,

the bivariate Sarmanov distribution could not capture the dependence between personal and

commercial auto line. Although it can be used for line 2 and 4 for the Ontario Auto insur-

ance, the trivariate Sarmanov distribution also does not work better than the independent

case for line 2, 4 and 5.

However, when we used the rank-based method for Sarmanov distribution, it can capture the
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dependence between personal and commercial auto line, and also shows significance when

dealing with line 2, 4 or line 2, 4 and 5 of Ontario Auto insurance for bivariate and trivariate

Sarmanov distribution.

We also provided the simulation and bootstrap method for Sarmanov model, and by calcu-

lating and comparing the risk capitals, we can conclude that the model using rank-based

method provides a better fit than the silo method and the model using one-step inference

method. We also compared the TVaR 99% with the data from Shi and Frees (2011) and

found it works better than the Gaussian copula model. From line 2, 4 and 5 of Ontario auto

insurance data, we can see that trivariate Sarmanov model with rank-based method provides

a better fit than the bivariate Sarmanov model, this could lead to an extension to further

discussion about Sarmanov mdoel with more lines of business included.

Above all, Sarmanov distribution can capture the dependence between distributions and

is easy to comprehend. Rank-based method provides a more robust estimation for the de-

pendence parameters. There could be possibility to explore using Sarmanov distribution but

with marginals GLMs which includes factors other than just accident year and development

period, such as other aspects of the company or geographic locations, i.e. adding variables

to the generalized linear model. Sarmanov model could also be put into use for areas beyond

insurance, such as analyzing the dependence between measurable air pollution and water

pollution, or be used in biological system, etc. There exist dependencies in all kinds of areas,

and Sarmanov distribution can be used wherever there is data that can be ranked and follows

certain distribution.
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Appendix 1 Data

Table 6.1: Incremental paid losses for personal auto line

year premium 1 2 3 4 5 6 7 8 9 10

1988 4 711 333 1 376 384 1 211 168 535 883 313 790 168 142 79 972 39 235 15 030 10 865 4 086
1989 5 335 525 1 576 278 1 437 150 652 445 342 694 188 799 76 956 35 042 17 089 12 507
1990 5 947 504 1 763 277 1 540 231 678 959 364 199 177 108 78 169 47 391 25 288
1991 6 354 197 1 779 698 1 498 531 661 401 321 434 162 578 84 581 53 449
1992 6 738 172 1 843 224 1 573 604 613 095 299 473 176 842 106 296
1993 7 079 444 1 962 385 1 520 298 581 932 347 434 238 375
1994 7 254 832 2 033 371 1 430 541 633 500 432 257
1995 7 739 379 2 072 061 1 458 541 727 098
1996 8 154 065 2 210 754 1 517 501
1997 8 435 918 2 206 886

Table 6.2: Incremental paid losses for commercial auto line

year premium 1 2 3 4 5 6 7 8 9 10

1988 267 666 33 810 45 318 46 549 35 206 23 360 12 502 6 602 3 373 2 373 778
1989 274 526 37 663 51 771 40 998 29 496 12 669 11 204 5 785 4 220 1 910
1990 268 161 40 630 56 318 56 182 32 473 15 828 8 409 7 120 1 125
1991 276 821 40 475 49 697 39 313 24 044 13 156 12 595 2 908
1992 270 214 37 127 50 983 34 154 25 455 19 421 5 728
1993 280 568 41 125 53 302 40 289 39 912 6 650
1994 344 915 57 515 67 881 86 734 18 109
1995 371 139 61 553 132 208 20 923
1996 323 753 112 103 33 250
1997 221 448 37 554

Tables 6.3–6.5 provide the net earned premiums and the cumulative paid losses for accident

years 2003–12 inclusively for each of LOBs 2, 4, 5 developed over at most ten years. To

preserve confidentiality, all figures were multiplied by a constant. Table 6.6 provides the

parameters for the GLMs of three LOBs.
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Table 6.3: Cumulative paid losses for LOB 2.

Accident Development Lag (in months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 3488 14559 27249 37979 49561 55957 58406 60862 63280 63864 85421
2004 1169 12781 20550 31547 42808 47385 50251 50978 51272 98579
2005 1478 10788 25499 34279 43057 49360 52329 52544 103062
2006 1186 11852 22913 32537 41824 48005 52542 108412
2007 1737 13881 25521 38037 43684 47755 111176
2008 1571 12153 27329 41832 51779 112050
2009 1199 17077 29876 44149 112577
2010 1263 16073 28249 113707
2011 986 10003 126442
2012 683 130484

Table 6.4: Cumulative paid losses for LOB 4.

Accident Development Lag (in months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 13714 24996 31253 38352 44185 46258 47019 47894 48334 48902 116491
2004 6883 16525 24796 29263 32619 33383 34815 35569 35612 111467
2005 7933 22067 32801 38028 44274 44948 46507 46665 107241
2006 7052 18166 25589 31976 36092 38720 39914 105687
2007 10463 23982 31621 36039 38070 41260 105923
2008 9697 28878 41678 47135 50788 111487
2009 11387 37333 48452 55757 113268
2010 12150 32250 40677 121606
2011 5348 14357 110610
2012 4612 104304

Table 6.5: Cumulative paid losses for LOB 5.

Accident Development Lag (in months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 3043 5656 7505 8593 9403 10380 10450 10812 10856 10860 116491
2004 2070 4662 6690 8253 9286 9724 9942 10086 10121 111467
2005 2001 4825 7344 8918 9824 10274 10934 11155 107241
2006 1833 4953 7737 9524 10986 11267 11579 105687
2007 2217 5570 7898 8885 9424 10402 105923
2008 2076 5681 8577 10237 12934 111487
2009 2025 6225 9027 10945 113268
2010 2024 5888 8196 121606
2011 1311 3780 110610
2012 912 104304
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Table 6.6: Parameter and Reserve Estimations.

LOB ℓ 2 4 5

GLM Gamma Gamma Gamma

u(ℓ) −3.628 (0.148) −2.365 (0.173) −4.064 (0.148)

Accident
Year

2 −0.750 (0.151) −0.413 (0.174) −0.121 (0.151)
3 −0.729 (0.160) −0.196 (0.183) 0.171 (0.161)
4 −0.651 (0.168) −0.112 (0.190) 0.129 (0.168)
5 −0.741 (0.174) −0.095 (0.199) 0.092 (0.173)
6 −0.574 (0.185) −0.001 (0.210) 0.396 (0.187)
7 −0.574 (0.200) 0.197 (0.227) 0.254 (0.200)
8 −0.658 (0.220) −0.012 (0.253) 0.055 (0.222)
9 −1.147 (0.255) −0.628 (0.295) −0.259 (0.260)
10 −1.625 (0.340) −0.754 (0.393) −0.676 (0.348)

Dev.
Lag

2 2.061 (0.145) 0.450 (0.167) 0.419 (0.149)
3 2.065 (0.151) −0.055 (0.175) 0.114 (0.155)
4 2.018 (0.158) −0.507 (0.183) −0.358 (0.163)
5 1.818 (0.166) −0.759 (0.193) −0.582 (0.173)
6 1.297 (0.176) −1.580 (0.207) −1.154 (0.182)
7 0.773 (0.193) −1.899 (0.223) −1.870 (0.201)
8 −0.493 (0.216) −2.670 (0.250) −2.103 (0.219)
9 −0.429 (0.255) −3.762 (0.298) −3.849 (0.257)
10 −1.358 (0.340) −2.960 (0.393) −6.248 (0.348)

sd or scale 10.700 (2.009) 8.038 (1.502) 10.078 (1.891)

Reserve 132,919 73,220 18,288

C-L Reserve 146,794 75,551 18,726
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Appendix 2 Closed-form expression

This appendix will provide the closed-form expression for expectation, variance and covari-

ance for loss reserve.

E[Rtot] = E[R(1) +R(2)] = E

[
2∑

l=1

n∑
i=2

n∑
j=n−i+2

p
(l)
i Y

(l)
i,j

]
=

2∑
l=1

n∑
i=2

n∑
j=n−i+2

p
(l)
i E[Y

(l)
i,j ]

E[Y
(1)
i,j ] = eµ

(1)
i,j +σ2/2, E[Y

(2)
i,j ] = α ∗ τ (2)i,j

E[Rtot] =
n∑

i=2

n∑
j=n−i+2

p
(1)
i eµ

(1)
i,j +σ2/2 +

n∑
i=2

n∑
j=n−i+2

p
(2)
i α ∗ τ (2)i,j

V ar(Rtot) = V ar(R(1) +R(2)) = V ar(R(1)) + V ar(R(2)) + 2Cov(R(1), R(2))

V ar(R(1)) = V ar(
n∑

i=2

n∑
j=n−i+2

p
(1)
i Y

(1)
i,j ) =

n∑
i=2

n∑
j=n−i+2

p
(1)2
i V ar(Y

(1)
i,j )

=
n∑

i=2

n∑
j=n−i+2

p
(1)2
i (eσ

2 − 1)e2µ
(1)
i,j +σ2
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V ar(R(2)) = V ar(
n∑

i=2

n∑
j=n−i+2

p
(2)
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Appendix 3 Proof for omega bounds

ρ =
E[X1X2]− E[X1]E[X2]

σ1σ2

=

∫
x1x2(f1(x1)f2(x2)(1 + ωψ1(x1)ψ2(x2)))dx1dx2 −

∫
x1f1(x1)dx1

∫
x2fs(x2)dxs

σ1σ2

=
ω
∫
x1f1(x1)ψ1(x1)dx1

∫
x2f2(x2)ψ2(x2)dx2

σ1σ2

=
ων1ν2
σ1σ2

with νi =
∫
xifi(xi)ψi(xi)dxi and ψi(xi) = exp(−xi) − Li(1) where Li(1) is the Laplace

transform evaluated at 1.

Let X1 ∼ Normal(a, b2), X2 ∼ Gamma(α, τ), from Pelican and Vernic (2013) and Lee

(1996), we have

L1(1) = exp(−a+ b2/2)

L2(1) = (1 + τ)−α

Given notation:

f1(x1) = n(x1; a, b
2) =

1

b
√
2π
exp

(
− (x1 − a)2

2b2

)

f2(x2) = h(x2;α, τ) =
θ
(2)α−1
t

Γ(α)τα
exp(−x2/τ)
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Then we can get

ν1 =

∫
x1f1(x1)ψ1(x1)dx1

=

∫
x1(exp(−x1)− L1(1))n(x1; a, b

2)dx1

=
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τ
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− τ)

= −ατ 2(1 + τ)−α−1

As σ1 = b, σ2 =
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ωb2exp(−a+ b2/2)ατ 2(1 + τ)−α−1

b
√
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Because −1 ≤ ρ ≤ 1, we have −1 ≤ ωbexp(−a + b2/2)
√
ατ(1 + τ)−α−1 ≤ 1, and since

bexp(−a+ b2/2)
√
ατ(1 + τ)−α−1 ≥ 0, we have the omega bound
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Similarly, we can get the omega bound for margnals as two gamma distributions:

− 1
√
α1τ1(1 + τ1)−α1−1

√
α2τ2(1 + τ2)−α2−1

≤ ω ≤ 1
√
α1τ1(1 + τ1)−α1−1

√
α2τ2(1 + τ2)−α2−1
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