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Lay Abstract
Informally, algebraic geometry is the study of solution sets to systems of polynomial equations,
called algebraic varieties. Such systems are ubiquitous across the sciences, being found as
biological models, optimization problems, revenue models, and much more. However, it is a
difficult problem in general to ascertain salient properties of the solutions to these systems.
One type of algebraic variety which is easier to work with is a toric variety. These varieties
can be associated to simpler mathematical objects such as lattices, polytopes and fans, and
important geometric properties of the variety can then be obtained via analyzing properties
of these simpler objects. This thesis introduces the notion of a tropical mutation scheme,
which is a generalization of a lattice. A broader class of algebraic varieties can be associated
with tropical mutation schemes in a similar manner to how toric varieties are associated with
lattices. We then compute this association explicitly in the case of the simplest non-trivial
examples of a tropical mutation scheme, rank 2 tropical mutation schemes with 2 charts.

iii



Abstract
This thesis provides an introduction to the theory of tropical mutation schemes, and computes
explicit examples. Tropical mutation schemes generalize toric geometry. The study of toric
varieties is a popular area of algebraic geometry, due to toric varieties’ strong combinatorial
interpretations. In particular, the characters and one-parameter subgroups of the rank r
algebraic torus form a pair of dual lattices of rank r, isomorphic to Zr. We can then construct
toric varieties from fans in these lattices, and compactifications of the algebraic torus are
parametrized by full dimensional convex polytopes.

A tropical mutation scheme is a finite collections of lattices, equipped with bijective
piecewise-linear functions between each pair of lattices, where these functions satisfy cer-
tain compatibility conditions. They generalize lattices in the sense that a lattice can be
viewed as the trivial tropical mutation scheme. We also introduce the space of points of a
tropical mutation scheme, which is the set of functions from a tropical mutation scheme to
Z which satisfy a minimum condition. A priori, the structure of the space of points of a
tropical mutation scheme is unknown, but in certain cases can be identified by the elements
of another tropical mutation scheme, inducing a dual pairing between the two tropical mu-
tation schemes. When we have a strict dual pairing of tropical mutation schemes, we can
sometimes construct an algebra to be a detropicalization of the pairing. In the trivial case,
the coordinate ring of the algebraic torus is a detropicalization of a single lattice and its
dual. Thus, when we can construct a detropicalization for a non-trivial strict dual pairing,
we recover much of the useful combinatorics from the toric case.

This thesis shows that all rank 2 tropical mutation schemes on two lattice charts are
autodual, meaning there is a dual pairing between the tropical mutation scheme and its own
space of points. Furthermore, we construct a detropicalization for these tropical mutation
schemes. We end the thesis by reviewing open questions and future directions for the theory
of tropical mutation schemes.
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Chapter 1

Introduction

Toric Varieties are a well known and well studied subset of algebraic varieties due to their
connections with combinatorial objects. In fact, many varieties with which we are most fa-
miliar, such as Pn, An, and Pk × Pn−k, are examples of toric varieties. An algebraic torus is
a space that is isomorphic to n copies of the multiplicative group of a field, (k∗)n. In this
thesis, we will work over C unless otherwise stated, so we will denote by T the algebraic
torus over the complex numbers, i.e. T ∼= C∗, and Tn ∼= (C∗)n. Because (C∗)n forms an
abelian group under component-wise multiplication, the affine variety Tn also inherits this
group structure. The coordinate ring of the n-dimensional algebraic torus is the Laurent
polynomial ring, C[x±

1 , . . . , x
±
n ].

Tropical mutation schemes, the subject of this paper, seek to generalize the combinatorics of
toric varieties, so it will be useful to summarize these now. Given an algebraic torus Tn, a
character of T is a group homomorphism m : Tn → C∗ The characters of Tn are exactly the
maps given by

(t1, . . . , tn) 7→ ta1
1 . . . tan

n , for (a1, . . . , an) ∈ Zn

As a corollary, we find that the characters of the algebraic torus form a lattice, called
the character lattice of T, denoted by M ∼= Zn. The above proposition also shows that the
characters of the torus are exactly the Laurent monomials.

Given the lattice M , we can also construct the dual lattice N = HomZ(M,Z) ∼= Zn. The
lattice N is called the cocharacter lattice, or the lattice of one parameter subgroups of the
algebraic torus. It comprises all group homomorphisms

n : C∗ → Tn.

Similarly to the characters, the cocharacters of the algebraic torus are given by the morphisms

t 7→ (ta1 , . . . , tan) for (a1, . . . , an) ∈ Zn.

Fixing coordinates for Tn gives an identification of M and N with Zn, and induces a natural
bilinear product between elements of M and N . Explicitly,

⟨·, ·⟩ : M ×N → Hom(Z,Z) ∼= Z, ⟨m,n⟩ 7→ λm ◦ χn,
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where λn is the cocharacter given by n, and χm is the character given by m. Conversely,
given a lattice N ∼= Zn, we can cannonically construct an algebraic torus whose cocharacter
lattice is N , namely TN = N ⊗Z C∗.

A toric variety is an irreducible variety which contains (C∗)n as an open dense subset, such
that the action of (C∗)n on itself extends to an action on the whole variety. A simple example
is A1, where the action of the torus C∗ extends trivially to 0.

In general, a toric variety can be thought of as a union of Tn-orbits. Information about
these Tn-orbits can be recorded using a polyhedral fan Σ in the character or cocharacter
lattice of Tn. Furthermore, projective toric varieties are parametrized by the full dimensional
convex lattice polytopes. Therefore, by studying the combinatorial properties of these fans,
cones and polytopes associated to toric varieties, we can recover geometric and algebraic
properties of the underlying varieties and coordinate rings, respectively. Readers interested
in learning more about this correspondence are referred to the book by Cox, Little, and
Schenck [1].

Another place combinatorics and fans arise in algebraic geometry is in tropical geometry.
Often called the "combinatorial shadow" of algebraic geometry, tropical geometry associates
to each algebraic variety over a valued field (i.e. a field equipped with a valuation) a poly-
hedral complex called a tropical variety which can be studied to obtain information about
the underlying variety. When the field over which we are working is trivially valued, which
is usually the case when working over C, the aforementioned polyhedral complex is actually
a polyhedral fan. Furthermore, if the ideal I which defines a variety V(I) is homogeneous,
then the associated tropical variety is a particular subfan of the Gröbner fan of I(V ) [11].

To understand how we obtain a tropical variety from a classical one, first we will define
how to obtain the tropicalization of a Laurent polynomial. Let K be a valued field and take
f =

∑
CiX

αi
i a Laurent polynomial in n variables over K. The tropicalization of f is

trop(f) : Rn → R

where trop(f)(w) = min{val(Ci) + w · αi}. The tropical hypersurface defined by a Laurent
polynomial f is the non-differentiable locus of trop(f), equivalently, the vectors w ∈ Rn such
that the minimum is achieved at least twice in min{val(Ci) + w · αi}.

1.0.1 Example. As a simple example, consider the polynomial f(x, y) = x + y + 1, f ∈
C[x±, y±], where we consider C with the trivial valuation. Then trop(f)(w1, w2) = min{w1, w2, 0}.
The tropical hypersurface corresponding to f therefore is composed of three rays, w1 = w2 <
0, w1 = 0 < w2, and w2 = 0 < w1. For an arbitrary algebraic variety V , i.e. not a
hypersurface, the corresponding tropical variety can be found by intersecting the tropical
hypersurfaces for each f ∈ I(V ). It is a fundamental result of tropical geometry that there
is some finite set {f1, . . . , fk} which generate I(V ) such that the intersection of the tropical
hypersurfaces of each fi is the tropical variety of V ([10] Theorem 2.6.6). Such a set is called
a tropical basis of I(V ). Readers interested in learning more about tropical geometry should
refer to the book by Maclagan and Sturmfelds [10].

When looked at through the right lens, we see that cluster algebras and cluster varieties

2
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are a natural generalization of toric varieties. Cluster varieties are a type of algebraic va-
riety which contain algebraic tori that are glued using specific bilinear maps called cluster
mutations as an open dense subset. They were introduced by Fock and Goncharov in a se-
ries of papers approximately 15 years ago (see [5],[6], and [7]). They were introduced as the
geometric counterpart of a class of commutative algebras called cluster algebras, which are
similarly constructed by taking the union of (possibly infinitely many) generating sets related
by cluster mutations. Cluster algebras were first defined in [8] by Fomin and Zelevinsky in
the early 2000s, and have since become a popular object of study. A typical way of building
cluster algebras is using quivers.

Given a quiver Q with mutable vertices {v1, . . . , vn} and frozen vertices {n1, . . . , nk}, we
obtain a new quiver by mutating at a vertex vi, and we denote this quiver by µi(Q). The
mutable vertices correspond to variables which form a free generating set called a cluster for
the field of rational functions over k(n1, . . . , nk). By mutating at a vertex vi, we obtain a new
cluster, (v1, . . . , vi−1, µ(vi), . . . , vn), and a relation on µ(vi). The cluster algebra associated
to the quiver Q is then the union of all possible clusters obtained from all possible mutations,
and all relations obtained from this process. We will illustrate with a small example.

1.0.2 Example. Take Q to be the quiver with one mutable variable x, and one fixed variable
y, with an arrow pointing from x to y, as shown below with the frozen vertex, which is
immutable, filled in.

◦x •y

The only possible mutation is at x, and doing so yields

◦x′ •y

and the relation x′ = y+1
x . Since quiver mutation is an involution, the only two clusters are

(x) and (x′). Thus, the cluster algebra associated to this quiver is the ring

A = C[x, x′, y±]/⟨xx′ − y − 1⟩

To see that Spec(A) = {(x, x′, y) | xx′ − y − 1 = 0} is contains an open dense subset which
is covered by toric charts, consider the tori

A1 = {(x, y) | xy ̸= 0}

and
A2 = {(x′, y) | x′y ̸= 0}.

The maps
ψi : A1 → Spec(A)

where ψi(x, y) = (x, y+1
x , y) and

ψ2 : A2 → Spec(A)

given by ψ2(x′, y) = (y+1
x′ , x′, y) cover an open dense subset of Spec(A) with toric charts. For

a more detailed introduction to cluster algebras, see this expository paper by Williams [12].
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We can also view cluster varieties through the lens of tropical geometry. By tropicalizing
the mutation relations of a cluster algebra, we obtain piecewise linear maps between the
lattices of the underlying tori. Therefore, the "combinatorial shadows" of cluster varieties
are collections of lattices equiped with piecewise linear maps between them. Thus, a natu-
ral question becomes, "Can we set up a general theory from piecewise linear maps between
lattices which allows us to recover an analogy to the toric dictionary for a broader class of
varieties which includes cluster varieties?" Once we have obtained this combinatorial object,
we can ask, "When did this combinatorial object come from a geometric one?"

Though in its infancy, the theory of Tropical Mutation Schemes attempts to do just that.
Informally, a tropical mutation scheme is a finite collection of lattices, equipped with bijective
piecewise linear maps between each pair, subject to some compatibility conditions. After pro-
viding a basic overview of the theory of tropical mutation schemes, we will focus our attention
to a special case of rank-2 tropical mutation schemes with exactly 2 lattice charts. Though
this type is the simplest type of not-trivial tropical mutation scheme, it still represents an
infinite class of tropical mutation schemes, and is therefore an excellent place to begin. In
this thesis, we will show that these rank-2 2-chart tropical mutation schemes satisfy many
of the properties we desire in tropical mutation schemes, including fullness, dualizability,
and detropicalizability. Tropical Mutation Schemes were first defined by Escobar, Harada,
and Manon in [3],[4], and build off of work done by Kaveh and Manon [9], and Escobar and
Harada [2] on algebraic and geometric wall crossing maps.

The structure of this thesis is as follows. First, we will summarize the theory of tropical
mutation schemes, including the definition of a tropical mutations scheme, as well as their
space of points, and other important concepts. We will also remind the reader of some clas-
sical concepts in order to set notation. In chapter 3, we will compute the space of points
for a special class of a rank 2 tropical mutation scheme on 2 charts. As a consequence, we
will show that these tropical mutation schemes are both full, and autodual. In the following
chapter, we will show that any of these rank 2 tropical mutation schemes can be realized as a
detropicalization of a particular polynomial ring. Finally, we will briefly discuss some future
directions of study.

4
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Chapter 2

Preliminaries and Definitions

In this chapter, we will remind the reader about some notions in order to set notation, as
well as introduce definitions and concepts related to tropical mutation schemes which we will
explore in the latter sections of this thesis. In particular, we will define a tropical mutation
scheme, as well as the space of points, and the canonical semialgebra of a tropical mutation
scheme. We also provide illustrative examples of these concepts.

2.1 Lattices
We begin by reviewing classical notions, mainly to set notation. We will define lattices,
piecewise linear functions on lattices, and related concepts.

The starting point of this thesis is the notion of a lattice. Indeed, our main object of study,
the tropical mutation scheme, is a generalization of a lattice. First, we will define a classical
lattice, which will become the trivial tropical mutation scheme.

2.1.1 Definition. We say that M is a lattice if it is a free Z-module of finite rank. Thus,
M ∼= Zr, for some r ∈ Z>0. Given a lattice M , we may define its dual lattice N , as
N := HomZ(M,Z). There is then a canonical bilinear pairing ⟨−,−⟩, where ⟨m,n⟩ := n(m)
for n ∈ N and m ∈ M .

The next object we will need before we introduce the tropical mutation scheme is a piece-
wise linear map. Informally, this is a map of lattices which is linear when restricted to
particular cones in the lattice. We will introduce some notions related to piecewise linear
functions in order to set notation, the first being a hyperplane and a halfspace.

2.1.2 Definition. Let V be a finite-dimensional vector space over R. Let p ∈ V ∗, the dual
vector space of V . A hyperplane of V defined by p, denoted by Hp is the set

Hp := {x ∈ V | p(x) = 0}.

Similarly, a halfspace of V is the set

Hp := {x ∈ V | p(x) ≥ 0}

for some p ∈ V ∗.

5
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Essential to defining piecewise linear functions are cones and fans, which we will define
below.

2.1.3 Definition. Let V be a finite-dimensional vector space over R. A subset C of V is a
cone if it is closed with respect to taking non-negative linear combinations, i.e., if x, y ∈ C,
then αx+ βy ∈ C for all α, β ∈ R≥0. A cone C is said to be polyhedral if there exists a finite
set of vectors {v1, . . . , vn} ∈ V such that

C = {a1v1 + · · · + anvn | ai ∈ R≥0}. (2.1.1)

Conversely, given a finite set of vectors {v1, . . . , vn} in V , we define the cone generated by
{v1, . . . , vn}, denoted by C(v1, . . . , vn) is the set given by the right hand side of equation
(2.1.1).

Given a polyhedral cone, C, a face σ of C is a subset of C which is supported on a hyperplane,
i.e, σ = C ∩Hp for a hyperplane Hp, for some p ∈ V ∗.

Collections of cones satisfying certain properties are called fans, which will be central to
the theory of tropical mutation schemes.

2.1.4 Definition. Let V be a finite-dimensional vector space over R. A collection of finitely
many cones Σ in V is called a fan if

1. the intersection of any two cones σ and σ′ is a face of each, and

2. if a cone σ is in Σ, then every face of σ is in Σ as well.

The support, |Σ|, of the fan Σ, is the set of all vectors v ∈ V which are contained in some
cone σ ∈ Σ, i.e. there exists a σ ∈ Σ such that v ∈ σ. We say a fan is complete if |Σ| = V .

Given any two fans in a vector space, we can build a new fan called the common refinement.

2.1.5 Definition. Let V be a finite dimensional vector space over R, and let Σ and Σ′ be
fans in V . We say that Σ′ is a refinement of Σ if

1. each cone C ∈ Σ′ is contained in a cone of Σ and

2. |Σ| = |Σ′|.

If Σ′ is a refinement of Σ, we say that Σ is coarser that Σ′. Given two fans Σ and Σ′, the
common refinement of both, Σ + Σ′, is the coarsest fan which is a refinement of both Σ and
Σ′, i.e. is some fan Σ∗ is a refinement of both Σ and Σ′, then Σ∗ is a refinement of Σ + Σ′.

In general, when we say a fan Σ is the coarsest fan satisfying a certain property, we mean
that any other fan Σ′ which also satisfies said property is a refinement of Σ.

Now that we have set definitions for lattices and fans, we are ready to define piecewise
linear functions over lattices, which are central to the theory of tropical mutation schemes.

2.1.6 Definition. Let M be a lattice. A piecewise linear function on M is a function

Φ : M → Z

6
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such that there exists a complete fan Σ over M ⊗ R such that for each cone σ in Σ, and for
any m1,m2 ∈ σ, we have

Φ(m1 +m2) = Φ(m1) + Φ(m2).

In other words, for each cone σ ∈ Σ, the restriction Φ|σ of Φ to σ is linear. We further require
that the induced function obtained by tensoring with R,

Φ̃ : M ⊗Z R → R,

is continuous with respect to the usual topology on Rn. Given a piecewise linear function Φ,
we use Σ(Φ) to denote the coarsest fan such that the restriction of Φ to each cone σ ∈ Σ(Φ)
is linear, and we call this the fan of Φ.

The set of piecewise linear functions on a lattice M satisfies some additional algebraic
structure, which we will describe below.

2.1.7 Definition. A semialgebra is a monoid A equipped with a binary operation ⊙ which
is associative and distributive over the addition operation of A.

We will now define two binary operations on the set of piecewise linear functions on a
lattice M , min and +.

2.1.8 Definition. Given two piecewise linear functions f and g, over a lattice M , f + g is
the function f + g : M → Z such that f + g(m) = f(m) + g(m). This is called the sum of
the piecewise linear functions. Given two piecewise linear functions, f and g, min{f, g} is
the function min{f, g} : M → Z such that

min{f, g}(m) =
{
f(m) whenever f(m) ≤ g(m)
g(m) whenever g(m) ≤ f(m)

We denote the set of piecewise linear functions over a lattice M by OM .

2.1.9 Remark. Here, we are defining piecewise linear functions over Z, but they are often
defined over R. The definitions and proofs to follow work identically when M is an R vector
space, and the image of the piecewise linear function is R.

2.1.10 Theorem. The set of piecewise linear functions on a lattice M forms a semialgebra
under the operations min and +.

Proof. We will first show that OM is a monoid under the min operation. Take ϕ and θ to be
piecewise linear functions on M . For convention, we include ∞ as the additive identity, to
make OM a monoid, where for any f ∈ OM we have that min{f,∞} = f , and f + ∞ = ∞.
It is clear that min{f, g} is continuous, therefore, we only need to show that there exists
some complete fan on such that the restriction to each cone is linear. Take Σ(g) + Σ(f) to be
the common refinement of the fans of f and g. Now let Σ∗ be the complete fan whose cones
are given by the regions where min{f, g} = g and where min{f, g} = f , and the boundaries
of each cone are the regions where f = g. Then on the common refinement of Σ(g) + Σ(f)
and Σ∗, we will have that the restriction of min{f, g} = f or g, and further that it is linear.
Thus, (Om,min) is a monoid.

7
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Now we will show that sums of piecewise linear functions are piecewise linear. Let ϕ and
θ be two piecewise linear functions on M , and let Σ(ϕ) and Σ(θ) be the fans of ϕ and θ,
respectively. Take Σ(ϕ) + Σ(θ), the common refinement of the two fans. Then certainly, for
every cone σ ∈ Σ(ϕ) + Σ(θ), both ϕ and θ are linear on σ. Therefore, ϕ+ θ is linear as well.
Since both ϕ̃ and θ̃, are continuous, certainly ϕ̃ + θ̃ will be continuous. Therefore, OM is
closed under addition.

It is easy to check that + is associate and distributive over min. Therefore, the set of
piecewise linear functions over a lattice M forms a semialgebra.

We have now defined piecewise linear functions on lattices, and we will now analougously
define piecewise linear maps between lattices.

2.1.11 Definition. Let r be a positive integer. Given two lattices of rank r, M and N we
say a function

Φ : M → N

is a piecewise linear map of lattices if there exists some complete fan Σ ∈ M ⊗Z R such that
for any cone σ ∈ Σ we have the following property for the restriction map Φ|σ:

Φ|σ(m1 +m2) = Φ|σ(m1) + Φ|σ(m2) for any m1,m2 ∈ M

In other words, the map is linear when restricted to each cone of Σ. As before, we further
require that the induced map obtained by tensoring with R

Φ̃ : M ⊗ R → N ⊗ R

is continuous with respect to the usual topology of Rn. As before, given a piecewise linear
map of lattices Φ, we use Σ(Φ) to denote the coarsest fan such that the restriction of Φ to
each cone σ ∈ Σ(Φ) is linear, all call this the fan of Φ.

We will use piecewise linear maps between lattices to define our main object of study, the
tropical mutation scheme.

2.2 Tropical Mutation Schemes
We are now ready to define a tropical mutation scheme. A tropical mutation scheme is a
generalization of a lattice in the sense that a classical lattice is a trivial tropical mutation
scheme. Informally, it is a collection of lattices, equipped with mutation maps between any
pair of lattices. A classical lattice is a tropical mutation scheme with only 1 chart and no
mutation maps other than the identity. Tropical mutation schemes arose from the study of
tropical geometry and toric geometry. Using this tool, we can recover combinatorial results
from toric geometry in a more general setting, which we will see in later chapters in the
context of rank-2 tropical mutation schemes with 2 charts.

2.2.1 Definition. Let r be an element of Z>0. A tropical mutation scheme over Z of rank
r, denoted by M, is a finite collection of lattices of rank r. We denote the set of lattices
which comprise a tropical mutation scheme by L(M) (so that M = (Mσ)σ∈L(M)). A tropical

8

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Adrian Cook; McMaster University– Department of Mathematics
and Statistics

mutation scheme also requires a set of invertible piecewise linear maps:

µσ,τ : Mσ → Mτ for all σ, τ ∈ L(M) (2.2.1)

which fulfill the following conditions:

1) µσ,σ = idMσ for all σ ∈ L(M)

2) µ−1
τ,σ = µσ,τ for all σ, τ ∈ L(M)

3) µσ,τ ◦ µτ,δ = µσ,δ for all σ, τ, δ ∈ L(M)

We will call each µσ,τ a mutation, or, a mutation map of M. The set of all charts of a tropical
mutation scheme will be denoted by L(M). The lattices Mσ for each σ ∈ L(M) are called
the charts of M, i.e. L(M) is an indexing set for the underlying latties of a tropical mutation
scheme.

We will now discuss how to think about the elements of each chart of a tropical mutation
scheme as forming a cohesive structure.

2.2.2 Definition. Let M be a tropical mutation scheme and consider a chart Mi. Take
mi ∈ Mi, and consider the the images of mi under all possible mutation functions. The
set composed of mi along with its images under all possible mutation functions is called an
element of M. The collection of all such elements is called the set of elements of M. We
abuse notation slightly to denote the set of elements of a tropical mutation scheme as M.

Notice that the set of elements of a tropical mutation scheme is in bijection with each
chart Mj , since for each j we have the projection πj which reads of the part of an element
corresponding to the j-th chart. Formally:

πτ : M → Mτ

(mσ)σ∈L(M) 7→ mτ (2.2.2)

2.2.3 Remark. Unlike the situation of a classical lattice, there is not necessarily a well-
defined operation of addition on (the set of elements of) M. Given two elements m1,m2 ∈ M,
and σ, τ being different charts of L(M), then addition in Mσ and Mτ may yield different
results. On the other hand, if we fix some τ ∈ L(M), τ -addition is denoted by m1 +τ m2, as
is defined by m1 +τ m2 := πτ (m1) + πτ (m2), where πτ (m1), πτ (m2) ∈ Mτ . For a fixed pair
m1,m2 ∈ M, the set of all elements which can be obtained by addition on some chart will
be denoted by ∆(m1,m2). Concretely, ∆(m1,m2) = {m1 +τ m2 | τ ∈ L(M)}.

Many of the definitions we have introduced in the previous section can be easily extended
to fit into the framework of tropical mutation schemes. We will now define the notions of
cones, fans, and piecewise linear functions in the context of tropical mutation schemes.

2.2.4 Remark. While we have defined M using lattices as our models and mutations as
piecewise linear functions over Z, in what follows it will be natural to consider a similar
object comprising vector spaces over R. For a tropical mutation scheme given by lattices
(Mσ)σ ∈ L(M), it is straightforward to extend the definitions to Mσ ⊗R, for each σ ∈ L(M)
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to obtain an object we denote by M⊗R. Specifically, by this we mean the collection of vector
spaces Mσ⊗R for each σ ∈ L(M), along with the mutation functions µ̃σ,τ : Mσ⊗R → Mτ ⊗R
for each σ, τ ∈ L(M) induced by the tensor product. Again by slight abuse of notation, we
use M ⊗ R to also denote the set of elements of M ⊗ R, which can be projected bijectively
to each Mσ ⊗ R via πσ ⊗ R : M ⊗ R → Mσ ⊗ R.

2.2.5 Definition. A subset C ⊆ M of the set of elements of M is a tropical mutation scheme
cone, or M-cone if for every τ ∈ S(M), the projection πτ (C) ⊂ Mτ ⊗R is a cone in the usual
sense of 2.1.3. A tropical mutation scheme fan, or M-fan Σ, is a collection of M-cones such
that

1. For any cone σ ∈ Σ, any face of σ is also an element of Σ

2. For any σ1, σ2 ∈ Σ, the intersection of both is a face of each.

2.2.6 Remark. Since each mutation map is piecewise linear and bijective, we may think of
an M-fan as a tuple (Σσ)σ∈L(M) where each Σσ is a fan in the classical sense on the lattice
Mσ, along with the image of this fan on all possible mutation maps. Conversly, by taking
some fan Σ on Mσ, we may obtain a corresponding M-fan by considering all possible images
of Σ as a tuple.

Similarly to piecewise linear functions, we can define a fan from each tropical mutation
scheme.

2.2.7 Lemma. Given a tropical mutation scheme M with finitely many charts, there exists
a fan Σ such that the restriction µi,j |σ is linear for all i, j, σ. Furthermore, there exists a
coarsest fan such that this is the case.

Proof. Since each µτ,ϕ for τ, ϕ ∈ L(M) is a piecewise linear map between lattices, there exists
a complete fan Σ(µτ,ϕ) in Nτ ⊗ R such that the restriction of µϕ,τ to each cone of Σ(µτ,ϕ)
is linear. Furthermore, Σ(µτ,ϕ) lifts to an M-fan by considering (µγ,β(Σ(µτ,ϕ))γ,β∈L(M), i.e.,
the image of this fan under all mutation maps. Then certainly if we consider the common
refinement of these fans for all τ, ϕ ∈ L(M), the resulting fan we will denote by Σ(M) will
have the property that for all σ ∈ Σ(M), the restriction of µϕ,τ to σ will be linear for all
ϕ, τ ∈ L(M). We also claim this is the coarsest possible fan such that this is the case. This
follows from the fact that the fan of each µτ,ϕ is defined to be the coarsest possible fan for
which µτ,ϕ is linear.

We call this M-fan, Σ(M), obtained by taking the common refinement of all the fans of
the mutation maps the M-fan of M. Furthermore, we note that since each mutation map is
linear on each cone of Σ(M), addition is well defined when we restrict to each cone. Specifi-
cally, take m,m′ ∈ σ for any σ ∈ Σ(M). Then m+τ m

′ = m+ϕ m
′ for all τ, ϕ ∈ L(M).

For the remainder of this thesis, we will often refer back to or illustrate results using the
following two examples of Tropical Mutation Schemes.

2.2.8 Example. The first example will be the rank n tropical mutation scheme with only
one chart, and therefore no mutation functions. This corresponds to a single lattice, M ∼= Zn.
Here, the fan Σ(M) is simply a fan with exactly one cone, namely all of M ⊗ R.
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2.2.9 Example. For our second example M will be a rank-2 tropical mutation scheme with
two charts, Mσ and Mσ′ , for which we have fixed identifications with Z2 for each. There is
one mutation map (and its inverse), given by:

µσ,σ′ : Mσ → M ′
σ

(x, y) 7→
{

(x,−y) x ≥ 0
(x, x− y) x < 0

Here, the fan Σ(M) has exactly two maximal-dimensional cones, namely the x < 0 half-
space, and the x ≥ 0 half-space in M ⊗R. In other words, πσ(Σ(M)) and π′

σ(Σ(M)) are the
x ≥ 0 half-space and the x < 0 half-space in Mσ and M ′

σ, respectively.

We can also define a piecewise linear function for tropical mutation schemes in a similar
way.

2.2.10 Definition. Let M be a tropical mutation scheme. A piecewise linear function on
M is a function Φ : M → Z such that there exists a complete M-fan Σ, such that for every
chart τ ∈ L(M), and every cone σ ∈ πτ (Σ), the restriction Φ|σ is linear.

2.2.11 Remark. Like above with fans, we may think of a piecewise linear function on a
tropical mutation scheme M as a tuple of piecewise linear maps (Φσ)σ∈L(M). Conversely,
given any piecewise linear map Φ on any chart Mσ, we obtain a piecewise linear map of
tropical mutation schemes by considering the tuple of piecewise linear maps obtained first by
mutating from Mτ to Mσ, then evaluating. We give a small example.

2.2.12 Example. Let M be the simple shear example we have seen in Example 2.2.9 .
Consider the piecewise linear function

f(x, y) = min{x, y} on Mσ.

Since the elements of M are in bijection with the elements of Mσ, this function defines a
piecewise linear map of tropical mutation schemes, which we will call p, whose fan is the
common refinement of Σ(f) and Σ(M). Furthermore, it defines a piecewise linear map g on
Mτ by

g = f ◦ µτ,σ = min{x,−y, x− y}.

Thus, we may think of p as p = (f, g).

2.3 Spaces of points of tropical mutation schemes
A special kind of piecewise linear fuction on a tropical mutation scheme is called a point. The
notion of a point is what will allow us to construct dual tropical mutation schemes, similarly
to how we can construct the dual of a classical lattice.

2.3.1 Definition. Given a tropical mutation scheme M, a function

p : M → Z. (2.3.1)
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is a point of M if it satisfies the following property:

p(m) + p(m′) = min{p(m+τ m
′) | τ ∈ L(M)} for all m,m′ ∈ M (2.3.2)

The set of all points of M is called the space of points, and we denote it by Sp(M).

2.3.2 Proposition. Let p ∈ Sp(M). Then p is piecewise linear. In particular, the maps
pσ : Mσ → Z given by pσ = p ◦ π−1

σ are piecewise linear for each σ ∈ L(M).

Proof. Consider the M-fan Σ(M). Since for each cone σ ∈ Σ(M), the restriction of µϕ,τ is
linear, we know that for m,m′ ∈ σ, m+τ m

′ = m+ϕm
′ for all τ, ϕ ∈ L(M). Therefore, if p is

a point, and m1,m2 ∈ πϕ(σ) for any σ ∈ Σ(M) and ϕ ∈ L(M) we have that p(m1)+p(m2) =
min{p(m+τ m

′) | τ ∈ L(M)} = p(m1 +ϕm2) for our specific ϕ, i.e. the value of m+ϕm
′ is

independent of our choice of ϕ. Thus, for any cone σ ∈ Σ(M), and any chart ϕ ∈ L(M), we
have that if m,m′ ∈ πϕ(σ), then p ◦ π−1

ϕ (m) + p ◦ π−1
ϕ (m) = p ◦ π−1

ϕ (m+m′), and therefore
p ◦ π−1

ϕ is piecewise linear for all ϕ ∈ L(M).

Given a tropical mutation scheme M, there is a natural way to give some extra structure
to the space of points, which we will explore here. Let M be a tropical mutation scheme, and
Sp(M) be its space of points. For σ ∈ L(M), we define Sp(M, σ) for σ ∈ L(M) to denote
the set of points of M for which p is linear on Mσ. More precisely,

Sp(M, σ) := {p ∈ Sp(M) | pσ = p ◦ π−1
σ Mσ → Z is linear}. (2.3.3)

In general, it is not clear whether the subsets Sp(M, σ) cover the space of points for a tropical
mutation scheme. This prompts the following definition.

2.3.3 Definition. Let M be tropical mutation scheme. If
⋃
τ∈L(M) Sp(M, τ) = Sp(M),

then we say that M is full.

2.3.4 Remark. As we have seen with piecewise linear functions on tropical mutation schemes,
it then makes sense to think about points as tuples of piecewise linear functions, i.e. p =
(pσ)σ∈L(M). Then we can restate the above as, a tropical mutation scheme is full if for every
point p = (pσ)σ∈L(M), pτ is linear for some τ ∈ L(M).

Additionally, the space of points of a tropical mutation scheme then generates a subsemi-
algebra inside the semialgebra of piecewise linear function OM. We will denote this subsemi-
algebra by PM ⊂ OM. The subsemialgebra PM is partially ordered by ≥, where f ≥ g if and
only if for all m ∈ M, f(m) ≥ g(m). For convention, ∞ ∈ PM, and ∞ ≥ f for all f ∈ PM.

If a tropical mutation scheme is full, we can sometime identify Sp(M) with another
tropical mutation scheme N via a dual pairing. Then each Sp(M, σ) will inherit a cone
structure, and the union of these cones will form a complete fan. We will define and discuss
dual pairings in the following section

2.3.5 Example. In Chapter 3, we show that an infinite class of tropical mutation schemes
which are rank-2 and have 2 charts are full. We will also explicitly compute the space of
points for these tropical mutation schemes. This class includes our example of the simple
shear.
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2.3.1 Dualizability

We will now introduce the notion of dualizability of tropical mutation schemes. It is this
construction which generalizes the notion of duals from classical lattices.

2.3.6 Definition. Let M and N be full tropical mutation schemes of rank r. A pairing
between M and N is a pair of functions v : M → Sp(N ) and w : N → Sp(M) such that
for any m ∈ M, n ∈ N we have that v(m)[n] = w(n)[m], i.e. the point v(m) evaluated at n
gives the same value as the point w(n) evaluated at m. We call v, w a dual pairing if both
functions are bijections. Furthermore, if the preimages of each Sp(M, σ) and Sp(N , σ) are
the maximal cones of Σ(M) and Σ(N ), respectively, we say that the pairing is strict. This
condition is enough to ensure that strict dual pairings are unique, up to isomorphism. If
M = N , and there exists maps v and w, as above, we say M is autodual, i.e. it is strictly
dual with itself.

2.3.7 Example. We can easily see that for the trivial tropical mutation scheme, the natural
biliniear product ⟨−,−⟩ satisfies the condition of a strict dual pairing, thereby realizing dual
lattices as a strict dual pairing of tropical mutation schemes. In Chapter 3, we will show that
all rank-2 tropical mutation schemes with 2 charts are autodual, that is, there exists a strict
dual pairing between M and Sp(M).

When we have a dual pairing M, and N , Sp(M) forms a semialgebraically additive basis
for PM.

2.3.8 Theorem. Let M and N be full tropical mutation schemes such that there exist maps
v, w such that M and N form a strict dual pairing. Then Sp(M) forms a semialgebraically
additive basis for PM. That is, for any f ∈ PM we can write f = min{p1, . . . , pn} for some
collection of pi ∈ Sp(M).

Proof. By the distributive property of + over min, it suffices to show that for any two points
p1, p2 ∈ Sp(M), we can write p1 + p2 as a min combination of points. Because of the strict
dual pairing, we can write p1 = v(n1) and p2 = v(n2) for some n1 and n2 in N . Then we
claim

v(n1) + v(n2) = min{v(ni) | ni ∈ ∆(n1, n2)}.

For the left hand side of the equation, we simply note that v(n1)(m)+v(n2)(m) = w(m)(n1)+
w(m)(n2), by the definition of a dual pairing. For the right hand side, we similarly have
min{v(ni)(m) | ni ∈ ∆(n1, n2)} = min{w(m)(ni) | ni ∈ ∆(n1, n2)}, again by the properties
of a dual pairing. However, w is a point, and therefore min{v(ni)(m) | ni ∈ ∆(n1, n2)} =
min{w(m)(n1 +τ n2) | τ ∈ L(M)} = w(m)(n1) + w(m)(n2). Thus, the left side equals the
right side, and we can write the sum of any two points as a min combination of points.

2.3.2 Convexity

The last ingredient we need in order to construct the canonical semialgebra of a tropical
mutation scheme, which allows for detropicalizations, is a notion of convexity for subsets
of M ⊗ R. The notion of convexity we will define comes from the notion of M-half-spaces
defined by points.

2.3.9 Definition. Let M be a tropical mutation scheme, and let Sp(M) be its space of
points. Given a point p ∈ Sp(M) and a value a ∈ Z, the M-half-space defined by p and a,

13

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Adrian Cook; McMaster University– Department of Mathematics
and Statistics

denoted by Hp,a, is the subset of M ⊗ R defined as

Hp,a := {m ∈ M ⊗ R | p(m) ≥ a} ⊂ M ⊗ R.

This notion of an M-half-space allows us to define convexity for tropical mutation schemes
analogous to how convexity can be defined via half-spaces in the classical setting.

2.3.10 Definition. A subset U ⊂ M ⊗ R is pointwise convex if it is the intersection of
half-planes defined by points in Sp(M), i.e

U =
⋂
Hp,a

for some collection of pairs (p, a) ∈ Sp(M) × Z. The pointwise convex hull of a subset
S ⊆ M ⊗ R is the intersection of all pointwise convex sets containing S.

2.3.11 Remark. It is easy to see that if a subset S ⊂ M ⊗ R it pointwise convex, then
the projection πτ (S) is convex in the classical sense of containing any line connecting points
m1,m2 ∈ S for any τ ∈ L(M). In fact, a pointwise convex set satisfies the stronger condition
that if m1,m2 ∈ S, then S contains every broken line connecting m1 and m2. Precisely, if ℓσ
is the line between πσ(m1) and πσ(m2), then π−1

σ (ℓσ) ⊂ S. If a set satisfies the broken line
condition, we say it is M-convex. It is currently unknown whether M-convexity is equivalent
to pointwise convexity. However, in general we see that convex hulls are required to be
"larger" than we might expect, as the image of a convex set on one chart is not necessarily
convex on every chart, and therefore not convex itself.

The following lemma with help us more easily compute the pointwise convex hull of a
subset of a tropical mutation scheme.

2.3.12 Lemma. Let S be a subset of M⊗R. We will define the following subset of Sp(M)×Z:

BS := {(p, a) | p ∈ Sp(M) such that a := inf{p(s)}, s ∈ S exists} ⊂ Sp(M) × Z.

Then the pointwise convex hull of S is equal to the set

U =
⋂

(p,a)∈BS

Hp,a ⊂ M ⊗ R.

Proof. First we will show that any element m not satisfying the above is not in the point
convex hull of S. Let m ∈ M, and suppose there is some point p such that p(m) < p(s)
for all s ∈ S. There there is some a ∈ R such that m is not an element of the half-space
Hp,a, but S ⊂ Hp,a. Thus, if m is not an element of U , it is not an element of S. Now we
show the converse. Suppose for all p ∈ Sp(M), p(m) ≥ min{p(s) | s ∈ S}. Then for any
half-space Hp,a such that S ⊂ Hp,a, since p(m) ≥ min{p(s) | s ∈ S} ≥ a, by the definition of
a half-space m ∈ Hp,a. Therefore, m must be in the point-convex hull of S.

2.3.3 The Canonical Semiaglebra

Pointwise convexity also allows us to define the canonical semialgebra for a tropical mutation
scheme.
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2.3.13 Definition. Let M be a tropical mutation scheme. Let ⟨M⟩ denote the free semi-
group obtained by taking formal sums of the elements of M, modulo the equivalence relation
of the set of elements in the formal sum having the same pointwise convex hull. We include
∞ as the additive identity of this semi-group, to form a monoid. For m1,m2 ∈ M, recall
from Remark 2.2.3 that ∆(m1,m2) denotes the set ∆(m1,m2) = {m1 +σ m2 | σ ∈ L(M)}.
Now, we will define the following binary product, denoted by ⋆ on the semigroup ⟨M⟩ as
follows:

m1 ⋆ m2 :=
⊕

m∈∆(m1,m2)
m.

The canonical semialgebra of a tropical mutation scheme M, denoted by SM, is the free
semigroup defined above together with the binary operation ⋆. The canonical semialgebra
is partially ordered by ⪰, where

⊕
mi ⪰

⊕
mj if and only if the pointwise convex hull of⊕

mi is contained in the pointwise convex hull of
⊕
mj . Furthermore, ∞ ⪰

⊕
mi for all⊕

mi ∈ SM.

2.3.14 Lemma. This product is both associative and distributive over the addition operation
of ⟨M⟩.

Proof. We have defined ⋆ such that
⊕
mi⋆

⊕
mj :=

⊕
mi⋆mj , so ⋆ is clearly distributive over

the addition operation. Now we must show that ⋆ is associative. Here, it will suffice to show
⋆ is associative for elements, i.e. that m1 ⋆ (m2 ⋆m3) = (m1 ⋆m2) ⋆m3, for m1,m2,m3 ∈ M.
We will let ∆1 denote the set of all elements obtain from (m1 +σm2) +τ m3 for τ, σ ∈ L(M).
Formally, ∆1 =

⋃
mi∈∆(m1,m2) ∆(mi,m3). Similarly, let ∆2 =

⋃
mi∈∆(m2,m3) ∆(mi,m1).

To complete the proof, we must show that ∆1 and ∆2 have the same point-convex hull.
Let p be a point of M. By the definition of a point, we know that

p(m1) + p(m2) + p(m3) = min{p(mi) | mi ∈ ∆1}.

As a result, for any m′ in the point-convex hull of ∆1, we have that p(m′) ≥ min{p(mi) | mi ∈
∆1}. However,

p(m1) + p(m2) + p(m3) = min{p(mi) | mi ∈ ∆2},

as well. So for any m in the point-convex hull of ∆1, we have that p(m) ≥ min{p(mi) | mi ∈
∆2}, and for m′ in the point convex hull of ∆2, we have that p(m′) ≥ min{p(mi) | mi ∈ ∆1}.
The result then follows from Lemma 2.3.12.

2.3.15 Example. In the simplest case of a single lattice interpreted as a tropical mutation
scheme, the canonical semialgebra may be interpreted as the set of lattice polytopes, where the
addition operation is given by the convex hull of the union of polytopes, and the multiplication
operation is given by Minkowski sum. The canonical semialgebra is then the semialgebra of
lattice polytopes under these operations.

The final key ingredient to constructing a detropicalization is the existence of a valuation
to the cannonical semialgebra, which we will define below.

2.3.16 Definition. Let A be a k-algebra over some field k. We call a function v : A → SM to
the canonical semialgebra of a tropical mutation scheme a valuation if it satisfies the following
properties:
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1. v(f) = ∞ if an only if f = 0,

2. v(fg) = v(f) ⋆ v(g) for all f, g ∈ A, f, g ̸= 0,

3. v(cf) = v(f) for all c ∈ k∗ and f ∈ A,

4. v(f + g) ≥ v(f) ⊕ v(g) for all f, g ∈ A.

2.3.17 Remark. In general, any function v from a k-algebra to a partially ordered set Γ∪{∞}
satisfying (1-4) is a valuation, not just those whose image is the canonical semialgebra of a
tropical mutation scheme.

Now we are ready to define a detropicalization of a tropical mutation scheme.

2.3.18 Definition. We say that a k-algebra AM is a detropicalization of a tropical mutation
scheme M if there exists a valuation v : AM → SM such that every element of M ⊂ SM
is in the image of v, and the Krull dimension of AM is equal to the rank of M. Thus a
detropicalzation is a pair (AM, v) which satisfies the above conditions.

Identifying a particular type of basis for a k-algebra is useful for constructing valuations,
prompting the following definition.

2.3.19 Definition. Let (AM, v) be a detropicalization for a tropical mutation scheme M.
Then B ⊂ AM is an adapted basis for the detropicalization if B is an additive basis for AM
such that v(

∑
Cibi) =

⊕
v(bi) for bi ∈ B, and v(b) ∈ M ⊂ SM for all b ∈ B, i.e. the image of

any b is an element of M.

2.3.20 Example. We can find a detropicalization (A, v) explicitly in the simplest example
of the trivial tropical mutation scheme. Let M be a lattice of rank r, and think of it as a
tropical mutation scheme as we have above. Let A denote the Laurent polynomial ring over
r variables, A = C[x±

1 , . . . , x
±
r ]. The valuation which realizes this detropicalization is the

map which sends a Laurent polynomial to its Newton polytope. The reader may check that
this map satisfied the axioms of a valuation presented in 2.3.16. Furthermore, the Laurent
monomials form an adapted basis for this detropicalization, as the Newton polytope of any
monomial is simply a point on the associated lattice, establishing a bijection between points
of the character lattice and the Laurent monomials. This connection between the coordinate
ring of the rank-r algebraic torus (the Laurent polynomial ring) and a lattice and its lattice
polytopes is the basis for much of the rich combinatorics found in the study of toric geometry.
Thus, we hope to recover some of these combinatorial properties for more general algebras
through the study of tropical mutation schemes and their detropicalizations.

The following theorem illustrates why dualizablity is important when it comes to con-
structing detropicalizations of tropical mutation schemes.

Given a strict dual pairing of tropical mutation schemes M and N , with maps v : N →
Sp(M) and w : M → Sp(N ). We can define an extension of v, denoted by v̂ : SN → PM
and given by:

v̂(
⊕

ni) := min{v(ni)}, v̂(∞) = ∞.

2.3.21 Theorem. Let M and N be tropical mutation schemes such that there exists func-
tions v : N → Sp(M) and w : M → Sp(N ) which realize M and N as a strict dual pairing of
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tropical mutation schemes. Then v̂ is an order preserving semialgebra isomorphism between
SN and PM.

Proof. The well-definedness of this function is equivalent to showing that
⊕
ni has the same

pointwise convex hull as
⊕
nj if and only if for all m ∈ M, we have that min{v(ni)(m)} =

min{v(nj)(m)}. This is a special case of our argument that the function is order-preserving,
so we will address this below.

Next, we will show that v̂ is a semialgebra homomorphism. First, clearly the identity of
the underlying monoids are mapped to each other by definition. Furthermore, the additive
structure of SM and PN is respected by definition, since v̂(

⊕
ni) = min{v(ni)}. To show

that
v̂(⊕ni ⋆⊕nj) = min{v(ni)} +min{v(nj)},

it will suffice to consider the case of v(n1⋆n2) for n1, n2 ∈ N . We have v(n1⋆n2) = v(
⊕
ni) for

all ni ∈ ∆(n1, n2). By Theorem 2.3.8, v(
⊕
ni) for all ni ∈ ∆(n1, n2) is equal to v(n1)+v(n2),

as required. Therefore, the function v̂ defines a homomorphism of semialgebras between SM
and PN .

It is immediately clear that the function v̂ is surjective, since we have shown in theorem
2.3.8 that we can write any f ∈ PN as f = min{v(ni)} = v̂(

⊕
ni). To show that v̂ in in-

jective, suppose that v̂(
⊕
ni) = v̂(

⊕
nj). We must show that

⊕
ni and

⊕
nj have the same

point convex hull. Assume toward a contradiction that they do not, and assume without loss
of generality that n1 is in the point-convex hull of

⊕
ni, but not the point-convex hull of⊕

nj . Then we must show there exists some m ∈ M such that v(n1)(m) < min{v(ni)(m)}
for all ni. Using the definition of a dual pairing, we can rewrite v(n1)(m) as w(m)(n1)
and we can rewrite min{v(ni)(m)} for all ni as min{w(m)(ni)} for all ni. The relation
w(m)(n1) < min{w(m)(ni)} is then implied by Lemma 2.3.12, contradicting our assumption
that v̂(

⊕
ni) = v̂(

⊕
nj). Therefore, v̂ is injective, and so, a semialgebra isomorphism.

Finally, we must show that
⊕
ni ⪰

⊕
nj if and only if v̂(

⊕
ni) ≥ v̂(

⊕
nj). First, sup-

pose
⊕
ni ⪰

⊕
nj . If this is the case, then

⊕
ni is contained in the convex hull of

⊕
nj , and

thus every term in min{v(ni)} will appear in min{v(nj)}. Consequently v̂(
⊕
ni) ≥ v̂(

⊕
nj).

Now suppose v̂(
⊕
ni) ≥ v̂(

⊕
nj). Recall this means that min{v(ni)(m)} ≥ min{v(nj)(m)}

for all m ∈ M. Again, we can use the properties of a strict dual pairing to rewrite this as
min{w(m)(ni)} ≥ min{w(m)(nj)}, for every m ∈ M. This means that for every point in
Sp(N ), we have that min{p(ni)} ≥ min{p(nj)}. Then, by Lemma 2.3.12, we know that the
convex hull of

⊕
ni is contained in the convex hull of

⊕
nj , and therefore

⊕
ni ⪰

⊕
nj .

Taking the special case that
⊕
ni ⪰

⊕
nj and

⊕
nj ⪰

⊕
ni, respectively that min{v(ni)(m)} ≥

min{v(nj)(m)} and min{v(nj)(m)} ≥ min{v(ni)(m)}, we show that
⊕
ni has the same point-

wise convex hull as
⊕
nj if and only if for all m ∈ M, we have that min{v(ni)}(m) =

min{v(nj)}(m), proving that ṽ is well defined.

2.3.22 Corollary. Any valuation to PN can be used to construct a valuation to SN . Thus,
to find a detropicazation of M, it suffices to find a valuation from an algebra A to PN , where
N is the strict dual of M
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Due to the above corollary, it is usually easier to construct valuations to PM, as piecewise
linear functions are often easier to work with than "tropical mutation scheme polytopes." For
a single lattice, which is autodual, it is easy to check that the map which sends a Laurent
polynomial f to trop(f) satisfies the axioms of a valuation, and has image PM . Now that we
have introduced all background required, we will focus our attention to a particular class of
rank-2 tropical mutation schemes on two charts, and show that they are all full, autodual,
and detropicalizable.

18
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Chapter 3

The Space of Points and Duality for
Rank 2 Tropical Mutation Schemes
on 2 Charts

3.1 Computing the Space of Points for Rank 2 Tropical Mu-
tation Schemes with 2 charts

Recall our definition of a point of a tropical mutation scheme. A point is a map p : M −→ R
such that the following equality holds:

p(m) + p(m′) = min{p(m′′)|πϕ(m) + πϕ(m′) = πϕ(m′′) for some ϕ ∈ L(M)} (3.1.1)

In this section, we will compute the space of points for an infinite class of rank 2 tropical
mutation schemes with two cones of linearity, which we will denote by Mb, where one cone is
the positive x half-space, and the other is the negative x half-space, with the mutation map
on the positive x half-space being the map (x, y) 7→ (x,−y).

For the remainder of this section, our tropical mutation schemes will have exactly two
charts, i.e, L(M) = {ϕ, τ}. We will fix identifications of Mϕ ⊗R and Mτ ⊗R with R2 for our
computations. We may assume without loss of generality that we have chosen these bases
in such a way that the 2 domains of linearity in Mϕ ⊗ R are separated by the y-axis, and
moreover, the images of these 2 cones of linearity are the 2 half-spaces in Mτ ⊗ R separated
by the y-axis in Mτ ⊗ R. In particular, we can assume without loss of generality that the

mutation map on the positive half-space is given by the matrix A =
[
1 0
0 −1

]
.

Since the mutation maps must agree on the vector (0, 1), and since we have arranged
that the mutation map is A on the positive half-plane, this means that on the negative half-

space, the mutation map must be given by a matrix of the form
[
1 0
b −1

]
. If the upper right

entry was not zero, the matrix would no longer be a map of lattices and the diagonal entries
must be 1 or -1 to ensure the determinant is ±1. Furthermore, to ensure a bijective map of
lattices, we may assume that b ∈ Z − {0}. Thus, this family of tropical mutation schemes is
parametrized by the integer parameter b. We will abuse notation slightly and let Mb denote
the tropical mutation scheme obtained by setting our integer parameter equal to b. When
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writing elements of the tropical mutation scheme Mb, as a tuple, we will always write the
element of Mϕ first, i.e. m = ((x, y), (x, bx− y)). Because of this, we will sometime refer to
Mϕ as the first chart, and Mτ as the second chart. The following proof computes the space
of points for any rank 2 tropical mutation Mb, for b ∈ Z \ {0}.

3.1.2 Remark. As of now, there is not a consensus regarding the proper definition for the
notion of isomorphism of tropical mutation schemes. However, we expect that the class
Mb actually makes up all rank-2 tropical mutation schemes on exactly two charts, up to
isomorphism. This is because, given any rank-2 tropical mutation scheme whose fan has
exactly two domains of linearity, we can always make a linear change of coordinates on each
chart in order to obtain a tropical mutation scheme of the form Mb. Furthermore, it can be
shown that no rank-2 tropical mutation scheme with two charts can have a fan with 3 full
dimensional cones, and we conjecture that for n ≥ 3, no rank-2 tropical mutation scheme can
have a fan with n full dimensional cones.

We will make some preliminary observations.

3.1.1 Lemma. Let M be a tropical mutation scheme with fan Σ(M), and let p ∈ Sp(M).
Then p is linear on every chart when restricted to each cone of Σ. Furthermore, the induced
map p̂ : M ⊗ R → R is continuous.

Proof. Take any two elements m and m′ both lying in some cone σ ∈ Σ(M), and consider
the projection of these elements to a chart τ ∈ L(M). Since every mutation map is linear on
σ, we have that m+τ m

′ = m+ϕ m
′ for all τ, ϕ ∈ L(M). As a consequence,

p(m) + p(m′) = min{p(m+ϕ m
′)|ϕ ∈ L(M)} = p(m+τ m

′).

Since τ is an arbitrary chart, we have shown that a point is linear on any chart when re-
stricted to each cone in Σ(M), as required.

To see that p̂ is continuous, we simply note that since the mutation maps µϕ,τ are all con-
tinuous, the above argument shows that a point must actually be linear on the closure of
each cone σ ∈ Σ, and as a result must agree on the shared boundary of any two adjacent
cones.

As we have seen in Remark 2.3.4 a point is determined by its values on any single coordi-
nate chart (since elements of the tropical mutation scheme are determined by its coordinate
on a single chart). With respect to a different coordinate chart, the value of the point with
respect to that chart is given by composition with an appropriate mutation, i.e. a point can
be thought of as a tuple of piecewise linear maps for each chart in L(M).

By the above lemma, for our example, a point is determined by two linear maps: namely,
a map of the form

[
c d

]
on the negative half-plane and

[
e d

]
on the positive half-plane,

with respect to the first coordinate chart M1. (If we were to work with the second coor-
dinate chart M2, then equivalently, the point would be determined by the two linear maps
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[
c d

] [1 0
0 −1

]−1

on the negative half-space, and
[
e d

] [1 0
b −1

]−1

on the positive half-

space.)

As previously mentioned, the definition of a point implies that it is linear on each cone,
but we will find further restrictions when we consider taking sums of a point evaluated at ele-
ments which fall on different cones of linearity. Consider two arbitrary elements, one with x-
coordinate> 0, and one with x-coordinate< 0. These will be denoted bym = ((x, y), (x,−y))
and m′ = ((x′, y′), (x′, bx′ −y′)), so in particular x > 0 and x′ < 0 respectively. By the nature
of tropical mutation schemes, there is no well-defined notion of a “sum” of elements. What
we can do instead is to take the projections of elements to different charts, and take the sum
there, but there is no guarantee that if we were to take different charts, that the different sums
are related by mutation. So we must consider different possible cases of what can happen in
the two different coordinate charts.

Thus there are two cases to consider for the "sum" of these elements in the two different
charts, according to as to whether the sum (in a particular chart) lands in the negative or
the positive half-space. The following are the possibilities:

1. x+ x′ < 0

2. x+ x′ > 0

Recall that we assume x < 0 and x′ > 0. Note that a priori, one might think this com-
putation requires four cases to check, i.e. considering the cases where addition on the two
coordinate charts yield two elements that lie on opposite cones of linearity. However, since
the mutation map does not affect the first coordinate on either chart, we know that addition
on each chart will always yield elements which lie in the same cone, regardless of our initial
choice of elements.

Since our tropical mutation scheme has two charts ϕ and τ , for each point p, the value of
p(m) + p(m′) = min{p((x+ x′, y + y′), (µϕ,τ (x+ x′, y + y′), p((µτ,ϕ(x+ x′, bx′ − y′ − y), (x+
x′, bx′ − y′ − y))} i.e. it is the minimum value between the point evaluated at the element of
the sum of the first coordinates (denoted by s1), and the element of the sum of the second
coordinates (denoted by s2).

3.1.3 Theorem. Let the notation and setup be as above. In particular, b is fixed. Then p ,
specified by a choice of parameters c, d, e as above, is a point if and only if

1. c = e and d < 0 , or,

2. d = e−c
b and d > 0.

In particular,

(a) this tropical mutation scheme is full, since a point satisfying condition (1) is linear on
the first chart, and on satisfying condition (2) is linear on the second chart.
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(b) and the space of points is homeomorphic to R2, and more specifically, it is the subset
of R3 (with coordinates c, d, e) obtained by gluing the half-2-plane {c = e, 0 > d} to the
half-2-plane {d = e+c

b , 0 < d}.

Proof. We first show that if p is a point, then the parameters c, d, e must satisfy either
condition (1) or (2) in the statement of the theorem. Since addition agrees on every chart if
two elements are taken from the same cone of Σ(M), and thus the minimum condition for
a point simply implies that a point is linear on each cone, we may consider only the case
where the two elements come from each half-planes. Concretely, take two elements of Mb,
m = ((x, y)(x,−y)) with x > 0 and m′ = ((x′, y′), (x′, bx′ − y′)) such that x′ < 0. We will
show, over two cases, that the restrictions on a point imply that it is linear on either the first
or second chart.

Case 1: In the first case, we assume that x+ x′ > 0. First we note that in this case,

s1 = m+ϕ m
′ = ((x+ x′, y + y′), (x+ x′,−(y + y′))),

and
s2 = m+τ m

′ = ((x+ x′, y − bx′ + y′), (x+ x′,−y + bx′ − y′)).

(Note that since x + x′ > 0 by assumption, the elements s1 and s2 have first coordinates
lying in the positive half-space of M1, and thus the mutation map identifying with M2
simply negates the second coordinate). Thus, p(s1) = c(x + x′) + d(y + y′) and p(s2) =
c(x+x′)+d(y+y′ + bx′). For later, we note that p(s1) = p(s2) when 0 = d and p(s1) < p(s2)
when d > 0.

Now we can compute the LHS and the RHS of the requirement (3.1.1) for being a point.
For the LHS, we note that p(m) + p(m′) = cx + dy + ex′ + dy′. For the LHS, we compute
min{p(s1), p(s2)} = min{c(x+ x′) + d(y + y′), c(x+ x′) + d(y + y′ − bx′)}. Hence we require

cx+ dy + ex′ + dy′ = min{c(x+ x′) + d(y + y′), c(x+ x′) + d(y + y′ − bx′)}.

We then consider the two subcases, p(s1) < p(s2) and vice versa. Suppose p(s1) < p(s2).
Then cx+ dy + ex′ + dy′ = c(x+ x′) + d(y + y′). This imposes the restriction that c = e.

Now suppose p(s1) > p(s2). In this case, we have that cx + dy + ex′ + dy′ = c(x + x′) +
d(y+ y′ − bx′). Clearly, the dy+ dy′ cancel, leaving us with cx+ ex′ = cx+ (c− db)x′. Since
this equality holds on a non-empty open set, the coefficients must be equal, and we get that
e = (c − db), which can be rearranged to get d = c−e

b . Note also that when we apply the
inverse of the mutation map to

[
e c−e

b

]
we get

[
c e−c

b

]
. Thus this restriction is equivalent

to being linear with respect to the second chart.

In total, this case yields that for 0 > d, a point is linear on the first chart, and for 0 < d it is
linear on the second chart.

Case 2: Now we note that in this case, s1 = ((x+ x′, y+ y′), (x+ x′, bx+ bx′ − y− y′)), and

22

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Adrian Cook; McMaster University– Department of Mathematics
and Statistics

s2 = ((x + x′, y + y′ + bx), (x + x′,−y + bx′ − y′)). Thus, p(s1) = e(x + x′) + d(y + y′) and
p(s2) = e(x+ x′) + d(y + y′ + bx). Similarly to the previous case, we note that p(s1) = p(s2)
when 0 = d, and p(s1) < p(s2) when d > 0.

Recall that p(m) + p(m′) = cx + dy + ex′ + dy′, and p(m) + p(m′) = min{p(s1), p(s2)} =
min{e(x+ x′) + d(y + y′), e(x+ x′) + d(y + y′ + bx)}.

We then consider the two subcases, p(s1) < p(s2) and vice versa. Suppose p(s1) < p(s2).
Then cx+ dy + ex′ + dy′ = c(x+ x′) + d(y + y′). This imposes the restriction that c = e.

Now suppose p(s1) > p(s2). In this case, we have that cx + dy + ex′ + dy′ = e(x + x′) +
d(y + y′ + bx). Clearly, the dy + dy′ cancel, leaving us with cx+ ex′ = ex′ + (e+ db)x. Since
this equality holds on a non-empty open set, the coefficients must be equal, and we get that
c = e+db, which can be rearranged to get d = c−e

b . Note also that when we apply the inverse
of the mutation map to

[
e −( c−eb )

]
we get

[
c −( c−eb )

]
. Thus this restriction is equivalent

to being linear with respect to the second chart.

In total, this case yields that for 0 < d, a point is linear on the first chart, and for 0 > d it is
linear on the second chart, as before.

Thus, for any tropical mutation scheme of this form, we have a space of points isomorphic
to R2, where the folded book living in R3 is glued together along the line 0 = d. On one side
of this line, the relation is c = e, and on the other it is d = c− e.

3.1.4 Remark. It’s useful to notice that, although points can be linear in a given domain
of linearity in a given coordinate chart, it is not true that an arbitrary linear function on a
domain of linearity comes from a point. For instance, if b = 1, then condition (1) in the above
theorem says that we must have d < 0, which means for instance that the linear function[
1 1

]
(i.e. c = 1, d = 1) on the first chart can never arise from a point. This is because

the minimum condition fails. For example, take the elements m = ((−1, 1), (−1,−2)) and
m′ = ((3, 2), (3,−2)). Then m +ϕ m

′ = ((2, 3), (2,−3)) and m +τ m
′ = ((2, 2), (2,−4)). But

then this linear function on the first chart does not satisfy the requirements of a point, as
it does not satisfy the minimum condition. The image of m +ϕ m

′ is 5, while the image of
m+τ m

′ is 4.

3.2 Autoduality of Rank-2 Tropical Mutation Schemes with 2
Charts

Now that we have computed the space of points, and have been able to identify it with a
subset of R3, we are well on the way to establishing a strict dual pairing for tropical mutation
schemes of rank 2. Recall that two tropical mutation schemes M and N form a strict dual
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pair if there exist bijective maps v : M → Sp(N ) and w : N → Sp(M) such that for any
n ∈ N and any m ∈ M we have v(m)[n] = w(n)[m]. A tropical mutation scheme is autodual
if such pairings exists with its own space of points. The following theorem will show that all
the examples Mb are autodual.

3.2.1 Theorem. Let M = Mb be a rank 2 tropical mutation scheme with 2 charts, as above.
Then M is autodual.

Proof. We will construct the dual pairing between M and itself. Recall, since we can choose
a basis for each coordinate chart, without loss of generality we can assume the mutation map

from v1 to v2 simply negates the second coordinate on the x ≥ 0 halfplane, and
[
1 0
b −1

]
on

the other half-plane. Recall also that the space of points of M, Sp(M) is a folded book in
R3, glued at d = 0, and with c = e whenever d > 0, and (c− d)/b = d for d < 0. Since we are
claiming that M is autodual, we require only one map, w : M → Sp(M), which satisfies the
condition that for any m,n ∈ M, w(m)[n] = w(n)[m]. We claim the function which realized
M as autodual is given by:

w : M −→ Sp(M)

(x, y)(x, y) 7→ [y, x] as a linear map on Mϕ

(x′, y′)(x′, bx′ − y′) 7→ [y,−x] as a linear map on Mσ

Note that this map ensure that v(m) will always be a point of M. When x > 0 we map to
a linear function on the first chart with d > 0, and when x < 0, when we mutate v(m) to
a piecewise linear map on the first chart, we get that c − e = db, and d < 0, ensuring that
v(m) is always a point. For this proof, ⟨m,m′⟩ will denote v(m)[m′], and ⟨(x, y), (x′, y′)⟩std
will denote the standard inner product between two vectors in R2.

To show this pairing is strict, we simply need to show that w(m)(m′) = w(m′)(m). We
must test 3 cases.

Case (1): Suppose m,m′ are both in x ≥ 0. Suppose m = ((x, y), (x, y)) and m′ =
((x′, y′), (x′, y′)). Compute:

w(m)(m′) = ⟨((x, y)(x,−y)), ((x′, y′), (x′,−y′))⟩ = ⟨(y, x), (x′, y′)⟩std = yx′ + xy′.

This is symmetric when we switch the primes, and thus has the property required.

Case (2): Suppose m,m′ are both in x ≤ 0. Suppose m = ((x, y), (x, bx − y)) and m′ =
((x′, y′), (x′, bx′ − y′)). Compute:

w(m)(m′) = ⟨((x, y), (x, bx−y)), ((x′, y′), (x′, bx−y′))⟩ = ⟨(y,−x), (x′, bx′−y′)⟩std = x′y+y′x−bxx′

Likewise, this satisfies the dual pairing requirement.

Case (3): Finally, suppose m is in x ≥ 0, and m′ is in x < 0. Suppose m = ((x, y), (x,−y))
and m′ = ((x′, y′), (x′, bx′ − y′)). Compute:

w(m)(m′) = ⟨((x, y), (x,−y)), ((x′, y′), (x′, bx− y′))⟩ = ⟨(y, x), (x′, y′)⟩std = yx′ + xy′

24

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Adrian Cook; McMaster University– Department of Mathematics
and Statistics

Meanwhile, we have that

w(m′)(m) = ⟨((x′, y′), (x′, bx− y′)), ((x, y), (x,−y))⟩ = ⟨(y′,−x′), (x,−y)⟩std = yx′ + xy′,

as required.

Finally, we must check that the preimages of the maximal cones of Sp(M) are maximal
cones of Σ(M). This is clearly the case, since the half-plane d > 0 is identified with the
maximal cone of Σ(M), x ≤ 0, and likewise the preimage of d < 0 is the maximal cone x > 0.
Thus v,w as defined above are the requisite maps to define a strict dual pairing between
M and itself, showing that all rank 2 tropical mutation schemes on 2 charts are (strictly)
autodual.

We have thus computed the space of points for all our examples Mb of rank two tropical
mutation schemes on two charts, and further shown that all such tropical mutation schemes
are autodual. In the following chapter, we will show that for each of these tropical mutation
schemes, we can construct a detropicalization.
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Chapter 4

The Rank 2 Tropical Mutation
Schemes Mb are Detropicalizable

One of the ultimate goals in the study of tropical mutation schemes is to identify classes of
tropical mutation schemes which admit detropicalizations. In such a situation, we may ex-
pect algebraic invariants of the detropicalization, or the geometic invariants of the underlying
variety, to be encoded, wholly or in part, by the combinatorial and semialgebraic structure
of the underlying tropical mutation scheme. Recall that the motivational example for this
construction is the map which sends a Laurent polynomial to its associated Newton polytope
is a valuation from C[x±

1 , . . . , x
±
n ] to the canonical semialgebra of the trivial tropical muta-

tion scheme, see Example 2.3.20. Properties of this valuation form a part of the powerful
"toric dictionary," where each lattice polytope gives rise an associated compactification of the
algebraic torus.

In this section, we will show that all our examples Mb of rank-2 tropical mutations schemes
on exactly two charts have a detropicalization. As we have seen in chapter 3, these tropical
mutation schemes are classified up to isomorphism by an integer parameter b ∈ Z \ {0}. Let
Mb denote the rank-2 tropical mutation scheme on two charts corresponding to b ∈ Z \ {0}.
Specifically, In this chapter we will realize the quotient ring

C[x1, x2, y1, y2, y
−1
1 , y−1

2 ]/⟨x1x2 − yb1 − yb2, y2 − 1⟩,

for b ∈ Z \ {0} as a detropicalization of a Mb.

For this computation, we will find it useful to identify each of the two charts of Mb with two
charts with two different subsets of Z2 × Z2. the first chart will be identified with

Mb(1) := {(w1, w2, v1, v2) | v1 = 0, w2 = 0} ⊆ Z2 × Z2

while the second chart will be identified by the set

Mb(2) := {(w1, w2, v1, v2) | v2 = 0, w2 = 0} ⊆ Z2 × Z2.

The mutation map µ1,2 : Mb(1) → Mb(2) is given by the following:

µ1,2(w1, 0, 0, v2) = (w1, 0, b · min{w1, 0} − v2, 0).
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Although it may seem counter intuitive to identify this tropical mutation scheme with a sub-
set of Z2 × Z2 when w2 = 0 for both charts, we will see that the extra variable is useful in
our upcoming computations.

To see that these sets do indeed indentify the tropical mutation schemes from Chapter 2
consider the following. Let M be a tropical mutation scheme such that L(M) = {σ, τ}. Then
we can assume without loss of generality that the mutation map µσ,τ sends (x, y) 7→ (x,−y)
on the x > 0 half-space, and sends (x, y) 7→ (x, bx− y) on the x ≤ 0 half-space. Consider the
maps:

Θ1 : Mσ → Mb(1)

Θ1(x, y) = (x, 0, 0, y) and

Θ2 : Mτ → Mb(2)

Θ2(x, y) = (x, 0, y, 0)

It is easy to see that the following diagram commutes:

Mσ Mτ

Mb(1) Mb(2)

µσ,τ

Θ1 Θ2

µ1,2

and therefore, and rank 2 tropical mutation scheme on two chart can be identified with Mb(1)
and Mb(2), for some non-zero integer parameter b.

We notice that, independent of the value of b, the piecewise linear mutation map µ1,2 has
exactly two regions of linearity. Namely, the regions of linearity are {w1 > 0}, and {w1 < 0}.
The domains of linearity of µ−1

1,2, the inverse mutation map are identical to those of µ1,2.
Therefore, Σ(Mb) can be identified by the fan Σ(Mb(1) ⊗ R) whose maximal cones are
given by τ+ = {(u1, u2), (v1, v2) ∈ Mb(1) ⊗ R | u1 > 0}, and τ− = {(u1, u2), (v1, v2) ∈
Mb(1) ⊗ R | u1 < 0}.

We can now introduce a new subset of Z2 ×Z2. We will map this subset bijectively onto both
Mb(1) and Mb(2). This bijection will help us to construct the detropicalization of Mb later
on. Explicitly, consider the following subset of Z2 × Z2:

Mb := {((w1, w2), (s1, s2)) ∈ Z2 × Z2 | min{w1, w2} = 0,−bw2 = s1 + s2}. (4.0.1)

Now, we can construct the following maps:

ψ1 : Mb → Mb(1), ψ1(((w1, w2), (s1, s2))) = (w1 − w2, 0, 0, s2)

ψ2 : Mb → Mb(2), ψ1(((w1, w2), (s1, s2))) = (w1 − w2, 0, s1, 0)

What these maps are actually doing is adding the sum of the si coordinates divided by b
from each wi coordinate. Note here that the condition that v1 + v2 = −bu2 ensures that we
are allowed to divide by b. It also ensures that u2 = 0 in the image of ψi.
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4.0.1 Lemma. The maps ψ1 and ψ2 are bijections to Mb(1) and Mb(2), respectively. Fur-
thermore, we have that µ1,2 ◦ ψ1 = ψ2, and µ2,1 ◦ ψ2 = ψ1.

Proof. We can first show that ψ1 is injective. Suppose ψ1((w1, w2)(s1, s2)) = ψ1((w′
1, w

′
2)(s′

1, s
′
2)).

Firstly, we can see immediately that s2 = s′
2 since ψ2 does not affect that coordinate. Ad-

ditionally, we have the conditions s1 + s2 = −bw2 and min(w1, w2) = min(w′
1, w

′
2) = 0.

If w1 = w′
1 = 0 or w2 = w′

2 = 0, the result follows immediately. Now suppose w1 = 0
and w′

2 = 0. Then −w2 = w′
1. However, w′

1, w2 ≥ 0 so we can conclude that w′
1 =

u2 = 0. As a result, we have shown that if ψ1((w1, w2)(s1, s2)) = ψ1((w′
1, w

′
2)(s′

1, s
′
2)) then

((w1, w2)(s1, s2)) = ((w′
1, w

′
2)(s′

1, s
′
2)) and therefore ψ1 is a injection. An identical argument

will show that ψ2 is indeed also invective.

We will now show ψ1, ψ2 is surjective. We begin with ψ1. Take some (w1, 0, 0, s2) ∈
Mb(1). If w1 > 0, then we can see that ψ1(w1, 0,−s2, s2) = (w1, 0, 0, s2). If w1 ≤ 0, then
ψ1(0,−w1, bw1 − s2, s2) = (w1, 0, 0, s2). Thus, ψ1 is surjective.

Now we will show ψ2 is surjective. Take some (w1, 0, s1, 0) ∈ Mb(2). If w1 > 0, then
ψ2(w1, 0, s1,−s1) = (w1, 0, s1, 0). If w1 ≤ 0, then ψ2(0,−w1, s1,−s1 + bw1) = (w1, 0, s1, 0).
Thus, ψ2 is surjective.

What remains to be shown is that µ1,2 ◦ ψ1 = ψ2. This can be seen by a straightforward
computation.

µ1,2(ψ1((w1, w2)(−bw2 − s2, s2))) = µ1,2(w1 − w2, 0, 0, s2)

= (w1 − w2, 0, b · min{w1 − w2, 0} − s2, 0)

= ψ2((w1, w2)(s1, s2))

Note that this gives us the following as well:

µ1,2 ◦ ψ1 = ψ2

µ−1
1,2 ◦ µ1,2 ◦ ψ1 = µ−1

1,2 ◦ ψ2

µ2,1 ◦ ψ2 = ψ1.

Therefore, the bijections ψ1, ψ2 identify the tropical mutation scheme charts Mb(1) and
Mb(2) with Mb, so that the following diagram commutes:

Mb Mb(1)

Mb(2)

ψ1

ψ2
µ1,2

In fact, not only are the maps ψi bijective, we can explicitly write inverse functions.
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4.0.2 Lemma. The functions ψ−1
1 , and ψ−1

2 , given below, are inverse functions to ψ1 and
ψ2, respectively.

Proof. We claim that the following function is the inverse of ψ1.

ψ−1
1 : Mb(1) → Mb

ψ−1
1 (u1, 0, 0, v2) = (u1 − min{u1, 0},−min{u1, 0}, b · min{u1, 0} − v2, v2).

Certainly, the image of ψ−1
1 is contained in Mb since for any (u1, 0, v1, v2) ∈ M1(1) we will

have for ψ−1
1 (u1, 0, v1, v2) that min{u1, u2} = 0, and that v1 + v2 = −bu2.

Now we will consider ψ−1
1 ◦ ψ1((w1, w2)(s1, s2)) for some ((w1, w2)(s1, s2)) ∈ Mb. First sup-

pose that min{u1, u2} = u1 = 0. Then we have ψ1((w1, w2)(s1, s2)) = ψ1(0, u2,−bu2 −
v2, v2) = (−u2, 0, 0, v2). Then ψ−1

1 (−u2, 0, 0, v2) = (−u2 + u2, u2,−bu2 − v2, v2), as re-
quired. If min{u1, u2} = u2 = 0, then ψ1(u1, 0,−v2, v2) = (u1, 0, 0, v2). Finally, we see
that ψ−1

1 (u1, 0, 0, v2) = (u1, 0,−v2, v2), a required. Therefore, ψ−1
1 is indeed the inverse of

ψ1.

An identical argument shows that the map:

ψ−1
2 : Mb(2) → Mb

ψ−1
2 (u1, 0, v1, 0) = (u1 − min{u1, 0},−min{u1, 0}, v1, b · min(u1, 0) − v1)

is the inverse of the function ψ2.

We have seen in the previous chapters that any rank-2 tropical mutation scheme with 2
charts Mb is both full and autodual, and we have described its space of points. In chapter 4
it will be useful to have an identification of the space of points of Mb in terms of the set Mb

which we have defined above. To do so, we will define the following set:

Sp(Mb) :=
{
f : Mb → Z | f((w1, w2)(s1, s2)) + f((w′

1, w
′
2)(s′

1, s
′
2)) (4.0.2)

= mini∈{1,2}{f ◦ ψ−1
i (ψi((w1, w2)(s1, s2)) + ψi((w′

1, w
′
2)(s′

1, s
′
2)))}

}

We will also define for each i ∈ {1, 2}:

Sp(Mb, i) :=
{
f : Mb → Z | f((w1, w2)(s1, s2)) + f((w′

1, w
′
2)(s′

1, s
′
2)) (4.0.3)

= f ◦ ψ−1
i (ψ1((w1, w2)(s1, s2)) + ψi((w′

1, w
′
2)(s′

1, s
′
2)))

}

Now the following lemma identifies the space of points of Mb with the set Sp(Mb).

4.0.3 Lemma. The space of points of Mb, Sp(Mb), is in bijection with the set Sp(Mb).
Furthermore, the sets Sp(Mb, i) are in bijection with Sp(Mb, i) for each i ∈ {1, 2}.
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Proof. We define the function:

ϕ : Sp(Mb) → Sp(Mb), p = (p1, µ1,2(p1)) 7→ p1 ◦ ψ1

Because each ψ1 is a bijection, this map will be well defined and injective. Since a fuction p
is a point in Sp(Mb) if and only if for all m,m′ ∈ Mb(1)

p1(m) + p1(m′) = min{p1(m+m′), p1(µ1,2(m) + µ1,2(m′)},

the map must have image exactly Sp(Mb). Furthermore, the preimage under this map of
Sp(Mb, 1) (respectively Sp(Mb, 2), is exactly Sp(Mb, 1) (respectively Sp(M, 2).

Since a point p ∈ Sp(M) restricts to a piecewise linear map on each chart of a tropical
mutation scheme, we may think of a point as a tuple of piecewise linear maps p = (pi)i∈L(M),
where pi is a piecewise linear map on the i-th chart of M. Thus, the map ϕ simply sends a
point to its corresponding piecewise linear map on the sublattice Mb(1), composed with ψ1.

We will now introduce a new space which we can use to identify the space of points of
Mb, similarly to how we used Mb to identify the elements of Mb.

Let
Tb := {(a1, a2)(c1, c2) ∈ Z2 × Z2 | a1 + a2 = b · min{c1, c2}, c2 = 0}.

Furthermore, let

Tb(i) := {(a1, a2)(c1, c2) ∈ Z2 × Z2 | a1 + a2 = b · ci}.

We will first identify Sp(Mb) with Tb. Given an element (a, c) = ((a1, a2), (c1, 0)) ∈ Tb we
will let f(a,c) denote the linear map

f(a,c) : Mb → Z, f(a,c)((w1, w2)(s1, s2)) := a1w1 + a2w2 + c1 · s1 + 0 · s2.

Thus, for each element (a, c), we obtain an element of OMb
. Formally, we have the map

Ψ(a, c) : Tb → OMb
Ψ(a, c), := (f(a,c) ◦ ψ−1

i )i∈[1,2].

Clearly, each element of Tb defines a piecewise linear map on Mb through the map Ψ, but
the following lemma will show that they in fact identify points of Mb.

4.0.4 Lemma. The map Ψ(a, c) : Tb → OMb
is injective, and its image is exactly Sp(Mb).

Furthermore, Ψ(Tb(1)) = Sp(Mb, 1) and Ψ(Tb(2)) = Sp(Mb, 2).

Proof. It follows immediately that Ψ is injective, since each (a, c) ∈ Tb will define a different
piecewise linear map on Mb. To see this, note that the only way the map f(a,c) is identically
zero is if (a, c) = (0, 0, 0, c1), but this tuple will only satisfy the relation of Tb if c1 = 0.
Therefore, the kernel of Φ is trivial, and we can conclude it is injective. Next we will show that
Im(Ψ) ⊆ Sp(M). To do this, we will verify that for each ((w1, w2)(s1, s2)), ((w′

1, w
′
2)(s′

1, s
′
2)) ∈

Mb, we have that
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f(a,c)(u,v) + f(a,c)(u′,v′) =
min{fa,c(ψ−1

1 (ψ1(u,v) + ψ1(u′,v′)), fa,c(ψ−1
2 (ψ2(u,v) + ψ2(u′,v′))}.

First, we note that

ψ1((w1, w2)(−bw2−s2, s2))+ψ1(u′
1, u

′
2,−bu2−v′

2, v
′
2) = π1(u1+u′

1−(u2+u′
2), 0,−bu2−v2−bu′

2−v′
2, v2+v′

2)

then

ψ−1
1 (ψ1(u1, u2,−bu2 − v2, v2) + ψ1(u′

1, u
′
2,−bu′

2 − v′
2, v

′
2)) =

(u1 + u′
1 − min{u1 + u′

1, u2 + u′
2}, u2 + u′

2 − min{u1 + u′
1, u2 + u′

2},
v1 + v′

1 + b · min{u1 + u′
1, u2 + u′

2}, v2 + v′
2),

(4.0.4)

and similarly,

ψ−1
2 (ψ2(u1, u2,−bu2 − v2, v2) + ψ2(u′

1, u
′
2,−bu′

2 − v′
2, v

′
2)) =

(u1 + u′
1 − min{u1 + u′

1, u2 + u′
2}, u2 + u′

2 − min{u1 + u′
1, u2 + u′

2},
v1 + v′

1, v2 + v′
2 + b · min{u1 + u′

1, u2 + u′
2}),

(4.0.5)

Thus, by factoring out b · ci − (a1 + a2) we have the following for f(a,c).

f(a,c)(ψ−1
i (ψi((w1, w2)(s1, s2)) + ψi((w′

1, w
′
2)(s′

1, s
′
2))) =

a1(u1 + u′
1) + a2(u2 + u′

2) + c1(v1 + v′
1) + c2(v2 + v′

2) + (b · ci − (a1 + a2))min{u1 + u′
1, u2 + u′

2})
(4.0.6)

However, since (a, c) ∈ Tb, we have that mini∈[1,2]{(b · ci − (a1 + a2))} = 0. Then, we see
that min{f(a,c)(ψ−1

i (ψi((w1, w2)(s1, s2)) + ψi((w′
1, w

′
2)(s′

1, s
′
2)))} = f(a,c)((w1, w2)(s1, s2)) +

f(a,c)((w′
1, w

′
2)(s′

1, s
′
2)). Therefore, Im(Ψ) ⊆ Sp(Mb) as required.

Now, we will show that Sp(Mb) ⊆ Im(Ψ). We will show that for each p ∈ Sp(Mb), there
exists some (a, c) ∈ Tb such that Ψ(a, c) = p. Because we have identified Sp(Mb) with
Sp(Mb), it will suffice to show that Sp(Mb) ⊆ Im(Ψ). First, we will partition Mb. Let

Mb(1) = {((w1, w2)(s1, s2)) ∈ Mb|u1 = 0} and Mb(2) = {((w1, w2)(s1, s2)) ∈ Mb|u2 = 0}.

Clearly, Mb = Mb(1) ∪ Mb(2). Furthermore, since min{u1 + u′
1, u2 + u′

2} = ui + u′
i = 0 for

elements of Mb(i), we have that for all f ∈ Sp(Mb), f |Mb(k) is linear. Therefore, f will be
determined by its values on e1 = (1, 0, 0, 0), e2 = (0, 1,−b, 0), e3 = (0, 0,−1, 1) ∈ Mb.

We will let

a1 = f(1, 0, 0, 0), a2 = f(0, 1,−b, 0), c1 = f(0, 0,−1, 1), c2 = 0.

Since each each (u,v) ∈ Mb(1) can be written as m1e1 + n1e3, m1 ∈ Z≥0, n1 ∈ Z, and
similarly each (u,v) ∈ Mb(2) can we written as m1e2 + n1e3, m1 ∈ Z≥0, n1 ∈ Z, we have
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that

a1 + a1 = f(e1) + f(e2) =min{ψ−1
1 (ψ1(e1) + ψ1(e2)), ψ−1

2 (ψ2(e1) + ψ2(e2))} =
min{f(0), f((0, 0,−b, b))} = min{0, b · c1}

(4.0.7)

Therefore, (a1, a2, c1, 0) ∈ Tb, as required, and Ψ identifies Tb with Sp(Mb).

Although we have already shown that Mb is autodual, it will be useful to construct a dual
pairing which realizes Mb as autodual in the context of Mb and Tb. The following propostion
will do this.

4.0.5 Proposition. Let v : Mb → Tb be the map

v(u1, u2,−bu2 − v2, v2) := (−bu2 − v2, v2, u1 − u2, 0).

Then v is bijective, and induces a strict autodual pairing between Mb and Sp(Mb).

Proof. We will show v is bijective by producing a well defined inverse. Let v−1 : Tb → Mb

such that
v−1(a1, a2, 0, c2) =

{ (c1, 0,−a2, a2) if a1 + a2 = 0
(0,−c1, bc1 − a2, a2) if a1 + a2 = bc2

(4.0.8)

It is easily verified that v−1 ◦ v = IdMb
, and therefore v is a bijection. Now, we must show

that
fv(m)(m′) = fv(m′)(m), for m,m′ ∈ Mb

This is easily verified. let m = (u1, u2,−bu2 − v2, v2), and let m′ = (u′
1, u

′
2,−bu′

2 − v′
2, v2).

Then
fv(m)(m′) = (−bu2 − v2)u′

1 + v2u
′
2 + (u1 − u2)(−bu′

2 − v′
2) =

−bu2u
′
1 − v2u

′
1 + v2u

′
2 − bu′

2u1 + bu′
2u2 − v′

2u1 + v′
2u2

Conversely,
fv(m′)(m) = (−bu′

2 − v′
2)u1 + v′

2u2 + (u′
1 − u′

2)(−bu2 − v2) =

−bu2u
′
1 − v2u

′
1 + v2u

′
2 − bu′

2u1 + bu′
2u2 − v′

2u1 + v′
2u2.

Therefore, we have that fv(m)(m′) = fv(m′)(m), for m,m′ ∈ Mb, and thus v is a strict
autodual pairing for Mb.

For the rank 2 tropical mutation scheme Mb we will consider the following algebra:

Ab = C[x1, x2, y1, y2, y
−1
1 , y−1

2 ]/⟨x1x2 − yb1 − yb2, y2 − 1⟩.

We are now ready to realize the algebra Ab as a detropicalization of the tropical mutation
scheme Mb.

The first step in this process is to identify an adapted basis for Ab. Let us consider the
following set:

Bb = {xu1
1 xu2

2 yv1
1 y

v2
2 | (u1, u2, v2, v2) ∈ Mb}.
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We will first show that B does indeed form an additive basis for Ab. Then, we will realize B as
an adapted basis by constructing a valuation v : Ab → PMb

such that for all f =
∑
Cibi ∈ Ab,

we have that v(f) =
⊕

v(bi).

4.0.6 Lemma. The set Bb forms an additive basis for the algebra Ab.

Proof. Consider an element f ∈ Ab. We must show we can write f as a linear combination of
elements of Bb. Consider an arbitrary polynomial f =

∑
Cix

w1
1 xw2

2 ys1
1 y

s2
2 for some arbitrary

exponent vectors in Z4. By the relation on Ab, we can factor out min{w1, w2} from each
monomial in f , obtaining

f =
∑

Ci(yb1 + yb2)min{w1,w2}x
w′

1
1 x

w′
2

2 ys1
1 y

s2
2 where min{w′

1, w
′
2} = 0.

Since y2 = 1, we can always set s2 = −bw2 − s1 without changing the polynomial. Thus, so
long as all monomials in the expansion of (yb1 +yb2)min{w1,w2}x

w′
1

1 x
w′

2
2 ys1

1 y
s2
2 are elements of Bb,

we can write f in terms of linear combinations of elements of Bb.

It suffices to show that for any m,m′ ∈ Bb, the monomials in mm′ are all elements of
Bb. Let ((w1, w2)(s1, s2)) be the exponent vector of m, and ((w′

1, w
′
2)(s′

1, s
′
2)) be the exponent

vector of m′. If u1 = u′
1 = 0, or u2 = u′

2 = 0, then mm′ ∈ Bb follows immediately.

Now, let us assume that u2 = 0, and u′
1 = 0. We will divide this into two cases. First,

with u1 > u′
2 and then with u′

2 ≥ u1.

Case 1: If u1 > u′
2, then

mm′ = xu1
1 x

u′
2

2 y
−v2−bu2−v′

2
1 y

v2+v′
2

2 =

(yb1 + yb2)u′
2x
u1−u′

2
1 y

−v2−bu′
2−v′

2
1 y

v2+v′
2

2 =

(ybu
′
2

1 +
(
u′

2
1

)
y
b(u2−1)
1 yb2 + · · · + y

bu′
2

2 )xu1−u′
2

1 y
−v2−bu′

2−v′
2

1 y
v2+v′

2
2 .

Note that we will always be adding some exponent vector (0, 0, b(u′
2 − k), b(k)) for 0 ≤

k ≤ u′
2 to the exponent vector (u1 − u′

2, 0,−v2 − bu′
2 − v′

2, v2 + v′
2). We can see that

b(u′
2 − k) − v2 − bu′

2 − v′
2 = −(v2 + v′

2 + b(k)), and thus every monomial is an element
of Bb, as required.

Now let us suppose that u′
2 ≥ u1. In this case,

mm′ = xu1
1 x

u′
2

2 y
−v2−bu′

2−v′
2

1 y
v2+v′

2
2 =

(yb1 + yb2)u1x
u′

2−u1
2 y

−v2−bu′
2−v′

2
1 y

v2+v′
2

2 =

(ybu1
1 +

(
u1
1

)
y
b(u1−1)
1 yb2 + · · · + ybu1

2 )xu
′
2−u1

2 y
−v2−bu2−v′

2
1 y

v2+v′
2

2 .

Once again, we will be adding some exponent vector (0, 0, b(u1 − k), b(k)) for 0 ≤ k ≤ u1 to
the exponent vector (0.u′

2 − u1,−v2 − bu′
2 − v′

2, v2 + v′
2), we get that v2 + v′

2 + bk− v2 − bu′
2 −

v′
2 + b(u1 − k) = −b(u′

2 − u1), as required. Thus, the set Bb forms an additive basis.
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We are now ready to construct a valuation v which realizes Ab as a detropicalization of
Mb. Let v : Bb → Sp(Mb) be the function

v(xu1
1 xu2

2 y−bu2−v2
1 yv2

2 ) := Ψ ◦ v(u1, u2,−bu2 − v2, v2).

Furthermore, we will extend v to be a function on Ab by taking v(
∑
cibi) :=

⊕
v(bi). Recall

that for p, p′ ∈ Sp(Mb), p⊕ p′(m) = min{p(m), p′(m)}, and p⊗ p′(m) = p(m) + p(m).

4.0.7 Lemma. The function v : Ab → PMb
is a valuation.

Proof. We will first verify that v(fg) = v(f) ⊗ v(g). To do so, start by taking m,m′ ∈ Bb.
The result follows immediately from the definitions of Ψ and v if mm′ ∈ Bb, so assume that
mm′ /∈ Bb. We have two cases. First, let mm′ = (yb1 +yb2)u′

2(xu1−u′
2

1 y
−v2−bu′

2−v′
2

1 y
v2+v′

2
2 ). Thus,

mm′ is the sum of the monomials xu1−u′
2

1 y
−v2−bu′

2−v′
2+b(u′

2−k)
1 y

v2+v′
2+bk

2 for 0 ≤ k ≤ u′
2. So

we must show that v(m) + v(m′) = fv(m) + fv(m′) = min{v(mm′(i))}, where mm′(i) is the
monomial obtained above by setting k = i.

We will denote by g(k) the map g(k) : Mb → Z such that g(k)(a1, a2, b1, b2) = b(u′
2 − k)a1 +

b(k)a2. We know then that

fv(m) + fv(m′) + gi = v(mm′(i)).

Furthermore, since min(a1, a2) = 0, we have that min1≤k≤u′
2
{gi} = 0 and the desired result

holds. An identical argument also shows the above is true if we assume that u′
2 ≥ u′

1. We
can then conclude that for m,m′ ∈ Mb, we have that v(mm′) = v(m) ⊗ v(m′).

Now take arbitrary f, g ∈ Ab. Suppose f =
∑
Cimi and g =

∑
Djmj , for monomials

mi,mj ∈ Bb, and non-zero scalars Ci, Dj ∈ C. Certainly, we know that

v(fg) = min{v(mimj) | mimj appears with a non-zero coefficient in fg}

Thus, using our previous result, we can see that

v(fg) ≥
⊕

1≤i,j≤n
v(mimj) =

⊕
1≤i,j≤n

(v(mi)⊗v(mj)) =
⊕

1≤i,j≤n
v(mi)⊗

⊕
1≤i,j≤n

v(mj) = v(f)⊗v(g)

Assume towards a contradiction that v(fg) >
⊕

v(mimj). Therefore, by the definition
of > and piecewise linear functions, there must exist a full dimensional cone σ such that for
any n ∈ σ we have that v(fg)(n) >

⊕
v(mimj)(n). As a result, we can find some monomial

m̂i ∈ supp(f) and m̂j ∈ supp(g) such that on this cone, v(f) = v(m̂i), and v(g) = v(m̂j).
Since

v(fg) >
⊕

1≤i,j≤n
v(mimj) = v(f) ⊗ v(g)

which on the cone σ is equal to

v(m̂1) ⊗ v(m̂j) = v(m̂im̂j),
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the monomial m̂im̂j cannot appear in fg, and so must have a zero coefficient in fg. But this
implies that there is also some bi ̸= b̂i and bj ̸= b̂j in the support of f and g, respectively,
such that mimj = m̂im̂j , since there must be some cancellation. It must also be the case
that v(bi) > v(b̂i) and v(bj) > v(b̂j) on the full dimensional cone σ. However, recall that
since mi and mj are monomial coming from Bb, their image under the v must be a point.
Thus the values of v(mi), v(mj), v(m̂i) and v(m̂j) are completely determined by their values
on σ. Therefore, this is a contradiction, since v(bibj) = v(b̂ib̂j). We can therefore conclude
that v(fg) = v(f) ⊗ v(g), as required.

The final axioms of a valuation, namely that v(cf) = v(f) and that v(f + g) ≥ v(f) ⊕ v(g)
follow immediately from the definition of the function v. We have shown that v is a valuation
from the algebra Ab to PMb

.

From this point, it is easy to show that Ab is indeed a detropicalization of the tropical
mutation scheme Mb.

4.0.8 Theorem. The polynomial ring Ab along with the valuation v is a detropicalization
of Mb

Proof. The polynomial ring Ab is clearly isomorphic to C[x1, x2, y
±]/⟨x1x2 − yb − 1⟩. Since

the ideal ⟨x1x2 − yb − 1⟩ is principal, and prime for all b ∈ Z, it follows that Ab has Krull
dimension 2, which is the rank of Mb. Combine with the above lemma, we have that (Ab, v)
is a detropicalization. Furthermore, Bb is an adapted basis for this detropicalization, by
construction.

Now that we have completed the story for rank 2 tropical mutation schemes Mb, in the
final chapter we will discuss open questions and future directions for research on tropical
mutation schemes.
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Chapter 5

Future Directions

We will now discuss future directions for the theory of tropical mutation schemes. Since this
theory is in its infancy, there are innumerable direction in which to go, so we will only discuss
a few.

We mentioned already in Remark 3.1.2 that there is not yet consensus on the notion of
isomorphism for tropical mutation schemes. An immediate follow-up to this thesis, once this
has been resolved, would be to prove that the class of Mb does indeed include all rank-2
tropical mutation schemes on exactly two charts, up to isomorphism. This would complete
the story for rank-2 tropical mutation schemes on 2 charts. There are two obvious directions
we could go from here. First would be to investigate rank-2 tropical mutation schemes on n
charts, for n > 2. The second would be to investigate rank r tropical mutation schemes on 2
charts with exactly two domains of linearity. Even in rank 3, a mutation map between two
charts can have many full dimesional cones, so in terms of complexity it would be best to
first restrict to the case of two full dimensional cones.

Another infinite class of dualizable and detropicalizable tropical mutation schemes are com-
puted by Manon, Escobar, and Harada in [3],[4]. They define a tropical mutation scheme
Md,r for each pair of integers d, r ≥ 2, where Md,r is strictly dual to Mr,d. The tropical
mutation scheme Mr,d has rank r + d − 1, and has exactly d coordinate charts. Each chart
of Md,r can be identified with the following subset of Zd × Zr,

Mi = {(u,v) | vi = 0}

and each mutation map of Md,r is given by

µi,j : Mi → Mi+1

µi,j(u,v) = (u, v1, . . . , vi−1,min(u1, . . . , ud) −
∑

vk, 0, vi+2, . . . , vr) for 1 ≤ i ≤ r − 1,

and the induced compositions for general µi,j . When b = 1, the rank 2 tropical mutation
scheme M1 can be realized as a sub-tropical mutation scheme of the rank 3, autodual M2,2.
Two natural questions arise from this.

5.0.1 Question. When are sub-tropical mutation schemes of dualizable and detropicalizable
tropical mutation schemes are themselves dualizable and detropicalizable?
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In the case of the tropical mutation scheme Mb where b = 1, the dualization and detrop-
icalization maps hold reasonably well. We just need to keep track of a certain linear relation
on the variables to make sure nothing about the valuation or dual pairing map breaks. It
seems likely that in most cases, a sub-tropical mutation scheme, i.e. a collection of sub-
lattices which are images of one another under the mutation maps, would also satisfy the
nice properties we look for in tropical mutation schemes, so long as the larger one did. It
would be interesting to work out when this is possible, as a way to build new examples of
detropicalizable tropical mutation schemes from old ones. The second question is this.

5.0.2 Question. Can we introduce an integer parameter to M2,2 such that all Mb are sub
tropical mutation schemes for some Mb

2,2? Can the parameter be extended to create a new
class of detropicalizable tropical mutation schemes Mb

d,r?

The proof of the detropicalizability of Mb is quite similar to that for M2,2, only we must
keep track of the linear relation mentioned above, as well as the integer parameter b. In the
case of the rank-2 sub-tropical mutation scheme, the integer parameter can be accounted for,
and it gives rise to an infinite class of detropicalizable tropical mutation schemes. It would
be interesting to see if an integer parameter can be added to each Md,r, to get a new infinite
class of detropicalizable examples for each d, r.

As of now, specific examples of detropicalizable tropical mutation schemes have been com-
puted, but an important step in the development of the theory would be to obtain some more
general results, such as the following questions.

5.0.3 Question. Can we find necessary and sufficent conditions for a given tropical mutation
scheme to be full? Dualizable? Detropicalizable?

Fullness, dualizability, and detropicalizabiliy are fundament properties of tropical muta-
tion schemes. When they do not have these properties, they lose almost all of their useful
analogies with lattices. As of yet, we do not have a general way to tell whether a given trop-
ical mutation scheme satisfies these properties, other that to explicitly compute the space of
points and a valuation. Having a combinatorial way to determine whether a tropical mu-
tation scheme satisfies the above would be invaluable. On the other hand, we have similar
questions about the extent detropicalizations generalize cluster varieties.

5.0.4 Question. Which k-algebras are tropical mutation scheme detropicalizations?

A good starting point here would be a way of building a tropical mutation scheme from a
cluster algebra, such that the cluster algebra is its detropicalization. This would verify that
in the archetypal example of cluster varieties, tropical mutation schemes do generalize the
connection between tori and lattices. From there, it would be interesting to see what kinds
of algebras which are not cluster algebras can fit into this framework.

In this thesis, we have introduced the reader to the basics of the theory of tropical mu-
tation schemes, as well as computed fullness, dualizability, and detropicalizability for the
infinite class Mb as a proof of concept for the above. We have left the reader with a brief list
of future research questions on which to build. It will be interesting to see which directions
the nascent theory goes in the years to come.
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