
SwinFSR: Stereo Image Super-Resolution
using SwinIR and Frequency Domain

Knowledge



SwinFSR: Stereo Image Super-Resolution using SwinIR
and Frequency Domain Knowledge

By
KE CHEN,

M.A.Sc. (Electrical and Computer Engineering)

A THESIS
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL & COMPUTER

ENGINEERING
AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY IN PARTIAL FULFILMENT OF THE
REQUIREMENTS

FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE

McMaster University
Hamilton, Ontario

© Copyright by Ke Chen, April 20, 2023

http://www.mcmaster.ca/


Master of Applied Sciences (2023)
Electrical and Computer Engineering
McMaster University
Hamilton, Ontario, Canada

TITLE: SwinFSR: Stereo Image Super-Resolution using SwinIR and Frequency Domain
Knowledge

AUTHOR:
Ke Chen,
M.A.Sc. (Electrical and Computer Engineering)

SUPERVISOR:
Jun Chen
Professor, Department or Electrical and Computer Engineering,
McMaster University, ON, Canada

NUMBER OF PAGES: xii, 55

ii

https://www.eng.mcmaster.ca/ece//
http://www.mcmaster.ca/


To my dear parents and friends

iii



Abstract

Stereo Image Super-Resolution (stereoSR) has attracted significant attention in recent
years due to the extensive deployment of dual cameras in mobile phones, autonomous
vehicles and robots. In this work, we propose a new StereoSR method, named SwinFSR,
based on an extension of SwinIR, originally designed for single image restoration, and the
frequency domain knowledge obtained by the Fast Fourier Convolution (FFC). Specifi-
cally, to effectively gather global information, we modify the Residual Swin Transformer
blocks (RSTBs) in SwinIR by explicitly incorporating the frequency domain knowledge
using the FFC and employing the resulting residual Swin Fourier Transformer blocks
(RSFTBlocks) for feature extraction. Besides, for the efficient and accurate fusion of
stereo views, we propose a new cross-attention module referred to as RCAM, which
achieves highly competitive performance while requiring less computational cost than
the state-of-the-art cross-attention modules. Extensive experimental results and abla-
tion studies demonstrate the effectiveness and efficiency of our proposed SwinFSR.
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Chapter 1

Introduction and Problem
Statement

1.1 Introduction

Stereo image pairs can encode 3D scene cues into stereo correspondences between the
left and right images. With the extensive deployment of dual cameras in mobile phones,
autonomous vehicles and robots, the stereo vision has attracted increasing attention in
both academia and industry. Stereo Image Super Resolution (stereoSR) aims to generate
a specific scale of the high resolution (HR) image pairs using low resolution (LR) input
pairs. In many applications such as AR/VR [22,41] and robot navigation [35], increasing
the resolution of stereo images is highly demanded to attain superior perceptual quality
and optimize performance for downstream tasks [46]. Recently, many deep-learning-
based methods [5, 24,47,50] have been proposed to address the stereoSR problem.

In view of the remarkable capability of the Transformer [43], the most recent stere-
oSR methods [43, 46] are developed based on the transformer structure, especially on
a variant for image restoration tasks are known as SwinIR [24]. However, there are
some common issues we want to address, with the existing SwinIR based models such
as SwiniPASSR [16] and SwinFIR [57]. First, SwiniPASSR does not have a specifically
designed mechanism for exploiting features extracted from two views as biPAM [50] is
used by default. Second, it focuses on spatial features but not spectral features thus
failing to make full use of large receptive fields to gather global information in a more di-
rect manner. As of SwinFIR [57], it also does not explicitly exploit the interdependence
of features extracted from two views due to a lack of cross attention modules. More-
over, SwinFIR cannot estimate epipolar stereo disparity as it requires squared images as
inputs.

4
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Figure 1.1: Parameters vs. PSNR of models for 4× stereo SR on
Flickr1024 [49] test set. Our SwinFSR families achieve the highest
performance.
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Inspired by the observation of Kong et al. [42] regarding the effectiveness of the Fast
Fourier Convolution (FFC) block in capturing global information, we modify residual
Swin Transformer blocks (RSTBs) in SwinIR by explicitly exploiting the frequency do-
main knowledge and employ the resulting residual Swin Fourier Transformer blocks (RS-
FTBlocks) for feature extraction. Besides the proposed feature extractor, we also aim
to enhance the cross-attention module for effective and efficient information exchange
between two views. Instead of directly using the off-the-shelf cross-attention modules
such as SAM [54], SCAM [5], and biPAM [50], we propose a new cross-attention module
named RCAM. Specifically, to balance between efficient inference and accurate learning,
we modify the biPAM by removing the need to handle occlusion and redesigning the
attention mechanism. Moreover, to address the inflexibility of squared training patches
with respect to the epipolar disparity, we modify the local window in the Swin Trans-
former so that the network can process rectangular input patches. Based on the above
innovations, we develop a new stereoSR network, namely SwinFSR. In summary, our
SwinFSR has two branches built with RSFTBlocks to process left and right views, re-
spectively. The two branches share the same weights. RCAMs are inserted between the
two branches to exchange and consolidate cross-view information.

Furthermore, various training/testing strategies are adopted to unleash the potential
of SwinFSR. In training, we use several effective data augmentation methods to boost
SR performance, such as random cropping, flipping, and channel shuffling. We also
conduct experiments to find the best possible hyper-parameters, such as dropout rate
[20], window size, and stochastic depth [14] of Swin Transformer based models. As shown
in Figure 1.1, our SwinFSR families have better performance-complexity trade-offs than
the existing methods. Figure 1.2a and Figure 1.2b visually demonstrate an example of
image pairs. Moreover, Figure 1.3 and Figure 1.4 show our super resolved results in
Flickr1024 [49] validation data set.

Our research objectives can be summarized as three points:

• Firstly, we aim to conduct a comprehensive investigation of existing off-the-shelf
cross attention modules and develop our own module that can improve the perfor-
mance of the SwinIR-based models.

• Secondly, we aim to explore and identify the optimal hyper-parameters for SwinIR-
based models, in order to achieve the best possible performance.

• Lastly, we will address the issue of inflexible squared training patches being used
as input for all SwinIR-based models, and propose a solution that can improve the

6
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(a) A low-resolution left im-
age of Flickr1024 [49] valida-
tion set.

(b) A low-resolution right
image of Flickr1024 [49] vali-
dation set.

flexibility and effectiveness of these models.

Our contributions can be summarized as follows:

• Based on a systematic analysis of the issues with the existing methods, we propose
a new stereoSR method, SwinFSR. It inherits the advantages of SwinIR and Fast
Fourier Convolution and exploits both spatial and spectral features.

• We propose a new cross-attention module, named RCAM, that strikes a good
balance between efficient inference and accurate learning. This is realized by mod-
ifying biPAM to circumvent occlusion handling as well as redesigning its attention
mechanism. It is shown that this modification can help expedite the inference
speed without significantly jeopardizing the performance.

• Extensive experimental results demonstrate the effectiveness and efficiency of our
proposed approach.

1.2 Thesis Structure

To clearly explain the benefits of the proposed SwinFSR, this thesis is structured as
follows: In Chapter 2, we will examine existing methods for SingleSR, stereoSR, Vision
Transformers and Regulation techniques. In Chapter 3, we will provide a detailed in-
troduction to SwinFSR, including its overall network architecture, cross view attention
module, loss functions and training strategies. Additionally, Chapter 4 will describe our
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Figure 1.3: Visual result of a SwinFSR-L generated high-
resolution left image of Flickr1024 [49] validation set.
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Figure 1.4: Visual result of a SwinFSR-L generated high-
resolution right image of Flickr1024 [49] validation set.
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experimental setup, perform ablation studies, and compare our proposed method’s per-
formance with other state-of-the-art methods in the quantitative measure. In Chapter 5,
we will discuss our data pre-processing approach and the results of our stereoSR model
in the NTIRE 2023 Stereo Image Super Resolution Challenge [45]. Then in Chapter 6,
we will introduce two future improvements to our work. Finally, Chapter 7 will offer
concluding remarks on our work.

10
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Chapter 2

Related Works

2.1 Single Image Super-resolution

Single image super-resolution (SingleSR) aims to generate high-resolution images based
on their low-resolution counterparts. SingleSR has been extensively researched in the
fields of image processing and computer vision, and various approaches have been pro-
posed to address this problem. Super-Resolution Convolutional Neural Networks (SR-
CNN) [10] shown in Figure 2.1 is the first attempt to bring deep learning to bear upon
SingleSR, and subsequent methods VDSR and EDSR (see Figure 2.2 and Figure 2.3)
further take advantage of residual and dense connections [18,25] to achieve improved per-
formances. Attention mechanisms, including channel attention [7, 31, 61] and channel-
spatial attention [8, 24, 34], have also been proposed as an effective tool for tackling
SingleSR. And NAFNet [3], the state-of-the-art (SOTA) of the 2022 SingleSR competi-
tion demonstrated in Figure 2.8 depicts the architecture of the NAFBlocks. Recently, in
view of its remarkable ability in natural language processing (NLP), transformer-based
structures have been employed for SingleSR, achieving SOTA performance. One notable
example is the SwinIR [24] demonstrated in Figure 2.10, achieving SOTA in 2021.

2.2 Stereo Image Super-Resolution

Stereo image super-resolution (stereoSR) is a challenging task in computer vision that
requires generating high-resolution images from stereo image pairs. Convolutional neu-
ral networks (CNNs) are commonly used in deep learning-based stereoSR approaches.
One such example is the Single Image Stereo Matching network (SSRN) [30] shown in

11
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Figure 2.1: The SRCNN’s (image sources from [10]) has three
stages. In the first stage, it takes a low-resolution image Y and
generates a group of feature maps. In the second stage, the second
layer converts these feature maps into high-resolution patch repre-
sentations. Finally, the last layer reconstructs the high-resolution
image F(Y).

Figure 2.2: The structure of VDSR (image sources from [18]) has
repeatedly cascading a convolutional layer and a nonlinear layer. A
input of interpolated low-resolution (ILR) image is fed into these
layers. From VDSR’s work, cascading blocks becomes more and
more popular in the super resolution field.
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Figure 2.3: The proposed single-scale super-resolution (SR) net-
work’s architecture (image sources from [25]) introduces an im-
proved deep super-resolution network called Enhanced Deep Super-
Resolution (EDSR). This model optimizes the structure of the con-
ventional residual networks by removing redundant modules.

Figure 2.4. It introduces a stereo matching module to establish dense correspondence
between low-resolution stereo images and then applies a CNN to enhance the image
resolution. Attention mechanisms have also been explored in recent works to improve
stereoSR. For instance, [47] proposes a parallax attention module (PAM) and builds a
PASSRnet for stereoSR to handle varying parallax. Figure 2.5 displays the architecture
of the PASSRnet. [62] designs an attention-based method that can adaptively weigh
the stereo features to enhance the resolution of the stereo images. [54] introduces stereo
attention modules (SAMs) shown in Figure 2.6 into pre-trained single image SR (SISR)
networks to handle information assimilation. [40] addresses the occlusion issue by using
disparity maps regressed by parallax attention maps to assess stereo consistency. [50]
develops an iPASSRnet that uses symmetry cues and a Siamese network equipped with
a biPAM structure to super-resolve both left and right images. The detailed architecture
of iPASSRnet can be found in Figure 2.7. Transformers, such as SwinIR [24], have also
shown impressive performance on low-level vision tasks and have outperformed several
CNN-based stereoSR methods. These works have advanced the state-of-the-art of stere-
oSR and have opened up new possibilities for future research in this area. NAFSSR is
the winner of the NTIRE 2022 Stereo SR Challenge [5, 46]. It is constructed by insert-
ing cross-view attention modules (SCAM) between consecutive NAFblocks. The overall
structure of NAFSSR and SCAM can be found in Figure 2.8.

13
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In this work, we take one step further by introducing a residual stereo cross-attention
module (RCAM). In contrast to SAM [54], which requires calculating an occlusion map,
our RCAM presents a better solution with high efficiency.

Figure 2.4: SSRN (image sources from [30]) comprises two parts,
the view synthesis network and the stereo matching network. The
top synthesis network takes LR input to generate disparity maps.
Then the disparity maps are used to construct a synthetic right
view by selectively sampling pixels from nearby locations on the
original left image. The stereo matching network, located at the
bottom of the figure, super resolves images by taking the original
left image and the synthesized right image as input.

2.3 Vision Transformer

As a recent advance in the field of computer vision, visual Transformers [43] have gar-
nered significant attention for their ability to capture long-range dependencies in images,
especially for high-level vision tasks such as image classification [11,28] and object detec-
tion [2, 28, 51]. Moreover, Transformers have also been applied to low-level vision tasks
(see, e.g., [53]). To reduce the computational complexity of self-attention operations
in Transformers, a hierarchical visual Transformer called Swin Transformer [2], shown
in Figure 2.9, is proposed. Enabled by the shifted window techniques, Swin achieves
state-of-the-art performance on various tasks such as image recognition, object detec-
tion, and segmentation. The details of shifted window techniques can be found in Figure
2.9. SwinIR [24] and Swin V2 [27] have implemented some further refinements to make
Transformers more efficient. The overall architecture of Swin V2 is displayed in Figure
2.11. These works have demonstrated the effectiveness of visual Transformers in a wide
range of computer vision tasks.
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Figure 2.5: The Parallax-Attention Stereo Super-Resolution Net-
work (PASSRnet) (image sources from [47]) is designed to incor-
porate information from a stereo image pair to perform super-
resolution. To achieve this, PASSRnet has introduced a parallax-
attention mechanism named PAM with a global receptive field that
spans along the epipolar line.

2.4 Training and Testing Strategies

Regularization methods such as dropout [20] and stochastic depth [14] are widely em-
ployed to enhance the model performance in high-level computer vision tasks. Re-
cently, the above regularization methods have been introduced in image restoration
tasks. For example, stochastic depth is employed in [5] to address the issue of overfit-
ting to the stereo-training data and improve generalization. Similarly, [20] adjusts the
dropout method for SR tasks. In this work, we will systematically study how the factors
such as the dropout rate, window size, and stochastic depth can impact PSNR perfor-
mance in Swin Transformer-based models. Additionally, since test time augmentation
(TTA) [17,44] is a technique that is frequently used in computer vision competitions to
boost performance, we also investigate its capability in the context of stereoSR through
an ablation study.
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Figure 2.6: The Stereo Attention Module (SAM) (image sources
from [54]) is a generic module that can be used in pretrained SISR
networks for stereo image super-resolution. It generates the cross-
view information for the model as well as maintains the intra-view
information from the pretrained SISR networks. The above figure
is a sample usage in the VDSR network [18]
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Figure 2.7: iPASSR (image sources from [50]) is an upgraded
iteration of the previous PASSRnet by being a Siamese network
that can super-resolve both sides of views simultaneously in a single
inference.
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Figure 2.8: The overall architecture of the NAFSSR (image
sources from [5]). SCAM is the abbreviation of Stereo Cross At-
tention Module.
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Figure 2.9: The structure of a tiny version Swin Transformer
(Swin-T) (image sources from [2]) is illustrated in (a), while (b)
shows two consecutive Swin Transformer Blocks. W-MSA and SW-
MSA denote multi-head self-attention modules with standard and
shifted windowing setups, respectively. Details of the Swin Trans-
former can be found in [2].

19

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece//


M.A.Sc.– Ke Chen; McMaster University– Electrical and Computer Engineering

Figure 2.10: SwinIR (image sources from [5]) is an image restora-
tion method that is based on the Swin Transformer layers [2]. It
contains three main components: shallow feature extraction, deep
feature extraction, and high-quality image reconstruction. The
deep feature extraction module is made up of multiple residual Swin
Transformer blocks (RSTBs), each consisting of several Swin Trans-
former layers with a residual connection.

Figure 2.11: The Swin Transformer V2 (image sources from [27])
is an improved version of the original Swin Transformer architec-
ture (V1) [2] to better handle larger model capacities and window
resolutions with the help of its scaled cosine attention and the im-
plementation of a log-spaced continuous relative position bias ap-
proach.
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Chapter 3

Research Methodology

In this section, we introduce our method in detail. In Section 3.1 to Section 3.1.5, we
first, give an overview of the network’s architecture. The in Section 3.2, we explain the
details of the attention mechanism in our RSFTBlocks. And finally in Section 3.3, we
then cover the training and testing methods used throughout the study. The evolutionary
trajectory of our SwinFSR-S model is shown in Figure 3.1.

Figure 3.1: The evolutionary trajectory of our SwinFSR-S model
measured in PSNR based on 4×SR of Flickr1024 [49] validation set.
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3.1 Network Architecture

3.1.1 Overall Framework

Figure 3.2 depicts an outline of our proposed transformer-based Stereo SR network
(SwinFSR). SwinFSR takes a low-resolution stereo image pair as input and enhances
the resolution of both left and right view images. To be specific, Our SwinFSR has two
branches built with RSFTBlocks to process left and right views, respectively. RCAMs
described in Figure 3.4, are inserted between the left and right branches to interact with
cross-view information. In essence, SwinFSR is composed of three parts: intra-view
feature extraction, cross-view feature fusion, and reconstruction

Figure 3.2: SwinFSR Architecture

Intra-view feature extraction and reconstruction. To start, a 3 × 3 convolutional
layer is employed to extract the shallow features from input images. Then, RSFTBlocks
are stacked to achieve deep intra-view feature extraction. We will detail the RSFTBlock
in Section 3.1.2. Once feature extraction is completed, a Fast Fourier Block (FFB) is
applied, followed by a pixel shuffle layer [38] that upsamples the feature by a scale factor
of 4. Additionally, to alleviate the burden of feature extraction, we follow [5, 23] to
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predict the difference between the bilinearly upsampled low-resolution image and the
high-resolution ground truth.

Cross-view feature fusion. To engage with information from different views, we in-
corporate RCAM following every RSFTBlocks. RCAM utilizes stereo features produced
by the preceding RSFTBlocks as inputs for conducting bidirectional cross-view interac-
tions and produces interacted features fused with input features from the same view.
The details of the RCAM are elaborated in Section 3.1.5.

3.1.2 RSFT Block.

As shown in Figure 3.2 (a), the residual Swin Transformer block (RSTB) is a residual
block built using Swin Transformer Layers (STL) in Figure 3.2 (b) and a Fast Fourier
Convolution Block in Figure 3.3. Given the input feature Fi,0 of the i-th RSFTB, we
first extract intermediate features Fi,j by L STLs as:

Fi,j = STLi,j(Fi,j−1), j = 1, 2, 3, ..., L, (3.1)

where STLi,j is j-th STL in the i-th RSFTB.

We then feed the feature from L-th STL to FFB to extract frequency domain knowl-
edge. After that, we output the summation of FFB outputs and input features by:

Fi,out = FFBi(Fi,L) + Fi,0, (3.2)

where FFBi represents the last FFB block in the i-th RSFTB block. And Fi,out is the
output feature of i-th RSFTB block.

3.1.3 Swin Transformer Layer.

As shown in Figure 3.2 (b), a two-layer multi-layer perceptron (MLP) with fully con-
nected layers and GELU non-linearity between them is used. Prior to using the MSA
and MLP, a LayerNorm (LN) layer is attached and a residual connection is employed for
both modules. The complete process for the STL block is explained in detail in Section
3.2.

3.1.4 Fast Fourier Convolution Block.

Our backbone model SwinIR is mainly composed of residual Swin Transformer blocks
(RSTBs) that utilize several Swin Transformer layers to achieve local attention and
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cross-window interaction. However, in the context of stereo SR, it is advantageous to
incorporate both local and global information [13]. To address this, we took inspiration
from the Fast Fourier Convolution (FFC) [4], which proved its ability to use global con-
text in early layers [42]. Therefore, a hybrid module including an FFC and a residual
module called the Fast Fourier Block (FFB), was designed to enhance the model’s rep-
resentation ability. To explore FFC in SR, we substituted the 3x3 convolution inside the
RSTB with the FFB. The FFB has two main components: a local spatial conventional
convolution operation on the left and a global FFC spectrum transform on the right.
The outputs from both operations are concatenated and then subjected to a convolu-
tion operation to generate the final result, which can be expressed using the following
formula. Figure 3.3 displays the network architecture of the FFB.

FF F B = HF F B(F ) (3)

where the F is the feature map from the previous 6 STL layers. HF F B(·) represents
the FFB module and FF F B is the output feature map after various operations of FFB.
We send F into two distinct branches, local and global. In the local branch, Fspatial

is utilized and extracts the local features in the spatial domain, and Ffrequency in the
global branch, is intended to capture the long-range context in the frequency domain,

Flocal = Hlocal(F ) (4)

Fglobal = Hglobal(F ) (5)

where Hlocal(·) is the spatial convolution module in the local branch and Hfrequency(·)
represents the frequency FFB module in the global branch. The left spatial convolution
module is a residual module for classical SR, as shown in Table 3.3. Compared to a single-
layer convolution, we insert a residual connection and convolution layer to increase the
expressiveness of the model. The Flocal is also represented as,

Flocal = Hconv(F ) + F (6)

where Hconv(·) denotes a simple block containing three layers. Specifically, two 3×3
convolution layers at the head and tail, and a LeakyReLU layer in between. In the right
frequency module, we use the spectrum transform structure according to the original
paper [4]. It basically transforms the conventional spatial features into the frequency
domain to extract the global features by 2-D FFT and perform the inverse 2-D FFT
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operation to obtain spatial domain features for future feature fusion. The Fglobal is also
represented as,

F = Hconv(F ) (7)

Ffrequency = H1conv(HIF F T (Hconv(HF F T (F ))) + F ) (8)

where HF F T (·) is the channel-wise 2-D FFT operation. Hconv(·) denotes a convolu-
tion layer and LeakyReLU. HIF F T (·) is the inverse 2-D FFT operation and H1conv(·)
denotes a 1x1 convolution layer. The number of channels is then reduced in half by a
convolution operation,

FF F B = H1conv([FlocalCFglobal]) (9)

finally H1conv(·) denotes a 1x1 convolution layer and C stands for the concatenation
operator.

3.1.5 Cross-View Interaction.

In this section, we show the details of the proposed Residual Cross Attention Module
(RCAM). The structure of RCAM is demonstrated in Figure 3.4. It is based on Scaled
Dot Product Attention [43] and inspired by all the previous cross attention modules
[40, 47, 50, 54], which computes the dot products of the query with all keys and applies
a softmax function to obtain the weights on the values:

Attention(Q, K, V ) = softmax(QKT /
√

C)V (10)

where Q ∈ RH×W ×C is a query matrix projected by source intra-view feature (e.g.,
left-view), and K, V ∈ RH×W ×C are key, value matrices projected by target intra-
view feature (e.g., right-view). Here, H, W, and C represent the height, width and
number of channels of the feature map. Since stereo images are highly symmetric under
epipolar constraint [50], we follow NAFSSR [5] to calculate the correlation of cross-view
features along the W dimension. In detail, given the input stereo intra-view features
FL, FR ∈ RH×W ×C , we can get layer normalized stereo features F̄L= LN(FL) and F̄R=
LN(FR). Next, a residual block (Resb) is applied to the process, and the processed
feature is separately fed into two 1 × 1 convolutions and obtain F̂L and F̂R. We then
follow [50] to feed F̂L and F̂R to a whiten layer to acquire normalized features to establish
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disentangled pairwise parallax attention according to the following two equations:

F̄L
′(h, w, c) = F̂L(h, w, c) − 1

W

W∑
i=1

F̂L(h, i, c) (11)

F̄R
′(h, w, c) = F̂R(h, w, c) − 1

W

W∑
i=1

F̂R(h, i, c) (12)

Then a geometry-aware multiplication will be adopted between barFL
′ and F̄R

′:

Attention = F̄L
′ ⊗ F̄R

′ (14)

The bidirectional cross-attention between left-right views is calculated by:

FR−>L = Attention(W L
1 F̄L, W R

1 F̄R, W R
2 FR), (15)

FL−>R = Attention(W R
1 F̄R, W L

1 F̄L, W L
2 FL), (16)

where W L
1 , W R

1 , W L
2 and W R

2 are projection matrices. Note that we can calculate the
left-right attention matrix only once to generate both FR−>L and FL−>R (as shown in
Figure 3.4). Finally, the interacted cross-view information FR−>L, FL−>R and intra-view
information FL, FR are fused by element-wise addition same as NAFSSR [5]:

FL,out = γLFR−>L + FL (15)

FR,out = γRFL−>R + FR (15)

where γL and γR are trainable channel-wise scales and initialized with zeros for stabi-
lizing training.

3.2 Shifted Window Based Self Attention

Transformers were initially developed for natural language processing (NLP) tasks [43].
However, with their success in NLP, researchers began to explore the application of
transformers in computer vision tasks as well. ViT [11], the first transformer-based
model for the computer vision field, was proposed for the image classification task. It
achieves SOTA performance on several benchmark image classification datasets, such
as ImageNet [9] and CIFAR-100 [21]. The ViT model uses an attention mechanism
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Figure 3.3: Fast Fourier Convolution Block (FFB).

Figure 3.4: Residual Cross Attention Module (RCAM).
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to learn the relationships between different image patches and applies a multi-head at-
tention mechanism to extract features from the image. This global computation has a
quadratic complexity that increases as the number of patches increases, which is not
ideal for vision problems that involve a large number of tokens for dense prediction or to
represent a high-resolution image. The Swin Transformer [2], an improved version of the
ViT, that uses a self-attention in the non-overlapped windows and proposes the shifted
window partitioning techniques in successive blocks to address the inefficiency compu-
tation problem brought by ViT. The Swin Transformer layer (STL) used in both our
SwinFSR and the SwinIR [28] model, is a modification of the original Swin Transformer
layer [43] that utilizes similar mechanisms.

Self-attention in non-overlapped windows. To improve the efficiency of mod-
elling, followed by SwinIR [24] to perform self-attention calculations within smaller,
non-overlapping windows that evenly divide the image. Each window contains M × M

patches, and the complexity of a global self-attention module and a window-based one
for an image with h × w patches can be calculated using equations:

Ω(MSA) = 4hwC2 + 2(hw)2C (3.3)

Ω(W − MSA) = 4hwC2 + 2M2hwC (3.4)

Equation 3.3 is quadratic in the number of patches (hw), while equation 3.4 is linear
with respect to M (which is typically set to 7). Global self-attention calculation is
generally too computationally expensive for large numbers of patches, but the window-
based approach is more scalable.

Shifted window partitioning in successive blocks. As shown in Figure 3.6, Layer
1 represents the conventional window partition method, similar to the partitioning in
ViT [43]. There are 4 windows in the feature map (each window consists of 4 × 4
blocks), but after performing the shifted window operation (i.e. Layer 1 + 1), 9 windows
are obtained. So this kind of window shifted technique will increase the number of
windows and resulting in an inconsistency problem of the element sizes in each window.
This is illustrated in the Figure 3.6 Layer 1 + 1, the middle window is 4 × 4 while other
windows are of types 2 × 2 and 4 × 2. Moreover, it is difficult to calculate self-attention
in the form of Layer 1 + 1. A possible solution is to pad the smaller windows and
exclude the padded values while computing attention. However, this approach increases
computation significantly for a small number of windows, such as, in a 2×2 partitioning,
the increased computation with this naive solution is considerable (2 × 2 → 3 × 3, which
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is 2.25 times greater). Therefore, in order to ensure that the number of windows after
shifting remains as 4 and the size of each patch remains consistent, an efficient batch
computation method for the shifted configuration is proposed and explained below.

Efficient batch computation for shifted configuration. To overcome the issue
mentioned above, a more efficient approach proposed by Swin Transformer [2] that in-
volves cyclically shifting the windows towards the top-left direction, as shown in Figure
3.5. That is, the original A and C are directly shifted to the bottom row, and the original
B is directly shifted to the rightmost column, obtaining a new shift window. The number
of this new shift window is 4, and each patch contains 16 small blocks. In this way, the
number of windows is fixed and the computational complexity is also fixed. This shift
window method allows for information exchange between adjacent groups (patches).

However, a new problem arises. As in the newly shifted window, the upper left corner
area can easily compute self-attention, but not the other blocks. Because the elements
in each block are moved from other places, there is not much connection between the
elements in different blocks, and therefore self-attention does not need to be computed.
Thus, Swin Transformer [2] adopts a masking method to calculate self-attention that is
the masked MSA shown in Figure 3.5. After the masking operation is performed, the
shifted window is restored to its original form. This cyclic-shift approach maintains the
same number of batched windows as the regular partitioning, making it efficient in terms
of latency.

Relative position bias. To compute self-attention, we use a relative position bias
matrix, denoted as B, for each head. This follows previous works such as [1, 36]. The
attention formula is shown as:

Attention(Q, K, V ) = softmax(QKT /
√

d + B)V (3.5)

According to [2], Q, K, and V are matrices with dimensions of M2 × d, representing
query, key, and value respectively. M2 is the number of patches in a window, and d is
the dimension of query/key. B is a bias matrix with dimensions of M2 × M2.

Overall, in SwinFSR, following [43], the multi-head self-attention (MSA) is performed
in parallel for h times, and the results are concatenated. Then, a multi-layer perceptron
(MLP) showing in Figure 2.9 that has two fully connected layers with GELU non-
linearity between them is used for further feature transformations, and the LayerNorm
(LN) layer is added before both MSA and MLP. The residual connection is employed
for both modules. The whole process is formulated as
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Fi,j = MSA(LN(Fi,j)) + Fi,j (3.6)

Fi,j = MLP (LN(Fi,j)) + Fi,j (3.7)

where Fi,j is the intermediate extracted input feature obtained from STL layers.

Figure 3.5: Illustration of an efficient batch computation ap-
proach for self-attention in shifted window partitioning (image
sources from [2]).

Figure 3.6: An illustration of the shifted window approach for
computing self-attention in the proposed Swin Transformer archi-
tecture (image sources from [2]). In layer l (left), a regular win-
dow partitioning scheme is adopted, and self-attention is computed
within each window. In layer 1 + 1, the window partitioning is
shifted, resulting in new windows.

3.3 Training Strategies

Rectangular Training Patches. In stereo image SR tasks, it is common to train
models with small squared patches cropped from full-resolution images [50, 53]. Due to
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the fact that disparity of the stereo images existing along the epipolar line, some models
use 30 × 90 rectangular patches to train the stereoSR models [16, 57]. We empirically
find that the patch size does affect the model performance and we show the experimental
results in Table 4.2. These patches are randomly flipped horizontally and vertically for
data augmentation.

Dropout Rate and Stochastic Depth. To further utilize the training data, we adopt
stochastic depth [14] and dropout [20] as regularization. The results of using different
stochastic depth and dropout rates during model training can be found in Table 4.3.

Loss Functions. We use the pixel-wise L1 distance between the SR and ground-truth
stereo images in the NTIRE 2023 Stereo Image Super Resolution Challenge Track 1 [45]:

LSR = ||ISR
L − IHR

L ||1 + ||ISR
R − IHR

R ||1, (3.8)

where ISR
L and ISR

R are respectively the super-resolved left and right images. IHR
L and

IHR
R are the ground truths.

For the Challenge Track2, inspired by [55,63], we adopt a combination of perceptual
loss and L1 loss to enhance supervision in the high-level feature space, as outlined below:

LF inal = LSR + 0.01 ∗ LP er (3.9)

LP er = 1
N

∑
j

1
CjHjWj

||ϕj(fθ(ILR)) − ϕj(IHR)||22. (3.10)

The VGG-16 [39], pre-trained on ImageNet, serves as the loss network ϕ. The loss
function, expressed in equation 18, uses the left and right low resolution input image
ILR

L , ILR
R and their correspondence high resolution ground truth images IHR

L , IHR
R . And

the super resolved images ISR, generated by the SwinFSR model are denoted by fθ(·),
where ϕj(·) represents the feature map with a size of Cj × Hj × Wj . j denote the j-th
layer of VGG-16. Moreover, the L2 loss is utilized as the feature reconstruction loss and
the perceptual loss function employs N features.
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Chapter 4

Experiments

In this section, we first describe the datasets that are used for evaluating the effective-
ness of our proposed method. Secondly, we introduce our experimental settings, i.e.,
implementation details and evaluation metrics. Then, we conduct ablation studies to
illustrate the benefits of each component in SwinFSR. After that, we compare the per-
formance of our proposed method with other state-of-the- art methods qualitatively and
quantitatively.

4.1 Datasets

To conduct our experiments, we utilize the training and validation datasets provided by
the NTIRE Stereo Image SR Challenge [46]. Specifically, we use 800 stereo images from
the training set of the Flickr1024 [49] dataset as our training data and 112 stereo images
from the validation set of the same dataset as our validation set. The low-resolution
images are created by downsampling using the bicubic method.

4.2 Implementation Details

To quantitatively evaluate the performance of our method, we adopt two common met-
rics: the Peak Signal to Noise Ratio (PSNR) and the Structural Similarity Index (SSIM)
as our evaluation criteria. During the experiment process, we constantly adjust our hy-
perparameters and find out proper values.

4.2.1 Evaluation Metrics.

The evaluation metrics used are peak signal-to-noise ratio (PSNR) and structural simi-
larity (SSIM). These metrics are calculated in the RGB colour space using a collection of
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stereo images obtained by averaging the left and right views. Table 4.1 displays the influ-
ence of varying the architecture, including three different sizes of SwinFSR by modifying
the number of blocks. These networks are identified as SwinFSR-S (Small), SwinFSR-B
(Big), and SwinFSR-L (Large).

4.2.2 Training Detail.

All models are optimized by Adam [19] with β1 = 0.9 and β2 = 0.9. The learning rate is
set to 1e−4 and decreased to 1e−5 with a cosine annealing strategy [29]. If not specified,
models are trained on 30 × 90 patches with a batch size of 1 for 7e6 iterations. The
window size of the model is 6 × 15. Data augmentation includes horizontal flips, vertical
flips and RGB channel shuffle are implemented.

4.2.3 Model Convergence.

A training process example of the SwinFSR-L model on Flickr1024 [49] is shown in
Figure 4.1. It demonstrates that the model’s loss reached 0.07 after 480000 iterations,
indicating that it had converged successfully. Likewise, the PSNR increased to 23.8 dB
gradually over the course of 300 epochs, indicating that the model’s parameters had
been optimized effectively without overfitting. The PSNR curve is displayed in Figure
4.2.

Figure 4.1: SwinFSR Architecture

4.3 Ablation Study

Residual Cross-Attention Modules. Here, all the experiments are conducted us-
ing SwinFSR-L. To show the effectiveness of RCAM, we substitute the cross-attention
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Figure 4.2: SwinFSR Architecture

Table 4.1: The performance of different SwinFSRs in size.

Model #Blocks #Params PSNR
SwinFSR-S 4 9.76M 23.8319
SwinFSR-B 6 14.01M 23.9630

SwinFSR-L 12 26.75M 24.1940

module in SwinFSR-L with several state-of-the-art approaches, such as biPAM [50],
SAM [54], SCAM [5] and baseline (without cross-attention module.). The Table 4.4
shows the 4 × SR results on Flickr1024 [49]. First, when compared with the baseline
that only explored intra-view information, our method is 0.4 dB higher than the baseline
in PSNR. Furthermore, compared with biPAM, SCAM, and SAM, our RCAM achieves
improvements of 0.235 dB, 0.035 dB, and 1.740 dB, respectively.

In addition, to further show the efficiency of our RCAM, we provide in Table 4.5
by the number of parameters and training time. It can be observed that our proposed
RCAM has fewer parameters and training time than that of SAM. It is worth mentioning
that both SCAM and our RCAM do not handle occlusion problems when performing
cross-view integration. Interestingly, we find using SCAM and RCAM does not jeop-
ardize the performance but can help achieve better PSNR and faster training. These
outcomes emphasize the importance of a well-designed cross-attention model and the
critical impact of integrating both cross-view information and intra-view information.

Test Time augmentations. Although Test Time Augmentation (TTA) has been
commonly utilized in competitions to enhance performance, its usefulness in stereo SR
tasks has not been proven. Here, we use horizontal and vertical flips as our TTA strategy.
To evaluate the effectiveness of TTA in this task, we assess each model’s inference results
using the NTIRE 2023 Stereo Image SR validation dataset [45]. The results, presented
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Table 4.2: The influence of different window sizes and training
patch sizes. We here report the results in both PSNR and SSIM
for 4×SR. TTA represents the test-time training. SwinFSR-S is
used to conduct this analysis.

Patch Window PSNR PSNR w. TTA SSIM SSIM w. TTA
32 × 32 4×4 23.52 23.63 0.734 0.738
32 × 32 8×8 23.57 23.65 0.734 0.737
30 × 90 3×9 23.65 23.74 0.739 0.741
30 × 90 6×15 23.83 23.92 0.747 0.749

in Tables 4.4, 4.6, 4.2 and 4.3, demonstrate that employing TTA is always beneficial.
This phenomenon suggests that TTA is indeed effective for stereo SR tasks.

Dropout. According to [20], adding only one line of dropout layer can significantly
improve the model performance. We thus follow [20] to put the dropout layer before
the last convolution layer. Then, we use SwinFSR-S to investigate the impact of the
dropout rate during training. In Table 4.6, we report results on Flickr1024 [49] validation
set. Compare to the SwinFSR-S model without the specific dropout layer, with a 10%
dropout rate, the PSNR result can be improved by 0.102 dB. However, when we increase
the dropout rate to 30%, the performance does not change. When it comes to 50%, half
of the nodes are dropped during the training, which makes the performance decrease by
2.194 dB.

Window Size and Training Patch Size. According to [57], a larger window size can
enhance the performance of stereoSR. Here, we use SwinFSR-S to further investigate
the impact of window size. Table 4.2 reports the results of the Flickr1024 [49] test set.
First, while using the same squared training patch size, a larger window size will improve
the performance of SwinFSR-S by 0.049 dB. If further changing the training patch sizes
to be rectangular according to the epipolar stereo disparity [50], the performance will
be increased by 0.087 dB. Moreover, increasing window size while using rectangular
training patches boosts the performance by 0.178 dB. Due to the limitation of the GPU
resources, we do not further enlarge the window size and training patch size. This shows
that the rectangular training patch and larger local window size indeed can help improve
the feature extraction ability across stereo images.

Stochastic Depth. As per the research conducted by [5], a deeper stochastic depth
can improve the performance of stereoSR. Therefore, we employ SwinFSR-L to examine
how stochastic depth affects our Swin Transformer-based model. Our results based
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Table 4.3: The influence of stochastic depth. We here report the
results in both PSNR and SSIM for 4 × SR. TTA represents the
test-time training. SwinFSR-L is used to conduct this analysis.

Model Stochastic Depth PSNR SSIM
w/o TTA w. TTA w/o TTA w. TTA

SwinFSR-L

N/A 23.9516 24.0442 0.7518 0.7537
0.1 24.0786 24.1679 0.7573 0.7591
0.2 24.0928 24.1773 0.7470 0.7491
0.3 23.9719 24.1035 0.7518 0.7548

Table 4.4: The influence of different cross-attention modules. We
here report the results in both PSNR and SSIM for 4 × SR. TTA
represents the test-time training. SwinFSR-L is used to conduct
this analysis.

Modules PSNR SSIM
w/o TTA w. TTA w/o TTA w. TTA

- 23.6921 23.7714 0.7380 0.7397
biPAM [50] 23.8883 24.0510 0.7432 0.7520
SAM [54] 22.3834 22.4366 0.6690 0.6715
SCAM [5] 24.0882 24.1926 0.7564 0.7616
RCAM 24.1233 24.1940 0.7583 0.7598

on the validation set of Flickr1024 [49] are presented in Table 4.3. During training,
incorporating 10% stochastic depth [14] lead to a 0.102 dB improvement in PSNR. When
using 20% stochastic depth, the performance of SwinFSR-L improves slightly by 0.1014
dB. However, setting the stochastic depth to 30% results in a performance decrease of
0.121 dB, but it still outperforms the baseline by 0.02 dB. This suggests that larger
models have a tendency to overfit the Flickr1024 training data. However, incorporating
stochastic depth can help enhance the overall performance and generalization ability of
the networks.

4.4 Comparison to State-of-the-Art Methods

4.4.1 Training Details.

To make a fair comparison with previous works, we follow the dataset splits in NAFSSR
[5] to train and test our method on four representative datasets, i.e., KITTI 2012 [12],
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Table 4.5: The efficiency comparison between several cross-
attention modules. We replace the cross-attention module in
SwinFSR-L to conduct the analysis. Training time is the cost for
4×SR on Flickr1024 [49] training set.

Modules Params Time/Epoch Speedup
SAM [54] 32.72M 1259ms -
SCAM [5] 25.00M 988ms %21.5

RCAM 26.75M 1065ms %15.4

Table 4.6: The influence of different dropout rates. We here re-
port the results in both PSNR and SSIM for 4×SR. TTA represents
the test-time training. SwinFSR-S is used to conduct this analysis.

Model Dropout Rate PSNR SSIM
w/o TTA w. TTA w/o TTA w. TTA

SwinFSR-S

N/A 23.7304 23.8191 0.7430 0.7451
0.1 23.8319 23.9240 0.7471 0.7492
0.3 23.8319 23.9230 0.7470 0.7491
0.5 21.6377 22.4352 0.6365 0.6767

KITTI 2015 [33], Middlebury [37] and Flickr1024 [49]. Specifically, we generate low-
resolution images by applying bicubic downsampling to high-resolution (HR) images with
a scaling factor of 4. Then we randomly crop 30×90 patches from stereo images as inputs.
During training, we set all the hyperparameters to the best possible ones given by our
ablation studies, such as dropout rate, window size, and stochastic depth. Additionally,
we employ horizontal and vertical flips as our test-time augmentation technique. For the
results on Flickr1024, we perform results ensemble by collecting the top three performed
models on the validation set and averaging their inference results on the test set as the
final results (the same strategy we used in the NTIRE 2023 challenge [45]). For the
other three datasets, we report the best performance without an ensemble.

4.4.2 Results

Table 4.7 presents the quantitative comparison of SwinFSR and several state-of-the-art
super-resolution methods. Our comparison includes single SR methods such as VDSR
[18], EDSR [25], RDN [61], RCAN [60], and SwinIR [24], as well as stereo SR methods
including StereoSR [15], PASSRnet [47], SRRes+SAM [54], iPASSR [50], SRRDE-FNet
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Table 4.7: Comparison with several state-of-the-art methods for
4×SR on the KITTI 2012 [12], KITTI 2015 [33], Middlebury [37]
and Flickr1024 [49] datasets. The number of parameters is de-
noted by "Params". Numbers reported for each dataset are in
PSNR/SSIM.

Model #Params KITTI2012 KITTI2015 Middlebury Flickr1024
VDSR 0.66M 25.60/0.7722 25.32/0.7703 27.69/0.7941 22.46/0.6718
EDSR 38.9M 26.35/0.8015 26.04/0.8039 29.23/0.8397 23.46/0.7285
RDN 22.0M 26.32/0.8014 26.04/0.8043 29.27/0.8404 23.47/0.7295

RCAN 15.4M 26.44/0.8029 26.22/0.8068 29.30/0.8397 23.48/0.7286
StereoSR 1.42M 24.53/0.7555 24.21/0.7511 27.64/0.8022 21.70/0.6460

SRRes+SAM 1.73M 26.44/0.8018 26.22/0.8054 28.83/0.8290 23.27/0.7233
PASSRnet 1.42M 26.34/0.7981 26.08/0.8002 28.72/0.8236 23.31/0.7195
iPASSR 1.42M 26.56/0.8053 26.32/0.8084 29.16/0.8367 23.44/0.7287

SSRDE-FNet 2.24M 26.70/0.8082 26.43/0.8118 29.38/0.8411 23.59/0.7352
SwiniPASSR-M2 22.81M -/- -/- -/- 24.13/0.7579

NAFSSR-L 23.83M 27.12/0.8194 26.96/0.8257 30.20/0.8605 24.17/0.7589

SwinFSR-S (ours) 9.76M 27.03/0.8143 26.83/0.8213 32.45/0.8891 23.83/0.7471
SwinFSR-B (ours) 14.01M 27.07/0.8151 26.87/0.8222 32.69/0.8910 23.96/0.7510

SwinFSR-L (ours) 26.75M 27.24/0.8195 27.00/0.8257 32.73/0.8915 24.19/0.7598

[6], SwiniPASSR [16], and NAFSSR [5]. The evaluation metrics used are PSNR and
SSIM, and the dataset used for testing are KITTI 2012 [12], KITTI 2015 [33], Middlebury
[37] and Flickr1024 [49]. By checking throughout the table, it can be observed that our
method outperforms all the compared approaches on the four datasets. These results
further validate the effectiveness of our proposed stereo SR method.
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Chapter 5

NTIRE Stereo Image SR
Challenge

5.1 2023 NTIRE Stereo Image SR Challenge

The 2023 NTIRE Stereo Image SR Challenge [45] is an event that focuses on advance-
ments in restoring and enhancing images. It specifically targets the task of super-
resolving a pair of low-resolution stereo images into a high-resolution image with a
magnification factor of ×4. This challenge is more complex than single image super-
resolution because it involves utilizing additional information from another viewpoint
and maintaining stereo consistency in the results. The challenge consists of three tracks,
with the first track focusing on distortion (measured by PSNR) and bicubic degradation,
second track on perceptual quality (measured by LPIPS) and bicubic degradation, and
a third track on real-world degradations. We have taken part in both Track 1 and 2.

5.1.1 Dataset

Training Set. For this challenge, the training set will be sourced from the Flickr1024
training set [49] with a number of 800 image pairs. This set will contain both the high-
resolution (HR) images and their corresponding low-resolution (LR) versions, which will
be made available to participants.
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Validation Set. The validation set used in this challenge is taken from the Flickr1024
dataset [49], consisting of 112 image pairs. Different from the training set, only high-
resolution (HR) images are provided for this set. The Low-resolution (LR) images are
generated by participants through the bicubic downsampling. It is important to note
that this validation set is meant for validation purposes only and cannot be used as
additional training data.

Test Set. To determine the ranking of submitted models, a test set containing 100
stereo image pairs will be used. However, unlike the training and validation sets, only
low-resolution (LR) images will be made available for the test set. It is important to
note that the images within the test set (including the LR versions) cannot be utilized
for training purposes.

5.1.2 Challenge Tracks

5.1.2.1 Track 1. Fidelity & Bicubic Degradation

Degradation Model. In this track, participants will use bicubic degradation to gen-
erate LR images:

ILR = IHR ↓ 4 (5.1)

where ILR and IHR are LR and HR images, ↓4 represents bicubic downsampling with
scale factor 4.
Evaluation Metrics. Peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) are the two evaluation metrics. they will be calculated for the average results of
the left and right views across all presented test scenes. It’s important to note that only
PSNR (RGB) is considered for the ranking.

5.1.2.2 Track 2. Perceptual & Bicubic Degradation

Degradation Model. In this track, bicubic degradation is used to generate LR images:

ILR = IHR ↓ 4 (5.2)

where ILR and IHR are LR and HR images, ↓ 4 represents bicubic downsampling with
scale factor 4.
Evaluation Metrics. according to the challenge [45], the goal of obtaining high-quality
stereo image SR results is to restore clear and detailed information while maintaining
high stereo consistency. In order to evaluate the perceptual quality of the separate
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images in a stereo SR result pair (ISR
left and ISR

right), the LPIPS [58] metric is used. To
further assess the stereo consistency between the SR images, a state-of-the-art stereo
matching method [26] is employed to obtain a disparity map DHR from an HR image
pair, which is used as the ground truth. From the SR image pair, a disparity map DSR

is estimated and the Mean Absolute Error (MAE) between DSR and DHR is used to
measure stereo consistency. Finally, the score is calculated as follows:

score = 1 − 0.5 × L(ISR
left, IHR

left) − 0.5 × L(ISR
right, IHR

right) − 0.1 × S(DSR, DHR) (5.3)

where L(ISR
left, IHR

left) represents the LPIPS score of (ISR
left and S(DSR, DHR) calculates

normalized MAE between disparity maps DSR and DHR.

5.1.2.3 Track 3. Fidelity & Realistic Degradation

Degradation Model. In this track, a realistic degradation model consisting of blur,
downsampling, noise, and compression is adopted to synthesize LR images:

ILR = C((IHR ⊗ k) ↓ 4 + n) (5.4)

The variables used in the evaluation are k for blur kernel, n for additive Gaussian noise,
and C for JPEG compression. ↓ 4 represents bicubic downsampling with scale factor 4.

Evaluation Metrics. Performance evaluation is carried out using PSNR and SSIM
as metrics, where only PSNR (RGB) is used for ranking. The evaluation is done on
both left and right views across all the test scenes. The reported results are the average
outcomes of the evaluation.

5.2 Competition Results

We submit a result obtained by the presented approach to the NTIRE 2023 Stereo Image
Super-Resolution Challenge Track 1 and 2 [45]. Due to the different evaluation metrics
of Track 1 and 2, we developed different losses accordingly.

Losses Design for Track 1. According to [50], we first tried all the losses mentioned
in their paper during our cross attention module design but found it time-consuming
and hard to converge for the model while using the repeating cross attention module
structure. Therefore, for simplicity, we only use the pixel-wise L1 distance between the
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Models PSNR (RGB) SSIM (RGB)
SwinFSR-L + SR (MSE) loss 23.6980 0.7288

SwinFSR-L + SR (MSE) loss + Perceptual loss 23.7121 0.7306

Table 5.1: NTIRE 2023 Stereo Image SR Challenge (Track 1)
results with different loss design based on the SwinFSR-L model.

SR and ground-truth stereo images in the NTIRE 2023 Stereo Image Super Resolution
Challenge Track 1:

LSR = ||ISR
L − IHR

L ||1 + ||ISR
R − IHR

R ||1 (16)

Losses Design for Track 2. As for the Track 2 Challenge, inspired by [55, 63], we
adopted a combination of perceptual loss and L1 loss to enhance supervision in the
high-level feature space, as outlined below:

LF inal = LSR + 0.05 ∗ LP er (17)

LP er = 1
N

∑
j

1
CjHjWj

||ϕj(fθ(x)) − ϕj(y)||22 (18)

The VGG-16 [39], pre-trained on ImageNet, serves as the loss network ϕ. The loss
function, expressed in equation 18, uses the low resolution input image x and the high
resolution ground truth image y. And the super resolved images generated by the Swin-
FSR model are denoted by (fθ(x)), where ϕj(ů) represents the feature map with a size
of Cj × Hj × Wj . Moreover, the L2 loss is utilized as the feature reconstruction loss and
the perceptual loss function employs N features.

In order to maximize the potential performance of our method, we adopt the stochas-
tic depth [14] with 0.2 probability to improve the model’s generality ability. During test
time, we adopt horizontal and vertical flips as our TTA strategy. Finally, we average
the SR images from the top 3 performance models on the validation set for our final
submission.

As a result, our final submission achieves 24.1940 dB PSNR on the validation set and
won a ninth place with 23.7121 dB PSNR on the test set. The details of the ranking
of Track 1 and Track 2 can be in Table 5.2 and Table 5.3 respectively. And a pair of
sample LR and HR images can be found in Figures 5.1a, 5.1b, 5.2, 5.3.
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Rank Models PSNR (RGB) SSIM (RGB)
1 BSR 23.8961 0.7396
2 TeamNoSleep 23.8911 0.7358
3 SRC-B 23.8830 0.7400
4 webbzhou 23.8220 0.7359
5 BUPT-PRIV 23.8041 0.7356
6 GDUT 23.7719 0.7319
7 STSR 23.7560 0.7299
8 Giantpandacv 23.7424 0.7290
9 LVGroup 23.7252 0.7309
10 MakeStereoGreatAgain 23.7181 0.7307
11 McSR 23.7121 0.7306

Table 5.2: NTIRE 2023 Stereo Image SR Challenge (Track 1)
results.

Rank Models Score (↑) LPIPS (↓) Dispary Error (↓)
1 SRC-B 0.8622 0.1386 0.0098
2 SYSU 0.8538 0.1451 0.0107
3 webbzhou 0.8496 0.1493 0.0106
4 SSSL 0.8471 0.1519 0.0099
5 Giantpandacv 0.8351 0.1637 0.0121
6 DiffX 0.8303 0.1686 0.0110
7 LongClaw 0.7994 0.1992 0.0143
8 BUPT-PRIV 0.7992 0.1994 0.0140
9 McSR 0.7960 0.2026 0.0142

Table 5.3: NTIRE 2023 Stereo Image SR Challenge [45] (Track
2) results
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(a) A low-resolution left im-
age of NTIRE 2023 Stereo
SR Challenge [45] Test set.

(b) A low-resolution right
image of NTIRE 2023 Stereo
SR Challenge [45] Test set.
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Figure 5.2: Visual result of a SwinFSR-L generated high-
resolution left image of NTIRE 2023 Stereo SR Challenge [45] Test
set.
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Figure 5.3: Visual result of a SwinFSR-L generated high-
resolution right image of NTIRE 2023 Stereo SR Challenge [45]
Test set.
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Chapter 6

Future Improvements

In this section, we introduce two future improvements to our work.

Disparity Map. Stereo matching [56] and stereo image super-resolution are two dis-
tinct techniques used to enhance the quality of stereo images. Stereo matching involves
the process of establishing correspondences between two images captured from different
viewpoints by estimating the disparity map [32], which encodes the pixel-wise differences
in a horizontal position between the two images. Once the disparity map is obtained, a
depth map can be generated to provide the 3D coordinates of the points in the scene. In
contrast, stereo image super-resolution involves generating a high-resolution image from
two low-resolution images.

Although stereo matching and stereo image super-resolution have different objectives,
their accuracy heavily relies on the quality of disparity estimation. If the disparity
estimation is inaccurate, it can lead to errors in 3D reconstruction and artifacts in
the super-resolved image. Therefore, methods that improve the accuracy of disparity
estimation can enhance the quality of the super-resolved stereo image. To achieve this,
recent studies have proposed using two separate networks to estimate the disparity maps
and generate super-resolved stereo images [52,59]. This approach allows each network to
focus solely on its respective task, leading to improved performance and higher quality
stereo images.

Overall, incorporating disparity estimation techniques into the design of stereo image
super-resolution algorithms can significantly enhance the quality and accuracy of stereo
images, making them more realistic and useful in various applications.
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Loss Design. The other potential future improvement for our work is to incorporate
perceptual loss and structural similarity index (SSIM) into the loss function design and
explore the best percentage setup of each loss, instead of just using mean squared error
(MSE) loss due to the PSNR evaluation metric.

Perceptual loss is a type of loss function that measures the difference between two
images in terms of their perceptual similarity, rather than their pixel-wise difference.
By incorporating perceptual loss into the loss function, the model can learn to generate
images that are not only high in resolution but also visually pleasing and perceptually
realistic. Similarly, SSIM is a metric that measures the structural similarity between two
images based on luminance, contrast, and structure. By incorporating SSIM into the
loss function, the model can learn to generate images that not only have high resolution
but also preserve the structural information of the original low-resolution images.

Recent studies have shown that using perceptual loss and SSIM in the loss function
design can improve the quality of super-resolved images. For example, ESRGAN [48]
propose a method that uses perceptual loss and adversarial training to generate high-
quality super-resolved images. According to our experiment results in Table 5.1, our
model’s performance has been improved by 0.133 dB with the help of the perceptual
loss.

Therefore, in future research, incorporating perceptual loss and SSIM into the loss
function design for stereo image super-resolution could further improve the quality of
super-resolved stereo images and make them more visually pleasing and perceptually
realistic.

Loss Design. Due to the competition time limitation, we did not test all the hyper-
parameters with the SwinFSR-L model. So to prove our founding of the hyper-parameters
are correct. We have to re-test them on SwinFSR as well.
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Chapter 7

Conclusion

7.1 Conclusion

We have introduced a novel network called SwinFSR for enhancing the resolution of
stereo images. This network utilizes a series of RSFTblocks to extract intra-view features
with enlarged reception fields and employs residual stereo cross-attention modules to
exploit the interdependence of intra-view and cross-view features. Additionally, great
effort is made to optimize the hyperparameters. Specifically, the best values of dropout
rate, training patch size, window size, and stochastic depth are found to be 10%, 30×90,
6 × 15 and 20%, respectively. The efficiency and effectiveness of the proposed method
are demonstrated by extensive experiments and ablation studies.
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