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Abstract

With the rapid development of image hardware, outdoor computer vision systems, for

instance, surveillance cameras, have been extensively utilized for various applications.

These systems typically equip a protective glass layer installed in front of the camera. How-

ever, during inclement weather conditions, images captured through such glass often suffer

from obstructions adhering to its surface, such as raindrops or dust particles. Consequently,

this leads to a degradation in image quality, which significantly affects the performance of

the system.

Existing obstruction removal algorithms attempt to resolve these issues using deep

learning techniques with synthetic data, which may not achieve a good visual result for

complex real-world situations. To solve this, some studies employ real-world data. How-

ever, they tend to focus on a singular type of obstruction, such as raindrops.

This thesis addresses the more challenging task of restoring images taken through glass

surfaces, which are impacted by various adherent obstructions such as dirt, raindrops,

muddy raindrops, and other small foreign particles commonly found in real-life scenar-

ios, including stone fragments and leaf particles. This work introduces an encoder-decoder

network that incorporates auxiliary learning and an attention mechanism. During the test-

ing phase, the auxiliary branch updates the shared internal hyperparameters of the model,

enabling it to restore images from not limited to known categories of obstructions from
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the training dataset, but also unseen ones. To better accommodate real-world situations,

this work presents a dataset comprising real-world adherent obstruction pairs, which cov-

ers a large variety of common obstructions along with their corresponding clean ground

truth images. Experimental results indicate that the proposed technique outperforms many

existing methods in both quantitative and qualitative assessments.
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“It’s puzzling. I don’t think I’ve ever seen anything quite like this before”

-Hal 9000, 2001: A Space Odyssey
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Chapter 1

Introduction

The rapid advancement of image hardware technology has led to the increasing implemen-

tation of outdoor vision systems across various applications. These systems are commonly

equipped with a protective glass layer to prevent them from external elements and potential

damage. Over time, or under extreme weather conditions, this glass layer may accumu-

late various types of occlusions, such as mud, and small particles. Consequently, images

captured through such an obscured medium are subject to multiple forms of degradation,

such as hazing, and occlusion. These degraded images significantly affect the reliability of

outdoor vision systems, potentially resulting in false positives or false negatives, which in

turn may lead to inaccurate object detection outcomes in applications such as autonomous

vehicle systems. As a result, there is a need to develop algorithms that recover images free

from obstructions.

Addressing the challenge of restoring images affected by adherent obstruction to their

original, clean state is a problem within the domain of image restoration. As a low-level

vision task, image restoration involves the process of recovering images that are free from

degradation factors, such as addictive noise and artifacts. These techniques frequently

1
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serve as pre-processing methods that can enhance the performance of high-level vision

tasks, ultimately improving the effectiveness of computer vision systems [16].

In the early stages of image restoration research, researchers employed spatial domain

and frequency domain methods that relied on simple mathematical models to reduce noise

and artifacts in degraded images, such as median filtering and Wiener filtering [16]. As

the field advanced, more sophisticated methods were introduced, including model-based

methods like Total Variation Regularization [49] and Non-Local Means [5]. In addition to

using model-based approaches, some researchers also employed external image priors and

sparse representations [12]. Although these approaches demonstrate satisfactory perfor-

mance in certain situations, they are often time-consuming, computationally demanding,

and inadequate in effectively restoring complex image textures.

The advent of deep learning and artificial neural networks revolutionizes the field of

image restoration. With the rapid evolution of artificial neural networks, the scope of degra-

dation types of image restoration problems expands from addictive noise to more diverse

and complex ones such as deraining, obstruction removal, and image inpainting [61, 9, 37].

As a result, the capabilities of image restoration techniques have significantly improved,

offering more robust solutions for a wider range of real-world challenges.

This thesis mainly focuses on the image restoration problem which removes artifacts

caused by images taken through obscured glass. To address this prevalent issue, this thesis

presents an attention-aided multi-branch network for adherent obstruction removal prob-

lem. By integrating auxiliary learning into the network, it gains the ability to adapt to

previously unencountered types of obstructions. Furthermore, this work presents a real-

world dataset for the adherent obstruction removal problem to enhance the network’s per-

formance. Consequently, the proposed method successfully and efficiently reconstructs

2
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obstructed regions while maintaining the visual context and integrity of the scene.

1.1 Contribution

This thesis presents a learning-based approach for adherent obstruction removal, along with

auxiliary learning and attention mechanism. Inspired by the work done by Chi et al[7], this

work implements a two-branch network that enables test-time adaptation. Apart from that,

this work also proposes a real-world dataset for the adherent occlusion removal problem.

The dataset includes several common obstructions such as dirt, raindrops, muddy raindrops,

and small particles. This thesis makes the following contributions:

• This thesis discusses a new challenge for the image restoration problem, namely, the

adherent obstruction removal problem.

• This study introduces a real-world dataset tailored for addressing adherent obstruc-

tion removal challenges.

• This work proposes and implements a learning-based approach for tackling obstruc-

tion removal challenges, namely attentive multi-branch encoder-decoder network for

adherent obstruction removal.

1.2 Programming Language and Libraries

1.2.1 Python

Due to its straightforward and intuitive syntax, this work chooses Python as the program-

ming language for the development of all codes.

3
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1.2.2 PyTorch

PyTorch1 is an Python open-source machine-learning library which is extensively em-

ployed in the development of deep learning applications. PyTorch provides a flexible and

dynamic approach to building and training neural networks. It is built around a central data

structure called a tensor. The data structure of the tensor is closely resembles NumPy’s

ndarray (Matrix Form) but is specifically optimized for GPU acceleration(especially for

NVIDIA GPU). PyTorch provides a range of functions for creating and manipulating ten-

sors, including functions for linear algebra operation and Fourier transforms[58].

1.2.3 NumPy

NumPy2 is a Python library dedicated to numerical computing, expecially for matrix com-

putation. Numpy offers a robust array data structure accompanied by an extensive array of

functions for data manipulation. NumPy also provides a diverse set of functions for array

operations, such as array creation, reshaping, slicing, and indexing.

1.2.4 OpenCV

OpenCV (Open Source Computer Vision Library)3 is an Python open-source computer

vision library for both Python nad C/C++ programming languages. It encompasses a com-

prehensive selection of image processing algorithms and functions, including decoding im-

ages into matrix forms, performing edge detection, and changing the color space of image

matrices.

1https://pytorch.org
2https://numpy.org
3https://opencv.org

4
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Chapter 2

Background

2.1 Machine Learning Background

This section delivers a comprehensive overview of essential concepts and background in-

formation for the development of the proposed learning-based method.

2.1.1 Machine Learning

Machine learning constitutes a subdomain of artificial intelligence that focuses on develop-

ing algorithms and models that empower computers to learn, as well as to make predictions

based on provided data. It builds on the idea that machines can automatically learn to

recognize complex patterns and make intelligent decisions without being explicitly pro-

grammed to do so. This is achieved through constructing mathematical models that are

trained on sample data known as training data, allowing them to adapt their behavior based

on the input they receive[30, 40].

5
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2.1.2 Deep Learning

Although deep learning and machine learning are often used interchangeably, it is essen-

tial to acknowledge the distinctions between these two concepts. Machine learning, deep

learning, and neural networks each represent subdomains within the artificial intelligence

field. Neural networks are actually a sub-field of machine learning, and deep learning is

a sub-field of neural networks. Deep learning also known as deep neural networks, con-

sists of multi-layers (usually more than three layers). The key advantage of deep learning

over traditional machine learning is its ability to automatically learn features from raw in-

put data, eliminating the need for extensive manual feature engineering. This capability

is particularly useful when working with large amounts of high-dimensional data, such as

images, text, or speech signals[17].

Figure 2.1: An illustration for deep learning family[33]

6
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2.1.3 Supervised/Unsupervised Learning

There are several types of machine learning approaches, such as supervised learning and

unsupervised learning. Supervised learning entails acquiring knowledge from labeled data,

wherein the algorithm receives input-output pairs and aims to learn a mapping between

them. Given a collection of input-output pairs with size N, denoted as (x1, y1), ..., (xN , yN),

the i-th input data, represented by xi is referred to as the feature vector, while yi signifies the

corresponding i-th label. The supervised learning model endeavors to identify a mapping

function, or hypothesis function, expressed as g : X → Y , where X symbolizes the input

space and Y represents the output space[40]. The learning process entails the discovery of

an appropriate hypothesis function g within a predetermined space of potential functions,

designated as G, which is commonly referred to as the hypothesis space. The hypothesis

function g can also be represented using a scoring function f : X × Y → R, where g

represents the returned y value that corresponds to the highest score achieved:

g(x) = argmax
y

f(x, y) (2.1.1)

In contrast to supervised learning, the model for unsupervised learning earns to identify

patterns or structures by analyzing the relationships between data points, without using any

predefined target variable. The primary goal of unsupervised learning is to discover hidden

structures, patterns, or relationships within the data, without relying on any prior informa-

tion or guidance[3]. Self-supervised learning is a subcategory of unsupervised learning in

which a model learns to make predictions or representations from the input data without

relying on human-labeled examples. Instead, the learning process leverages the structure

and inherent properties of the data itself to generate ”pseudo-labels” that the model can use

7
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for training [26].

2.1.4 Auxiliary Learning and Test-time Adaptation

Auxiliary learning, alternatively referred to as multi-task learning, is a training methodol-

ogy wherein a singular model is concurrently trained to execute multiple correlated tasks[38].

The fundamental concept for auxiliary learning is the exploitation of shared representations

or features across tasks, thereby enhancing the model’s generalization and increasing the

performance of the primary task. By acquiring knowledge from auxiliary tasks, the model

can adeptly capture and leverage the underlying data structure, which may remain obscured

when concentrating solely on the primary task.

In the context of auxiliary learning, the model is structured with multiple output branches,

primary branches and auxiliary branches. The primary branch is the main objective of the

model, while auxiliary branches aim to assist the primary branch. By carefully choosing

correlated tasks for the auxiliary branch, the trained model is able to adapt to unseen data

without any additional training or fine-tuning of the primary task, this technique is known

as test-time adaptation. By leveraging auxiliary learning, the model can be guided to adjust

the shared internal parameters of both the auxiliary branch and primary branch, resulting

increase in performance on the primary task at test time[7]. This is particularly useful when

the test data distribution differs from the training data distribution[13].

2.1.5 Optimization

In machine learning, the objective is to develop a model capable of generating accurate

predictions given input data. To achieve this, a loss function, denoted as J(θ) is estab-

lished to quantify the difference between the predicted outcomes and the true labeled data.

8
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θ represents the model parameters: θ ∈ Rd. Given the learning rate η, which determines

the size of steps to reach a minimum, The goal is to find the model parameters θ∗ that

minimize the loss function, and this is the optimization process. Optimization in machine

learning can be broadly classified into two categories: convex and non-convex optimiza-

tion. Convex optimization pertains to scenarios when every local minimum concurrently

serves as a global minimum, and the objective function is convex. Conversely, non-convex

optimization addresses issues where the objective function is non-convex and may possess

multiple local minima[4]. Machine learning models, especially deep learning models, of-

ten involve non-convex optimization due to the complexity of their loss functions. To solve

these optimization problems, various optimization algorithms have been proposed[48]:

Batch gradient descent: Batch gradient descent, also known as vanilla gradient descent, is

a first-order optimization algorithm that relies on the gradient of the loss function to update

the model parameters. It calculates the gradient for the entire dataset and updates the model

parameters accordingly:

θ = θ − η ·∇θJ(θ) (2.1.2)

The main drawback of gradient descent is its computational cost when dealing with large

datasets.

Stochastic Gradient Descent: Stochastic Gradient Descent (SGD) is a variant of gradient

descent that updates the model parameters using the gradient of the loss function with

respect to a single data point, chosen randomly at each iteration. This makes the algorithm

much faster than gradient descent but introduces more noise in the optimization process.

θ = θ − η ·∇θJ(θ;x
(i); y(i)) (2.1.3)

9
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Mini-batch Gradient Descent: Mini-batch gradient descent is a compromise between

gradient descent and SGD. It updates the model parameters using the gradient of the loss

function with respect to a mini-batch of data points, which reduces the noise of SGD while

maintaining faster convergence compared to full gradient descent.

θ = θ − η ·∇θJ(θ;x
(i:i+n); y(i:i+n)) (2.1.4)

Adaptive Learning Rate Method: Adaptive Learning Rate Methods, such as Adaptive

Moment Estimation (Adam)[29], Adagrad[10], and RMSprop1, adjusting the learning rate

during optimization. They maintain per-parameter learning rates, allowing for individual

updates of each model parameter depending on its importance. This helps improve con-

vergence speed and performance in complex optimization landscapes. Optimization in ma-

chine learning often involves additional techniques to improve generalization and prevent

over-fittings, such as regularization (e.g., L1, L2, or dropout[54]) and early stopping.

Figure 2.2: A graphical representation of a optimization process using Stochastic Gradient
Descent[25]

1RMSprop proposed by Geoff Hinton is an unpublished adaptive learning rate technique. This technique
is introduced during his Coursera class in Lecture 6e.
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2.1.6 Backpropagation

In the gradient descent process, the gradient of the loss function,∇θJ(θ), is required. Al-

though determining this gradient using analytical expressions is relatively simple, each

gradient descent step requires the calculation of gradients for all weights and biases (pa-

rameters) within the network. Consequently, for extensive networks, such as those com-

prising one million parameters, the associated computational expense is considerably high.

In 1986, Rumelhart et al. [50] conducted an experimental analysis of backpropagation

applied to several neural networks. Their findings demonstrated that backpropagation sig-

nificantly outperformed the direct computation approach, making previously intractable

problems solvable.

The operations of the Backpropagation neural networks can be divided into two steps:

feedforward and Backpropagation[42]. In the feedforward step, the input is passed through

the network to compute the predicted output. Each neuron calculates a weighted sum of its

inputs, adds a bias term, and applies an activation function. The predicted output O, also

known as the activation, is then compared to the true output, and the loss is computed using

a loss function. The backward pass calculates the gradients of the loss with respect to the

weights and biases of the network. Using the chain rule, these gradients are computed in a

layer-wise manner, starting from the output layer and moving back toward the input layer.

The gradient calculation involves computing the partial derivatives of the loss function with

respect to the neuron’s activation and the weighted sum at each layer. Given l as the last

layer of the neural network, a cost function C, a bias bl, and a weight wl with respect to l,

the gradient can be calculated as:

∂C

∂wl
=
∂C

∂al
∂al

∂zl
∂zl

∂wl
(2.1.5)

11
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∂C

∂bl
=
∂C

∂al
∂al

∂zl
∂zl

∂al
(2.1.6)

where zl = wl ∗ x + b and al = f(zl) with f bing the activation function. The weight

and bias for the last layer of nerual net can be updated using an optimization technique

discussed in the previous section.

Figure 2.3: Example of Backpropagation Neural Network with one hidden layer[39, 42]
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2.1.7 Neural Network

Figure 2.4: Anatomy of human neuron parts[39, 41]

The Neural network in machine learning, often referred to as an artificial neural network

(ANN), is a computational model inspired by the biological neural networks found in the

human brain[14]. Similar to a biological human neuron shown in Figure.2.4, the artificial

neural network is a simplified abstraction. In the human brain, neurons are the basic build-

ing blocks that receive, process, and transmit information through electrical and chemical

signals[39]. Similarly, ANNs consist of interconnected processing units called artificial

neurons or nodes. Each artificial neuron receives input from other neurons, performs a

computation, and sends the output to subsequent neurons in the network. The connections

between artificial neurons are like dendrites and axons[41], with each connection having

an associated weight that models the strength of the synapse. These weights determine the

influence of one neuron’s output on another neuron’s input. When the integrated signal in

a biological neuron reaches a certain threshold, the neuron generates an action potential

or spike, which is then transmitted along the axon to other neurons. In artificial neurons,

this behavior is modeled by applying a non-linear activation function to the weighted sum,

13
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determining the neuron’s output. Common activation functions include the sigmoid, hy-

perbolic tangent, and rectified linear unit (ReLU), which introduce non-linearity into the

network, allowing it to learn complex patterns.

Figure 2.5: An example of an artificial neuron, this neuron calculates the weighted sum of
its inputs, followed by a non-linear function.[39, 41]

2.1.8 Convolutional Neural Network

Convolutional Neural Network (CNN) proposed by Lecun et al. [34] is a Deep Learning

algorithm that is specifically designed for tasks that involve processing grid-like data struc-

tures such as images. CNNs leverage the spatial structure of the input data by employing

convolutional layers. In each layer, a filter, often referred to as a kernel, which is a n×m×d

matrix (usually a square matrix), is placed over a small region of the input data, originating

from the top-left corner of the input matrix. The element-wise product between the filter

and the input region it covers is computed, followed by summing up the resulting values.

This sum produces a single value, which becomes the output for that specific region. Then,

the filter slides across the input data, typically by one or more pixels at a time (known as the

stride). At each position, the convolution process is repeated to compute the corresponding

output value, until it reaches the end of the input matrix. As the filter progresses across the

entire input data, a new matrix denoted as the feature map (or convolutional layer output)
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Figure 2.6: Illustration of convolution process using 3x3 kernel[52]

is created. Given the 2D input matrix I with size m × n and a filter F ,the feature map g

can be calculated as:

g(x, y) =
m−1∑
i=0

n−1∑
j=0

I(x+ i, y + j) · F (i, j) (2.1.7)

Assuming that both the input and filter are square matrices, let the dimension of the in-

put matrix be M and the dimension of the filter be F.The size of the feature map can be

calculated as:

Mout =

⌊
M − F + 2P

S

⌋
+ 1 (2.1.8)

Such feature map encapsulates the spatial information and discernible patterns inherent in

the input data, thereby serving as a vital component in the analysis and interpretation of

complex structures. By stacking multiple convolutional layers, CNNs can learn increas-

ingly complex and abstract features. CNN architectures also incorporate activation layers,

pooling layers, and fully connected layers for non-linearity, dimensionality reduction, and

final output generation, respectively [31]. The network is trained using supervised learning

algorithms and backpropagation to minimize a loss function, which measures the difference

between its predictions and the true output labels.
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Figure 2.7: An example of CNN architecture, LeNet[34]

2.1.9 Residual Network

ResNet, an abbreviation for Residual Network, represents a deep neural network architec-

ture proposed by He et al. in their paper, ”Deep Residual Learning for Image Recognition”

[23]. Training deeper neural networks can be challenging due to the problem of vanishing

gradients. To address this issue, ResNet introduces shortcut connections, also known as

residual connections, which allow deep neural networks to learn a residual function, effec-

tively mitigating the vanishing gradient problem and facilitating more effective training.

In a ResNet, each residual block comprises a sequence of convolutional layers, followed

by batch normalization 2and activation functions. The residual block can be expressed

mathematically as:

y = F(x, {W}) + x (2.1.9)

2Batch Normalization [24] computes the mean and variance of each equally divided subset (mini-batch),
then normalizes the a layer’s input by subtracting the mean and dividing by the standard deviation. This
technique mitigates internal covariate shift, and accelerates convergence.
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Figure 2.8: Residual Block with shortcut connection[23]

where x and y are the input and output of the residual block,F(x, {W}) represents residual

mapping that needs to be learned

2.1.10 U-Net

U-Net[47] is a type of convolutional neural network (CNN) architecture that was originally

designed for biomedical image segmentation tasks. It was introduced by Olaf Ronneberger,

Philipp Fischer, and Thomas Brox in their 2015 paper ”U-Net: Convolutional Networks for

Biomedical Image Segmentation.”. Inspired by the shape of the English alphabet ’U’, the

U-Net architecture has a symmetric design. With left half of the ’U” as the encoder path

and the right half as the decoder path.

The encoder path is composed of several layers of convolutional blocks, each consisting

of two consecutive 3x3 convolution layers followed by a rectified linear unit (ReLU) acti-

vation function and a 2x2 max-pooling layer for downsampling. As the path progresses, the

number of feature channels is doubled after each max-pooling layer, allowing the network

to learn increasingly complex features and capture hierarchical information.
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The decoder path mirrors the contracting path but replaces the max-pooling layers with

2x2 up-convolution (also known as transposed convolution) layers for upsampling. Each

up-convolution layer is followed by a concatenation operation with the corresponding fea-

ture map from the contracting path, which is achieved via skip connections. This process

helps the network retain finer-grained spatial information. After concatenation, two 3x3

convolution layers and ReLU activations are applied, similar to the contracting path.

The output from the deocder path’s last layer is passed through a 1x1 convolution layer

with a softmax or sigmoid activation function, generating the final segmentation map. This

map represents the probability of each pixel belonging to a specific class or region in the

input image.

Figure 2.9: U-Net Architecture[47]

In 2015, the U-Net architecture demonstrated superior performance compared to the

previously established best method, a sliding-window convolutional network, on the ISBI

challenge for segmentation of neuronal structures in electron microscopic stacks [47]. In
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addition to its achievements in the field of image segmentation, the U-Net architecture

exhibits versatility by accommodating adjustments in the activation function, allowing for

its application in various image restoration tasks. For instance, U-Net has been employed

in image denoising, as demonstrated by Abascal et al. [1], and in image deblurring, as

shown by Chi et al. [7]. These examples highlight the flexibility and adaptability of the

U-Net architecture, enabling its use across a diverse range of image processing challenges.

2.1.11 Autoencoder

Autoencoders are a type of unsupervised neural network architecture that can learn effi-

cient representations of input data by compressing and reconstructing the input through

a bottleneck layer[63]. The presence of a bottleneck in the network force a compressed

knowledge representation of the original input, which could potentially pose challenges

during the reconstruction process.

In the case where input features are entirely independent of one another, achieving

accurate compression and subsequent reconstruction becomes a complex task. However, if

the data exhibits some inherent structure, such as correlations between input features, the

network can effectively learn and exploit this structure while passing the input through the

bottleneck[62].

Like U-Net, Autoencoder consists of an encoder and decoder network, the encoder is

composed of several layers of feedforward neural networks or convolutional neural net-

works (CNNs). For image data, CNNs are often used to extract spatial information and hi-

erarchical features. As the encoder progresses, the spatial dimensions are typically reduced

using pooling or strided convolutions, while the number of feature channels increases. The

final layer of the encoder produces the latent representation, often referred to as the ”code”
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Figure 2.10: An autoencoder architecture. The input image undergoes a systematic
encoding process, resulting in a compact representation and then be decoded. [62]

or ”bottleneck.” The decoder is designed to mirror the encoder’s structure but in reverse or-

der. It takes the latent(compressed) representation as input and attempts to reconstruct the

original data. For image data, the decoder often employs transposed convolutional layers

or upsampling operations to increase the spatial dimensions while reducing the number of

feature channels. The final layer of the decoder outputs the reconstructed data, typically

using an activation function that matches the desired range of the input date.

Mathematically, the proposed model comprises an encoder function, denoted by g(·)

and parameterized by φ. A decoder function, denoted by f(·) and parameterized by θ. The

compact representation, acquired from the input x within the bottleneck layer is represented

as z = gφ(x). Consequently, the reconstructed input is expressed as x′ = fθ(gφ(x)).

The parameters (θ, φ) are jointly optimized to produce a reconstructed data sample that

closely approximates the original input, x ≈ fθ(gφ(x)). In essence, this process aims to

learn an identity function[62]. To quantify the discrepancy between two vectors, various
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metrics can be employed, such as mean squared error (MSE) loss:

LAE(θ, φ) =
1

n

n∑
i=1

(x(i) − fθ(gφ(x(i))))2

2.1.12 Attention

During human cognitive processes, our brain can selectively concentrate on specific aspects

of a scene while filtering out less relevant details. Inspire by this idea, the attention mech-

anism is created. the attention mechanism allows models to selectively focus on specific

parts of an image or specific features when making predictions or generating output. For

instance, the Convolutional Block Attention Module (CBAM)[65] focuses on refining fea-

ture representations by applying two types of attention mechanisms: channel attention and

spatial attention. Channel attention focuses on emphasizing informative feature channels.

It uses global average pooling and global max pooling to capture channel-wise statistics,

followed by a shared multi-layer perceptron (MLP) to generate channel attention weights.

These weights are then used to rescale the input feature maps. The spatial attention fo-

cuses on emphasizing relevant spatial locations in the feature maps. It uses global average

pooling and global max pooling to capture spatial information from the input feature maps,

followed by a convolutional layer with a kernel size of 7x7 to generate a spatial attention

map. This map is then used to rescale the input feature maps element-wise.

Given an intermediate feature map F with channel size of C, height of H and width of

W as input, F ∈ RC×H×W , the attention process can be summarized as:

F′ = Ms(F)⊗ F (2.1.10)

Where ⊗ denotes element-wise multiplication and Ms is the 2D Spatial Convolutional
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Block Attention Module:

Ms(F) = σ(f 7×7([AvgPool(F);MaxPool(F])))

= σ(f 7×7([Fs
avg;F

s
max]))

(2.1.11)

whereσ denotes the sigmoid function and f 7×7 is a convolution filter with size 7x7[65]

Figure 2.11: Diagram of CBAM attention modules [65]

2.2 Evaluation Metrics and Loss Functions

Loss functions and evaluation metrics occupy a critical position in the development and

evaluation of artificial neural networks. These quantitative measures facilitate the deter-

mination of a model’s performance and steer the optimization process throughout training.

This section presents an overview of several most widely-used loss functions and evaluation

metrics.
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2.2.1 Mean Absolute Error

The Mean Absolute Error (MAE), alternatively referred to as L1-norm loss or L1 loss,

serves as a loss function in machine learning and optimization contexts. This function

measures the absolute distance between reconstructed image I ′ and original imageI ′. Given

an image size ofM×N , mathematically, this relationship can be expressed as follows[64]:

MAE =
1

MN

M∑
i=1

N∑
j=1

|I(i, j)− I ′(i, j)| (2.2.1)

2.2.2 Mean Squared Error

Mean Squared Error (MSE), also known as L2-norm loss or L2 loss, is more sensitive to

outliers and emphasizes larger errors due to the squaring operation. The L2 loss calculates

the squared differences between the predicted values and the true values and then aver-

ages these squared differences over the entire dataset. Mathematically, it can be expressed

as[51]:

MSE =
1

MN

M∑
i=1

N∑
j=1

(I(i, j)− I ′(i, j))2 (2.2.2)

2.2.3 Peak Signal-to-Noise Ratio

Peak Signal-to-Noise Ratio, also known as PSNR constitutes a prevalent metric in mea-

suring the quality of reconstructed images, particularly in image compression and image

denoising tasks. PSNR is a logarithmic measure that quantifies the difference between

the original image and the reconstructed image, with higher PSNR values indicating better

image quality. Mathematically, it can be formulated as[51]:

PSNR = 10 · log10

MAX2
I

MSE
(2.2.3)
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Where MAX2
I is the maximal of image data if the image is 8 bits, the possible maximal is

28 − 1, which is 255. The unit for PSNR is in dB.

2.2.4 Structural Similarity Index Measure

The Structural Similarity Index Measure (SSIM) is another widely employed metric for

evaluating the quality of reconstructed images. In contrast to PSNR, SSIM emphasizes

the assessment of structural, luminance, and contrast information within images to more

accurately reflect the human perception of image quality[51]. The SSIM index is calculated

using a sliding window that traverses the entire image, comparing local regions within the

window from both the reconstructed and original images. The SSIM can be mathematically

expressed as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2.2.4)

where x and y are image windows from original image I and reconstructed image I ′. µx

and µy are their local means. σ2
x and σ2

y are local variance, σxy is the local cross-covariance

between x and y. C1 = (k1L)
2 and C2 = (k2L)

2 are small constants to prevent instability

when the denominator is close to zero, where L is the dynamic range of the image, for 8-bit

image, the L has the value of 255 which is 28 − 1. the default value of k1 and k2 are 0.01

and 0.03. SSIM values range from -1 to 1, with a value of 1 signifying identical images

and values approaching 1 denoting greater similarity.
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2.2.5 Multi-Scale Structural Similarity

The Multi-Scale Structural Similarity (MS-SSIM) index is an extension of the Structural

Similarity Index Measure (SSIM). Unlike SSIM, MS-SSIM provides a more comprehen-

sive and robust measurement of perceptual image quality than SSIM.[60]. MS-SSIM works

by applying SSIM calculations at multiple scales, which are obtained by iteratively down-

sampling the images through a Gaussian pyramid. The final MS-SSIM score is computed

as the product of the SSIM values at each scale, with the luminance, contrast, and structure

components combined differently for each scale. The MS-SSIM can be mathematically

expressed as:

MS-SSIM(x, y) = [lM(x, y)]αM
M∏
j=1

[cj(x, y)]
β[sj(x, y)]

γ (2.2.5)

where x and y represent the original and reconstructed image windows. M is the highest

scale, lM(x, y) is the luminance comparison at the highest scale, cj(x, y) is the contrast

comparison at scale j, and sj(x, y) is the structure comparison at scale j. The exponents α,

β, and γ are weighting factors that control the relative importance of each component.

Figure 2.12: Diagrams of MS-SSIM measurement system, where L is low-pass filtering
and ↓ is down-sampling by factor of 2 [60].

25

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Chapter 3

Problem Definition and Related Work

Distinct from the existing obstruction removal problem, which aims to eliminate captured

obstructions like fences or raindrops from images or videos. This thesis tackles the chal-

lenge of artifact removal in images taken through an obstruction-adhered glass. This prob-

lem can be commonly found in outdoor vision systems, particularly for surveillance cam-

era systems. This problem was proposed by Dr. Xiaolin Wu, who is the supervisor of this

work. To date, no feasible solution exists for such a problem, except works like Qian et

al.[44], which focus on restoring clean images from raindrops adhered to a glass medium

or surface of the camera lens. However, these works are limited to deraindrop, rather than

removing various types of obstructions. Upon analyzing the artifacts caused by obstruc-

tions in the image dataset introduced in Chapter 5, this thesis categorizes the problem into

three sub-problems: image deraindrop and image dehazing and small adherent particles

removal.
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3.1 Image Deraindrop

Images captured on a rainy day can experience significant degradation in quality and visi-

bility, leading to poor performance in various visual applications such as surveillance sys-

tems and autonomous vehicles. As the result, image deraining is a notable challenge in the

field of computer vision and image processing. In summary of existing work, most rain

Figure 3.1: An example of the image captured through a glass adhered with raindrops

models can be broadly categorized into three major groups: rain streak, raindrop, and a

combination of rain and mist[53], while this work is mainly focused on raindrop removal.

Given a clean background image B and the raindrop degradation artifacts in a tiny local

coherent area D, the degraded image affected by Raindrop Rd can be modeled as:

Rd = (1−M)�B +D (3.1.1)

In the given equation,� denotes the element-wise multiplication, while the binary maskM

distinguishes if a pixel x is belonging to a raindrop region or the clean background. When

M(x) = 1, pixel x is considered part of a raindrop region, or vice versa. Although water
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droplets are essentially transparent, their shape and refractive index can cause pixels within

a raindrop region to be influenced by the entire environment rather than a single point in the

real world [69]. As a result, pixels within the raindrops’ region appear to display unique

imagery that is distinct from the background scene which is shown in Fig.3.1. Similar to

the typical occlusion removal problem, when the camera is set to focus on the background

scene, the imagery within the water droplets’ region appears to be out of focus. How-

ever, certain areas of raindrops, particularly around the periphery and transparent regions,

can still convey background information.[44]. Furthermore, this work assumes that other

types of adherent obstructions exhibit behavior similar to raindrops, except that their light

transmission rate is zero.

3.1.1 Multi-frame based approach

There are several approaches employ both spatial and temporal information to address the

deraining problem. For instance, Garg and Nayar [15] suggest a method for detecting

and removing rain from videos by exploiting the spatio-temporal characteristics of rain.

They introduce a photometric model for rain, which captures the dynamic behavior of

raindrops. By examining consecutive video frames, they calculate the average intensity

of identified rain artifacts from preceding and following frames which will remove rain.

However, their primary focus is on rain-strike removal. Alletto et al. [2] pioneered the

application of learning-based methods for video raindrop removal tasks. They proposed

a spatio-temporal generative adversarial network consisting of a self-supervised raindrop

location estimator and a raindrop remover, wherein the spatial-temporal generator is jointly

trained with optical flow. However, these methods necessitate multi-frame input, making

them unsuitable for single-image deraindrop applications. Although Alletto et al. also
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proposed a single-image raindrop removal model, its performance is not as promising as

the spatio-temporal counterpart, and their method is trained with synthetic raindrop data.

3.1.2 Single image based approach

With the emergence of learning-based methods, the field of single-image raindrop removal

has advanced rapidly. Eigen et al. [11] were the first to address the problem of water droplet

removal with a learning-based approach, they develop a shallow convolutional network

could restore the clean background B. Nonetheless, such a method has limitations due to

the restricted performance of the CNN model. The resulting images exhibit artifacts and

fakeness, particularly in regions with large and dense water droplets.

Qian et al.’s 2018 work, DeRaindrop [44], is possibly the first practical solution for

raindrop removal using a generative adversarial (GAN) [18] approach. Their network in-

cludes an attentive recurrent network that incrementally generates an attention map, guided

by the binary mask M from Eq. 3.1.1. To obtain the mask, Qian et al. simply subtract the

raindrop-degraded image Rd from its corresponding clean image B and apply a threshold

to determine whether a pixel is part of a raindrop region. In practice, they set the threshold

to 30 for binary image masks in the training datset ant it is proves uffficeint for generating

the attention map. They then feed the attention map into a contextual autoencoder to restore

the background sceneB. Additionally, they proposed a novel real-world deraindrop dataset

for their method. Quan et al. [45] proposed using a double attention mechanism, incorpo-

rating a shape-driven attention mechanism and channel re-calibration, to simultaneously

guide the CNN based on the dataset provided by Qian et al. The shape attention identifies

raindrops by exploiting their physical properties, such as convexity and contour closedness.

Furthermore, the channel re-calibration strategy is utilized to bolster the model’s robustness
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in handling raindrops of various shapes.

3.2 Image Dehazing

Figure 3.2: An example of image captured through a glass adhered with dirt

As shown in Fig. 3.3, In cases where the obstruction is small and thin, it decreases the

visibility of the scene in a manner similar to fog, resulting in mist-like artifacts. To address

this issue, He et al.[20] define a mist model for the task. Given R as a combination of ob-

structions such as raindrops, A as the scattering of adherent mist, and the clean background

B, the degraded image Icap, which suffers from mist artifacts, can be mathematically ex-

pressed as:

Icap = ((1−M)�B +R)� t+ A� (1− t) (3.2.1)

In the adherent mist model,M represents the binary mask of obstructions, · denotes element-

wise multiplication, and t is the transmission map, which indicates the information passing

rate through the adherent mist[21]. Since there are the limited number of works primar-

ily focused on adherent mist, this thesis expands the scope to several related studies on
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atmospheric haze removal.

3.2.1 Traditional approach

Single image dehazing was initially investigated using prior-based methods, such as the

dark channel prior proposed by He et al. [22]. In their work, He et al. assume that most

local patches contain some pixels that exhibit very low intensities in at least one color

channel in haze-free outdoor images. Based on this prior, the thickness of the haze can be

determined to recover a high-quality haze-free image. However, this method often leads to

incorrect color representation for mist-covered regions.

3.2.2 Learning-based approach

In recent years, learning-based methods have been proposed for the dehazing problem. Cai

et al. [6] introduce an end-to-end CNN network for estimating transmission, incorporat-

ing a novel BReLU unit. Zhang et al. [70] present a deep learning-based approach for

single-image dehazing using a densely connected pyramid dehazing network (DCPDN).

The DCPDN combines both local and global context information and utilizes dense con-

nections to facilitate the flow of information and gradients within the network. This net-

work architecture enables the model to effectively learn haze removal from images while

preserving image details.

3.3 Small Adherent Obstruction Removal

In contrast to image deraindrop and image dehazing, small adherent particles exhibit unique

optical properties. The glass layer with adherent small particles imparts a certain radiance
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Figure 3.3: An example of small adherent particles can be observed in the following
scenario: Within the red circle, obstruction artifact is semi-transparent, while within the

yellow circle, obstruction artifact appear opaque.

to the camera by either scattering light from various environmental directions or reflecting

light from its surface. Qiang Li, a member of our research team, proposed an adherent

obstruction image formation model[36]. Given Is(x, y) as the radiance of the target scene, I

as the image captured by the camera sensor, α(x, y) ∈ [0, 1] represents the attenuation ratio

of the dirty glass layer, where 0 is for completely opaque and 1 is for entirely transparent,

Io(x, y) signifies the intensification component which is the supplementary radiance from

the dirty glass layer itself. As a result, the proposed image formation model can be depicted

as:

I = α · Is ∗ h+ (1− α) · Io ∗ h (3.3.1)

where h(x, y, d) denotes the point spread function (PSF) at the defocus position d for the

occlusion layer, and ∗ indicates image convolution. Consequently, small adherent particles

removal can be viewed as a combination of defocus, deblurring and inpainting tasks.
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3.4 Image Inpainting

Numerous deraindrop methods have drawn inspiration from image inpainting, such as

incorporating GAN or cGAN networks into their deraindrop models to ”paint” visually

pleasing results for raindrop-covered regions, as demonstrated in [44, 2]. Therefore, it is

essential to mention the differences between image inpainting and image deraindrop. In

contrast to image deraindrop, involves the restoration of damaged areas within an image

while preserving overall coherence. In inpainting networks such as those found in [43, 19],

an additional binary mask is provided as input to identify the damaged pixel regions. When

target regions are provided, local assessments can be conducted to determine the realism

of local areas. Therefore, the direct application of an inpainting algorithm is infeasible.

Another related idea is image translation, like Pix2Pix [59]. Instead of directly restoring

raindrop-covered pixels, it translates one image into another. This method proposes us-

ing a conditional GAN that learns not only the mapping between input and output images

but also the loss function used to train the mapping. However, this technique represents a

general mapping and is not specifically tailored for raindrop removal [44].
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Chapter 4

A Dataset for Adherent Obstruction

Removal

Data acquisition serves as a crucial element in the realm of machine learning endeavors,

the efficacy of the trained models is inextricably linked to the precision, heterogeneity, and

representativeness of the used data[27]. In this chapter, the author details the methodology

of gathering and organizing real-world data from various sensors, as well as the generation

of distinct categories of obstructions.

4.1 Sensors and Data Acquisition

During the data acquisition process, this work employs two cameras: a Sony A7RM2 full

frame mirrorless camera with 85 mm GM lens and a Ricoh GR3X Advanced Photo System

type-C (APS-C) camera with embedded 26.1 mm lens (Approx. 40mm in 35mm equiva-

lent focal length). In this study, a set of image pairs is needed. Each image pair comprises

the same background scene, with one image degraded by obstructions and the other free
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of obstructions. To address this concern, this work employs two pieces of identical clean

camera glass filters, positioning them in front of the camera interchangeably(both have a

light transmittance rate of 98.4% and a thickness of 1 mm). One filter is covered with

obstructions, while the other is maintained in a clean state. This approach ensures con-

sistency in the refractive properties between the obstruction-adhered glass filter and the

clean glass filter, thereby minimizing the potential for pixel misalignment[44].In an effort

to further minimize pixel misalignment between the ground truth and degraded images, uti-

lizes a standard tripod equipped with remote control for stabilizing the cameras during data

collection. However, misalignments induced by wind or moving objects, such as shaking

leaves or walking pedestrians may still transpire. To mitigate the impact of these distur-

bances, the author performs a manual selection process upon the completion of the data

acquisition stage, ensuring that the final dataset is free from misalignment introduced by

any movement-related factors. In order to enrich the diversity of the dataset, the distance

between a glass filter and the camera is varied from 3-12 cm1.

Figure 4.1: Glass filter adhered by dirt(left). Clean glass filter (right).

1The distance between a glass filter and the camera is defined as the distance from the glass to the surface
of the camera lens, rather than the distance to the center of the camera sensor.
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Since cloud coverage can introduce variations in scene brightness, atmospheric con-

ditions are also taken into account as a constraint. To maintain consistency, all data is

collected under constant ambient conditions and against still backgrounds. Additionally,

the author meticulously cleans both the lens and camera sensor prior to each data collec-

tion process in order to prevent any undesired dust particles from appearing on either the

camera sensors or the lens.

Figure 4.2: An illustration of equipment setup process

4.2 Choice of Obstructions

The dataset includes the four most common types of obstructions that are encountered in

outdoor computer vision systems: clear raindrops, muddy raindrops, dirt, and tiny particles.

To simulate clear raindrops, the author sprays tap water onto the glass surface. Muddy

raindrops are replicated by spraying a mixture of water and mud. Dirt is represented using

clay and moistened sand adhered to the glass. For tiny particles, combinations of small

debris are obtained, including cut leaf particles, flower particles, stone fragments, and hand-

drawn scratches with a marker pen.
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Figure 4.3: From left to right: raindrop sample, muddy raindrop sample, dirt sample, and
tiny particle sample

4.3 Data Patch and Selection

Image pairs taken from the Sony A7RM2 camera have dimensions of 7952 × 5304, while

those collected from the Ricoh GR3X camera have dimensions of 3360 × 2240. Due to

the limitation of the GPU memory, utilizing such large image files directly into GPU as

training data is impractical and computationally expensive[71]. Therefore, for each data

pair, the degraded image is cropped into many 256x256 patches, as well as its correspond-

ing obstruction-free ground truth. To accomplish this, this work develops a Python script

utilizing the OpenCV library, which crops the images based on mouse-clicked coordinates.

Additionally, to better visualize the pixel misalignment, a binary mask is obtained by per-

forming subtraction between the degraded image and its associated ground truth. In cases

where the misalignment is visibly substantial, the image pair is discarded and subsequently

excluded from the dataset.

As the result, the training dataset consists of 2,637 image patches and the testing dataset

consists 333 image patches.

37

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – Y.Cao; McMaster University – Electrical and Computer Engineering

Figure 4.4: A comprehensive illustration of the image selection process.(white boxes
denote pixel misalignments introduced by wind-induced disturbances). From left to right:

Degraded image, ground truth, binary subtraction mask with apply with a heated map

Figure 4.5: An illustration of the image cropping process: Green box indicated the crop
patch
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Chapter 5

Development of Attentive Multi-Branch

Encoder-Decoder Network

5.1 Baseline Model

Encoder-decoder networks have proven effective in image restoration tasks, owing to their

capability to learn compact data representations and their proficiency in reconstructing in-

put data from these representations[67, 7]. To validate the encoder-decoder networks’s

ability for occlusion removal, this work initially implements a simple coarse U-shaped net-

work for the deraindrop problem, utilizing the dataset proposed by [44]. Consequently, the

images recovered using the U-net exhibit a discernible improvement in the PSNR metric

and at the perceptual level.
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Figure 5.1: A comparison between the ground truth image, the rain-affected image, and a
reconstructed image obtained using a coarse U-shaped network.

5.2 Attentive Multi-Branch Encoder-Decoder Network

In this section, the study introduces a comprehensive network incorporating attention mech-

anisms and test-time adaptation for occlusion removal problems. Inspired by the network

proposed by Chi et al.[7] which leverages auxiliary learning to achieve the function of test-

time adaptation. The proposed framework also encompasses two tasks: the primary task

and the auxiliary task. Given an obstruction-degraded image Id, the objective is to restore

an obstruction-free clean image. The primary task accepts degraded images containing oc-

clusions (denoted as Id) as input and endeavors to predict a corresponding clean image Ic.
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The auxiliary branch synthesizes occlusion artifacts to augment the primary task’s perfor-

mance. Simultaneously, the auxiliary task is tailored to learn specific occlusion features for

each input, thereby allowing the model parameters to adapt to individual test images and

subsequently supporting the primary task, resulting in superior outcomes[56, 7]. Both tasks

predominantly share the model’s structure, which constitutes an encoder-decoder network.

Figure 5.2: An illustration of proposed obstruction removal network

5.2.1 Primary Occlusion Removal Network

The primary occlusion removal network proposed in this study takes a degraded image

Id as input and outputs a corresponding clean image Ic. This network comprises three

main components: convolution blocks, deconvolution blocks, and residual blocks. Convo-

lution blocks, characterized by a stride of 2, serve as feature extractors for the degraded
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image, capturing essential information such as sharp edges, structure, and patterns, sub-

sequently down-sampling and compressing these elements into the latent space. Decon-

volution blocks function to enhance the resolution of feature maps, striving to reconstruct

data from its compressed representation. The core idea behind devising such deconvo-

lution blocks is that, during the devolution process, the model can be trained to ignore

obstructions and generate plausible content for corrupted areas, resulting in obstruction-

free images. Residual blocks, implemented following both convolution and deconvolution

blocks, assist in mitigating the vanishing gradient problem and augmenting the network’s

overall performance. In instances where occlusions may not be entirely removed after the

decoder-encoder network, a convolution block with 0 stride is employed to enhance the

output of a visually appealing clean image.

In contrast to the architecture proposed by Chi et al.[7] for deblurring scenes, restoring

obstruction-polluted images requires the network’s ability to precisely identify the region

of obstruction artifacts within the degraded image patch. Therefore, this study incorporates

the concept of attention mechanisms[57, 65]. An attention map, activated by a sigmoid

function, is derived from the auxiliary branch and applied as a dot product to the primary

network, as shown in Fig. 5.2. This attention map serves as a guide to the primary net-

work in enhancing the visual representation of regions previously obscured by obstruction

artifacts.

5.2.2 Self-Supervised Auxiliary Network

Considering the infeasibility of including every possible types of obstruction in the dataset,

the primary intuition behind implementing an auxiliary branch is that, the auxiliary task

enables the network to adjust internal parameters when test data differs from the training
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Figure 5.3: An illustration of feature maps at each stage. The attention mask
accentuates the region containing occlusion artifacts, while the additional convolution

block improves the visual representation of the result for the primary task. Concurrently,
the auxiliary task generates a synthetic version of obstruction artifacts.

data distribution, also known as test-time adaptation[13, 8, 55]. Similar to the approach

by Chi et al., this work also chooses to generate a synthetic version of degradation as the

auxiliary task, incorporating the residual information from the output of the primary task

(As shown in Fig. 5.2, the residual information is transmitted through skip connections

from the primary branch to auxiliary branch). As the loss calculation for the auxiliary

task solely relies on the comparison between the input degraded image and the synthetic

degraded image, this process facilitates the optimization of the pre-trained model in a way

that allows rapid adaptation to any test image, even those not previously encountered.

Furthermore, during the test phase, the model is able to obtain specific details about

the obstruction artifacts, such as their region. This information can be employed as an
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attention map incorporated into the main occlusion removal task. the performance of the

primary task is significantly improved in terms of both quantitative metrics and visual rep-

resentation.

5.2.3 Model Optimization

Loss Function

Selecting a suitable loss function is crucial for optimizing a model effectively. After thor-

ough investigation, this study employs the MS-SSIM L1 loss function introduced by Zhao

et al. [72], which is an amalgamation of the L1 loss and the Multi-Scale Structural Similar-

ity (MS-SSIM) index. This hybrid loss demonstrates a superior performance when applied

as a regularizer in an image restoration network, compared with other losses, such as the

widely-used l2 loss. The MS-SSIM L1 loss merges the benefits of both pixel-level sensi-

tivity and perceptual similarity. Consequently, this fosters a neural network’s capacity to

generate outputs that exhibit not only precise pixel values but also visual appeal. Given the

primary task as P and the auxiliary task as A, mathematically, MS-SSIM L1 loss for the

primary task and the auxiliary task can be expressed as:

LP = α0 · LMS-SSIM
P + (1− α0) ·G · L`1P (5.2.1)

LA = α0 · LMS-SSIM
A + (1− α0) ·G · L`1A (5.2.2)

where G denotes the Gaussian weights and the subscripts P and A denote the primary and

auxiliary task. The α0 = 0.84 is set as default.
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Network Training

Let θ = θs, θp, θa represent the parameters of the entire network, where θs denotes the

shared parameters of the encoder-decoder network, θp signifies the parameters of the pri-

mary branch, and θa corresponds to the auxiliary branch parameters. Let f θp and f θa rep-

resent the functions of the primary branch and the auxiliary branch, respectively. The

predicted obstruction-free image can be expressed as:

Ic = f θp (I
d; θs, θp, θa) (5.2.3)

And the synthetic degraded image can be expressed as:

Îd = f θa (I
d; θs, θp, θa). (5.2.4)

Due to the limitations of the hardware, this study only employs offline training for the

neural network. The total loss is obtained through the combination of the primary loss and

the auxiliary loss:

Ltotal = β · LP (Ic, Îc; θs, θp, θa) + (1− β) · LA(Id, Îd; θs, θp, θa), (5.2.5)

where β is set to 0.8 in this work. Thereby, the main objective of the network can be defined

as:

min
Θs,Θp,Θa

K∑
k=1

L(k)
total(I

d, Îd, Ic; θs, θp, θa) (5.2.6)
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Test-time Adaptation

During the testing phase, by applying auxiliary loss from Eq.5.2.2, the adapted parameter

θ̃s and θ̃a can be obtained. Subsequently, θ̃s is utilized in the shared encoder-decoder archi-

tecture to augment the performance of the primary task when handling previously unseen

data with a distinct distribution from the training data.

Figure 5.4: An illustration of test-time adaptation process. During the test-time
adaptation process, the auxiliary task updates the shared parameters using Eq. 5.2.2.

Following this update, the model conducts obstruction removal on the primary branch.

Catastrophic forgetting

Due to hardware limitations, this study exclusively employs offline training for the pro-

posed network. However, the primary and auxiliary tasks are two unconnected tasks. The

weight updates through the auxiliary loss are more biased towards enhancing the synthetic

degraded image quality, rather than the quality of the obstruction-free image. This un-

desired effect is also referred to as catastrophic forgetting [7]. To address this issue, fu-

ture improvements may consider, such as implementing meta-auxiliary learning (MAXL)

scheme [35] alongside a more advanced GPU. This approach trains both the main and aux-

iliary tasks separately and enforces a constraint that parameter updates via the auxiliary

loss should positively impact the primary task.
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Chapter 6

Preliminary Experiments

In this chapter, extensive experiments are performed on the proposed method to validate its

effectiveness and demonstrate the robustness of the approach.

6.1 Datasets and Metrics

The neural network is trained with the dataset introduced in Chapter 4. The proposed

dataset comprises 2637 image patches, while the testing dataset consists of 333 image

patches. Each image patch has a resolution of 256 × 256. In this section, the evaluation

metrics employed are PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity

Index Measure).

6.2 Implementation and Training Details

For all implementations, Python is utilized as the programming language and PyTorch is

employed as the framework. The network is trained for 1,300 iterations, optimized by the
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Adam optimizer [28] with β1 set to 0.5 and β2 set to 0.999. The learning rate and batch

size are set at 0.0001 and 30, respectively. During the test-time adaptation, 6 gradient

updates are performed for each test image, with the learning rate for gradient updates fixed

at 0.000006. All pixel values for both training and testing images are scaled to the range

[-1, 1], and the LeakyReLU activation function [68] with a slope of 0.1 is used. Network

training, testing, and adaptation are executed on an Nvidia RTX 3090 GPU1.

6.2.1 Method Comparison

An objective and subjective quality comparison is carried out on the proposed real-world

dataset. As most existing approaches focus solely on specific types of obstructions, such

as raindrops, and no articles address the removal of adherent various obstruction artifacts

from images taken through glass. As this research is conducted using a novel dataset, it

necessitates retraining other approaches to ensure a fair comparison. However, some de-

raindrop methods discussed in Chapter 3 do not supply training codes for their respective

networks. Therefore, this work compares the proposed network with several prominent

methods with provided open-source code, each specializing in a different area: PReNet for

image deraining [46], U-net for image deraindrop [66], DeblurGAN-v2 for image dehazing

and deraindrop [32], and CTSDG for image inpainting [19]. Besides that, the implementa-

tion of this work is built upon Pytorch framework, U-net is initially proposed for medical

image segmentation. Since it incorporates an encoder-decoder network, it is capable of

removing raindrops during the upsampling stage, as discussed in Section 5.1. Similarly,

DeblurGAN-V2, originally designed for blind motion removal, utilized a Feature Pyramid

Network in both the generator and discriminator. The Feature Pyramid Network within the

1https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
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Methods
Dataset OROS

PSNR SSIM

Degraded 23.31 0.846
PReNet [46] 22.80 0.835
U-net [66] 24.70 0.846
DeblurGAN-v2 [32] 28.18 0.857
CTSDG [19] 24.96 0.794

Ours 29.91 0.879

Table 6.1: Comparison of the proposed model with prominent open-source
methods.All the networks are retrained using the obstruction dataset. The proposed

network demonstrates a superior performance in comparison to others.

generator allows the model to capture multi-scale features and reconstruct deblurred images

at various resolutions, resulting in sharp and realistic deblurred images. Consequently, we

retrained this method to assess the potential of a combination of GAN and Feature Pyramid

Network. In this study, binary masks are computed by subtracting the degraded adherent

obstruction image from a clean ground truth image. These masks are subsequently utilized

for retraining and evaluating the CTSG inpainting model. For each of these methods, the

network is retrained using the officially released training code and the proposed occlusion

dataset from Chapter 4. The hyperparameters for each retraining process are set to default

values. Consequently, the comparison remains fair and faithful across various datasets.

6.2.2 Quantitative Evaluation

The objective performance using PSNR and SSIM as evaluation metrics on the proposed

dataset, is presented in Table 6.1. This work also examines the performance on each distinct

type of obstruction, as displayed in Table 6.2. The results reveal that the proposed method

in this study achieves the best PSNR and SSIM performance on the obstruction dataset,
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Methods
Dataset Dirt Raindrops Muddy Water Particles

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Degraded 25.79 0.861 24.83 0.827 24.25 0.833 23.07 0.788
PReNet[46] 25.10 0.850 24.52 0.817 23.51 0.809 19.62 0.836
U-net[66] 24.19 0.834 24.73 0.826 25.48 0.827 24.92 0.872
DeblurGAN-v2[32] 28.52 0.856 28.28 0.832 27.12 0.835 28.15 0.877
CTSDG [19] 26.38 0.805 26.22 0.872 24.94 0.758 23.07 0.788

Ours 29.93 0.878 29.86 0.852 29.53 0.852 30.18 0.899

Table 6.2: A comparison is conducted on the proposed dataset, with four categories:
dirt, raindrops, muddy raindrop, and particles. The network presented in this study

demonstrates a superior performance compared to other approaches.

with the exception of CTSDG for Raindrop sub-dataset. Figure 6.4 illustrates the effect of

implementing auxiliary task for test-time adaptation. After four gradient updates (test-time

adaptation), there is a 0.4 dB enhancement in PSNR and a 6e-3 improvement in SSIM.

The impact of catastrophic forgetting begins to manifest after 4 steps of gradient update,

leading to a decline in overall performance for both PSNR and SSIM metrics.

6.2.3 Qualitative Evaluation

This section presents a comparison of the objective (visual) results of the proposed network

with other different approaches, as shown in Fig. 6.1. Upon close examination, the method

proposed in this work demonstrates a more visually pleasing result. For the dirt example,

the proposed method produces fewer pattern artifacts near the surface of the wall, while

other approaches like DeblurGAN-V2 and U-net[66] yield false colors and strange patterns.

For particles and muddy raindrop artifacts, the proposed method yields finer details on

edges and regions covered by obstructions. CTSDG[19] introduces significant artifacts in

the muddy raindrop and particles obstruction sub-datasets. This could be attributed to the

noise introduced by the camera sensor. Training the CTSDG network necessitates a mask of
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(a) GT (b) Input (c) PReNet (d) U-net (e) DdlrGAN2 (f) CTSDG (g) Ours

Figure 6.1: Qualitative comparison with different approaches on proposed dataset.
The proposed method generates results with fewer artifacts and greater visual appeal
compared to alternative approaches (where DblrGAN2 stands for DeblurGAN-V2)

the corrupted area as input; however, the mask provided by subtracting the ground truth and

obstruction-degraded image contains visible sensor noise, which could potentially affect

the performance of the CTSDG network. PReNet [46] exhibits suboptimal performance as

a deraining network, particularly on the Raindrops sub-dataset.

6.2.4 Evaluation on Unseen Obstruction Types

As discussed in Chapter 5, test-time adaptation can improve performance on unseen data

which has a distinct distribution from the training data. To verify this, this work retrains

the proposed network, CTSDG, and DeblurGAN-v2 using a training dataset consisting

of only three categories: Muddy raindrops, raindrops, and particles. Subsequently, all

approaches are evaluated on a dirt-degraded test dataset, where dirt obstruction artifacts
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Methods
Dirt Unseen Ones

PSNR SSIM

DeblurGAN-v2[32] 25.57 0.802
CTSDG [19] 25.29 0.814

Ours (no update) 29.39 0.871
Ours (3 updates) 29.67 0.876

Table 6.3: Evaluation on Unseen Obstruction Types.

exhibit a different distribution from the other three types of degradation. As shown in Table

6.3, the test-time adaptation yields a 0.3 dB enhancement in PSNR and a 0.05 improvement

in SSIM metrics. The performance of the proposed method surpasses that of the other two

approaches.

6.2.5 Computational Cost

This work evaluates the execution speed of processing a 256× 256 image for the proposed

network on an RTX 3090 GPU. The proposed method requires 0.17s without test-time

adaptation and 1.30s with 6 gradient updates. In contrast, DeblurGAN-v2 necessitates

1.68s due to the need for additional features from a pre-trained network. Through com-

parison, our method proves to be simple yet efficient, even when incorporating test-time

adaptation process.

6.2.6 Ablation Studies

This section provides an additional ablation experiment on the proposed network, focusing

on each individual components and their impacts. Additionally, the influence of the number

of gradient updates during test-time adaptation is examined to gain further insights into the

network’s performance.
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Figure 6.2: Qualitative comparison with different network structures. (a) Primary; (b)
Primary + Auxiliary; (c) Primary + Auxiliary + Update; (d) Primary + Auxiliary +

Attention; (e) Primary + Auxiliary + Update + Attention.
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Network Structures PSNR SSIM

Primary 29.16 0.869
Primary + Auxiliary 29.42 0.872
Primary + Auxiliary + Update 29.82 0.875
Primary + Auxiliary + Mask 29.50 0.873
Primary + Auxiliary + Update + Mask 29.91 0.879

Table 6.4: Ablation studies on network structures. Including the auxiliary-learning
through self occlusion reconstruction enhance the performance of primary task. As

gradient updates and the attention mask are utilized, the performance of the primary task
improves more.

Network Structures

This work assesses and retrains each component of the proposed network to investigate

their respective impacts: (a) The network comprises solely the primary branch; (b) The

network incorporates both primary and auxiliary branches; (c) The network consists of

both primary and auxiliary branches and is updated through test-time adaptation; (d) The

network encompasses both primary and auxiliary branches, as well as an attention mecha-

nism. (e) The network comprises both primary and auxiliary branches, is updated through

test-time adaptation, and incorporates an attention mechanism. In the ablation studies, the

number of gradient updates is set to 4. Table 6.4 showcases the quantitative comparison

of networks with different components, trained on the proposed dataset. Cases (b) and (d)

demonstrate the effectiveness of utilizing the auxiliary task and attention mechanism in im-

proving the performance of the primary task, while case (e) exhibits a noticeable increase

in performance with the help of test-time adaptation. The qualitative evaluation depicted

in Fig. 6.2 also highlights the effectiveness of implementing the auxiliary task, test-time

adaptation, and attention mechanism.
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Figure 6.3: Qualitative examples are provided to demonstrate the improvement of
test-time adaptation on a real dataset.

Evaluation on test-time adaptation

This subsection highlights the impact of test-time adaptation. During the testing phase, the

network performs N = 1, 2, 3, ..., 10 gradient updates on the pre-trained model. A qualita-

tive comparison performed on particles, muddy raindrops, raindrops, and dirt sub-dataset

is shown in Fig.6.3, while the numerical evaluation of test-time adaptation is illustrated

in Fig.6.4. Both figures corroborate the advantages of implementing test-time adaptation.

WhenN reaches 4, the output obstruction-free image attains the highest PSNR value. How-

ever, as the number of gradient updates increases, the catastrophic forgetting effect begins

to manifest, leading to a decline in both PSNR and SSIM metrics and the appearance of

more visible artifacts.
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Figure 6.4: Illustration of PSNR and SSIM after each gradient update. Without
test-time adaptation, the pre-trained model initially performs worse. Model is able to grain

performance after applying gradient update. The peak PSNR is achieved after 4 times
gradient update
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Chapter 7

Conclusion and Future Work

This chapter provides a summary of the key findings and insights gained throughout the

development of this thesis. Moreover, this chapter also delves into potential improvements

for the proposed method, exploring opportunities for further refinement and enhancement.

7.1 Conclusion

This thesis tackles a complex problem, namely the single image adherent obstruction re-

moval. Given an image captured through a glass with adhered obstructions, the objective

is to eliminate all artifacts caused by these obstructions. To gain a deeper understanding

of the problem, this thesis begins with an examination of the conceptual theory of popular

deep learning methods such as CNNs and autoencoders. This paper also reviews several

prominent approaches to addressing the obstruction removal problem.

Furthermore, this work presents a test-time adaptation network that incorporates auxil-

iary learning and an attention mechanism. During the testing phase, the auxiliary branch

updates the shared internal-parameters of shared encoder-decoder network, enabling it to
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restore images not only from known obstruction categories but also from unseen ones. Re-

garding the network’s application, adherent occluders tend to persist on the glass surface for

extended periods. Consequently, in real-world applications such as surveillance cameras

that utilize video outputs, test-time adaptation only needs to be applied occasionally. De-

signing a spatial-temporal model would be unnecessary and would increase the network’s

complexity.

To better represent real-world scenarios, this work introduces a new dataset covering a

wide range of common real-world obstructions along with their corresponding clean ground

truth images. Experimental results demonstrate that the proposed method outperforms al-

ternative approaches in both quantitative and qualitative evaluations.

7.2 Future Work

There are several limitations to this work. One major issue is catastrophic forgetting which

has been discussed in Chapter 5. Chi et al.[7] suggested solving this problem by adopting a

meta-training technique during the model optimization process. However, due to hardware

limitations, implementing such a technique requires a GPU with significantly larger mem-

ory, whereas the RTX3090 only has a memory size of 24GB. Moreover, the qualitative ex-

periment indicates that visible artifacts still persist in the restored obstruction-free images.

This might be attributed to the fact that the proposed network only has one convolutional

block in the primary branch. A more powerful design for this branch can be considered for

future improvements. For example, the proposed method could be redesigned following the

coarse-to-fine network approach proposed by Liu et al [37], in which the shared encoder-

decoder structure produces a coarse version of the restored obstruction-free image, while

another encoder-decoder network is implemented as the primary branch to refine the output
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quality. Additionally, the idea of implementing a Generative and adversarial network like

DeblurGAN-v2[32] could also be considered for future enhancements.

Figure 7.1: Network architecture proposed in Coherent Semantic Attention for Image
Inpainting )
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