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ABSTRACT

Under realistic scenarios, data are often incomplete, asymmetric, or of high-dimensionality.

More intricate data structures often render standard approaches infeasible due to

methodological or computational limitations. This monograph consists of four contri-

butions each solving a specific problem within model-based clustering. An R package

is developed consisting of a three-phase imputation method for both elliptical and hy-

perbolic parsimonious models. A novel stochastic technique is employed to speed up

computations for hyperbolic distributions demonstrating superior performance over-

all. A hyperbolic transformation model is conceived for clustering asymmetrical data

within a heterogeneous context. Finally, for high-dimensionality, a framework is de-

veloped for assessing matrix variate normality within three-way datasets. All things

considered, this work constitutes a powerful set of tools to deal with the ever-growing

complexity of big data.
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CHAPTER 1

INTRODUCTION

In the chaos of modern data, there is often clarity when one uses the correct tool to

make sense of its intricacies. As Peter F. Drucker elucidates,

“You can’t manage what you don’t measure,” (Drucker, 2006),

Too often this idea is ignored when making decisions or dealing with highly com-

plex problems. As a consequence, data-driven decision making is becoming evermore

popular leading to the rise of what many contemporaries call data science (McAfee

et al., 2012). As with every popular movement, there are contrarians who seek to

emphasize the drawbacks. In the majority of cases, every methodological innovation

often increases what is known as technical debt (Sculley et al., 2014). This refers to

the idea that as we develop novel methods, we are bound to incur massive ongoing

maintenance costs at a system level. The accrescent complexity of such technolo-

gies must be countered with sound methods that eliminate such issues. Furthermore,
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these methods must be motivated, and grounded within realism.

Under realistic scenarios, data is often heterogeneous. A population of individu-

als may contain a mixture of sub-populations each with their own distinct identity

or culture. This heterogeneity often violates most statistical assumptions and fun-

damentally limits analysis. Such limitations of homogeneous statistical assumptions

gives rise to intrinsic biases for data-driven decision making. In addition, multivariate

datasets often contain incomplete entries for some observations. The standard prac-

tice for these incomplete observations is to disregard them in favour of fully-complete

datasets. If we consider both the presence of heterogeneity and incomplete entries,

the result is a highly complex dataset plagued with issues of unintelligibility. This

monograph consists of methodologies aimed to alleviate such issues. In addition, an

extension to assessing the normality of higher-order data is also developed.

The work is organized as follows. Chapter 2 provides a background on all method-

ological developments for proceeding chapters. A historical summary and definitions

of model-based clustering is discussed. A series of hyperbolic distributions are defined

with some additional extensions to hyperbolic transformation systems. Finally, we

conclude with the concept of matrix-variate distributions and their relationship to

their multivariate counterparts. Chapter 3 revolves around the development and use

of a software package for multivariate clustering and classification. The software com-

bines previously developed methods and implements a novel approach for clustering

multivariate datasets with, or without missing data. Be it symmetric or skewed, the

software allows a user to handle a variety of multivariate datasets. Chapter 4 per-

tains to a stochastic alternative for estimating mixtures of hyperbolic distributions.

2
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A series of computational investigations are performed and demonstrate the effective-

ness of a stochastic algorithm against the standard approach. Chapter 5 is concerned

with modelling asymmetric multivariate datasets with hyperbolic transformations.

Often overlooked, these hyperbolic systems outperform more popular transformation

methods. In addition, imputation methods for missing data are also developed and

investigated for such models. Chapter 6 branches off from previous contributions

and introduces a novel approach for evaluating the normality of three-way data. In

tandem with existing hypothesis tests, a new visual method is developed and com-

bined to form a powerful framework for assessing matrix-variate normality. Finally,

Chapter 7 ends with future directions of research and possible extensions of developed

methodologies.
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CHAPTER 2

BACKGROUND

The following sections outline the introduction of statistical methodology necessary

to understand the proceeding contributions. Model-based clustering is primarily dis-

cussed with a focus on finite mixture models, parsimony, and asymmetric approaches.

In addition, matrix-variate normality and its structure is elucidated as well as frame-

works for assessing multivariate normality are summarized.

2.1 Model-based Clustering

The first notion of model-based clustering can be traced back to Tiedeman (1955)

with a standard Gaussian example (see section 9.1 of McNicholas, 2016a) . Let G

be the number of distinct groups within a general population. For each gth group,

let observations be drawn from some corresponding Gaussian distribution. Upon

4
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removing the group identities to which each observation belongs to; the result is a

mixture of data with unknown density. Here, Tiedeman defines clustering as the

reconstruction of the original G densities and their types. However, Wolfe (1965)

formally considers a cluster through a measure of similarity. As McNicholas (2016a)

elucidates, similarity is often difficult to define as a coherent, quantifiable measure.

If one considers an appropriate finite mixture model which has the flexibility, and

parametrization that is necessary to fit the data; then a cluster can be defined as a uni-

modal component of said mixture model. For some heterogeneous dataset, the type of

selection for this uni-modal component bears the full structure and interpretation of

said cluster. For the Gaussian case as in Tiedeman (1955), each cluster is defined as a

symmetric curve with identifiably distinct parameters (mean and variance). However,

by relaxing the Gaussian assumption, one can conceive of a variety of cluster shapes

and structures. Through this perspective, the framework of model-based clustering

can capture any heterogeneous representation of data where the only limitation is the

interpretability of the type of uni-modal selection.

2.1.1 Gaussian Finite Mixture Model

One of the most popular methods for model-based clustering is the finite mixture

model. Consider a random variable X which is characterized by a G component

finite mixture model. For a set of parameters Θ = (π1, . . . , πG,θ1, . . . ,θG), a p-

dimensional random vector X follows a finite mixture distribution for all x ⊂ X if

its density can be written as

f(x; Θ) =
G∑
g=1

πgfg(x;θg).

5
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Here, πg > 0 is the gth mixing proportion with
∑G

g=1 πg = 1, G is the number of

components, and fg is the density of the gth component parametrized by θg. Usually,

the density for each component is taken to be the same so that fg = f for all g.

Suppose that X follows a multivariate Gaussian distribution, then θg = {µg,Σg},

and

f(x;µg,Σg) =
1

(2π)p/2 |Σg|1/2
exp

{
−1

2
(x− µg)>Σ−1g (x− µg)

}
.

Here, the parameters µg and Σg represent the mean and variance of the gth compo-

nent (cluster). In the context of clustering, µg 6= µg′ , ∀g 6= g
′ ∈ {1, . . . , G}. This

constraint implies that all components must have different means in order for the

model to be identifiable. However, this constraint is not necessary for Σg, as you can

take specific parameters to be the same across components. This method of imposing

constraints for Σg leads to the family of 14 Gaussian parsimonious clustering models

(GPCMs, Banfield and Raftery, 1993).

2.1.2 Gaussian Parsimonious Clustering Models

Referring to the idea of constraining covariances across components, the concept of

parsimony was first introduced by Banfield and Raftery (1993) for a Gaussian finite

mixture model. Subsequently, the cornerstone work by Celeux and Govaert (1995)

gave estimations for the majority, but not all parsimonious models. Finally, Browne

and McNicholas (2014) developed estimation procedures for the remaining models

completing the work spanning several decades. By decomposing the covariance matrix

Σg, and then further imposing constraints on the resulting elements, the family of 14

6
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GPCMs is defined as follows. Let the eigenvalue decomposition of Σg be written as

Σg = λgDgAgD
>
g , (2.1)

where λg = det (Σg)
1/p, det() is the matrix determinant operator, Dg is the matrix

of eigenvectors, and Ag the diagonal matrix of normalized eigenvalues. The param-

eter λg is usually referred as the volume of component g, Dg is the orientation, and

Ag its shape. To yield the family of 14 GPCMs, impose constraints on (2.1) across

components as follows. The spherical family of GPCMs can be derived by allowing

Σg = λI ∀g. Here, I is a p× p dimensional identity matrix. Referred to as the EII

model, this structure implies that all components share the same volume and spherical

shape. The second model of this family VII imposes constraints along direction and

orientation, such that only volume can vary between clusters. As a result, the covari-

ance is of the form Σg = λgI ∀g. This model structure implies that all clusters share

the same spherical shape but varying volume size. Moving on to the second family of

GPCMs, the diagonal family relaxes the constraint on shape, but imposes equal ori-

entation. Specifically, Dg = I ∀g. Beginning with the EEI model, Let Σg = λA ∀g.

This imposes constraints that volume and shape be equal for all clusters. The VEI

model imposes Σg = λgA. Here, volume is allowed to vary while shape is kept fixed.

The EVI model implies Σg = λAg, where volume is fixed across clusters, but shape

is allowed to vary. Finally the VVI model implies Σg = λgAg, where both shape and

volume is relaxed. To conclude, the diagonal family of GPCMs relaxes the constraint

on shape and volume, resulting in parsimony along each of the components of (2.1).

The EEE model implies Σg = λDAD> ∀g, imposing equal volume, shape, and ori-

entation across clusters. The VEE model implies Σg = λgDAD
>, allowing volume

7
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to vary. The EVE model implies Σg = λDAgD
>, allowing only shape to vary. The

EEV model implies Σg = λDgAD
>
g , allowing orientation to vary. The VVE model

implies Σg = λgDAgD
>, only constraining orientation. The EVV model implies

Σg = λDgAgD
>
g , constraining only volume. The VEV model constrains only shape

implying Σg = λgDgAD
>
g . Finally, the VVV model relaxes all constraints and has

the form of (2.1). For convenience, Table 2.1 summarizes the nomenclature and char-

acteristics of each model. Within these 14 families, the most familiar is that of VII

and VVV. According to assumption (1) of Celeux and Govaert (1995), under certain

conditions, the VII model is analogous to performing K-means clustering (MacQueen

et al., 1967) where K is the number of groups. In addition, VVV is the standard

assumption that most Gaussian mixture models impose with no restrictions. One

of the more interesting results of parsimony is the interpretation of cluster shapes.

Figure 2 of Murphy and Murphy (2020) visualizes the resultant model fits for a par-

ticular selection of constraints. For example, the VII model clusters are spheres of

differing volumes. If VII is selected as the top performing model, then the data ex-

hibits behaviour where each variate determines cluster shape equally. Each of the 14

parsimonious models contain similar interpretations which are useful for explaining

phenomena within the context of an application. In summary, imposing parsimony

within model-based clustering and classification is continuing area of research. Mc-

Nicholas (2016b) provides a concise review of this area; for a more detailed view, see

McNicholas (2016a). Extension to the GPCMs include the parsimonious Gaussian

mixture models (McNicholas and Murphy, 2008). Further parsimony is introduced

by considering a latent factor-based approach (Ghahramani et al., 1996). Other ex-

tensions include extending parsimony to skewed distributions to model asymmetric

8
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components (Vrbik and McNicholas, 2014; Tortora et al., 2016).

Table 2.1: Nomenclature, covariance structure, and number of free covariance param-
eters for each member of the GPCM family.

Model Volume Shape Orientation Σg Free Covariance Parameters
EII Equal Spherical - λI 1
VII Variable Spherical - λgI G
EEI Equal Equal Axis-Aligned λA p
VEI Variable Equal Axis-Aligned λgA p+G− 1
EVI Equal Variable Axis-Aligned λAg pG−G+ 1
VVI Variable Variable Axis-Aligned λgAg pG
EEE Equal Equal Equal λDAD> p(p+ 1)/2
EVE Equal Variable Equal λDAgD

> p(p+ 1)/2 + (G− 1)(p− 1)
VEE Variable Equal Equal λgDAD

> p(p+ 1)/2 + (G− 1)
EEV Equal Equal Variable λDgAD

>
g Gp(p+ 1)/2− (G− 1)p

VVE Variable Variable Equal λgDAgD
> p(p+ 1)/2 + (G− 1)p

EVV Equal Variable Variable λDgAgD
>
g Gp(p+ 1)/2− (G− 1)

VEV Variable Equal Variable λgDgAD
>
g Gp(p+ 1)/2− (G− 1)(p− 1)

VVV Variable Variable Variable λgDgAgD
>
g Gp(p+ 1)/2

2.2 Model Estimation, Performance, and Convergence

Model estimation is based on the expectation-maximization algorithm (EM, Dempster

et al., 1977). The EM algorithm is an iterative approach for finding the maximum

likelihood estimates when data is missing, and is a special case of the minorize-

maximization variety (Lange, 2016; McLachlan and Krishnan, 2007). Let lt denote

a model’s objective function at iteration t one aims to maximize using the EM algo-

rithm. Model convergence for said EM algorithm is based on the Aitken acceleration

criterion (Aitken, 1926) defined as

a(t) =
l(t+1) − l(t)

l(t) − l(t−1)
, (2.2)

9
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Let

l(t+1)
∞ = l(t) +

l(t+1) − l(t)

1− a(t)

be the observed estimate after many iterations at t+ 1 (Section 2.2.5 of McNicholas,

2016a). Termination of the algorithm occurs when l(t+1)
∞ − l(t) ∈ (0, ε) for some pre-

specified ε > 0. Model selection is based on the Bayesian information criterion (BIC;

Schwarz et al., 1978). Let ρ be the number of free parameters used. The BIC is then

formulated as BIC = 2l(θ) − ρ log n. To measure the performance on classification,

the adjusted Rand index (ARI, Hubert and Arabie, 1985) is considered. The ARI is

an adjusted for chance performance of the Rand index (Rand, 1971) for measuring

classification.

2.3 Matrix Variate Normality

Two-way data can be regarded as the observation of N vectors, whereas three-way

data can be considered the observation of N matrices. Common examples of three-

way data include greyscale images and multivariate longitudinal data. Multivariate

distributions have been successfully used in the analysis of two-way data, and matrix

variate distributions are gaining popularity for the analysis of three-way data (e.g.,

Viroli, 2011; Anderlucci and Viroli, 2015; Gallaugher and McNicholas, 2018, 2020;

Tomarchio et al., 2021, 2022; Gallaugher et al., 2022). Similar to the multivariate

case, the most mathematically tractable matrix-variate distribution is the matrix-

variate normal distribution. An r× c random matrix X comes from a matrix-variate
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normal distribution if its density is of the form

φr×c(X |M ,V ,U) =
1

(2π)
rc
2 |V | r2 |U | c2

exp

{
−1

2
tr
(
V −1(X −M)>U−1(X −M )

)}
,

(2.3)

where M is the r × c mean matrix, U is the r × r row covariance matrix, and V is

the c× c column covariance matrix. Note that the matrix-variate normal distribution

is related to the multivariate normal distribution via the equivalence

X ∼ Nr×c(M ,V ,U ) ⇐⇒ vec(X ) ∼ Nrc(vec(M ),V ⊗U) (2.4)

(Gupta and Nagar, 1999), where ⊗ denotes the Kronecker product and vec(·) is the

vectorization operator. Note that there is an identifiability issue with regard to the

parameters U and V , i.e., if k is a strictly positive constant, then

1

k
V ⊗ kU = V ⊗U

and so replacing U and V by (1/k)U and kV respectively, leaves (2.3) unchanged.

Various solutions have been proposed to resolve this issue, including setting tr(U) = r

or U11 = 1 (see Anderlucci and Viroli, 2015; Gallaugher and McNicholas, 2018).

In summary, the matrix-variate normal distribution is defined through a vectoriza-

tion of a multivariate normal. Note that the covariance matrices of row and column

are non-unique as they are defined through a Kronecker product (Dutilleul, 1999).

As a result, both distributions in (2.4) are parametrized by the product and not indi-

vidual co-variance matrices (Gupta and Nagar, 1999). There are benefits for using a

matrix-variate representation. The primary being that there is a considerable increase
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in speed for estimating parameters within high dimensional settings. As a result, one

should consider assessing whether matrix-variate normality is viable.

2.3.1 Assessing Multivariate Normality

The equivalence between the multivariate and matrix-variate normal distributions

in (2.4) implies that if multivariate normality of the vectorized data does not hold,

then the original matrices cannot be matrix-variate normal. Therefore, multivariate

normality must first be established before considering matrix-variate normality. There

are many approaches for testing multivariate normality, several of which can be found

in the R package MVN (Korkmaz et al., 2014). Most notably, tests proposed by Mardia

(1970), Royston (1983), and Henze and Zirkler (1990) are found within the package.

In terms of visual methods for multivariate normality, the multivariate generalization

of the QQ plot (Easton and McCulloch, 1990) is perhaps the most popular. Although

frequently used, this approach was further extended by the work of Holgersson (2006),

through an introduction of what is referred to as a correlation plot. To conclude,

comparisons of such tests can be found in Horswell and Looney (1992) and Alpu and

Yuksek (2016), where Royston (1983) emerged as the most favoured.

2.3.2 Mahalanobis Squared Distance

The Mahalanobis distance is a well-established quantity in the literature (Maha-

lanobis, 1936). Hardin and Rocke (2005) illustrate its application in multivariate

outlier detection and goodness-of-fit. Consider N p-dimensional vectors y1, . . . ,yN

such that each yi is a realization of a multivariate random variable Y ∼ Np(µ,Σ).

The MSD for a given yi, µ, and Σ is
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D(yi,µ,Σ) = (yi − µ)>Σ−1 (yi − µ) . (2.5)

It is well known (see Mardia et al., 1979) that

D(yi,µ,Σ) ∼ χ2
p, (2.6)

where χ2
p is chi-square distributed with p degrees of freedom. Now, consider the

estimates

µ̂ =
1

N

N∑
i=1

yi and Σ̂ =
1

N − 1

N∑
i=1

(yi − µ̂)>(yi − µ̂).

Then, from Gnanadesikan and Kettenring (1972),

N

(N − 1)2
D(yi, µ̂, Σ̂) ∼ Beta

(
p

2
,
N − p− 1

2

)
. (2.7)

If one considers the distribution for all MSDs within a given sample in (2.7), then

a goodness-of-fit test naturally presents itself along with outlier detection and other

statistical techniques for multivariate settings.

2.4 Hyperbolic Distributions and Transformations

A hyperbolic distribution can be characterized geometrically if the logarithm of its

density function forms a hyperbola. Given the necessary parametrization, the re-

spective density function may decrease much slower than its Gaussian counterpart

in the limit. As a result, such distributions are useful for modelling behaviour with
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extreme values or, asymmetric components within a model-based clustering context.

An alternative to using hyperbolic distributions is that of transformations from nor-

mality. Given an appropriate system of transformation, one could capture the desired

flexibility necessary to model asymmetric or skewed data. One caveat is that most

transformation-based approaches always consider departure from normality as the

starting point. However, this assumption can be relaxed as in Finak et al. (2009)

where the Student-t distribution is considered. Both methods are often viable when

modelling skewed data. Gallaugher et al. (2020) compares and contrasts both ap-

proaches within a model-based context for a variety of applications. Within this

thesis, we consider both hyperbolic distributions and transformations for capturing

extreme or asymmetric phenomena.

2.4.1 Normal Variance-Mean Distributions

The most distinguished of hyperbolic distributions is the normal variance-mean mix-

ture family (NVMMs). NVMMs have grown in popularity for their robust ability to

model skewed or asymmetric statistical problems. Such cases include, but are not

limited to, finance (Luciano and Semeraro, 2010; Banihashemi, 2019), risk manage-

ment (Kim and Kim, 2019), engineering (Snoussi and Idier, 2006), and hydrology

(Ownuk et al., 2021). Most notably characterized by their semi-heavy tailed prop-

erty (Borak et al., 2011), NVMMs are considered to be robust in cases where there

are few spurious outliers when compared to their heavy-tailed counterparts; Weibull,

Gumbel, etc. (Kotz and Nadarajah, 2015). Normal variance-mean mixtures are a

set of distributions that arise from a combination of two random variables where one

acts as a weighting function for the other. More formally, a p-dimensional random
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variable X is said to be a normal variance-mean mixture if the density is formulated

as

f(x;µ,Σ,α,θ) =

∫ ∞
0

φp(x;µ+ yα, yΣ)h(y;θ)dy, x ∈ Rp. (2.8)

Here, φp is the density of a p-dimensional multivariate Gaussian with mean µ+ yα,

covariance matrix yΣ, and h(y;θ) as the density function of a univariate random

variable defined on y > 0 (Barndorff-Nielsen et al., 1982). The function h(y;θ) is

a weighting function whereby its form characterizes the resultant normal variance-

mean mixture distribution. The tail behavior of an NVMM density is considered

to be ‘semi-heavy’ satisfying a tempered stable distribution with a small truncation

parameter (Rosiński, 2007; Borak et al., 2011), i.e., a lighter tail than that of an

extreme value law (Kotz and Nadarajah, 2015), but heavier than a Gaussian. For

example, if h(y;θ) is the density of an exponentially distributed random variable with

rate parameter 1, the integral f(x;µ,Σ,α,θ) yields the density of a shifted asym-

metric Laplace distribution (SAL, Kotz et al., 2001). Furthermore, if h(y;θ) is taken

to be a generalized inverse Gaussian (GIG, Barndorff-Nielsen and Halgreen, 1977)

distribution, the resultant normal variance-mean mixture is a generalized hyperbolic

distribution (GHD, McNeil et al., 2015). The GIG plays a pivotal role for inference of

normal variance-mean mixtures (Barndorff-Nielsen and Halgreen, 1977). The density

of a GIG random variable Y is written as

d(y; a, b, λ) =
(a/b)

λ
2 yλ−1

2Kλ(
√
ab)

exp

{
−ay + b/y

2

}
, y > 0, (2.9)
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where a, b ∈ R+, λ ∈ R, and Kλ is the modified Bessel function of the third kind with

index λ. This distribution has attractive properties where expectations follow closed

forms and can be written as follows

E [Y ] =

√
b

a

Kλ+1(
√
ab)

Kλ(
√
ab)

, (2.10)

E [1/Y ] =

√
a

b

Kλ+1(
√
ab)

Kλ(
√
ab)

− 2λ

b
, (2.11)

E [log Y ] =
1

2
log

(
b

a

)
+

1

Kλ(
√
ab)

∂

∂λ
Kλ(
√
ab). (2.12)

Due to other parametrizations of the GIG distribution, it is beneficial to denote

Y ∼ GIG(a, b, λ) as the definition given in equation (2.9). However, if we allow

ω =
√
ab, and η =

√
b
a
then the density function becomes

h(y;ω, η, λ) =
(y/η)λ−1

2ηKλ(ω)
exp

{
−ω

2

(
y

η
+
η

y

)}
, y > 0. (2.13)

Here η > 0 is the scale parameter, ω > 0 is the concentration parameter, and λ

is an index parameter. To avoid confusion, we denote Y ∼ I(ω, η, λ) to be a GIG

distribution with the parametrization in (2.13).

It is often easier to interpret NNVMs through its stochastic representation. A

p-dimensional random variable X is said to be considered a normal variance-mean

mixture if its stochastic representation satisfies

X = µ+ Yα+
√
Y U , (2.14)

with location vector µ, skewness vectorα, and U ∼ Np(0,Σ). Y is considered a latent
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variable, whereby its distribution characterizes the resultant member distribution

of the NVMM family. Specifically, one can simulate realizations from NVMMs by

first drawing values from the latent variables Y and U , then applying (2.14). In

summary, NVMMs have an interpretative departure from normality as an infinite

mixture of variance-mean weighted Gaussians.

2.4.2 SU Johnson Distribution

The first notion of transformations to normality was put forth in Edgeworth (1898),

concerning functions of a polynomial order. Though simple in concept, this seminal

work spawned an abounding amount of research regarding methods of translation to

Gaussian distributions. Most notably, the work of Box and Cox (1964) has become

common practice amongst statisticians for such asymmetric scenarios (Sakia, 1992).

Prominently referred to as the Box-Cox or power transform, the method allows data of

extreme nature to be modelled with a mathematically tractable Gaussian distribution.

A similar, but lesser known alternative to such transformations considers the use

of hyperbolic functions to capture the asymmetry. Johnson (1949b) introduces three

systems of translation to account for a more realistic representation of distributions

encountered in practice. Focus is placed on using functions which accurately represent

the departure from normality referred to as skewness. Of the three systems denoted

as SL, SB, and SU; the latter is often-times most appropriate as it operates on the

unbounded domain of R. Despite being particularly effective in modelling extreme

values (Burbidge et al., 1988), there is a general paucity among literature regarding

SU transformations (Tsai, 2011). Nevertheless, several contributions extend SU trans-

formations methodologically for a variety of statistical problems (Jones and Pewsey,
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2009; Stanfield et al., 1996).

A p-dimensional random vectorX is said to emanate from a multivariate Gaussian

with location µ, and covariance Σ = AA>, if its stochastic representation can be

written as

X = µ+AZ.

Here, let Z be a p-dimensional random vector distributed by a multivariate Gaussian

Np(0, I). We now define a multivariate transformation function ϕ as in Nelson and

Yamnitsky (1998) such that ϕ(x) := (ϕ(x1), . . . ϕ(xp)), where ϕ(xj) := sinh(xj) for

some variate xj. Now let ω = (ω1, . . . , ωp) be the shift vector and let Λ be a diagonal

matrix consisting of scale parameters for each dimension as Λ := diag(δ1, . . . , δp), δj >

0. Finally, Y is said to be distributed according to a multivariate SU Johnson distri-

bution if

Y = ω + Λϕ(X ). (2.15)

The density for Y can be derived using the Transformation Theorem of random

variables (Gupta and Kapoor, 2020). First, let us rearrange equation (2.15) and

define a function h where

X = ϕ−1(Λ−1(Y − ω)) =: h(Y ;ϑ).

For some realization y ∈ Y , the function h(y;ϑ) = (h(y1;ϑ1), . . . h(yp;ϑp)) can be

thought of as the component-wise inverse hyperbolic sine transform with shift ωj and

scale δj. Specifically, given some variate yj, and ϑj := (ωj, δj), the function is written

as

h(yj;ωj, δj) = arcsinh
(
yj − ωj
δj

)
. (2.16)
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Recognize that by definition, h is a well defined map from R→ R with no singularities

as δj > 0. Let Jh(y;ϑ) be the Jacobian with respect to the function h; by the

Transformation Theorem, the density of Y is given as

fY(y;θ) = fX (h(y;ϑ);µ,Σ)Jh(y;ϑ)

=
exp

{
−1

2 (h(y;ϑ)− µ)>Σ−1 (h(y;ϑ)− µ)
}

(2π)
p
2 |Σ|

1
2
∏p
j=1

(
δj

√(
yj−ωj
δj

)2
+ 1

) , y ∈ Rp. (2.17)

The basis for this multivariate generalization can be traced back to Johnson (1949a)

for modelling bean measurements of breadth and length. Stanfield et al. (1996) further

extends the model to account for p-dimensional random variates. Most approaches

derived from the SU distribution retain the same functional form of (2.15), but differ

in the parametrization of (2.16). The work of Burbidge et al. (1988) proposes a single

scale parameter to transform extreme values; this is further extended by MacKinnon

and Magee (1990) by offering parameters for both shift and scale. In principle, the SU

distribution can be thought of as a Gaussian random variate which is then transformed

according to (2.15). Herein, we refer to the translated domain of Y as hyperbolic

space, and the domain ofX as Gaussian space. Therefore, ω and Λ can be interpreted

as the shift and scale in hyperbolic space. Once transformed, µ and Σ retain their

usual Gaussian interpretations as discussed in Section 3 of Johnson (1949a).
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CHAPTER 3

MIXTURE 2.1: MODEL-BASED

CLUSTERING AND CLASSIFICATION,

WITH OR WITHOUT MISSING DATA

This chapter focuses on the development of a software package for performing parsi-

monious clustering under missing data scenarios. Consider the following development

timeline of software related to GPCMs.

3.1 Software Developments of GPCMs

A number of implementations of the GPCMs family in R (R Core Team, 2021) has

been developed over the years. Among the most popular, the package mclust has
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undergone its fifth fundamental change since its inception over 20 years ago (Scrucca

et al., 2016). Earlier versions of mclust (Fraley et al., 2005) implemented 10 models

of the 14-member GPCMs family. However, following the introduction of mixture

version 1.0 (Browne and McNicholas, 2013), mclust version 5 included the remaining

four. Notably, the same algorithms used for the two additional models in mixture

version 1, were also used in mclust — specifically, the minorization-maximization

algorithms of Browne and McNicholas (2014). In addition, despite its popularity, the

ability to handle missing data had not been implemented within mclust for over 13

years until its fourth release (Fraley et al., 2012).

In keeping with the GPCM tradition, consider a brand new upgrade: mixture

version 2.1. The new version contains a C++ (Stroustrup, 2018) implementation of

the GPCMs family with the ability to handle both skewed and missing data. This

chapter focuses on the developments and specifics involved in creating mixture ver-

sion 2.1. Based on an object oriented approach, an extension library RcppArmadillo

is used to implement the family of 14 GPCMs (Eddelbuettel and Sanderson, 2014)

which differs greatly from previous mixture versions. The object oriented approach

is a traditional programming paradigm for the most natural and pragmatic C++ im-

plementations (Zhou, 1996). This approach allows one to embed the imputation of

missing data directly within the EM algorithm. Through the use of multiple inher-

itance, existing models are easily extended with minimal changes to the code base.

This package features the following new additions. First, a brand new three-phase

algorithm is developed for clustering missing data scenarios. Second, an extension of

the original mixture package to include three skewed finite mixture models: skew-t,

generalized hyperbolic, and variance gamma (Lee and McLachlan, 2013; Browne and
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McNicholas, 2015; McNicholas et al., 2017). Finally, the tEIGEN family for a finite

mixture of student-t distributions is also implemented (Andrews et al., 2018). All

models mentioned above have 14 parsimonious settings to choose from allowing one

to reduce dimensionality of the parameter space. In addition to parsimonious models,

the new mixture package features an option to use the stochastic variant of the EM

algorithm. To demonstrate robustness, both real and simulated datasets are used to

compare the current version of mclust against the newly improved mixture package.

Installation of the package is as follows,

# Install package.

install.packages("mixture", dependencies=TRUE)

# Load mixture.

library(mixture)

3.2 Estimation

Estimation of the GPCM family is based on the EM algorithm. Suppose we observe

x1, . . . ,xn realizations of X , then the log-likelihood of a GPCM model is given as

l(Θ;x1, . . . ,xn) =
n∑
i=1

log

(
G∑
g=1

τgf(xi;µg,Σg)

)
. (3.1)

However, since the component membership of x1, . . . ,xn is unknown, it is difficult to

maximize (3.1). In literature, when applying EM, (3.1) is usually referred to as the

observed log-likelihood. A common approach is to introduce a latent random variable

Zig which denotes the membership of observation xi. Zig = 1 when observation xi
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belongs to component g, and Zig = 0 otherwise. As a result, denote the complete

data log-likelihood as

lc(Θ;x1, . . . ,xn) =
n∑
i=1

G∑
g=1

zig log {τgf(xi;µg,Σg)} . (3.2)

In general, the EM algorithm can be broken down into two steps. The E-step

calculates the expected value of missing data conditional on the observed, while the

M-step maximizes (3.2) based on results from the E-step. The two steps alternate

until convergence is established. Let Θ(t) be the parameters estimated from the

current iteration t. The E-step is then given as

ẑ
(t)
ig = E

[
Zig|xi,Θ(t)

]
=

τ
(t)
g f(xi;µ

(t)
g ,Σ

(t)
g )∑G

k=1 τ
(t)
k f(xi;µ

(t)
k ,Σ

(t)
k )
. (3.3)

The resultant expectations ẑ(t)ig of (3.3) are referred to as estimated component mem-

berships (a posteriori), and can be interpreted as the probability that observation i

belongs to component g given xi. The E-step is the same across all members of the

GPCM family. One of the features implemented in mixture is deterministic anneal-

ing (3.2). Deterministic annealing (DA) is an optimization technique which avoids

local minima of a given cost function (Zhou and Lange, 2010). The cost function in

this case is (3.2). For a given ν ∈ R(0, 1], DA is implemented within the E-step as

ẑ
(t)
ig = E

[
Zig|xi,Θ(t), ν

]
=

[
τ
(t)
g f(xi;µ

(t)
g ,Σ

(t)
g )
]ν

∑G
k=1

[
τ
(t)
k f(xi;µ

(t)
k ,Σ

(t)
k )
]ν . (3.4)
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DA is used to make the likelihood surface flatter, and can be viewed as a progres-

sion towards the full E-step (for details see Section 2.2.4 of McNicholas, 2016a).

The following code sample demonstrates the use of DA within the gpcm function:

### Load dataset

data(x2)

### use deterministic annealing for starting values

axDA = gpcm(x2 , G=1:5, start=0,da=c(0.3 ,0.5 ,0.8 ,1.0))

summary(axDA)

The M-step varies across the 14 models within the GPCM family. However, the

estimation of τg’s and µg’s is common throughout. The maximization step on iteration

(t+ 1) for τg and µg is given as

τ̂ (t+1)
g =

∑n
i=1 ẑ

(t)
ig

n
and µ̂(t+1)

g =

∑n
i=1 ẑ

(t)
ig xi∑n

i=1 ẑ
(t)
ig

.

For Σg, the estimation is different for each model in the GPCM family. All models

have the Σg estimations implemented according to Celeux and Govaert (1995) except

EVE and VVE. The work by Browne and McNicholas (2014) develops a MM algorithm

for estimating the covariance of models EVE and VVE. As a result, the MM algorithm

for such models within mixture is implemented accordingly.

Model convergence, selection, and performance is performed in accordance with

Section 2.2. Mixture model selection by BIC is fairly common as it is based on an

approximation to Bayes factors (Kass and Raftery, 1995). For convenience, column

6 of Table 2.1 gives the number of free covariance parameters for each member of the

GPCM family.
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Within mixture, the following code sample demonstrates parsimonious model

selection within the gpcm function:

# Load dataset and run models.

data(x2)

mm = gpcm(x2 ,G=3,mnames=c("VVV","EVE","VII")) # run three models.

# Display Results

summary(mm)

print(mm)

3.3 Imputation of Missing Data

The ability to handle missing data is an essential tool that most mixture model-based

approaches lack. The imputation of missing data is a well researched topic; a complete

review of methods can be found in literature such as Little and Rubin (2019) and

Schafer (1997). The current approach for mclust is to use a general location model

(GLOC, Schafer, 1997). However, the work by Di Zio et al. (2007) develops two

approaches which imbed the imputation of missing data within the EM algorithm

itself. Of the two investigated approaches, the conditional mean imputation (CMI) is

found to be superior for preserving the sample mean. Using this existing literature,

a similar approach is developed which outperforms mclust in both imputation and

classification.
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3.3.1 Conditional Mean Imputation

For a particular observation vector xi, there exists the potential to have up to

p − 1 missing entries. Let mi universally correspond to a collection of indices to

which entries are missing for vector xi. Furthermore, let di correspond to the

collection of indices which are non-missing for vector xi. For example, if xi =

(xi1, xi2,NA, xi4, . . . , xip), then mi = {3} and di = {1, 2, 4, . . . , p}. Essentially, mi

and di keep track of which entries are missing and non-missing for a particular ob-

servation vector. With this notation established, for a particular observation i, let

xi,mi
, and xi,di be vectors of missing values and non-missing values respectively. The

imputation step of the CMI method is given as

x̂i,mi
= E [xi,mi

|zi,Θ,xi,di ] =
G∑
g=1

zigE [xi,mi
|µg,Σg,xi,di ] , (3.5)

E [xi,mi
|θg,xi,di ] = µg,mi

+ Σg,mi,diΣ
−1
g,di,di

(xi,di − µg,di). (3.6)

Here, zi is the vector of a posterori for observation i. The vectors µg,mi
and µg,di

are the mean vector entries of µg, associated with the missing and non-missing data

entries respectively. Σg,mi,di are the co-variance entries of Σg, associated with the

missing and non-missing entries. Note, Σg,mi,di is a rectangular matrix if the number

of missing entries exceed the number of non-missing entries, or vice versa. Finally,

Σg,di,di is the square co-variance matrix of the non missing data taken from Σg. The

conditional mean imputation is fairly common and has been derived in Browne et al.

(2022) and Keef et al. (2009).

26



Ph.D. Thesis - Nikola Počuča McMaster - Mathematics and Statistics

Three Phase Imputation EM Algorithm

The imputation of missing data under presence of mixtures is a circular referencing

problem. We see that (3.5) requires both the parameters Θ and the a posteriori zi.

However, to compute the E-step and M-step, you need to have already calculated x̂i,m,

which in turn, requires you to impute missing data. Therein lies a circular reference

between imputation and estimation resulting in a unique problem. As rectification,

consider the introduction of a three phase imputation EM algorithm (3PEM) for

missing data. The 3PEM is split into three separate procedures aiming to optimize

(3.2) under the presence of missing data. We begin with the burn-in phase.

1. Given an initialization of the a posteriori, temporarily remove all observations

with missing data entries, and their respective zi. As a consequence, this al-

gorithm will not work in situations where every single observation has missing

values.

2. Perform the EM algorithm b times with the non-missing observations to acquire

parameters Θ?.

This phase is aimed at acquiring sufficient initialization parameters for the imputation

of missing values. Next, we move onto the imputation phase. Place the missing data

observations, and their estimates for zi (see 3.3), back into the original dataset.

1. Impute the missing data x̂i,m according to (3.5), with parameters Θ?.

2. Perform an E-step on the missing data, to acquire new zi.

3. Perform an M-step to gain new parameters Θo, which are estimated with the

newly imputed data.
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4. Impute the missing data one more time with Θo as a preparation for the final

phase.

Concluding with the final EM phase, use the initializations Θo and begin an EM

algorithm according to the following scheme.

1. Perform the E-step on the entire observed data.

2. Impute missing data according to (3.5).

3. Perform a M-step with the newly imputed data.

4. Calculate (3.1), and check convergence using (2.2).

5. Repeat steps 1 − 4 if convergence has not been reached or if the maximum

number of iterations have not been exhausted.

Each phase of the 3PEM algorithm is designed to handle a specific problem.

The first phase handles the problem of estimating good initialization parameters for

imputation. If one poorly imputes missing observations into bad starting values,

there is a risk for the algorithm to become trapped in a local minima. The second

phase handles the issue of performing a proper imputation with good initialization

parameters. Since the burn-in phase results in proper estimates for parameters, the

imputation is more accurate during the imputation phase. The last phase is designed

to optimize (3.1) in the presence of missing data. For a convenient summary of the

3PEM algorithm, see Algorithm 1.
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Algorithm 1: Three Phase EM Algorithm

Data: Temporarily remove all observations with missing data entries and
their zi.

begin
Burn-In Phase while iterations < b do

E-step
M-step

Result: Acquire parameters Θno estimated from the non-missing
observations.

Data: Place the observations with missing data entires and their respective
zi (3.3) back.

begin
Imputation Phase Impute the missing data x̂i,m according to (3.5)

E-step
M-step
Impute x̂i,m

Result: Imputed x̂i,m and acquired initialization parameters Θo.
begin

EM Phase while iterations < max iterations do
E-step
Impute x̂i,m
M-step
if Converged then

break

Result: Optimized (3.2).

3.3.2 Imputation Example

Any model within mixture can handle missing data easily through their respective

function calls. Missing data values can be passed into the call by simply placing a

place-holder NA within the dataset of choice. The following code example goes through

a simulated missing data scenario and plots the results in Figure 3.1.
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Figure 3.1: Imputation example plot for the x2 dataset. Here, the true values (red)
are simulated to have missing values and imputed by the algorithm (blue). The
imputation results in a very close approximation to the actual value.

# Load x2 dataset and set seed.

data(x2)

set.seed (1)

# Randomely place NA ’s within the x2 dataset.

x2miss <- x2

# sample rows and columns

nobs_miss <- sample(x=1:dim(x2)[1], size =3)

# sample columns.

c_miss <- sample(x=1:2, size=3, replace=TRUE)
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# place NA’s

for(i in 1:3){

x2miss[nobs_miss[i], c_miss[i]] <- NA

}

# plot targets in red.

plot(x2, pch=20, cex=0.5, xlab="x", ylab="y")

points(x2[nobs_miss ,] , pch=20, cex = 2.0, col="red")

# run gpcm fitting

m = gpcm(x2miss , G = 1:3, start = 0)

# attempt e-step and plot imputations in green.

e_m_result <- e_step(x2miss , m$best_model)

points(e_m_result$X[nobs_miss ,], pch=20, cex=2.0, col="blue")

legend(-2,-6, legend=c("Truth", "Imputation"),

col=c("red", "blue"),

pch =20)

3.4 Extensions to Skewed Distributions

There is a significant amount of literature on clustering skewed distributions. Mc-

Nicholas (2016a) covers an in-depth overview on high-dimensional skewed clustering

with both parsimonious and factor based approaches. Consider the following, let

X1,X2, . . . ,Xn be n independent, p-dimensional random vectors formulated as

Xi = µg +αgYig +
√
YigUg, | Zig = 1. (3.7)
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Here, µg is considered to be location vector emanating from component g, while

αg is the skewness vector. The vector Ug is distributed as a multivariate normal with

a zero mean vector, and a covariate matrix Σg. Yi is considered a latent variable,

whereby the selection of its distribution constistutes the resultant member distribu-

tion of the normal variance mean mixture (NVMM) family . The density ofXi|Zig = 1

can be formulated as

f(xi;µg,Σg,αg,θg) =

∫ ∞
0

φp(xi;µg + yiαg, yiΣg)h(yi;θg)dyi, xi ∈ Rp. (3.8)

Here, φp is the density of a p-dimensional multivariate Gaussian with mean µg+yiαg,

covariance matrix yiΣg, and h(yi;θg) as the density function of a univariate random

variable defined on yi > 0 (Barndorff-Nielsen et al., 1982). The function h(yi;θg) is a

weighting function whereby its form characterizes the resultant normal variance-mean

mixture distribution. Taking Yig to be distributed according to a generalized inverse

Gaussian (GIG; Barndorff-Nielsen and Halgreen, 1977), Xi results in the member of

the NVMM family with the most parameters, the generalized hyperbolic distribution

(Barndorff-Nielsen et al., 1982; Browne and McNicholas, 2015). Naturally, the density

(3.8) then follows a closed form with θg := (ωg, λg) written as

f(xi;µg,Σg,αg,θg) =
Kλg−p/2

(√
(ωg +α>g Σ

−1
g αg)(ωg + δ(xi;µg,Σg))

)
Kλg (ωg)(2π)p/2 | Σg |1/2 exp

{
(µg − xi)>Σ−1g αg

} (ωg + δ(xi;αg,µg,Σg)

ωg +α>g Σ
−1
g αg

)λg−p/2
2

.

Here Kλ is the modified Bessel function of the third kind, λg is the index, ωg is the

concentration parameter, and δ(xi;µg,Σg) := (xi −µg)>Σ−1g (xi −µg). For specifics

regarding mixtures of generalized hyperbolic distributions see Browne and McNicholas

(2015). Different selections for the distribution of Yig results in a different member of
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the NVMM family. For example, if Yig ∼ Exp(1), an exponential distribution with

rate 1, then (3.8) results in a shifted asymmetric Laplace (Franczak et al., 2014).

Similarly, estimation of parameters is based on the EM algorithm with an added E-

step, and M-step. Regarding the M-step, the estimation of parameters µg, and αg

are the same under the NVMM family and is provided as follows:

µ̂g =

n∑
i=1

xiẑig(āgbig − 1)

n∑
i=1

ẑig(āgbig − 1)

, α̂g =

n∑
i=1

xiẑig(b̄g − big)

n∑
i=1

ẑig(āigbig − 1)

, (3.9)

where ng =
∑n

i=1 ẑig, āg = (1/ng)
∑n

i=1 ẑigaig, and b̄g = (1/ng)
∑n

i=1 ẑigbig. aig and big

are taken to be the expected values of E [Yig|Xi = xi] and E [1/Yig|Xi = xi] respec-

tively. These expectations are quite involved, and differ for each skewed distribution

(For specifics see Franczak et al., 2014; McNicholas et al., 2017; Wei et al., 2019;

O’Hagan et al., 2016). However, across all possible parsimonious settings as in Table

2.1, they remain the same. It follows that the estimate for Σg is given as

Σ̂g =
1

ng

n∑
i=1

ẑigbig(xi − µ̂g)(xi − µ̂g)> − α̂g(x̄i − µ̂g)> − (x̄i − µ̂g)α̂>g + āgα̂gα̂
>
g .

(3.10)

This estimate is under the VVV constraint as outlined in Table 2.1. For all other mod-

els, follow the same procedures as outlined in Celeux and Govaert (1995) and Browne

and McNicholas (2014) with the changes to corresponding matrix in (3.10). For the

purposes of imputing skewed data, we modify (3.5) within the 3PEM algorithm to
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that of Wei et al. (2019) as

E [xi,mi
|xi,di ,µg,αg,Σg,θg] = µg,mi

+ aigαg,mi
+ Σg,mi,diΣ

−1
g,di,di

(xi,di − µg,di − aigαg,di),

(3.11)

where aig = E [Yig|xi,µg,αg,Σg,θg]. This imputation derives from Bayes theorem

where Xi|(Yi = y) ∼ N (µ + yα, yΣ). Within the 3PEM algorithm, for each itera-

tion, imputation is performed with the current estimates of µg,αg, and Σg. Finally,

regarding estimation of latent parameters θg, each skewed distribution beckons their

own estimation procedure. In some cases, such as skew-t, the estimation of the re-

spective θg parameters are of a closed form. However, for all other distributions, we

must solve a non-linear equation that differs across every single skewed model. We

employ the use of the boost C++ library for solving non-linear equations (Schäling,

2011). In addition, for the efficient computing of modified Bessel functions we employ

the use of the GSL C++ library (Galassi et al., 2019). As an example, the update for

θg := ηg of a variance gamma distribution (McNicholas et al., 2017) involves solving

the following non-linear equation:

ϕ(ηg)− log(ηg)− c̄g + āg − 1 = 0.

Here c̄g = 1
ng

∑n
i=1 zigE [log(Yig)|Xi = xi] , and ϕ(.) is the digamma function. To solve

this non-linear equation using the boost library, we employ the use of Halley’s method

(Proinov and Ivanov, 2015). Halley’s method is superior compared the standard

Newton-Raphson solvers as it has a rate of convergence to the cubic order (Alefeld,

1981).
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The mixture package contains three skewed approaches each with a family of 14

parsimonious models. The generalized hyperbolic parsimonious models (GHPCMs)

provide the largest degree of parametrization for skewed data. The variance-gamma

parsimonious models (VGPCMs) often provide the best BIC. Finally, the set of skew-t

parsimonious models (STPCMs) are often the most numerically stable of models. In

summary, across all models, we provide functionality for imputation. The mixture

package contains three functions for fitting skewed models: vgpcm, stpcm, and ghpcm.

The following code samples runs each of the skewed models on the sx2 dataset:

# Load dataset.

data(sx2)

# Generalized Hyperbolic

ghMM = ghpcm(sx2 , G=2, start =0)

summary(ghMM)

# Variance Gamma

vgMM = vgpcm(sx2 , G=2, start =0)

summary(vgMM)

# Skew -t

stMM = stpcm(sx2 , G=2, start =0)

summary(stMM)

3.5 Extensions to the Student’s t Distribution

The Student’s t distribution (Student, 1908) is particularly interesting when used in

clustering scenarios. The density for some cluster g of the Student’s t distribution is
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formulated as

ft(x;µg,Σg, νg) =
Γ(νg+p

2
)|Σg|−1/2

(πνg)
p
2 Γ
(νg

2

) (
1 +

(x−µg)>Σ−1
g (x−µg)

νg

) νg+p
2
.

The parameters for scale (Σg), and location (µg) follow the same paradigm as the

previous distributions. For example, Σg can be decomposed into the 14 parsimonious

models as in (2.1). However, the degree of freedom (νg) can be selected to either

be constrained, or allowed to vary across clusters. The combination of both the 14

parsimonious settings, and the setting for the degree of freedom, comprises what is

known as the tEIGEN family of parsimonious models (Andrews et al., 2018). Supris-

ingly, despite having different covariances, the conditional mean imputation of missing

data follows the same exact procedure as in (3.5). For specifics see Liu (1995). The

tEIGEN family contains 28 models, and is provided through the tpcm function within

the mixture package. The following code example demonstrates such functionality:

# Load sample dataset

data("x2")

# Unconstrained degrees of freedom.

mm = tpcm(x2 ,G=3)

# Constrained degrees of freedom.

mmC = tpcm(x2,G=3, constrained=TRUE)
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3.6 The Stochastic EM Algorithm

For every iteration of the EM algorithm, it is guaranteed that (3.1) increase mono-

tonically. However, attaining a global maximum is not guaranteed in practice as the

optimization surface may be unfavorable; you may end in a local maxima. As an

alternative, the stochastic EM algorithm (SEM), first formulated by Celeux (1985)

extends the original in the following aspect. The SEM does not get stuck (Nielsen,

2000), provides greater information about the data (Diebolt and Ip, 1996), and in

some cases, outperforms the original EM (Celeux et al., 1996). The SEM algorithm

differs from the original by one key step. Consider the a posterori for some observa-

tion i, at iteration t, specified in (3.3) as ẑ(t)i = (ẑ
(t)
i1 , . . . , ẑ

(t)
iG). Next, consider ẑ(t)i to

be the parameters of multinomial distribution, and sample

?z
(t)
i ∼M(1, ẑ

(t)
i ). (3.12)

Since ?z(t)i is random at every iteration, it allows for the opportunity to place mem-

bership of observation i in varying clusters. By consequence, this allows for the

opportunity to reach a different likelihood surface even when initializations are the

same. For example, consider the crabs dataset from the MASS package in R (Ripley

et al., 2013). This multivariate dataset consists of morphological measurements on

Leptograpsus crabs. The gpcm function from the mixture package is ran on the crabs

dataset with the exact same initializations, but differing optimization algorithms.

The following code sample produces desirable results.

# Load packages.

library(mixture)

library(MASS)
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Figure 3.2: Incomplete data log-likelihood for crabs dataset. The SEM (blue) and
EM (red) optimization algorithms are ran for 50 iterations for the crabs dataset.

# Setup.

set.seed (4)

XX <- as.matrix(crabs[,-c(1 ,2 ,3)]) # grab crabs measurements

zStart <- z_ig_random_soft (200 ,2) # same initializations

# Run EM.

mEM = gpcm(XX,"VVV",G=2,start= zStart ,nmax = 50)

# Run SEM.

mSEM = gpcm(XX ,"VVV",G=2,start=zStart , stochastic=TRUE , nmax =50)

# Plot EM likelihood.

plot(mSEM$model_objs [[1]]$logliks ,

type = "l", col = ’blue’,
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xlab = "Iteration",

ylab = "Loglik")

# Plot SEM likelihood.

lines(mEM$model_objs [[1]]$logliks ,

type = "l", col = ’red’,

xlab = "Iteration",

ylab = "Loglik")

3.7 Simulation Study

In this section a simulation study is devised to measure performance on classifica-

tion and imputation of missing values. The simulation study is performed on several

datasets under various missing data settings. The introduction of datasets is as

follows. The x2 dataset, found within mixture, is a simulated two-dimensional mul-

tivariate EVE Gaussian with three groups. The sx2 dataset is a skewed variant of

x2 with only two groups. Finally, the banknote dataset, found within mclust, is a

collection of six measurements made on 100 genuine and 100 counterfeit old-Swiss

bank notes.

The simulation study is split into several subsections pertaining to each dataset.

Regarding missing data experiments, consider a proportion of missing values γ. Ob-

servations are randomly selected within a particular dataset. Once an observation is

selected, one of the entries is replaced with missing values. For example, consider a

dataset of n = 100 observations, and let γ = 0.05. According to these settings, 5 of the

observations will have at least one missing entry. Within R, this is done by assigning

NA to the entry along the observation of choice. It is worth noting that mixture will
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only work where there is at least one non-missing entry along a particular observation

vector. x2 is simulated two-dimensional mixture of multivariate Gaussians. There

are three groups generated consisting of 100 observations each totalling n = 300. The

following code sample produces the right hand side of Figure 3.3:

The GPCM family is fitted on x2 for G = 1, . . . , 6 using both mixture and mclust.

Both implementations of the GPCM family arrive at the exact same results consisting

of the EVE model with G = 3 and a BIC of −1981. Consider the model comparison

plots shown in Figure 3.3. For the purposes of stylization, it is beneficial to consider

alternatives to line graphs when representing model fits. Since there are 14 models,

the line graphs tend to become clustered and chaotic when estimating multiple G.

Consider a level plot from the package lattice that presents model fit as a color

scheme. The best models are presented as “white hot” and descend in performance to

a darker brown. The level plot is a cleaner way to present model performance overall,

and, is able to differentiate model fits with ease. Using x2, 1000 different datasets

are randomly generated with missing values based on several settings of γ. As a

measure of performance, the mean squared error (MSE) is used for comparing both

packages (Wang and Bovik, 2009). In addition, b = 5 is held constant for the burn-in

phase, across all settings of γ. The box-violin plots in Figure 3.5 shows that mixture

outperforms mclust in the imputation of missing data across all settings of γ (Hintze

and Nelson, 1998). In Figure 3.4a, the performance has very similar results indicating

no difference between mclust and mixture. In most cases, the mean MSE of the new

approach is much lower than the mean MSE of mclust. However, there are some

extreme cases where the new method does not do so well, and, the mclust package

outperforms. Figure 3.7 shows classification performance across several missing data
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settings. The 3PEM method results in better classification performance according to

ARI overall. There is one exception.
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Figure 3.3: Model comparison plots between the mclust (left) vs mixture (right)
packages, on the x2 dataset.

The banknote dataset is a six-dimensional multivariate dataset. Within this sim-

ulation study, missing values are randomly generated along a randomly selected ob-

servation vector. There will be at least one, up to no more than 5 missing values along

a particular vector. Note, the banknote dataset has a larger number of dimensions

compared to x2. There are two groups each consisting of 100 observations. Miss-

ing values are simulated 1000 times where the 3PEM algorithm is performed with

similar settings as in the x2 study. Again, MSE is used as a measure of imputation

performance, while ARI is used for classification. Figure 3.6 shows imputation per-

formance for several settings of γ. The 3PEM approach is reported to have better

performance in imputation when compared to mclust across all γ settings. As for

classification, Figure 3.8 displays classification performance across several settings of

γ. Again, the 3PEM approach has a better classification performance based on ARI

across all settings. In summary, both ARI and MSE results indicate the approach is
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superior when compared to mclust within a higher dimensional setting.

The sx2 synthetic dataset is found within the mixture package. The sx2 dataset

contains two groups which are generated from a bivariate variance-gamma distribution

with a VVV covariance structure. Using sx2, 1000 different datasets are randomly

generated with missing values based on several settings of γ. The box-violin plots

in Figure 3.5 shows that mixture outperforms mclust in the imputation of missing

data across all settings of γ. In all cases, the mean MSE of the 3PEM approach is

much lower than the mean MSE of mclust.
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Figure 3.4: Simulation study results on imputation for x2 data under a variety of
missing data settings.
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(a) γ = 0.05 (b) γ = 0.10

Figure 3.5: Simulation study results on imputation for sx2.
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Figure 3.6: Simulation study results on imputation for banknote data under a variety
of missing data settings.
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Figure 3.7: Simulation study results on classification for x2 data under a variety of missing data settings.
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Figure 3.8: Simulation study results on classification for banknote data under a variety of missing data settings.
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3.8 Summary

The mixture package contains a wide variety of models and features that greatly

benefit those who wish to conduct clustering and classification. The ability to handle

missing data across any model is particularly significant as most real-world datasets

often contain missing entries. In most cases, these observations are filtered out but

now with mixture, users have the ability to conduct analysis on such datasets without

concern.

When comparing to existing packages, it is apparent from the simulation studies

wherein mixture package outperforms mclust for missing data. The 3PEM algo-

rithm provides superior results against the GLOC approach in both imputation and

classification, whether skewed or symmetric. With both real and synthetic datasets,

across multiple settings, the 3PEM algorithm is efficient in both clustering, and impu-

tation performance. Classification performance is maintained, even in the presence of

missing data. Model fit was performed through the mixture package on 80 2.20GHz

Intel Xeon Silver CPUs.

In conclusion, there is a clear benefit for using mixture in the presence of missing

data. In addition, mixture was written with an object oriented paradigm which

easily allows for future additional add-ons. One future area in particular would be

the imputation under censored data.
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CHAPTER 4

EFFICIENT OPTIMIZATION OF

NORMAL VARIANCE-MEAN

MIXTURES

The optimization of NVMM models often comes at a cost both in stability and speed

due to several issues. Most literature on normal variance-mean mixtures makes use

of the EM algorithm. However, the calculation of expected values in the E-Step re-

quires the computation of Bessel functions. The computational cost or overhead of

such calculations are significant due to the use of auxiliary functions, and, backwards

recurrence relations. Furthermore, the calculations are subject to inaccuracies as

Bessel functions are misbehaved and prone to singularities for small inputs. Consider

an alternative strategy for parameter estimation of normal variance-mean mixtures.
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This strategy forgoes the evaluation of Bessel functions and instead, relies on pos-

terior sampling. Based on the stochastic EM algorithm (Celeux, 1985), the new

method improves performance and stability particularly in clustering applications.

The stochastic EM (SEM) algorithm for variance-mean models shows a significant

improvement in speed due to the use of random sampling over evaluating Bessel

functions. Furthermore, it is shown that the SEM algorithm has comparable perfor-

mance to the standard EM when optimizing log-likelihoods. As a clarifying measure

when discussing “model performance” herein, it is in reference to the log-likelihood

and other related measures of classification performance such as ARI. Conversely,

when discussing efficiency or the “speed” of the algorithm, it is in reference to the

computational overhead.

4.1 On the Computation of Kλ

It is clear that the density (2.9) and expectations (2.10)–(2.12) of a GIG distribution

are of closed form. However, there is consistent overhead for computing the mod-

ified Bessel function of the third kind (Kλ). The evaluation of such functions are

heavily involved, with several schemes to consider (Gil et al., 2002; Temme, 1975;

Amos, 1974). Of the most popular approaches, Temme’s algorithm takes advantage

of recurrence relations (Temme, 1975; Campbell, 1980). This algorithm has been

implemented in the popular GSL library (Galassi et al., 2019) and, is also contained

in the Rmath header library for the R programming language (R Core Team, 2021).

Despite its popularity, the algorithm is extremely involved and bears a heavy compu-

tational load. In fact, all methods for computing Kλ come at a heavy overhead cost.

Moreover, the function itself is subject to singularities and/or loss in precision for
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some small inputs. For some input ω, it is known that the relative error of Temme’s

algorithm decreases with increasing values of ω (Campbell, 1980). As a result, the

new strategy for optimizing NVMMs aims to completely avoid the computation of

Kλ except when absolutely necessary. Instead of computing heavy cost functions,

consider another set algorithms and sampling procedures.

4.2 Current Optimization Methods

There have been several approaches for optimizing (4.1) across the family of NVMMs.

A natural candidate for non-linear optimization is that of a quasi-Newton scheme

(Ownuk et al., 2021). However, such methods are limited due to evaluating deriva-

tives, which contrive the computation of Bessel functions. Snoussi and Idier (2006) ap-

proaches the problem by a stochastic scheme via Markov chain Monte Carlo (MCMC).

Although not explicitly stated, their approach is reminiscent of an SEM algorithm

(Celeux, 1985). Across most literature there is a clear consensus of selecting an EM

based approach for optimizing (4.1). Birge and Chavez-Bedoya (2021) use the EM for

portfolio optimization, Protassov (2004) for modelling exchange rates, and Browne

and McNicholas (2015) for clustering and classification.

As such, consider first the EM algorithm for the NVMM optimization scheme.

Let a p-dimensional random variable X be characterized by a normal variance-mean

mixture as in (2.14). Given a sample of x1, . . . ,xn, the log-likelihood function is

formulated as

l(x1, . . . ,xn) =
n∑
i=1

log (f(x;µ,Σ,α,θ)) . (4.1)
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Here, θ accounts for the parameters associated with the latent variable characteriz-

ing the specific member of the NVMM family. The EM iteratively maximizes the

log-likelihood function when data is incomplete, i.e., when there is missing and/or

latent data. In the context of NVMMs the missing data consists of the latent vari-

ables Yi. Without loss of generality to other NVMMs, consider the most parame-

terized distribution; the generalized hyperbolic distribution (GHD). With several pa-

rameters to model location, scale, asymmetry, and concentration (Barndorff-Nielsen

and Halgreen, 1977), the GHD has been applied in many statistical problems e.g.

Protassov (2004). The stochastic representation of (2.14) is now redefined with

Y ∼ I(ω, 1, λ), ω > 0, λ ∈ R and the resultant density of X is of closed form with

θ := (ω, λ), as

f(x;µ,Σ,α,θ) =
Kλ−p/2

(√
(ω +α>Σ−1α)(ω + δ(x;µ,Σ))

)
Kλ(ω)(2π)p/2 | Σ |1/2 exp

{
(µ− x)>Σ−1α

} (ω + δ(x;α,µ,Σ)

ω +α>Σ−1α

)λ−p/2
2

,

(4.2)

and δ(x;µ,Σ) := (x − µ)>Σ−1(x − µ). The density itself is subject to complica-

tions. For example, if the denominators ω + α>Σ−1α or Kλ(ω) become extremely

small, we have singularities. Conversely, if arguments for Kλ are extremely small, we

have loss in precision. Since the density is the central component of the objective

function, computing Kλ is not completely avoidable. Great care must be taken into

account when computing such densities, and, is a constant issue for any distribution

of the NNVM family. Campbell (1980) does provide a remedy where one computes

eωKλ(ω), and then normalizes by dividing with the leading term. From experience,

this normalization has shown to bring stability in calculations; however, it still bears

a large computational overhead. Galassi et al. (2019) provides both the standard
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(gsl_sf_bessel_Kn), and, exponentially scaled (gsl_sf_bessel_Kn_scaled) ver-

sions for computing Kλ.

The procedure for the EM algorithm alternates between imputing missing data,

and maximizing parameters. Suppose that the latent variable is known (Y = y),

then the conditional distribution of X |(Y = y) is N (µ + yα, yΣ), where N is an

appropriate multivariate Gaussian. Furthermore, it follows from Bayes theorem and

Browne and McNicholas (2015) that

Y |X = x ∼ GIG(ω +α>Σ−1α, ω + δ(x;µ,Σ), λ− p/2).

For every member of the NNVM family, the conditional distribution is of the same

form, i.e., a GIG distribution, and therefore the proposed SEM algorithm would hold

in generality for members of the NNVM family. In the interest of clarity, the algebra

of derivations for each step of the EM have been previously derived in work such as

Protassov (2004) and Browne and McNicholas (2015).

Define Φ̂(t) := (λ̂(t), ω̂(t), µ̂(t), Σ̂(t), α̂(t)) to be parameter estimates at iteration t.

Due to closed forms of both posterior distributions, and equations (2.10 – 2.12), the

expectation step (E-step) for some arbitrary parameter set Φ can be written as:

ai(Φ) := E [Yi|X = xi] =

√
ω + δ(x;µ,Σ)

ω +α>Σ−1α

Kλ+1(
√

(ω +α>Σ−1α)(ω + δ(x;µ,Σ)))

Kλ(
√

(ω +α>Σ−1α)(ω + δ(x;µ,Σ)))
,

bi(Φ) := E
[
Y −1i |X = xi

]
=

√
ω +α>Σ−1α

ω + δ(x;µ,Σ)

Kλ+1(
√

(ω +α>Σ−1α)(ω + δ(x;µ,Σ)))

Kλ(
√

(ω +α>Σ−1α)(ω + δ(x;µ,Σ)))

− 2λ

ω + δ(x;µ,Σ)
,
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ci(Φ) := E [log(Yi)|X = xi] =
1

2
log

(
ω + δ(x;µ,Σ)

ω +α>Σ−1α

)
+

1

Kλ(
√

(ω +α>Σ−1α)(ω + δ(x;µ,Σ)))

∂

∂λ
Kλ(

√
(ω +α>Σ−1α)(ω + δ(x;µ,Σ))).

Initialization of the EM algorithm is of critical importance because the EM algo-

rithm converges to a local maxima, and is highly dependent on initial starts. Consider

Gaussian initializations for µ̂(0)and Σ̂(0); i.e. taking the sample mean, and sample

covariance as initializers. Furthermore, set the initialization for α̂(0) = 0, λ̂(0) =

1.0, and ω̂(t) = 1.0. This initialization is somewhat appropriate for the skewness and

concentration, as the likelihood surface is quite flat with respect to these parameters

(Protassov, 2004). Now, for some iteration t, simplify the following notation and con-

sider a(t)i := ai(Φ
(t−1)), b

(t)
i := bi(Φ

(t−1)), c
(t)
i := ci(Φ

(t−1)), ā = (1/n)
∑n

i=1 ai, b̄ =

(1/n)
∑n

i=1 bi, and c̄ = (1/n)
∑n

i=1 ci; the maximization step (M-step) is formulated

as

µ̂(t) =

n∑
i=1

xi(ā
(t)b

(t)
i − 1)

n∑
i=1

(ā(t)b
(t)
i − 1)

, α̂(t) =

n∑
i=1

xi(b̄
(t) − b

(t)
i )

n∑
i=1

(ā(t)b
(t)
i − 1)

,

λ̂(t) = c̄λ̂(t−1)
[
∂

∂λ
logKλ(ω̂(t−1)

∣∣∣
λ=λ̂(t−1)

]
,

ω̂(t) = ω̂(t−1) −
[
∂

∂ω
q(ω, λ̂(t))

∣∣∣
ω=ω̂(t−1)

] [
∂2

∂∂ω2
q(ω, λ̂(t))

∣∣∣
ω=ω̂(t−1)

]−1
,

Σ̂(t) =
1

n

n∑
i=1

b
(t)
i (xi−µ̂(t))(xi−µ̂(t))>−α̂(t)(x̄−µ̂(t))>−α̂(t)>(x̄−µ̂(t))+ā(t)α̂(t)α̂(t)>,

where x̄ = (1/n)
∑n

i=1 xi, and q(ω, λ) = − logKλ(ω) + (λ− 1)c̄− ω
2
(ā + b̄). Updates
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for λ and ω are determined by conditional maximization because q is log-convex

with respect to inputs (Browne and McNicholas, 2015; Baricz, 2010). Convergence is

established via Aitken’s acceleration as defined in (2.2) . For convenience, the above

procedure has been summarized in Algorithm 2.

Algorithm 2: Standard EM algorithm for GHD
Input: Data x1, ...,xn, and initialized Φ̂(0) := (λ̂(0), ω̂(0), µ̂(0), Σ̂(0), α̂(0)).
begin

while iterations < max iterations do
E-step: Compute a

(t)
i , b

(t)
i , c

(t)
i across all observations i.

M-step: Compute Φ̂(t) = (λ̂(t), ω̂(t), µ̂(t), Σ̂(t), α̂(t))
Check convergence using (2.2) if Converged then

break

Output: Optimized set of parameters Φ̂.

4.3 The SEM Algorithm for NVMMs

It has been demonstrated across literature that the EM algorithm works relatively

well. However, there is consistent computational overhead for both the E-step and

M-step. To alleviate such overhead, consider an alternative scheme. Instead of cal-

culating expectations for Y |X = x, we sample from the posterior distribution of

GIG(ω + α>Σ−1α, ω + δ(x;µ,Σ), λ − p/2). In order for this to be effective, the

sampling algorithm must be more efficient than directly calculating the expectations.

Consider the work of Hörmann and Leydold (2014) which outlines three different

sampling algorithms for the GIG distribution. The Ratio-of-Uniform’s algorithm had

been independently proposed by both Dagpunar (2007), and Lehner (1989). There
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are two variants of this algorithm, one with mode-shift, and one without. Each vari-

ant supersedes one another in performance depending on the domain of parameter

inputs. For convenience, Algorithms 4 and 5 are outlined in detail at the end of

this chapter. However, according to Hörmann and Leydold (2014), the algorithm

drops in performance for λ < 1, ω < 0.5; as it does not have a uniformly bounded

rejection constant. To remedy this issue, Hörmann and Leydold (2014) introduce

a non-concave procedure that has superior performance overall (Algorithm 3). Al-

though the algorithms look quite involved, in practice, they consist of a composition

of strictly low-overhead functions. Programmatically, one can further reduce the cost

of all algorithms by a few algebraic tricks as in the case of:

V2 ≤ h?(Y )⇔ logV > 1

2
(λ− 1) log Y − ω

4

(
Y +

1

Y

)
− c,

where c is some normalizing constant, and h∗ is the quasi-density. Such algebraic

forms are of particular importance as they avoid the direct calculation of densities, and

consequently, avoid calculating Kλ. Furthermore, the sampling algorithms are defined

on the second parameterization of the GIG distribution, namely I(ω?, η?, λ − p/2).

The appropriate re-parameterizations must be calculated from the original form of

GIG(ω +α>Σ−1α, ω + δ(x;µ,Σ), λ− p/2) as follows:

ω? =
√

(ω +α>Σ−1α) (ω + δ(x;µ,Σ)),

η? =

√
(ω +α>Σ−1α)−1 (ω + δ(x;µ,Σ)) .

All algorithms have been implemented in both the Julia and C++ programming

languages. With the algorithms of choice established, consider an alternative scheme

for the E-step. Instead of taking expectations, sample directly from the posterior
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distribution as follows:

ãi(Φ) ∼ GIG(ω +α>Σ−1α, ω + δ(xi;µ,Σ), λ− p/2),

b̃i(Φ) =
1

ãi(Φ)
,

c̃i(Φ) = log (ãi(Φ)) .

The primary reduction in cost is that one only samples once from the distribution, and

then applies the appropriate transforms. By circumventing the calculation of Kλ for

the E-step, one can gain an immediate boost in performance. The new optimization

algorithm for a GHD now falls under the SEM algorithm category. Previous literature

shows that the SEM has comparable performance to the EM with an added benefit.

Due to its stochastic nature, the SEM explores the likelihood surface more efficiently

by avoiding local maxima (Celeux, 1985). The termination criteria of the SEM algo-

rithm is taken to be the same as (2.2). To summarize, although this methodology has

been outlined for the GHD, it is completely generalizable to any distribution of the

NVMM family. Finally, since the E-step has been simplified, any previous or existing

work on NVMMs can benefit greatly without much change in methodology or code.

4.4 Simulation Study

The purpose of this simulation study is to measure the performance of an E-step

calculation. To achieve this, consider a series of simulation studies across different

implementations and languages. Julia and C++ are selected due to their effective

track record as high performance computing languages (Gibson, 2017). Within C++,

there are several implementations of Kλ. This is the key focus of the simulation study
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as Kλ is the main bottleneck for the E-step calculation. Differences in implementation

have an effect on performance for calculating Kλ. As of C++17, there are several Bessel

functions found in the <cmath> header library. In addition, GSL also offers similar

implementations. The main objective is to compare GSL, and C++17, against the

newly devised posterior sampling procedure.

The standard E-step is constant for any domain of parameter inputs, while the

sampling procedure is not. Since the posterior sampler is based on three different sam-

pling algorithms, one must formulate three different parameter domains for the study.

Each parameter set is selected such that a specific sampling algorithm is benchmarked

against the standard E-step. Each calculation is run 10000 times where the comple-

tion time of each experiment is recorded. In C++, the standard <chrono> library is

used to measure time. Conversely, for Julia the package BenchmarkTools.jl is used

to capture the same metrics. To gain a representative understanding of performance,

the minimum, median, mean, and maximum time measurements are reported. The

best in class metrics are bolded for convenience within each table. Regarding com-

piler optimizations, the highest possible level of optimization is set for the compiler.

Great care was taken such that the compiler did not pre-compute values before actual

run-time in order to avoid misrepresentations in performance.

Beginning with Table 4.1, Algorithm 5 is benchmarked against the standard E-

step. The C++ mode-shift procedure (Algorithm 5) outperforms or matches the

standard E-step performance in the best-case (minimum) and worst-case (maximum)

scenarios. However, the median and mean calculations for the mode-shift benchmarks

algorithm shows a result of an approximate 20% gain in performance overall. The

Julia benchmarks show similar results with the exception of the worst-case metric
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favouring Julia’s GSL implementation.

Table 4.1: Reported times across competing latent step methods with parameters
λ = 1, ω? = ρ? = 8/7. Algorithm 4 is used for the SE step of the SEM algorithm.
Time is measured in nanoseconds across 10000 runs.

Method Min Median Mean Max
C++ 17 (EM) 978 2375 2364 26613
C++ GSL (EM) 908 2375 2973 1852339
C++ Shift (SEM) 908 1885 1735 17112
Julia S.F. (EM) 1885 2864 4743 17727307
Julia GSL (EM) 1397 2375 2519 55314
Julia Shift (SEM) 838 1316 1397 79074

Table 4.2 reports the results of the no-mode-shift procedure (Algorithm 4). For

C++, the sampling procedure meets or exceeds the other implementations in all cat-

egories. Based on the mean and median, one expects a 50% increase in performance

overall. Again, Julia’s GSL procedure attains the lead in worst case scenario. Overall,

the sampling procedure shows great improvement over the standard E-step for the

selected parameter set. Finally considering Table 4.3, the standard E-step is bench-

marked against the non-concave sampler (Algorithm 3). Again, a similar pattern

emerges where the sampler outperforms other implementations save for Julia’s worst

case scenario performance. Overall one should expect a 60% increase in performance

during realistic scenarios. In conclusion, the results elucidate the superior perfor-

mance of sampling procedures in comparison to the standard E step across multiple

domains.
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Table 4.2: Reported times across competing latent step methods with parameters
λ = 2.1, ω? = 15/7, and ρ? = 8/7. Algorithm 3 is used for the SE step in the SEM
algorithm. Time is measured in nanoseconds across 10000 runs.

Method Min Median Mean Max
C++ 17 (EM) 908 2794 2626 73753
C++ GSL (EM) 1397 3282 3112 68864
C++ No Shift (SEM) 908 1886 1832 14248
Julia S.F. (EM) 2304 5210 3352 17774526
Julia GSL (EM) 1397 2793 2671 54825
Julia No Shift (SEM) 838 1397 1385 888521

Table 4.3: Reported times across competing latent step methods with parameters
λ = 1/2, ω? = 1/7, and ρ? = 8/7. Algorithm 2 is used for the SE step in the SEM
algorithm. Time is measured in nanoseconds across 10000 runs.

Method Min Median Mean Max
C++ 17 (EM) 908 2304 2316 322180
C++ GSL (EM) 907 2375 2888 70192
C++ Non-concave (SEM) 907 1476 1698 19626
Julia S.F. (EM) 1396 2445 4396 17283121
Julia GSL (EM) 1396 2375 2535 56290
Julia Non-concave (SEM) 838 1337 1397 782826

Consider another simulation study designed to assess performance with regards to

estimating parameters. A single component generalized hyperbolic distribution is

generated from the following parameter set:

µ =


0.0527

0.2227

0.5068

 , α =


−0.0656

−0.2772

−0.6306

 , Σ =


2.9461 −0.3332 −0.7606

−0.3332 4.9783 1.3439

−0.7606 1.3439 2.1733

 ,

λ = −0.6227, ω = 0.2034.

59



Ph.D. Thesis - Nikola Počuča McMaster - Mathematics and Statistics

Across 1000 simulations, a dataset of n = 300 observations were drawn ran-

domely from the GHD distribution with parameters defined above. Per each sim-

ulated dataset, both the EM and SEM were run for 200 iterations.

(a) MSE of µ̂ (b) MSE of α̂ (c) MSE of Σ̂

(d) MSE of λ̂ (e) MSE of ω̂ (f) Log-likelihood

Figure 4.1: MSE results of simulation study on a log-scale for parameters and likeli-
hood.

Figure 4.1 shows the results from the simulation study. Beginning with the MSE

for µ in Figure 4.1a, we see comparable performance with respect to both algorithms.

A one-sided t-test on log transformed MSE results in a p-value< 0.001, indicating that

EM outperforms the SEM when estimating µ. With regards to estimating α, Figure

4.1b similarly shows comparable performance. A series of one-sided and two-sided

t-tests show no conclusive statistical evidence that the performance for estimating
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α differs. However, we can see that the variance for SEM is much smaller than the

EM. Figure 4.1c shows the MSE performance when estimating Σ. Clearly the SEM

outperforms the EM for estimating Σ. A one-sided t-test with a p-value < 0.001

shows evidence favouring the SEM. Figure 4.1d shows the MSE results for estimating

λ on a log-scale. Visually we see that EM outperforms the SEM when estimating λ.

A one-sided t-test also indicates that the EM outperforms the SEM with a p-value

< 0.001. With regards to ω, the Figure 4.1e shows very similar MSE performance. A

series of one-sided and two-sided t-test fails to reject the null hypothesis, indicating

no conclusive evidence that one method outperforms the other. Finally, Figure 4.1f

shows the log-likelihood results of both algorithms. Visually we see that the two

methods achieve very similar log-likelihoods indicating no difference in performance

between the two methods. Furthermore, a series of one-sided and two-sided t-tests fail

to reject the null hypothesis, showing no evidence that the methods differ in terms of

log-likelihood. In conclusion, we see some benefit to using the SEM when estimating

covariances. However, one clear noticible difference between both methods is that the

SEM is signficantly faster than the EM as discussed in the previous study.

4.5 Application

One of the more difficult problems in unsupervised classification is that of skewed or

asymmetric clusters. Much work has been done to alleviate such issues when per-

forming clustering and classification. Fitting skewed distributions in a heterogeneous

context brings upon a heavy computational load as one needs to fit G parameter

sets. In the context of model-based clustering (McNicholas, 2016a), each set of pa-

rameters represents a single cluster component. The set of parameters characterizes
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the shape, volume, direction and overall behaviour of each cluster within the data.

For skewed or asymmetric clustering scenarios, the family of NVMMs have been par-

ticularly effective in modelling such behaviour. Consider the work of Browne and

McNicholas (2015) where each cluster emanates from a generalized hyperbolic dis-

tribution. Methodologically, the standard E-step for a mixture is extremely similar

to the single component case. Naturally, the posterior sampling method is a candi-

date for fitting such models. To replace the original E-step, the sampling method

must show to be superior in several aspects. The first must be in the interest of

efficiency. The sampling method must fit the same model with a significant reduc-

tion in run-time. Next, the sampling method must maximize the objective function

(log-likelihood) to a degree equal to or greater than that of the standard E-step. Fi-

nally, in the context of clustering, the SEM procedure must either meet or exceed the

standard EM with respect to classification accuracy.

The package MixGHD in R contains a large collection of models derived from the

generalized hyperbolic distribution (Tortora et al., 2021). There are many extensions

to the multivariate GHD model within this package. Without loss of generality, and,

for the purposes of this application, consider a modified MGHD function. The sam-

pling procedure is implemented for MGHD via a C++ extension (Eddelbuettel et al.,

2011). The crabs dataset is selected consisting of 5 morphological measurements on

leptograpsus crabs (Campbell and Mahon, 1974; Venables and Ripley, 2002). The

dataset contains 200 observations consisting of two species (orange and blue), and

sex. Therefore, the dataset consists of 50 crabs each per possible combination. For

the purposes of this study, classification performance is assessed based on sex. Both

algorithms are ran for 1000 iterations with kmeans initialization. The SEM took 5.24
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Figure 4.2: Log-likelihood over iterations for a MGHD fit on the crabs dataset. The
posterior sampling method (blue) shows similar performance near the final iterations
when compared to the standard EM (red).

seconds to finish while the standard EM took 8.80 seconds. Classification accuracy

is reported as 93.50% for the SEM, and 92.50% for the standard EM. Figure 4.2

illustrates the log-likelihood by iteration for both algorithms. Surprisingly, the SEM

has inferior performance for the first few iterations, but eventually matches the stan-

dard EM near the end. A final log-likelihood of 136.34 for the SEM and 137.64 for

the standard EM shows the standard EM outperforming. However, in this case, the

model with the slightly worse log-likelihood ended up with a higher accuracy. One

caveat is that this does not hold in generality as demonstrated with the following

example.

The package mixture in R contains several implementations of clustering models

including that of the generalized hyperbolic variety (Pocuca et al., 2021). With some
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Figure 4.3: Scatter plot of sx3 dataset coloured by memberships

very small modifications to the package, a clustering procedure is run on the dataset

sx3. This data is of a two component bivariate generated from a variance-gamma

distribution and is illustrated in Figure 4.3. Note, the variance-gamma distribution is

a subclass of the generalized hyperbolic, and therefore, is appropriate in the context

of this application. The two components are extremely close together which poses

some challenge for a clustering scheme. Both the EM and SEM algorithms were fit

on the dataset with random initializations across 1000 runs. The time to complete

1000 iterations of each algorithm, the log-likelihood, and the classification accuracy

for each run is recorded. The average results are reported in Table 4.4. There is a

noticeable difference in the average time, log-likelihood, and accuracy. The stochastic

method shows an average speed-up of 23%. The average accuracy has also increased

by 0.84%.
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Table 4.4: Benchmarking the standard E-step against the stochastic variant over
1000 runs. The average and standard deviation of time (seconds), log-likelihood, and
classification accuracy (%) are reported.

Method Time Log-likelihood Accuracy
Standard 5.57 (0.11) -12224.18 (0.665) 93.40 (0.1)
Stochastic 4.34 (0.94) -12221.76 (2.681) 94.25 (1.3)

Overall, the results show that indeed the stochastic method outperforms the stan-

dard E-step through the new posterior sampling algorithm. Both in time, and in

classification performance, the sampling method is a viable replacement for the stan-

dard E-step in a clustering context.

4.6 Discussion

The results of this work are not limited to multivariate clustering problems. Several

uses of NVMMs extend to matrix variate and higher order distributions (Gallaugher

and McNicholas, 2019, 2020; Gallaugher et al., 2021a). Here, computational overhead

plays a much larger role for such high dimensional datasets. Another potential ap-

plication of the posterior sampling method would be for regression models that use

an NVMM-like methodology. Gallaugher et al. (2021b) develops a skewed regression

model with cluster-weighted components. The E-step for this model is extremely

similar and, therefore, can also make use of the posterior sampling method. An-

other set of NVMM models that could benefit from this methodology include, inter

alia, the normal inverse Gaussian (Barndorff-Nielsen, 1997; O’Hagan et al., 2016),

the variance gamma (Madan et al., 1998), the skew-t (Gupta, 2003), and the shifted

asymmetric Laplace. (Kotz et al., 2001). Furthermore, more complex models such

as the mixtures of GHD (Tortora et al., 2021) could also benefit from the posterior
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sampling method. From experience, a combination of both SEM and EM approaches

would be optimal. The recommended strategy would be as follows. First, run the

more performant SEM algorithm for several iterations, then, fine-tune the model fit

using the standard EM for the last few iterations. In conclusion, this work applies

several different sampling methods in the context of model estimation. The SEM is

an efficient tool for optimizing normal variance-mean mixtures with a great potential

for wide-spread adoption within NVMM methodologies.
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Algorithm 3: Rejection method for non-T−1/2-concave part

Input: Parameters λ, ω with 0 ≤ λ < 1 and 0 < ω ≤ 2
3

√
1− λ.

Output: A GIG distributed random variable Y .
begin

1: m← ω/((1− λ) +
√

(1− λ)2 + ω2)
2: y0 ← ω/((1− λ), y? ← max(y0, 2/ω)
3: k1 ← g(m), A1 ← ky0
4: if yo < 2/ω then

k2 ← e−ω, A2 ← k2((2/ω)λ − yλ0 )/λ
if λ = 0 then

A2 ← k2 log(2/ω2)

5: else
k2 ← 0, A2 ← 0

6: k3 ← yλ−1? , A3 ← 2k3 exp{−y?ω/2}/ω
7: A← A1 + A2 + A3

8: repeat
Generate U ∼ Unif(0, 1), V ∼ Unif(0, A)
if V ≤ A1 then

Y ← y0V/A1, h← k1

else if V ≤ A1 + A2 then
V ← V − A1

Y ← (yλ0 + V λ/k2)
1/λ, h← k2Y

λ−1

if λ = 0 then
Y ← ω exp(V exp(ω))

else
V ← V − (A1 + A2)
Y ← −2/ω log(exp(−y?ω/2)− V ω/(2k3)), h← k3 exp(−Y ω/2)

until Uh ≤ g(Y );
return Y
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Algorithm 4: Ratio-of-Uniforms without mode shift
Input: Parameters λ, ω with 0 ≤ λ < 1 and min{1

2
, 2
3

√
1− λ} ≤ ω ≤ 1.

Output: A GIG distributed random variable Y .
begin

1: m← ω/((1− λ) +
√

(1− λ)2 + ω2)

2: y+ ← ((1 + λ) +
√

(1 + λ)2 + ω2)/ω

3: v+ ←
√
h?(m)

4: u+ ← y+
√
h?(y+)

5. repeat
Generate U ∼ Unif(0, u+), and V ∼ Unif(0, v+)
Y ← U/V

until V2 ≤ h?(Y );
return Y

Algorithm 5: Ratio-of-Uniforms with mode shift
Input: Parameters λ, ω with λ > 1, and ω > 1.
Output: A GIG distributed random variable Y .
begin

1: m← ω/((1− λ) +
√

(1− λ)2 + ω2)

2: ϕ1 ← −2(λ+1)
ω
−m, ϕ2 ← 2(λ−1)

ω
m− 1,

3: p← ϕ2 − ϕ2
1

3
, q← 2ϕ3

1

27
− ϕ1ϕ2

3
+m

4: ϑ← arccos(− q
2

√
−27

p3
)

5. x− ←
√
−4

3
p cos(ϑ

3
+ 4

3
π)− ϕ1

3

6. x+ ←
√
−4

3
p cos(ϑ

3
)− ϕ1

3

7. v+ ←
√
g(m)

8. u− ← (x− −m)
√
g(x−), u+ ← (x+ −m)

√
g(x+)

9. repeat
Generate U ∼ Unif(u−, u+), and V ∼ Unif(0, v+)
Y ← U/V +m

until V2 ≤ g(Y );
return Y
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CHAPTER 5

THE MISSING AND THE

ASYMMETRIC: CLUSTERING WITH

FINITE MIXTURES OF SU JOHNSON

DISTRIBUTIONS

A growing area of interest with regards to non-Gaussian data is that of clustering

and classification. In statistical practice, it is common to have a population which

consists of multiple sub-populations. The heterogeneity of such data poses particular

challenges when proposing an appropriate model. An added challenge occurs when

skewness is present within sub-populations and a Gaussian assumption becomes inad-

equate. The area of mixture model-based clustering constitutes a powerful framework
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to tackle such issues. Consider the work of Zhu and Melnykov (2018), which intro-

duces Manly transformations in the context of a finite mixture model. Methods

of transformation within finite mixtures provide the ability to handle a multitude

of patterns within data; be it symmetric or skewed. Alternatives to mixtures of

transformations includes the work of Browne and McNicholas (2015) which models

component-wise asymmetry with the generalized hyperbolic distribution (Barndorff-

Nielsen and Halgreen, 1977). With parameters for location, variance, skewness, and

concentration; the approach shows comparable performance against mixtures of trans-

formations (Gallaugher et al., 2020). In the context of mixture modelling, applications

of the Johnson system of transformation can be found in work such as Dun and Kong

(2022), where a mixture of Johnson’s SB distributions is developed to segment grey-

scale liver images. In this chapter, the unbounded transformation system SU is used

to introduce finite mixtures of multivariate SU Johnson distributions.

5.1 Finite Mixtures of SU Johnson Distributions

Consider the notion of a finite mixture of SU Johnson distributions. Let X be a

p-dimensional random variate which emanates from a G component finite mixture

model. For group g ∈ {1, . . . , G}, let µg, and Ag be the canonical shift and scale

of a multivariate Gaussian distribution (Np) such that Σg = AgA
>
g . Now, consider

the hyperbolic scale matrix Λg := diag(δ1g, . . . , δpg), δjg > 0 and shift vector ωg

as previously defined in Section 2.4.2. Next, allow some latent variable Z to be

distributed according to a multinomial distribution (M) with parameters π1, . . . , πG.

Finally, a p-dimensional random variate Y is said to emanate from a finite mixture

of SU Johnson distributions if its stochastic representation can be written as
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Z ∼M(π1, . . . , πG),

X ∼ Np(µg,Σg) | Z = g,

Y = ωg + Λgϕ(X ) | Z = g.

The corresponding density for some realization y ∈ Y is derived from equation (2.17)

as
fY(y; Θ) =

G∑
g=1

πgfY(y;µg,Σg,ωg,Λg),

fY(y;µg,Σg,ωg,Λg) =
exp

{
−1

2
(h(y;ϑg)− µg)>Σ−1g (h(y;ϑg)− µg)

}
(2π)

p
2 |Σg|

1
2

∏p
j=1

(
δjg

√(
yj−ωjg
δjg

)2
+ 1

) y ∈ Rp.

(5.1)

This form generally arises from transformations within mixtures as a canonical mul-

tivariate Gaussian density multiplied by a Jacobian term. See sections 2.3 of Zhu and

Melnykov (2018) and 3.1 of Gutierrez et al. (1995) for similar derivations as (5.1).

5.2 Expectation Maximization Algorithm

As with previous works herein, maximum likelihood estimation (MLE) is the most

common approach to estimate the parameters of a finite mixture model. The use of

the EM is common for mixture models of this type, and, is consistently present across

literature (Gutierrez et al., 1995; McNicholas, 2016b). Let y1, . . . ,yn be realizations

71



Ph.D. Thesis - Nikola Počuča McMaster - Mathematics and Statistics

of a finite mixture of multivariate SU Johnson distributions. The corresponding like-

lihood (L) and log-likelihood (l) is written as

L(Θ;y1, . . . ,yn) =
n∏
i=1

G∑
g=1

πgfY(yi;µg,Σg,ωg,Λg),

l(Θ;y1, . . . ,yn) =
n∑
i=1

log

(
G∑
g=1

πgfY(yi;µg,Σg,ωg,Λg)

)
. (5.2)

The optimization of the log-likelihood (5.2) with respect to each of the parameters Θ

is difficult due to the non-linear nature of the function. The EM algorithm provides an

iterative approach for estimating parameters. Beginning with the notion of missing

data, let Zig be a latent variable indicating component memberships and zig, its

realization. Zig = 1 if observation i belongs to component g, and Zig = 0 otherwise.

The complete data likelihood (Lc) and log-likelihood (lc) can then be derived as

Lc(Θ;y1, . . . ,yn, z) =
n∏
i=1

G∏
g=1

[πgfY(yi;θ)]zig

=
n∏
i=1

G∏
g=1

πg
exp

{
−1

2
(h(yi;ϑg)− µg)>Σ−1g (h(yi;ϑg)− µg)

}
(2π)

p
2 |Σg|

1
2

∏p
j=1

(
δjg

√(
yij−ωjg
δjg

)2
+ 1

)

zig

,

72



Ph.D. Thesis - Nikola Počuča McMaster - Mathematics and Statistics

lc(Θ;y1, . . . ,yn, z) =
n∑
i=1

G∑
g=1

zig log(πg)−
1

2

n∑
i=1

G∑
g=1

zig (h(yi;ϑg)− µg)>Σ−1g (h(yi;ϑg)− µg))

− np

2
log(2π)− 1

2

n∑
i=1

G∑
g=1

zig log(|Σg|)−
n∑
i=1

G∑
g=1

p∑
j=1

zig log(δjg)

− 1

2

n∑
i=1

G∑
g=1

p∑
j=1

zig log

((
yij − ωjg
δjg

)2

+ 1

)
.

(5.3)

Given the true component memberships z, optimize lc with respect to Θ. This

is what is known as the maximization or M-step. However, again, maximizing lc

is difficult due to the nature of non-linear transformations operating on yi. Here,

the new approach differs from Zhu and Melnykov (2018) by reducing the number of

parameters to optimize as follows. By profiling out nuisance parameters of (5.3), one

reduces the number of parameters to optimize. The new objective function is derived

in appendix A.1 referred to as the complete-profile log-likelihood. The new objective

function is written as

lcp(ϑ;y1, . . . ,yn, z) =
n∑
i=1

G∑
g=1

zig log(π̂g)−
np

2
log(2π) +

np

2

G∑
g=1

log(ng)−
np

2

−1

2

n∑
i=1

G∑
g=1

ziglogdet

(
n∑
i=1

zig (h(yi;ϑg)− µ̂g) (h(yi;ϑg)− µ̂g)>
)

−
n∑
i=1

G∑
g=1

p∑
j=1

zig log(δjg)−
1

2

n∑
i=1

G∑
g=1

p∑
j=1

zig log

((
yij − ωjg
δjg

)2

+ 1

)
.

(5.4)

Notice that the function lcp is free from parameters associated with the Gaussian

space, and only concerns itself with the scale (ωg), and shift (Λg) of hyperbolic space
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contained in ϑg, and µ̂g. Notice also that one can disregard the first row of (5.4)

as terms are constant with respect to parameters being estimated. Optimization

of (5.4) can be performed via any desired non-linear optimization scheme such as

Nedler and Mead (1965) or Zhu et al. (1997). This methodology is implemented in

Python 3.8.5 (Van Rossum and Drake Jr, 1995) where such algorithms are freely

available within the scipy (Virtanen et al., 2020) and torch (Paszke et al., 2019)

libraries. In practice, component memberships are often unknown as in the case

of unsupervised learning (clustering) and therefore, we must estimate them. Given

a set of parameter estimates Θ̂(t) for some iteration t, compute the expectation of

component memberships a posteriori such that

E
[
Zig = 1|Θ̂(t)

]
= ẑ

(t)
ig =

π̂
(t)
g

 exp

{
− 1

2

(
h(yi;ϑ̂

(t)
g )−µ̂(t)

g

)>
Σ̂−1(t)
g

(
h(yi;ϑ̂

(t)
g )−µ̂(t)

g

)}

(2π)
p
2 |Σ̂(t)

g |
1
2
∏p
j=1

δ̂(t)jg
√√√√( yij−ω̂

(t)
jg

δ̂
(t)
jg

)2

+1




G∑
k=1

π̂
(t)
k

 exp

{
− 1

2

(
h(yi;ϑ̂

(t)
k )−µ̂(t)

k

)>
Σ̂−1(t)

k

(
h(yi;ϑ̂

(t)
k )−µ̂(t)

k

)}

(2π)
p
2 |Σ̂(t)

k |
1
2
∏p
j=1

δ̂(t)jk
√√√√( yij−ω̂

(t)
jk

δ̂
(t)
jk

)2

+1




.

(5.5)

Within the EM, (5.5) is what is referred to as the expectation or E-step. Once

ẑ
(t)
ig ∀i, g have been calculated, substitute ẑ(t)ig ’s into (5.4,A.1) acquiring Θ̂(t+1) using

a non-linear optimization scheme. The algorithm then iterates between E-step and

M-step until convergence is reached. Initialization of the algorithm EM algorithm

can be performed randomly or by k-means (k in this case meaning G, Lloyd, 1982).

Convergence is assessed via Aiken’s convergence criteria given in (2.2). The setting

for tolerance is often nuanced and is generally set manually. As Karlis and Xekalaki

(2003) elucidates, the EM is highly dependent on the choice of initial values. The EM
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algorithm is prone to becoming trapped within the log-likelihood surface in areas away

from the global maximum. To solve this issue, consider a mixed strategy (Karlis and

Xekalaki, 2003). Starting from several different initializations, run a small number

of iterations and record their log-likelihood progressions. From here, cull for the

parameter set with the largest log-likelihood. Continuation from this parameter set

with the EM algorithm until convergence is established using criterion (2.2). As

demonstrated by Karlis and Xekalaki (2003), this approach for the EM avoids being

stuck in a local maxima. Model performance, convergence and selection for the SU

Johnson is assessed in accordance with Section 2.2.

5.3 Imputation of Missing Data

In realistic scenarios, there is often some data that is missing. For some observation

vector yi, a data point may not be recorded for entry yij. This results in a perforated

dataset where some observations are not fully realized. In addition, the perforation

(pattern of missing data) may or may not be deterministic (see Figure 1.1 of Little

and Rubin, 2019). For the purpose of simplicity, assume the observed data has no

relationship between the pattern of perforation, and, the observed values themselves.

To elaborate, missing data entries are a random subset of the data, and there is no

systematic phenomena going on that makes some data more likely to be missing than

others. By this definition, data is considered to be missing completely at random

(MCAR, Little and Rubin, 2019). To impute missing values, consider two different

methods from the work of Di Zio et al. (2007). The first method is to impute missing

values based on conditional mean imputation (CMI). The second method is to ran-

domly sample values from a source distribution which is referred to as random draws
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imputation (RDI).

Both methods for the multivariate SU Johnson distribution are derived as follows.

For a particular observation vector yi, there exists the potential to have up to p− 1

missing entries. Let m correspond to the index of the missing entry for vector yi.

Furthermore, let di correspond to the collection of indices which are non-missing

for said vector yi. For example, if yi = (yi1, yi2,NA, yi4, . . . , yip), then m = 3 and

di = {1, 2, 4, . . . , p}. The vector di keeps track of which entries are non-missing

for a particular observation vector. With this notation established, for a particular

observation i, let yi,m denote the missing value, and yi,di denote the non-missing

values respectively. The imputation step of the CMI method under the finite mixture

model is given as

E [yi,m|yi,di , zi,Θ] =
G∑
g=1

zigE [yi,m|yi,di ,µg,Σg,ωg,Λg] . (5.6)

For some component g, the conditional distribution of yi,m|yi,di is a SU Johnson

distribution with parameters adjusted for conditioning on non-missing entries (see

Appendix A.2 for full derivation). The expectation is of a closed form (see equation

37 of Johnson, 1949b, pg. 163) and written as

E [yi,m|yi,di ,µg,Σg,ωg,Λg] = E
[
yi,m|yi,di , µ̃g, σ̃2

g , ωmg, δmg
]

= ωmg−(δmg)e
σ̃2g
2 sinh(−µ̃).

The probability that observation i belongs to group g is calculated a posteriori.

This poses issues in the presence of missing data as estimation of component member-

ships zi require fully recorded observations. Furthermore, imputation of said missing

data is calculated via (5.6) which again, poses issues since it relies on fully realized
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non-missing observations. Wei et al. (2019) provides a solution where component

memberships can be calculated by strictly via the non-missing entries yi,di . The

appropriate calculation for (5.5) is now adjusted with the corresponding parameters

µdi,g,Σdidi,g,ωdi,g, and Λdi,di,g. These parameters are associated with the non-missing

entries yi,di and are used to attain ẑig for (5.6). All other parameter estimates Θ̂

can be attained by running the EM algorithm on a complete dataset with no missing

entries. The imputation step of RDI for the finite mixtures of SU model can be de-

rived from the definition of an SU distribution. Let Θ̂ and ẑig be estimates similarly

attained as in CMI. Now generate a random draw as follows

ẑi ∼M(ẑi1, . . . , ẑiG), (5.7)

x̂ij ∼ N (µ̃g, σ̃
2
g) | ẑi = g, (5.8)

ŷij = ωjg + δjg sinh(x̂ij) | ẑi = g. (5.9)

The RDI can be broken down into three steps. (5.7) draws from a multinomial

distribution the component membership for observation i based on the non-missing

entries yi,di . (5.8) draws from a univariate Gaussian distribution conditioned on non-

missing entries. Finally (5.9) transforms from Gaussian space into the desired domain

of the SU Johnson to complete the imputation for the desired missing entry yij. Of

the two methods, Di Zio et al. (2007) demonstrates that the RDI method has better

performance when estimating Gaussian variance parameters Σg. However, the CMI

method has better performance for estimating µg. For the newly developed model,

it is not clear whether one method will outperform the other for the SU Johnson

distribution. Specifically, it is uncertain whether CMI or RDI will be superior for
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imputing missing values. To motivate the newly developed methodology, consider a

series of investigations for geotechnical engineering data. These datum are at times,

incomplete; as they are compiled from multiple sets of bivariate data sourced from

different locations. When these bivariate datasets are consolidated, there are often

missing measurement records within the general multivariate dataset.

5.4 Application

5.4.1 Shanghai Clay Dataset

The shanghai clay dataset denominated as SH-CLAY/11/4051 consists of 4051 ob-

servations by 11 clay measurements, which are recorded across 50 borehole sites in

Shanghai (Zhang et al., 2020). In addition to the 11 measurements, the depth of the

borehole per sample was also recorded. The presence of asymmetry and skewness

within the dataset poses a unique challenge to model clay properties accordingly.

As Zhang et al. (2020) elucidates, there is often insufficient site related data to es-

timate design parameters at the desired project location. As a result, the need for

modelling such multivariate datasets contrives the development of appropriate statis-

tical models. Zhou et al. (2022) investigates several candidate transformation models

and establishes the SU Johnson distribution as the superior model. However, these

approaches do not consider an underlying heterogeneous structure. Upon a simple

visual inspection of the dataset, it is evident that there are at least two sources of

heterogeneity within SH-CLAY/11/4051 (for details, see Figure 4 of Zhou et al., 2022).

Furthermore, given the model performance benchmarks related to normality, a clear

presence of asymmetry is intrinsic to the data (see Table 5 of Zhou et al., 2022).
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All things considered, the work of Zhang et al. (2020) and Zhou et al. (2022) estab-

lishes a precedent for the use of SU Johnson distributions within the context of this

dataset. The dataset variates can be collected into two groups pertaining to the type

of measurement outlined in Table 5.1. The Index group pertains to data measure-

ments that are intrinsic soil properties, and, by definition are usually unit-less. These

records are extracted from laboratory tests of borehole soil samples. The Mechanical

variate group pertains to data attained from test-specific measurements such as the

vane shear test (VST), and, the unconfined compression soil test (UCST). There is a

significant amount of missing data within the dataset. Only 2 observations are fully

complete which poses significant issues (see Table 1, column 2 of Zhang et al., 2020).

Table 5.1: Description of the SH-CLAY/11/4051 dataset and its attributes grouped
by variate measurement type. Index variates are intrinsic soil properties and by
definition have no units of measurement. Mechanical variates are records taken from
the unconfined compression soil test (UCST), and vane shear test (VST).

Type Attribute Description
Index YLL Liquid limit

YPI Plasticity index
YLI Liquid index
Ye Void ratio

Mechanical YK0 At rest lateral pressure coefficient
YV E Vertical effective stress (kPa)
YSSUCST Shear strength of UCST (kPa)
YSUCST Sensitivity coefficient of UCST
YSSV ST Shear strength of VST (kPa)
YSV ST Sensitivity coefficient of VST
YPen Penetration resistance (kPa)

Without loss of generality, consider only modelling a subset of the variates to

demonstrate robustness. Strictly, only the Index group is modelled as there are
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an adequate number of complete records to estimate Θ. Upon filtering out in-

complete records, n = 2066 observations were extracted and organized as Y =

(YLL, YPI , YLI , Ye). Table 5.2 reports the descriptive statistics of shanghai dataset.

Note the difference in scale across variates. To prevent numerical issues where one

variable may influence estimation over others, the dataset is standardized with the

sample mean and deviation (Milligan and Cooper, 1988). Specifically, standardization

prevents variables with larger scales from dominating how clusters are defined. There

is considerable skewness for the marginal distribution of YLI according to Pearson’s

skewness statistic. YLI refers to the liquid index of soil which is a proxy for how much

water content there is in a sample. Due to presence of skewness, YLI is used as a

reference point for Figure 5.1 visualizing the structure of data.

Table 5.2: Descriptive statistics of SH-CLAY/11/4051 dataset, skewness is calculate
via Pearson’s coefficient of skewness statistic.

Variate Min Median Mean Max Skew Std
YLL 26.300 41.250 40.350 58.700 -0.095 4.901
YPI 10.300 18.200 18.090 30.900 0.040 3.222
YLI 0.490 1.165 1.149 2.190 0.266 0.253
Ye 0.770 1.209 1.223 1.863 0.117 0.181

Immediately one can see presence of heterogeneity across the bivariate plots of

Figure 5.1. The orientations for (YLI , YLL) and (YLI , YPI) appear to be on the same

axis which implies that those specific measurements are characterized by similar be-

haviour and orientation. Most of the data is quite concentrated in the (YLI , Ye) plot

which may result in greater cluster overlap during estimation. In addition, there are

several data points that lie quite distant from the majority of samples such as in the

lower right-hand corner of the (YLI , YPI) plot. The analogous data point can also be

found in the lower right-hand corner of the (YLI , YLL) plot implying that again, the
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pairs (YLI , YLL) and (YLI , YPI) exhibit similar behaviour and orientation.

Figure 5.1: A series of bivariate scatter plots with YLI as a point of reference for
YLL, YPI , Ye. Shows data heterogeneity and asymmetric clusters across all domains
for each Index variate.

To model heterogeneity and asymmetry of the data, consider the following. As-

sume that realizations y ∈ Y emanate from a finite mixture model of up to G com-

ponents. By fitting an appropriate finite mixture model, one can reclaim the com-

ponent membership of each y. Several types of initializations are considered for the

SU model. Initialization methods include k-means, random soft, and random hard.

As a means of comparison to other methodologies, similar transformation models

are also considered for the dataset. The work of Zhu and Melnykov (2018) through

the ManlyMix package (Zhu and Melnykov, 2017) considers modelling skewness with

Manly transforms. Another candidate to consider is a mixtures of t-distributions with

power transforms through the flowClust package (Lo et al., 2009). A total of 1000

runs with varying initializations are performed for each candidate model. Table 5.3

reports the top performing models via BIC. It is evident that a SU Johnson mixture

model outperforms all other candidates with a BIC of −8286.117 and G = 6. The

second most performant model is a Manly mixture with a BIC of −8291.592 and
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G = 6. Furthermore, all candidate models selected G = 6 components as their best

fit; indicating some intrinsic consistency across different methodological approaches

for this dataset. Similarly, comparable analyses can be found in work such as Gal-

laugher et al. (2020) where skewed approaches had similar performance in terms of

classification, but differed in BIC.

Table 5.3: Model fits on complete data of Index measurements from the
SH-CLAY/11/4051 dataset. Grouped and organized by each candidate model, the
top four fits out of 1000 runs are reported. The top performer is shown in bold.

Model BIC G
SU Johnson −8286.117 6

−8313.977 5
−8395.002 4
−8421.113 7

ManlyMix −8291.592 6
−8387.434 7
−8634.226 4
−8668.603 5

flowClust −8304.792 6
−8318.946 7
−8365.024 8
−8453.637 5

The heterogeneous nature of the data yields a particularly interesting fit for an SU

Johnson mixture model. Figure 5.2 visualizes the component memberships assigned

by the G = 6 SU Johnson model. Here, we see that some components overlap more

heavily than others. In addition, the orientation and location of components across

variables within plots appear fairly consistent. Beginning with the four top-most com-

ponents denoted in green, brown, purple and pink. The green/brown components are

superimposed on one another with strong overlaps. The purple/pink component pair

exhibits the exact same behaviour. However, the remaining components coloured
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in light-blue/dark-green are fairly distinct from all others; not exhibiting such struc-

ture. Consider the purple/pink component pairing, both components display a similar

shape visually within the data. The pink component is more concentrated than the

purple, and does not contain any spurious points. In contrast, the purple counterpart

contains several points that are quite distant from the general population. Addition-

ally, the component shapes for purple/pink are quite similar visually, and, is especially

evident when considering the (YLI , Ye) plot. A similar pattern can be found for the

brown/green pair. The green component seems to model the concentrated centre

of the data, while the brown component accounts for the sparsity. Furthermore, all

component shapes are visually asymmetric and do not exhibit ellipsoidal properties

such as in the case of mixtures of multivariate Gaussian.

Figure 5.2: SU Johnson model fit visualized on a series of bivariate scatter plots with
YLI as a point of reference against YLL, YPI , Ye. Memberships are denoted by color
and assigned by hard classification.

The presence of heterogeneous soil properties within the dataset is not surpris-

ing. Shanghai local code for geotechnical site investigation defines different geological

layers and sub-layers constituting Shanghai clay (see Figure 2 of Zhang et al., 2020).
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The nature of Shanghai soil data is consistent with the general theory of geotechni-

cal poromechanics. Contemporary deterministic models such as Kebria et al. (2022)

model freezing processes within a heterogeneous soil media consisting of silt, clay,

sand, and gravel. All things considered, the analysis indicates viability of the SU

Johnson mixture model to accurately encapsulate soil phenomena. One caveat to

consider, is that borehole samples were not taken uniformly across depth (Figure 3 of

Zhang et al., 2020). This sample bias may lead to underestimating the actual number

of components and thus under-representing the heterogeneity of data. Nevertheless,

the analysis of components demonstrates the flexibility of the SU Johnson model to

account for asymmetry, concentration, and spuriosity of data within a heterogeneous

context.

5.4.2 Imputation of Missing Clay Data

There are a considerable amount of missing records within the SH-CLAY/11/4051

dataset. Even when considering only Index measurements, there are 1985 observations

with missing entries. Imputation methods are restricted to only measurements with

at least one non-missing record. However, two observations are fully missing with

regards to Index measurements. This implies that for this borehole extraction, no

soil samples were sent to the lab to record Index measurements. However, other

Mechanical measurements are available for these two observations. By the results

of previous analyses, these two observations are not considered due to the focus on

Index measurement types.

For the remaining n = 1983 samples, Index measurements are only partially avail-

able. For a given observation, there are records within the data where not all Index
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measurements were recorded for a given observation i. Some obeservations do not con-

tain a full set of Index measurements. There is a clear asymmetry in proportions of the

type of missing data within the dataset. Table 5.4 shows a comprehensive overview of

missing data patterns. Over 90% of missing data is strictly for the YLL, YLI variates.

The variates YLI , Ye are a far-second with 8.17% missing.

Table 5.4: Pattern of missing data for the Index variables of the SH-CLAY/11/4051
dataset.

Missing Variate Ye YLI , Ye YLL, YLI YLL, YLI , Ye YLL, YPI , YLI
Proportion (%) 0.05 8.17 90.97 0.55 0.25

Count 1 162 1804 11 5

The imbalance within proportions of missing data patterns pose some difficulty

in imputation since it violates the MCAR assumption. MCAR assumes that there is

no underlying mechanism that makes one type of data more likely to be missing than

others. In contrast, the dataset clearly indicates that liquid measurements are more

likely to be missing. However, consider the following. According to Figure 5.1, there is

a clear similarity in orientation/structure within the (YLI , YLL), and (YLI , YPI) pairs.

The strength of imputation methods lie in leveraging already recorded entries, and,

for most non-missing entries, YPI is indeed recorded. Despite the imbalanced nature

of missing data patterns, it is assumed that this structure overcomes any limitations

of the MCAR assumption for imputing liquid measurements.

Both methods of imputation are performed on the n = 1983 incomplete observa-

tions. Imputation is performed using the estimated parameters taken from the G = 6

SU Johnson model within Section 5.4.1. Figure 5.3 displays the results of the con-

ditional mean imputation. The imputed points coloured in blue are overlaid on the

original dataset to visualize the similar structure of data. The CMI method is able
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to capture the variation of points with small areas of concentration. This is evident

in the (YLL, YLI) bivariate plot where imputed points are quite concentrated in the

upper right-hand area. Despite the similarities between (YLL, YLI) and (YPI , YLI), the

imputed points for (YPI , YLI) are not as concentrated. This concentration of imputed

data for (YLL, YLI) is a direct result of the high proportion of missingness for said

variate pair as previously reported in Table 5.4. Furthermore, there are some points

in Figure 5.3 which are quite spurious in relation to the general structure of data.

This type of dispersion is fairly consistent with the original dataset displayed in grey.

Figure 5.3: A series of bivariate scatter plots for original (grey) and CMI imputed
points (blue) with YLI as a point of reference for YLL, YPI , Ye. Imputed points (blue)
capture the underlying structure of the original points (grey).

Overall, the CMI method visually captures the spirit of the data despite violation

of the MCAR assumption. The RDI method is implemented in a similar fashion for

the n = 1983 partially missing observations. Figure 5.4 visualizes the result where

again, the imputed values (red) are overlaid on the original dataset (grey). From the

visuals, the RDI method indeed captures the underlying structure of data but with

a less dispersed imputation. Overall, the imputed points are less spurious than the

CMI counterpart and impute closer to the overall structure. In addition, imputed
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data appears less concentrated than the CMI counterpart.

Figure 5.4: A series of bivariate scatter plots for original (grey) and RDI imputed
points (red) with YLI as a point of reference for YLL, YPI , Ye. Imputed points (red)
capture the underlying structure of the original points (grey).

For both methods, the results appear to capture the essence of the original dataset.

However, with no ground truth to compare against, it is difficult to discern whether

one method is superior over another. Furthermore, the violation of the assumed

MCAR perspective complicates a fair comparison as data are not randomly missing.

As a result, a simulation study is developed to closely match existing data. Consider

a MAR mechanism to both measure imputation performance, and, facilitate a fair

comparison between methods.

5.5 Simulation Study

A simulation study is designed to assess imputation performance by creating a syn-

thetic dataset. Naturally, the closest candidate for a ground-truth is the aforemen-

tioned n = 2066 fully complete records of Index measurements. To capture the same

perforation mechanism present within the n = 1983 incomplete Index measurements,

consider the following multinomial sample drawing process. First, randomly select
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an observation from the complete Index dataset where each observation has an equal

probability of being sampled. Next, sample from a multinomial distribution with

probabilities equal to the row of proportions in Table 5.4. Based on category drawn,

perforate the drawn observation based on the corresponding pattern of missing data.

For example, if category 1 is drawn, perforate the void ratio Ye for that observation

leaving it missing. Perform the same process 1000 times and impute the newly per-

forated missing values. Finally, to measure performance, calculate the mean squared

error (MSE) between the original observations, and, the newly imputed ones. The

results for both imputation methods are aggregated and visualized in Figure 5.5 on

a log scale.

Figure 5.5: Violin plot of MSEs for CMI and RDI methods on a log scale. Results show
that CMI has better performance overall even under worst-case scenarios (highest
MSE).
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Both the best-case (lowest MSE) and worst-case (highest MSE) show that CMI

has better performance. For the general case, the mean and median MSEs are also

lower for CMI than RDI. Overall, the results indicate that CMI is able to significantly

outperform RDI. In addition, CMI intrinsically has lower computational overhead

compared to stochastic methods such as RDI. From results herein, CMI is the clear

choice for imputation overall.

5.6 Discussion

This chapter develops a multivariate finite mixture SU Johnson model with the ability

to handle missing data entries. Through an application in geotechnical soil analysis,

the robustness of the SU Johnson model demonstrates the ability to handle asymme-

try and concentration within a heterogeneous context. The results from the applica-

tion section show two pairs of components that overlap significantly. For each pair,

one component captured the concentration while its counterpart captured dispersion.

Consider the following perspective, in a contaminated model as in Punzo and Mc-

Nicholas (2016), a cluster is defined through a mathematically tractable multivariate

Gaussian distribution but with a superimposed inflated high-variance component.

Through this perspective one may treat the pink/purple component pair to be of

the same cluster. Naturally, this contrives an avenue for future work to consider

a contaminated SU Johnson model. Since the newly developed methodology is a

component-wise transformation of a multivariate Gaussian model, one can naturally

extend the contaminated Gaussian in similar fashion using the SU system. Further-

more, the results of the simulation study show that of the two methods described in

Di Zio et al. (2007), CMI is the clear choice. Another imputation method to consider
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is a conditional median imputation. The median of an SU Johnson distribution is

easily calculated and has a closed form. In addition, median imputation would have

even less computational overhead than the mean, constituting a natural extension of

this imputation method. Furthermore, one could also model the missing data mecha-

nism to relax the MCAR assumption to MAR. Nevertheless, visually both imputation

methods capture the structure of data, and, can be used to impute missing values.

In summary, the finite mixture SU Johnson model proves itself to be highly robust

for missing and asymmetric data.
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CHAPTER 6

VISUAL ASSESSMENT OF

MATRIX-VARIATE NORMALITY

In recent years, both the dimensionality and quantity of data have become increasingly

large, leading to what is commonly known as the “big data phenomenon”. In the

case of longitudinal data, for example, it is becoming increasingly common to have

repeated measurements on more than one characteristic for an individual, leading

to a dataset where each observation can be recorded as a matrix. These multiple

repeated measures over time, sometimes known as multivariate longitudinal data, are

one example of three-way (matrix-variate) data.

Many approaches for analyzing two-way (multivariate) data are based on the mul-

tivariate normal distribution and much work has been done on assessing the normality

of such data. Royston (1983) extend the univariate Shapiro-Wilk test for normality
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(Shapiro and Wilk, 1965) to large samples of higher dimension, and Mudholkar et al.

(1992) define a distribution for the Mahalanobis squared distance (MSD) under the

assumption of multivariate normality. Moreover, visual methods such as the QQ plot

(Easton and McCulloch, 1990) are quite common for assessing the assumption of

multivariate normality.

Herein, these concepts are extended to three-way data by developing a visual

approach for testing matrix-variate normality. Furthermore, previous work in this

area is encapsulated within a framework for testing matrix-variate normality.

6.1 Distance-Distance Plot

A new post hoc method is proposed for visually assessing the matrix-variate structure

of a dataset. Consider N r×c matricesX1, . . . ,XN such that eachXi is a realization

of a matrix-variate random variable X ∼ Nr×c(M ,V ,U). Recall the relationship

between the matrix-variate normal and multivariate normal distributions in (2.4),

and let µ = vec(M) and Σ = V ⊗U . Consider the estimates

µ̂ =
1

N

N∑
i=1

vec(Xi) and Σ̂ =
1

N − 1

N∑
i=1

{vec(Xi)− µ̂} {vec(Xi)− µ̂}> .

Now, calculate the MSD for each observation Xi in a given sample as follows:

D(Xi, µ̂, Σ̂) = {vec(Xi)− µ̂}> Σ̂−1 {vec(Xi)− µ̂} . (6.1)
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We have that

N

(N − 1)2
D(Xi, µ̂, Σ̂) ∼ Beta

(
rc

2
,
N − rc− 1

2

)
. (6.2)

Moreover, the maximum likelihood estimates for M , U and V are

M̂ =
1

N

N∑
i=1

Xi, (6.3)

Û =
1

cN

N∑
i=1

(
Xi − M̂

)
V̂ −1

(
Xi − M̂

)>
, (6.4)

V̂ =
1

rN

N∑
i=1

(
Xi − M̂

)>
Û−1

(
Xi − M̂

)
. (6.5)

This estimation procedure alternates between estimating Û and V̂ until convergence

is established in the likelihood (see Dutilleul, 1999, for details). Now, let

DM(Xi,M ,V ,U) = tr
{
U−1(Xi −M )V −1(Xi −M )>

}
. (6.6)

This quantity in (6.6) can be viewed as the matrix-variate version of the MSD. As

a result, this terminology is adopted going forward when referencing this quantity.

Given preceding notation, consider the following lemma.

93



Ph.D. Thesis - Nikola Počuča McMaster - Mathematics and Statistics

Lemma 6.1 If a Kronecker product structure exists for Σ, then

D(Xi,µ,Σ) = DM(Xi,M ,U ,V ), (6.7)

DM(Xi,M̂ , Û , V̂ )
P−→ DM(Xi,M ,U ,V ), (6.8)

D(Xi, µ̂, Σ̂)
P−→ D(Xi,µ,Σ), (6.9)

where P−→ denotes convergence in probability.

Proof. Result (6.7) is trivial and follows directly from (2.4)—for completeness,

details are given in Appendix B.1. Now, a proof is given for (6.8) as follows. Note

that

M̂ =
1

N

N∑
i=1

Xi

is the MLE for the mean matrix. Because the matrix-variate normal distribution is

part of the exponential family (Gupta and Nagar, 1999), all MLEs exist and are

consistent (DasGupta, 2008). Therefore, M̂ P→M . As mentioned previously, the

estimates of the scale matrices are unique only up to a strictly positive multiplicative

constant; however, their Kronecker product V ⊗U =: Σ is unique. Therefore

V̂ ⊗ Û P−→ V ⊗U = Σ.

From these two results, and the continuous mapping theorem (stated as

Theorem B.2), we have

DM(Xi,M̂ , Û , V̂ )
P−→ DM(Xi,M ,U ,V ).
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Proceeding to the proof of (6.9), note that the multivariate normal distribution is a

member of the exponential family (Gupta and Nagar, 1999). Therefore, the

unbiased estimates µ̂ and Σ̂ converge in probability to the true parameters µ and

Σ, respectively. From the continuous mapping theorem, it follows that

{vec(Xi)− µ̂}> Σ̂−1 {vec(Xi)− µ̂}
P−→ {vec(Xi)− µ}>Σ−1 {vec(Xi)− µ} ,

i.e.,

D(Xi, µ̂, Σ̂)
P−→ D(Xi,µ,Σ).

From of the results in Lemma 6.1, it seems useful to visualize matrix-variate

normality by comparing the estimated MSDs. Consider a plot of D versus DM ,

which is denoted henceforth as the distance-distance (DD) plot. The DD plot is a

scatter plot of the Mahalanobis distances using the estimated parameters from the

multivariate and matrix-variate normal distributions, respectively. As a clarifying

visual measure, the MSDs are standardized by the same scaling factor for all DM

and D alike. By scaling all MSDs with the single calculated maximum distance of

all DM and D, both scales now range from 0 to 1. Figure 6.1 illustrates the visual

approach to determining the matrix-variate normal structure. On the left, we have

the DD plot for a matrix-variate normal structure with a red line at D = DM for

reference. For convenience, the parameters used to generate Figure 6.1 are listed in

Appendix B.3.1. Note that the distances lie roughly along the line with little

variability between the multivariate and matrix-variate MSDs. On the right side,

however, we have that the MSDs exhibit more variability and do not lie along the

95



Ph.D. Thesis - Nikola Počuča McMaster - Mathematics and Statistics

reference line—this is because the data were simulated from a strictly multivariate

normal distribution, i.e., without a Kronecker product covariance structure.

Interpretation of these plots are as follows. The closer the points fall to the red

reference line, the greater the evidence that these data emanate from a

matrix-variate normal distribution. The plot on the left shows greater evidence that

a matrix-variate assumption is reasonable because both distances DM and D must

converge to each other asymptotically. However, the plot on the right demonstrates

asymmetry along this line and suggests that a matrix-variate assumption is

unreasonable.
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Figure 6.1: DD plots for simulated data (N = 200, r = 2, c = 2) with randomly chosen
mean and variance parameters, indicating the presence (left) and absence (right) of
a matrix-variate normal structure, i.e., of a Kronecker product covariance structure
in the multivariate case.
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6.1.1 Testing for Matrix-Variate Normality

In addition to visually assessing matrix-variate normality via the DD plots, it is also

possible to test for matrix-variate normality by combining existing methods. This

test requires two phases. In the first phase, multivariate normality must be

established using the methods described in Section 2.3.1. Once multivariate

normality has been established, matrix-variate normality can then be considered.

Because of the relationship between the multivariate and matrix-variate normal

distributions, the second phase of the testing procedure is equivalent to testing for a

Kronecker-structured covariance matrix for the vectorized data. More succinctly,

one desires to perform a hypothesis test with the following hypotheses:

H0 : Kronecker structure is present (i.e., Σ = V ⊗U).

Ha : Kronecker structure is not present (i.e., Σ 6= V ⊗U ).

Hypothesis tests for assessing Kronecker structure in a multivariate normal setting

are well represented in literature. Srivastava et al. (2008) formulate some of these

tests and perform simulation studies which show good performance overall. Lu and

Zimmerman (2005) and Naik and Rao (2001) show similar results using likelihood

ratio tests (LRTs) for Kronecker structure. The likelihood ratio test for Kronecker

structure is outlined as follows. Let X1, . . .Xn be iid normally distributed r × c

matrices. If the Kronecker structure holds, then vec(Xi) is normally distributed

under the covariance structure Σ = V ⊗U . However, in the general case where the

Kronecker structure may not hold, the covariance Σ is unconstrained for vec(Xi).
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Therefore, the corresponding LRT statistic is given as

ϑ̂ = 2[l
(
X;M̂ , Û , V̂

)
− l
(
vec(X); µ̂, Σ̂

)
],

where l is the log-likelihood function. From well-known asymptotic results, for large

N , ϑ̂ ∼ χ2
df, where

df =
p(p+ 1)

2
− r(r + 1)

2
− c(c+ 1)

2
.

The null hypothesis is rejected at a level α if

ϑ̂ > χ2
df[1−α],

where χ2
df[1−α] is the appropriate critical value.

It should be noted that if the null hypothesis is rejected in either phase 1 or 2 of the

testing procedure, then the assumption of matrix-variate normality is rejected.

However, matrix-variate normality may still be a plausible assumption if

multivariate normality holds and the DD plot indicates possible matrix-variate

normality. For example, Figure 6.2 shows a DD plot for a case where the null

hypothesis in the second phase of the testing procedure is rejected (at the 5%

significance level), even though the data is in fact matrix-variate normal. From the

DD plot one would conclude, and rightly so, that matrix-variate normality is indeed

plausible. Therefore, in addition to the already developed tests, the proposed DD

plots should also be taken into consideration when assessing matrix-variate

normality as they may catch cases of Type I error in the aforementioned tests of

hypotheses.
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Figure 6.2: DD plot for a simulated matrix-variate normal dataset for which the
second phase of the matrix-variate normal testing procedure determined there was
no Kronecker structure (p̂ = 0.01502, N = 1000, r = c = 2). However, the DD
plot shows that distances tend to follow the reference line contriving evidence that
matrix-variate normality may hold.

6.2 Simulation Study

A simulation study is performed to display the efficacy of the proposed DD plots for

assessing matrix-variate normality. Consider the two different studies as follows. For

the first study, the sample size is held constant but the dimensions vary. This is to

show the effect of dimension on DD plots, and particularly the interpretability of

results. In the second study, the matrix dimensions are held constant but the

sample size is varied. This is to show the effect of sample size on DD plots. The

methodology was implemented in the Julia programming language (Bezanson et al.,

2017) and is available within the MatrixVariate.jl package (Počuča et al., 2019).

Let us first investigate the effect of dimensionality for assessing matrix-variate

normality. The number of observations is set at N = 1000 while dimension takes the

values p ∈ {4, 100}. Note that square matrices are used, i.e., p = 4 corresponds to

2× 2 matrices and p = 100 corresponds to 10× 10 matrices. Figure B.1 shows the
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DD plots for each case, with each row having a different dimension p. Figures B.1a

and B.1c show the DD plots for data that are matrix-variate normal, and

Figures B.1b and B.1d correspond to data that are strictly multivariate normal and

not matrix-variate normal. In Figures B.1a and B.1c, the matrix-variate and

multivariate MSDs roughly coincide with one another and the variability about the

reference line increases with dimensionality. In contrast, Figures B.1b and B.1d

show highly variable and random MSDs. As the data for the plots on the right are

strictly multivariate normal and not matrix-variate normal, the MSDs should not

and do not coincide with one another. Finally, if the sample size is not sufficiently

large to account for higher dimensions, the DD plot becomes uninterpretable due to

the estimates not being reliable.

The second simulation varies the sample size while keeping the dimension constant.

In these simulations, the dimension is set as p = 100 for the generated random

vectors (10× 10 matrices). Figure B.2 displays an array of DD plots for matrix

normal and multivariate normal datasets when p = 100 and N ∈ {500, 2000}.

Similar to the first investigation, Figures B.2a and B.2c represent datasets which are

matrix-variate normal, and Figures B.2b and B.2d represent datasets which are

multivariate normal but not matrix-variate normal. The plots demonstrate that the

MSDs from matrix-variate normal data follow the reference line with some random

variability, which drastically reduces as the sample size increases. When data are

strictly multivariate normal and the matrix-variate structure is absent: the

variability is large, the distances are skewed, and the MSDs diverge from the

reference line. Note that Figure B.2a displays the effect of high dimension when the

sample size is insufficient for estimating parameters. One can see that the
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distribution of distances is slightly offset from the reference line, but less offset than

in Figure B.2b. As the sample size is increased from 500 to 2000, this offset is

corrected, and the distribution of distances indeed follows along the reference line.

This indicates that the DD plot is highly consistent with asymptotic results, and,

works for an increasing sample size where dimensionality is kept constant.

6.3 Application

The MNIST dataset is an image database of handwritten digits from United States

Census Bureau employees and high school students. Each image is represented as a

28× 28 matrix with entries corresponding to the grayscale intensity of each pixel

(LeCun et al., 1998). MNIST is considered as the quintessential baseline dataset for

image classification problems. Benchmarks.AI (2022) records the top ranking

methodologies and their respective classification performance. Most methods place

significance on supervised learning methodologies, leaving a general dearth of

unsupervised and semi-supervised statistically interpretable approaches. In

model-based classification, work such as Gallaugher and McNicholas (2020) show

that skewed models outperform their Gaussian counterparts in a semi-supervised

approach to the MNIST image classification problem. As a result, there is a need to

assess matrix-variate normality of the MNIST data to support evidence wherein a

matrix-variate normal model is not appropriate. Consider the handwritten digits 1

and 7, where sample sizes are 6742 and 6265, respectively. The data (r = 28, c = 28)

were preprocessed in accordance with Section 5 of Gallaugher and McNicholas

(2018). Figure 6.3 illustrates the DD plots for digits 1 and 7. Both DD plots

indicate no evidence of matrix-variate normality. Furthermore, multivariate
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normality fails to hold for both digits according to Korkmaz et al. (2014) with

p-values less than 0.05. The results shown in this work show presence of skewness or

other violations of matrix-variate normality, which is in agreement with previously

attained performance of skewed matrix-variate distributions on the MNIST digits

(see Table 5 of Gallaugher and McNicholas, 2020). In summary, for this dataset,

the DD plot indicates that matrix-variate normality is not plausible.
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Figure 6.3: DD plots for MNIST digit 1 (left panel) and digit 7 (right panel) indicates
lack of presence of a matrix-variate normal structure. In addition, tests of multivariate
normality according to Korkmaz et al. (2014) indicate no presence of multivariate
normality with p-values of 1.164E−4 and 3.243E−6, respectively.

6.4 Summary

A framework for assessing matrix-variate normality, both visually and using a

statistical test, has been introduced. The new graphical technique for assessing

matrix-variate normality, called the DD plot, is based on comparing Mahalanobis

squared differences. The DD plot was shown to be effective for assessing
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matrix-variate normality for various dimensions and sample sizes. In addition, a

two-phase testing procedure was discussed for testing matrix-variate normality by

combining existing tests. However, as illustrated by means of an example, the

testing procedure should be used in conjunction with the proposed DD plot when

assessing matrix-variate normality. The DD plots, along with the two-phase testing

procedure, constitute a powerful combination for assessing matrix-variate normality.

Future work will consider developing a method for calculating confidence intervals

for the MSDs. A good candidate distribution to consider is a bivariate chi-square

distribution (see Gunst and Webster, 1973). Another avenue for future work is to

consider this approach in the context of skewed matrix-variate data, as real datasets

are quite often asymmetric and/or skewed. Finally, one may extend this approach

to the realm of tensor-variate data, i.e, d-way data for d > 3 as in the case of

accelerometer data (Tait et al., 2020; Gallaugher et al., 2021a).
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CHAPTER 7

FUTURE DIRECTIONS AND

EXTENSIONS

This monograph composes four innovative approaches for dealing with highly

complex data. Chapters 3-5 compose of methodologies aimed to handle both skewed

and/or missing data within a heterogeneous context. The final chapter deviates;

considering data of higher order.

Future developments aim for extending current methods into the area of

matrix-variate distributions. The work of Gallaugher et al. (2021a) provides a

starting point for delving into asymmetric matrix variate distributions. These

models have shown great promise in modelling heterogeneity in images, and other

higher-order data. The imputation methods proposed herein can be combined with

higher-order models to impute missing data. In addition, the order of data is not
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strictly limited to d < 2. Tait et al. (2020) and Gallaugher et al. (2021a) consider

modelling both symmetric and skewed with a tensor variate extension. Such models

can benefit from optimization techniques as defined in Chapter 4.

Another paradigm to consider is that of dimensionality reduction. Variable selection

techniques are often limited in scope to symmetric distributions. The work of Neal

(2022) elucidates a compelling framework for selecting variables when the

distribution of data is both skewed and heterogeneous. Such methodologies consider

first modelling data through an appropriate asymmetric finite mixture model, then,

removing variables which are deemed ineffective by some criterion. A matrix-variate

or higher-order extension can be derived in a similar fashion using the same

principles as in Neal (2022).

The flexibility of semi-heavy tailed distributions are robust against outliers but are

not immune. Another avenue of future work to consider is an extension to Clark

and McNicholas (2019). The OCLUST algorithm uses subset log-likelihoods to trim

outliers in Gaussian mixture models, and is available in an R package (Clark and

McNicholas, 2022). Replacing a Gaussian assumption may yield better results and

contrives some interest.

As a final note, it is sensible to acknowledge the limitations of methodologies within

this monograph. The dimensionality of data poses several issues numerically when

inverting matrices, calculating quadratic forms, and dealing with Bessel functions.

Great care must be taken into account when dealing with such issues as they may

influence performance of model estimation. The use of high-performance

programming languages is absolutely essential to remedy such issues. As technical

debt accumulates, the use of more complex models will dissipate unless there is
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some remedial, counteracting system. Any work, any method, which does not

consider the performance or efficiency of their program; will undoubtedly be severely

limited in its adoption as datasets become increasingly complex in the future.
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APPENDIX A

A.1 Complete-Profile-Loglikelihood

There are a large number of parameters required to estimate in within the SU

Johnson mixture model. It is favourable to reduce the dimensionality of parameter

optimizations through the derivation of a profile log-likelihood (Spitzer, 1982). The

work of Murphy and Van der Vaart (2000) shows that profile log-likelihoods behave

like ordinary likelihoods, in that they have a quadratic expansion, and therefore, can

be used to fit MLE’s. Spitzer (1982) provides a primer on Box-Cox parameter

estimations using profile log-likelihoods. Due to the similarities between both SU

and power transformations, consider a similar approach as follows.

Let Φ := (Θ \ ϑ) designate all parameters that are not associated with the

scale/shift of hyperbolic space. Let ng =
∑n

i=1 zig. The MLE estimates Φ̂ of (5.3)
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are derived as follows

π̂g =

∑n
i=1 zig
ng

, µ̂g =

∑n
i=1 zigh(yi;ϑg)

ng
,

Σ̂g =

∑n
i=1 zig (h(yi;ϑg)− µ̂g) (h(yi;ϑg)− µ̂g)>

ng
. (A.1)

Substituting maximum likelihood estimates of (A.1) into (5.3) yields the

complete-profile log-likelihood for ϑ as

lc(ϑ;y1, . . . ,yn, z, Φ̂) =
n∑
i=1

G∑
g=1

zig log(π̂g)−
1

2

n∑
i=1

G∑
g=1

zig (h(yi;ϑg)− µ̂g)> Σ̂−1g (h(yi;ϑg)− µ̂g))

− np

2
log(2π)− 1

2

n∑
i=1

G∑
g=1

zig log(|Σ̂g|)−
n∑
i=1

G∑
g=1

p∑
j=1

zig log(δjg)

− 1

2

n∑
i=1

G∑
g=1

p∑
j=1

zig log

((
yij − ωjg
δjg

)2

+ 1

)
.

The second row can be shown to be free of ϑ as follows:

− 1

2

n∑
i=1

G∑
g=1

zig (h(yi;ϑg)− µ̂g)> Σ̂−1g (h(yi;ϑg)− µ̂g))

=− 1

2

n∑
i=1

G∑
g=1

zig (h(yi;ϑg)− µ̂g)>
(∑n

i=1 zig (h(yi;ϑg)− µ̂g) (h(yi;ϑg)− µ̂g)>

ng

)−1
(h(yi;ϑg)− µ̂g)) .

Simplifying the expression further, let big = (h(yi;ϑg)− µ̂g) allowing

128



Ph.D. Thesis - Nikola Počuča McMaster - Mathematics and Statistics

− 1

2

n∑
i=1

G∑
g=1

zigb
>
ig

(∑n
i=1 zigbigb

>
ig

ng

)−1
big

= −1

2

G∑
g=1

n∑
i=1

ngzigb
>
ig

(
n∑
i=1

zigbigb
>
ig

)−1
big

= −1

2

G∑
g=1

ng

n∑
i=1

zigtrace

b>ig
(

n∑
i=1

zigbigb
>
ig

)−1
big


= −1

2

G∑
g=1

ng

n∑
i=1

zigtrace

bigb>ig
(

n∑
i=1

zigbigb
>
ig

)−1
= −1

2

G∑
g=1

ngtrace

 n∑
i=1

zigbigb
>
ig

(
n∑
i=1

zigbigb
>
ig

)−1 = −1

2

G∑
g=1

ngtrace (I) = −np
2
.

With this simplification, the complete-profile likelihood can be written as:

lcp(ϑ;y1, . . . ,yn) =
n∑
i=1

G∑
g=1

zig log(π̂g)−
np

2
log(2π) +

np

2

G∑
g=1

log(ng)−
np

2

− 1

2

n∑
i=1

G∑
g=1

ziglogdet

(
n∑
i=1

zig (h(yi;ϑg)− µ̂g) (h(yi;ϑg)− µ̂g)>
)

−
n∑
i=1

G∑
g=1

p∑
j=1

zig log(δjg)−
1

2

n∑
i=1

G∑
g=1

p∑
j=1

zig log

((
yij − ωjg
δjg

)2

+ 1

)
.

Notice that the first row of terms are strictly constants with respect to ϑ and are

deemed unnecessary to compute during optimization procedure. By concentrating

out the terms for µ and Σ, the optimization procedure is reduced down to strictly

2pG number of parameters.
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A.2 Derivation of a Conditional SU Distribution

Let Y emanate from a SU distribution parametrized by µ,Σ,ω, and Λ. For some

realization y ∈ Y , consider the conditional distribution of yj|yd where yd

corresponds to entries of y excluding yj. We now show that the distribution of yj|yd

is a univariate SU Johnson distribution parametrized by µ̃, σ̃, ωj, δj as follows. The

join density function of y = (yj,yd) is written as

f(y;µ,Σ,ω,Λ) =
exp

{
−1

2
(h(y;ϑ)− µ)>Σ−1 (h(y;ϑ)− µ)

}
(2π)

p
2 |Σ| 12

∏p
k=1

(
δk

√(
yk−ωk
δk

)2
+ 1

) , y ∈ Rp. (A.2)

Within our derivation, and without loss of generality, we place index j as the first

entry for convenience. Working with the denominator of (A.2), we factor into two

separate forms using equation (2.8.13 of Dennis, 2009) as

(2π)
p
2 |Σ| 12

p∏
k=1

δk
√(

yk − ωk
δk

)2

+ 1

 |Σ| 12
= (2π)

1
2 (2π)

(p−1)
2

δj
√(

yj − ωj
δj

)2

+ 1

 p∏
k=2

δk
√(

yk − ωk
δk

)2

+ 1

 |Σd,d|
1
2 |σ2

jj −Σj,dΣ
−1
d,dΣd,j |

1
2

= (2π)
1
2 |σ2

jj −Σj,dΣ
−1
d,dΣd,j |

1
2

δj
√(

yj − ωj
δj

)2

+ 1

 (2π)
(p−1)

2

p∏
k=2

δk
√(

yk − ωk
δk

)2

+ 1

 |Σd,d|
1
2 .

(A.3)

Working with the numerator of (A.2), we can decompose the quadratic form of the

exponent into two parts. Let a = h(y;ϑ) for ease of notation. Since h is a

component-wise function, we can treat each entry within as a =

[
aj,ad

]
. Now,
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using equation (2.8.27 of Dennis, 2009), we decompose the quadratic form as

(a− µ)>Σ−1(a− µ) =

[
aj − µj ,ad − µd

] σ2jj , Σjd

Σdj , Σdd


−1  aj − µj

ad − µd


= (aj − µj)>(σ2jj −ΣjdΣ

−1
ddΣdj)

−1(aj − µj)

− 2(aj − µj)>(σ2jj −ΣjdΣ
−1
dd)−1ΣjdΣ

−1
dd(ad − µd)

+ (ad − µd)>(Σ−1dd + Σ−1ddΣdm(σ2jj −ΣjdΣ
−1
ddΣdj)

−1ΣmdΣ
−1
dd )(ad − µd)

= (aj − µj)>(σ2jj −ΣjdΣ
−1
ddΣdj)

−1(aj − µj)

− 2(aj − µj)>(σ2jj −ΣjdΣ
−1
dd)−1ΣjdΣ

−1
dd(ad − µd)

+ (ad − µd)>(Σ−1ddΣdj(σ
2
jj −ΣjdΣ

−1
ddΣdj)

−1ΣjdΣ
−1
dd)(ad − µd)

+ (ad − µd)>Σ−1dd(ad − µd)

= (aj − µj −ΣjdΣ
−1
dd(ad − µd))>(σ2jj −ΣjdΣ

−1
ddΣdj)

−1

(aj − µj −ΣjdΣ
−1
dd(ad − µd))

+ (ad − µd)>Σ−1dd(ad − µd). (A.4)

Given the preceding results, we derive the density of the conditional distribution

yj|yd as

f(yj|yd; µ̃, σ̃, ωj, δj) =
f(y;µ,Σ,ω,Λ)

f(yd;µd,Σd,ωd,Λd)
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=
exp

{
−1

2
(a− µ)>Σ−1 (a− µ)

}
(2π)

p
2 |Σ| 12

∏p
k=1

(
δk

√(
yk−ωk
δk

)2
+ 1

) (2π)
p−1
2 |Σdd|

1
2

∏p
l=2

(
δl

√(
yl−ωl
δl

)2
+ 1

)
exp

{
−1

2
(ad − µd)>Σ−1dd(ad − µd)

}

=

(2π)
p−1
2 |Σdd|

1
2

∏p
l=2

(
δl

√(
yl−ωl
δl

)2
+ 1

)

(2π)
p
2 |Σ| 12

∏p
k=1

(
δk

√(
yk−ωk
δk

)2
+ 1

) exp
{
−1

2
(a− µ)>Σ−1 (a− µ)

}
exp

{
−1

2
(ad − µd)>Σ−1dd(ad − µd)

} .
(A.5)

Working with the left hand side of (A.5), and using result (A.3), the expression is

reduced to

(2π)
p−1
2 |Σdd|

1
2
∏p
l=2

(
δl

√(
yl−ωl
δl

)2
+ 1

)

(2π)
p
2 |Σ|

1
2
∏p
k=1

(
δk

√(
yk−ωk
δk

)2
+ 1

)

=

(2π)
p−1
2 |Σdd|

1
2
∏p
l=2

(
δl

√(
yl−ωl
δl

)2
+ 1

)

(2π)
1
2 |σ2jj −Σj,dΣ

−1
d,dΣd,j |

1
2

(
δj

√(
yj−ωj
δj

)2
+ 1

)
(2π)

(p−1)
2
∏p
k=2

(
δk

√(
yk−ωk
δk

)2
+ 1

)
|Σd,d|

1
2

=
1

(2π)
1
2 |σ2jj −Σj,dΣ

−1
d,dΣd,j |

1
2

(
δj

√(
yj−ωj
δj

)2
+ 1

) . (A.6)

Working with the exponential terms at right hand side of (A.5), and, using result
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(A.4), results in

(a− µ)>Σ−1(a− µ)− (ad − µd)>Σ−1dd(ad − µd)

= (aj − µj −ΣjdΣ
−1
dd(ad − µd))>(σ2

jj −ΣjdΣ
−1
ddΣdj)

−1(aj − µj −ΣjdΣ
−1
dd(ad − µd))

+ (ad − µd)>Σ−1dd(ad − µd)− (ad − µd)>Σ−1dd(ad − µd)

= (aj − µj −ΣjdΣ
−1
dd(ad − µd))>(σ2

jj −ΣjdΣ
−1
ddΣdj)

−1(aj − µj −ΣjdΣ
−1
dd(ad − µd)).

(A.7)

Finally, combining results (A.6,A.7), concludes with µ̃ = µj + ΣjdΣ
−1
dd(ad − µd),

σ̃2 = σ2
jj −ΣjdΣ

−1
ddΣdj, and

f(yj|yd; µ̃, σ̃, ωj, δj) =
exp

{
−1

2
(aj − µ̃)>(σ̃2)−1(aj − µ̃)

}
(2π)

1
2 |σ̃2| 12

(
δj

√(
yj−ωj
δj

)2
+ 1

)

=

exp

{
−1

2

(
h(yj ;ωj ,δj)−µ̃

σ̃

)2}
(2π)

1
2 σ̃

(
δj

√(
yj−ωj
δj

)2
+ 1

)
.

(A.8)

The density derived above is a univariate SU Johnson distribution with hyperbolic

parameters ωj, δj, and Gaussian parameters µ̃, σ̃. Notice that the conditioning on

yd only adjusts the Gaussian parameters giving rise to the same joint distribution

as y.
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APPENDIX B

B.1 Proof of Distance Equality

Here follows the proof for (12). Let µ = vec(M ) and Σ = V ⊗U , then

D(Xi,µ,Σ) =
(
vec(Xi)− µ

)>
Σ−1

(
vec(Xi)− µ

)
= {vec(Xi)− vec(M )}> (V ⊗U)−1 {vec(Xi)− vec(M)}

= vec (Xi −M)>
(
V −1 ⊗U−1

)
vec (Xi −M)

= vec (Xi −M)> vec
{
U−1(Xi −M )V −1

}
= tr

{
V −1(Xi −M)>U−1(Xi −M)

}
= tr

{
U−1(Xi −M)V −1(Xi −M )>

}
= DM(Xi,M ,U ,V ).

Showing the reverse,

D(Xi,µ,Σ) = DM(Xi,M ,U ,V ),
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i.e.,

(
vec(Xi)− µ

)>
Σ−1

(
vec(Xi)− µ

)
= tr

{
U−1(Xi −M)V −1(Xi −M )>

}
= tr

{
V −1(Xi −M)>U−1(Xi −M )

}
= vec (Xi −M )> vec

{
U−1(Xi −M )V −1

}
= {vec(Xi)− vec(M )}> (V ⊗U)−1 {vec(Xi)− vec(M)} .

This equality only holds if µ = vec(M ) and Σ = V ⊗U . Therefore, under

matrix-variate normality D(Xi,µ,Σ) = DM(Xi,M ,U ,V ), with µ = vec(M ) and

Σ = V ⊗U .

B.2 Continuous Mapping Theorem

The continuous mapping theorem was first proved in 1943 and is sometimes referred

to as the Mann-Wald theorem (Mann and Wald, 1943).

Theorem B.1 Let {XN}, {YN}, X, and Y be random elements on some metric

space S. In addition, let g be a bivariate continuous map from one metric space S

to another S ′. Then,

XN , YN
P−→ X, Y ⇒ g(XN , YN)

P−→ g(X, Y ).
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B.3 Parameters used to Generate Figures

B.3.1 Parameters for Figure 6.1

Left-hand plot:

M =

1.4426 3.5974

0.4797 1.6333

 ,U =

8.7093 0.4839

0.4839 0.0577

 ,

V =

1.0887 0.0605

0.0605 0.0072

 .
The right-hand plot uses the same M as before but

Σ =



6.0373 6.3725 10.1365 3.5837

6.3725 7.4186 10.0872 4.4695

10.1365 10.0872 18.8089 6.1764

3.5837 4.4695 6.1764 4.4742


.

B.3.2 Parameters for Figure 6.2, B.1a

The parameters are the same as the left-hand plot of Figure 6.1 listed in

Section B.3.1.

B.3.3 Parameters for Figure B.1b

The parameters are the same as the right-hand plot of Figure 6.1 listed in

Section B.3.1.
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B.3.4 Parameters for Remaining Figures

Parameters for all remaining figures are not listed because p = 100.

B.4 DD Plots for Simulation Study
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(a) N = 1000, r = 2, c = 2
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(b) N = 1000, p = 4
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(c) N = 1000, r = 10, c = 10
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(d) N = 1000, p = 100

Figure B.1: DD plots for simulated data with N = 1000 and p ∈ {4, 100} where
matrix-variate normal structure is present (left hand figures) and absent (right hand
figures).
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(a) N = 500, p = 100
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(b) N = 500, p = 100
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(c) N = 2000, p = 100
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(d) N = 2000, p = 100

Figure B.2: DD plots for simulated data with N ∈ {500, 2000} and p = 100, where a
matrix-variate normal structure is present (left) or absent (right).
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