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Lay Abstract 

Ensuring appropriate treatment and recycling of wastewater is vital to sustain life. 

Wastewater treatment plants (WWTPs), which have complicated processes that include several 

intricate physical, chemical, and biological procedures, play a significant role in the water 

recycling. Due to stricter regulations and complex wastewater composition, the wastewater 

treatment system has become increasingly complex. Therefore, it is crucial to use simplified 

versions of the system, known as wastewater modeling, to effectively operate and manage the 

complex system. The aim of this thesis is to develop data-driven approaches for wastewater 

modeling.  
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Abstract 

To effectively operate and manage the complex wastewater treatment system, simplified 

representations, known as wastewater modeling, are critical. Wastewater modeling allows for the 

understanding, monitoring, and prediction of wastewater treatment processes by capturing intricate 

relationships within the system. Process-driven models (PDMs), which rely on a set of 

interconnected hypotheses and assumptions, are commonly used to capture the physical, chemical, 

and biological mechanisms of wastewater treatment. More recently, with the development of 

advanced algorithms and sensor techniques, data-driven models (DDMs) that are based on 

analyzing the data about a system, specifically finding relationships between the system state 

variables without relying on explicit knowledge of the system, have emerged as a complementary 

alternative. However, both PDMs and DDMs suffer from their limitations. For example, 

uncertainties of PDMs can arise from imprecise calibration of empirical parameters and natural 

process variability. Applications of DDMs are limited to certain objectives because of a lack of 

high-quality dataset and struggling to capture changing relationship.  Therefore, this dissertation 

aims to enhance the stable operation and effective management of WWTPs by addressing these 

limitations through the pursuit of three objectives: (1) investigating an efficient data-driven 

approach for uncertainty analysis of process-driven secondary settling tank models; (2) developing 

data-driven models that can leverage sparse and imbalanced data for the prediction of emerging 

contaminant removal; (3) exploring an advanced data-driven model for influent flow rate 

predictions during the COVID-19 emergency. 
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Chapter 1 – Introduction 

Water on Earth is limited and goes through a continuous cycle. To maintain life, it is 

essential to ensure that wastewater is properly treated and reused. Wastewater treatment plant 

(WWTP) plays a vital role in the water cycle, as it removes pollutants from wastewater and 

facilitate the reuse of resources. Wastewater treatment, involving a combination of intricate 

physical, chemical, and biological processes, has become an increasingly complex system due to 

stricter regulations and more complicated wastewater composition. To effectively operate and 

manage the complex system, the utilization of simplified representations of the system, known as 

wastewater modeling, is crucial. 

Wastewater modeling is important as it helps to understand, monitor, predict the behavior 

of wastewater treatment processes. Specifically, by creating an accurate model of a treatment 

process, it captures a complex relationship in the system, such as how different operational 

conditions will affect the process performance. The captured relationship can be used to keep track 

of treatment performance, and process control and optimization can be achieved by making 

adjustments accordingly. Predictions based on the models about how the process performance will 

respond to different scenarios can also help to make informed decisions and minimize the risk of 

process failures. The significant benefits of wastewater modeling, which comprises two distinct 

categories (i.e., process-driven and data-driven models), make it a vital tool in the field of 

wastewater management.  

1.1 Process-driven wastewater models 

Process-driven models (PDMs), or process-based/mechanistic models, refer to the 

mathematical representations that capture the fundamental functions of well-delimited processes 

or systems. PDMs often rely on a set of interconnected hypotheses and assumptions that are 
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tailored to capture behaviors of complex systems. Typically, PDMs are usually formulated using 

ordinary and partial differential equations, which describe how the system changes over time and 

space (Clark et al., 2011).  

Traditional wastewater models are mostly PDMs developed based on the physical, 

chemical, and biological mechanisms of wastewater treatment. As an example, Secondary Settling 

Tank (SST) model is a commonly used PDM based on physical mechanisms in the field of 

wastewater modeling. SST is a unit process that enables the settling of biomass through the force 

of gravity, and it is the most frequently utilized solid-liquid separation system in the wastewater 

treatment industry (David et al., 2009; Li and Stenstrom, 2014). Clarification and thickening are 

two distinct functions of SST: clarification aims to remove the dispersed solids from the liquid; 

thickening is the process of compressing sludge for recycling or disposing. To adequately depict 

the clarification-thickening process, a process-driven SST model was firstly proposed by Kynch 

(Kynch, 1952). The sludge settling process was expressed by a one-dimensional mass balance 

partial differential equation. On the basis of experimental observations, further studies adding 

improvements were conducted: Petty (1975) extended the Kynch theory for continuous simulation; 

Takács et al. (1991) simulated a SST layer by layer, and the model has been widely used in 

commercial modeling tools such as GPS-X; Bürger et al. (2011) improved the model by facilitating 

reliable simulations.  

Activated sludge model (ASM) based on chemical and biological mechanisms is another 

representation of PDMs in wastewater modeling field. Activated sludge systems have been used 

for a long time for municipal wastewater treatment, and researchers have been trying to develop 

various models for describing activated sludge processes over the last few decades. In 1982, to 

unify the research groups that work independently at an international level, the task group on 
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mathematical modeling for design and operation of biological wastewater treatment was 

established. Their joint work unites the concept, terminology, and notation that were used by 

researchers who work on activated sludge modeling and thus greatly accelerates the development 

of activated sludge models (ASMs). Models like ASM1, ASM2, ASM2D, and ASM3, that were 

systematically summarized by the task group, laid a solid foundation for future development and 

application of these PDMs (Henze et al., 2006). 

While PDMs aid in comprehending various wastewater treatment processes, such as 

settling dynamics, potential challenges can arise from uncertainties due to imprecise calibration of 

empirical parameters and natural process variability. The industrial and academic communities 

have identified the need for uncertainty quantification. The study of uncertainty quantification in 

the wastewater modeling field is far less advanced in comparison with other fields, although there 

were researchers who tried to narrow the gap (Belia et al., 2009). Plósz et al. (2011) assessed the 

uncertainty originating from the SST model structure using Monte Carlo Simulation (MCS), and 

the influence of the SST sub-models on the plant-wide model performance was evaluated. Ramin 

et al. (2014) conducted a global sensitivity analysis to an SST model, and it was illustrated that the 

settling parameters were as influential as the biokinetic parameters on the uncertainty of the plant-

wide WWTP model. Li and Stenstrom (2016) provided the sensitivity analysis of a one-

dimensional SST model, and the uncertainty was quantified by MCS after selecting parameters 

based on sensitivity analysis. Sin et al. (2009) conducted uncertainty analysis for an ASM1 model 

and discussed the interpretation of uncertainty analysis results. Three different scenarios 

incorporating different types of uncertainty were used, and the results indicated that both biokinetic 

and hydraulic parameters induced significant uncertainty. Although MCS was again used, the 

sampling method was changed from random sampling to Latin hypercube sampling. Mannina et 
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al., 2010) conducted an uncertainty analysis of a membrane bioreactor using the Generalised 

Likelihood Uncertainty Estimation (GLUE) method, which is based on MCS. The same GLUE 

method was used again by Mannina et al. (2012) for the uncertainty analysis at a larger wastewater 

treatment plant. A modified model based on ASM1 and ASM2 was studied, and the study 

identified that model results strongly depended on the parameter ranges and the selected 

parameters. Mannina et al. (2018) continued to implement a sensitivity and uncertainty analysis 

for an ASM2D model. The sensitivity analysis was conducted by the Standardized Regression 

Coefficients (SRC) method, and 45 of the 122 model parameters were selected for uncertainty 

quantification based on MCS. 

Currently, MCS remains the dominant method for uncertainty analysis of PDMs in the 

wastewater modeling field. MCS is a type of numerical simulation method. It originated in the 

1940s and was first systematically proposed and applied in the Manhattan Project for the 

development of atomic bombs (Ditlevsen and Madsen, 1996). MCS has been widely used in many 

fields because it is simple and convenient to implement. Specifically, it has no special requirements 

on the form, dimension, and distribution of input variables; when there are enough random samples, 

it can guarantee the high accuracy of the estimation results (Rubinstein and Kroese, 2016). MCS 

usually entails the following steps: (1) define a domain of possible inputs; (2) generate inputs 

randomly from a probability distribution over the domain; (3) perform a deterministic computation 

on the input samples derived from the probability distribution; (4) aggregate the results. To achieve 

a certain level of precision, the computational complexity of MCS would grow exponentially with 

the increase in the number of inputs. Meanwhile, MCS assumes an exact probability density 

function for each uncertain variable and parameter in the modeling system, which is often 

unknown in real-world engineering applications. As a result, a more efficient and advanced method 
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for uncertainty analyses is desired for PDMs. Although there are already some data-driven 

approaches for uncertainty analysis in the literature that demonstrate advantages over Monte Carlo 

simulation, it is necessary to further investigate their performance on wastewater models. 

1.2 Data-driven wastewater models 

Although PDMs allow engineers to better understand the complex physical, chemical and 

biological processes in a wastewater treatment system, its real-world application can be 

challenging in certain situations. For instance, the target system could be too complicated to build 

a PDM for; the parameters of PDMs could be extremely hard to calibrate or validate; the system 

might be under human interference that cannot be address by PDMs. With the development of 

advanced algorithms and sensor techniques, data-driven models (DDMs) can be a feasible 

alternative to address these challenges. DDM is based on analyzing the data about a system, 

specifically finding relationships between the system state variables (input, internal and output 

variables) without relying on explicit knowledge of the physical behaviour of the system. A 

machine-learning algorithm using a representative training data set that contains all the behaviour 

found in the system is usually used to determine the relationship between a system’s inputs and 

outputs.  

Wastewater influent flow prediction is a typical example where DDMs can outperform 

PDMs. Building a PDM to simulate the municipal sewer system and predict the influent 

characteristics is theoretically feasible. However, several factors limit the application of PDMs. 

For instance, urban hydrological processes such as snowmelt and infiltration are often too difficult 

to simulate, domestic water usage patterns that rely on human activities are challenging to illustrate, 

and the aging pipes and sewer connections can make the physical parameter measurements 

extremely difficult (Zhang et al., 2019). Over the past two decades, DDMs have been successfully 
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applied to predict the influent characteristics as a substitute for traditional PDMs, due to their 

ability to overcome the abovementioned difficulties. El-Din and Smith (2002) proposed an 

artificial neural network model for short-term influent flow rate prediction at a WWTP in Canada. 

Rainfall data and historical influent flow data were used as the predictors. Satisfactory prediction 

results were obtained through the validation, and their results showed that the influent flow rate at 

the WWTP increased rapidly during extreme events. Wei et al. (2012) used the multi-layer 

perceptron model for influent flow rate prediction. Their study for the first time included the spatial 

information of weather data, and the results showed that the model could generate satisfactory 

predictions up to 150 minutes ahead. Kusiak et al. (2013) developed four data-mining algorithms, 

including multi-layer perceptron, classification and regression tree, multivariate adaptive 

regression spline, and random forest, for the prediction of daily influent carbonaceous biochemical 

oxygen demand (CBOD). The results illustrated that the performance was better when the CBOD 

values were high. In addition, the k-nearest neighbor (KNN) method was used by Kim et al. (2016) 

to predict the influent flow rate, chemical oxygen demand, suspended solid, total nitrogen, and 

total phosphorus in dry weather and wet weather separately. It was found that the KNN method 

was reliable for influent flow rate and water qualities prediction in dry weather, while the results 

suggested that the prediction should be made with caution in wet weather. Zhou et al. (2019) 

developed random forest regression models for daily influent flow rate prediction and a feature 

importance measurement were introduced for a further understanding of the wastewater influent 

mechanisms. 

DDMs have been proven effective in different areas of wastewater modeling, due to their 

exceptional ability to capture highly nonlinear relationships. However, there are several challenges 

associated with the further application of DDMs in the wastewater modeling field. For example, 
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conventional DDMs require a significant amount of high-quality data. As a result, there have been 

limited studies investigating the application of DDMs for subjects without adequate data such as 

emerging contaminants. Because collecting emerging contaminant data consumes significant 

labour resources, there is a lack of high-quality dataset or balanced dataset on emerging 

contaminants. Thus, the development of advanced DDMs that can tolerate sparse and imbalanced 

datasets for subjects like emerging contaminants is valuable. Additionally, DDMs struggle to 

capture dynamic relationships. As the relationship between a system’s inputs and outputs changes, 

the DDMs must be re-trained, which could dramatically increase computational burden. 

Specifically, despite the existence of numerous wastewater influent characteristic prediction 

models, the current applications are unable to effectively handle influent data streams with 

changing targeted relationships caused by emergency such as COVID-19 pandemic. 

1.3 Objectives and organization 

The aim of this dissertation is to enhance the stable operation and effective management of 

WWTPs through the development of data-driven approaches, which will be achieved by pursuing 

the following three objectives: 

(1) Investigating an efficient data-driven approach for uncertainty analysis of SST models. 

(2) Developing data-driven models that can leverage sparse and imbalanced data for the prediction 

of emerging contaminant removal. 

(3) Exploring an advanced data-driven model for stream influent flow rate predictions, which 

involves two tasks: (a) assessing the impact of COVID-19 lockdowns on influent flow rate using 

data-driven models. (b) developing adaptive data-driven models that can adapt to changing 

patterns in streaming wastewater data   
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In Chapter 2, an arbitrary polynomial chaos expansion approach which involves data-

driven procedures, is developed for parameter uncertainty analysis of the process-driven one-

dimensional continuous settling model.  

In Chapter 3, three data-driven models, the Multitask Shared Layer Neural Network (MLT-

NN), Genetic Programming (GP), and Extra Trees (ET), are proposed for predicting the removal 

of Bisphenol A. These models aim to address data imbalance, enhance model interpretability, and 

evaluate feature importance, respectively. 

In Chapter 4, the impact of the COVID-19 lockdowns on Canadian sewage is examined by 

analyzing the influent flow rates at two wastewater treatment plants located in Ontario. A thorough 

comparison of weekly patterns and daily average flow rates before and during lockdowns is 

conducted. Additionally, the observed influent flow rates are also compared with predicted no-

lockdown scenario data, which are generated by random forest models. 

In Chapter 5, a set of online learning models, including Adaptive Random Forest (aRF), 

Adaptive K-Nearest Neighbors (aKNN), and Adaptive Multi-Layer Perceptron (aMLP), are 

developed for wastewater influent prediction under the drastic changes caused by the COVID-19 

pandemic. Their performance is compared with that of conventional batch learning models, 

including Random Forest (RF), K-Nearest Neighbors (KNN), and Multi-Layer Perceptron (MLP) 

at two Canadian WWTPs. 

In chapter 6, the conclusions and contributions of this dissertation are summarized, and 

suggestions for future research are offered.  
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Chapter 2 – Data-driven Approach for Uncertainty Analysis 

 Parameters in widely used secondary settling tank (SST) models are associated with 

significant uncertainties. A novel and efficient approach for addressing such uncertainties is 

proposed. The new approach is as effective as the benchmark Monte Carlo simulation method. 

The approach dramatically reduces computational time compared with the benchmark. 

This chapter has been published: Zhou, P. and Li, Z., 2023. Arbitrary polynomial chaos 

expansion for uncertainty analysis of the one-dimensional hindered-compression continuous 

settling model. Journal of Water Process Engineering, 52, p.103489. (DOI: 

https://doi.org/10.1016/j.jwpe.2023.103489) Copyright (2023) Elsevier. 

Pengxiao Zhou was responsible for Conceptualization, Methodology, Software, Formal 

analysis, Writing – Original Draft, and Writing – Review & Editing under Dr. Zhong Li’s 

supervision.  
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Arbitrary Polynomial Chaos Expansion for Uncertainty Analysis of the One-Dimensional 

Hindered-Compression Continuous Settling Model 

Abstract 

Secondary settling tank (SST) models play a significant role in the simulation of a wastewater 

treatment system. They can estimate effluent and underflow quality and thus help with the design, 

management, and optimization of wastewater treatment systems. SST modeling consists of an 

empirical settling velocity function where parameter uncertainty could raise. The performance of 

an SST model could suffer from parameter uncertainty, which makes parameter uncertainty 

assessment valuable for SST modeling. Monte Carlo simulation (MCS) is a classical technique for 

assessing uncertainty, but it requires parameter distribution information and is computationally 

expensive. To overcome these limitations, arbitrary polynomial chaos expansion (aPCE), a novel 

approach has been adopted for the first time in this study. The well-recognized Bürger-Diehl SST 

model is used and the uncertainties originating from five essential model parameters are assessed 

by the novel aPCE method with the MCS technique being used as a benchmark. Probabilistic 

estimations of the model output, i.e., sludge blanket height (SBH), are generated by both aPCE 

and MCS. The comparison results between aPCE and MCS suggest that the aPCE approach can 

be as effective as MCS in quantifying the uncertainties associated with SST model parameters, 

while significantly reducing approximately 90% computational requirements. This study explicitly 

quantifies the uncertainties associated with SST model parameters in an efficient manner, which 

can provide robust support for the design, management, and optimization of wastewater treatment 

systems. 

Keywords: secondary settling tank, arbitrary polynomial chaos expansion, parameter uncertainty, 

Monte Carlo simulation, sludge blanket height simulation.  
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2.1 Introduction 

Wastewater treatment that enables the reduction of water pollution is essential for ensuring 

a sustainable future for human society. Secondary settling tank (SST), which is the most common 

solid-liquid separation facility, plays a crucial role during the treatment of wastewater (Li and 

Stenstrom, 2014a; Ramin et al., 2014). SST is a vital part of the activated sludge process as it 

serves as both a clarifier and a thickener. It allows biomass or solid particles in the treated 

wastewater to settle to the tank bottom, while the clear water leaves the tank from the upper level 

(David et al., 2009). Sludge will escape with the clear water if the settling tank fails as either 

clarifier or thickener. In addition to delivering an effluent of poor quality, loss of sludge could alter 

the behavior of the biological process by uncontrollably reducing the sludge age to values below 

those necessary for appropriate plant performance (Ekama et al., 1997). Therefore, it is essential 

to unravel the behavior of SST. 

Mathematical models have been frequently employed as effective tools for understanding 

and analyzing various wastewater treatment processes (Goodarzi et al., 2022, 2020). To adequately 

depict the clarification-thickening process, a number of SST models have been developed over the 

past few decades, and the one-dimensional secondary settling tank (1D SST) model is the most 

widely used one in the wastewater industry due to its computational efficiency (Li and Stenstrom, 

2014b; Plósz et al., 2011). The sludge settling process was first expressed as a one-dimensional 

mass balance partial differential equation (PDE) by Kynch (1952). Based on experimental 

observations, further studies were conducted: Petty (1975) extended the Kynch theory for 

continuous simulation; Takács et al. (1991) simulated the SST layer by layer, and their model has 

been widely used in commercial modeling tools till today; Bürger et al. (2011) improved the model 

by considering compression settling, diffusion effects and facilitating reliable simulations. 
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Although these 1D SST models help with recognizing the settling characteristics of sludges, model 

uncertainties could arise because of the imperfect calibration of empirical parameters and the 

natural variability of settling processes. For example, calibration of the parameters in empirical 

settling velocity functions can be highly uncertain; and the settling characteristics of sludges vary 

radically depending on constituents in the influent and conditions imposed on the biological 

reactors.  

To ensure the effective and reliable use of 1D SST models, it is necessary to determine the 

scope and sources of uncertainty associated with model simulations. This will help with 

understanding the simulated systems, increasing the accuracy of model simulations, and defining 

realistic values for potential risk assessments (Clausnitzer et al., 1998; Højberg and Refsgaard, 

2005). Monte Carlo simulation (MCS), a time-tested and brutal force method for uncertainty 

analysis, is the dominant method for estimating the uncertainty of 1D SST models in previous 

research. For instance, Li and Stenstrom (2016) applied MCS to analyze uncertainties of non-

identifiable parameters in a 1D SST model. The MCS approach typically consists of the following 

steps: (1) static model generation, (2) input distribution identification, (3) random variable 

generation, and (4) analysis and decision-making (Raychaudhuri, 2008). MCS is simple and easily 

programable, but it is inadequate when the static model is complex (Kroese et al., 2014; 

Oladyshkin and Nowak, 2012). To achieve a certain level of precision, the computational 

complexity of MCS would grow exponentially with the increase in the number of inputs or 

parameters. Meanwhile, MCS assumes an exact probability density function for each uncertain 

variable and parameter in the modeling system, which is often unknown in real-world engineering 

applications. As a result, a more efficient and advanced method for uncertainty analyses is desired 

for complex SST models.  
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Recently, a number of alternative methods for uncertainty analysis have been developed 

for diverse applications (Donnelly et al., 2022; Ghiasi et al., 2022). Particularly, arbitrary 

polynomial chaos expansion (aPCE) has attracted much attention and shown a superior efficiency. 

aPCE is based on generalized polynomial chaos expansion (PCE) and it decomposes the 

distribution of a variable into multiple distributions of independent variables (Xiu and Karniadakis, 

2003). aPCE is a mathematically optimal way to construct and obtain a model response surface in 

the form of a high dimensional polynomial in uncertain model parameters (Oladyshkin and Nowak, 

2012). It can be regarded as a surrogate model which captures the relationship between a 

distribution of original model output and distributions of original model parameters. In comparison 

with MCS, aPCE does not require many repeated runs of original model, which makes it more 

efficient for the uncertainty analysis of large and complex models. More importantly, aPCE creates 

polynomials from raw statistical moments of model parameters, which means it is also suitable for 

models where parameter distributions are arbitrarily distributed (Oladyshkin and Nowak, 2012; 

Wan et al., 2020). aPCE has been successfully adopted in various disciplines as an efficient 

approach for assessing uncertainty propagation (Laowanitwattana and Uatrongjit, 2022; Yin et al., 

2018). It has a significant potential for the uncertainty analysis of 1D SST models, which are often 

complex models with empirical and hard-to-determine parameter distributions. However, the 

potential of aPCE for the uncertainty analysis of 1D SST models has not been investigated.  

Therefore, the objective of this study is to, for the first time, apply aPCE to assess the model 

parameter uncertainty of a 1D SST model. The proposed method will improve computing 

efficiency and address the issue of unknow parameter distributions while assessing the uncertainty 

of a 1D SST model. This entails the following tasks: (1) construct a state-of-the-art 1D SST model 

(i.e., the Bürger-Diehl model) with hypothetical data; (2) define the model parameters and assess 
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their uncertainty using the aPCE technique; (3) compare the results from the aPCE method and the 

benchmark MCS method. This work will discuss how aPCE can be used as a novel, efficient, and 

reliable uncertainty analysis method for SST models.  

2.2 Methods and study system  

2.2.1 Arbitrary polynomial chaos expansion 

The core notion of PCE is that the composition of independent variables described by 

orthogonal polynomials can be used to express the distribution of a random variable (Ghaith et al., 

2021; Zhou et al., 2022). The homogeneous function in the Wiener theory serves as the basis for 

the polynomial chaos expansion (PCE) approach (Wiener, 1938). Assume 𝑌 = 𝑓(𝜉) is a model, 

and 𝜉 = (𝜉!! , … , 𝜉!")  are uncertain model parameters in the format of random variables. The 

random output variable 𝑌 can be represented by a multivariate polynomial expansion as follows 

(Xiu and Karniadakis, 2003): 

 𝑌 = 𝑎"𝑃" + ∑ 𝑎!!𝑃#-𝜉!!.
∞
!!$#

+ ∑ ∑ 𝑎!!!#𝑃%-𝜉!! , 𝜉!#.
!!
!#$#

∞
!!$#

 

 +∑ ∑ ∑ 𝑎!!!#!$𝑃&(𝜉!! , 𝜉!# , 𝜉!$)
!#
!$$#

!!
!#$#

∞
!!$#

+⋯ (2.1) 

where	𝑃'(𝜉!! , … , 𝜉!")	is the polynomials (e.g. Hermite orthogonal polynomials) of order 𝑛 in terms 

of the multi-dimensional independent standard random variables 𝜉 = (𝜉!! , … , 𝜉!"), and 𝑎!!,…,!% 

represents the PCE coefficients. 

In practice, the 𝑚*+  order truncated polynomial expansion of 𝑌  with respect to the 𝑑-

dimension vector 𝜉 = (𝜉#, 𝜉%, … , 𝜉,) can be expressed as Eq. (2.2) and the number of the PCE 

coefficients can be counted as eq. (2.3). 

 𝑌 ≈ ∑ 𝑎5-Ψ-(𝜉).
-$"  (2.2) 
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 𝑟 = (,01)!
,!1!

 (2.3) 

where 𝑎5- and 𝑎!!,…,!% have a one-to-one correspondence, and Ψ-(𝜉) and 𝑃,(𝜉!! , … , 𝜉4) do as well. 

 Obtaining polynomials 𝑃'(𝜉!! , … , 𝜉!")  of PCE depends on known distributions of the 

random variables (Xiu and Karniadakis, 2006). Thus, applying the PCE approach with arbitrary or 

unknown distributions of the random variables can be challenging, which can be addressed by the 

adoption of aPCE. Instead of requiring complete knowledge of a probability density function, 

aPCE generates polynomials from the existence of a finite number of moments of the variables, 

making it ideal for modelling systems where the random variables are arbitrarily distributed (Guo 

et al., 2019; Wan et al., 2020). Applying aPCE, the polynomials 𝑃'(𝜉) in eq. (2.1) can be rewritten 

as (Oladyshkin and Nowak, 2012):   
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where  𝑃!
(')  are coefficients of aPCE, 𝜇%65#  represents the 2𝑘 − 1*+  raw moment of 𝜉 . To 

establish the aPCE model, raw moment of 𝜉 is the only required information. A 𝑚*+ order aPCE 

model can be expressed as eq. (2.6): 

 𝑌 ≈ ∑ 𝑎5- 	𝑃!
(1)𝜉!.

!$",7$"  (2.6) 

And 𝑎5-  estimation in terms of 𝑁  samples which could be achieved by a non-intrusive 

method (i.e., least square regression) is shown as eq. (2.7): 

 𝑄 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑌J! − 𝑌!)%8
!$#  (2.7) 
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where 𝑌J! is an observation and 𝑌! is a simulation output. 

2.2.2 1D SST model 

The Bürger-Diehl model (excluding hydrodynamic dispersion) was used as an example to 

show the applicability of aPCE for uncertainty analysis (Bürger et al., 2011). The model was 

selected for its reliability, flexibility, and availability (Bürger et al., 2013; Li and Stenstrom, 2016). 

Assume an ideal one-dimensional SST schema as shown in Fig. 2.1.  

 

Fig. 2.1 Ideal one-dimensional SST 

The Bürger-Diehl model can be expressed as follows:  

 9:
9*
+ 9

9;
𝐹(𝐶, 𝑧, 𝑡)) = 9

9;
(𝑑<=1>(𝐶)

9:
9;
) + ?&(*):&(*)

@
𝛿(𝑧) (2.8) 

where t is time, z is the depth from feed level in SST, A is the cross-sectional area of SST, C is the 

solid concentration in SST, F is the convective flux function, dcomp is the compression function, 
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Qf is the feed volumetric flow, Cf is the solid concentration of the feed flow, δ is the Dirac delta 

distribution.  

The convective flux function for four different zones in SST can be expressed as eq. (2.9): 

 𝐹(𝐶, 𝑧, 𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧ − ?'(*)

@
𝐶A(𝑡)				𝑓𝑜𝑟	𝑧 < −𝐻				𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡	𝑧𝑜𝑛𝑒

𝑣+B(𝐶)𝐶 −
?'(*)
@
𝐶				𝑓𝑜𝑟 − 𝐻 < 𝑧 < 0				𝑐𝑙𝑎𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑧𝑜𝑛𝑒

𝑣+B(𝐶)𝐶 +
?((*)
@
𝐶				𝑓𝑜𝑟	0 < 𝑧 < 𝐵				𝑡ℎ𝑖𝑐𝑘𝑒𝑛𝑖𝑛𝑔	𝑧𝑜𝑛𝑒

?((*)
@
𝐶C(𝑡)				𝑓𝑜𝑟	𝑧 > 𝐵				𝑢𝑛𝑑𝑒𝑟𝑓𝑙𝑜𝑤	𝑧𝑜𝑛𝑒

 (2.9) 

where the Qe  is the effluent flow rate and Ce  is the effluent solid concentration, the Qu  is the 

underflow flow rate and Cu  is the underflow solid concentration, vhs  is the hindered settling 

velocity which is described by the Vesilind formula that incorporates 𝑣"  and	𝑟+  which are the 

maximum theoretical settling velocity and the empirical parameter, respectively (Vesilind, 1968):  

 𝑣+B(𝐶) = 𝑣"𝑒5D):  (2.10) 

 The compression function developed by Bürger et al. (2013, 2012) can be expressed as eq. 

(2.11): 

 𝑑<=1>(𝐶) = a
									0																																					𝑓𝑜𝑟	0 ≤ 𝐶 ≤ 𝐶:

E*FG)*(:)
H(E*5E&)(I0:0:+)

										𝑓𝑜𝑟	𝐶 > 𝐶:
 (2.11) 

where 𝛼 and 𝛽 are empirical parameters, 𝜌B is the solid mass density, 𝜌J is the fluid mass density, 

𝑔 is the gravity of acceleration, and 𝐶:  is a threshold concentration at which solid particles begin 

to physically contact one another.  

As part of the 1D SST model output, sludge blanket height (SBH) is the most commonly 

used indicator of sludge concentration profiles (Narnoli and Mehrotra, 1997). In this study, SBH 

is determined based on two commonly used sludge concentration threshold values, i.e., 8	kg/𝑚& 
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and 10	kg/𝑚& (Zinatizadeh et al., 2019). SBH8 and SBH10 are defined as the layer number index 

of the layer that has a sludge concentration of 8	and 10	kg/𝑚&, respectively.   

2.2.3 Uncertainty analysis 

In this study, the goal of uncertainty analysis is to analyze parameter uncertainties 

originating from five selected parameters in the 1D SST model. The five parameters (i.e., 𝑣", 𝑟+ ,

𝐶< , 𝛼, 𝛽) are selected because they govern the two most important processes (settling velocity 

function and compression function) in the model. These five parameters are assumed independent, 

and the parameter distributions used in this study are listed in Table 2.1. The parameter 

distributions are estimated based on the literature (Li and Stenstrom, 2016; Plósz et al., 2011; 

Ramin et al., 2014). In practice, the exact parameter distributions are not expected to be available. 

Instead, only a set of calibrated model parameter values can be obtained. The proposed aPCE 

method that does not require complete knowledge of the parameter distributions is built based on 

statistical moments of the parameters, which can be calculated from a set of calibrated model 

parameter values. The parameter distributions are pre-defined in this study only because real-world 

calibrated model parameter values are not available from the literature. The pre-defined parameter 

distributions are used to produce a set of hypothetical model parameter values, which are 

reasonable substitutes for real-world data. 

Table 2.1 Distributions of model parameters 

Symbol Definition Distributions 

𝑣" maximum theoretical settling velocity (m/h) U (3.47, 9.71) 

𝑟+ hindered settling parameter (m3/kg) U (0.15, 0.63) 

𝐶< gel concentration (kg/m3) U (5.06, 15.27) 

𝛼 compression settling parameter (Pa) U (0, 20) 

𝛽 compression settling parameter (kg/m3) U (1, 10) 
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Fig. 2.2 shows the procedures for uncertainty analysis for the 1D SST model using the 

aPCE approach. After acknowledging the parameter distributions, 1,000 combinations of the five 

parameters are randomly sampled based on their distributions. Then, all samples are iteratively fed 

to the hypothetical 1D SST model, and the output results at a specific time step are labeled as SBH 

results from the MCS framework. As for the aPCE framework, the first 100 SBH results from 

MCS are obtained and transformed to a standard normal distribution by quantile transformation. 

The distribution transformation is done to improve the performance of aPCE (Patro and Sahu, 

2015; Shalabi and Shaaban, 2006). Following this treatment, the 100 transformed SBH results with 

their corresponding model parameter samples are used to estimate the aPCE coefficients by 

regression (Oladyshkin and Nowak, 2012). Once the coefficients are calculated, the aPCE equation 

for this specific time step are constructed. The model parameter samples 101 to 1,000 are then fed 

to the constructed aPCE equation for validation purposes, and the corresponding inversed outputs 

of the aPCE model are labeled as SBH results from aPCE. Lastly, distributions of SBH results 

from both MCS and aPCE are compared and analyzed. For the aPCE part, the first 100 SBH results 

from MCS could be regarded as training samples, while the rest 900 SBH results from MCS are 

validation samples. All the results comparison shown below are on the validation samples. In this 

study, the aPCE is constructed with the 3D,  order truncated polynomial expansion and the 5-

dimension random variables. It is implemented in Julia and the code used is based on the work of 

Oladyshkin and Nowak (2012).  
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Fig. 2.2 Schema of uncertainty analysis for 1D SST 

2.2.4 SST model setup 

To demonstrate the applicability of the proposed aPCE method, a hypothetical case of the 

1D SST model, proposed by Bürger et al. (2011) is used. The model parameters and boundary 

conditions are as follows: 𝐻 = 1𝑚,	𝐵 = 3𝑚, 𝐴 = 400𝑚%; at time 𝑡 = 0, the SST is full of sludge 

at the concentration 𝐶 = 2.0	kg/𝑚& ; the volumetric flow rates 𝑄J = 250	𝑚&/ℎ  and 𝑄A =

170	𝑚&/ℎ and 𝑄C = 80	𝑚&/ℎ. The total simulation period is 400 hours and the change of feed 

concentration in time is as below: 
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 𝐶J = s
4.0	kg/𝑚&,								0 < 𝑡 ≤ 50	ℎ𝑜𝑢𝑟	
3.7	kg/𝑚&,					50 < 𝑡 ≤ 250	ℎ𝑜𝑢𝑟
4.1	kg/𝑚&, 250 < 𝑡 ≤ 400	ℎ𝑜𝑢𝑟

   (2.12) 

Additionally, the tank is divided into 40 layers. The ‘layer 𝑗’ refers to the interval [𝑧-5#, 𝑧-], 

where: 

 𝑧- = 𝑗∆𝑧 − 𝐻,				𝑗 = 0,…	, 40 (2.13) 

 ∆𝑧 = K0L
M"

 (2.14) 

At the top and bottom of the tank, which correspond to the effluent and underflow zones, 

another two layers were added, respectively (Bürger et al., 2013, 2012). Thus, the computational 

domain of the tank has a total of 44 layers.  

2.3 Results and discussion 

2.3.1 Data generation and preparation 

 To construct the aPCE model for a specific time step, the first 100 sets of valid SBH results 

from MCS at the time step were obtained. To provide an example of the 100 sets of SBH results, 

Fig. 2.3 shows the histograms of raw SBH8 and SBH10 values at the 400th simulation hour. The 

mean values of SBH8 and SBH10 are approximately 26 and 37 as shown in Figs. 2.3a and 2.3b, 

respectively. With a layer height of 0.1	𝑚, this indicates an average of 1.1	𝑚 thickness between 

the two concentrations (8	kg/𝑚& and 10	kg/𝑚&). The results validate the settling rule in SST: at 

a lower position of the tank, the solid concentration is supposed to be higher. Furthermore, SBH8, 

spanning most layers of the tank as in Fig. 2.3a, has a more extensive distributional range than 

SBH10. It implies that SBH8 is more susceptible to model parameters that are associated with more 

uncertainty.  
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Fig. 2.3 Distributions of SBH8 (a) and SBH10 (b)SBH at the 400th hour  

2.3.2 Comparison of aPCE and MCS results at a single time step 

 The 100 sets of SBH results in Section 2.3.1 were transformed to fit standard normal 

distribution and then used along with their corresponding parameter values to estimate the aPCE 

coefficients for each time step.  A set of 100 equations was generated to determine the aPCE 

coefficients and construct the aPCE equation for each time step after running 1D SST at the chosen 

100 parameter samples. Then, a temporal series of aPCE equations was developed to quantify 

output uncertainties and produce probabilistic outputs. Fig. 2.4 compares the aPCE and MCS 

results at the 400th simulation hour. For both SBH8 and SBH10, the histogram produced by aPCE 

(marked as red) and that produced by MCS (marked as grey) are highly identical as shown in Figs. 

2.4a and 2.4b. This indicates that aPCE in this study can well replicate the uncertainty analysis 

results from MCS. The probabilistic SBH outputs at the 400th simulation hour from aPCE were 

also compared with benchmark MCS results based on their mean and standard deviation values. 

In Figs. 2.4c and 2.4d, the notch of the box represents the median, and the lower and upper of the 
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box are the first quartile (𝑄1) and third quartile (𝑄3), respectively. 𝐼𝑄𝑅 is the interquartile range 

which equals 𝑄3 − 𝑄1. The lower whisker extends to the first datum greater than 𝑄1 − 1.5 ∙ 𝐼𝑄𝑅, 

while the upper whisker extends to the last datum less than 𝑄3 + 1.5 ∙ 𝐼𝑄𝑅. The boxplots show 

that the medians and standard deviations obtained from MCS (marked as grey) are well replicated 

by aPCE (marked as red). For both SBH8 and SBH10, the differences between median values (MCS 

versus aPCE) are about only 1 layer, which indicate a 0.1	𝑚 difference. The lower whiskers of 

aPCE are slightly (with a difference of less than 0.3	𝑚 ) below that of MCS. The above 

comparisons at the 400th simulation hour imply that the probabilistic results from aPCE, which 

requires 100 simulation runs, are consistent with those from MCS, which consists of 1,000 

simulation runs.  
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Fig. 2.4 Comparison of aPCE results and MCS results at the 400th simulation hour: a. histograms 

of SBH8; b. histograms of SBH10; c. boxplots of SBH8; and d. boxplots of SBH10  

2.3.3 Comparison of aPCE and MCS at multiple time steps 

The aPCE results were also compared with MCS at more time steps (50th, 150th, 250th, and 

350th simulation hour) to further demonstrate its performance throughout the whole simulation 

period. Fig. 2.5 shows the comparison results at the four timestamps, and the colored plots are for 
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aPCE, while the grey plots are for MCS. The boxplots in Fig. 2.5 use the same legend as that in 

Fig. 2.4. It is observed that the distributions generated by aPCE are overall highly similar to that 

produced by MCS at all four timestamps. Figs. 2.5c and 2.5d show that the SBH8 median values 

from aPCE are slightly smaller than those from MCS, while the SBH10 median values of aPCE 

results are almost the same as those from MCS. The SBH8 and SBH10 median values show a rising 

trend followed by a downward trend throughout the simulation timeline, which reflects the 

dynamic settling process. Specifically, SBH8 and SBH10 median values at the 150th and 250th 

simulation hours are a little higher than those at the 50th and 350th simulation hours. This trend is 

consistent with the common settling dynamics described in the literature. The solids in wastewater 

settle to the bottom of the tank over time, resulting in a rising trend for SBH median values. With 

the accumulation of sediment and an increase of feed concentration, the thickened sediment layer 

then leads to a downward trend for SBH median values. These results imply that aPCE can 

reproduce the probabilistic outputs from MCS at all four timestamps; it can also capture the 

dynamic changes during the settling process. 
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Fig. 2.5 Comparison of aPCE results and MCS results at 50th, 150th, 250th, and 350th hour: a. 

histograms of SBH8; b. histograms of SBH10; c. boxplots of SBH8; and d. boxplots of SBH10 

To statistically compare the probabilistic outputs produced by aPCE with those produced 

by MCS at every time step of the whole simulation period, a nonparametric two-sample 

Kolmogorov-Smirnov test was implemented (Massey, 1951). In the Kolmogorov-Smirnov test, 

the null hypothesis is the statistical identity between the two distributions, and the test statistic is 
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the largest absolute distance between the two cumulative distribution functions. Fig. 2.6 shows the 

𝑝-values of the Kolmogorov-Smirnov test at every time step. It can be observed that p-values are 

greater than 0.01 at all timestamps and are greater than 0.05 at most timestamps. These results 

suggest that there is no strong evidence to reject the null hypothesis that the two distributions 

generated by aPCE and MCS are statistically identical. It also implies that these distributions 

generated by aPCE and MCS are highly identical and aPCE can replace MCS at most time steps.  

 

Fig. 2.6 The p-values of the Kolmogorov-Smirnov tests for: a. SBH8; and b. SBH10 

 Fig. 2.7 shows the probability of SBH8 and SBH10 over time from aPCE results. The darker 

the color in Figs. 2.7a and 2.7b indicate a higher probability. It is observed that SBH10 spreads a 

smaller range. It may be because sediment layers with high concentrations are fixed at the relative 
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bottom of the tank due to greater gravity. Figs. 2.7c and 2.7d show the quantile for SBH8 and 

SBH10 locations from aPCE results, respectively. The results verify that SBH10 spreads a smaller 

range. Additionally, there are clear changes after the 50th and 250th simulation hours due to the 

change in influent flow solid concentration (Equation 2). It implies that influent solid concentration 

could significantly affect the SBH location.  
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Fig. 2.7 Distributions of SBH location and its quantile from aPCE results: a. probability of SBH8; 

b. probability of SBH10; c. quantiles of SBH8; and d. quantiles of SBH10 

These findings illustrate that the proposed aPCE approach, which requires only 100 

simulation runs, can generate probabilistic outputs that are highly close to those of 1,000 MCS 

simulation runs. This suggests that aPCE can be as successful as MCS simulation in estimating the 

uncertainties associated with parameters while greatly reducing the computing time (by 90% in 

this study). 

2.4 Conclusion 

  In this study, an arbitrary polynomial chaos expansion (aPCE) method is developed to 

assess model parameter uncertainty for a one-dimensional secondary settling tank (1D SST) model. 

The conventional PCE approach has been proven to be very efficient in quantifying parameter 

uncertainty; however, it can only be used when the distributions of model parameters are known, 

which is not always a valid assumption in wastewater modeling. In this improved aPCE approach, 

polynomials are built based on the raw moments of model parameters, which makes aPCE more 

applicable when prior distributions are not available.  

The results demonstrate that the aPCE approach can be as effective as Monto Carlo 

simulation (MCS) in quantifying the uncertainties associated with 1D SST model parameters, 

while significantly reducing the computational loads (90% in this study). Comparing the 

probabilistic distributions obtained from aPCE and MCS, it is found that they have similar median, 

mean, and variance. In addition, the Kolmogorov-Smirnov test results suggest that the two 

distributions generated by aPCE and MCS are very likely to be statistically identical.  
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The proposed aPCE approach provides a reliable, efficient, and promising alternative for 

analyzing the uncertainty of model parameters in SST models. It could provide valuable technical 

support for wastewater risk assessment and management. In this study, aPCE is used based on the 

assumption that all uncertain parameters are independent variables. For future work, aPCE can be 

modified and tested for the analysis of dependent parameters and for more complex wastewater 

models.   
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Chapter 3 – Data-driven Approach for Emerging Contaminant Predictions 

A framework for Bisphenol A (BPA) modeling at wastewater plants is proposed. Data from 

12 plants are used to develop data-driven models for BPA prediction. Influencing factors of BPA 

removal are studied using network theory. The results imply that BPA can hardly be removed 

through primary treatment. Important factors for BPA removal at wastewater treatment plants are 

identified. 

This chapter has been published: Zhou, P., Li, Z., El-Dakhakhni, W. and Smyth, S.A., 2022. 

Prediction of bisphenol A contamination in Canadian municipal wastewater. Journal of Water 

Process Engineering, 50, p.103304.  (DOI: https://doi.org/10.1016/j.jwpe.2022.103304) Copyright 

(2022) Elsevier. 
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Abstract 

Bisphenol A (BPA) is one of the most common contaminants of emerging concerns (CECs), which 

pose a threat to human health. Conventional wastewater treatment plants (WWTPs) are considered 

as the major pathway of BPA entering the aqueous environment. To control and mitigate BPA 

contamination in the aquatic environment, predicting BPAs fate at WWTPs is critical. In this study, 

three machine learning models, including shared layer multi-task neural network (MLT-NN), 

genetic programming (GP), and extra trees (ET) are used to predict the effluent BPA concentration 

at twelve municipal WWTPs across Canada. Additionally, the theory of networks is adopted to 

analyze the interdependencies among the influencing factors of BPA removal. It is found that the 

proposed models can provide reasonable BPA effluent concentration predictions. They have 

advantages in alleviating data sparsity and imbalance, improving model interpretability, and 

measuring predictor importance, which is valuable for the modeling of BPA and many other CECs. 

The network analysis results imply there are moderate interdependencies among various 

influencing factors of BPA removal. Factors that significantly affect BPA effluent concentration 

and are thus important for BPA removal are identified. The results also show that BPA is unlikely 

to be removed at primary treatment plants, while BPA removal could be achieved through 

secondary or tertiary treatment. This study presents an integrated framework for the modeling and 

analysis of BPA at WWTPs, which can provide direct and robust decision support for the 

management of BPA as well as other emerging contaminants in municipal wastewater.  

Keywords: bisphenol A, contaminants of emerging concerns, machine learning, theory of 

networks 
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3.1 Introduction 

Contaminants of emerging concerns (CECs), such as pharmaceuticals and personal care 

products (PPCPs), endocrine-disrupting compounds (EDCs), flame retardants (FRs), pesticides, 

and artificial sweeteners (ASWs), and their metabolites, are considered as a growing threat to the 

aqueous environment and public health (K’oreje et al., 2020; Patel et al., 2020). Conventional 

wastewater treatment plants (WWTPs) are designed to remove more commonly seen pollutants, 

such as organic pollutants, phosphorus, and nitrogen, not CECs (Oliveira et al., 2020). As a result, 

WWTPs become one of the main pathways of the inductive release of CECs into the environment 

(Salimi et al., 2017). Understanding and predicting CECs’ fate at WWTPs is of great importance 

to the mitigation of CEC-related risks.  

Bisphenol A (BPA) is one of the most common CECs due to its massive use around the 

world. For the past few decades, BPA has been widely used as a raw material for manufacturing 

polycarbonate plastics and epoxy resins, which are used to produce daily consumer products such 

as water bottles, thermal paper, dental sealants, and medical equipment (Guerra et al., 2015; 

Pookpoosa et al., 2015). BPA has been found to have an adverse impact on human health, being 

responsible for an increase in incidences such as cancer and hormonal imbalance (Kitamura et al., 

2005). Although various treatment methods (e.g., adsorption on activated carbon, ultrafiltration, 

biodegradation, and ozonation) have been proven to be effective for BPA removal, they are not 

available at most conventional WWTPs due to limited budget (Brugnera et al., 2010; Xu et al., 

2018). Therefore, predicting BPA concentration in WWTP effluents is important for estimating 

the amount of BPA discharged into the aquatic environment. However, previous research on BPA 

modeling at WWTPs is very limited. Most previous studies on BPA are based on sample-by-

sample analysis (Cao et al., 2022; Dong et al., 2021; Kang et al., 2021; Wang et al., 2021; Zhang 
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et al., 2022). Lee and Peart (2000) analyzed 36 Canadian wastewater influent/effluent sample pairs 

and reported that BPA in the influent can be eliminated during the treatment process at a median 

reduction rate of 68%. Guerra et al. (2015) investigated how parameters affect BPA occurrence, 

removal, and fate. More recently, several attempts have been made to investigate BPA distribution 

and modeling at large scales. For example, Gewurtz et al. (2021) used a multimedia approach to 

assess spatial and temporal trends of BPA in a Canadian environment. Tong et al. (2022) proposed 

a hybrid approach for BPA prediction in a reservoir that harvests rainfall water and acts as drinking 

and recreational water resources. To our knowledge, there are no previous studies on the prediction 

of BPA fate during municipal wastewater treatment processes. The decay and removal of BPA in 

wastewater are complex processes and it is hard to simulate such processes using conventional 

wastewater simulation models, which are typically process-based models (PBM) with limited 

capacity to capture complex relationships and are usually influenced by uncertain variables, such 

as pH and salting-out effects (Jhones dos Santos et al., 2021; Murugananthan et al., 2008).  

Data-driven models (DDMs) have attracted much attention recently and have been 

successfully used as alternatives for conventional process-based models (PBMs) in the field of 

wastewater modeling (Dürrenmatt and Gujer, 2012; Newhart et al., 2019; Zhou et al., 2019). 

DDMs have advantages over PBMs in capturing highly complex and nonlinear relationships, but 

the lack of data may be a major obstacle to developing DDMs (Natarajan et al., 2020; Xue et al., 

2014). In the past decade, a national wastewater monitoring program in Canada that monitors 

chemical substances has made it possible to obtain a certain amount of laboratory data for 

emerging contaminants prediction. However, using normal data-driven modeling techniques to 

predict BPA in wastewater is still a daunting challenge due to the data imbalance and sparsity 

caused by limited laboratory resources, as well as the poor interpretability of traditional DDMs. 
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To address such concerns, three well-customized DDMs including multitask shared layer neural 

network (MLT-NN), genetic programming (GP), and extra trees (ET) are introduced in this study. 

MLT-NN that can leverage useful information from other related learning tasks is used to alleviate 

the data sparsity and imbalance problem. Closed-form functions generated by GP and variable 

importance measures (VIM) derived from ET are used to better interpret the DDM results and 

investigate the impacts of different wastewater features on BPA effluent concentrations. In 

addition, theory of networks, which is known for visualizing interdependencies among features 

and has been widely applied in many fields, is adopted to study the interdependencies among 

different WWTP features and provide an insight into the influencing factors of BPA effluent 

concentration (Narayanan et al., 2021; Sharan et al., 2007).  

The overall objective of this study is to establish an integrated framework for the prediction 

and evaluation of BPA removal at Canadian municipal WWTPs. This entails the following three 

tasks: (1) integrate data from different WWTPs and build data-driven models for the prediction of 

effluent BPA; (2) analyze how wastewater features (e.g., temperature, influent flow rate) affect the 

BPA effluent concentration; (3) assess the interdependencies among wastewater treatment features 

and further analyze the influencing factors of BPA effluent concentration. This study is the first 

attempt to develop DDMs for municipal wastewater BPA prediction. It can provide direct decision 

support for the removal and management of BPA through municipal WWTPs. It also provides an 

example of how existing challenges (i.e., data sparsity and imbalance, model interpretability, and 

feature importance measurement) can be addressed to predict contaminants of emerging concerns 

at WWTPs; the developed methodology can be extended to predict and manage various emerging 

contaminants at WWTPs in future. 
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3.2 Methodology 

 An integrated framework as shown in Fig. 3.1 is proposed for predicting BPA effluent 

concentration at municipal WWTPs in this study. The framework consists of two major parts: (1) 

DDMs for interval predictions of BPA effluent concentration; and (2) networks for feature 

independence analysis. For the DDM part, the selected MTL-NN, GP, and ET are introduced to 

solve the data imbalance problem associated with CEC data, generate a closed-form function for 

model interpretability, and measure variable importance, respectively. As for the network part, a 

network of wastewater treatment features is developed for assessing the interdependences among 

these features. 

 

Fig. 3.1 Scheme of the proposed integrated framework  
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3.2.1 Deterministic prediction models 

3.2.1.1 Multi-task shared layer neural network  

Neural network models are known for their capability to capture complex relationships and 

have been widely applied in many fields (Almeida, 2002; Goh, 1995). However, BPA prediction 

at WWTPs is more challenging than common neural network modeling problems. Specifically, 

the BPA samples are expected to come from many WWTPs, which requires one generalized 

prediction platform. More importantly, the data collected from different WWTPs are imbalanced 

and sometimes sparse. For some WWTPs, data are available at as few as six points. To address 

these challenges, MTL-NN is introduced to this study. Multi-task learning is a good solution 

because it exploits useful information from other related learning tasks to help alleviate the data 

sparsity problem (Dorado-Moreno et al., 2020; Zhang and Yang, 2018). While a traditional neural 

network with a feed-forward architecture minimizes a cost function with respect to the learnable 

parameters defined in the architecture, MTL-NN minimizes a global cost function defined as a 

linear combination of the task-specific cost functions with weights (Michelucci and Venturini, 

2019). The MTL-NN architecture used in this study is shown in Appendix (Fig. A-1). The network 

consisting of twelve tasks is composed of two common hidden layers and two task-specific hidden 

layers. Each task in the network represents the prediction of BPA effluent concentration at a 

specific WWTP. 

3.2.1.2 Genetic programming 

 GP model uses biological evolutionary thinking and requires fewer data comparing with 

other DDMs, which makes it advantageous when dealing with data sparsity (Anand, 2012; O’Neill 

et al., 2010; Vladislavleva et al., 2010). Additionally, a closed-form function can be generated and 

thus help improve the interpretability of the model. The workflow of GP can be described as 
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follows: (1) GP generates some random initial solutions (individuals); (2) decodes and solves the 

target value of the current individual, and makes a selection according to fitness; (3) crosses the 

selected individuals with a certain probability to obtain offspring; (4) mutates offspring with a 

certain probability; (5) goes back to step (2) until the optimization target value meets requirements.  

3.2.1.3 Extra trees 

 Tree structure models have been successfully used in many disciplines and extra trees (ET) 

present an ensemble structure of decision trees (Ahmad et al., 2018; Kingsford and Salzberg, 2008). 

After the forest that consists of a certain number of trees is constructed and finalized, each tree can 

generate one predicted value and the average predicted values are used as the output of the ET 

model. In comparison with other tree-structural meta estimators such as the random forest model, 

ET uses the entire original sample set instead of bootstrapping samples and splits nodes randomly 

instead of choosing the optimum criteria. These differences can help ET reduce biases and 

variances. The representativeness of input variables (also called predictors or features) is critical 

to a data-driven model. Thus, the importance of input variables should be carefully evaluated and 

analyzed. The variable importance measure (VIM) is another advantage of the tree structure model. 

VIM is based on the calculation of impurity decreases while splitting the nodes in the tree, which 

makes it an effective tool to assess variable importance.  

3.2.2 Theory of networks  

 The theory of networks could unravel the nature and extent of connections in complex 

systems (Barabási and Albert, 1999; Watts and Strogatz, 1998). A network is a set of points 

connected by lines, where the points are referred to as vertices or nodes and the lines are referred 

to as edges or links (Sivakumar, 2014). The nodes could be recognized as factors, while the links 

are their connections. In the theory of networks, interdependence among factors could be described 
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mathematically by an adjacency matrix (𝐴). When two factors in a network are independent, the 

corresponding element in matrix (𝐴) is zero; otherwise, the corresponding element has a value of 

one. The interdependence can be unidirectional, which is represented by a directed link, or 

bidirectional, which is represented by an undirected link. The characteristics of a network can be 

evaluated by several criteria: density (𝐷) is the degree of closeness among factors, average degree 

(𝑘) is the average direct influence among nodes, clustering coefficient (𝐶<=A) is the extent of 

interactions between a node’s neighbors and itself, closeness centrality (𝐶<) is the closeness of a 

node to the rest of nodes in the network, betweenness centrality (𝐵<)	of a node is the frequency of 

the node appearing in the shortest paths between two other nodes, and eigenvector centrality (𝐸<) 

is the influence of a node in the network.  

3.3 Study area and data collection 

 In this study, wastewater data at twelve anonymous WWTPs across Canada were collected 

from the database provided by Canada’s Chemical Management Plan. The WWTPs can be 

classified into different categories (i.e., primary, secondary, and tertiary) based on the treatment 

processes. Different WWTPs may have different treatment units and thus lead to different 

treatment efficiency. The characteristics of the twelve WWTPs are shown in Table 3.1. Sewage 

samples of raw influent and final effluent were collected both in summer and winter. BPA 

concentration of the samples was manually measured in the laboratory, and readers are referred to 

references for details of the data generation (Gewurtz et al., 2021; Guerra et al., 2015). Table 3.1 

also summarizes the number of BPA samples that were collected at different WWTPs. It can be 

observed that the number of BPA samples is limited, with a total of 112 samples from the 12 

WWTPs, and half of the WWTPs have as few as 6 samples. Each sample presented consists of 

two parts of data: predictors and predictands. The predictors include BPA raw influent 
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concentration (𝑛𝑔/𝐿), winter (November to April) or summer (May to October), temperature (⸰C), 

influent flow rate	 ( 𝑚&/𝑑 ), and WWTP types. The predictand is the final BPA effluent 

concentration (𝑛𝑔/𝐿). Fig. 3.2 shows all the features used in the developed DDMs for effluent 

BPA predictions.  

Table 3.1 WWTPs Characteristics and the Number of BPA samples at different WWTPs 

WWTP code Number of BPA samples Treatment type 
E 14 Advanced, biological nutrient removal 
HG 6 Secondary, extended aeration 
J 6 Lagoon, facultative  
MH 6 Secondary, activated sludge 
N 6 Primary, chemical assist 
OX 7 Secondary, membrane bioreactor 
Q 21 Secondary, activated sludge 
R 7 Lagoon, aerated with primary treatment 
TB 15 Lagoon, aerated 
U 12 Primary, chemical assist 
WF 6 Lagoon, aerated 
Y 6 Lagoon, facultative 
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Fig. 3.2 All features used for effluent BPA prediction 

3.4 Results 

3.4.1 Deterministic prediction and model comparison 

In this study, three DDMs (i.e., MLT-NN, ET, and GP) are utilized to predict effluent BPA 

concentration across the twelve selected wastewater treatment plants. One random sample from 

each WWTP is reserved for model validation due to the sample sparsity, while the rest of the 

samples are used for training. The model performance is evaluated by mean absolute percentage 

error (MAPE), root mean square error (RMSE), and coefficient of determination (R2). Table A-1 

in the Appendix presents the overall results of the evaluation criteria for the validation performance. 

It is found that all three models could provide satisfactory BPA effluent concentration predictions. 
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The ET model has the lowest MAPE of 0.26 and the highest R2 of 0.859, the GP model reaches the 

lowest RMSE of 148.08, while the MLT-NN maintains a medium performance overall.  

To further demonstrate the performance of the models, scatter plots of observed versus 

predicted BPA effluent concentration on the validation samples are presented in Fig. 3.3. These 

scatterplots show moderately strong and positive associations between the predicted and observed 

values with very few outliers. For instance, it can be observed that the extremely high observed 

value (1,030 𝑛𝑔/𝐿) from station U is overestimated by all three models. It is also noteworthy that 

ET and MLT-NN perform better on samples with values under 200 𝑛𝑔/𝐿, which may be the reason 

why GP shows an overall higher MAPE. 

 

Fig. 3.3 Scatter plots of observed versus predicted BPA effluent concentration on validation 

samples for (a): genetic programming (GP) model, (b): extra trees (ET) model, and (c): shared-

layer neural network (MLT-NN). 
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3.4.2 Interval prediction and station comparison 

In addition to deterministic predictions, interval predictions were generated by integrating 

the deterministic predictions from the training of the three models mentioned above. Fig. 3.4 shows 

the interval predictions for the 12 wastewater treatment stations. Most of the validation samples 

fall into the predicted intervals except plants N and U, which are both primary treatment plants 

with chemical assist. BPA effluent concentrations at these two plants are significantly higher than 

the other wastewater treatment plants. It implies BPA is not likely to be removed through primary 

treatment with chemical assist. It is noted that some of the BPA effluent concentrations at N and 

U are higher than their corresponding influent concentrations, which could be caused by a 

mismatch of influent and effluent time stamps. On the other hand, BPA concentrations at 

secondary and tertiary treatment plants are reduced, which indicates BPA removal through 

secondary and/or tertiary treatment. It is also worth mentioning that the prediction performance at 

plants N and U are different: the BPA concentrations were underestimated and overestimated, 

respectively. It may be because that DDMs tend to generate predictions with the least errors for all 

samples (i.e., converge to the average value of all samples) from primary plants. Having most of 

the samples used to train the three DDMs collected from plants with secondary and/or tertiary 

treatment may be the reason why there is bias while estimating BPA effluent concentration at 

plants N and U. It is thus possible that the model performance would be improved when excluding 

samples from plants N and U.  
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Fig. 3.4 Interval predictions and station comparison. 

3.4.3 Closed-form function and feature importance 

To further analyze the mechanisms of BPA removal, one of closed-form functions for the 

estimation of BPA effluent concentration was obtained using the GP model (Equation 3.1): 

 y = 𝑥# ∙ (𝑥#& + 𝑥#M) + 2𝑥M + 𝑥N (3.1) 

where y, 𝑥# , 𝑥M , 𝑥N , 𝑥#& , and 𝑥#M  represent BPA effluent concentration, BPA influent 

concentration, effluent temperature, winter, aerated with primary treatment, and chemical assist, 

respectively (Fig 3. 2). It is implied that these features are important when the GP model makes its 

predictions. To further understand how the identified features in the equation (i.e., 𝑥#, 𝑥M, 𝑥N, 𝑥#&, 

and 𝑥#M) affect BPA effluent concentration, Sobol’s sensitivity analysis, which generates samples 

by Saltelli’s extension of Sobol’s sequence, is adopted (Saltelli, 2002; Sobol, 2001). The first-

order sensitivities of the five features are shown in Fig. 3.5a. It illustrates that BPA influent 

concentration, aerated with primary treatment, and chemical assist exhibit first-order sensitivities 
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but winter and effluent temperature appear to have no first-order effects. BPA influent 

concentration is the most sensitive feature among the five.  

 

Fig. 3.5 Feature importance results: (a) first-order sensitivities of identified features; (b) VIM 

results from the ET model 

 Additionally, feature importance was calculated using the ET model and the results are 

shown in Fig. 3.5b. Similar to the closed-form function analysis results, BPA influent 

concentration, winter, effluent temperature, aerated with primary treatment, and chemical assist 

are found to be important. It is shown that the influent flow rate has the highest importance in 

terms of VIM. It is worth mentioning that the influent flow rate is not an important feature of the 

GP model. This may be because that ET is the decision tree-based algorithm while GP is a 

regression algorithm. Influent flow rate thus plays different roles in splitting a tree and elementary 
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arithmetic. BPA influent concentration, which is the most important feature identified through the 

GP model, is the second most important feature of the ET model.  

3.4.4 Network analysis results 

While the closed-form function generated by the GP model and the VIM results produced 

by the ET model can provide some insights into the importance of different features, the 

interdependencies among these features are yet to be investigated. To address feature 

interdependencies, the adjacency matrix representing the interdependencies between the features 

influencing BPA effluent concentration was defined by field experts and the best of our knowledge 

for network analysis. The adjacency matrix and its corresponding directed network of features 

(NoF) are shown in Table 3.2 and Fig. 3.6a, respectively. Another new feature (i.e. collection date) 

has been included in the network analysis. In Table 3.2, when two features are independent, the 

corresponding element in the matrix is zero; otherwise, the element has a value of one. In Fig. 3.6a, 

the nodes (𝑁) represent the features, while the links (𝐿) represent the interdependence between 

two features. The NoF developed is an unweighted-directed network with 𝑁 = 19 and 𝐿 = 35, 

where a link directed from feature 1 to feature 2 indicates feature 2’s dependency on feature 1.  
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Fig. 3.6 The Network of Features: all features are numbered (1-collection date, 2-BPA influent 

concentration, 3-summer, 4-winter, 5-influent flow rate, 6-influent temperature, 7-effluent 

temperature, 8-advanced, 9-lagoon, 10-primary, 11-secondary, 12-activated sludge, 13-aerated, 

14-aerated with primary treatment, 15-biological nutrient removal, 16-chemical assist, 17-

extended aeration, 18-facultative, 19-membrane bioreactor) 
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Table 3.2 Matrix representing the interdependencies among the features 

 F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 1 0 F 1 1 F 1 2 F 1 3 F 1 4 F 1 5 F 1 6 F 1 7 F 1 8 F 1 9 
F 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
F 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F 3 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
F 4 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
F 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F 6 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
F 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F 8 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
F 9 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
F 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F 1 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
F 1 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
F 1 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
F 1 5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
F 1 6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
F 1 7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
F 1 8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
F 1 9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
                    
F1-collection date F11-secondary 

 F2-BPA influent concentration 
F3-summer 
 

F12-activated sludge 
 F3-summer 

 
F13-aerated 
 F4-winter 

 
F14-aerated with primary treatment 
 F5-influent flow rate 

 
F15-biological nutrient removal 
 F6-influent temperature 

 
F16-chemical assist 
 F7-effluent temperature F17-extended aeration 
 F8-advanced 

 
F18-facultative 
 F9-lagoon 

 
F19-membrane bioreactor 
 F10-primary 

 
 

 

In comparison to the networks provided by Narayanan et al. (2021) and Gao et al. (2017), 

which were a dense network (D = 0.21) and a sparse network (D = 0.06) respectively, the NoF in 

this study implies moderate interdependencies among its features with D equal to 0.11. It is 

indicated that the influencing factors of BPA effluent concentration are moderately interdependent, 

thus identifying the dominant features by the network analysis is necessary. The 𝑘!' and 𝑘=C* of 
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the NoF are both 1.84, which implies that every feature in this study is affected by or affects an 

average of approximately two other features. This reiterates the need to study the 

interdependencies among these features. The criterion 𝐶<=A  assesses how closely a node’s 

neighbors interact with one another. Feature 1 (i.e., collection date) shows the highest 𝐶<=A value 

as shown in Fig. 3.6b, and it indicates that feature 1 and its neighbors (e.g., summer and influent 

temperature) are highly interconnected, and they form a local cluster that may have a collective 

impact on the BPA effluent concentration. Similarly, summer and winter with their respective 

neighbors form two local clusters, and these clusters may have a collective impact on the BPA 

effluent concentration. 

To further analyze the characteristics of the network, centrality measures that reflect the 

proportional importance of individual nodes on the overall network are introduced. Features 2 and 

5 (i.e., BPA influent concentration and influent flow rate) have the highest 𝐶< values as shown in 

Fig. 3.7a, implying that they are linked to multiple features forming intricately connected sets. 

These connected sets might collectively affect the BPA effluent concentration. This supports the 

findings from Section 3.4.3 that BPA influent concentration and influent flow rate affect the BPA 

effluent concentration most. Features 3, 4, 10, and 16 (i.e., summer, winter, primary, and chemical 

assist) have negligible 𝐶<  values, which indicates a very low influence on BPA effluent 

concentration. Fig. 3.7b shows that the 𝐵< values of features 9 and 11 (i.e., lagoon and secondary) 

are higher than the others. This means these features act as primary connectors in the NoF, which 

implies that they play important roles in the system. Similarly, as shown in Fig. 3.7c, factors 2, 5, 

8, and 10 (i.e., BPA influent concentration, influent flow rate, advanced, and primary) have higher 

𝐸< values, which means they have predominant indirect connections to factors other than their 

close neighbors. These features are likely to impact the BPA effluent concentration significantly. 
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Overall, BPA influent concentration, influent flow rate, primary, and advanced are identified as 

important features in the network analysis. When making BPA management and remediation 

strategies, these features require more attention. 

 

Fig. 3.7 Centrality measures 

3.5 Conclusions 

In this study, an integrated framework was proposed for the prediction of BPA effluent 

concentration at Canadian municipal WWTPs. The framework consists of two major parts: (1) 

DDMs for effluent BPA prediction; and (2) a network for feature dependencies analysis. 

Specifically, MLT-NN, GP, and ET models were applied to address the data sparsity problem and 
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generate effluent BPA predictions. BPA influent concentration, seasonal information, influent 

flow rate, influent temperature, effluent temperature, and characteristics of wastewater treatment 

plants were used for predictions of BPA effluent concentration. The performance of the proposed 

models was evaluated by MAPE, RMSE, and R2. The results showed that the models could alleviate 

the data sparsity and imbalance problem and provide fair predictions.  

In addition, to address the lack of analysis of features’ impact on BPA effluent 

concentration and its interdependencies, a closed-form function from GP, the variable importance 

measure (VIM) method, and the theory of networks were proposed in this study. The results of 

both closed-form function and VIM imply that BPA influent concentration and primary treatment 

with chemical assist are the most important features for the prediction of effluent BPA. The results 

of network analysis demonstrated that the interdependencies among the input features are 

moderate. It was also found that BPA influent concentration, influent flow rate, primary, and 

advance are important influencing factors of effluent BPA concentration and thus are important 

for enhancing BPA removal at WWTPs.  

This research proposed a new framework for effluent BPA prediction and the analysis of 

its influencing factors. This framework could be leveraged to study many other emerging 

contaminants for their removal during wastewater treatment. Collecting samples of emerging 

contaminants from scratch and making the proposed framework capable of generating reasonable 

predictions for extreme values might be major potential challenges.   
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Data Availability 

The data are available at https://open.canada.ca/data/en/dataset/417e59c8-340e-4f6c-

b139-1287cd5bd9d9/resource/e3b34fde-138d-4cb2-9ba6-3a532cb2ec00. 
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Appendix 

Table 3A-1 Performance of different models 

                    Criteria 

     Models  

MAPE RMSE (ng/L) R2 

GP  3.15 148.08 0.845 

ET 0.26 155.02 0.859 

MLT-NN 0.89 206.19 0.784 
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Fig. A-1  The MTL-NN structure adopted in this study 
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Chapter 4 – Impact of COVID-19 Lockdowns through Data-driven  

 Pandemics have posed new challenges to wastewater modeling as they change old patterns, 

such as residents' water consumption patterns. To address such challenges, assessing the impact of 

COVID-19 is crucial for improving wastewater modeling. In this study, a comparison of influent 

flow rates before and during lockdowns was conducted. No-lockdown scenario data were 

generated by random forest models. Weekly patterns of influent flow exhibited differences before 

and during lockdowns. There is less variability of influent flow rate during lockdowns compared 

to before lockdowns. A spike in influent flow rates is observed after the easing of provincial 

emergency state. 

This chapter has been submitted for publication consideration. 

Pengxiao Zhou was responsible for Conceptualization, Methodology, Software, Formal 

analysis, Writing – Original Draft, and Writing – Review & Editing under Dr. Zhong Li’s 

supervision. 
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Unraveling the Impact of COVID-19 Lockdowns on Canadian Municipal Sewage 

Abstract 

The COVID-19 pandemic and resulting lockdowns have had significant impacts on various aspects 

of society, including municipal sewage. This study investigates changes in Canadian municipal 

sewage during COVID-19 lockdowns by examining influent flow rates at two wastewater 

treatment plants in Ontario, Canada. A comparison of weekly patterns and daily average flow rates 

before and during lockdowns was conducted. The observed influent flow rates were also compared 

with predicted no-lockdown scenario data, which were generated by random forest models. The 

results showed that weekly patterns of influent flow exhibited differences before and during 

lockdowns, and there is less variability of influent flow rate during lockdowns. Additionally, both 

plants experienced a decrease in influent flow rates during the lockdowns, and a spike after the 

easing of provincial emergency state. This knowledge can be used to improve wastewater 

management strategies and inform policy decisions during times of crisis in the future. 

Keywords: COVID-19, lockdowns, influent flow rates.    
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4.1 Introduction 

The COVID-19 pandemic has had a profound impact on the daily lives of people around 

the world (Gautam and Hens, 2020; Khan et al., 2020). In an effort to slow the spread of the virus, 

governments of over 100 countries have implemented various measures, including lockdowns that 

restrict the movement and activities of billions of people (Alfano and Ercolano, 2020; Dunford et 

al., 2020; Hien Lau et al., 2020). For example, a provincial state of emergency was declared on 

March 17th, 2020 in Ontario, Canada, and schools, non-essential services, and recreational 

facilities were closed since the same time. These lockdowns have resulted in significant changes 

to the way people live and work and have had far-reaching impacts on various aspects of society. 

One area that has been significantly affected by the COVID-19 lockdowns is municipal 

sewage (Abu-Bakar et al., 2021; Hillary et al., 2021; Nemati and Tran, 2022; Wurtzer et al., 2020). 

As people spend more time at home and engage in different activities, their water usage patterns 

may change. This could lead to an impact on the amount of sewage produced by households and 

affect the operations and management of wastewater treatment plants. Specifically, if water usage 

increases during the lockdowns, it results in an increase in the volume of generated sewage. This 

would put additional strain on sewage treatment and disposal systems, which could make it 

challenging to maintain desired treatment levels (Boyd et al., 2019; Zhou et al., 2019). On the other 

hand, if water usage decreases during the lockdowns, it may also result in other challenges, such 

as the need to adjust sewage treatment processes to handle lower volumes of wastewater (Sperling, 

2015). Therefore, understanding how these lockdowns affect the amount of sewage is important 

and valuable.  

In this study, we aim to investigate the changes in Canadian municipal sewage during the 

COVID-19 lockdowns by examining the inflow rate data at municipal wastewater treatment plants. 
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The influent flow rate of a wastewater treatment plant refers to the rate at which wastewater is 

brought from homes and small businesses into the plant for treatment. It is typically measured in 

units of volume per unit time, such as liter per day. The influent flow rate is an important factor in 

the design and operation of wastewater treatment plants, as it determines not only the capacity of 

the plant and the size of treatment equipment but also the control of chemical dosing and aeration 

rate (Andreides et al., 2022; Zhou et al., 2022). Influent flow rate data can provide an insight into 

how much water is being used in a given area, as well as how the patterns of water usage have 

been affected by lockdown measures. For example, we can see if there has been a change in the 

overall amount of water being used, as well as if there have been shifts in the times of day when 

water is being used the most. This knowledge is beneficial for wastewater simulations and can 

provide valuable insights into the impact of lockdowns on water management, and can also be 

used to inform policy decisions and improve water management strategies during times of crisis 

in the future. 

4.2 Materials and methods 

Two anonymous wastewater treatment plants (Plants A and B) located in Ontario, Canada 

were selected for this study. The influent flow rate at Plant A was measured on a hourly basis from 

November 1, 2016 to August 3, 2021. While that at Plant B was measured on a 15-minute basis 

from January 1, 2019 to November 30, 2021. There were a small number of missing data points, 

and simple linear interpolation was adopted to fill in the gaps by estimating the values based on 

the surrounding known data. Wastewater collection systems of both Plant A and B were designed 

to gather wastewater from homes, and small businesses. Plant A has separate storm and sanitary 

sewers, while Plant B has a small portion of its sewers that combine both types of water. However, 

because of the downspouts and sump pumps illegally connected to the sanitary system, both plants 
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experience increased inflow during rainfall events. To distinguish the impacts of meteorological 

conditions from those of lockdowns, hourly meteorological data, including precipitation, snow 

depth, air temperature, humidity, pressure, wind direction, and wind speed, were collected and 

analyzed for both plants in the same time periods. 

The data before March 14th, 2020 were labelled as before lockdowns, while data from that 

date forward were labelled as during lockdowns. March 14th, 2020 was selected as an important 

date break here because it marked the start of the first lockdown in Ontario, during which schools, 

non-essential services, and recreational facilities were closed. To understand how the patterns of 

water usage have been affected by lockdown measures, we firstly compared weekly influent flow 

rate patterns before and during lockdowns. All collected influent flow rate data were converted to 

hourly frequency by calculating the mean of all sample values in that hour. The data were 

organized by day of the week, and the pattern of the first week during lockdowns (from March 

14th, 2020 to March 20th, 2020) and the pattern of the one that two weeks before lockdowns (from 

February 29th, 2020 to March 6th, 2020) were compared. To provide more benchmark data, the 

weekly pattern from the same period last year (From March 16th, 2019 to March 22th, 2019) and 

the average weekly pattern from year 2019 were added. Further, to investigate if there was a change 

in the overall amount of water being used during lockdowns, daily average influent flow rates 

before and during lockdowns were examined. A daily average influent flow rate was calculated as 

the average of all the instances on that day.  

The variations for observed influent flow rates can be attributed to the combined effects of 

changes in both residents’ water usage patterns and meteorological conditions. Random forest (RF) 

models, which have been proved to effectively predict influent flow rate under normal conditions 

(i.e., no lockdowns), were developed to exclude the meteorological impacts during the 
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implementation of lockdown measures (Breiman, 2001; Zhao et al., 2020). Hourly influent flow 

rates during lockdowns were compared with the same period no-lockdown scenario predictions, 

which were generated by RF models. The RF models were trained based on influent flow rate data 

before January 1st, 2020. The relationships between variables (i.e., collected meteorological 

variables) and target (i.e., influent flow rates) were captured. The model configurations and 

performance are detailed in the Appendix. Upon exclusion of the meteorological impacts modeled 

by RF models from the observed overall changes in influent flow rates, the impacts of residents’ 

water usage on amounts of influent flow rates were isolated.  

4.3 Results and discussion  

4.3.1 Changes in weekly pattern 

Fig. 4.1 and Fig. 4.A1 illustrate the weekly patterns of wastewater influent flow at 

wastewater treatment plants A and B during four different periods. As shown in the figure, all 

periods exhibit similar overall flow patterns, with higher flows during daytime and lower flows at 

night. However, there are some notable differences between the periods before and during 

lockdowns. In particular, the weekly pattern from two weeks prior to lockdowns (Fig. 4.1a) 

exhibits a noticeable lag between weekdays (grey and yellow) and weekends (blue and red) at 

around 8-10am in the morning, which disappears in the weekly pattern from the first week of 

lockdowns (Fig. 4.1b). Additionally, the influent flow rates before lockdowns on Friday and 

Saturday nights (between 9-12pm) used to be the lowest, but this trend becomes less apparent 

during lockdown measures were implemented. It is clear that the patterns of influent flow rate are 

influenced by the lockdown measures. In the average weekly pattern from 2019 (Fig. 4.1c), the 

influent flow rates show a lag between weekdays and weekends in the morning and are lowest on 
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Friday and Saturday nights. Similarly, these two characteristics can also be observed in Fig. 4.1d, 

although there are some fluctuations.  

 

Fig. 4.1 Weekly patterns of wastewater influent flow at Plant A: (a) two weeks prior to the first 

lockdown, from February 29th, 2020 to March 6th, 2020; (b) the first week during lockdowns, from 

March 14th, 2020 to March 20th, 2020; (c) 2019 average; (d) same period of (b) in 2019 

These findings suggest that there are differences in the patterns of wastewater influent flow 

before and during lockdowns. This may be caused by the change in household water consumption 

patterns, as the influent flow is mainly from sanitary sewers. It is possible that the disappearance 

of the lag between weekday and weekend mornings is due to the increase in remote work, which 

saves commuting time and thus postpones the time for residents to get up and wash. Additionally, 

the trend of lower influent flow rates on Friday and Saturday nights is less pronounced during 

lockdowns, which may be due to a reduction in evening activities and residents behaving more 
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like it is a workday. To gain a more thorough understanding of the factors influencing the 

differences in weekly influent flow patterns, further surveys with local residents about their water 

consumption habits across different times of the week could be useful. This information could help 

to shed light on how wastewater treatment plants can cope with the changes in influent flow 

patterns.  

4.3.2 Changes in amount of influent flow 

It is important to understand changes in the volume of influent flow, as it can impact the 

effectiveness of sewage treatment and disposal systems. Fig. 4.2 shows a comparison of daily 

average influent flow rates before and during the lockdowns. The data in Figs. 4.2a and 4.2b reveal 

a trend of regular fluctuations in influent flow rates over time, which may be due to seasonal 

variations. The highest influent flow rate was recorded in the spring, possibly due to snow 

melting.(Zhang et al., 2019) Both treatment plants show a decrease in highest influent flow rates 

in spring during lockdowns. This may be due to a reduction in industrial and commercial activity 

during lockdowns.  

To further visualize and compare the changes, boxplots were generated for both plants. In 

Figs 4.2c and 4.2d, the notch of the box represents the median, and the lower and upper of the box 

are the first quartile (𝑄1) and third quartile (𝑄3), respectively. 𝐼𝑄𝑅 is the interquartile range which 

equals 𝑄3 − 𝑄1. The lower whisker extends to the first datum greater than 𝑄1 − 2 ∙ 𝐼𝑄𝑅, while 

the upper whisker extends to the last datum less than 𝑄3 + 2 ∙ 𝐼𝑄𝑅. The results suggest that there 

are more outliers in the influent flow rate data collected before lockdowns (Fig 4.2c) than during 

lockdowns (Fig 4.2d). This indicates a difference in daily influent flow rate between the two 

periods. Although the median daily influent flow rate during lockdowns was similar with these 

before lockdowns for both plants, the range (𝑄3 − 𝑄1) of water usage during lockdowns was 



Ph.D. Thesis - Pengxiao Zhou  McMaster University - Civil Engineering 

 78 

narrower than before lockdowns. This suggests that there is less variability and lower volumes of 

influent flow rate during lockdowns compared to before.  

 

Fig. 4.2 Changes in the volume of influent flow: (a) daily average influent flow rate at plant A, (b) 

daily average influent flow rate at plant B, (c) a comparison of influent flow rate at Plant A before 

and during lockdowns, (d) a comparison of influent flow rate at Plant B before and during 

lockdowns   
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4.3.3 Impact of lockdown measures 

To exam the impact of lockdown measures on wastewater production, the observed influent 

flow rates at Plants A and B were compared with historical data and predicted no-lockdown 

scenario data in Fig. 4 3. The historical data consisted of influent flow rates in previous years. The 

predicted no-lockdown scenario data, on the other hand, was based on RF models. The differences 

between observed and predicted no-lockdown scenario series can be treated as the impacts of 

lockdown measures. It was found that the influent flow rates during the provincial state of 

emergency were significantly lower than both the historical data and predicted no-lockdown 

scenario data. This indicates that the lockdown measures had a remarkable effect on wastewater 

production. Specifically, the decrease in influent flow rates suggests that the lockdown measures 

resulted in a reduction in the amount of wastewater being produced. There could be several reasons 

for this decrease. For example, the lockdown measures may have resulted in a reduction in the 

number of people going out, leading to less wastewater being produced possibly from showers and 

flushing toilets. The lockdowns may also have resulted in a decrease in industrial and commercial 

activities, which could have contributed to the lower influent flow rates. Interestingly, the easing 

of provincial state of emergency could result in a spike in the influent flow rates at both water 

treatment plants. This could be due to more people returning to work or resuming normal daily 

activities and an increase in industrial and commercial activities.  
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Fig. 4.3 The observed influent flow rates (Ob) at Plants A and B comparing to historical data (His) 

and predicted no-lockdown scenario data (NoL) 

 This study analyzed the impact of lockdown measures on wastewater production in two 

cities by comparing current influent flow rates with historical data and predicted data. The results 

showed that the lockdown measures had a significant impact on residents’ water consumption 

habits and wastewater production: (1) the difference in influent flow rates between weekdays and 

weekends in the morning disappeared during lockdowns, and the trend of lower influent flow rates 

on Friday and Saturday nights was less pronounced; (2) there was less variability in influent flow 

rates during lockdowns compared to before lockdowns; (3) Both plants saw a decrease in influent 
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flow rates during lockdowns, followed by a spike in influent flow rates after the easing of the 

provincial emergency state. This analysis was conducted on the basis of the monitoring data from 

wastewater treatment plants. Further research and survey on local residents' water consumption 

habits could help to understand the factors influencing the changes in influent flow patterns. 
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Appendix 

Predictions of influent flow rate under the no-lockdown scenario were generated by 

random forest (RF) models. The predictor variables included precipitation, snow depth, air 

temperature, humidity, pressure, wind direction, wind speed, hour of day, day of the week, and 

month of year. The target variable was the hourly influent flow rate at the current time step. The 

collected data for Plant A was sequentially split into a training set (from November 1, 2016 to 

December 31, 2019) and a testing set (from January 1, 2020 to August 3, 2021), while that for 

Plant B was also sequentially split into a training set (from January 1, 2019 to December 31, 2019) 

and a testing set (from January 1, 2020 to November 30, 2021).The random forest model for each 

plant was trained on the training set. The predictions made on the testing sets were regarded as no-

lockdown scenario influent flow rates. The models were implemented using the scikit-learn library 

in Python. To improve the models’ performance, hyperparameter tuning was performed using 
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cross-validation on the training set. The hyperparameters that were tuned included the maximum 

depth of each tree. Root mean square error (RMSE) defined in scikit-learn library was used as a 

criterion to evaluate the models’ performance (Fig. 4.A2).  

 

 

Fig. 4.A1 Weekly pattern of Plant B: (a) year 2019 average before lockdowns, (b) year 2020 

average mostly during lockdowns, (c) year 2021 average during lockdowns 
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Fig. 4.A2 Scatter plots of RF models: (a) predictions made on training set for Plant A, (b) 

predictions made on testing set for Plant A, (c) predictions made on training set for Plant B, (d) 

predictions made on testing set for Plant B 
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Chapter 5 – Online Machine Learning for Influent Flow Rate Prediction 

The Online learning models accurately predict influent flow rate at wastewater plants. 

Models adapt to changing input-output relationships and are friendly to large data. Online learning 

models outperform conventional batch learning models. An optimal prediction strategy is 

identified through uncertainty analysis. The proposed models provide support for coping with 

emergencies like COVID-19. 

This chapter has been submitted for publication consideration. 
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Adapting to a New Normal: Online Machine Learning for Stream Wastewater Influent Flow 

Rate Prediction in the Era of COVID-19 

Abstract 

Accurate influent flow rate prediction is important for operators and managers at wastewater 

treatment plants (WWTPs) as it is closely related to wastewater characteristics such as biochemical 

oxygen demand (BOD), total suspend solids (TSS), and pH. Previous studies have been conducted 

to predict influent flow rate, and it was proved that data-driven models are effective tools. However, 

most of these studies have focused on batch learning, which is inadequate for wastewater 

prediction in the era of COVID-19 as the influent pattern changed significantly. Online learning 

that has distinct advantages of dealing with stream data, large dataset, and changing data pattern, 

has a potential to address this issue. In this study, the performance of conventional batch learning 

models Random Forest (RF), K-Nearest Neighbors (KNN), and Multi-Layer Perceptron (MLP), 

and their respective online learning models Adaptive Random Forest (aRF), Adaptive K-Nearest 

Neighbors (aKNN), and Adaptive Multi-Layer Perceptron (aMLP), were compared for predicting 

influent flow rate at two Canadian WWTPs. Online learning models achieved the highest R2, the 

lowest MAPE, and the lowest RMSE compared to conventional batch learning models in all 

scenarios. The R2 values on testing dataset for 24-hour ahead prediction of the aRF, aKNN, and 

aMLP at Plant A were 0.90, 0.73, and 0.87, respectively; these values at Plant B were 0.75, 0.78, 

and 0.56, respectively. The proposed online learning models are effective in making reliable 

predictions under changing data patterns, and they are efficient in dealing with continuous and 

large influent data streams. They can be used to provide robust decision support for wastewater 

treatment and management in the changing era of COVID-19 and also under other unprecedented 

emergencies that could change wastewater influent patterns.  
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5.1 Introduction 

Accurate prediction of influent flow rate at wastewater treatment plants (WWTPs) is 

crucial for the proper operation of treatment facilities (Boyd et al., 2019; Zhou et al., 2022b). This 

is because accurate influent flow rate prediction enables efficient use of resources, such as dosing 

chemicals, as influent flow rate is strongly correlated to wastewater characteristics such as 

biochemical oxygen demand (BOD), total suspend solids (TSS), and pH (Bechmann et al., 1999; 

Wei and Kusiak, 2014). Knowing influent flow rate in advance can also prevents overflows, which 

can lead to equipment damage and environmental pollution particularly for WWTPs with 

combined sewer systems during extreme weather events (Wei et al., 2012; Zhang et al., 2019).  

Over the past several decades, numerous studies have been conducted to predict influent 

flow rate, and data-driven models have been proved to be an effective approach (Andreides et al., 

2022b; Ansari et al., 2018; Ma et al., 2014; P Zhou et al., 2019; Zhu and Anderson, 2019). Despite 

the impressive amount of effort put on data mining of influent flow rate, most of the previous work 

focuses on supervised batch learning. The primary goal of supervised learning is to formulate a 

model that can predict a target 𝑦  (e.g., influent flow rate) given a set of features 𝑋  (e.g., 

precipitation and temperature) (Bzdok et al., 2018; Caruana and Niculescu-Mizil, 2006). 

Supervised batch learning can be succinctly described as a process consisting of three main steps: 

(1) loading and preprocessing of the data, (2) training a model on the processed data, and (3) 

evaluating the performance of the trained model on unseen data. Various batch learning data-

driven models have been validated for influent flow rate prediction following the above process 

(Andreides et al., 2022b; Zhang et al., 2019). However, this method of proceeding has certain 

drawbacks. Particularly, the batch learning regime is not suitable for prediction problems where 
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there are significant changes in the input-output relationships. (Fontenla-Romero et al., 2013; Hoi 

et al., 2014). In the event that new data with new patterns becomes available, the model must be 

entirely retrained from scratch using the combination of the old and new data, which can be 

computationally expensive and time-consuming. This is particularly problematic in real-world 

influent flow rate prediction scenario where new data with new patterns is constantly arriving on 

an hourly or minute basis. The new patterns come with new data make the mapping function 

captured by the trained model disabled. During the COVID-19 pandemic, the drawbacks of batch 

learning approaches have become more evident. The COVID-19 pandemic has had a profound 

impact on the daily lives of people around the world (Gautam and Hens, 2020; Khan et al., 2020). 

Wastewater-Based Epidemiology has gained significant attention, and there is a growing amount 

of wastewater data available (Hillary et al., 2021). Additionally, to slow the spread of the virus, 

governments have implemented various measures, including lockdowns that close schools, non-

essential services, and recreational facilities, result in restrict the movement and activities of 

billions of people (Alfano and Ercolano, 2020; Khan et al., 2020). As individuals spend more time 

at home and engage in various activities, their water consumption habits change (Abu-Bakar et al., 

2021; Nemati and Tran, 2022). Correspondingly, the pattern of influent flow rate has also altered, 

and the mapping function inferred from pre-pandemic data is no longer valid. Conventional batch 

learning is effective only under situations where the entire dataset is accessible, there is an infinite 

amount of training time, and the underlying process of data generation does not change (Fontenla-

Romero et al., 2013). To adapt changing patterns and large amount of new data in practice during 

the pandemic, a new learning regime for data-driven models is required.   

Online machine learning that represents an important family of efficient and scalable 

machine learning algorithms has a potential to address these challenges. It has distinct advantages 
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in situations where data arrives continuously, application is large-scale, and the process underlying 

the data generation is changing (Fontenla-Romero et al., 2013; Hoi et al., 2014). Over the past 

years, a multitude of online learning algorithms have been developed (Hoi et al., 2021; Jain et al., 

2014). Ensemble learner is often a preferred method for learning from data streams that are 

constantly changing, as it can achieve high performance without much optimization and its 

flexibility allows for learners to be added, updated, reset, or removed as needed (Gomes et al., 

2017). Thus, adaptive Random Forests model (aRF) as a representative ensemble learner for online 

learning was firstly adopted to influent flow rate prediction in this study. Meanwhile, the K-

Nearest Neighbors (KNN) and Multi-Layer Perceptron (MLP) algorithms are widely used in the 

batch learning setting due to their effectiveness and efficiency (Ahmed et al., 2010; Taunk et al., 

2019a). Both KNN and MLP were proved to be effective in influent flow rate prediction. In the 

challenging context of online learning, adaptive K-Nearest Neighbors (aKNN) and adaptive Multi-

Layer Perceptron (aMLP) were also considered due to aKNN’s simplicity and effectiveness and 

aMLP’s ability to approximate any measurable function.  

In this study, we aim to explore the applications of online learning algorithms in the 

prediction of wastewater influent flow rates at two Canadian municipal treatment plants. Three 

online learning algorithms including aRF, aKNN, and aMLLP were adopted, and they were also 

compared with their respective conventional batch learning algorithms RF, KNN, and MLP. This 

study entails the following objectives: (1) develop three online learning models and three batch 

learning models to predict influent flow rate at two wastewater treatment plants; (2) evaluate and 

compare the performance of the developed models; (3) conduct an uncertainty analysis on the 

developed models and find an optimal prediction strategy. The proposed models will provide 

robust and reliable predictions while the wastewater influent pattern changes due to COVID-19 
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and therefore be beneficial for wastewater operators and managers making quick responses to 

emergencies.  

5.2 Methods 

5.2.1 Batch learning models 

The Random Forest (RF) that developed by Breiman is a classic ensemble method that 

aggregates multiple decision trees (Breiman, 2001b). It utilizes a combination of bootstrapping 

and random split selection to create a group of independent decision trees, which are then 

ensembled to make a prediction. The RF method has several advantages, such as the ability to 

accommodate both numerical and categorical data, being robust to changes in hyperparameters, 

having a lower risk of overfitting, and the ability to identify the importance of variables (Kovacs 

et al., 2022). This RF has been found to be effective in predicting wastewater influent flow rate (P 

Zhou et al., 2019a; P Zhou et al., 2019). The k-nearest neighbors (KNN) is a type of ‘lazy learning’ 

algorithm, which means it only stores a training dataset instead of undergoing a training stage. 

When a new sample is entered, the 𝑘	(an	integer	value	specified	by	the	user) closest neighbors 

is selected to represent it based on the distances (e.g., Euclidean distance) between the new sample 

and its neighbors. KNN is known for its simplicity, and it has also been proven to be an effective 

method for influent characteristics prediction (Kim et al., 2016; Taunk et al., 2019b). Artificial 

neural networks are widely recognized as a powerful tool for predictive modeling across various 

disciplines (Agirre-Basurko et al., 2006; Zhang et al., 2019). Multi-layer perceptron (MLP) is a 

typical artificial neural network model, often used as a baseline model due to its ability to 

approximate any measurable function and its ease of construction and tuning. MLP is composed 

of interconnected layers of neurons that communicate through weights. Typically, it consists of an 
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input layer, one or more hidden layers, and an output layer. It is widely used in wastewater 

modeling and has been proved to be effective.  

5.2.2 Online learning models 

While the data streams of influent flow rate bring a dynamic pattern, methods that can 

learning from evolving data streams and the input-output relationship is desired. The Adaptive 

Random Forests (aRF) algorithm is an adaption of the traditional Random Forests (RF) algorithm, 

designed to handle data streams (Gomes et al., 2018, 2017). It combines the traits of batch 

algorithms with dynamic update methods to efficiently process data streams. The development of 

an adaptive Random Forest (aRF) consists of two major processes: (1) a base-tree creation 

algorithm and (2) a dynamic update method. The classical RF by Breiman creates a base-tree 

through algorithms such as CART (also called CART tree), which assume that all training 

examples can be stored simultaneously and limit the number of examples each base-tree can learn 

from. The base-tree of aRF is a Hoeffding tree introduced in (Domingos and Hulten, 2000), which 

overcomes the limitation of CART tree and can handle extremely large datasets. For the dynamic 

update method of aRF, it mainly relies on a drift detection method such as ADWIN that could 

detect warnings and drifts (Bifet and Gavalda, 2007). In aRF, when a warning is detected by 

ADWIN, “background” trees are initialized and trained alongside the ensemble without affecting 

its predictions. If a drift is detected confirmed for the tree that triggered the warning, it is then 

replaced with its corresponding background tree.   

The adaptive k-nearest neighbors (aKNN) method is based on the classical KNN method. 

KNN has no training stage as it only stores a training dataset. However, using the traditional KNN 

method becomes infeasible when learning from data streams, as storing the data prior to learning 

is neither useful (old data may not represent the current concept) nor practical (data may surpass 
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available memory). aKNN includes a slide window to store last observed data instead of storing 

all data. The maximum size of the window storing the last observed samples is also an integer 

value specified by the user. The adaptive Multi-Layer Perceptron (aMLP) adopts a partial fit 

function, in contrast to the traditional Multi-Layer Perceptron (MLP). This means that when new 

samples are introduced, the aMLP model only partially fit to incorporate the new data, rather than 

retraining the entire model from scratch. These models were implemented using scikit-learn and 

scikit-multiflow python libraries (Montiel et al., 2018; Pedregosa et al., 2011).  

5.2.3 Model comparison 

Traditional batch learning models and online learning models were compared in this study. 

Fig. 5.1 shows the design of the experiment. For both batch learning and online learning models, 

the whole dataset was divided into the same training and testing datasets. In batching learning, the 

models were trained using the entire training dataset and the best performing models were selected 

through cross-validation. After selecting the best models, the testing set was used to evaluate the 

models’ performance on unseen data. This was done by feeding the testing dataset into the models 

and comparing the predicted outcomes with the actual observations. In online learning, the 

adaptive models, the same as batch learning, were initially trained using the training dataset and 

the best performing models were acquired. These models were then used to make predictions on 

the next data sample 𝑡!0#. When a new observation (e.g., 𝑡!0#) became available, it was fed into 

the best performing models, which were then updated accordingly. The updated models were then 

used to make predictions on the next data sample 𝑡!0%, and this model update process was repeated 

until predictions were made for all the data samples in the testing dataset.  



Ph.D. Thesis - Pengxiao Zhou  McMaster University - Civil Engineering 

 96 

Fig. 5.1 Schema of the experiments (left: batch learning models; right: online learning models) 

5.3 Study area and data 

In this study, two wastewater treatment plants in Ontario, Canada (Plants A and B) were 

selected for case studies. The flow rate of the influent at Plant A was monitored on an hourly basis 

from November 1, 2016 to August 3, 2021, while the flow rate of Plant B was measured every 15 

minutes from January 1, 2019 to November 30, 2021. Limited missing data points were filled using 

simple linear interpolation by estimating the values based on the surrounding known data. Both 

Plants A and B collect wastewater from homes and small businesses. Plant A has separate storm 

and sanitary sewers while Plant B has a small portion of its sewers that combine both types of 

water. Both plants experience increased inflow during rainfall events (for Plant A, this is mainly 

due to illegal connections of downspouts and sump pumps to the sanitary system). Therefore, 
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hourly meteorological data including precipitation, snow depth, temperature, humidity, pressure, 

wind direction and wind speed were collected and used as features. Additionally, timestamp 

information including hour of the day, day of the week, day of the month, and month of the year 

were also used as features in this study. For Plant A, the data before March 1st, 2020 were used as 

training dataset, while data from that date forward were testing dataset. For Plant B, the data before 

January 1st, 2020 was selected as training dataset, while data from that forward were testing dataset. 

The testing datasets for both plants cover at least one period of COVID-19 lockdown in Ontario, 

during which schools, non-essential services, and recreational facilities were closed.  

5.4 Results and discussion  

5.4.1 Overall model performance 

Conventional batch learning RF, KNN, and MLP models as well as online learning aRF, 

aKNN, and aMLP models were created for influent flow rate prediction at two plants. Two 

modeling scenarios including 24-hour ahead prediction and no lead time prediction were 

considered. These models were tuned to achieve optimal performance while avoiding overfitting. 

Table 5.1 displays the performance metrics for each model on the testing dataset.  

Table 5.1 Performance metrics for each model, by plant and scenario 

 Plant A Plant B 

 24-hour ahead No lead time 24-hour ahead No lead time 

 R2 MAPE 

(%) 

RMSE 

(m3/hr) 

R2 MAPE 

(%) 

RMSE 

(m3/hr) 

R2 MAPE 

(%) 

RMSE 

(MLD) 

R2 MAPE 

(%) 

RMSE 

(MLD) 

RF 0.79 7.59 5663.73 0.78 7.79 5764.24 0.17 32.35 522.34 0.17 30.32 498.00 

KNN 0.51 11.84 8901.19 0.53 11.62 8721.91 0.07 27.78 383.11 0.09 26.45 372.18 

MLP 0.75 9.68 6714.23 0.77 8.95 6296.41 0.24 29.84 483.29 0.25 29.96 466.62 

aRF 0.90 7.35 4895.25 0.90 7.40 4905.84 0.75 14.82 206.32 0.77 14.59 201.58 
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aKNN 0.73 8.67 6342.32 0.73 8.68 6348.84 0.78 10.99 181.02 0.77 11.48 184.46 

aMLP 0.87 5.56 4424.91 0.88 5.17 4193.20 0.56 22.83 252.12 0.68 17.96 221.03 

 

The predictions for the no lead time scenario were overall slightly better than those for the 

24-hour ahead scenario. The average R2, MAPE, and RMSE metrics for Plant A in the scenario 

with no leading time are 0.765, 8.27%, and 6038.41 m3/hr respectively, while for Plant B they are 

0.455, 21.79%, and 323.98 million liter per day (MLD) respectively. The average R2, MAPE, and 

RMSE metrics for Plant A in the scenario with 24-hour ahead are 0.758, 8.45%, and 6156.94 m3/hr 

respectively, while for Plant B they are 0.428, 23.11%, 338.03 MLD respectively. For both Plant 

A and Plant B in the scenario with no leading time, a slightly higher R2, lower MAPE, and lower 

RMSE were achieved in comparison with 24-hour ahead scenario. It is common to observe a 

prediction accuracy drop when the prediction horizon expanded, this is likely due to the fact that 

as the temporal distance between the features and targets increases, the correlation between them 

becomes weaker (Wei and Kusiak, 2014; P Zhou et al., 2019). Given that time leading predictions 

are more applicable and practical for wastewater management, the following analysis focus on 

predictions made with a 24-hour ahead. 
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Fig. 5.2 Scatter plots for 24-hour ahead predictions from each model on testing dataset: (a) online 

learning models for Plant A, (b) batch learning models for Plant A, (c) online learning models for 

Plant B, and (d) batch learning models for Plant B 

5.4.2 Online learning compared to batch learning 

Online learning models that achieved the highest R2, the lowest MAPE, and the lowest 

RMSE according to Table 5.1, performed superiorly compared to conventional batch learning 

models for both scenarios across both plants. The scatterplot in Fig. 5.2a illustrates the results of 

24-hour ahead online learning predictions for Plant A, with points distributed around the diagonal. 
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In contrast, the scatterplot of batch learning methods for Plant A in Fig. 5.2b displays a less 

compact distribution of points. It suggests that the online learning methods had a smaller overall 

prediction error for Plant A. This phenomenon is even more significant for Plant B. The scatterplot 

in Fig. 5.2c illustrates the results of 24-hour ahead online learning predictions for Plant B. The 

points are distributed around and slightly towards the downside of the diagonal, indicating a slight 

underestimation. While the scatterplot of batch learning methods for Plant B in Fig. 5.2d shows a 

much more dispersed distribution. This may imply that the changes of influent flow rate at Plant 

B during the COVID-19 pandemic were more significant, and the mapping functions captured by 

conventional batching learning models may not be valid and need to be updated. It also emphasizes 

the importance of adopting new online learning methods to effectively capture and respond to the 

dynamic changes in influent flow rate during the COVID-19 pandemic. 

Fig. 5.3 presents a further performance comparison of online learning models and batch 

learning models, where dark colors represent the online learning models, and light colors represent 

the batch learning models. Histograms in Figs. 5.3a and 5.3c were used to show the distribution of 

prediction errors of the online learning and batch learning models at Plant A and Plant B, 

respectively. The prediction errors were calculated by subtracting the actual values from the 

predicted values. The y-axis represents the error range, and the z-axis represents the density of the 

errors. It is noticed that the histogram of the aMLP model at Plant A, as well as the histograms of 

the aRF and aKNN models for Plant B, have apparently taller bars near the center close to 0. This 

suggests that the models have fewer errors. To quantitatively compare the prediction errors, 

boxplots shown in Figs. 5.3b and 5.3d were utilized. The notch in the box represents the median, 

and the lower and upper of the box are the first quartile (𝑄1) and third quartile (𝑄3), respectively. 

The lower whisker extends to the first datum greater than 𝑄1 − 1.5 ∙ (𝑄3 − 𝑄1), while the upper 
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whisker extends to the last datum less than 𝑄3 + 1.5 ∙ (𝑄3 − 𝑄1). All presented boxplots adhere 

to the same guidelines. The aMLP model for Plant A, as well as the aRF and aKNN models for 

Plant B dramatically reduced the prediction errors. Although the reductions were not dramatical, 

the aKNN model for Plant A and aMLP model for Plant B also showed lower prediction errors 

compared to their respective batching learning models. The aRF model for Plant A displayed 

similar prediction errors as the RF model, which could be attributed to the RF model already 

achieving reasonable performance and the limitations in improvement potential for tree-structured 

algorithms. Notably, at Plant B, online learning methods had significantly decreased prediction 

errors. This may indicate that the influent flow rate pattern at Plant B during the pandemic has 

undergone a more significant change. Overall, in response to the dynamic changes in influent flow 

rate during the COVID-19 pandemic, online learning methods showed improved performance 

when compared to batch learning methods. 
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Fig. 5.3 Performance comparison of online learning methods and batch learning methods: (a) 

histograms of prediction errors at Plant A, (b) boxplots of prediction errors at Plant A, (c) 

histograms of prediction errors at Plant B, and (d) boxplots of prediction errors at Plant B 

5.4.3 Comparison of online learning methods 

While online learning methods demonstrated improved performance compared to batch 

learning methods, further examination is necessary to discern the differences among the three 
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online learning methods. A comparison of the three online learning methods, along with 

observations, is presented in Fig. 5.4. All three methods were able to capture the observed flow 

rate distribution (in grey) with reasonable variations at both plants. It appears that the aKNN 

models were most successful in capturing the distributions with the least variations at both plants. 

This is likely due to the fact that aKNN models only store data from the previous four weeks, 

making the prediction range more stable when real-world variations within the four weeks are 

limited. Interestingly, the influent flow rate at Plant A exhibited a bi-modal distribution, while that 

at Plant B exhibited a Poisson distribution. The possible reason for the bi-modal distribution at 

Plant A is that the data could be classified into two typical seasons, one with a noticeably higher 

influent flow rate than the other. For aRF predictions, the R2 and MAPE metrics (Table 5.1) range 

from 0.75 to 0.90 and 7.35% to 14.82%, respectively. Comparatively, for aKNN predictions, the 

R2 and MAPE metrics range from 0.73 to 0.78 and 8.67% to 11.48%, respectively. For aMLP 

prediction, the R2 and MAPE metrics range from 0.56 to 0.88 and 5.17% to 22.83%, respectively. 

Referring to the metrics presented in Table 5.1, the aMLP algorithm is considered as the most 

suitable among the three algorithms for Plant A, and the aKNN algorithm is deemed the most 

appropriate for Plant B. Additionally, aRF is considered as the most stable as it achieves overall 

highest R2 in all scenarios. 
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Fig. 5.4 Performance comparison of online learning methods: (a) histograms of predictions at Plant 

A, (b) boxplots of predictions at Plant A, (c) histograms of predictions at Plant B, and (d) boxplots 

of predictions at Plant B 
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5.4.4 Ensemble of online learning methods 

The use of an ensemble of different online learning methods, such as taking the average of 

predictions, can leverage the strengths of each method. Fig. 5.5 shows the scatterplots of averaged 

online learning predictions versus observations at the two plants. For Plant A, all the scatters were 

densely distributed around the diagnose and no apparent offset was observed. When compared to 

the single-algorithm model, the averaged online learning predictions achieved a tied highest R2 

(0.90, same with aRF), the second lowest MAPE (5.65%, slightly higher than aMLP), and the 

lowest RMSE (4023.58 m3/hr). For Plant B, while most scatters were distributed around the 

diagnose, there was an overestimation of observations near 0 and slight underestimation of extreme 

high observations. Practically, attention should be paid to these underestimated high observations 

as they may lead to more severe issues such as biomass washout. The averaged online learning 

predictions for plant B achieved the highest R2 (0.79), the second lowest MAPE (14.25%, higher 

than aKNN), and the lowest RMSE (179.31 MLD) when compared to the single-algorithm models. 

Overall, the averaged online learning predictions performed superior compared to each single-

algorithm model. 
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Fig. 5.5 Scatterplots of averaged online learning predictions versus observations at: (a) Plant A, 

and (b) Plant B 

An interval prediction that incorporates the predictions from all three online learning 

models can be generated to provide more information about the ensemble online learning 

predictions. The upper bound of the interval is the maximum prediction from the three models, 

while the lower bound is the minimum prediction. As shown in Fig. 6, the cumulative density 

functions (CDFs) of the maximum, average and minimum predictions as well as the observations 

were compared. The CDF of a random variable 𝑋, evaluated at 𝑥, is the probability that 𝑋 will take 

a value less than or equal to 𝑥. When comparing the minimum, maximum, and observed CDFs, it 

is noticeable that the overall shape of them is similar at both plants and the observed CDF is in-

between. The average CDF and the observation CDF show overlap in the middle at both plants, 

while the greatest deviation occurs at the segments: for low flow rates, the observation CDF is 

higher than the average CDF; for high flow rates, the observation CDF is lower than the average 
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CDF. This suggests that the observation CDF has a greater likelihood of extremely small and 

extremely large values for the influent flow rate, compared to the average CDF. To improve the 

prediction of influent flow rate, it is suggested to use the average CDF for moderate flow rates, the 

minimum CDF for low flow rates, and the maximum CDF for high flow rates. 

 

Fig. 5.6 Comparison of cumulative density functions at: (a) Plant A, (b) Plant B  

 

5.5 Conclusion 

In this study, a series of online learning models (aRF, aKNN, and aMLP) were developed 

for predicting the changing influent flow rate under the impact of COVID-19. Online learning 

models that can adapt to changing influent flow rate patterns show distinct advantages in 

comparison with traditional batch learning models. These models were developed based on 3-4 

years of hourly influent flow rate data and meteorological data, collected from two Canadian 

wastewater treatment plants. The developed online learning models were compared to their 

respective conventional batch learning models (RF, KNN, and MLP) for influent flow rate 

prediction at two Canadian wastewater treatment plants. Two scenarios were considered, including 
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24-hour ahead prediction and no lead time prediction. The online learning models produced 

predictions with good accuracy. Additionally, an optimal prediction strategy for influent flow rate 

was found through the uncertainty analysis of each model. The online learning models were found 

superior to batch learning models. They can not only easily adapt to a dynamic input-output 

relationship but are also friendly to extremely large data streams. The proposed models can provide 

more robust decision support to wastewater operators or managers for coping with changing 

influent patterns due to emergencies such as COVID-19. 

Online learning models that achieved the highest R2, the lowest MAPE, and the lowest 

RMSE performed better compared to conventional batch learning models for both scenarios across 

both plants. The R2 values on testing dataset for 24-hour ahead prediction of the aRF, aKNN, and 

aMLP at Plant A were 0.90, 0.73, and 0.87, respectively; these values at Plant B were 0.75, 0.78, 

and 0.56, respectively.  The averaged online learning predictions performed superior compared to 

each single-algorithm model. The averaged online learning predictions achieved a tied highest R2 

(0.90, the same with aRF), the second lowest MAPE (5.65%, slightly higher than aMLP), and the 

lowest RMSE (4023.58 m3/hr) at Plant A and the highest R2 (0.79), the second lowest MAPE 

(14.25%, higher than aKNN), and the lowest RMSE (179.31 MLD) at Plant B. To improve the 

prediction of influent flow rate, cumulative density functions (CDF) corresponding upper bound, 

lower bound, and average of the ensemble online learning predictions were generated. It is 

suggested to use the average CDF for moderate flow rate predictions, the minimum CDF for low 

flow rates, and the maximum CDF for high flow rates. In future studies, these proposed online 

learning models can be utilized for predicting not only influent flow rate but also other wastewater 

characteristic at other WWTPs.  The online learning models presented provide promising results; 
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however, this study is limited to two case studies. Future studies should include more case studies 

and consider more prediction scenarios to further validate the developed models.  
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Chapter 6 – Conclusions 

6.1 Conclusions and contributions 

 The aim of this dissertation is to develop advanced data-driven approaches for wastewater 

modeling under uncertainties and thus support the operations and management of wastewater 

treatment plants (WWTPs). This was achieved through the development of data-driven approaches 

to assist conventional wastewater process-driven models (PDMs) as well as expanding and 

elevating the application of data-driven models (DDMs) to tackle more challenging wastewater 

simulation tasks. 

In Chapter 2, an efficient arbitrary polynomial chaos expansion (aPCE) approach based on 

data-driven techniques was developed for the uncertainty analysis of a conventional process-driven 

Secondary Settling Tank (SST) models. The use of SST models is crucial for the effective 

simulation of wastewater treatment systems. By predicting the quality of effluent and underflow, 

SST models aid in the optimization, management, and design of wastewater treatment systems. 

SST modeling relies on an empirical settling velocity function, which can be significantly affected 

by parameter uncertainty. This uncertainty may negatively impact the performance of the SST 

model, making it important to assess parameter uncertainty. While Monte Carlo simulation (MCS) 

is a traditional method for assessing uncertainty, it can be computationally expensive and requires 

explicit knowledge of parameter distribution. To overcome these limitations, a novel approach 

based on data-driven techniques called arbitrary polynomial chaos expansion has been developed 

and used for the first time. The well-known Bürger-Diehl SST model is utilized as a subject, and 

uncertainties originating from five key model parameters are evaluated using both the aPCE and 

MCS techniques. Both techniques generate probabilistic estimations of the model output sludge 

blanket height. Comparing the results of aPCE and MCS, it appears that the aPCE approach is as 
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effective as MCS in quantifying SST model parameter uncertainty while significantly reducing 

computational cost. This study validates the effectiveness and efficiency of aPCE in quantifying 

uncertainties of wastewater PDMs and demonstrates that aPCE can be an effective alternative to 

MCS for uncertainty quantification in the field of wastewater modeling. Additionally, this study 

shows that utilizing data-driven approaches to assist conventional wastewater PDMs is feasible 

and can provide more robust support for the design, management, and optimization of wastewater 

treatment systems. 

In Chapter 3, DDMs were developed for tackling the challenging Bisphenol A (BPA) 

prediction task. BPA is a contaminant of emerging concern that poses a risk to human health and 

is commonly found in the aquatic environment, with conventional WWTPs being a significant 

pathway of BPA. Accurately predicting BPA’s fate at WWTPs is crucial to controlling and 

mitigating BPA contamination. Three machine learning models, namely shared layer multi-task 

neural network, genetic programming, and extra trees, are employed in this study to predict the 

effluent BPA concentration at twelve municipal WWTPs across Canada. Additionally, network 

theory is applied to examine the interdependencies among the variables influencing BPA removal. 

This study validates the abilities of advanced DDMs to accurately predict BPA effluent 

concentration, with advantages such as alleviating data sparsity and imbalance, improving model 

interpretability, and measuring predictor importance. The network analysis is shown to be effective 

in revealing interdependencies among various factors affecting BPA removal. The study 

demonstrates that BPA removal is unlikely to occur at primary treatment plants, while it can be 

achieved through secondary or tertiary treatment. More importantly, this study provides an 

integrated framework for modeling and analyzing emerging contaminants at WWTPs. 
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In Chapter 4, DDMs were developed to help assess the impact of the COVID-19 pandemic 

and the subsequent lockdowns on Canadian municipal sewage systems. The focus is on the 

changes in influent flow rates at two wastewater treatment plants in Ontario, Canada. Weekly 

patterns and daily average flow rates before and during the lockdowns are compared. Predicted 

flow rates for a no-lockdown scenario are generated by random forest models and compared with 

the observed influent flow rates to exclude the meteorological impact. The study shows that 

influent flow rates exhibited differences in weekly patterns and less variability during the 

lockdowns compared to pre-lockdowns. Both plants experienced a decrease in influent flow rates 

during the lockdowns, with a surge after the easing of provincial emergency state. This information 

is valuable for improving wastewater management strategies and guiding policy decisions during  

times of crisis in the future.  

In Chapter 5, traditional DDMs were modified for capturing the constantly changing 

influent flow rate patterns during the COVID-19 pandemic. Data-driven models have been proven 

effective in previous studies for predicting influent flow rates, but most of these studies focused 

on batch learning, which is insufficient for predicting wastewater patterns during the COVID-19 

era because of changing patterns. Online learning has the potential to address this issue due to its 

distinct advantages of handling stream data, large datasets, and changing data patterns. This study 

compares the performance of conventional batch learning models (Random Forest, K-Nearest 

Neighbors, and Multi-Layer Perceptron) with their respective online learning models (Adaptive 

Random Forest, Adaptive K-Nearest Neighbors, and Adaptive Multi-Layer Perceptron) for 

predicting influent flow rate at two Canadian WWTPs. The online learning models outperformed 

the conventional batch learning models in all scenarios. This study proves online learning models 

are effective in making reliable influent flow rate predictions under changing data patterns and are 
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efficient in handling continuous and large influent data streams. Additionally, this study proposes 

new methods for adapting to changing influent data and supports to wastewater treatment 

management during unprecedented emergencies such as COVID-19 that may alter input-output 

relationships. 

Overall, this dissertation developed a data-driven uncertainty quantification technique to 

assist conventional process-driven models (PDMs) and filled the gap in the application of data-

driven models (DDMs) for challenging wastewater modeling issues, such as predictions with 

limited data and predictions in emergency scenarios.  

6.2 Future research recommendations  

 (1) While the uncertainty analysis for SST models has been well investigated in this thesis, 

large uncertainties could also arise from the simulation of other unit processes. For example, 

uncertainty analysis is crucial for all types of activated sludge models (ASMs), but it is often 

performed using MCS, which is computationally expensive. Therefore, applying advanced and 

efficient methods such as aPCE for uncertainty analysis of ASMs, as well as other unit process 

simulation models, can provide valuable benefits.  

 (2) Although using aPCE can efficiently achieve uncertainty analysis, stochastic modeling 

might be another approach to address uncertainties and is worth investigating. For example, 

stochastic wastewater models can be developed by incorporating intrusive polynomial chaos 

expansion into wastewater PBMs.  

 (3) Although new effective DDMs for wastewater modeling have been developed, the 

discussion on the uncertainty of the developed DDMs is limited. For instance, the hyperparameters 

of DDMs in wastewater modeling field are usually tuned through grid search or experience. 
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Assessing the uncertainties associated with hyperparameters can benefit the improvement of DDM 

performance.  


